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Abstract

This thesis explores the impact of shore power and berth planning on the quayside
operations of container terminals, with a focus on optimizing berth planning to im-
prove terminal performance. The primary objective is to study the extent to which an
allocation algorithm can enhance berth planning for terminals utilizing shore power.
Key performance indicators such as waiting time, waiting costs, and distance to berth
position were used to assess the impact of shore power and planning algorithms on
terminal efficiency. A simulation model, Portwise’s TRAFALQUAR, was employed
to evaluate various planning algorithms under realistic operational scenarios. The
scenarios described typical container terminals configured with various Shore Power
designs.

For this study, a simulated annealing algorithm was proposed to optimize a Greedy
algorithm which uses vessel-specific waiting costs to define vessel priorities as a soft
constraint. The simulated annealing algorithm is compared to TRAFALQUAR’s
Base berth allocation algorithm which handles vessel priorities as a hard constraint.
Results indicated that the Simulated Annealing algorithm consistently provided the
most robust and efficient berth schedules, outperforming the other algorithms across
all evaluation metrics. Furthermore, the study revealed that shore power can sig-
nificantly impact berth flexibility and deteriorate a container terminal’s operations.
However, advanced berth planning can mitigate the constraints set by shore power
designs, and even enhance operational performance to levels comparable to terminals
without shore power.

The thesis underscores the importance of integrating advanced berth planning strate-
gies with shore power designs to optimize terminal operations and reduce the negative
impact of shore power designs. Future work should focus on refining modelling as-
sumptions to better reflect real-world conditions, exploring alternative optimization
techniques, and testing a variety of shore power designs and vessel mixes to develop
more generalized and effective solutions. This study provides valuable insights for
terminal operators aiming to improve berth planning and implement shore power
systems efficiently.
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1

Introduction

The container shipping industry is an important part of global trade and has grown exponentially
over the past few decades. It is expected that the industry keeps growing in the foreseeable future
as the use of containerized cargo is still gaining popularity. Container terminals are a crucial part
of the container shipping supply chain, serving as hubs where goods are efficiently transferred
between ships and shore. Container ships that moor at container terminals are usually propelled
and powered by combustion engines and emit greenhouse gasses continuously. However, the
container shipping industry is facing increasing environmental pressure and stricter regulations
to reduce emissions. Shore power has been identified as an effective solution to reduce the
environmental impact of ships when docked at a container terminal.

Shore power is often referred to as On-shore Power Supply (OPS). With OPS, ships are
connected to the local shoreside electricity grid while docked meaning that onboard auxiliary
engines can be switched off. Turning off the auxiliary engines reduces emissions, noise levels and
vibrations which negatively impact the environment. When implemented, OPS would therefore
be a direct measure to make ports more sustainable and future-proof.

1.1 Motivation

The Port of Rotterdam estimates that vessels at berth in Rotterdam generate approximately
600-kilo tonnes (kt) of CO2 yearly to generate a similar amount of electricity as 250,000 to
300,000 households [1]. Stolz et al estimate that the total CO2 emissions of all ships at berth
in the EU account for approximately 5,000 kt and that the application of shoreside electricity
in the EU can save up to 3,000 kt of CO2 emissions. In the case of container vessels, Stolz et
al show that the introduction of shore power could potentially reduce their total CO2 emissions
with 6.4% [2].

Consequently, OPS is part of the European Union’s Fit For 55 legislation package [3] which
aims to reduce greenhouse gas emissions by at least 55% in 2030. The Fit For 55 proposal states
that all container vessels larger than 5,000 gross tonnes (GT) that are berthed for longer than
two hours are obliged to connect to shore power from 2030 onwards unless they use an alternative
zero-emission solution.[4]. With the current EU directive, all container terminals will have to
comply with the OPS regulations in 2030. However, in October 2023, it was estimated that a
mere 51 of the 489 ports in the EU have implemented some form of shore power [5]. Thus, many
ports still need to implement OPS before 2030 to comply with EU regulations. A substantial
investment is needed by the terminals to implement a shore power system. Moreover, a shore
power system is not a one-size-fits-all solution. Different terminals might require different OPS
designs to remain operationally efficient and maximize the sustainable advantages. Therefore, to
support the investment decisions, it is valuable for a terminal operator to know what the impact
of different OPS system designs can be on the terminal operations.
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1.2 Research Objective

While the environmental benefits of shore power are well-documented, its impact on the
operational efficiency of container terminals is explored to a lesser extent. Shore power mainly
influences operations at the quay when vessels are docked, with quay performance strongly relying
on berth planning. Berth planning determines which vessel is allowed to dock at which part of
the quay. If the berth planning is done effectively it can potentially increase the number of vessels
serviced by a terminal and improve the service level. Additional restrictions for berth planning
apply when container ships can only dock if a shore power connection is available.

1.2 Research Objective

This thesis explores the influence of shore power and berth planning on the quayside operations
of a container terminal. Ultimately, the objective is to see if an allocation algorithm can improve
berth planning for a container terminal which utilizes OPS. To accomplish this, the following
research question is addressed:

To what extent can berth planning be optimized to improve the performance of a container ter-
minal with shore power?

To investigate this topic, it is important to recognize how shore power constrains berth planning
and what parts of shore power infrastructure can be optimized to reduce operational constraint.
Moreover, the key performance indicators of a berth schedule need to be identified to describe
the effect of planning algorithms and shore power designs. A simulation model will be used
to evaluate the performance of planning algorithms in detailed scenarios that mimic realistic
container terminal operations.

1.3 Host organization

Portwise was founded in 1996 as part of TBA Group and became independent in 2022. Portwise is
a world-leading consultancy and simulation firm for logistics in ports, terminals and warehouses.
They stand for progress and impact; they work mission-driven and help transform logistics to
become future and planet-proof. They use their state-of-the-art models, expertise, and skills to
make a positive impact on business, people, and the planet.

This research was conducted within the simulation department of Portwise. At the simulation
department, they use the self-built most accurate simulation model for container terminals in the
world to investigate various design alternatives for container terminals, design optimal logistical
rules and prototype new developments.

This thesis aims to contribute to Portwise’s already vast inventory of knowledge of container
terminals with the introduction of shore power design and berth planning optimization. A shore
power module will be integrated into one of their simulation models which can potentially be used
to support terminal operators in their decision-making process regarding shore power design.
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1.4 Thesis structure

1.4 Thesis structure

This report continues with Chapter 2 where context on container terminal practices is given and
where a concise description is given of shore power systems and design possibilities. Chapter
3 discusses previous research on berth planning algorithms and the integration of shore power.
Chapter 4 describes the methods and algorithm used to answer the research question. Chapter 5
highlights the experimental setup and model assumptions used to evaluate performance. Finally,
in Chapters 6, 7 and 8 the results are presented, discussed and concluded.
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2

Background

2.1 Container Terminal

A container terminal can be divided into three main sections. The gate, essentially is the entrance
and exit through which containers arrive and leave via trucks. The yard is where stacks of
containers are stored awaiting their next destination. Finally, the quay, where container vessels
are moored and quay cranes load and unload containers from the ship. This report focuses on
the operations at the quayside of a container terminal.

Figure 2.1: Schematic representation of a container terminal

2.1.1 Quayside operations

At the quay, vessels are docked at a berth. A quay consists of a single berth or is divided into
multiple berths. Common reasons for numerous berths at a quay are different water depths,
the quay having corners or berths which are reserved for specific shipping lines. A berth can be
categorised as discrete or continuous. A discrete berth means that vessels can only be berthed
at discrete locations. A continuous berth means that vessels can dock anywhere along the berth.

When a vessel is berthed, it is serviced by quay cranes (QC). The QC loads and unloads
containers from the vessel with a certain productivity. The productivity of a QC is expressed in
boxes (containers) per hour (bx/h). The height and outreach of a QC determine if the crane is
suitable to serve a vessel. The productivity of a vessel is therefore determined by the number of
QC that are working on the vessel and the QC productivity.

When a container vessel arrives at a port it has to wait at an anchorage point until a space
to berth becomes available. Other factors can also contribute to waiting time at the anchorage
point such as tides, winds or availability of tug pilots. From the anchorage point, it then makes
the journey through the port to the quay, this time is referred to as the journey time. Upon
arrival at the quay, the vessel starts to berth. The time it takes to berth a vessel is referred to
as berthing time.

10



2.1 Container Terminal

When a vessel is berthed and there are quay cranes available then the service can start.
The number of containers that need to be loaded and unloaded is referred to as the call size
of the vessel. The call size is dependent on the size of the vessel but is also influenced by a
seasonal pattern. Moreover, a vessel needs to be serviced with a certain productivity. This
required productivity is the service level on which the terminal has to operate. For example, if
a vessel has a required productivity of 100 bx/h and the QC’s have a productivity of 25 bx/h,
then the vessel would need on average 4 QC’s to reach the required service level. Once service is
completed the vessel has to unberth. Only when a vessel is done unberthing, a new vessel can
start the berthing process to take the unberthed vessel’s place.

The sum of all call sizes in a year is the yearly volume of the container terminal and is
expressed in Twenty-foot Equivalent Units (TEU). A single container is either one or two TEU
which is equivalent to 20 and 40 feet respectively. Therefore, the volume is not only determined
by the number of containers but also the size of the containers. The TEU factor of a terminal
is the average size of all containers that are handled. For example, a TEU factor of 1.75 means
that the average container is Therefore, the number of containers that have to be loaded and
unloaded in a year can be calculated by dividing the yearly volume in TEU’s by the TEU factor.

The set of vessels expected to arrive at a container terminal is called the vessel mix. Con-
tainer ships are generally divided into three types: Barge, Feeder, and Deepsea. These differ in
size, range, and function. Barges are smaller vessels used for inland waterways and short sea
routes, connecting regional ports. Feeder vessels are medium-sized ships transporting containers
between smaller regional ports and major hub ports. Deepsea vessels are large ships for long-
haul, transoceanic voyages, carrying large quantities of containers between major international
ports. For this thesis, only terminals where feeder and deepsea vessels arrive are considered since
these operate within the same shore power regulations. The vessel mix also includes specific
information such as length, expected call size, and required productivity.

Figure 2.2: Schematic of port operations

2.1.2 A terminal’s objective

Container terminals are profit-driven businesses. The revenue of container terminals is mainly
generated by terminal handling charges (THC). A THC is a fee that shipping lines pay for the
use of a terminal’s services and facilities. Therefore, for a container terminal to be successful,
it is important to ensure that shipping lines use their services and not move to a competitor.
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2.2 Berth Schedule

Maintaining a competitive advantage is therefore one of the main objectives of a container ter-
minal.

The competitiveness of a container terminal is influenced by several factors. Kaliszewski et
al., Baştuğ et al and Cruz et al [6, 7, 8] found that the most significant factor for competitiveness
in the eyes of shipping lines is the turnaround time of vessels. Turnaround time is the time
it takes a vessel to do a round trip from one point to another. For a container terminal, the
turnaround time of a vessel is the time between arriving at the port and leaving the port. This
means that the turnaround time consists of the journey to the berth, berthing time, service
time, unberthing time, journey time out of the port and all waiting times. Since journey time,
berthing time and unberthing time are less likely to fluctuate considerably, the turnaround time
is mostly impacted by service and waiting times. Thus, a container terminal will strive for
efficient operations by reducing waiting and service times. Moreover, due to varying contracts
with shipping lines, adhering to agreed service levels is more important for particular vessels
which will get service priority.

The service level a container terminal wants to maintain is not the sole reason to minimize
waiting times. Waiting times are a source of direct costs for a terminal operator. A terminal
can be held responsible for the accrued costs of a shipping line if their vessel must wait at the
anchorage due to inefficiencies at the quay. The costs for a waiting vessel usually consist of
demurrage fees, fuel expenses and port fees. The demurrage fees are the main source of expenses
since these are to be paid per delayed container. Therefore, it is generally more expensive for
larger ships to wait at the anchorage point. Who is accountable for what costs is very irregular
and often determined in contracts between shipping lines and terminal operators.

2.2 Berth Schedule

Vessels arrive at a container terminal according to a weekly pattern. The week pattern is known
by the container terminal and is usually set for a year in advance. Therefore, a container terminal
can create a berth schedule which contains the arriving vessels and the berth position they are
assigned. The position a vessel can moor is dependent on the water depth and the type of QC at
the berths. Another constraint of berthing vessels is the mooring margin. The mooring margin
is the space around a berthed vessel required for mooring lines. So if two vessels both have a
mooring margin of 15 meters, then the space between the vessels must be larger than 30 meters.
The mooring margin also applies to the boundaries of the quay. An example of a berth schedule
is shown in Figure 2.3

2.2.1 Proforma

The proforma berth schedule is created before the vessels arrive based on the expected arrival
time and call size of the week pattern. A finalised proforma schedule is used to allocate containers
to stacks in the yard such that there is an efficient distribution. The distribution of containers
throughout the yard is important since the distance between a container and the vessel it is
assigned to can affect the productivity of the QCs. If the distance is too large, then trucks
carrying the containers have to drive longer distances. Longer distances impact the frequency
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2.2 Berth Schedule

Figure 2.3: Example of a berth schedule for a container terminal with two berths
of 600 metres.

with which containers arrive at the QC’s which decreases productivity and can harm the service
level of the terminal.

The proforma schedule is created with the expected arrival times and call sizes. However, a
vessel’s arrival is not deterministic but is influenced by uncertainty and the call sizes can change
per arrival. Therefore, the proforma schedule must be robust against uncertainties. If the
proforma is robust then the likelihood of vessels berthing at, or close to, their planned position
increases.

The proforma should ideally be designed to minimize vessel waiting time, efficiently allocate
vessels along the quay, and be robust to unpredictability. However, in reality, it’s not possible
to achieve optimality for all three criteria. Therefore, a trade-off is necessary to optimize the
proforma.

2.2.2 Realised

The realised berth schedule is created based on actual arrival times and call sizes. The realised
berth schedule is generated and adjusted throughout the operating period since operations are
prone to uncertainties. Due to changing arrival times, the berthing schedule has to be altered with
each new piece of information such as arrival delays and service time delays. With the realised
schedule, the performance depends on how much the terminal values the trade-off between waiting
time and berthing close to the planned position.
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2.3 On-shore Power Supply

2.3 On-shore Power Supply

2.3.1 Shore power infrastructure

Shore power designs have to be able to reliably supply large quantities of energy to often multiple
container vessels simultaneously. Moreover, the components of the OPS infrastructure are limited
to the spatial availability within the terminal. Shore power designs consist of the shoreside
components and shipside components as seen in Figure 2.4. In this section, the most important
components concerning the quay operations are discussed.

Figure 2.4: Schematic of OPS infrastructure. 1) Connection to power grid. 2)
Substation. 3) Converter station. 4) Cabling. 5) Connection points. 6) Cable
Management System on board of the vessel.

Shoreside infrastructure. The infrastructure at a container terminal consists of five main
parts [9, 10]. First, the connection to the regional electricity grid and the intake station. Secondly,
a substation which contains voltage transformers. Thirdly, a converter station which houses
frequency converters, transformers and switchgears. A converter module is needed for each
vessel that is berthed with OPS simultaneously to supply the right voltage and frequency. Then
there is the cabling network from the converter module to the quay and the connection points
at the quay.

Shipside infrastructure Ship-to-shore connection for container vessels is made possible with
a cable management system (CMS) on board the vessel. For container ships, the international
standard for shore power demands that the CMS must be located on the ship side of the oper-
ations [11]. The CMS contains a cable reel which can lower the cable to the quay so it can be
connected to one of the connection points. The CMS can be built into the vessel or located in a
containerised unit and is often near the stern or in the middle of the vessel as shown in Figure
2.5 [10]. The cable can generally extend between 35 and 55 meters which allows approximately
25 meters of horizontal freedom considering the height of the CMS [12].
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2.3 On-shore Power Supply

Figure 2.5: Containerised cable management system at the aft of the vessel.

Figure 2.6: Fixed connection box Figure 2.7: Mobile connection box [13]

2.3.2 Connection points and Shore power zones

A container terminal quay side operations rely heavily on the berth flexibility of the ships. With
the introduction of shore power, the flexibility is affected by the location of the connection
points on the quay and the number of vessels that can be berthed simultaneously. To remain
competitive, a terminal will want to limit the negative impact on their berth flexibility with the
introduction of shore power. To achieve this, vessels must be able to connect to a connection point
wherever they are berthed. However, a terminal can’t have an unlimited amount of connection
points which can be used simultaneously since each simultaneous connection needs a converter
station.

Shore power zone. A common solution is the division of the quay into multiple shore power
zones. A shore power zone is a section of the quay containing connection points which can supply
a single vessel at a time. The length of a zone is typically between 150 and 400 meters. The
zone can contain several fixed connection points (Figure 2.6) which are spaced out in such a way
that the entire zone is covered. The zone can also be covered by a single mobile connection point
(Figure 2.7) which can move along the quay wall towards the CMS of the vessel.

An increase in the number of zones means that more vessels can be berthed at the same time
which increases flexibility. However, too many zones mean unnecessary costs for the terminal.
Therefore, terminals need to decide on the number of zones and the length of the zones to limit
flexibility reduction and minimise costs. Ultimately, the optimal number of zones is dependent
on the arrival pattern of vessels and the vessel mix. If a terminal expects five vessels to arrive and
be berthed concurrently, there should be at least five zones, possibly more for optimal flexibility.
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2.3 On-shore Power Supply

However, due to arrival delays or operational disruptions, it is difficult to know in advance how
many vessels are likely to be berthed simultaneously.
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3

Related work

The optimization of berth schedules is a fundamental challenge for container terminals. Schedul-
ing berth positions is a known problem called the Berth Allocation Problem and has been exten-
sively studied in previous literature. This chapter discusses work related to the Berth Allocation
Problem and the use of Shore Power at container terminals.

Bierwirth and Meisel determined that the Berth Allocation Problem can be separated into
three main categories according to the spatial properties of the quay at a container terminal [14].
The Discrete Berth Allocation Problem (DBAP) involves a single berth where a single vessel can
dock. The Continuous Berth Allocation Problem (CBAP) allows multiple vessels to dock at a
berth. The Hybrid Berth Allocation Problem (HBAP) permits a single vessel per berth but a
ship can occupy multiple berths.

This study focuses on the Continuous Berth Allocation Problem and related work. Lim
demonstrated that the CBAP is NP-complete, indicating that there is no known way to find an
optimal solution to the problem quickly [15]. As a result, heuristic and approximation algorithms
are commonly used to find adequate solutions in a reasonable time frame.

Lee et al. proposed minimizing a weighted waiting time function using a Greedy heuristic
combined with a local search algorithm to improve the solutions [16]. Babazadeh et al. found
that a Particle Swarm Optimization algorithm was time-efficient and effective for minimizing
the total waiting time [17]. However, in the studies by Lee et al. and Babazadeh et al., ship
arrivals were assumed to be deterministic, and a single arrival pattern was used to evaluate their
algorithm performance.

Frojan et al. extended the formulation of the CBAP to include multiple continuous berths
and stochastic arrival times, proposing a Genetic Algorithm (GA) combined with a Local Search
algorithm to find good solutions [18]. Lin and Ting compared a Simulated Annealing model to
the GA proposed by Frojan et al. and improved waiting time in all problem instances [19]. These
problem instances only considered the vessel arrival pattern and did not account for different
vessel properties such as priority, waiting costs, and preferred berth positions.

Sheikholeslami and Ilati expanded the CBAP by incorporating preferred berth positions and
adding berth deviation into the objective function [20]. Xiang et al. conducted a study in 2017
that included a berth deviation factor in the objective, focusing on service levels per vessel by
incorporating vessel-specific weights [21]. However, Xiang et al. used randomly generated berth
preferences for each problem instance and did not consider the periodic pattern of arriving vessels
using the same proforma schedule. For a single proforma schedule across multiple scenarios prone
to uncertainties, a level of robustness is needed to minimize the costs of a schedule.

Zhen and Chang studied the impact of different levels of robustness in the proforma schedule
against varying levels of uncertainty [22]. They tested various berth strategies ranging from
cost-effective without regard for robustness, to robust with less focus on cost-effectiveness. They
concluded that the trade-off between minimizing costs and robustness for the proforma berth
schedule depends on the expected level of uncertainty in arrival and handling times. Still, they
concluded that a strategy focussed primarily on robustness was never the best, even with very
high levels of uncertainty. Zhen and Chang proposed a Squeaky Wheel Optimization heuristic
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for the proforma schedule and did not change berth positions for the realized arrivals. Therefore,
further optimization is possible by optimizing the cost of realized schedules with respect to the
proforma schedule.

Xiang et al. expanded their 2017 study in 2021 with a more robust formulation of the
CBAP which optimized a proforma schedule considering robustness and re-optimized realized
berth schedules subject to uncertainties [23]. They found that re-optimizing the berth schedule
is superior at reducing costs at high uncertainty scenarios. Moreover, by re-optimizing, they
could lower the level of conservatism in the proforma schedule without an overall cost reduction.

The demand for sustainable initiatives and increasing interest in shore power at container
terminals led to many research articles on the environmental benefits and economics of shore
power. Winkel et al. assessed the economic and environmental benefits of shore power policies
at European container terminals [24]. They concluded that the container terminal, which is
responsible for the investment costs of shore power, is often not the party that benefits from the
reduced emissions. However, with the reduced emissions, a substantial economic health benefit
is anticipated. These investment costs are significantly influenced by the shore power design as
mentioned in section 2.3.

Peng et al. recognized this and published a paper in 2019 where they used a simulation-
based solution algorithm to optimize shore power allocation and berth allocation for continuous
berths. They discussed multiple Shore Power patterns with varying capacities and assumed that
a shore power zone can supply multiple berthed ships if there is enough capacity. However, this
is not up to current international safety standards which dictate that shore power connections
must be 7.5 megawatts and can only supply a single vessel simultaneously. Peng et al. continued
their research on the cost of shore power with the DBAP. They proposed a PSO algorithm which
schedules berths and allocates shore power to berths to minimize the costs of shore power [25].

Zhang et al. optimized berth allocation with shore power with discrete berths with regards
to operational costs and energy costs [26]. Wang et al. considered a continuous berth with
shore power zones and formulated a model which optimizes the operational costs, emissions and
emission taxes by allocation vessels to berth positions and allocation QC’s to moored vessels [27].
Zhang et al. and Wang et al. assumed that shore power for berthed vessels is not mandatory and
developed models that can compromise shore power connections to achieve better operational
costs.
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4

Methodology

4.1 Mathematical formulation

Lim (1998) showed that the Continuous Berth Allocation Problem (CBAP) could be formulated
as a modified Strip Packing Problem (SPP) [15]. The Strip Packing problem is a 2-dimensional
geometric minimization problem. The idea of the SPP is to fit several geometric shapes into a
2-dimensional strip with limited width and infinite height without overlap between the objects.
The objective is to minimize the height of the strip by packing all objects efficiently.

The quay at a container terminal can be pictured as a two-dimensional space as seen in
Figure 4.1. The 2D space is defined by the length of the quay on the horizontal axis and time on
the vertical axis. If a vessel is berthed at the quay, it takes up a certain length of the quay (the
vessel’s length including mooring margins) for a certain time (service time of a vessel including
the berthing and unberthing time). Therefore, a vessel can be visualised in this space by a
rectangular shape. For the CBAP, when multiple vessels are berthed, they can’t be berthed at
the same location at the same time. In other words, the rectangles representing the vessels in
the 2D space cannot overlap. This is similar to an SPP since the width of the space is finite
(quay length) and the height of the space is infinite (time).

Figure 4.1: The berth allocation problem is visualised as a strip packing problem.
For vessel 1, x1 and x2 are the stern and bow of the vessel including the mooring
margin. The vessel is berthed at time y1 and unberthed at y2.

However, the CBAP is more constrained than a traditional SPP since an item (vessel) can
only be placed above a certain height (a vessel’s arrival time). Consequently, the position of an
item along the vertical axis is constrained. Moreover, additional constraints are often present in
the CBAP in the case of container terminals — for example, vessel priority, a maximum deviation
from a planned position or the limitations of OPS. Another difference between SPP and CBAP
is the objective function. In a SPP, the objective is to minimize the height of the strip. For
the CBAP, the objective depends on the needs of the container terminal which is generally more
complicated as mentioned in section 2.1.2. The parameters and decision variables for the CBAP
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4.1 Mathematical formulation

are shown in table 4.1.

Sets
V Set of vessels {1, 2, .., I} where I is the number of vessels
B Set of berths {1, 2, .., N} where N is the number of berths
Z Set of shore power zones {1, 2, ..,K} where K is the number of zones
Q Set of sections of the Quay 1, 2, ..., S where S is the number of sections

Parameters Domain
ai the arrival time of vessel i ∈ V at the quay. R+

li the length of vessel i ∈ V including the mooring margins. Z+

si the expected time on quay of vessel i ∈ V including the berth and
unberthing time.

R+

ci the cost per time unit that vessel i ∈ V has to wait. R+

lbn is the left boundary of berth n ∈ B R+

rbn is the right boundary of berth n ∈ B R+

xpi is the planned position of vessel i ∈ V R+

pc the position of the center of shore power zone c ∈ Z R+

rc the length of shore power zone c ∈ Z R+

wi the position of the CMS relative to the aft of vessel i ∈ V R+

b̂dev is the maximum berth deviation in meters R+

β is the deviation penalty. R+

T is the length of the berth schedule in hours. R+

Mtime a big M value concerning time. R+

Mpos a big M value with respect to the x position. R+

Decision variables
xi the position where vessel i ∈ V berth. R+

yi the time vessel i ∈ V berths R+

mij binary variable stating if vessel i ∈ V is berthed left of vessel j ∈ V {0, 1}
tij is a binary variable stating if vessel i ∈ V is unberthed before the berth

of vessel j ∈ V
{0, 1}

bin is a binary variable stating if vessel i ∈ V is berthed in berth n ∈ B {0, 1}
γiα is a binary variable stating if vessel i ∈ V is berthed along quay section

α ∈ Q
{0, 1}

kic is a binary variable stating if vessel i ∈ V is connected to shore power
zone c ∈ Z

{0, 1}

Table 4.1: Nomenclature for CBAP

4.1.1 Objective function

The berth allocation problem’s objective function depends on the type of berth schedule. For a
proforma schedule, the goal is to allocate berth positions such that ships can berth close to the
planned position even with variations in arrival times, without waiting at the anchorage point.
Consequently, a proforma schedule should try to be as robust as possible against uncertainties,
minimize waiting costs and ensure that vessels are distributed evenly along the quay. An uneven
distribution of calls along the quay can lead to situations where multiple vessels might arrive
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4.1 Mathematical formulation

simultaneously with the same planned position. For a realized schedule, the goal is to minimize
waiting costs and to berth ships close to their planned proforma position to minimize driving
distances.

Proforma schedule. The objective function of the proforma schedule is given by equation 4.1.
The aim is to minimize the waiting costs and ensure that vessels are evenly distributed along
the quay. This is done by multiplying the total waiting costs by the maximum occupancy of the
quay. The total waiting costs are calculated by summing the waiting costs of all vessels. The
waiting cost of a vessel is computed by multiplying the vessel’s waiting cost per hour ci by the
difference between the arrival time and the berthing time yi−ai. The occupancy rate per section
is computed to get the maximum occupancy of the quay. The parameter ôα is the occupancy of
section α ∈ Q and is expressed by eq. 4.2. The occupancy of section α of the quay is the fraction
of time vessels are berthed along that section. The expected service time si is used to calculate
the occupancy and is divided by the length of the berthing schedule T .

minimize:
∑
i∈V

ci(yi − ai) ·max
α∈Q
{ôα} (4.1)

where, ôα =
1

T

∑
i∈V

si · γiα (4.2)

Realized schedule. The objective function for a realized berth schedule is defined by Formula
4.3. The objective is the waiting time and a penalty for deviating from the planned position
multiplied by the waiting costs per hour for all vessels.

minimize:
∑
i∈V

ci(yi − ai +
|xi − xpi |
1000

· si · β) (4.3)

The waiting time is expressed by (yi − ai). The deviation penalty can be interpreted as the
additional service time due to the distance between the planned and actual position. The factor
|xi−xp

i |
1000 expresses the berth deviation in kilometres and is multiplied by the service time si and

a deviation penalty β. For this study, a deviation penalty β = 0.1 was used. The deviation
penalty β can be explained as the percentual increase in service time for each kilometre the
berth position deviates from the planned position. So, with a deviation penalty of 0.1, a vessel
with a service time of 10 hours would rather wait 1 hour to berth at the planned position than
berth without waiting 1000 metres away from the planned position. The deviation penalty was
determined based on a trial and error approach.

4.1.2 Constraints

The constraints of the basic formulation of the berth allocation problem modelled as an adjusted
strip packing problem are given by eq. 4.4-4.9. Constraint 4.4 ensures that vessels can only berth
after they have arrived at the quay. Constraint 4.5 ensures that berthed vessels are located within
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4.2 Algorithms

the berth that they are assigned to. Constraints 4.7-4.9 ensure the absence of overlap between
vessels in the berthing schedule.

ti ≥ ai ∀ i ∈ V (4.4)

xi + li ≤
∑
n∈B

binr
b
n ∀ i ∈ V (4.5)

xi ≥
∑
n∈B

binl
b
n ∀ i ∈ V (4.6)

tij + tji +mij +mji ≥ 1 ∀ (i, j) ∈ (V × V ), i ̸= j (4.7)
xi + li ≤ xj + (1−mij)Mpos ∀ (i, j) ∈ (V × V ), i ̸= j (4.8)
yi + si ≤ yj + (1− tij)Mtime ∀ (i, j) ∈ (V × V ), i ̸= j (4.9)

The introduction of shore power zones can be modelled with the following constraints. Con-
straint 4.10 ensures that simultaneously berthed vessels are not connected to the same shore
power zone. Constraint 4.11 ensures that vessels connect with a single zone if they require the
use of Shore Power. Constraint 4.12 ensures that a vessel can only connect to a zone if the vessel
is berthed within reach of the zone.

kic + kjc ≤ 1 + tij + tji ∀ (i, j, c) ∈ (V × V × Z), i ̸= j (4.10)∑
c∈Z

kic = 1 ∀ i ∈ V (4.11)

|pc − (xi + wi)| ≤ rc + (1− kic)Mpos ∀ (i, c) ∈ (V × Z) (4.12)

In the case of a realized berthing schedule, an additional constraint is introduced to limit
the difference between the planned and realized berth position which is expressed by constraint
4.13

|xi − xpi | ≤ b̂dev ∀ i ∈ V (4.13)

Finally, vessel priority is a constraint which can be ensured by carefully choosing the right
waiting costs of the vessels such that prioritized vessels don’t have to wait unless that can’t be
realized.

4.2 Algorithms

4.2.1 Greedy heuristic

To efficiently obtain a feasible solution for the CBAP a greedy algorithm is proposed which
assigns berthing positions to an ordered set of vessels. The algorithm sequentially selects a
vessel from the ordered set and evaluates all possible berth positions. To determine the possible
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positions, the quay is divided into sections of 5 metres. Then, for every 5 metres of quay, it is
evaluated if the vessel can berth without violating any of the constraints in section 4.1.2. If the
position does not violate any constraints then the position is given a score. This position score
is different for the proforma CBAP and the realized CBAP. The position with the highest score
is chosen as the berth position.

In determining parameter values and equations for the greedy algorithm, a trial-and-error
approach was employed. This method was chosen because simulations with stochastic parameters
made an analytical approach challenging. By iteratively testing and refining the parameters, it
was possible to identify values that produced the most reliable and satisfactory results among
several experimental setups. This empirical approach helped determine parameters that were
appropriate for the specific conditions and constraints of the CBAP.

Proforma schedule. For a possible berth position x̃i Let the P̂ ⊆ Q denote the subset of
sections that vessel i occupies if berthed at position x̃i. Then the Formula 4.14 represents the
score used to evaluate a position for the position.

fp(x̃i) = gap · (1− occupancy)2 (4.14)

gap = max{rbn − (x̃i + li), x̃il
b
n} (4.15)

occupancy =
1

|P̂ |

∑
α∈P̂

ôα (4.16)

The score is the product of two factors. The first factor (4.15) is the score for the largest gap
to a berth boundary. Maximizing the distance to one of the boundaries of the berth the position
is located in incites to leave ample space for other vessels to dock. The second factor (4.16),
is the average occupancy score of the set P̂ where ôα is described by 4.2. The final occupancy
score is obtained by subtracting the average occupancy score from 1 to penalize high occupancy.
Lastly, the occupancy score is squared to increase the factor’s weight. The emphasis on the
occupancy score is necessary to ensure that vessels are distributed evenly among the berths. By
multiplying both factors, the final score reflects the two most important aspects of the proforma
schedule, leaving space for other vessels to berth to reduce waiting times and distributing vessel
calls along the quay.

Realized schedule. For a possible berth position x̃i there is a planned position x̃pi . Eq. 4.17
gives the score used to evaluate the feasible positions. The score is a trade-off between leaving
space for other vessels to berth and deviating from the planned position where λ and µ are the
weights. For this study, berthing close to the planned position is seen as a key performance
indicator, therefore, weights of 0.1 and 1 are used for λ and µ respectively. With µ > λ priority
is given to positions closer to the planned position.

fr(x̃i) = λ · gap− µ · deviation (4.17)

gap = max{rbn − (x̃i + li), x̃i − lbn} (4.18)
deviation = |x̃i − x̃pi | (4.19)
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4.2.2 Simulated Annealing

The effectiveness of the greedy heuristic is significantly influenced by the input order of vessels.
Since the greedy heuristic is deterministic, it consistently returns the same solution for a given
input. Moreover, the number of possible input orderings is finite. This means that there is an
optimal order for the greedy algorithm. The number of variations in the input order for a set
of n vessels V is n!. Evaluating all possible order variations for large sets of vessels, however, is
practically impossible due to the factorial growth of combinations. To improve the input order
the Simulated Annealing meta-heuristic algorithm is proposed which optimizes the input order
for the greedy algorithm discussed in the previous section.

Simulated Annealing (SA) is an iterative and probabilistic method to solve combinatorial
optimization problems and was first proposed by Kirkpatrick et al in 1983 [28]. Simulated
Annealing is inspired by metallurgical practices where a material is heated to a high temperature
and gradually cooled down. Analogously, for combinatorial problems such as the BAP, the SA
algorithm begins with a high value for a temperature parameter and an initial solution which
could be improved. With a controlled cooling schedule, the algorithm iteratively decreases the
temperature and tries to improve the solution.

The SA algorithm starts with an initial solution x0 with an objective value f(x0) and an
initial temperature t0. With a permutation function, a neighbour x′ to the current solution x
is found. The new solution x′ is accepted with a certain acceptance probability p(∆E, t). The
acceptance probability for a minimization problem is given by Formula 4.20. The parameter
∆E denotes the difference in objective values as formulated in 4.21 and ti is the temperature at
iteration i.

p(∆E, ti) = exp

(
∆E

ti

)
(4.20)

∆E =f(x′)− f(x) (4.21)

From 4.20 it can be verified that for a superior neighbour solution ∆E will be negative and
P (∆E, t) will be larger than 1. Therefore an improvement will always be accepted. Inferior
neighbour solutions are more likely to be accepted if the difference in objectives is small or if the
temperature is high. If a neighbour is always accepted because of a too-high temperature param-
eter, then the algorithm is essentially a Random Walk algorithm. By cooling the temperature
with each iteration, the algorithm is guided to better solutions. Guidance is done by decreasing
the temperature with each iteration following a cooling schedule. The SA algorithm iterates for
an arbitrary number of iterations or until a convergence criterion is met. A single iteration is
described by Algorithm 1.

Initial solution The initial solution for the simulated annealing algorithm is crucial for reach-
ing the final best solution, as all future solutions originate from the initial solution. Therefore,
a good initial solution increases the chance of finding the optimal order. Wanke examined the
impact of different berth allocation policies and queuing priorities on waiting costs in a con-
tainer terminal [29]. The study simulated various combinations of policies and priorities and
considered the demurrage cost ratios between different-sized ships. They found that prioritizing
smaller vessels or a FIFO prioritization strategy reduced waiting times but increased the demur-
rage costs while prioritizing larger vessels reduced demurrage costs at the expense of an overall
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Algorithm 1: A single iteration of Simulated Annealing
Data: x, t the current solution and temperature.
Result: updated current solution
x′ ← generate a random new neighbor from x
∆E ← e(x′)− e(x)
if ∆E < 0 then

x← x′

else
r ← Unif [0, 1]
if r < exp(∆E/ti) then

x← x′

end
ti+1 ← decrease the temperature parameter following the cooling schedule.

end

higher waiting time. Based on the the findings of Wanke the initial solution order is determined
to be a sorted list of V sorted by:

1. Priority – vessels with a higher priority will be first in the order

2. Waiting cost – If vessels have the same priority level then the order is based on the vessel’s
waiting cost.

3. Arrival time – If vessels have the same priority and waiting cost then the vessel that
arrived at the anchorage point first is berthed first.

Simulated Annealing is often observed to find good approximations of the optimal solution for
combinatorial problems since it balances exploration and exploitation of the solution space.
The cooling schedule and permutation method determine the balance between exploration and
exploitation.

Neighbour selection. The permutation method which selects a new neighbour solution is
relevant to the size of the steps taken when exploring the solution space. Many changes to a
solution to get a neighbour mean large exploratory steps but less exploitation. A solution for
the CBAP is a list of vessels where the order is the input for the greedy heuristic. A neighbour
solution is created by selecting a random vessel in the current solution and moving it up the
order. A ship can’t be moved in front of another with a higher priority level to ensure the
priority constraint is not violated. A bias can be introduced when selecting a vessel that is
moved up in the vessel order to improve the likelihood of finding a better solution. Instead of
choosing a ship randomly, the selection method assigns a probability pi to each vessel i ∈ V based
on the expected waiting costs c∗i = ci(yi−ai). If in the current solution, a vessel i has to wait, it
is because it waits for vessels that are assigned a berth position before vessel i. Therefore, when
vessel i is selected to move up in the order, it is more likely that it waits less in the neighbour
solution. Therefore, selecting vessels that have high waiting costs in the current solution offers
the most likely chance of decreasing their respective costs and therefore decreasing the objective
value. Based on this logic three different selection strategies were evaluated.
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1. Random – Each vessel can selected to be moved up with equal probability.

pi =
1

|V |
(4.22)

2. Semi-Biased – All vessels can be selected but vessels which contribute more to the waiting
costs have a higher probability of being selected. Probabilities are calculated as follows:

pi =
log(c∗i + δ)∑

j∈V log(c∗j + δ)
(4.23)

Where, (4.24)
δ = min

j∈V
{c∗j | c∗j > 1} (4.25)

3. Biased – Only waiting vessels can be selected. Vessels with higher waiting costs have a
higher probability of being selected. Probabilities are computed as follows:

pv =
log(c∗i + 1)∑

j∈V log(c∗j + 1)
(4.26)

With the addition of bias to the selection process, the stochasticity of the SA algorithm is
reduced. Therefore, additional stochasticity is introduced by making the selected vessel move up
a random number of places. The number of places is randomly drawn from a uniform distribution
between 1 and 3.

Cooling schedule The cooling schedule determines how frequently inferior solutions are ac-
cepted. At high temperatures, worse solutions are more likely to be accepted to focus on the
exploration of the solution space. By cooling the temperature the focus shifts to exploitation of
promising areas. Two common cooling schedules, geometric cooling and linear cooling are de-
scribed by 4.27 and 4.28 where i is the current iteration and I is the total number of iterations.

Geometric cooling: ti+1 = 0.99ti (4.27)

Linear cooling: ti+1 =

(
1−

i

I

)
t0 (4.28)

Linear cooling allows for a more gradual decrease in temperature, accepting larger objective
deviations in later iterations. Geometric cooling decreases the temperature more rapidly in the
early stages and slows down the decline later on. Thus, with a geometric cooling schedule, large
improvements are expected in the earlier iterations after which smaller differences in the objec-
tive value are accepted at later stages. Both cooling schedules are visualized in Figure 4.2.

The initial temperature, along with neighbour selection and the cooling schedule, is another
crucial parameter that influences the performance of the simulated annealing algorithm. The
initial temperature can be expressed by the objective value of the initial solution since the
temperature reflects the tolerated increase in the objective value. Because the objective value
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Figure 4.2: Two different cooling schedules

depends on the experiment setup, a different initial temperature is needed for each CBAP. The
initial temperature is expressed by 4.29 where α is a scalar such that the initial temperature is
relative to the scale of the problem.

t0 = α · e(x0) (4.29)

4.2.3 Parameter Tuning

Parameter tuning for the Simulated Annealing algorithm is done using Python. A berth alloca-
tion problem for the proforma schedule is used to evaluate different parameters. Each algorithm
configuration is used to solve the CBAP 50 times, with each run being independent. Config-
urations are evaluated on the percentual improvement over the initial solution. Where 100%
improvement is a solution with objective value 0 and at 0% improvement, the best-found so-
lution is the same as the initial solution. A well-configured parameter set demonstrates high
average improvement and low variability, indicating consistency. The different sets of parame-
ters are shown in table 4.2. All 18 possible combinations are evaluated.

Parameter Values
Selection strategy {Random, Semi-Biased, Biased}
Cooling Schedule {Geometric, Linear}

α {0.25, 0.5, 1}

Table 4.2: Simulated Annealing parameters used for tuning

Table 4.3 shows the percentual improvement of all 18 parameter sets. The standard deviation
of the 50 independent runs per parameter set is shown in brackets behind the improvement
percentage. The three parameter sets with the highest average improvement and lowest variance
all used a linear cooling schedule. The best overall parameter set had both the highest mean
improvement and lowest standard deviation. This set is a combination of a Biased selection
strategy, a linear cooling schedule and an initial temperature scalar α of 1. Thus, with α = 1,
the initial temperature is equal to the objective value of the initial solution.
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Selection strategy
Cooling schedule α Random Semi-Biased Biased

Geomertic
0.25 76% (12) 77% (15) 81% (14)
0.5 74% (18) 77% (18) 74% (22)
1 71% (20) 81% (7) 82% (7)

Linear
0.25 76% (13) 79% (9) 83% (3)
0.5 72% (13) 82% (5) 81% (11)
1 68% (17) 78% (12) 84% (2)

Table 4.3: Results parameter tuning. The percentages denote the improvement
to the initial greedy solution. The number in between the brackets represents the
standard deviation. The best-performing parameter set is coloured green.

4.3 Simulation model

To reliably measure the effects of shore power and evaluate the impact of the berthing strategy un-
der uncertainty, Portwise’s simulation model TRAFALQUAR is utilized. With TRAFALQUAR
it is possible to configure detailed scenarios and run simulations under uncertainty to assess the
performance. A specific simulation configuration is referred to as an experiment. TRAFALQUAR
simulates the arrival of vessels at a container terminal and the berthing, servicing and unberthing
of ships. It does not simulate the gate and yard operations. For this report, the most important
experiment parameters are the length of the quay, the number of berths, the number of QCs, the
QC productivity, the weekly arrival pattern, seasonal call size variations and the arrival delay
distributions. The scenarios and parameters of importance are specified in chapter 5. To improve
the reliability of experimental results under uncertainty, it is recommended to conduct multiple
replications of the same experiment.

A simulation run starts with creating the proforma schedule, which will be used for all
realized arrivals afterwards. The set of vessels V used to find a solution to the CBAP is the
pre-defined week pattern of arriving vessels. With all vessels having a planned position they
are assigned berthing locations upon arrival. If vessels can’t berth directly at arrival, they must
wait at the anchorage point. Due to the delays, the exact arrival time is known just 12 hours
in advance. Moreover, service times can vary from the expected service time if more or fewer
QCs work on the vessel than required. Therefore, it is necessary to re-evaluate berth positions
with every event that could result in a vessel starting the berthing process. Thus, the CBAP is
solved at each of the following two events with V consisting of the waiting vessels, new arrivals
and vessels that arrive in the next 12 hours.

1. Arrival of a vessel at the port – An arriving vessel could berth immediately if there is
space on the quay.

2. A vessel finishes unberthing – A vacant spot opens up at the quay for a waiting vessel
to berth.

TRAFALQUAR already uses algorithms that solve the CBAP but the algorithms do not yet
include the added constraints of shore power. In this report, TRAFALQUAR’s berth algorithms
will be referred to as the base algorithm. The base algorithm will be used as a benchmark to
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decide if the Greedy and SA algorithms are up to standard. Because the base algorithm is not
suited for experiments with shore power, benchmarking is done solely on experiments without
OPS with the assumption that performance between algorithms performance will be comparable
with or without OPS. A large difference between the base algorithm and the proposed heuristics
is the inclusion of waiting costs. The base algorithm does not differentiate the cost of waiting
between vessels and treats all vessels as equals. Equal treatment of different vessel’s waiting
times results in the optimization of waiting time without regard for costs. In the base algorithm,
the only method for differentiating the importance of vessels is through prioritization which is a
hard constraint and will likely lead to more unnecessary waiting time for unprioritized vessels.

To assess the impact of shore power, new parameters for configuring OPS at a container
terminal were incorporated into TRAFALQUAR. Shore power was implemented such that each
shore power zone could be specified in length and position at the berths. For each arriving vessel
it is possible to set the position of the Cable Management System relative to the aft of the vessel
and the horizontal length of the connection cable.

TRAFALQUAR already uses an algorithms that solve the CBAP which will be referred to as
the base algorithm. The base algorithm will be used as a benchmark to decide if the Greedy and
SA algorithms are up to standard. Originally, the base algorithm was not suited for experiments
with shore power. Therefore, the constraints 4.10-4.12 are added to the base algorithm.

A large difference between the base algorithm and the proposed heuristics is the inclusion of
vessel-specific waiting costs. The base algorithm does not differentiate the cost of waiting between
vessels and treats all vessels as equals. Equal treatment of different vessels waiting times results in
the optimization of waiting time without regard for costs. This will likely mean that the waiting
costs with the base algorithm will be relatively high but waiting times will be relatively low.
In the base algorithm, the only method for differentiating the importance of vessels is through
prioritization which is a hard constraint and will likely lead to more unnecessary waiting time for
unprioritized vessels. However, using prioritization of certain vessels is a better representation
of real-life practice. Therefore, the Simulated Annealing algorithm will be compared to both the
base algorithm with and without prioritization.

4.4 Evaluation metrics

During a simulation run, all statistics on the operations get logged and can be used to evaluate the
performance. The focus of this report is on analyzing the impact of different berthing strategies
and the utilization of shore power on the berthing schedule. Therefore, the metrics used to
evaluate performance were the average waiting time at the anchorage point per vessel call, the
total yearly waiting costs and the difference between the planned and realized berth position.

However, vessel-specific waiting costs are only used by the simulated annealing algorithm as
weights for waiting time. To allow for a fair comparison between algorithms, the waiting costs
are expressed in a more general manner. Instead of evaluating performance by the costs used
only by the simulated annealing algorithm, costs will be expressed in Waiting Container Hours.
The Waiting Container Hours of a vessel call are calculated by multiplying the waiting time in
hours by the call size of the vessel. For example, if a vessel has a call size of 1,000 containers

29



4.4 Evaluation metrics

and has to wait for 2 hours at the anchorage point, then the vessel has a waiting cost of 2,000
containers.

As mentioned in section 4.3, multiple replications of an experiment will have to be conducted
to account for uncertainty. For the results presented in section 6, each experiment consists of
10 replications used to obtain average results and each replication simulates one year of vessel
arrivals.
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5

Experimental Setup

5.1 Model assumptions

TRAFALQUAR allows for detailed scenario descriptions with many input parameters. Therefore,
in developing the experimental setup for this study, several assumptions were made to allow for a
controlled environment to analyze and compare shore power configurations. Importantly, while
these assumptions simplify certain aspects, they still ensure that the model closely represents
real-world conditions. The assumptions are as follows:

1. Realized arrival times – Exact arrival times are known 12 hours in advance.

2. Operational continuity – No external factors such as tide, wind, or QC breakdowns will
interrupt vessel operations.

3. Constant QC productivity – The productivity of each QC is constant and unaffected
by uncertainty or deviation from a planned position.

4. Universal QC service – Any QC can serve any vessel.

5. Flexible berthing – Any vessel can berth everywhere along the quay as there are no
draught limitations.

6. Berthing proximity – A vessel cannot berth more than 1,000 metres from its planned
position.

7. Shore Power Zone Compatibility – Any shore power zone can supply any vessel.

8. Vessel Equipment – All vessels are equipped for shore power and can only berth if a
connector is available.

9. Cable Management System – The CMS on board the vessel is always at the aft of the
vessel.

10. Cable Length – The connection cable on the shipside offers 25 metres of horizontal
flexibility.

11. Shore Power Realiability – Shore power electrical infrastructure never fails or breaks
down.

These assumptions provide a structured basis for all experiments, allowing for a focused
analysis of the berthing algorithms and shore power designs. The model aims to deliver reliable
and consistent results by controlling these parameters while ensuring that the simulations remain
a valid representation of real-world quayside operations.
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5.2 Stochastic parameters

5.2.1 Arrival distribution

Terminals create the proforma schedule based on the planned arrival times of vessels. The
planned arrival times are determined by the weekly schedule and are established before the op-
erational year begins. However, container ships can be delayed or arrive earlier than expected
during the year. Arrival time deviations are likely to occur and are difficult to predict. Most
deviations occur due to unexpected weather effects, fluctuations in call sizes or disturbances at
a previous port call [30, 31]. Arrival deviations in TRAFALQUAR follow a discrete probability
distribution where a vessel’s actual arrival time deviates between a and b hours from the planned
arrival time with probability pa,b. The realized deviation is then drawn from a uniform distribu-
tion with values between a and b. Figure 5.1 shows the probability and cumulative distribution
used for the experiments in this report. Thus, a vessel has a 50% chance of arriving within 1
hour of the planned arrival time and a 20% chance of arriving 1 to 8 hours later. Veenstra and
de Waal [32] showed that small changes in the arrival deviation distribution negatively impact
operational efficiency. They showed that when deviations are more likely to occur, the waiting
time for all vessels will increase. However, the purpose of the experiments in this study is to
compare shore power configurations and see if they affect operational efficiency compared to
scenarios without shore power. Since more deviations will impact all vessels, it will be assumed
that waiting times will increase for all scenarios as long as the same probability distribution is
used for all experiments.

Figure 5.1: Deviation in the expected arrival times.

5.2.2 Callsize variations

The operations of container terminals are dependent on seasonal demand fluctuations. For
a certain yearly volume that a container terminal handles, it is unlikely that this volume is
distributed evenly over the year. Yin and Shi [33] analysed seasonal patterns in the shipping
industry and found that the peak season is generally between September and November as
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preparation for the holiday season. Moreover, they stated that the off-season for the container
industry is generally around March. Therefore, we assume the seasonal call size pattern shown
in Figure 5.2 which shows the monthly call size as a percentage of the yearly volume.

In addition to the seasonal effect, The call size of a vessel fluctuates for each port visit. With
each port visit the number of containers that have to be loaded and unloaded can vary by 20%
from the expected call size of the vessel.

Figure 5.2: Distribution of call sizes throughout the operational year.

5.3 Scenario’s

To evaluate the impact of shore power different scenarios will be compared. Four different
hypothetical terminals are modelled and simulated with different shore power configurations.
An overview of the 4 scenarios is shown in Table5.1. These Scenarios are chosen because the
berths are long enough to support multiple shore power designs for comparison. Moreover, the
quay configuration and volume are inspired by container terminals found in Europe. For all
scenarios, a TEU factor of 1.75 is used and a QC productivity of 25 boxes per hour is assumed.
The scenarios are described in more detail in the following sections.

Scenario Volume (TEU) Quay length Berths # of QC’s
1 5,000,000 2,000 m 2,000 m 20
2 4,500,000 2,000 m 1,000 m + 1,000 m 10 + 10
3 2,500,000 1,200 m 1,200 m 12
4 2,200,000 1,200 m 600 m + 600 m 6 + 6

Table 5.1: Scenario overview
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5.3.1 Scenario 1: 5.0 M TEU – 1 Berth

The first scenario models a container terminal with a high volume of 5 million TEU and a single
long continuous berth of 2,000 metres. The berth has 20 QC in operation which can move along
the entire length of the berth. The quay layout is similar to the quay of the ECT Delta terminal
in the Port of Rotterdam as seen in Figure 5.3.

In this scenario, the week pattern consists of 30 deepsea or feeder calls. The main contributor
to the large volume is the weekly arrival of two vessels with a call size of 10,000 boxes. Moreover,
these two large calls get specific prioritization compared to the other vessels. The vessel mix and
the weekly arrival pattern for this scenario can be found in Appendix A.1.

Figure 5.3: Berth layout of the ECT Delta terminal in the Port of Rotterdam that
can be compared to the quay configuration of Scenario 1.

5.3.2 Scenario 2: 4.5 M TEU – 2 Berths

The second scenario models another high-volume container terminal. However, the modelled
terminal has a volume of 4.5 million TEU and two continuous berths of 1,000 metres each. Each
berth has 10 QC in operation which can move along the entire length of the berths. The terminal
layout is similar to the quay of the Eurogate Terminal in Hamburg as seen in Figure 5.4.

In this scenario, the week pattern consists of 34 deepsea or feeder calls. Compared to the first
scenario there are more feeder calls and no vessels with a call size of 10,000 boxes. For Scenario
2, all arriving vessels have the same priority level. The vessel mix and the weekly arrival pattern
for Scenario 2 can be found in Appendix A.2.

Figure 5.4: The quay configuration in Scenario 2 is inspired by the Eurogate
terminal in Hamburg.

34



5.3 Scenario’s

5.3.3 Scenario 3: 2.5 M TEU – 1 Berth

The third scenario models a smaller container terminal relative to the first two scenarios. How-
ever, with a yearly volume of 2.5 million TEU, it is still a large container terminal. The terminal
of Scenario 3 has a single continuous berth of 1,200 metres with 12 QCs. An example of such a
terminal layout is the Europa Terminal operated by PSA in Antwerp shown in Figure 5.5.

With the lower volume and shorter quay fewer vessels arrive and the call sizes are smaller
compared to the first two scenarios. The vessel mix and the weekly arrival pattern for Scenario
2 can be found in Appendix A.3.

Figure 5.5: The PSA Europa Terminal in Antwerpen is an example of a container
terminal modelled by Scenario 3.

5.3.4 Scenario 4: 2.2 M TEU – 2 Berths

The fourth scenario models a container terminal that handles a yearly volume of 2.2 million TEU
with 2 continuous berths. Each berth has a length of 600 metres with each 6 QC’s. The DCT
Baltic Hub terminal in the port of Gdansk shown in Figure 5.6 is a similar terminal with 2 berths
of approximately 600 metres.

The vessel mix and the weekly arrival pattern for Scenario 2 can be found in Appendix A.4.

Figure 5.6: Quay layout of the Baltic Hub terminal in Gdansk that is similar to
the quay configuration of Scenario 4.
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5.4 Shore Power designs

Shore power is implemented by dividing the quay into multiple zones as described in Section
2.3. Six different zone lengths are considered: 150, 200, 250, 300, 350 and 400 metres. The
main investment for a shore power zone is the converter station and not the length of the zone.
Therefore, to reduce investment costs it is in the interest of the terminal operator to reduce the
total number of zones regardless of the length. Moreover, the shore power zones should cover
the full quay length to keep berthing flexibility similar to a quay design without shore power.

Table 5.2 shows the shore power designs per scenario used to simulate quayside operations.
A shore power design is specified per berth and consists of a combination of zones such that the
zones cover the entire berth without overlapping. For example, for Scenario 1 and a design with
7 zones, the quay is divided into 1 zone of 200 metres and 6 zones of 300 metres as shown in
Figure 5.7. The shortest zone is used as the first zone in case of any berth division with varying
zone lengths. This is because the cable management system on board of the ships is assumed to
be at the stern of the vessel and that way, any vessel can connect to the shorter zone regardless
of the vessel size.

Scenario
1 2 3 4

# of zones 2000m 1000m 1000m 1200m 600m 600m
4 – – – 4×300m 2×300m 2×300m
5 5×400m – – 1×200m, 4×250m 2×300m 3×200m
6 1×250m, 5×350m 1×300m, 2×350m 1×300m, 2×350m 6×200m 3×200m 3×200m
7 1×200m,6×300m 4×250m 1×300m, 2×350m 4×150m, 3×200m 4×150m 3×200m
8 8×250m 4×250m 4×250m 8×150m 4×150m 4×150m
10 10×200m 5×200m 5×200m – – –

Table 5.2: Shore power designs per berth for each scenario.

Figure 5.7: Shore power design for Scenario 1 with 7 zones: 1×200m, 6×300m.
Vessel orientation determines the direction of the bow of berthed vessels. The cable
management system is assumed to be at the stern of the vessel.
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6

Results

In this chapter, the most relevant results of the simulations are presented. First, the different
algorithms for the berth allocation problem are evaluated and their differences are highlighted.
Secondly, the simulations of the experiments described in Chapter 5 are assessed and discussed.

6.1 Algorithm performance

Three different algorithms that were discussed are compared. The Base TRAFALQUAR algo-
rithm will be used as a benchmark for the Greedy algorithm and the Simulated Annealing (SA)
approach. The base algorithm without vessel priority is used as the benchmark since it uses the
same vessel priority as the Greedy and SA algorithms, meaning that all three algorithms are
subject to the same hard priority constraints. First, the differences in berth allocation between
the three algorithms are visualized using the average quay occupancy. The Quay Occupancy is
part of the objective function of the proforma schedule. Figure 6.1 shows that the Base algorithm
distributes most calls evenly along the quay. However, at the 800-metre mark, the occupancy
is significantly higher than the rest of the quay. This can result in more congestion around this
quay section meaning that vessels will have to deviate more from their planned position and
terminal trucks will have to travel greater distances to the stacked containers. The Greedy and
SA algorithms showcase a similar occupancy pattern. However, the SA algorithm has slightly
less difference in the extremes. This is expected since the SA algorithm optimizes the input of
the greedy algorithm concerning the quay occupancy. A noticeable difference between the SA
algorithm and the Base algorithm is the location of the low occupancy zones. With SA, there are
low occupancy zones in the middle of each berth while the base algorithm has lower occupancy
rates near the berth boundaries. This difference is a result of the Greedy algorithm’s formula
to score the positions. The greedy algorithm favours positions that have low occupancy and
maximizes the distance to one of the berth boundaries. Therefore, vessels are more likely to be
assigned berthing positions with a preference for positions further from the berth’s centre.

Figure 6.1: Heatmap of the quay occupancy of proforma schedules created by the
different algorithms for scenario 2.
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Figure 6.2 shows a heatmap of the realized quay occupancy. Comparing the realized oc-
cupancy to the proforma quay occupancy in Figure 6.1 makes it apparent that the heatmaps
of the Greedy and SA algorithms are very similar. The heatmaps of the Base algorithm pro-
forma and realized schedules appear less similar. This could be a sign that the Base algorithm
is not as good at creating a robust proforma which enables vessels to berth at their planned
positions under uncertainty. It could also be that the Base algorithm for realized arrivals is not
as good at berthing vessels close to their preferred berth position compared to the Greedy and
SA algorithms.

Figure 6.2: Heatmap of the quay occupancy of realized vessel arrivals which are
allocated by the different algorithms for scenario 2

To evaluate the performance of the different algorithms concerning the proforma and realized
schedule, all nine possible combinations of algorithms for the proforma and realized schedules are
simulated for every scenario without OPS. Figure 6.3 shows the average key performance indi-
cators of the nine combinations relative to the base case which uses the Base Algorithm for both
the proforma and the realized schedules. The values in the matrices show the percentual increase
(positive value – red) or decrease (negative value – green) for each metric relative to the base case.

Across all three metrics, the Simulated Annealing algorithm generally outperforms the Base
and Greedy algorithms, especially when used in both proforma and realized scheduling. The
Greedy algorithm, while reducing berth deviations and waiting container hours compared to
the base case, often results in higher waiting times, particularly when applied in the realized
scheduling phase. Moreover, the base algorithm and greedy algorithm for realized planning
perform better across all 3 metrics when paired with a proforma schedule generated with SA.
Furthermore, if the SA algorithm is used for realized berth allocation, then it can improve
performance compared to the greedy algorithm across all three metrics. This shows that the SA
optimization of the greedy algorithms input order is effective.

The figure also illustrates the effects of different proforma schedules on the operational
efficiency of a container terminal. Different proforma schedules account for substantial variance
in performance when combined with the different algorithms for realized scheduling. However,
the SA algorithm is generally able to reduce the impact of different proformas and outperforms
the Base and Greedy algorithms when these are paired with their proforma counterpart.

All in all, the SA algorithm appears to be the most robust and effective in optimizing
operational efficiency in port scheduling, reducing both waiting times and berth deviations,
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while also improving container handling efficiency. The SA algorithm generally outperforms the
base and greedy algorithms when used for the proforma schedule, realized schedules and both
combined.

Figure 6.3: Matrices for each evaluation metric showing the performance of the
nine possible algorithm combinations relative to the base algorithm. The values are
obtained by taking the average of all replications of all scenarios without OPS.

Figure 6.3 showed that the SA algorithm is effective in optimizing the input order of the
greedy algorithm. For the SA algorithm, the initial solution is the same as the greedy algorithm.
Figure 6.4 shows the frequency of improvement compared to the initial solution for the proforma
and realized instances of the CBAP of all 69 experiments described in section 5. The simulated
annealing can either improve the initial solution, it can’t improve the initial solution because
the initial solution is optimal with an objective value of 0 or it can’t improve the non-optimal
initial solution. Figure 6.5 shows per scenario the average improvement when the initial solution
is improved.

Simulated Annealing is able to improve the proforma schedule costs in all 690 simulation
runs. The average proforma cost improvement for each scenario is between 76% and 95% relative
to the initial solution. For realized planning, the initial solution is improved for 25% of the prob-
lem instances while 24% of the time, the initial solution was already optimal. For all scenarios,
the average improvement for the realized schedule is between 30% and 40%. This decrease in
frequency and average improvement compared to the proforma schedule is most likely due to the
size of the problem instance. For the proforma schedule, the number of vessels V that have to be
scheduled is larger than for realized arrivals, since the proforma has a planning horizon of a week
while for realized arrivals the planning horizon is only 12 hours because of uncertain arrival times.
Figure 6.4 supports this by showing the SA performance of the realized schedule for different
problem sizes. It can be seen that as V increases, the likelihood that SA can improve the initial
solution increases while the likelihood that the initial solution is optimal decreases. Contrary to
the frequency of improvement, Figure 6.5 Shows that the average improvement compared to the
initial solution reduces as V increases for all scenarios.
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Figure 6.4: Improvement distribution of the SA algorithm compared to the initial
greedy solution. V is the number of arriving vessels that have to be scheduled in
the planning horizon.

Figure 6.5: Average improvement compared to the initial greedy solution. V is the
number of arriving vessels that have to be scheduled in the planning horizon.

From the results in this section, it becomes clear that the Simulated Annealing is an effective
way to improve the input order of a greedy algorithm to optimize berth planning. The simulation
results with SA show significant improvement over simulations without simulated annealing. To
analyse the impact of OPS and evaluate algorithm performance for each scenario individually,
only the SA algorithm will be compared to the Base algorithm with and without priority since
it outperforms the greedy algorithm across all three evaluation metrics.
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6.2 Scenario and Shore Power design simulations

For each scenario, the quayside operations without OPS and with the shore power designs speci-
fied in Table 5.2 are simulated with the Base TRAFALQUAR Algorithm without vessel priorities,
the Base Algorithm with vessel priorities and with the Simulated Annealing algorithm. The per-
formance of each experiment is evaluated based on three metrics: Average vessel waiting time,
Total waiting container hours and Average vessel berth deviation. The error bars that are dis-
played for each experiment show the 95%-confidence interval. There is a significant difference in
performance between experiments when the confidence intervals do not overlap.

6.2.1 Scenario 1: 5.0 M TEU – 1 Berth

Figure 6.6 shows the average waiting time at the anchorage point per arriving vessel for each of
the OPS designs specified for Scenario 1. It can be seen that for each algorithm, as the number
of zones increases, the waiting times get closer or become similar to the experiments without
OPS. This is expected since more zones are expected to facilitate more flexibility.

For each Shore power design, the Base algorithm with priority has higher average waiting
times compared to the other two algorithms. With the SA algorithm, the waiting times are
significantly higher for the design of 5 and 6 zones in comparison with the Base algorithm. This
is likely because the SA algorithm optimizes waiting costs and will often let smaller vessels wait
longer with fewer zones. However, for 8 zones, 10 zones and the experiment without OPS, the
SA algorithm has significantly lower waiting times. For the base algorithm, there is no significant
rise in waiting time with 7 or more zones compared to no shore power. For Base with priority
and SA, at least 8 zones are needed to get similar waiting times.

Figure 6.6: Average waiting times of a vessel for each experiment of Scenario 1.
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Figure 6.7 displays the total waiting container hours per year. The graph indicates that all
experiments using the SA algorithm outperform those using the Base algorithm with priority.
Similarly, all experiments with the Base algorithm with priority outperform those with the Base
algorithm without priority. There is no significant difference in waiting container hours among
the experiments using the Base algorithm without priority, likely because this algorithm does
not account for vessel size. However, for the algorithms that do take vessel size into account,
fewer zones result in more waiting container hours due to limited flexibility. Both the Base with
priority and SA algorithms demonstrate that with 8 or more zones, performance similar to the
experiments without OPS is achieved.

Figure 6.7: Total waiting container hours per experiment of scenario 1.

Figure 6.8 shows the average berth deviation per vessel. It can be seen that the Base al-
gorithm is the worst of the three while the Base algorithm with priority is consistently better
than without priority. However, if there are more than 7 zones or if no shore power is required,
then the simulated annealing algorithm is best at berthing vessels close to their planned posi-
tion. With SA, 7 zones or more are required to have a similar average berth deviation to the
experiment without shore power.

Across all three metrics, the Simulated Annealing algorithm can improve the terminal’s
berth planning compared to both Base algorithms. Moreover, the container terminal can achieve
similar performance with and without shore power. However, if this terminal wants to operate
with shore power without sacrificing any performance, then it will need to install a minimum of
8 zones. This is the case for all three algorithms.

6.2.2 Scenario 2: 4.5 M TEU – 2 Berths

For Scenario 2 there is no significant difference in vessel waiting time between the Base algorithm
without priority and the Simulated Annealing algorithm as shown in Figure 6.9. However, the
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Figure 6.8: Average distance between planned and realized berth position for each
experiment of Scenario 1.

average waiting time almost triples without shore power when vessel prioritization is introduced
for the Base algorithm. This is because vessel prioritization is a hard constraint which means
that feeder calls will always have to wait for deepsea calls. This results in longer average waiting
times. The SA algorithm is able to reduce the waiting times since the waiting costs it assigns
to vessels are not a hard constraint. For both Base algorithms to maintain the same service
level with shore power as without, it is necessary to divide the quay into at least 8 zones. With
SA, the difference in waiting time between the 6, 7 and 8 zones is insignificant as the confidence
intervals overlap. This could indicate that with SA as an allocation algorithm, the number of
necessary shore power zones could be reduced compared to the Base algorithms.

Figure 6.10 shows the total waiting container hours for all experiments of Scenario 2. Notably,
the total waiting container hours are significantly lower for the Base algorithm without priority
compared to the Base algorithm with vessel priorities. This is in contrast to the results of Scenario
1. It is expected to have lower waiting container hours with priority since the prioritization should
make larger vessels wait less. However, for this scenario, the feeder vessels have to wait so much
longer due to the priority constraint that, in the end, the total waiting container hours are much
higher. This is an example of a scenario where prioritization is not successful in reducing The
SA algorithm can reduce the total waiting container hours by more than 50% across all OPS
designs compared to both Base algorithms while having similar average waiting times as the
Base algorithm without vessel prioritization. This shows that the SA algorithm can reduce the
waiting times for larger deepsea vessels and feeder vessels without the need for prioritization.

To remove any negative effect of shore power on the terminal’s waiting container hours it
is necessary to install at least 7 shore power zones when vessels are scheduled using Simulated
Annealing. This is again less than the minimum of 8 zones that are required with the Base
algorithms.

The last key performance indicator of the quayside operations is the average berth deviation
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Figure 6.9: Average waiting times of a vessel for each experiment of Scenario 2.

Figure 6.10: Total waiting container hours per experiment of scenario 2.

shown in Figure 6.11. On average, the Base algorithms will allocate vessels further from their
planned position compared to the SA algorithm, which is significantly better for all experiments.
However, vessel prioritization helps the Base algorithm reduce berth deviations. Again it is
noticeable that with both Base algorithms more than 8 zones are required to maintain similar
average berth deviation while with SA, there is no significant difference between the experiment
with 7 zones and the experiment without shore power.

In short, the SA annealing algorithm improves the berth planning of the container terminal
in scenario 2. It outperforms the Base algorithm with and without vessel priorities for all eval-
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Figure 6.11: Average distance between planned and realized berth position for
each experiment of Scenario 2.

uation metrics. Moreover, with SA, fewer shore power zones are required to maintain the same
performance level as without shore power compared to the Base algorithms. This indicates that
for scenario 2 and improved berth planning, the number of zones and therefore the necessary
shore power investments can be reduced to benefit the terminal operator.

6.2.3 Scenario 3: 2.5 M TEU – 1 Berth

The average waiting times in Figure 6.12 for scenario 3 show that the Base algorithm without
priority results in the lowest vessel waiting times. Vessel priority will significantly increase the
average waiting times while SA will be in the middle of both Base algorithms. For all berth
strategies, only a shore power design with 4 zones does not result in similar waiting times as
those without shore power.

For the total waiting container hours presented in Figure 6.13, the results are as expected.
The Base strategy without priority results in the most waiting container hours since large deepsea
vessels are more likely to wait. With prioritization, the total number of container hours can be
reduced at the cost of the longer waiting times. However, using vessel-specific waiting costs and
SA will significantly decrease the total waiting container hours while still improving the waiting
time compared to the Base strategy with priorities. Equivalent to the results in Figure 6.12, at
least 5 shore power zones are needed to get similar results to the experiments without shore power.

Even with less quay space, compared to scenarios 1 and 2, the SA algorithm manages to
lessen the average distance to the planned berth position compared to the Base strategies. Fig-
ure 6.14 shows that, while prioritization helps to berth vessels closer to their planned position,
the SA strategy can reduce the average berth deviation. The base algorithm without priority is
considerably inferior to the other two algorithms. Moreover, for the Base strategies the berth
deviation is slightly higher when less flexibility is available due to fewer shore power zones. For
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Figure 6.12: Average waiting times of a vessel for each experiment of Scenario 3.

Figure 6.13: Total waiting container hours per experiment of scenario 3.

the SA algorithm, there is no significant difference between any of the Shore Power designs.

In summary, it is still possible to improve berth planning with Simulated Annealing for a
terminal with a shorter quay and therefore less space for variability. However, it is also apparent
that shore power has less influence on quayside operations in this Scenario compared to the
results of Scenarios 1 and 2. For all evaluation metrics and algorithms, the performance between
the various Shore Power designs is not significantly different unless there are only 4 zones. This
is likely due to the shorter quay length which has space for at most 5 vessels with the vesselmix
specified. The slight decrease in performance with 4 zones indicates that sometimes 5 vessels
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Figure 6.14: Average distance between planned and realized berth position for
each experiment of Scenario 3.

need to be berthed simultaneously.

6.2.4 Scenario 4: 2.2 M TEU – 2 Berths

In scenario 4, the quay is separated into 2 berths of 600 metres. This means that per berth there
is even less flexibility. Figure 6.15 shows the average vessel waiting times. Again, the average
vessel waiting time is the lowest with the base algorithm without priority. However, it is notable
that the experiment without shore power has significantly higher waiting times than with 8 zones
which contrasts expectations. Since the difference is small, it could still be caused by uncertainty
even after the 10 replications. Another reason could be that the additional restrictions help the
Base algorithm berth the vessels more efficiently. Nonetheless, the average waiting times without
shore power are still significantly less than the other two strategies. Contrary to the previous
4 scenarios, the difference in waiting times between the Base algorithm with priority and SA
is insignificant for most experiments. Only with less than 6 zones the performance of SA is
substantially better. This implies that the SA and Base with priority are equally capable of
limiting waiting times as long as there are 6 or more zones. With 4 or 5 zones, the flexibility is
too limited for the Base algorithm while the SA algorithm has significantly less average waiting
time. Nevertheless, 6 zones or more are needed to reduce the operational impact of shore power.

Figure 6.16 shows the total waiting container hours for Scenario 4. The Base strategy without
priorities again appears to perform better with shore power however in this graph the difference
is insignificant due to the larger confidence intervals. The difference in waiting container hours
and the larger confidence intervals is because the Base algorithm only optimizes waiting time.
The total waiting container hours are directly related to the average vessel waiting time since
the algorithm never takes into account the vessel sizes. Moreover, since it does not use vessel
sizes, more fluctuations in waiting container hours are expected leading to more uncertainty and
larger confidence intervals. In line with previous observations, the addition of vessel priorities to
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Figure 6.15: Average waiting times of a vessel for each experiment of Scenario 4.

the Base algorithm benefits the total waiting container hours. However, when there is less berth
flexibility with 4 zones, The difference is insignificant. The SA algorithm can reduce the total
waiting container hours with less flexibility. Yet, the SA performs significantly better with more
than 4 zones. Nevertheless, with 6 or more zones, the performance between the SA algorithm
and the Base algorithm with priorities is similar. This means that with enough zones there is no
difference between the two strategies in terms of average waiting time and total waiting container
hours.

Figure 6.16: Total waiting container hours per experiment of scenario 4.

The previous two figures showed no significant difference between the Base strategy with
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priority and the SA strategy. However, Figure 6.17 shows that the SA algorithm significantly
reduces the average berth deviation compared to both base algorithms. Remarkably, there is no
significant difference between the Base strategy with or without priority, unlike the results from
the other three scenarios where vessel prioritization benefits berth deviation. With SA, 5 zones
are the minimum to require a similar average berth deviation while for both base algorithms,
the deviation is significantly worse at 5 zones compared to the design without shore power.

Figure 6.17: Average distance between planned and realized berth position for
each experiment of Scenario 4.

Even though the Base strategy without prioritization results in the least vessel waiting time,
it is outperformed by SA on the total waiting container hours and average berth deviation. The
Base strategy with priority performs similarly to the SA strategy for the first two metrics if the
flexibility is not too limited by Shore Power. However, with less flexibility when the quay is
divided into 4 or 5 Shore Power zones then SA is superior. Moreover, across all experiments, the
lowest berth deviation is achieved with the SA algorithm.
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Discussion

The primary objective of this thesis was to evaluate whether an allocation algorithm could en-
hance the efficiency of berth planning in container terminals that utilize shore power. While
previous studies have predominantly focused on the environmental benefits of shore power, par-
ticularly in reducing emissions, there has been limited research on its potential negative opera-
tional impacts, especially on berth planning. To address this gap, Portwise’s TRAFALQUAR, a
verified simulation model, was employed to simulate the operations of container terminals. The
key performance indicators identified for berth planning included waiting time, waiting container
hours, and the deviation to the proforma berth position. A simulated annealing algorithm was
proposed to optimize the input order of a greedy algorithm, aiming to enhance berth planning
beyond the capabilities of existing algorithms offered by TRAFALQUAR. The most prominent
change introduced by the Greedy algorithm is the ability to assign vessel-specific waiting costs,
allowing for more effective vessel prioritization. To ensure a comprehensive analysis, four scenar-
ios are defined. Each scenario is a different container terminal modelled to represent a typical
European terminal, where shore power utilization will become mandatory starting in 2030. Ves-
sel arrival patterns were simulated to compare various berth planning strategies and examine
the influence of different shore power designs on quayside operations. Chapter 6 presented the
simulation results comparing various planning strategies and showed the impact of shore power
on quayside operations under different berth strategies.

First, the difference between TRAFALQUAR’s Base algorithm, the Greedy algorithm and
the Simulated Annealing algorithm was highlighted for both the proforma and realized berth
schedules. In terms of the proforma berth schedule, the schedule generated using the Simulated
Annealing algorithm was more robust, leading to improvements in realized berth planning across
all algorithms. The Simulated Annealing algorithm proved to be the superior allocation algo-
rithm providing the best results across all three evaluation metrics when used for the proforma
and realized berthing schedules. Furthermore, the Simulated Annealing algorithm consistently
demonstrated its effectiveness in optimizing the input order of the Greedy algorithm, thereby
enhancing its overall performance.

Secondly, the results of the simulation experiments for each of the four scenarios are pre-
sented. The operations at each terminal were simulated using both the Simulated Annealing
algorithm and the Base TRAFALQUAR algorithm, with and without vessel prioritization, un-
der various Shore Power designs. The Simulated Annealing algorithm outperformed both Base
algorithms across all three evaluation metrics for every scenario and shore power design. This
shows that vessel-specific waiting costs as a method of vessel prioritization offer more room for
optimization than modelling vessel priorities as a hard constraint.

Across all experiments, it was demonstrated with all three berth algorithms that maintain-
ing operational performance is feasible with an appropriately designed shore power system. The
primary constraint imposed by shore power on berth planning is the reduced berth flexibility, as
vessels must dock within range of an available shore power connection. Increasing the number of
connection zones enhances this flexibility, approaching the level seen without shore power. This
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trend was observed across all scenarios: terminals with fewer zones exhibited the poorest perfor-
mance, which progressively improved as additional zones were added, ultimately matching the
performance of terminals without shore power. Each berth strategy identified a minimal num-
ber of zones that eliminated any negative impacts on performance for each scenario. Notably,
the Simulated Annealing algorithm showed less sensitivity to the number of connection zones
compared to the other algorithms. Specifically, in Scenarios 2 and 4, the Simulated Annealing
algorithm maintained unrestricted performance with fewer zones than the Base strategies. This
suggests that improved berth planning can mitigate the negative effects of shore power, allowing
for higher operational efficiency even with more restrictive shore power designs.

These findings indicate that Shore Power can be a sustainable initiative to reduce the carbon
footprint of container terminals without being a burden on container terminals’ operational effi-
ciency. For Portwise, this study is particularly valuable as it highlights the operational impact of
Shore Power and underscores the importance of effective berth planning for container terminals.
As part of this thesis, an improved berth strategy, which allows more control over vessel pri-
oritisation through vessel-specific waiting costs, has been integrated into their berth simulation
model, TRAFALQUAR. Additionally, the model now allows for specifying shore power designs to
simulate their effects on quayside operations. With these enhancements, Portwise can offer more
comprehensive berth studies, aiding customer terminals in making informed decisions regarding
Shore Power implementation.

While this study provides valuable insights into the impact of shore power and berth planning
on container terminal operations, several limitations must be acknowledged. Firstly, the simu-
lation model, TRAFALQUAR, although robust and well-verified, relies on certain assumptions
and simplifications that may not fully capture the complexities of real-world terminal operations.
One of these assumptions is the knowledge of exact arrival times 12 hours in advance. However,
in real-world situations, arrival times can fluctuate even in the last few hours before expected
arrivals. Another assumption that simplified real-world terminals is that there are no equipment
breakdowns which can disrupt operations. These assumptions can have an enormous impact on
the reliability of berthing schedules and the performance of berthing algorithms. Secondly, the re-
search primarily utilized a simulated annealing algorithm to optimize berth planning. While this
algorithm showed superior performance in the study, there may be other optimization techniques
or hybrid approaches that could offer comparable or better results. Finally, for each specified
number of zones, only a single design was considered per scenario. There may be further oppor-
tunities for optimization by exploring various combinations of zone lengths. Furthermore, the
vessel mix appears to be a critical factor in the performance of a shore power design. To better
assess the generalizability of shore power designs, it would be advisable to test multiple designs
and a variety of vessel mixes for each scenario. This would provide a more comprehensive under-
standing of how different design configurations and vessel compositions impact the effectiveness
of shore power integration.
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Conclusion and future work

To answer the research question-"To what extent can berth planning be optimized to improve
the performance of a container terminal with shore power?"—the study demonstrated that op-
timizing berth planning can significantly enhance terminal performance, even under the con-
straints of shore power. The Simulated Annealing algorithm consistently outperformed both
TRAFALQUAR’s Base algorithms, providing the most robust solutions for proforma and real-
ized berth schedules. The Simulated Annealing algorithm achieved superior results across all
evaluation metrics by optimizing the input for the Greedy algorithm and incorporating vessel-
specific waiting costs. Additionally, it was observed that with the right shore power design,
particularly by increasing the number of shore power connection zones, terminals can maintain
high levels of operational flexibility and efficiency. The Simulated Annealing algorithm was par-
ticularly effective, maintaining optimal performance even with fewer connection zones compared
to other algorithms. This highlights the potential for improved berth planning to mitigate the
operational constraints imposed by shore power, thereby achieving higher efficiency with more
restrictive shore power designs.

Given the limitations identified in this study, there are several possibilities for future research
to build on these findings and improve the understanding of shore power and berth planning
optimization. Firstly, future studies should aim to model real-world terminal operations more
accurately. This includes accounting for the variability in vessel arrival times, especially the
deviations that can occur in the final hours before docking. Another improvement would be to
incorporate potential equipment breakdowns that can disrupt operations. By addressing these
factors, the reliability of berthing schedules and the performance of berthing algorithms can be
more rigorously tested.

Additionally, exploring other optimization techniques next to the simulated annealing al-
gorithm could yield further improvements in berth planning. Hybrid approaches or entirely
different algorithms might offer comparable or even superior results.

Furthermore, future research should consider multiple designs for each specified number of
shore power zones. Investigating various combinations of zone lengths could expose more efficient
designs. The vessel mix also plays an important role in the effectiveness of shore power designs,
so testing a range of designs with different vessel compositions for each scenario is essential. This
approach would provide a better understanding of how design configurations and vessel mixes
impact shore power integration, ultimately leading to more generalizable and robust shore power
solutions for container terminals.
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A

Appendix

A.1 Scenario 1: 5.0 M TEU – 1 Berth

ID Vessel Type Length
(m)

Mooring
margin (m)

Call size
(box)

Priority
(Base)

Waiting
Cost (SA)

FD1 Feeder 150 15 200 1 1
FD2 Feeder 180 15 600 1 1.4
FD3 Feeder 200 15 900 1 1.7
DS1 Deepsea 240 25 1,200 2 10
DS2 Deepsea 270 25 1,500 2 10
DS3 Deepsea 300 25 2,000 2 12
DS4 Deepsea 340 25 3,000 2 14
DS5 Deepsea 370 25 5,000 2 18
DS6 Deepsea 400 25 10,000 3 25

Table A.1: Vessel mix used for Scenario 1.

ID Mon Tue Wed Thu Fri Sat Sun Total calls
FD1 1 1 1 1 1 1 6
FD2 1 1 1 1 1 1 6
FD3 1 1 1 1 4
DS1 1 1 2
DS2 1 1 1 3
DS3 1 1 1 3
DS4 1 1 1 3
DS5 1 1
DS6 1 1 2

Total Calls 2 5 5 5 3 5 5 30

Table A.2: Weekly arrival pattern used for scenario 1.
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A.2 Scenario 2: 4.5 M TEU – 2 Berths

Figure A.1: Visualized week pattern Scenario 1

A.2 Scenario 2: 4.5 M TEU – 2 Berths

ID Vessel Type Length
(m)

Mooring
margin (m)

Call size
(box)

Priority
(Base)

Waiting
Cost (SA)

FD1 Feeder 150 15 200 1 1
FD2 Feeder 180 15 600 1 1.4
FD3 Feeder 200 15 900 1 1.7
DS1 Deepsea 240 25 1200 2 10
DS2 Deepsea 270 25 1500 2 10
DS3 Deepsea 300 25 2000 2 12
DS4 Deepsea 340 25 3000 2 14
DS5 Deepsea 370 25 4000 3 18
DS6 Deepsea 400 25 5000 3 22

Table A.3: Vessel mix used for Scenario 2.
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A.2 Scenario 2: 4.5 M TEU – 2 Berths

ID Mon Tue Wed Thu Fri Sat Sun Total calls
FD1 1 1 1 1 1 1 1 7
FD2 1 1 1 1 1 1 6
FD3 1 1 1 1 1 5
DS1 1 1 1 1 4
DS2 1 1 1 3
DS3 1 1 1 1 4
DS4 1 1 1 3
DS5 1 1
DS6 1 1 2

Total Calls 5 5 5 5 5 5 5 35

Table A.4: Weekly arrival pattern used for scenario 2.

Figure A.2: Visualized week pattern Scenario 2
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A.3 Scenario 3: 2.5 M TEU – 2 Berths

A.3 Scenario 3: 2.5 M TEU – 2 Berths

ID Vessel Type Length
(m)

Mooring
margin (m)

Call size
(box)

Priority
(Base)

Waiting
Cost (SA)

FD1 Feeder 150 15 200 1 1
FD2 Feeder 180 15 400 1 1.4
FD3 Feeder 200 15 600 1 1.7
DS1 Deepsea 240 25 900 2 5
DS2 Deepsea 270 25 1200 2 7
DS3 Deepsea 300 25 1600 2 10
DS4 Deepsea 340 25 2000 2 12
DS5 Deepsea 370 25 2500 2 14
DS6 Deepsea 400 25 3000 2 16

Table A.5: Vessel mix used for Scenario 3.

ID Mon Tue Wed Thu Fri Sat Sun Total calls
FD1 1 1 1 1 1 1 1 7
FD2 1 1 1 1 1 1 1 7
FD3 1 1 1 3
DS1 1 1 1 3
DS2 1 1 2
DS3 1 1 2
DS4 1 1
DS5 1 1 2
DS6 1 1 2

Total Calls 4 4 4 4 4 4 5 29

Table A.6: Weekly arrival pattern used for scenario 3.

59



A.4 Scenario 4: 2.2 M TEU – 2 Berths

Figure A.3: Visualized week pattern Scenario 3

A.4 Scenario 4: 2.2 M TEU – 2 Berths

ID Vessel Type Length
(m)

Mooring
margin (m)

Call size
(box)

Priority
(Base)

Waiting
Cost (SA)

FD1 Feeder 150 15 200 1 1
FD2 Feeder 180 15 400 1 1.2
FD3 Feeder 200 15 600 1 1.5
DS1 Deepsea 240 25 900 2 10
DS2 Deepsea 270 25 1200 2 10
DS3 Deepsea 300 25 1600 2 12
DS4 Deepsea 340 25 2000 2 14
DS5 Deepsea 370 25 2500 2 16
DS6 Deepsea 400 25 3000 2 20

Table A.7: Vessel mix used for Scenario 4.
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A.4 Scenario 4: 2.2 M TEU – 2 Berths

ID Mon Tue Wed Thu Fri Sat Sun Total calls
FD1 2 2 1 2 2 2 2 13
FD2 1 1 1 1 1 5
FD3 1 1 1 1 1 1 6
DS1 1 1 2
DS2 1 1
DS3 1 1 2
DS4 1 1
DS5 1 1 2
DS6 1 1

Total Calls 5 5 4 5 4 5 5 33

Table A.8: Weekly arrival pattern used for scenario 4.

Figure A.4: Visualized week pattern Scenario 4
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