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INTRODUCTION

Introduction

0.1 Research question & Hosting Organization

Many fashion brands are constantly experimenting with artificial intelligence and machine

learning to increase engagement among shoppers. Although, the fashion industry is moved

by the creativity of designers, which is the main engine behind the collections, algorithms can

create a personalized experience based on shoppers taste. However, in a domain like fashion

it is a very challenging task due to the high level of subjectivity. Also users preferences and

product styles change over time; more critically, the meaning of what is fashionable is incredibly

complex.

This research is done at PVH Corp, one of the largest apparel companies globally, which

operates a diversified portfolio of iconic lifestyle apparel brands. Although PVH owns a number

of prosperous heritage brands, this research is focused on Calvin Klein and Tommy Hilfiger,

which lead PVH Corp. to record an annual revenue of $8.9 billion in 2017.

Fashion is an extremely dynamic market. Calvin Klein and Tommy Hilfiger are known

for innovative digital and social concepts, second one has launched a digital showroom in

Amsterdam, main purpose of which is to transform the traditional buying process for one of

the main sales channels - wholesale partners.

The wholesale channel is an important component of the corporation business mix and one

of the key ways that the fashion company communicates the brand messaging and positioning to
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INTRODUCTION

consumers. Customers sell company’s goods in their stores and on their digital commerce sites.

For the company it is a way of continually expanding the brand’s presence in top doors at both

department stores, seeking to maximize sales of key items and upgrade the in-store experience

by creating clear and impactful store presentations.

The digital showroom is an innovative digital sales experience which allows sales

representatives to showcase the sample of the collection to wholesale clients via an interactive

touchscreen table upon which they can create custom orders. Because of the high number of the

items in each collection, the sales team prepare proposals with the materials that are most likely

to be bought from the new collection by each particular customer. The sales team is dedicated

to preparing a proposal for each wholesale partner from scratch. To be specific, sales person

needs up to three weeks to create a basket from new collection for a wholesale customer aiming

to arouse interest in purchasing.

The recommendation engine will increase sales flow of the company. System will combine

two data sources to create master and collection datasets. Master data is historical metadata,

which contains customer properties and captures their behaviour. In order to build a more

effective recommendation engine, available images and materials’ metadata will be included as

a ’collection’ dataset. In this thesis, we are primarily interested in the second dataset.

There is an old saying ”A picture is worth 1,000 words”. One of the visual recognition

tasks is to prove it. PVH consider images as one of the most valued assets. Visual recognition

is based on algorithms that can help analyze images and optimizes tasks such as identifying,

tagging and classifying every apparel, thus making customers experience better and brands job

much easier.

To explain why using images makes so much sense for recommendation engines, its

important to know how the human brain works. Ninety percent of the information transferred

to the brain is visual and we process images 60,000 times faster than text-based information.

Its no wonder, then, that images and videos are quickly turning into our primary form of

communication. Its a lot faster and it better communicates what we are trying to say. Especially
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INTRODUCTION

in fashion its difficult to put the style of a product into words. Every detail on the material can

influence customer choice.

Brands possess more than millions of high-resolution images in the database. These must

be processed by available hardware with least possible memory usage. Based on remarkable

success of deep neural networks applied to image processing task, this research is focused on

developing and optimising a network to produce embeddings of materials from their product

images, whilst maintaining a manageable and performant network architecture.

The thesis designs an ensemble of convolutional autoencoder with a pre-trained VGG16

model and generative adversarial network (GAN). The goal is to investigate what is the optimal

size of the image embedding which preserve all relevant information of the product. Information

that can give us insights and reflect customers’ taste. We are mainly interested in color, shape

and details (such as presence of the brand’s logo, zip etc). We generate the images from the

embeddings to visualize the stored information. In this way we perform the evaluation of the

network. We experimented with different compression size of the image embedding to conclude

which one is sufficient for the recommendation engine. In addition, we explored if adding meta

data of the product will influence on the quality of the results.
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0.2 Structure of the thesis

The scope of this project included collection of two datasets, clean-up, reduction and

manipulation of the data, feature contraction. Next step was to implement autoencoder. It was

crucial to define a set of objective indicators and starting points in order to get first sufficient

results. We divided the process into steps, accessing the performance of the model on each of

them and increasing the complexity respectively.

First, we built a convolutional autoencoder to create embedding for each product and

generate images. To achieve better generalization and performance of the model, we included

pre-trained VGG16 model as a part of the architecture. Finally, in order to increase the quality

of the produced images we included discriminator part of the generative adversarial neural

network.

In this thesis, we first introduce neural networks. Chapter 2 presents the theoretical

background, related work and different models used in the research. The data is presented

in Chapter 2. Then Chapter 3 will explain the architecture of the model and its components,

used hype-parameters. Also, chapter 3 includes results. Finally, Chapter 4 lists conclusions.
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