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Abstract

In this research we develop a model that prescribes the (near) optimal appointment date
for a patient at the moment this patient makes his request at the outpatient clinic. In order
to differentiate between different types of patients, such as new patients, control patients
and several grades of priorities, we distinguish two categories of patients. One category
is characterised by a maximum recommended waiting time. Since the actual scheduled
appointment time is reflected in costs, the sooner these patients are scheduled the lower
the costs and when the maximum recommended waiting time is exceeded extra costs are
incurred. The other category is characterised by a specific appointment time. The closer
the scheduled appointment time is to the specific appointment time the lower the costs.
The objective is to minimise the long-run expected average cost. We model the schedul-
ing process as a Markov Decision Process (MDP) and we solve this MDP to optimality
using value iteration. However, due to the curse of dimensionality, it is computationally
infeasible to solve our MDP to optimality for the scheduling process over more than three
working days and a reasonable available capacity on a day. To overcome the problem of
the curse of dimensionality we apply the Bellman Error Minimisation (BEM) method as
an Approximate Dynamic Programming technique in order to derive an estimate of the
optimal value function of our MDP of which the near optimal policy (appointment date)
can be derived. To determine the set of representative states, which is an element of the
BEM method, we use the Hartigan and Wong k-means algorithm. We test several approx-
imation functions and find an approximation function that outperforms all other functions
in the scheduling process over three, five, ten and twenty working days. In general it holds
that the higher the arrival rate of patients at the outpatient clinic, the better our BEM
method performs. But if the arrival rate reaches a certain value the load of the system
becomes that high that it does not matter what policy is applied, since many patients have
to be rejected.
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1 Introduction

1.1 Background information

Many hospitals face the problem of scheduling patients at an outpatient clinic. An essential
tradeoff in these problems is between using the available capacity in the short term with
a low priority patient or schedule this patient later and the capacity remains available for
a high priority patient. The risk is that the high priority patient does not presents itself
and the capacity is not utilised. In addition to the tradeoff between the various types of
priorities, the difference between new patients and control patients must also be taken into
account. New patients are patients who come to the outpatient clinic for the first time
and control patients are patients that are seen on a regular basis by a specialist. When
and how to schedule new patients cannot be seen independently from scheduling control
patients, since new patients bring forth demand for control appointments. For example,
scheduling one week with only new patients might be problematic since that generates
enormous demand for control appointments later on. Next to that, there are several other
factors involved when scheduling patients. Patients might have their own preferences, like
a preference for a specialist or a preference for a specific day or time for the appointment.
Furthermore, patients may not show up or cancel their appointment. In this case, patients
need to be rescheduled or leave the system.

Because so many factors need to be taken into account when scheduling patients, outpatient
clinics often fail to schedule their patients in an efficient manner. This could lead to long
access times for patients, which is the time between the request and the actual appointment
time, and low utilisation levels on some days and overload situation on other days, yielding
idle time or overtime for specialists.

1.2 Problem description

HOTflo Company is a specialised service provider in the field of integrated capacity man-
agement in hospitals. They employ effective change programs combined with intelligent
software and high-quality education and training programs in order to support hospitals
in optimising the care they provide, and in structurally reducing costs. Because hospitals
encounter many difficulties in scheduling appointments at the outpatient clinic, HOTflo
wants to meet the needs of hospitals in here. This, together with the progressive digitising
of society, HOTflo aims to develop an online application in which patients can schedule
their own appointment at the outpatient clinic. The idea of this application is as follows.
After a patient has opened the application and answered some questions, for instance, if
the patient comes to the outpatient clinic for the first time or if the patient has a preference
for his own specialist, the application should display some appointment date and time op-
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tions of which patients can choose their own appointment date and time. The underlying
algorithm of the application must ensure that the way patients are scheduled is done in
an efficient manner, meaning short access times for patients and a stable utilisation for
specialists during the days.

This research is a first step in the development of this algorithm. The goal is to develop a
method that prescribes the (near) optimal appointment date for a patient at the moment
this patient makes his request. In order to differentiate between different types of patients
such as new patients, control patients and several grades of priorities, we distinguish two
categories of patients. One category is characterised by a maximum recommended waiting
time. Since the actual scheduled appointment time is reflected in costs, the sooner these
patients are scheduled the lower the costs and when the maximum recommended waiting
time is exceeded extra costs are incurred. Among this category new patients and different
grades of priority patients can be considered. The other category is characterised by a spe-
cific appointment time. Among this category patients who want to make an appointment
in advance, like control patients, can be considered. The closer the scheduled appointment
time is to the specific appointment time the lower the costs. The objective is to minimise
the long-run expected average cost. We first formulate the scheduling process as a Markov
Decision Process (MDP), since scheduling patients at an outpatient clinic is a decision
problem with sequential decisions that must be made under uncertainty and MDPs pro-
vide a mathematical framework for modeling these decision problems. An MDP can be
solved to optimality, using one of the standard solution methods, like value iteration. This
results in an optimal value function of which the optimal appointment date can be de-
rived. However, due to the curse of dimensionality, it becomes computationally infeasible
to solve our MDP. Therefore, we employ an Approximate Dynamic Programming (ADP)
technique, in order to derive an estimate of the optimal value function of our MDP.

1.3 Outline

The remainder of this thesis is organised as follows. In Chapter 2 a review of the literature
on scheduling patients at the outpatient clinic is presented. In Chapter 3 and 4 we give
a short introduction to MDPs and ADP. These chapter provides the reader with some
background information about these topics. The reader who is familiar with MDPs and/or
ADP can skip these chapters without loss of continuity. In Chapter 5 we formulate the
scheduling process as an MDP and we describe how we applied ADP to our MDP. We
describe the results and their interpretations of our research in Chapter 6. Finally, this
thesis ends with some conclusions and we give possible and/or necessary extensions to our
model in Chapter 7.
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2 Literature review

In this chapter we describe the findings from our literature research. The purpose of our
literature research was twofold. First, we wanted to get an idea about what is already done
in the field of scheduling patients at the outpatient clinic. Second, we wanted to get some
inspiration and ideas for our MDP.

One way of classifying literature about scheduling patients at the outpatient clinic is ac-
cording to the type of waiting patients have to deal with: intra-day scheduling and inter-day
scheduling. Intra-day scheduling is about the best timing and sequence of appointments
within a given day and concerns direct waiting times, the time the patient spends waiting
on the day of his appointment. Inter-day scheduling considers a multi-day planning horizon
and is about how to allocate appointment requests arising on the current day into future
days and concerns indirect waiting times. The indirect waiting time is the time between
the day the patient makes his request and the actual appointment day. The key issues in
designing and managing patient appointment systems for health services are discussed by
Gupta and Denton [7]. They consider both intra-day and inter-day scheduling problems
and state that most of the existing literature is concentrated on intra-day scheduling. Since
our work focuses on inter-day scheduling and does not address how intra-day scheduling
needs to be done, we briefly discuss literature on intra-day scheduling and we mainly focus
on the literature about inter-day scheduling.

2.1 Intra-day scheduling

In 2003 Cayirli and Veral [2] present a comprehensive overview of research on appointment
scheduling in outpatient services. They summarise the relevant factors that are encountered
in appointment scheduling, such as number of doctors, presence of no-shows, service time
distribution and so on. Next to that, they summarise the performance measures used to
evaluate appointment systems. They distinguish five categories:

• Cost-based measures;
• Time-based measures;
• Congestion measures;
• Fairness measures;
• Other

of which cost-based measures, like costs for patients direct waiting time, doctor’s idle
time and doctor’s overtime, are most commonly used. Until then, little research took
into account the probability of no-shows and walk-ins (patients who arrive without having
an appointment, like emergency patients). Subsequently, no shows and walk-ins received
more attention, as for example in [3, 9, 10]. Kaandorp and Koole [9] derived a local search
procedure, which can incorporate no-shows, to optimise a weighted average of expected
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waiting times of patients and idle time and overtime of the doctor. More recently, Koeleman
and Koole [10] used a generalisation of this local search procedure with the same objective
in a setting where emergency arrivals occur according to a non-stationary Poisson process
and where service times can have any given distribution. Cayirli et al. [3] introduces a
universal “Dome” appointment rule for finding the appointment times for a given clinic
defined by no-shows, walk-ins, desired number of appointments per session, coefficient of
variation of service times, and the relative value of doctor’s time to patients’ time.

2.2 Inter-day scheduling

As mentioned before, literature on inter-day scheduling problems is scarce, but has gained
more attention in recent years. Several optimisation or approximation techniques are used
for these kind of problems each taking into account other relevant factors. Gupta and Wang
[8] developed an MDP for the scheduling process to determine whether or not to admit or
when to schedule incoming appointment requests and maximises the revenue obtained on a
given day. In their model they take into account the patients’ specialist and appointment
time preferences. Next to that, they develop five heuristics as well as an upper bound
on the optimal revenue. Liu et al. [12] were the first to propose dynamic appointment
scheduling policies using a model that takes patient no shows and cancellations into ac-
count. They use the idea of applying a single step of the policy improvement algorithm
to develop a heuristic method. Feldman et al. [6] developed an appointment scheduling
model based on an MDP, which can be used in making appointment scheduling decisions
while taking into account both patients’ preferences for different appointment days and
their no-show and cancellation behavior. Another approach is proposed by Erdogan et al.
[5]. They formulate and solve a two-stage stochastic mixed integer programming model for
dynamic sequencing and scheduling of appointments to a single stochastic server. Binary
decision variables are used to represent the patient sequencing decisions and continue vari-
ables represent the inter-arrival times and appointment times.

Most of the literature described above, modelled the scheduling process as an MDP, but
we found two papers in the literature that are particularly interesting to our work. Patrick
et al. [13] developed an MDP model for dynamically scheduling multi-priority patients.
Each patient priority class is characterised by a maximum recommended waiting time and
their goal is to minimise the number of patients who does not get an appointment by their
maximum wait time target. To deal with the curse of dimensionality they transform their
MDP into the related linear program and use ADP techniques to produce an approxi-
mate linear program which they solve in order to derive the estimate of the optimal value
function. Erdelyi and Topaloglu [4] consider a general capacity allocation problem in a
setting with a fixed amount of daily processing capacity. Jobs of different priorities arrive
randomly over time and it must be decided which jobs should be scheduled for which days.
Jobs that are waiting to be processed incur a holding cost depending on their priority
levels. The objective is to find a job scheduling policy that minimises the total expected
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cost over a finite planning horizon. They formalise their problem as an MDP which is quite
similar to the MDP formulated by Patrick et al. [13]. But they use an ADP techniques
that decomposes their MDP to deal with the curse of dimensionality.

The MDP we developed is inspired by the models described by Patrick et al. [13] and
Erdelyi and Topaloglu [4]. However, both models observe the arrivals of patients/jobs at
the beginning of each day, which means that several patients/jobs need to be scheduled at
once. In reality patients are scheduled immediately at the moment they make their request.
We want our model to be as close as possible to reality and we model this explicitly in our
MDP. Next to that, we also use a different ADP technique to estimate the optimal value
function than Patrick et al. [13] and Erdelyi and Topaloglu [4]. Instead of transforming
our model into a linear program or decomposing our MDP, we apply the BEM method.
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3 Markov Decision Processess

Markov Decision Processess (MDPs) provide a mathematical framework for modeling de-
cision problems with sequential decisions that must be made under uncertainty [1, 15].
Scheduling patients in an outpatient clinic is such a decision problem. When a patient
makes a request for an appointment, the planner (decision maker) observes the current
schedule and makes a decision, e.g. schedule the patient on a given day and time. The
consequence of the decision is reflected in costs, therefore for every decision taken, imme-
diate costs might be incurred. For instance, if the patient has to be scheduled within two
days, but the first two days of the schedule are fully occupied, cost might be incurred for
not being able to met the requirements of the patient. The decision of the planner will
create a new schedule (the old schedule with an additional appointment) and when the
next patient makes his request for an appointment the planner faces the same problem
with this new schedule. Because decisions are sequentially made over time, the goal is to
find a strategy for the decision maker, such that applying this strategy minimises a cost
criterion. A strategy is also called a policy and the optimal policy is obtained by solving
the corresponding MDP.

In this chapter we give a short introduction to MDPs and how they can be solved. In
Section 3.1 the basic components of MDPs are described and corresponding terms such as
value functions and optimality equations are explained. Section 3.2 describes a well-known
algorithm for computing an optimal MDP policy. Aperiodicity and the curse of dimen-
sionality, two issues of MDPs that are important to our research, are discussed in Section
3.3 and 3.4. For more information about MDPs we refer to Puterman [15] and/or Tijms
[17], where they are extensively described.

3.1 Introduction to Markov Decision Processes

An MDP is defined by four basic components:

• The state space X , a set of states;
• The action space Ax, a set of actions for each state x ∈ X ;
• A cost function c(x, a), describing the incurred costs when taking action a in state x;
• A transition probability function p(x, a, y), describing the probability that the system

will be in state y when taking action a in state x, with p(x, a, y) ∈ [0, 1], x, y ∈ X , a ∈
Ax and

∑
y∈X p(x, a, y) = 1, x ∈ X , a ∈ Ax.

Although general MDPs may have infinite or even uncountable state and action spaces,
we assume the state space X and the action space Ax to be finite. The decision maker
chooses an action based on the current state of the system and should take into account
the future behaviour of the system. As a result of the chosen action the system makes a
transition to another state and the system receives immediate costs. The goal is to find an



3.1. Introduction to Markov Decision Processes 7

optimal policy π∗ such that a cost criterion is minimised. As cost criterion we focus on the
long-run expected average cost, denoted as g. Other cost criteria are the expected total
cost and the expected total discounted cost [17]. Next to the long-run expected average
cost as cost criterion, we focus on the class of stationary policies. A stationary policy is a
policy that assigns to each state a fixed action and every time the system is in this state
the decision maker chooses this action.

Value function, Poisson equations and optimality equations

Value functions are used for the evaluation of a policy π in the set of available policies Π
and therefore play a crucial role in determining the optimal policy. The value of a state
x under policy π, denoted as Vπ(x), represents the long-run expected average cost when
starting in x and following policy π thereafter. The value function Vπ for a fixed policy is
the solution of the set of Poisson equations:

Vπ(x) + gπ = c(x, π(x)) +
∑
y∈X

p(x, π(x), y)Vπ(y), x ∈ X , (3.1)

where π(x) is the action chosen in state x under policy π. The goal is to find the optimal
policy π∗, i.e. the policy that minimises g, denoted by g∗. For this policy it holds that
Vπ∗(x) ≤ Vπ(x), x ∈ X , π ∈ Π. The optimal solution V ∗ = Vπ∗ satisfies the following
equations:

V ∗(x) + g∗ = min
a∈Ax

{c(x, a) +
∑
y∈X

p(x, a, y)V ∗(y)}, x ∈ X . (3.2)

These equations are also known as the optimality equations or Bellman equations. The
solution of (3.2) is not unique. If (V ∗, g∗) is a solution, then (V ∗+ c, g∗) is also a solution.
A unique solution can be obtained by taking V ∗(0) = 0. Then V ∗(x) is the difference in
accrued cost when starting the process in state x relative to starting in state 0. Once the
optimal value function V ∗ is computed, the optimal policy π∗ can be obtained by:

π∗(x) = arg min
a∈Ax

{c(x, a) +
∑
y∈X

p(x, a, y)V ∗(y)}, x ∈ X .

There are three well-known algorithms for computing the optimal value function and the
corresponding policy:

• Policy Iteration;
• Linear Programming;
• Value Iteration.

Policy iteration and linear programming both require the solving of a system of linear
equations in each iteration step. Value iteration computes recursively a sequence of value
functions. We describe the algorithm of value iteration in the next section, because we
apply this technique to the scheduling process. For more information about policy iteration
or linear programming we refer to Puterman [15] or Tijms [17].
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Algorithm 1 Value iteration

1: procedure Value iteration(X ,Ax, P, c, ε)
2: Inputs: X : the set of all states with |X | = N , Ax: the set of all actions, P : a transition

probability matrix specifying p(x, a, y), c: a cost function c(x, a), ε: a threshold > 0
3: Outputs: V : value function, π∗: optimal policy, g∗: minimal long-run average cost

per time unit
4: Local variables: int n, double min, max, Vector V (0, . . . , N), π(0, . . . , N)
5: V ← 0
6: n← 0
7: do
8: min =∞
9: max = −∞

10: for each state x ∈ X do
11: Vn+1(x) = mina∈Ax{c(x, a) +

∑
y∈X p(x, a, y)Vn(y)}

12: min = min{min, Vn+1(x)− Vn(x)}
13: max = max{max, Vn+1(x)− Vn(x)}
14: end for
15: n = n+ 1
16: while max−min > ε
17: g∗ = (min+max)/2
18: for each state x ∈ X do
19: π∗(x) = arg mina∈Ax

{c(x, a) +
∑

y∈X p(x, a, y)Vn(y)}
20: end for
21: end procedure

3.2 Value iteration

The value iteration algorithm is displayed in pseudo code in Algorithm 1. It starts with
the value function V0(x) = 0, x ∈ X . Then the value function is updated iteratively by:

Vn+1(x) = min
a∈Ax

{c(x, a) +
∑
y∈X

p(x, a, y)Vn(y)}, x ∈ X .

and for each x ∈ X the bounds on the minimal costs are computed. These bounds can
also be computed at the end of each iteration:

minBoundn+1 = min{Vn+1(x)− Vn(x)}, maxBoundn+1 = max{Vn+1(x)− Vn(x)}.

If after an iteration maxBound − minBound < ε, with ε > 0 a prespecified accuracy
number, then the value function is converged to its optimum and g∗ is obtained by
(minBound + maxBound)/2. However, the minBound and maxBound only converge to
the same limit (g∗) under certain conditions. One of these conditions is that for each aver-
age cost optimal stationary policy the associated Markov decision chain is aperiodic. Since
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this is an important condition for our study, we go deeper into aperiodicity in the next
section, for more information about the convergence of the bounds we refer to Puterman
[15] and Tijms [17].

3.3 Aperiodicity

A Markov decision chain is called aperiodic if for every policy π the greatest common
divisor of the length of all paths from x to x equals 1, for some recurrent state x ∈ X .
State x is called recurrent if there is a path from x to x [17]. If for some policy π the
greatest common divisor of the length of all paths from x to x is strictly larger than 1 for
some recurrent state x ∈ X , the Markov decision chain is periodic and value iteration does
not need to converge. This aperiodicity condition is not restrictive, since all policies can
be made aperiodic by a simple data transformation:

p(x, a, y) =

{
γp(x, a, y), if y 6= x, a ∈ Ax, x ∈ X ,
γp(x, a, y) + (1− γ), if y = x, a ∈ Ax, x ∈ X ,

with 0 < γ < 1. Thus, with probability γ the transition to another state occurs according
to the original transition probabilities and with an extra probability 1−γ the process stays
in the current state, irrespective of the state and action. If (V ∗, g∗) is a solution of (3.2),
then (V ∗/γ, g∗) is a solution of

V ∗(x) + g∗ = min
a∈Ax

{c(x, a) + γ
∑
y∈X

p(x, a, y)V ∗(y) + (1− γ)V ∗(x)}, x ∈ X . (3.3)

Thus, the long-run expected average cost remain the same and V ∗ is multiplied by the
inverse of this constant.

3.4 Curse of dimensionality

What certainly indicates a problem is the so-called curse of dimensionality [14]. Standard
methods to obtain the value function, such as value iteration suffer from the curse of dimen-
sionality, which means that as the state and/or action space increases, it becomes compu-
tationally infeasible to solve an MDP. Suppose there is a model with a multi-dimensional
state space X = {(x1, . . . , xn)|xi = 1, . . . , C}. Then the number of different states is
|X | = Cn, which is already large for relative small values of n and C. Since it becomes
computationally infeasible to solve an MDP for large state and/or action spaces it is not
possible to compute the optimal value function and to obtain the optimal policy. Approx-
imate Dynamic Programming (ADP) is a method to deal with the curse of dimensionality.
The central idea of ADP is extensively discussed in the next chapter.
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4 Approximate Dynamic Programming

As stated in the previous chapter the value function is crucial in deriving optimal poli-
cies. However, techniques to compute the value function, such as value iteration, become
computational infeasible due to the curse of dimensionality. Approximate Dynamic Pro-
gramming (ADP) is a method to overcome the problem of the curse of dimensionality.
In this chapter we describe the central idea behind ADP in Section 4.1. Thereafter, we
discuss and compare two ADP methods on the basis of an M/M/s queue. The M/M/s
queue we consider is described in Section 4.2. The first ADP method we discuss in Section
4.3 is the Bellman Error Minimisation method. The second ADP method is Approximate
Value Iteration which we discuss in Section 4.4. For a thorough understanding of ADP,
we actually applied it to several M/M/s queues. We compare both ADP methods and the
value iteration method with each other based on the results of the M/M/s queues. The
results of this comparison are given in Section 4.5. We end this chapter with an overview
of advantages and disadvantages of all the methods in Section 4.6 and discuss which ADP
technique we apply to our scheduling process.

4.1 Introduction in ADP

The central idea of ADP is to approximate the true value function V (x) by an approx-
imation function Ṽ (x, r) =

∑R
i=1 riφi(x), with r a vector of parameters and φi(x) a set

of basis functions that is used for the approximation. The choice of the basis functions
depends on the specifics of the problem and is therefore more an art than exact science
[16]. After the basis functions are chosen, the goal is to find the optimal parameter vector
r such that the difference between the true value function and the approximation function
is minimised. One advantage of this approximation function is that only |r| values have
to be stored, instead of |X | values from the value function. A second advantage is that a
change in r affects the value for all possible states and hence, only a representative subset
of the states X̃ ⊂ X has to be considered to determine the vector r. For instance, the
choice of the set of representative states could be to include only the states that have a
high probability of being visited. As a result of both advantages, ADP suffers less from the
curse of dimensionality. In the next sections we describe two ADP methods for finding the
optimal parameter vector r on the basis of an M/M/s queue and we compare the results
with each other.

4.2 M/M/s Queue

To become familiar with ADP we apply it first to the M/M/s queue. In the M/M/s queue
arrivals occur according to a Poisson process and form a single queue, there are s servers
and service times are exponentially distributed. We consider the M/M/s queue with two
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types of patients and admission control, thus arriving patients may be rejected. Both types
of patients have the same average service time, but differ in the cost per rejected patient.
The objective is to minimise the average number of patients in the system and the number
of rejected patients. This queue is modelled as an MDP as follows:

State space: X = {0, 1, 2, 3, ...} representing the total number of pa-
tients in the system.

Action space: A = {0, 1} representing admission and rejection.
Cost function: There are direct costs x if there are x customers in the

system and rejection cost ci if a patient of type i ∈ {1, 2}
is rejected.

Transition probabilities: Patients of type i arrive according to a Poisson process
with rate λi, i ∈ {1, 2} and leave the system after they are
being served during an exponentially distributed amount
of time with rate µ. By uniformization, these transition
rates are scaled such that

∑
i λi + µs ≤ 1.

The optimality equations for this queue are given by:

V (x) + g = x+
2∑
i=1

λi min{V (x+ 1);V (x) + ci}+ µmin{x, s}V ((x− 1)+)

+ (1−
2∑
i=1

λi − µmin{x, s})V (x),

(4.1)

where (x)+ = max{0, x}. The two methods of ADP we discuss next, are explained on the
basis of an M/M/3 queue with parameters λ1 = 0.15, λ2 = 0.1, µ = 0.1, c1 = 20, c2 = 25,
with approximation function Ṽ (x, r) = r1x + r2x

2 and with X̃ = {0, 1, 2, 3, 4}. It should
be mentioned that X̃ in this case is chosen small in order to simplify the equations when
explaining both ADP methods.

4.3 Bellman Error Minimisation

In the Bellman Error Minimisation (BEM) method the goal is to minimise the error which
is made in the Poisson equations (3.1) by using the approximation function Ṽ (x, r) instead
of the real value function V (x). When the real value function is used, the Bellman error,
given by:

D(x) = −g − V (x) + c(x, π(x)) +
∑
y∈X

p(x, π(x), y)V (y),

equals 0 for all x ∈ X . However, when instead of the real value function V (x) the approx-
imation function Ṽ (x, r) is used, the Bellman error is given by:

D(x, r) = −g − Ṽ (x, r) + c(x, π(x)) +
∑
y∈X

p(x, π(x), y)Ṽ (y, r). (4.2)
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The goal is to find a good approximation for the most important part of the state space.
This goal can be achieved by minimising the weighted sum of squared Bellman errors for
a set of representative states X̃ ⊂ X :

min
r
{E(r) =

∑
x∈X̃

w(x)D2(x, r)}, (4.3)

where the weight w(x) is used to emphasise the importance of the error made in state
x ∈ X̃ . The minimum is determined by calculating the partial derivatives of E(r) with
respect to ri, i = 1, ..., R and setting them to zero. This results in a system of R equations
with R unknowns which can be solved.

Note that in order to determine the Bellman error (4.2), an initial policy must be chosen
in MDPs where actions are involved. The initial policy we choose in our M/M/3 queue is
to admit every patient. The Bellman error of our queue is then given by:

D(x, r) = −g − Ṽ (x, r) + x+ 0.15Ṽ (x+ 1, r) + 0.1Ṽ (x+ 1, r)

+0.1 min{x, 3}Ṽ ((x− 1)+, r) + (1− 0.25− 0.1 min{x, 3})Ṽ (x, r)

= −g + x+ 0.25Ṽ (x+ 1, r)

+0.1 min{x, 3}Ṽ ((x− 1)+, r)− (0.25 + 0.1 min{x, 3})Ṽ (x, r).

(4.4)

Now we need to determine g, which can be done in two ways: by simulation or by using
the fact that we can set V (0) = 0, see Section 3.1. However, g obtained by simulation is
preferred, provided that the simulation runs long enough. This g is more accurate than the
g obtained by setting V (0) = 0. If g is obtained by simulation, then g in (4.4) is replaced
by a constant. If we set V (0) = 0, then by using the optimality equations (4.1) and our
policy to admit every patient, g = 0.15V (1)+0.1V (1) = 0.25V (1). Inserting g obtained by
setting V (0) = 0 and inserting our approximation function into the Bellman error gives:

D(x, r) =− 0.25[r1 + r2] + x+ 0.25[r1(x+ 1) + r2(x+ 1)2]

+ 0.1 min{x, 3}[r1(x− 1)+ + r2((x− 1)+)2]

− (0.25 + 0.1 min{x, 3})[r1x+ r2x
2].

If we set the weight function w(x) = 1, x ∈ X̃ , the sum of squared Bellman errors is given
by:

E(r) =
∑

x∈X̃ D
2(x, r) = 02 + (−0.1r1 + 0.4r2 + 1)2 + (−0.2r1 + 0.4r2 + 2)2

+(−0.3r1 + 3)2 + (−0.3r1 − 0.1r2 + 4)2

= 0.23r21 + 0.33r22 − 0.18r1r2 − 5.2r1 + 1.6r2 + 30.
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By taking partial derivatives of E(r) with respect to r1 and r2 and setting them to zero
we obtain two equations with two unknowns:

∂

∂r1

∑
x∈X̃

D2(x) = 0.46r1 − 0.18r2 − 5.2 = 0,

∂

∂r2

∑
x∈X̃

D2(x) = −0.18r1 + 0.66r2 + 1.6 = 0.

Solving the above equations, we obtain r1 = 11.59 and r2 = 0.74, and hence Ṽ (x) =
11.59x+ 0.74x2. Now that we found the approximate value function Ṽ (x) a new policy is
obtained and the performance of this policy can be compared with the performance of the
initial policy. This is called one-step policy improvement. If necessary the BEM can be
repeated with the new policy until the results are satisfying. However, policy improvement
gives the biggest improvement during the first steps [17], which we show in Section 4.5.

4.4 Approximate Value Iteration

Approximate Value Iteration (AVI) is an algorithm which uses the approximation function
Ṽ (x, r) to estimate the value function V̂ (x) for the set of representative states X̃ at each
iteration in the value iteration algorithm, see Algorithm 1. Thus,

V̂n+1(x) = min
a∈Ax

{c(x, a) +
∑
y∈X

p(x, a, y)Ṽn(y, r)}, x ∈ X̃ .

Starting at n = 0 with the initial parameter vector r = 0, the AVI will update r, and hence
Ṽn(y, r), at the end of each iteration step until r is converged. Updating the parameter
vector r can be achieved by solving a weighted least squares problem, because we want to
minimise the distance between V̂n+1(x) and Ṽn+1(x, r). Thus,

min
r

∑
x∈X̃

w(x)(V̂n+1(x)− Ṽn+1(x, r))
2. (4.5)

If (4.5) is written in matrix notation, where Ṽn+1(x, r) is replaced by
∑R

i=1 riφi(x) we
obtain:

min
r

(V̂n+1 − rΦ)TW (V̂n+1 − rΦ),

with Φ =


φ1(x1) φ2(x1) · · · φR(x1)
φ1(x2) φ2(x2) · · · φR(x2)

...
...

. . .
...

φ1(xÑ) φ2(xÑ) · · · φR(xÑ)

 and W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wÑ

 ,

where Ñ = |X̃ |. The solution for this weighted least squares problem is given by:

r = (ΦTWΦ)−1ΦTWV̂n+1. (4.6)
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Algorithm 2 Approximate Value Iteration

1: procedure Approximate Value Iteration(X̃ ,Ax, P, c, ε)
2: Inputs: X̃ : the set of all representative states with |X̃ | = Ñ , Ax: the set of all actions,
P : a transition probability matrix specifying p(x, a, y), c: a cost function c(x, a), ε: a
threshold > 0

3: Outputs: r: optimal parameter vector
4: Local variables: int n, double min, max, Vector V (0, . . . , Ñ), r(1, . . . , R)
5: V ← 0
6: n← 0
7: r ← 0
8: do
9: min =∞

10: max = −∞
11: for each state x ∈ X̃ do
12: V̂n+1(x) = min

a∈Ax

{c(x, a) +
∑

y∈X p(x, a, y)Ṽn(y, r)}
13: end for
14: rn+1 = (ΦTWΦ)−1ΦTWV̂n+1

15: for i = 1 . . . R do
16: min = min{min, rn+1(i)− rn(i)}
17: max = max{max, rn+1(i)− rn(i)}
18: end for
19: n = n+ 1
20: while max−min > ε
21: end procedure

The pseudo code of AVI is given in Algorithm 2.

Applying this algorithm to our M/M/3 queue, with the estimated value function given by:

V̂n+1(x) = x+ 0.15 min{r1(x+ 1) + r2(x+ 1)2; r1x+ r2x
2 + 20}

+ 0.1 min{r1(x+ 1) + r2(x+ 1)2; r1x+ r2x
2 + 25}

+ 0.1 min{x, 3}(r1(x− 1)+ + r2((x− 1)+)2)

+ (1− 0.25− 0.1 min{x, 3})(r1x+ r2x
2),

and where Φ =


0 0
1 1
2 4
3 9
4 16

 and W =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

we obtain r1 = 11.54 and r2 = 1.10, and hence Ṽ (x) = 11.54x+1.10x2. Compared with the
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BEM method this is not a one-step policy improvement, since no initial policy is required.
The parameter vector r converges to a (near) optimal solution.

4.5 Value iteration vs ADP

Now that we have explained the BEM method and the AVI method, we compare the
results of these ADP methods with each other and with value iteration. As explained in
Section 3.1 we are interested in finding the optimal policy that minimises the long-run
expected average cost g∗. This policy is found when value iteration is applied. However,
since value iteration is not applicable for large state spaces, we want to know how both
ADP methods behave, relative to value iteration, where the long-run expected average cost
g is used as a performance measure. The M/M/s queue can be used for this. The state
space of the M/M/s queue is one-dimensional and hence, we can easily limit the state
space such that value iteration can be applied. We apply value iteration, the two BEM
methods (estimating the unknown g in the Bellman error by simulation and by setting
V (0) = 0) and AVI to several M/M/s queues with different parameters, which we refer to
as cases. The parameters of these cases are given in Table 4.1. As approximation function
we choose Ṽ (x, r) = r1x+r2x

2. This is based on the approximation function for an M/M/1
queue of which it is known that it gives a good approximation of the value function [16].
Furthermore, we choose X̃ = {0, 1, . . . , 15} as the set of representative states.

Table 4.1: Different cases of the M/M/s queue.

Case λ1 λ2 µ s c1 c2
1 0.15 0.1 0.1 6 20 25
2 0.15 0.1 0.1 6 5 30
3 0.15 0.1 0.1 6 30 5
4 0.15 0.1 0.1 6 25 20
5 0.15 0.1 0.1 3 20 25
6 0.15 0.1 0.1 3 5 30
7 0.15 0.1 0.1 3 30 5
8 0.15 0.1 0.1 3 25 20
9 0.3 0.1 0.1 6 20 25
10 0.3 0.1 0.1 6 5 30
11 0.3 0.1 0.1 6 30 5
12 0.3 0.1 0.1 6 25 20
13 0.3 0.1 0.15 3 20 25
14 0.3 0.1 0.15 3 5 30
15 0.3 0.1 0.15 3 30 5
16 0.3 0.1 0.15 3 25 20
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Figure 4.1: Effect on long-run expected average cost per case when the
BEM method with simulation is repeated.

First, we compare the results of applying both BEM methods multiple times. The results
of the BEM method with simulation are shown in Figure 4.1. As stated before, the results
show indeed that policy improvement gives the biggest improvement during the first steps.
After two improvement steps the long-run expected average cost is nearly the same as
when five improvement steps are performed. Similar results holds for the BEM method
with V (0) = 0, the strongest decrease in g occurs in the first two steps after which g more
or less remains the same. The average improvement over all cases is for both methods
in the first two steps around 20% per step, after this it reduces to around zero, see also
Table 4.2. It should be noticed that a one-step policy improvement is not necessarily an
improvement. In that case the initial policy is already a good policy. This occurs in case
12 in Figure 4.1 (red, dotted line). It shows an increase from 4.57 to 4.68 in g after the
first improvement step.

Table 4.2: Average reduction of g per improvement step for both Bellman Error Minimisation methods.

Improvement step Bellman V(0)=0 Bellman simulation
1 21% 23%
2 21% 18%
3 0% 1%
4 1% 0%
5 -1% 0%

Second, we compare the long-run expected average cost for both BEM methods after two
iterations with AVI and value iteration, were value iteration is applied with state space
X = {0, 1, . . . , 500}. The results are displayed in Figure 4.2. We see that g of the ADP
methods are close to g∗ obtained from value iteration. AVI performs slightly better than
or is equal to the BEM methods in 13 of the 16 cases. The BEM method with V (0) = 0
performs slightly better than or is equal to the BEM method with simulation in 14 of the
16 cases.
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Figure 4.2: Long-run expected average cost per method.

Finally, for each ADP method we compare the running time of one case for different sizes
of the state space. In order to compare the ADP methods with value iteration we take the
set of representative states as the total state space, thus X̃ = X . For the BEM method we
compute the running time for one improvement step, since the running time grows linearly
in the number of improvement steps. Only the results of the BEM method with V (0) = 0,
AVI and value iteration are displayed in Figure 4.3, since no difference in running time was
obtained between both BEM methods. Value iteration shows the fastest running time over
both ADP methods, but from the literature we know that the computational requirements
of value iteration grow exponentially with the dimension of the state space [14]. See also
Section 6.1.3 for the running time of value iteration of a small instance of our scheduling
process. Furthermore, Figure 4.3 shows that the running time of the AVI method increases
faster as the state space increases compared to the running time of the BEM method, this
is due to the multiple matrix multiplications used to solve the least squares problem, see
(4.6).

Figure 4.3: Running time of Bellman Error Minimisation, Approximate Value Iteration and value
iteration for different sizes of the state space.
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4.6 (Dis)advantages of value iteration and ADP

Now that we have discussed the performance of the ADP methods, we give an overview of
advantages and disadvantages of all the methods.

Value iteration

Advantages: Gives an optimal policy and no initial policy is required.
Disadvantage: Long running time if the state space and/or action space is large, also
known as the curse of dimensionality.

Bellman Error Minimisation with g obtained by simulation and by setting
V (0) = 0.

Advantages: Short running time and the biggest improvement is achieved during the first
steps.
Disadvantages: Initial policy required and if the this policy is already a (near) optimal
policy, than a one-step policy improvement does not necessary give an improvement.
In general: g obtained by simulation is preferred, provided that the simulation runs long
enough. This g is more accurate than the g obtained by setting V (0) = 0.

Approximate Value Iteration

Advantages: No initial policy required and the real parameters are obtained at once. It
seems to perform better than the BEM methods.
Disadvantages: Long running time if the reduced state space is large.

Conclusion

Since AVI has a long running time if the reduced state space is large, we choose to apply the
BEM method to our MDP. Because g obtained by simulation is preferred over g obtained
by setting V (0) = 0, we apply the BEM method with simulation as ADP technique to our
scheduling process.
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5 Method and parameters

In this chapter we formulate our scheduling process as an MDP and we describe how we
apply the BEM method with simulation as ADP technique to our MDP. Our MDP is
formulated in Section 5.1. In Section 5.2 we give the Bellman Error for our model and
describe how we determine the different elements needed for the BEM method. Then, in
Section 5.3 we discuss how we choose the parameters we defined in our MDP. Ultimately,
we are interested in an approximation function that shows in general the best improvements
for the one-step policy improvement for different cases. How we address this is described
in Section 5.4.

5.1 Scheduling process as an MDP

Before we formulate the scheduling process as an MDP, we first describe how we model
the requests for appointments from different types of patients such as new patients, control
patients and several grades of emergency patients. In order to differentiate between these
patients in our model we distinguish two categories of patients. One category is charac-
terised by a maximum recommended waiting time. Among this category new patients and
emergency patients can be considered. The other category is characterised by a specific
appointment time. Among this category patients who want to make an appointment in
advance, like control patients, can be considered. For the first category the goal is to min-
imise the waiting time between the scheduled appointment time and the time the request
for an appointment is made. For the second category the goal is to minimise the time
between the scheduled appointment time and the specific appointment time. Furthermore,
each patient type is characterised by several variables like service time and arrival rate.
More formally, a patient can be of type (i, j), i ∈ {1, 2}, j ∈ {1, . . . , Ji}, where i represents
the category the patient belongs to. If i = 1 the patient belongs to the category with a
maximum recommended waiting time and if i = 2 the patient belongs to the category with
a specific appointment time. Each patient of type (i, j) is characterised by the variables:

k1j Extra costs for exceeding the maximum recommended waiting time for a patient of
type (1, j), k1j > 0;

pij The probability that a patient of type (i, j) will arrive during a time interval, pij > 0;
rij The penalty cost of rejecting a patient of type (i, j), rij > 0;
wij If i = 1, this represents the maximum recommended waiting time for a patient of

type j and if i = 2 this represents the specific appointment time for a patient of type
j, wij ∈ {1, 2, . . . } and is expressed in working days;

βij The required scheduled service time for a patient of type (i, j), βij ∈ {1, 2, . . . } and
is expressed in the number of blocks, see the next section about the state space.

Now, we can formulate the scheduling process as an MDP, which is described by a state
space, an action space, a cost function and its transition probabilities, see Section 3.1.
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State space

On any given day the scheduling process takes place over the next N working days, de-
scribed by the set N = {1, . . . , N}. To keep our model simple, n = 1 represents the next
working day so it is not possible to schedule patients at the same day they make their
request for an appointment. Furthermore, patients are only assigned to an appointment
day, not an appointment time, this is outside the scope of this thesis. Each day we have
a fixed amount of capacity available, C. In our model, the available capacity is described
as the number of available blocks, where a block is defined as a time period of 5 minutes.
As stated in Section 2.2 our model is inspired by the models described by Erdelyi and
Topaloglu [4] and Patrick et al. [13]. However, both models observe the arrivals of patients
at the beginning of each day, which means that several patients need to be scheduled at
once. In reality patients are scheduled immediately at the moment they make their re-
quest. We want our model to approach reality as closely as possible. Therefore, we cut
the current day into T intervals, where T is large enough such that we may assume that
in one interval only one event can occur, namely one patient arrival or no arrival. Thus in
our model the state space takes the form:

X = (~x; t) = (x1, x2, . . . , xN ; t),

with xn ∈ {0, 1, . . . , C}, the number of blocks already booked n working days ahead and
t ∈ {1, . . . , T} the time of the current day.

We determine T as follows. During one day, patient arrivals (requests) occur according
to a Poisson process with parameter λ. If we cut the day into T intervals, then in each
interval patient arrivals occur according to a Poisson process with parameter λ/T . For our
MDP it is important that the probability of more than one arrival in an interval is small,
where we define small as less than 5%. More formally:

P (number of arrivals > 1) < 0.05

⇒ 1− P (number of arrivals = 0)− P (number of arrivals = 1) < 0.05

⇒ 1− (λ/T )0

0!
e−λ/T − (λ/T )1

1!
e−λ/T < 0.05

⇒ (1 + λ/T )e−λ/T ≥ 0.95.

(5.1)

To determine T we solve this equation numerically.

Action space

When a patient arrives, the planner needs to decide to which day the patient will be
assigned. Additionally, if there is not enough capacity available, then there must be an
option to reject the patient or to schedule the patient in overtime. Thus the action space
takes the form:

A~x,t = (~a) = (a1, a2, . . . , aN , aN+1),
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with an ∈ {0, 1} is the action of booking the patient n working days ahead, n ∈ N and
aN+1 ∈ {0, 1} is the action of rejecting the patient or serve the patient during overtime.
From here, we only write about the action of rejecting a patient, just for simplicity. For
a patient of type (i, j) it must hold that: xn + βijan ≤ C, n ∈ N , which means that the

available capacity on day n is not exceeded. Also,
∑N+1

n=1 an = 1, which means that the
patient can be scheduled at most on one day and if the patient is not scheduled then the
patient is rejected.

Cost function

The cost function depends on the category to which a patient belongs. If i = 1, a patient
needs an appointment within its maximum recommended waiting time (w1j); the sooner
this patient is scheduled the better, but when w1j is exceeded extra costs are incurred with
factor k1j. If the patient is rejected, rejection costs r1j are incurred. We can write the cost
function for type i = 1 patients as:

c1j(~a) =
[∑
n∈N

(n− 1 + k1j(n− w1j)
+)an

]
+ r1jaN+1.

Note that no costs are incurred when the patient is scheduled on the first working day to
come. If i = 2, a patient needs an appointment around its specific appointment time (w2j);
the closer the scheduled appointment time is to the specific appointment time the better.
We choose here for a quadratic structure to penalise large deviations more severely. If the
patient is rejected, rejection costs r2j are incurred. We can write the cost function for type
i = 2 patients as:

c2j(~a) =
[∑
n∈N

(w2j − n)2an

]
+ r2jaN+1.

Figure 5.1 displays the structure of both cost functions when patients are scheduled.

(a) Category 1 (b) Category 2

Figure 5.1: Cost function structure by patients category.
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Transitions and transition probabilities

With probability pij a patient of type (i, j) makes a request for an appointment during a
time interval t ∈ {1, . . . , T}. In one interval at most one patient can make an appointment
request. Hence, with probability

∑
i,j pij there is one request in a time interval and with

probability 1 −
∑

i,j pij there is no request in a time interval. The transition to the next
state also depends on the value of state t. If t < T , there is a transition to the next time
interval, but if t = T , which means it is the end of a day, there is a complete shift in the
schedule. The first day disappears from the schedule, the second day becomes the first day,
the third day becomes the second day and so on, and finally a new empty day enters the
schedule and we start with t = 1. Hence, we distinguish four different kinds of transitions:

1. If t < T and a patient of type (i, j) arrives the transition can be written as:

(x1, x2, . . . , xN ; t)→ (x1 + βija1, x2 + βija2, . . . , xN + βijaN ; t+ 1).

2. If t < T and there is no arrival the transition can be written as:

(x1, x2, . . . , xN ; t)→ (x1, x2, . . . , xN ; t+ 1).

3. If t = T and a patient of type (i, j) arrives the transition can be written as:

(x1, x2, . . . , xN ; t)→ (x2 + βija2, x3 + βija3, . . . , xN + βijaN , 0; 1).

4. If t = T and there is no arrival the transition can be written as:

(x1, x2, . . . , xN ; t)→ (x2, x3, . . . , xN , 0; 1).

Notice that because of these transition probabilities the associated Markov decision chain
is periodic with period T ; therefore we need to apply a data transformation as explained
in Section 3.3.

Optimality equations

Given the state space, action space, cost function and transition probabilities and the fact
that the associated Markov decision chain is periodic, the optimality equations of this MDP
are given by:

V (~x, t) + g =

1{t<T}

[∑
i,j

γpij min
~a∈A~x,t

{
cij(~a) + V (x1 + βija1, x2 + βija2, . . . , xN + βijaN ; t+ 1)

}
+ γ(1−

∑
i,j

pij)V (~x, t+ 1) + (1− γ)V (~x, t)

]
+1{t=T}

[∑
i,j

γpij min
~a∈A~x,t

{
cij(~a) + V (x2 + βija2, x3 + βija3, . . . , xN + βijaN , 0; 1)

}
+ γ(1−

∑
i,j

pij)V (x2, x3, . . . , xN , 0; 1) + (1− γ)V (~x, t)

]
(5.2)
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Notice that in Section 3.3 we stated that (V ∗/γ, g∗) is a solution of (3.3). However, in
our model the costs cij(~a) do not only depend on the action that is chosen, but they also
depend on which type of patient makes a request (pij). This means that the costs are also
multiplied with γ. Hence, it holds that if (V ∗, g∗) is a solution of the model without a
data transformation, then (V ∗, γg∗) is a solution of (5.2). Also notice that the dimension
of the state space is (C + 1)NT which is extremely large for reasonable values of C,N and
T and therefore value iteration becomes computational infeasible even for relatively small
problem instances to obtain the optimal policy. Therefore, we apply the BEM method
with simulation as ADP technique to our MDP.

5.2 Bellman Error Minimisation for the scheduling

process

The Bellman error of our MDP is given by:

D(~x, t, ~r) = −g − Ṽ (~x, t, ~r)

+1{t<T}

[∑
i,j

γpij min
~a∈A~x,t

{
cij(~a) + Ṽ (x1 + βija1, x2 + βija2, . . . , xN + βijaN ; t+ 1;~r)

}
+ γ(1−

∑
i,j

pij)Ṽ (~x, t+ 1, ~r) + (1− γ)Ṽ (~x, t, ~r)

]
+1{t=T}

[∑
i,j

γpij min
~a∈A~x,t

{
cij(~a) + Ṽ (x2 + βija2, x3 + βija3, . . . , xN + βijaN , 0; 1;~r)

}
+ γ(1−

∑
i,j

pij)Ṽ (x2, x3, . . . , xN , 0; 1;~r) + (1− γ)Ṽ (~x, t, ~r)

]
As stated in Section 4.3 the goal of the BEM method is to find a good approximation
for the most important part of the state space, which can be achieved by minimising the
weighted sum of squared Bellman errors for a set of representative states X̃ ⊂ X , see (4.3).
Before we can apply the BEM method we need to determine the different elements needed
for this method. As described in Section 4.3 these elements are:

• An initial policy;
• The long-run expected average cost for the initial policy, g;
• The set of representative states, X̃ ⊂ X ;
• The weights, w(x), x ∈ X̃ ;

Initial policy

As initial policy we choose a greedy policy. Patients of type i = 1 are scheduled as soon
as possible and patients of type i = 2 are scheduled as closely as possible to their specific
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appointment time. Patients are only rejected if there is not sufficient capacity available on
any day.

Long-run expected average cost

We use simulation to determine the long-run expected average cost, g, belonging to a
certain policy. The simulation is performed as follows: starting with the first day, this day
is cut into T intervals. In each interval t ∈ {1, . . . , T} there is one patient arrival of type
(i, j) with probability pij or no patient arrival with probability 1 −

∑
ij pij. If t 6= T and

there is a patient arrival, this patient is scheduled according to

min
~a∈A~x,t

{
cij(~a) + Ṽ (x1 + βija1, x2 + βija2, . . . , xN + βijaN ; t+ 1;~r)

}
and the corresponding costs, cij(~a), are incurred. After the patient is scheduled we move
to the next interval. If no arrival occurs we move directly to the next interval. If t = T
and there is a patient arrival, this patient is scheduled according to

min
~a∈A~x,t

{
cij(~a) + Ṽ (x2 + βija2, x3 + βija3, . . . , xN + βijaN , 0; 1;~r)

}
and the corresponding costs, cij(~a), are incurred. After the patient is scheduled we move
to the next day and shift the schedule. The first day disappears from the schedule, the
second day becomes the first day, the third day becomes the second day and so on, and
finally a new empty day enters the schedule and we start with t = 1. If no arrival occurs
we move directly to the new day and shift the schedule. We let the simulation run over
100.000 days. At the end of the simulation we can obtain g by dividing the total costs
incurred by the length of the simulation, 100.000 ∗ T . Note that the initial policy can be
achieved by setting the parameter vector ~r to zero. In this case Ṽ (~x, t,~0) equals zero, ∀~x, t
and hence, the actions to choose only depends on the cost function. To make sure we only
reject patients if there is no sufficient capacity available in any day, the rejection costs must
be chosen higher than the highest costs that can be obtained when patients are scheduled.

Set of representative states and the corresponding weight vector

The set X̃ should contain the most important states in the state space, while w should
represent the importance of the states in X̃ . As mentioned in Section 4.1 the choice of the
set of representative states could be to include only the states that have a high probability
of being visited. Since, it takes too much time to calculate the stationary distribution, due
to the large number of different states, we applied another approach which we discuss here.
Step 1 Determine the last S states that are visited in the simulation.
In the simulation which is performed to determine g, we keep track of the last S states
that are visited.
Step 2 Create a list of important states.
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The last S states are added to what we call the list of important states with probability
0.1. We have two reasons for doing this randomly with a low probability. First, we want to
exclude the dependency between successive states in the simulation. Two successive states
are dependent to each other, because given a certain state it is only possible to reach a few
other states. Second, we want to decrease the chance that states that are rarely visited
are included in the list of important states, whereas we want to increase the chance that
states that are often visited are in this list. For instance, if the probability of a rarely
visited state is 1:500 than the probability that this state is added to the list of important
states equals 0.002%. If the probability of a state that is often visited is 100:500 than the
probability that this state is added to the list of important states equals 0.2%
Step 3 K-means clustering
Now that we have a list of important states we want to cluster these states into K clusters.
As cluster technique we use the Hartigan and Wong k-means algorithm. The details of
this algorithm are discussed in Li [11]. This algorithm returns, among other things, the
number of states in each cluster and the cluster centres.
Step 4 Determine the set of representative states and the corresponding weight vector
For each cluster centre we want to find the state with the shortest Euclidean distance as
the most representative state of this cluster. Hence, after this step, we have a set of K
representative states, which will be our X̃ and the number of states in each cluster will
determine our weight vector w.

5.3 Parameters

Patient characteristics

For our model, we need to determine the patient characteristics as defined in Section 5.1.
To determine pij, the probability that a patient will arrive during a time interval; wij, the
maximum recommended waiting time or the specific appointment time for a patient and
βij, the required service time for a patient, we explored the data set from a hospital. This
data set contains one year of information about patients request for appointments. For
each request the following details are given:

• Date of request of the appointment;
• Date of the appointment;
• Number of working days between the appointment date and the date of request;
• Duration of the appointment;
• Appointment type, which consists of:

– New patient;
– Control patient;
– Consult by telephone.

A preview of the data set is given in Table 5.1. First the data set is cleaned. Patients who
have their appointment date before their request date are removed from the data. Also
patients who have a duration of 0 minutes are removed from the data.
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Table 5.1: Preview of the request data set.

Patient Request date Appointment date Working days Duration Type
1 12-11-2014 03-12-2014 15 10 min. New
2 08-12-2014 23-01-2015 34 20 min. Control
3 26-05-2015 29-05-2015 3 10 min. Telephone
4 17-02-2015 04-03-2015 11 20 min. Control
5 26-05-2014 02-06-2014 5 10 min. New

Table 5.2: Proportion between new patients, control patients and consults by telephone.

Type Percentage
New Patients 23%
Control Patients 64%
Consults by telephone 13%

Table 5.2 shows the proportion between the different types of appointments in this data
set. For each type of patient we explore the distribution of ‘Working days’ to determine
the maximum recommended waiting time or the specific appointment time, wij. We also
explore the distribution of ‘Duration’ for each type of patient to determine the required
service time, βij. Figure 5.2 displays the distribution of ‘Working days’ for control pa-
tients. The highest peak is just before zero, which means that these control patients get
an appointment the same day they make their request. Furthermore, there is a peak every
five working days. This means that when the patients make their requests, most of the
time they get their appointment 5, 10, 15, . . . working days later. Hence, for the group of
control patients (i = 2) we set w2j to 1∗, 5, 10, 15 and so on.

Figure 5.2: Distribution of ‘Working Days’ for control patients.

∗ In our model it is not possible to schedule patients at the same day they make their request for an
appointment, for these patients wij is set to 1.
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Figure 5.3 displays the distribution of ‘Duration’ for control patients. As can be seen 64%
of the control patients have an appointment time of 10 minutes. Hence, for all control
patients we set β2j to 2 blocks∗∗. The figures of the distribution of ‘Working days’ and
‘Duration’ for new patients and consults by telephone are shown in Appendix A. For the
consults by telephone the distribution of ‘Working days’ shows the same pattern as the
control patients except that there is also a large group that have a consult by telephone the
next day they make their request. Furthermore, 77% of the consults by telephone have an
appointment time of 5 minutes. We split the consults by telephone over the two categories.
For (i = 1) we set w1j to 1, for (i = 2) we set w2j to 5 and 10. For both categories we
set βij to 1 block. For new patients the distribution of ‘Working days’ shows the highest
peak around 5 working days. 49% of the new patients have an appointment time of 10
minutes. 23% have an appointment time of more than 20 minutes, with an average of 25
minutes. Hence, for the group of new patients (i = 1) we set w1j to 5 working days and
we set β1j to 2 and 5 blocks. An overview of the patient types we created is given in Table
5.3. By determining the proportion of each patient type we created, we set pij to this
proportion, whereas the proportions of the three appointment types, displayed in Table
5.2, is preserved.

Figure 5.3: Distribution of ‘Duration’ for
control patients.

Table 5.3: Overview of the created patient types.

i wij βij
1 1 1
1 5 2
1 5 5
2 5 1
2 10 1

i wij βij
2 1 2
2 5 2
2 10 2
2 15 2
...

...
...

Cost parameters

Next to pij, wij and βij we need to set k1j the extra costs for exceeding the maximum
recommended waiting time and rij, the rejection costs. We assume that patients with a
lower maximum recommended waiting time have a higher urgency than patients with a
higher recommend waiting time. Hence, patients with a lower maximum waiting time have
a higher k1j. As mentioned in Section 5.2, the rejection costs must be chosen higher than
the highest costs that can be obtained when patients are scheduled to make sure that in
our initial policy patients are only rejected if there is not sufficient capacity available on
any day. The highest costs that can be obtained when patients are scheduled depend on

∗∗ Remember that one block consists of five minutes.
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N and k1j. Moreover, for patients with a higher service time, the rejection costs are higher
than for patients with a lower service time. This is in order to ensure that there is no
incentive to reject these patients because of the fact that they take up a relatively large
portion of the schedule.

Other parameters

Besides the patient-specific parameters, our model has a few other parameters that need
to be determined. These parameters are: N , the number of working days which covers the
scheduling process; C, the fixed amount of capacity available on any day; λ, the rate for
patient arrivals and from which parameter T can be determined, see (5.1) and γ needed for
the data transformation to overcome the problem of aperiodicity. We set C to 24 blocks.
Based on experiments with a small MDP we set γ to 0.9. A high value of γ was less time
consuming than lower values of γ as can be seen in Figure 5.4. The parameters N and λ
are discussed in the next section.

Figure 5.4: Running time of a small MDP for different values of γ.

5.4 Method

We start with a schedule which consists of three working days, in other words N = 3.
The reason we start with this scenario, is that value iteration can be applied, and hence,
the optimal long-run expected average cost, g∗, can be computed and compared with the
results obtained from the BEM method. In this way we get an idea about how the BEM
method behaves compared to value iteration. We apply the BEM method with different
values for λ, the rate for patient arrivals; S, the last states visited in the simulation and K,
the number of clusters. The values for each parameter used in the experiments are given
in Table 5.4.
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Table 5.4: Values for different parameters

Parameter Values
λ {16, 16.5, 17, 17.5, 18, 18.5, 19}
S {3.500.000, 4.000.000, 4.500.000, 5.000.000}
K {1.000, 5.000, 10.000}

Each value for λ results in a different load of the system, denoted as ρ. The higher λ, the
higher ρ. Table 5.5 shows for each value for λ the load of the system.

Table 5.5: Load of the system for each value of λ

λ ρ
16 1.37

16.5 1.41
17 1.45

17.5 1.49
18 1.54

18.5 1.58
19 1.62

For each combination of the parameters in Table 5.4 we apply the BEM method with
different approximation functions. An approximation function consists of a set of basis
functions. The basis functions we use are displayed in Table 5.6.

Table 5.6: Different types of basis functions

Number Basis function

0 t+
3∑
p=1

N∑
n=1

xpn

1
N−1∑
n=1

xn ∗ xn+1

2
N−2∑
n=1

xn ∗ xn+1 ∗ xn+2

3 t2

Number Function

4
N∑
n=1

xn ∗ t

5
N∑
n=1

x2n ∗ t

6
N−1∑
n=1

xn ∗ xn+1 ∗ t

7
N−2∑
n=1

xn ∗ xn+1 ∗ xn+2 ∗ t

Basis function 0 is a polynomial of degree three, which is some kind of basis polynomial
needed for a one-dimensional process with a polynomial cost function of at most degree
two [16]. Therefore, each approximation function we use contains basis function 0. The
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other basis functions contain several cross terms between different parts of the state space.
If we refer to approximation function 037, than this approximation function consist of the
basis functions: 0, 3 and 7, see Example 5.4.1 for an illustration.

Example 5.4.1. If N = 3 and we refer to approximation function 037, than

Ṽ (~x, t, ~r) = tr1+x1r2+x2r3+x3r4+x21r5+x22r6+x23r7+x31r8+x32r9+x33r10+t2r11+x1x2x3tr12.

We start with the following approximation functions: {0, 01, 02, 03, 04, 05, 06, 07}. From
here we use a so-called bottom up approach. We take the functions that show the best
improvements overall and then add the other remaining functions one at a time. For
instance, if function 04 performs best, than we make the the following new combinations:
{041, 042, 043, 045, 046, 047}. This is repeated until no further improvement occurs. At the
end we have a set of approximation functions which shows in general the best improvements
for a scheduling process over three working days. To test if these set of approximation
functions also perform well for a larger scheduling process we expand our model to N =
5, 10 and 20. The parameters S and K are set to the value that in general performs best
in the model with N = 3.
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6 Results

In this chapter the results of our research are displayed and interpreted. We start with the
results of the scheduling process over three working days in Section 6.1, followed by the
results of the scheduling process over five, ten and twenty working days in Section 6.2.

6.1 Three working days

6.1.1 Bellman Error Minimisation

Remember from Section 5.4 that for each combination of the parameters in Table 5.4 we
apply the BEM method. We can make 7∗4∗3 = 84 combinations∗. However, for high values
of λ it was not possible to perform the k-means clustering with K = 10.000. This is because
high values of λ result in a high load of the system and as a result of this high load, certain
states are visited so often that our list of important states did not contain more than 10.000
unique states. This was the case with λ = 18.5 and S ∈ {3.500.000, 4.000.000, 4.500.000}.
With λ = 19 this holds for all values of S. In the end, we have 84−7 = 77 combinations and
for each combination we apply the BEM method with 8 different approximation functions.
Each time we apply the BEM method, we compare g obtained from our initial policy with
g obtained after the one-step policy improvement and compute the improvement that is
made. We refer to this as the improvement of the BEM method.

Table 6.1 shows for each approximation function the median, average and variance of the
improvement of the BEM method over 77 combinations. Both, the median and average for
functions {0, 01, 02, 03} do not show any improvement. Moreover, the average and variance
of functions 01 and 02 are considerably lower (average) and higher (variance) compared to
the other functions. Because we do not want these results to have a strong influence on
the rest of our outcomes, we remove the results of functions 01 and 02 from our results.

Table 6.1: Median, average and variance of the improvement for each approximation function.

Function Med (%) Avg (%) Var
0 -9.5 -14.0 3.76
01 -18.3 -229.4 888.31
02 -3.5 -47.0 169.10
03 -6.2 -8.9 2.52
04 16.3 16.3 0.37
05 10.7 13.5 0.47
06 6.7 8.6 0.43
07 5.6 5.0 0.16

∗ 7 values for λ, 4 values for S and 3 values for K.
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Figure 6.1 shows for eachK a box plot of the improvement of the BEM method of the results
without functions 01 and 02. In this box plot each point represents the improvement of the
BEM method made in one of the combinations of S, λ and the remaining approximation
functions. Although the median and average between the number of clusters are close to
each other, there are more negative outliers if 1.000 clusters are used and these outliers have
a higher negative value. This is easily explained, since the number of clusters are in fact
the number of representative states used for the BEM method. If the set of representative
states is chosen too small than this is not a representative set of states anymore. Therefore,
we also remove the results of the clusters with parameter 1.000.

Figure 6.1: Box plots of the improvement for each number of clusters (K).

The box plots in Figure 6.2 display the improvement of the BEM method of the remaining
results for each number of last states (S). There seems to be no substantial difference
between the number of last states (S). Figure 6.3 shows for each λ a box plot of the
improvement of the BEM method. It shows that the lower the value of λ, the worse the
outcome. This can be explained because a low value of λ results in a relatively low load of
the system, ρ, see 5.5. With a low ρ it seems plausible that our initial policy will work fine
and a better policy can not be obtained using the BEM method. Therefore, we also remove
the results with λ < 18. With the remaining results we apply the bottom up approach in
order to find a good approximation function that shows in general the best improvement.
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Figure 6.2: Box plots of the improvement for
each number of last states (S).

Figure 6.3: Box plots of the improvement for
each λ.

6.1.2 Approximation function

Since we removed the results of K = 1.000 and λ ∈ {16, 16.5, 17, 17.5} we have 3∗4∗2−7 =
17 combinations remaining∗∗. Table 6.2 shows for the remaining approximation functions
the median, average and variance of the improvement of the BEM method over 17 combina-
tions. As can be seen functions 04 and 05 give the best results with an average improvement
of 22.8% and 22.0%, respectively. Both functions also have the lowest variances. There-
fore, we start with our bottom up approach with function 04 and function 05 over the 17
combinations.

Table 6.2: Median, average and variance of the improvement of the remaining results for different functions.

Function Med (%) Avg (%) Var
0 3.1 3.7 0.21
03 2.7 3.1 0.25
04 22.9 22.8 0.005
05 22.5 22.0 0.03
06 13.7 14.4 0.07
07 6.0 6.3 0.03

Table 6.3 shows the results from the first step of the bottom up approach. For each
approximation function the median, average and variance of the improvement of the BEM
method are given. For function 04 it holds that only the median increases slightly from
22.9% to 23.1% when function 6 is added. Adding one of the other functions does not

∗∗ 3 values for λ, 4 values for S, 2 values for K and 7 combinations are not possible.
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improve the median, average and/or variance. For function 05 an improvement is made by
adding function 6 or 7. Both, the median and average are higher and the variance decreases
when function 6 is added and remains the same when function 7 is added. Therefore, in
our second step of the bottom up approach we start with the functions 046, 056 and 057.
Although only the median shows an improvement when function 6 is added to function 04,
we want to investigate this further to see if there is a further improvement possible.

Table 6.3: Median, average and variance of the improvement for the different functions after one step.

(a) Function 04

Function Med (%) Avg (%) Var
041 21.4 21.5 0.01
042 22.2 22.0 0.01
043 20.6 19.1 0.08
045 22.2 20.0 0.12
046 23.1 22.7 0.01
047 22.5 22.3 0.01

(b) Function 05

Function Med (%) Avg (%) Var
051 21.0 16.1 1.96
052 22.1 20.9 0.15
053 20.9 20.3 0.10
054 22.2 20.0 0.12
056 23.3 22.9 0.01
057 22.8 22.5 0.03

Table 6.4 shows the results of the second step of the bottom up approach. Adding function
7 to function 046 improves the median from 23.1% to 23.2%, the average and the variance
remain the same. Adding one of the other functions does not show an improvement at all.
Adding function 1 to function 056 shows the same results as adding function 1 to function

Table 6.4: Median, average and variance of the
improvement for the different functions

after two steps.

Function Med (%) Avg (%) Var
0461 20.4 20.3 0.01
0462 20.6 16.9 1.85
0463 17.6 1.2 18.40
0465 22.6 20.7 0.18
0467 23.2 22.7 0.01

0561 23.5 20.9 0.52
0562 23.8 23.3 0.02
0563 21.5 21.2 0.03
0564 22.6 20.7 0.18
0567 23.3 23.3 0.01

0571 23.0 18.2 1.74
0572 22.7 22.3 0.05
0573 22.1 20.6 0.10
0574 22.4 21.3 0.05
0576 23.3 23.3 0.01

Table 6.5: Median, average and variance of the
improvement for the different functions

after three steps.

Function Med (%) Avg (%) Var
04671 20.4 20.3 0.01
04672 17.6 17.9 0.04
04673 17.6 -4.4 29.26
04675 22.7 20.6 0.19

05621 23.9 22.8 0.06
05623 22.2 22.0 0.01
05624 20.3 19.5 0.05
05627 23.6 23.1 0.02

05761 23.5 22.3 0.13
05762 23.6 23.1 0.02
05763 21.8 21.5 0.02
05764 22.7 20.6 0.19
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057; the median is improved, but the variance increases from 0.01 to 0.52 and from 0.03
to 1.74, respectively. Adding function 2 or 7 to function 056 both show an improvement
in median and average, the variance remains more or less the same. The same holds for
adding function 6 to function 057. In our third step of the bottom up approach we start
therefore with the functions {0467, 0562, 0567}. The result of this step are given in Table
6.5. As can be seen no further improvement is obtained.

So, functions {0467, 0562, 0567} are the functions that give the best improvements dur-
ing the one-step policy improvement, based on the median, average and variance for the
scheduling process over three working days. Therefore, we apply these functions to the
scheduling process over five, ten and twenty working days. Since functions 04 and 05 per-
form also very good for the scheduling process over three working days and in order to
keep our approximation function as simple as possible we also apply these functions to
the scheduling process over five, ten and twenty working days. To simplify the figures in
the following sections, we create a translation table, see Table 6.6. From here, if we write
about function A, we actually mean function 04. Before we discuss the results of functions
{A, B, C, D, E} on the scheduling process over five, ten and twenty working days, we first
describe the optimal results obtained from value iteration and we compare these results
with the results obtained from the BEM method.

Table 6.6: Translation table for the different functions.

New function name Old function name
A 04
B 05
C 0467
D 0562
E 0567

6.1.3 Value iteration

Since no difference in improvement is obtained between the number of last states and
between 5.000 and 10.000 clusters, we fix the parameters S and K to 3.500.000 and 5.000,
respectively. We compare for each function in Table 6.6 and for each λ the results obtained
from the BEM method with the results obtained from value iteration. In the BEM method
g is obtained by simulation. To handle the fluctuations in the simulation, we perform the
BEM method 10 times for each λ and each function in order to obtain a more reliable
result for the BEM method.

Table 6.7 shows the results obtained from value iteration. For each λ the corresponding
T , the optimal long-run expected average cost, g∗, and the running time for solving the
MDP is given. Since the dimension of the state space is given by (C + 1)NT , it holds
that the higher the value of λ, resulting in a higher value of T , the longer the running
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time. The number of states of the state space with λ = 19 equals: 253 ∗ 53 = 828125 with
a running time of more than seven hours. Imagine what the running time will be if we
expand the scheduling process to twenty working days, where the number of states of the
state space exceeds 4.8× 1029. For comparison, the average running time of the scheduling
process over three working days for the whole BEM method, including 2 simulations and
the k-means algorithm, is 7 minutes and this is independent of the value of λ.

Table 6.7: Running time and g∗ of value iteration for different λ’s.

λ T g∗ Time (hh:mm)
16 45 0.24 03:56

16.5 46 0.33 04:24
17 47 0.45 04:42

17.5 49 0.61 05:21
18 50 0.75 05:44

18.5 52 0.92 06:33
19 53 1.07 07:03

Figure 6.4 shows for each λ the average improvement of the BEM method by the differ-
ent functions. Remember that with the improvement of the BEM method, we mean the
improvement that is made when we compare g obtained from our initial policy with g
obtained after the one-step policy improvement. In general, it applies that if λ ≤ 18, the
average improvement for each function increases as λ increases. If λ > 18 the average
improvement for each function decreases as λ increases. As mentioned before, the lower λ,
the lower ρ. It seems plausible that the lower ρ, the better our initial policy performs and
hence, less improvement is possible. The higher ρ, the worse our initial policy performs

Figure 6.4: Average improvement by λ for different functions.
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and the more important is our one-step policy improvement. But if λ reaches a certain
value, ρ becomes that high that it does not matter what policy is applied, since many
patients have to be rejected and the rejection costs are dominating g.

Figure 6.5: Average deviation by λ for different functions.

Figure 6.5 shows for each λ the average deviation by the different functions. The deviation
is the difference between g obtained after the one-step policy improvement from the BEM
method and g∗ obtained from value iteration. In general, it applies that for the lower
values of λ the average deviation is higher than for the higher values of λ. For the higher
values of λ it holds that the average deviation decreases slightly. We just mentioned that
if λ reaches a certain value, ρ becomes that high that it does not matter what policy is
applied, and hence g of any policy approaches g∗.

Table 6.8: Average and variance of the improvement and deviation by function.

Function
Improvement Deviation

Avg (%) Var Avg (%) Var

A 17.9 0.37 17.9 0.96
B 15.2 0.55 21.7 1.57
C 16.7 0.48 19.2 1.13
D 19.6 0.23 15.6 0.71
E 16.5 0.52 19.9 1.4

Table 6.8 shows for each function the average and variance of the improvement of the BEM
method relative to the initial policy and the average and variance of the deviation of the
BEM method relative to g∗ obtained from value iteration. Overall, function D, gives the
best improvement and approaches on average g∗ the best for the scheduling process over
three working days.
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6.2 Five, Ten, Twenty working days

In this section the results of the approximation functions {A,B,C,D,E} of the scheduling
process over five, ten and twenty days are given. The parameters S and K needed for
the BEM method are fixed to 3.500.000 and 5.000, respectively. As in the scheduling
process over three working days, we perform the BEM method 10 times for each λ and
each function in order to handle the fluctuations in the simulation and hence, to obtain a
more reliable result for the BEM method.

Figure 6.6 shows for each λ the average improvement of the BEM method by the different
functions for the scheduling process over five working days. It shows more or less the same
pattern as the results of the scheduling process over three working days. The threshold in
the model over three working days where the average improvement is increasing in λ is at a
value of 18. In the scheduling process over five working days this threshold is at λ = 17.5.
Notice that when λ = 16, functions {A,C} do not give an improvement. Function D gives
an improvement of over 19% even for low values of λ.

Figure 6.6: Average improvement by λ for different functions
for the scheduling process over five working days.

Figure 6.7 shows for each λ the average improvement of the BEM method by the different
functions for the scheduling process over ten working days. Functions {A, B, D, E} show
the same pattern here as the results of the scheduling process over three and five working
days. For functions {A,D} the threshold is at λ = 17. For functions {B,E} the threshold
is at λ = 17.5. Only function C shows a different pattern than we have seen before. Up
to λ = 17, the average improvement is increasing and it performs similar to the other
functions. However, with λ = 17.5 the average improvement decreases from 44% to 11%
after which the average improvement is again increasing in λ, but has the lowest average
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improvement of all functions. Notice that when λ = 16, no function gives an improvement
compared to the initial policy. Apparently, the initial policy performs good with this load
of the system.

Figure 6.7: Average improvement by λ for different functions
for the scheduling process over ten working days.

Figure 6.8 shows for each λ the average improvement of the BEM method by the different
functions for the scheduling process over twenty working days. Remarkable are the results
for λ = 16 in Figure 6.8a. The average improvement has a range of -100% for function A
to -450% for function D. Also, for λ = 16.5 no function gives an improvement compared
to the initial policy. Because of the large ranges in Figure 6.8a for λ ≤ 17, the results
for λ > 17 are hard to distinguish. Therefore, we show these results again in Figure 6.8b

(a) All values of λ (b) λ ∈ {17.5, 18, 18.5, 19}

Figure 6.8: Average improvement by λ for different functions
for the scheduling process over twenty working days.
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without λ ∈ {16, 16.5, 17}. Again, for the higher values of λ it shows in general the same
pattern as the results of the scheduling process over three, five and ten working days; as λ
increases, the average improvement decreases.

Table 6.9: Average and variance of the improvement by function for five, ten and twenty working days.

Function
N = 5 N = 10 N = 20

Avg (%) Var Avg (%) Var Avg (%) Var

A 22.5 4.53 19.4 8.36 29.8 0.44
B 27.5 2.29 27.8 3.35 29.6 0.38
C 18.2 4.27 18.8 2.92 30.5 0.47
D 32.8 0.74 28.7 2.50 30.8 0.48
E 24.7 2.35 16.4 5.62 30.4 0.32

Table 6.9 shows for the scheduling process over five, ten and twenty working days for each
function the average and variance of the improvement of the BEM method relative to the
initial policy, where we removed the results of λ ∈ {16, 16.5, 17} from the scheduling process
over twenty working days. Overall, function D, gives, just like the scheduling process over
three days the best improvement, although all functions in the scheduling process over
twenty working days perform almost equally well.
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7 Conclusion

The goal of this research was to develop a model that prescribes the (near) optimal ap-
pointment date for a patient at the moment this patient makes his request. We modeled
the scheduling process as an MDP and and we solved this MDP to optimality using value
iteration. This resulted in an optimal value function of which the optimal policy (appoint-
ment date) can be derived. However, due to the curse of dimensionality, we were only
able to solve our MDP to optimality for the scheduling process over three working days.
It is computationally infeasible to solve our MDP to optimality for more than three work-
ing days and a reasonable available capacity on a day. Therefore, we employed an ADP
technique, in order to derive an estimate of the optimal value function of our MDP. We
explored two techniques, the BEM method and AVI and compared these techniques on the
basis of an M/M/s queue. Since AVI has a long running time if the reduced state space is
large, we choose to apply the BEM method to our MDP. We simulated our initial policy to
determine g and we keep track of the last S states that are visited. These states are added
to what we call the list of important states with probability 0.1. We apply the k-means
clustering algorithm to the list of important states to determine the set of representative
states. From the scheduling process over three working days, we see no substantial differ-
ence between the number of last states (S) but K should not be chosen too small. From
all combinations of the set of basis functions, the following combination outperforms all
other combinations:

t+
3∑
p=1

N∑
n=1

xpn +
N∑
n=1

x2n ∗ t+
N−1∑
n=1

xn ∗ xn+1 ∗ t+
N−2∑
n=1

xn ∗ xn+1 ∗ xn+2

On average the long-run expected average cost obtained from this function deviates with
15.6% from g∗, with a variance of 0.71. The average improvement compared to the initial
policy is 19.6% with variance 0.23. This function also outperforms all other combination
in the scheduling processes over five, ten and twenty working days. In general it holds that
the lower λ, the lower the low load of the system, the better our initial policy performs
and hence, less improvement is obtained. The higher the load of the system, the worse our
initial policy performs and the more important is our one-step policy improvement. But if
λ reaches a certain value the load of the system becomes that high that it does not matter
what policy is applied, since many patients have to be rejected.

7.1 Extensions to our model

As mentioned in the Introduction, HOTflo aims to develop an online application in which
patients can schedule their own appointment at the outpatient clinic. The underlying
algorithm of this application must show various date and time options of which patients
can choose their own appointment date and time. The model we developed prescribes the
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appointment date for a patient at the moment this patient makes his request, but this
model needs some extensions, some of them are necessary, and others are desirable, in
order to use this model in practice. These extensions are:

1. Appointment time (necessary);
2. Multiple appointment options (highly desirable);
3. Long term distribution (highly desirable);
4. Cancellations and no shows;
5. Follow-up appointments;
6. Dependency between outpatient clinics;
7. . . .

Appointment time

Our model only prescribes the appointment date and not the appointment time. This
is, of course, a necessary extension. There is plenty of literature available on intra-day
scheduling, which is about the best timing and sequence of appointments on a given day,
to gain inspiration about how to implement this into our model.

Multiple appointment options

Our model only prescribes one appointment date, but patients might have preferences for a
certain date and/or time for the appointment. Therefore, the model should not return one
(near) optimal appointment date, but m (near) optimal appointment dates. This extension
is highly desirable. Patients should be able to choose from several options when they want
to make an appointment.

Long term distribution

When our model reaches the end of the day, in other words if t = T , there is a shift in the
schedule. The first day disappears from the schedule, the second day becomes the first day,
the third day becomes the second day and so on, and finally a new empty day enters the
schedule. By adding an empty day, we ignore the long term planning. It would be more
realistic if not an empty day enters the schedule, but some kind of random number from,
for instance, a Poisson distribution. This number represents the number of blocks that is
already scheduled in the long-term. This extension is highly desirable in order to have a
more realistic schedule.

Cancellations and no shows

Patients can, after they are scheduled, do not show up or cancel their appointment. If
this is not included in the model, than in the end more capacity remains available than
necessary.
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Follow-up appointments and dependency between outpatient clinics

Patients may require multiple appointments on one or more days. Instead of a single
appointment, combination appointments and appointment series are needed. Combination
appointments imply that multiple appointments are planned on the same day, so that
patients require fewer hospital visits. Appointment series imply that patients need to be
scheduled for a number of treatment sessions. For example, patients being treated with
radiation therapy for cancer.
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A Patient characteristics

New Patients

(a) Distribution of ‘Working days’ (b) Distribution of ‘Duration’.

Figure A.1: New patients

Consults by telephone

(a) Distribution of ‘Working days’ (b) Distribution of ‘Duration’.

Figure A.2: Consults by telephone.
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B List of Abbreviations and Symbols

Abbreviations
ADP Approximate Dynamic Programming
AVI Approximate Value Iteration
BEM Bellman Error Minimisation
MDP Markov Decision Process

Symbols

Ax The action space, the set of actions when the system is in state x ∈ X
C The total capacity on a working day
c(x, a) The costs when taking action a in state x
D The Bellman error for state x ∈ X
g The long run expected average cost
g∗ The optimal long run expected average cost
K The number of clusters
k1j Costs for exceeding the maximum recommended waiting time for a patient of

type (1, j)
N The number of working days
p(x, a, y) The probability of going from state x to state y when a ∈ Ax is chosen
pij The probability that a patient of type (i, j) will arrive during a time interval
r A vector of parameters used in the Bellman Error Minimisation
rij The penalty cost of rejecting a patient of type (i, j)
S The number of last states
T The number of intervals of the current working day
V The value function
V ∗ The optimal value function
Vπ The value function for a fixed policy
Vπ(x) The value of a state x under policy π
Ṽ The approximate value function

w(x) The weight of the Bellman error made in state x ∈ X̃ .
w1j The maximum recommended waiting time for a patient of type (1, j)
w2j The specific appointment time for a patient of type (2, j)
X The state space, a set of states
X̃ Subset of X , representing the set of representative states
βij The required scheduled service time for a patient of type (i, j)
γ Perturbation parameter to overcome the problem of aperiodicity
λ The arrival rate of patients
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Π The set of all policies
π A policy
π∗ The optimal policy
π(x) The action chosen in state x under policy π
ρ The load of the system
φ The set of basis functions used in the Bellman Error Minimisation
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