
VU UNIVERSITY AMSTERDAM

MASTER THESIS

Designing a Dutch financial chatbot
Applying natural language processing and machine learning

techniques to retrieval-based question answering

Author:
Suzanne WETSTEIN

Supervisors:
Tobias KUHN

Ronald BUITENHEK

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Business Analytics

in the

Web and Media Group
Department of Computer Science

July 14, 2017

i

VU University Amsterdam

Abstract
Faculty of Sciences

Department of Computer Science

Master of Science in Business Analytics

Designing a Dutch financial chatbot

by Suzanne WETSTEIN

Experts have estimated that eighty to ninety percent of data in any organization is
unstructured, and this amount is growing significantly. Therefore, techniques that
can deal with unstructured data like text need to be developed. In this thesis we
have researched techniques that can deal with text by developing a chatbot. A chat-
bot is a conversational agent that can interact with humans turn by turn using nat-
ural language. The main objective of this graduation project was to build a chatbot
to answer highly complex questions, which often require even more complex an-
swers, in a well-defined domain. The focus was on only answering questions to
which high-quality answers can be given. Three chatbot implementations based on
different underlying models have been built and compared. The first model was
a vector space model consisting of a self-constructed Natural Language Processing
(NLP) pipeline, a term weighting scheme and a similarity measure based on the co-
sine between two question vectors. The second was a machine learning model based
on many features, like sequence matching and TF-IDF. The third model was a com-
bination of the first two. The best performing chatbot was based on a combination
of the vector space model and the machine learning model and answers 23% of user
questions (the rest is sent through to human experts), and 74% of these questions are
answered correctly.

We have shown that with a combination of NLP techniques, machine learning
techniques and a well-thought-out implementation we can solve the problem of
building a chatbot to answer highly complex questions at a sufficient quality level.
Future work in the area of chatbots is advised to focus on further improving the
Dutch NLP pipeline and researching generative-based chatbots.

ii

Contents

Abstract i

1 Introduction 1
1.1 Chatbots . 1
1.2 Kandoor . 2
1.3 Research goals . 2
1.4 Report structure . 3

2 Literature study 4
2.1 Chatbot types & functionalities . 4
2.2 Chatbot literature . 8
2.3 Natural Language Processing . 23
2.4 Vector space model . 28
2.5 Machine learning models . 28

3 Methodology 35
3.1 Vector space model . 35
3.2 Machine learning model . 36
3.3 Chatbot implementation . 37

4 Vector space model 39
4.1 Data . 39
4.2 Natural Language Processing . 50
4.3 Term weighting . 54
4.4 Measuring similarity . 56
4.5 Results . 58

5 Machine learning model 60
5.1 Data . 60
5.2 Natural Language Processing . 64
5.3 Feature engineering . 64
5.4 Modelling . 70
5.5 Results . 77

6 Chatbot implementation 82
6.1 Chat flows . 82
6.2 Confidence levels . 83
6.3 Dynamic learning . 88
6.4 Results . 88
6.5 Model comparisons . 96

7 Conclusion & Discussion 98

iii

A NLP: word lists 101
A.1 Stop-word lists . 101
A.2 Compound word list . 103
A.3 Synonym list . 103

Bibliography 106

iv

List of Figures

2.1 A diagram of chatbot types. Based on a figure from [16]. 5
2.2 A timeline with the chatbots described in this section. 8
2.3 An example of a chat with ELIZA, the first chatbot. ELIZA is based

on a simple pattern matching algorithm. 10
2.4 This is a representation of the simulated world of SHRDLU, accom-

panied by a conversation in which the blocks are moved [82]. 11
2.5 An example of chatting with ALICE, a complex pattern matching chat-

bot. 12
2.6 The general framework behind question-answering systems [84]. . . . 13
2.7 A timeline with the QA systems described in this section. 13
2.8 An overview of the FRACT architecture [38]. 18
2.9 An overview of the DeepQA architecture [23]. 18
2.10 Two examples of e-mail suggestions given by Google Smart Reply [18]. 20
2.11 Example of classification with the kNN algorithm [59]. 29
2.12 An example of finding the maximum margin hyperplane in SVM [39]. 31
2.13 An example of non-linear SVM: using a kernel to linearly divide the

data in a higher dimensional space [55]. 31
2.14 The structure of an artificial neural network with one hidden layer [22]. 32
2.15 Diagram of a sequence-to-sequence neural network as used in Google

Smart Reply [18]. 33
2.16 Architecture of a dual encoder LSTM network [45]. 34

3.1 A diagram of the chatbot framework. 35
3.2 A diagram of the vector space model. 36
3.3 A diagram of the machine learning model. 37
3.4 A diagram of the implementation of the chatbot. Cl stands for the

confidence level of the match between the incoming question and the
best matching question in the dataset. If the confidence level is high a
question is immediately answered by the chatbot. A lower confidence
level can lead to a return question, or the question being sent through
to an expert. 38

4.1 A bar chart displaying how many question-answer pairs contain a
certain word or hyper-link. 40

4.2 Charts displaying the distribution of the number of words in the ques-
tions and answers. 45

4.3 Charts displaying the distribution of the sentences of words in the
questions and answers. 45

4.4 Heat maps displaying the relation between the number of words and
sentences in question and answer. 46

4.5 A bar chart displaying the frequency of the 25 most used words in the
questions and answers. 47

v

4.6 Histograms displaying the count and Jaccard distance of the common
unigrams and bigrams in the question-answer combinations. 49

4.7 A schematic overview of the NLP pipeline. 52
4.8 The chatbot screen with an answer to a newly typed question. 57
4.9 The chatbot screen showing the question that is matched to a newly

typed question. 58
4.10 The evaluation framework. 59

5.1 Charts displaying the distribution of the common unigrams Jaccard
distance for matching and non-matching questions. 63

5.2 Charts displaying the distribution of the TF-IDF weighted common
unigrams Jaccard distance for matching and non-matching questions. . 63

5.3 A visualization of the word2vec model. Only words used at least 400
times in the dataset are displayed. 69

5.4 A bar chart displaying the feature importances in the best performing
XGBoost model. 73

5.5 A bar chart displaying the feature importances in the best performing
Random Forest model. 74

5.6 The results of all machine learning models on different evaluation
metrics. 80

5.7 The average and standard deviation of critical parameters 81

6.1 A schematic overview of the chatbot flow. 82
6.2 Charts displaying the distribution of the cosine similarity for match-

ing and non-matching questions. 84
6.3 A chart displaying the cumulative distribution of the cosine similarity

for matching and non-matching questions. 84
6.4 Charts displaying the distribution of the XGBoost score for matching

and non-matching questions. 85
6.5 A chart displaying the cumulative distribution of the XGBoost score

for matching and non-matching questions. 86
6.6 Charts displaying the distribution of the cosine similarity for match-

ing and non-matching questions in the XGBoost model. 87
6.7 A chart displaying the cumulative distribution of the cosine similarity

for matching and non-matching questions in the XGBoost model. . . . 88
6.8 The chatbot screen with a good answer to a newly typed question. . . 89
6.10 The chatbot screen after correctly answering a question in which a

return question was answered with "Yes". 90
6.9 The chatbot asking a return question. 90
6.11 The chatbot screen with a question that cannot be answered by the

chatbot and is sent through to an expert. 91
6.12 An overview of the results of the vector space model chatbot imple-

mentation. 92
6.13 The confusion matrices for the implementation of the vector space

model. 92
6.14 An overview of the results of the vector space model chatbot imple-

mentation. 93
6.15 The confusion matrix for the implementation of the machine learning

model. 93

vi

6.16 An overview of the results of the combination model chatbot imple-
mentation at a confidence level of 0.4 with a return question at a cosine
similarity of 0.25. 94

6.17 An overview of the results of the combination model chatbot imple-
mentation at a confidence level of 0.4 without return question. 94

6.18 An overview of the results of the combination model chatbot imple-
mentation at a confidence level of 0.3 without return question. 94

6.19 An overview of the results of the combination model chatbot imple-
mentation at a confidence level of 0.25 without return question. 95

6.20 The confusion matrices for the implementation of the vector space
model. 95

6.21 The results of the chatbot implementations of all models. 96

vii

List of Tables

2.1 A schema depicting the improvements of and techniques used in the
chatbots described in this section. 9

2.2 A schema depicting the improvements of and techniques used in the
QA systems described in this section. 14

4.1 Ten randomly sampled questions with answers from the Kandoor
dataset. 43

4.2 Inverse document frequencies for the questions in the dataset. 55
4.3 The document-term matrix with term frequencies. 56
4.4 The document-term matrix with TF-IDF scores. 56
4.5 Results of the vector space model per financial category. 59

5.1 The framework of the Q2Q dataset. 60
5.2 The framework of the Q2Q dataset including the questions prepared

with NLP techniques. 64
5.3 A table depicting a word and the words most often used in the same

context as this word. In this case the five words which are used in the
most similar context are shown. 69

A.1 Table of synonyms . 105

viii

List of Abbreviations

AI Artificial Intelligence
FNN Feed-forward Neural Network
IR Information Retrieval
JSON JavaScript Object Notation
kNN k Nearest Neighbours
LAT Lexical Answer Type
LSA Latent Semantic Analysis
LSTM Long Short-Term Memory
MMI Maximum Mutual Information
NER Named Entity Recognition
NLP Natural Language Processing
PA Predictive Annotation
PoS Part of Speech
Q2Q Question-to-Question
RNN Recurrent Neural Network
SLM Statistical Language Modelling
SMT Statistical Machine Translation
SVM Support Vector Machine
TF-IDF Term Frequency-Inverse Document Frequency
UI User Interface

1

Chapter 1

Introduction

In the last few years consulting companies have more and more used machine learn-
ing to support their clients in making decisions. Especially in the area of Marketing
and Internet of Things models are needed that can deal with a lot of data, unstruc-
tured data and text. Experts have estimated that eighty to ninety percent of data
in any organization is unstructured, and this amount is growing significantly [29].
Therefore, techniques that can deal with unstructured data like text need to be de-
veloped and improved.

Machine learning as a new branch in data science can be further explored. A
chatbot, or question-answering system, is an application in this field. Question-
answering systems have been around since the 1970s but most systems can only
give short and factual answers. There are systems based on shallow NLP and Infor-
mation Retrieval (IR) techniques and systems based on Statistical Machine Transla-
tion (SMT). The first type is limited to giving answers from an underlying dataset
and has very little understanding of the connection between words in a sentence.
The second type focuses on generating a new word or sentence based on previous
words or sentences. This technique is very promising but only recently, with the use
of neural networks, these systems have started to give sensible answers.

In this study, we build a chatbot to answer very complex questions, which often
require even more complex answers, in a well-defined domain (the financial do-
main). Here we focus on only answering questions to which high-quality answers
can be given. Other questions are directed to human agents. Such a system can
be very useful for companies as they often get complex questions and want to give
high-quality answers to their clients, while also minimizing the cost of hiring hu-
man agents. A chatbot could for example help run their helpdesk, react to social
media messages for them or help choose from a series of products. In the process of
creating a chatbot this study focuses on techniques in NLP and machine learning.

1.1 Chatbots

A chatbot is a conversational agent that can interact with humans turn by turn using
natural language. ’Chatbot’ used to be a term just used for chatterbots; natural lan-
guage dialogue systems designed just for fun with shallow knowledge about a lot of
topics. Today however, ’chatbot’ is a term used for any chatting robot, automation
or chat channel. Chatbots are being developed in many domains and for different
purposes. Chatbots give psychological assistance, are used in customer service sys-
tems and just for fun. Although chatbots are and have been researched thoroughly,
the current systems are nowhere near seeming human or giving mostly correct re-
sponses. This is greatly due to the difficulty of interpreting natural language by
computers. Designing a computer system which can understand and generate hu-
man language is a branch of Artificial Intelligence (AI), more specifically NLP.

Chapter 1. Introduction 2

Chatbots are immensely popular at the moment. There are numerous online
chatbot magazines like Chatbots Journal1 and communities like Chatbot News2.
This popularity is brought on by big companies like Facebook, Microsoft, Google
and IBM making breakthroughs in the AI world. Microsofts’ Xiaoice, a Chinese vir-
tual friend, has been available for more than two years and has about forty million
users. The average user interacts with Xiaoice sixty times per month. Facebook is
creating an online assistant named M and already has bots for small things, like
booking a haircut or sending flowers, on its Messenger app. IBM created Watson, a
question answering computer system, which proved its power by winning the pop-
ular quiz show Jeopardy! Finally, Google is also working on a chatbot-based app to
answer user questions [6]. Another thing making chatbots popular is the ease with
which anyone can create one themselves, without any programming skills needed.
There are many websites and services that can help you create your own bot. Popu-
lar ones are API.ai, Chatfuel, Kit Bot and Facebooks’ wit.ai.

1.2 Kandoor

Kandoor is a digital knowledge platform which helps to link financial questions to
financial information. The company is a start-up from APG, a big Dutch pension
provider. Kandoor offers free financial knowledge to everyone (in Dutch). Financial
questions asked by users are classified into financial categories by using machine
learning techniques. The questions are then answered by experts in the respective
categories.

Currently, Kandoor has received and answered around 3800 financial questions,
and for this process a lot of expert time is needed. Therefore, Kandoor is interested
in a chatbot that can answer (some of) the questions for them. As a dot on the hori-
zon, they would like to have a chatbot that can answer any question, but for now
they would like to create an achievable chat system and do research in what chat-
bots can mean for them in the future. With an achievable system we mean that if
a similar question has already been answered by an expert the bot should answer
the new question with the same answer. If a question has never been asked before,
it should not be answered but sent through to an expert with the right knowledge.
In answering the questions it is very important that the bot gives correct answers,
therefore in case of doubt the question should be sent through to an expert.

1.3 Research goals

The main objective of this study is to build a chatbot to answer very complex ques-
tions, which often require even more complex answers, in a well-defined domain
(the financial domain). We focus on only answering questions to which high-quality
answers can be given. This chatbot should use NLP and machine learning tech-
niques and retrieve the answers from a database of questions-answer pairs.

The project consists of four components:

• Text cleaning

• Engineering features from the cleaned text

1https://chatbotsjournal.com/
2http://news.chatbotsmagazine.com/login

Chapter 1. Introduction 3

• Matching an incoming question to questions in the dataset based on the fea-
tures

• Evaluating the chatbot answers

In the first part of the project we focus on researching techniques used for each of
these four components in existing chatbot systems. Then methods are selected that
fit with complex questions and high-quality answers, and with these methods the
chatbot is built.

Success criteria for this study are a working chatbot system, use of NLP tech-
niques, use of multiple machine learning techniques and a comparison of these tech-
niques. Furthermore, the results of the chatbot system are to be evaluated in the end.

1.4 Report structure

This thesis is structured as follows.
Chapter 2 is an extensive literature study into chatbots. First, we describe the

various types of chatbots and whether these types are appropriate for complex ques-
tions. Also discussed here are the technological possibilities and limits of imple-
menting certain chatbot functionalities. Second, we give an overview of important
chatbots in history and dive into the techniques behind existing question-answering
systems relevant to our problem. In the last sections we explain NLP techniques, the
vector space model and machine learning models that can be applied in chatbots.

Chapter 3 gives an overview of the different chatbot systems created. It describes
step-by-step how the systems are built and which components are used in which
chatbot version.

Chapter 4 presents the vector space model we created. First the dataset is ex-
plored and its most notable properties are described. Furthermore, in this chapter
NLP techniques are applied to the dataset and their quality for the Dutch language is
described. The term weighting and measuring similarity sections describe the tech-
niques with which the input question is matched to a question in the underlying
dataset to retrieve an answer. Finally, the results of this model are evaluated.

Chapter 5 describes the chatbot model based on machine learning techniques. A
new dataset is created for this model and the process of creation and its properties
are described. Furthermore, we describe the engineering of features and the various
machine learning techniques used for modelling. Finally, the results of the different
machine learning models are presented and compared.

Chapter 6 describes the implementation of the models in a chatbot application.
In this chapter we determine the chat flows and set the confidence level for which
a question is answered. Finally, we present the results of the implemented models
and compare them.

Chapter 7 concludes the work and gives an overview and discussion of the find-
ings. The limitations of the work are presented and future improvements are sug-
gested.

4

Chapter 2

Literature study

As we consider the literature study, we note that there is a wide variety of chatbots
and chatbot techniques. In section 2.1 we describe the various chatbot types and
their functionalities. In section 2.2, we review historically ground-breaking as well
as more recent chatbots. The NLP techniques and the vector space and machine
learning models used in these chatbots are explained in more detail in section 2.3,
2.4 and 2.5, respectively.

2.1 Chatbot types & functionalities

In this section we describe the different chatbot types and functionalities. We dis-
cuss which types and functionalities are relevant for domains with highly complex
questions and a need for reliable answers. Furthermore we discuss which chat func-
tionalities are technologically achievable at this point in time.

2.1.1 Chatbot types

Chatbots exist in a variety of types. The most commonly used categorization can
be seen in figure 2.1. In this figure, chatbots are organized into categories based
on the type of domain they operate in and based on the way they give answers.
Open domain chatbots can answer questions about a great variety of topics, whereas
closed domain chatbots only function inside a specific domain in which they have
knowledge. Of course there is not a hard split between open domain and closed
domain. A chatbot used to react on Twitter statuses would be seen as open domain
and a chatbot used to order pizza would be seen as closed domain, but a chatbot to
answer all types of financial questions would be somewhere in between (although
more closed domain than open domain).
Chatbots can be either retrieval-based or generative-based. Retrieval-based means

that answers are retrieved from an underlying dataset. The retrieval process can
be simple using rule-based sentence matching, or advanced using an ensemble of
machine learning techniques. These systems will always return an existing answer
from a set of pre-defined responses. Generative-based chatbots do not give pre-
defined responses; these systems generate the response themselves.

In figure 2.1, we can see that there are roughly four types of chatbots:

1. Open domain with retrieval-based responses
Retrieval-based responses are responses from a fixed set, in an open domain
this fixed set should be ’any possible question anyone can think of’. Of course,
this cannot be done and therefore this type of chatbot is impossible to create.

Chapter 2. Literature study 5

Retrieval-
based

Generative-
based

1 2

3 4Closed
domain

Open
domain

C
on

ve
rs

at
io

ns

Response type

FIGURE 2.1: A diagram of chatbot types. Based on a figure from [16].

2. Open domain with generative-based responses
Here again we want to be able to ask any possible question and get an ap-
propriate response. Solving this problem generative-based is called Artificial
General Intelligence (AGI) [26]. This means that the chatbot is a smart ma-
chine that can successfully perform the same intellectual tasks humans can.
Although this area is being researched intensively, we are not quite there yet.

3. Closed domain with retrieval-based responses
In this area the chatbot is trained on a dataset with text on a certain domain.
Questions inside the domain will be answered with one of the responses in
the training dataset. The chatbot does not have an answer to questions asked
outside this domain, and to unforeseen questions inside the domain. The way
most companies deal with this problem is that when there is a question the
chatbot cannot answer the question is passed to a human.

4. Closed domain with generative-based responses
Here the chatbot should uses smart machine technology to generate the answer
to a question. Generated responses make the chatbot able to handle questions
present in the underlying dataset but also new questions. This type of chatbot
can also deal with interactions that are longer than one question and one an-
swer and they tend to give more human-like answers and can have their own
personality. Downsides here are that generative responses increase the com-
plexity of the problem by a lot, generated answers are usually full of grammat-
ical errors and these chatbots require huge amounts of training data.

As open domain retrieval-based systems are impossible and open domain generative-
based systems have not even been successfully built by Google or Microsoft yet,
we stick to closed domain chatbots more specifically the financial domain. Both
retrieval-based and generative-based closed domain systems are already applied in
practice today, though more research to improve the accuracy of responses and to
expand the chatbots’ domain is needed. We focus on giving reliable and grammat-
ically correct answers, which is why the closed domain retrieval-based chatbot is

Chapter 2. Literature study 6

most appropriate here. In the future, when generative-based techniques have im-
proved and a larger dataset of domain questions and answers is available it might
be possible to create a generative-based chatbot for the same case.

Related chatbot terms

In the AI world a lot of different terms are being used for seemingly the same sys-
tems. A chatterbot is an online friend with whom you can make light conversation.
In this case, the chatbot is just a simple pattern matching system designed to seem
as human-like as possible and win competitions like the Loebner Prize.1 Today, the
term ’chatbot’ is used for any bot, automation or chat channel, but there are also
other terms that are used for the same systems. An Automated Online Assistant
(AOA) is a system that assists a user by answering questions and performing some
light tasks. For example, an AOA can tell a user what a certain T-shirt costs in its
store or it can perform the task of ordering the T-shirt. Chatterbots usually use sim-
ple pattern matching over the input to generate their output, but AOA’s use more
advanced techniques like NLP with word and sentence segmentation, Named En-
tity Recognition (NER), syntactic and semantic analysis and categorization. These
more advanced techniques can also be found in question-answering (QA) systems,
but these are usually simpler than AOA’s because they are only designed to answer
questions and not perform tasks. Also in QA systems interaction is modelled as turn
by turn asking a question and giving an answer and not as a chat as a whole.[21]
Overall, we think that AOA’s, question-answering systems and chatterbots are all
types of chatbots. The chatbots designed in this study are most alike to question-
answering systems.

2.1.2 Chat functionalities

Chatbots can have many functionalities, and some functionalities are very important
for our application. We very strongly need the bot to give a correct answer, we
need the bot to collect extra information from the user and we would like a bot that
can chat, instead of giving an answer to one question. In this section we discuss
the techniques needed to realise these chatbot functionalities and their technological
limits.

Methods to enhance the probability of giving a correct answer

For most companies giving a correct answer to their clients is very important. There
are different methods to give more certainty that the answer of the chatbot is correct:

• Many machine learning algorithms can give a percentage of certainty with
which they think the output for a certain question is correct. We can program
the chatbot to only give an answer if this certainty level is high. In case the
certainty level is too low we can sent the question through to an expert with
the proposed chatbot answer already filled in. If the expert agrees with this an-
swer all he has to do is click sent, if he does not agree he can remove or change
it.

• The chatbot matches a new incoming question to an question in the dataset
and if these are similar the chatbot gives back the answer an expert gave to

1The Loebner Prize is an annual AI competition in which chatterbots compete to be judged as the
most human-like

Chapter 2. Literature study 7

the matched dataset question. To be more sure of giving the right answer the
chatbot can first ask the user: "Is your question similar to [dataset question]?"
If the user answers yes than the chatbot can give the correct answer, if not the
question can be sent through to an expert. Technologically this is not more
difficult to implement than a chatbot without this system.

• In the question-answer dataset there are a lot of different questions and an-
swers, but some of them will actually be the same question. If we could create
a set of standard questions and answers and replace all the similar questions
by these it would be easier to classify a new incoming question on the dataset
and this would create a bigger chance of giving a correct answer. Technologi-
cally, if there are many similar questions in the dataset it is difficult to match a
new question to one of these questions, if the answers to the questions are also
similar this matching should not be necessary.

Answering methods

There exist different AI systems for solving user problems. Information Retrieval
(IR) is one way of answering a question. IR is a query driven approach for ac-
cessing information, here the systems does not return an answer but a list of doc-
uments related to the user query. The user is responsible for navigating through
these documents and finding the right information. An example of IR is Google
Search. Question-answering is an answer driven approach for accessing informa-
tion. The user asks a question in natural language and the system returns a list of
short answers.

In our case it is necessary to give one specific answer to a question. It is okay if
this answer contains a link to a website with more information, but we should not
return a list of documents for the user to search through. Technologically, since we
want to return the best answer from our dataset, in the background we still built a
ranked list of answers to this question, but we would program the chatbot to only
display the highest ranked answer.

Another feature would be to let the bot chat with the user and not just answer
only its first question. When programming a chat we need to keep context (previous
questions) in memory and not see the new question as a stand-alone query. Techno-
logically, we can give the words in the previous questions a smaller weight than the
words in the current question but still compose a word vector also taking into ac-
count the previous questions. Now we can match this word vector to the questions
in our database.

Returning a question

For answering domain-specific complex questions sometimes extra information is
needed from the user. For example, if a client asks in which year he can get a pension,
we need to know in what year this person was born. It would be a good feature if
the chatbot could recognize this and return a question asking the user about his date
of birth.

Technologically, returning a relevant question is quite difficult. This is because
the chatbot needs to understand what kind of situation the client is in, what kind of
information is needed to be able to answer that question, and which information the
client is and is not providing. To make the implementation a bit easier it would be
an option to work with a template, this would work like: if a question is matched to
this specific frequently asked question than check if there is a birth year mentioned

Chapter 2. Literature study 8

in the question, if not ask for a birth year. Of course, this is a non-flexible rule-based
solution which only works in this specific case, but at the moment the technology to
solve this in another way has not been invented yet.

2.2 Chatbot literature

We first give an overview of the most ground-breaking chatbots in history. Then we
go deeper into the techniques behind question-answering systems. Here we focus on
the technologies relevant to the chatbot we create. We describe the inner workings
of question-answering systems based on databases with text documents (instead of
structured knowledge bases). Relevant to this project are retrieval-based chatbots in
the domain of question-answering systems. When generative-based chatbots further
improve these systems might become relevant. Therefore in the third part of this
section, we give an overview of future chatbot possibilities in the form of generative-
based systems. In the last part of this section, we review chatbot evaluation methods.

2.2.1 Chatbot history

In this section we describe the most ground-breaking chatbots in history. A time line
with the chatbots described is shown in figure 2.2.

FIGURE 2.2: A timeline with the chatbots described in this section.

The techniques used in these chatbots and the main improvement of this chatbot
compared to its predecessors can be found in table 2.1.

In the 1950s and ’60s computer scientists Alan Turing and Joseph Weizenbaum
experimented with the concept of computers communicating like humans do. Alan
Turing developed the Turing test [75], a test of a computer’s ability to portray in-
telligent human-like behaviour. This test involves two humans and a computer. A
human enters questions into a computer and will receive answers from either the
other human or the computer, the challenge here is for the question-enterer to cor-
rectly identify whether he is talking to a human or a computer. At the time this game
was invented no computer came close to passing this test and, although we are get-
ting closer, at this time still no computer has passed this test. Most computers that
come close do so by using tricks like giving responses that match with any input
question and not by actually understanding the user’s question or statement.

Joseph Weizenbaum created ELIZA [80] the first chatterbot. ELIZA was not in-
tended to be a useful or intelligent chatbot, but as a demonstration of how superfi-
cial human-computer interaction tends to be. The bot was created in 1966 and the
program used only 200 lines of code to imitate the language of a psychotherapist.
Although ELIZA was not built to be human-like, and its users knew they were in-
teracting with a chatterbot, still, due to its emotional responses, people would grow
attached to ELIZA. The algorithm behind ELIZA was simple and based on keyword
matching. The users’ input is analysed and keywords are detected. If a keyword

Chapter 2. Literature study 9

Chatbot Improvement Main technique NLP techniques
BASEBALL First QA system Knowledge

database and pat-
tern matching

None

ELIZA First chatbot system Pattern matching Keyword matching
PARRY Added tricks to

seem more human
Pattern-matching Keyword matching

LUNAR A manually written
knowledge base

Based on knowl-
edge database and
pattern-matching

None

SHRDLU Large input flexibil-
ity

Pattern matching Parsing and key-
word matching

PEGASUS Speech recognition Speech recogni-
tion and pattern
matching

Keyword matching

ALICE More complex pat-
tern matching using
XML

Pattern matching Keyword matching

MegaHAL First chatbot using
machine learning

Machine learning:
Markov models

Tokenization, stop-
word removal and
keyword matching

SmarterChild First chatbot dis-
tributed over mes-
saging platforms

Pattern matching Keyword matching

TABLE 2.1: A schema depicting the improvements of and techniques
used in the chatbots described in this section.

Chapter 2. Literature study 10

is found, the input sentence is mapped according to a rule associated with the key-
word, if no keyword is found one of a set of fixed phrases is returned, or under
certain conditions an earlier remark is retrieved. The set of fixed phrases to answer
when no keyword is found exists of comments such as "Can you elaborate on that?"
and "Very interesting, please go on." An example when a keyword is found and sim-
ple pattern matching is applied would go as follows: User:"I like X", ELIZA:"That’s
great! I like X as well!", where X can be any word. An example of a chat with ELIZA
can be found in figure 2.3.

FIGURE 2.3: An example of a chat with ELIZA, the first chatbot.
ELIZA is based on a simple pattern matching algorithm.

After ELIZA the next major chatbot was PARRY [17], implemented by Colby in
1970. PARRY, in contrast to ELIZA, was modelled as a paranoid patient as he spoke
to his therapist. He was initially believed to have passed the Turing test. In the test
a group of psychiatrists had conversations with real patients and with PARRY, and
another group of psychiatrists reviewed the transcripts of these conversations and
judged whether the conversation was with PARRY or a human. The psychiatrists
only guessed correctly for 48 percent of the conversations which is consistent with
random guessing. Later, this result was subtracted from a passing of the Turing
test because in longer one-on-one conversations PARRY could not hold up. PARRY
relied on pattern matching techniques and a few tricks, like telling short stories, for
if no answer was found. This rule-based system searched for a condition in the input
phrase and then executed the corresponding action.

Early question-answering systems were BASEBALL [28] and LUNAR [85]. BASE-
BALL was a system that could answer questions about the US baseball league and
LUNAR could answer questions about the geology of moon rocks and soil gathered
by the Apollo 11 missions. In 1971 LUNAR was demonstrated at a science con-
vention where untrained people asked the system domain-focused questions and
it managed to answer 90 percent of the questions. Both systems used techniques
similar to the ELIZA chatterbot and were based on a manually written knowledge
database.

SHRDLU [83] was a question-answering machine implemented by Terry Wino-
grad in 1972. This program showed a lot of flexibility in the input and common sense
compared to systems like ELIZA, PARRY and the early question-answering systems.
SHRDLU operates in a simulated world where it can move different coloured and
shaped blocks. A representation of this block world and an accompanying conver-
sation can be found in figure 2.4.

In the conversation in figure 2.4 SHRDLU seems to give some quite intelligent re-
sponses. It looks like SHRDLU shows a genuine understanding for what the instruc-
tor is saying, but all this is based on is a form of symbolic manipulation. SHRDLU
uses a left-to-right, top-down parser which analyses the pattern of the instruction,
identies the structure, and also recognizes the sentences’ features and grammar. To

Chapter 2. Literature study 11

make SHRDLU understand what to do, the instruction is represented in terms of the
objects, their color and shape, and the relations between them.

FIGURE 2.4: This is a representation of the simulated world of
SHRDLU, accompanied by a conversation in which the blocks are

moved [82].

One of the first AOA’s was PEGASUS [89] implemented in 1994, on which users
could search and book flights. PEGASUS was speech-based and worked for booking
flights with American Airlines. The system was tested by letting ten users book a
return flight of these ten seven were successful. It did take these seven users nearly
twenty-five queries and an average of thirteen minutes to book their round-trips.

The clear inadequacies that chatterbots like ELIZA and PARRY posses are pre-
dictable and redundant responses and a lack of personality. Also, these chatterbots
usually do not memorize previous responses which can lead to having the same
conversation over and over. In 1995 chatterbot ALICE [78] (Artificial Linguistic In-
ternet Computer Entity) was implemented, but even its complex pattern matching
structure provided very limited types of responses, often leading to uninteresting
conversations. An example of ALICE’s limited response vocabulary can be found
in figure 2.5. ALICE was based on AIML (Artificial Intelligent Mark-up Language),
a version of XML which makes it very easy to write your own chatbot without any
programming knowledge. The aim for this project is that, if a lot of people create a

Chapter 2. Literature study 12

FIGURE 2.5: An example of chatting with ALICE, a complex pattern
matching chatbot.

chatbot with each their own knowledge base, ALICE could use all these knowledge
bases together and become some sort of all knowing bot.

As is clear, pattern matching techniques did not seem to lead to breakthroughs in
AI. A new direction of research was entered with the introduction of MegaHAL [34]
in 1998. MegaHAL was the first chatbot based on machine learning techniques. It
has a language model that consists of two Markov models. The first model predicts
a word that will follow a given string and the second model predicts a word that
precedes a given string. A user’s input is tokenized and stop-words (frequently
used words with little meaning) are removed leaving only keywords. Each of these
keywords is used as a starting point for generating a response with the forward and
the backward sentence creating model. This leads to the creation of a lot of candidate
replies, which are ranked based on the amount of information they contain. The
reply with the highest information content is returned to the user. The definition of
’highest information content’ can be filled in in different ways. In MegaHAL it was
implemented in a way that would rank the most surprising reply first to create an
original conversation.

Around the end of the 90s bots were also developing in other ways than their
back-end techniques. SmarterChild [58] was the first chatbot distributed over in-
stant messaging and SMS networks. The bot started as a text-based adventure game,
but grew into providing features like instant news, weather and stock price access
and hosting tools like calculators and personal assistants. SmarterChild can be seen
as a precursor to Apple’s Siri.

2.2.2 Question-answering systems

Question-answering systems provide responses to natural language questions by
extracting the answers from sources (like text documents, knowledge bases or web
pages) or by giving explanations if no answer was found. The goal in QA systems

Chapter 2. Literature study 13

is to find a specific answer matching the question [43] and not to find a list of web
pages or text documents containing the answer (like in search engines). Question-
answering systems come in different types and can be classified in many different
ways. They can be grouped [54] based on question type, response type, analy-
sis technique, structure of the information source, question domain and evaluation
method as can be seen in figure 2.6. In this study we look at closed-domain QA sys-
tems with a variety of question and response types, a variety of analysis techniques
and semi-structured data (FAQ files).

FIGURE 2.6: The general framework behind question-answering sys-
tems [84].

The earliest QA systems like LUNAR and BASEBALL differed from SHRDLU
because of SHRDLU’s ability to have a conversation. Modern QA systems more and
more tend towards conversational interfaces but not by actual understanding of the
questions. Due to the difficulties in natural language understanding in the end of
the 1970s, QA systems were built using an information retrieval approach based on
keyword matching. This process doesn’t rely on deep natural language processing,
as it mostly looks at keyword frequencies. A statistical method is used to process
the keywords in a question and rank them by relevance. This ranking is than used
to search through documents, of which the one with the best matching keywords
is said to give the best answer. Later, many studies have added different natural
language processing techniques to this framework and found that this improved
the answers given by the QA system [13]. Therefore most QA systems nowadays
are based on a combination of shallow NLP and IR techniques. Research in the
field of question-answering systems has been mostly driven by the Text Retrieval
Conference (TREC) QA track [77].

In this section we give an overview of important and renewing QA systems. A
timeline with the QA systems described is shown in figure 2.7.

FIGURE 2.7: A timeline with the QA systems described in this section.

The techniques used in these QA systems and the main improvement of this
system compared to its predecessors can be found in table 2.2.

Chapter 2. Literature study 14

QA system Improvement Main technique NLP techniques
MURAX First QA system

based on NLP and
IR

IR: lexico-syntactic
pattern matching

Part-of-Speech tag-
ging

Auto-FAQ Maintains its own
FAQ set

Pattern matching Shallow NLP tech-
niques

FAQfinder First to use seman-
tic knowledge using
WORDNET

A scoring system
based on NLP tech-
niques and kNN

Tokenization, stem-
ming, stop-word
removal, TF-IDF,
WORDNET and
question-type classi-
fication

Sneiders Prioritized keyword
matching

Pattern-matching Prioritized keyword
matching

Berger et al. New statistical ap-
proach to answer
finding

Statistical transla-
tion models and
latent variable
models

Adaptive TF-IDF
and automatic
query expansion

Wu et al. QA in a specialized
domain

Probabilistic mix-
ture model and
k-means clustering

LSA

FRACT Solves lexical dis-
agreement problems

FAQ Retrieval and
Clustering Tech-
nique

LSA

Predictive Annotation New QA technique Annotation NER and bag-of-
words

Watson Open-domain QA
based on enormous
knowledge base

Machine learning
and information
retrieval

Parsing, question-
type classification,
NER, semantic la-
belling, lAT, relation
detection and more

Google Smart Reply Retrieval-based
after generating
responses

Neural networks Word embedding

TABLE 2.2: A schema depicting the improvements of and techniques
used in the QA systems described in this section.

MURAX (1993) [40] was one of the first QA systems based on NLP and IR tech-
niques. MURAX can answer general-knowledge questions as it uses an encyclope-
dia as knowledge base. A restriction of the system is that it can only answer closed-
class questions, meaning that it can only answer questions of which the answer is
easily expressible in a noun phrase, eg. Trivial Pursuit questions. The NLP tech-
nique used in this system is part-of-speech tagging, of which an explanation can be
found in section 2.3. Tagged words in the input question and the encyclopedia are
matched to find document matches. Answers are then extracted from these docu-
ments by finding all noun phrases (as tagged by the Part-of-Speech tagger) in the
document. Finally, lexico-syntactic pattern matching is used to check if the question
type matches the answer type, eg. the question "Who is the President of the USA?"
needs an answer type "name of person".

Auto-FAQ (1995) [81] is a QA system based on a set of news FAQs. This system

Chapter 2. Literature study 15

maintains it own FAQ set by publishing to a list if a gap in knowledge is encoun-
tered. This list can be searched and the knowledge gaps can be filled by volunteers
with expertise about this gap. In Auto-FAQ the input question is matched to the
FAQ based on keyword comparison aided by shallow language processing tech-
niques. Unfortunately, the NLP and IR techniques used are not published in the
paper.

FAQfinder (1997) [12] is a QA system based on information retrieval that does
not just use statistical metrics of similarity between question and response, but also
uses a semantic knowledge base. This semantic knowledge base, or wordnet, im-
proves FAQfinder’s question-answer matching ability. The system’s knowledge base
consists of files with frequently asked questions and their answers. FAQfinder works
in two stages. First the search for an answer is narrowed to a small set of QA pairs
out of the whole database. Next, each retrieved QA pair is compared with the input
question to find the best matching answer. In the first step an already existing tech-
nology called SMART [11] is used. This system stems and removes stopwords from
the input question and then forms a term vector. This vector is matched against simi-
lar vectors created for the underlying knowledge base. The QA pairs ranked highest
in this procedure are further processed in the second step. In the second step, the
retrieved questions are matched against the input question and scores are given for
their similarity. Three types of scores are used:

1. A statistical similarity score t
Here the term vectors of the input question and a QA pair are given a score
based on TF-IDF, an NLP technique explained in section 2.3. The term vectors
are later compared using the cosine of the angle between the vector of the
input question and the vector of the QA pair. This score takes into account the
frequency of terms occurring in the input question and the knowledge base
and therefore judges the overall similarity between input question and the QA
pairs, but it does not look at an interpretation of the input question in any way.

2. A semantic similarity score s
This score is designed to look at a high-level interpretation of the input ques-
tion. In natural language the same question can be expressed in many different
ways. For example, a question with the word "spouse" and a question with the
word "husband" might have the same meaning, but this is not included in the
statistical similarity score. To include this score the WORDNET [53] database
is used in combination with a marker-passing algorithm [62]. WORDNET is a
semantic network of English words, which provides relations between words
and synonym sets.

3. A coverage score c
This score makes sure that important concepts in the input question are also
present in the question it is matched to. The coverage score is the percent of
keywords in the input question that are also present in the question from the
database. Here semantics are also used as synonyms of the keywords are also
taken into account.

To calculate the overall similarity between the input question and the QA pairs a
weighted average of the three scores is used

Total score =
tT + sS + cC

T + S + C
, (2.1)

Chapter 2. Literature study 16

where T, S and C are constants with which one can adjust the importance of each of
the scores for the overall outcome.

FAQfinder was improved a few years later by adding a score based on question
type [48]. Input and database questions were classified using a distance-weighted
k-nearest neighbours (KNN) algorithm. Twelve different question types were used,
like definition, location, reason, manner and yes-no question. The final score on this
part was calculated using a similarity matrix defined for the question types.

Other QA systems also successfully used question type classification to extract
appropriate answers [31][33]. Question type classification was further researched
by Tomuro [74]. He found that using only lexical features, like using keywords,
worked best in question classification. Adding semantic features, which give an
understanding of the question, caused more harm than good.

Sneiders’ QA system (1999) [70] follows the approach of Auto-FAQ in maintain-
ing its own FAQ set. New in this system is the use of prioritized keyword matching,
a technique developed by Sneiders himself. The main idea in prioritized keyword
matching is that there are three types of words in a sentence:

1. Required keywords
The words that are essential to understand the meaning of the sentence.

2. Optional keywords
Words that help in communicating the meaning of the sentence, but are not
strictly necessary. They could be omitted without the sentence losing its mean-
ing.

3. Irrelevant words
These are words that are very common in normal language or in the specific
domain of questions. For example, words like "the", "is" or "can".

The words in an input question are organized into these categories and matched
to FAQ in the database containing the same required and optional keywords. The
words in the FAQs in the database can also have the label ’forbidden keywords’. For-
bidden keywords are use to distinguish between sentences with a different meaning
but having the same required keywords, eg. "Why do we pay tax?" and "How do we
pay tax?". If a question from the database has a forbidden keyword, then it will not
be matched with an input question containing this word.

Berger et al. (2000) [8] used a statistical approach to finding answers in a large
collection of answered questions. They use techniques inspired by machine learning
to ’learn’ their system to locate answers and find that this works better than using the
standard TF-IDF algorithm for answer-finding. The techniques used are adaptive
TF-IDF, automatic query expansion, statistical translation models and latent variable
models. The first two techniques are explained in section 2.3. Unfortunately the
paper does not state which statistical translation and latent variable models were
used. All of these techniques are found to enhance the performance of a question-
answering system based solely on TF-IDF.

Wu et al. (2005) [86] researched which independent techniques are useful for
question-answering in the medical domain. Medicine, like the financial domain, is
a specialized domain but spans quite a broad array of questions. Also, medical and
financial questions both use a lot of domain jargon. The paper presents a proba-
bilistic mixture model. The mixture model is used to represent subgroups in the QA
database without requiring an identification of which questions are in which sub-
group. To be able to give a very precise answer to a new question the answers in the

Chapter 2. Literature study 17

database were divided into multiple sections. These sections are then clustered with
Latent Semantic Analysis (LSA) and K-means clustering. Both of these techniques
are explained in section 2.5. Under the probabilistic mixture model, retrieving the
right QA pair can be seen as a maximum likelihood estimation problem. To find the
optimal weights in the mixture model an expectation-maximization model is used.
The model used in this paper outperforms the techniques used in FAQfinder for the
medical domain.

FRACT (2008) [38] stands for FAQ Retrieval and Clustering Technique. This
technique was developed to solve lexical-disagreement problems that can occur in
keyword search. For example, the questions "When will I receive my pension?" and
"At what time can I get retirement money?" have a similar meaning but no overlap
in keywords, thus keyword based QA systems will not return the same answer for
these questions. FRACT uses LSA techniques which have been shown to be able
to bridge lexical gaps between words by mapping them into latent semantic space
[20]. An overview of the architecture used in FRACT can be found in figure 2.8.
FRACT collects users’ question logs and clusters these logs into predefined cate-
gories to use them as knowledge sources. When an answer needs to be retrieved
words associated with the clusters help in ranking the answers and overcoming the
lexical-disagreement between input question and QA pair.

As can be seen in figure 2.8, FRACT consists of two parts: the query-log cluster-
ing system and the cluster-based retrieval system. The query-log clustering system
consists of FAQs and question logs in latent semantic space. LSA is used to calculate
the distance between the FAQs and question logs. With these distances the question
logs are grouped around the FAQs. The answer retrieval system uses the query-log
clusters to smooth vector representations of input questions and FAQs, to rank the
smoothed input questions and FAQs, and to return a ranked list of relevant FAQs.
FRACT outperformed traditional IR systems in experiments, but unfortunately it is
difficult to implement FRACT in most systems, as these systems do not use question
logs.

Prager et al. (2008) [61] from IBM invented a new question-answering technique
called Predictive Annotation (PA). This technique scans text for potential answers
to questions, annotates these potential answers and indexes them. During ques-
tion analysis question words are replaced with QA-Tokens, essentially named entity
identifiers. Also during question analysis, a simple scoring system is used to do
bag-of-word matching of short paragraphs. PA is very effective at answering factual
questions, but fails when any semantic understanding of the question is needed.

Watson (2010) [23] is a question-answering supercomputer famous for beating
the best players on the quiz show Jeopardy!. Competing on Jeopardy! was actually
just a means to an end for IBM, the real goal was to develop a good solution to the
open-domain QA problem using techniques like natural language processing, infor-
mation retrieval and machine learning. DeepQA is the core technology underlying
Watson and this technology can be used in many real-life situations. IBM is now
focusing on applying it in the medical and healthcare domain, using DeepQA to aid
in differential diagnoses [3]. In figure 2.9 an overview of the inner workings of the
DeepQA technology is given. For Watson an enormous knowledge base containing
publicly available data from Wikipedia, encyclopaedias, the Bible and many other
sources was created before the show. When a question enters the DeepQA pipeline
it is first used as a search query (like in Google Search) to search the underlying
database. Only the best results are kept. Then, the question and these search results
combined are used to retrieve supporting evidence for each search result from the
database. Each search result is now an answer hypothesis and is evaluated (in many

Chapter 2. Literature study 18

FIGURE 2.8: An overview of the FRACT architecture [38].

dimensions) on the evidence found in the database. The answers are ranked using
multiple machine learning algorithms and the highest ranked answer is outputted if
it reaches the minimum confidence level.

FIGURE 2.9: An overview of the DeepQA architecture [23].

Chapter 2. Literature study 19

We will now go deeper into the methods underlying the steps of the DeepQA
technology.

1. Question analysis
The first step in figure 2.9 is question analysis. Here all components of the
question are analysed to come to an understanding of what is actually asked.
This is done by using many different technologies like shallow and deep parses,
question classification, named entities, semantic labels, LAT and relation de-
tection and many others. These techniques are explained in detail in section
2.3.

2. Query decomposition
Query decomposition is needed for questions that include sub questions or are
made up out of multiple clues. To determine if and how a question should be
decomposed DeepQA uses parsing and statistical classification techniques. If a
question is decomposed the fragments run through the whole DeepQA system
and hypotheses to answer the question fragments are found. In the synthesis
step, later in the process, the answer hypotheses to the fragments are combined
to form answer hypotheses for the whole question.

3. Hypothesis generation
After the question analysis and decomposition, the system’s data is searched
and answer-sized pieces are extracted from these search results to form can-
didate answers in the hypothesis generation step. In the primary search the
database is searched using multiple search techniques like using text search
engines, document and passage search and searching based on named entities
in the question. Then, in the candidate answer generation step hypotheses are
subtracted from the search results.

4. Soft filtering
Soft filtering is used to make the large set of answer hypotheses smaller with-
out using intensive time-spending techniques.

5. Hypothesis and evidence scoring
Hypotheses that pass the soft filtering step are now subjected to a harder eval-
uation in which evidence for each hypothesis is searched in the database. In
the evidence retrieval step many techniques are used. One of the most impor-
tant techniques is passage search; the query derived from the question and the
hypothesis are combined in a search, retrieving the hypothesis in the context
of the question as evidence. In the deep evidence scoring step a certainty level
for how well the found evidence supports the answer hypothesis is created.
Many different score systems are used in this process which look at measures
like the hypothesis’ correlation with the terms in the question, the degree of
the match between the question and the found property and hypothesis in the
evidence (e.g. IDF-weighted terms in common or the length of longest similar
character sequence as explained in section 2.3) and source reliability.

6. Synthesis
In this step the answer hypotheses of questions that were decomposed in the
query decomposition step are combined to form an answer hypothesis to the
whole question.

7. Final merging and ranking
Here all hypotheses and their scores on many dimensions are evaluated to

Chapter 2. Literature study 20

find the best hypothesis and its confidence. In the set of hypotheses there
can be many hypotheses which may be written differently but are actually
the same. This is very hard to process for ranking algorithms, therefore in
DeepQA equivalent hypotheses are merged using an ensemble of normaliza-
tion, matching and co-reference resolution algorithms. Finally, the hypothe-
ses are ranked and their confidence is calculated using a machine learning
approach. The machine learning models are trained by running the entire
DeepQA program on existing question-answer sets. For the development of
Watson the DeepQA team experimented with many different machine learn-
ing techniques but found that regularized logistic regression consistently gave
the best results [27]. Logistic regression is explained in section 2.5.

Google Smart Reply (2016) [37] is a feature in Google’s Inbox app that suggests
short replies to incoming e-mails. Examples of the suggestions of Smart Reply can be
found in figure 2.10. The idea is to make answering e-mails on smart phones easier
and faster. The system is built up out of two Recurrent Neural Networks (RNNs)
also called sequence-to-sequence learning which is explained in section 2.5. The first
RNN is for encoding an incoming e-mail, and the second to generate the responses.
The first network processes the text in the e-mail word-for-word to create a thought
vector. This vector is used by the second RNN to generate a reply word-for-word.
The e-mails in figure 2.10 are quite short, but in reality people also receive a lot of
longer e-mails which are harder to process. To also be able to process longer e-mails
Google has used a Long-Term-Short-Term-Memory (LSTM) network, a specific type
of RNN. An LSTM network can grasp the context of the e-mail without getting lost
by off-topic sentences.

FIGURE 2.10: Two examples of e-mail suggestions given by Google
Smart Reply [18].

Smart Reply gives a user three reply options and to maximize the likelihood

Chapter 2. Literature study 21

of one of these replies to be chosen it is best if the replies are different in mean-
ing. If someone asks for a meeting next week getting the three options: "Sure, let’s
meet!","Yes, I can." and "See you next week!" is not much of a choice. A diversity
like "Sure, let’s meet.","When do you want to meet next week?" and "No, I’m sorry
next week I’m too busy." is much more practical. To achieve this diversity of options
Google researched the semantic similarity of the generated options. This means the
similarity in the underlying meaning of the replies, not just the similarity in the
words the reply is made from. Another challenge Google encountered was an early
version of the system replying with "I love you" to random messages. This was not
a mistake in the model, as responses like "Thanks" and "I love you" are very com-
mon and turned out to be a big part of the training set. This problem was solved by
normalizing the likeliness of a reply by a measure of the replies’ prior probability.
This normalization made sure that the predicted replies are not just very likely to be
responses, but are also highly relevant to the incoming message [18].

A challenge Google had, and we will definitely also have, is that they have to
ensure that the response quality is high. Google solved this by only selecting replies
from a reply space generated offline by a semi-supervised graph learning approach.
To generate this response space they first converted answers that have more than
one possible representation into a standard form. Like converting "Thank you!",
"Thanks!" and "Thank you very much" all to "Thank you." In the next step they per-
formed semantic intent clustering on all response messages, meaning they formed
clusters of responses with different meanings like a thanking-cluster, a funny-cluster
and a sorry-cluster. This was done by using scalable graph algorithms in a semi-
supervised setting. For each cluster some examples replies were seen as seeds and
a base graph with frequent replies was constructed. In this graph replies with same
features (like keywords or n-grams) were connected by lines. Finally, all replies are
given a semantic intent label by an algorithm that was trained on some manually
added labels. To ensure the quality of the labelling the semantic labels of a part of
the response dataset were checked manually.

2.2.3 Generative-based chatbots

Generative-based chatbots generate their answer word-by-word or sentence-by- sen-
tence. These systems are in the field of Statistical Language Modelling (SLM). In
SLM the probability distribution of lexical entities, like words or sentences, is esti-
mated. One task in this field is assigning a probability of a certain word appearing
next, based on its relation with the previous words in the sentence. One of the earli-
est techniques in this field was using N-gram models (a technique explained in sec-
tion 2.3) to model the probability of a certain word following already given words
[15][10][64]. Later, more advanced solutions based on decision trees [60] and max-
imum entropy models [65][79] were used. These machine learning models could
be trained on various features (like Part-of-Speech (PoS) tags [32] or other semantic
knowledge), instead of just keywords.

Recent research in SLM is focused on the use of artificial neural networks (a tech-
nique explained in section 2.5). This started with the work of Bengio et al. [7], who
recognized and proposed to fight the curse of dimensionality. With this curse, they
meant that language is so broad that word sequences on which the model is applied
will likely be different from the word sequences used in training. Their solution
was to learn a distributed representation for words in which each training sequence
learns the model about many semantically neighbouring sequences. Word embed-
dings are used as input for the neural network. With a feed-forward neural network

Chapter 2. Literature study 22

(FNN) this model simultaneously learns a distributed representation for each word,
and the probability function for word sequences. Thus this model learns itself which
features are appropriate, whereas using decision trees or other models require fea-
tures to be manually selected and created before training, a big advantage of using
neural networks. The FNN approach showed a significant improvement over state-
of-the-art N-gram models in 2003.

Neural networks work better than N-grams for sequences never encountered
in the training data, because they can project the vocabulary into hidden layers,
creating clusters of semantically similar words. Vector representations of words or
sentences can hold important linguistic information. For example, Mikolov et al.
[50] show that vector representations can be compositional, meaning that given the
vector Queen, if you subtract the vector Woman and add the vector Man, you can get
a vector very similar to the one for King.

FNNs as used in the study by Bengio et al. [7] have a big drawback in modelling
language. These networks can only take a fixed number of previous words into
account when predicting the next word in the sequence. This problem can be solved
by using a recurrent neural network (RNN), a network that can handle big contexts
and is explained in section 2.5.

A widely used RNN framework called sequence-to-sequence learning (explained
in section 2.5) is first proposed by Sutskever et al. [73]. This network is also applied
in [69][68][71], in Google Smart Reply [37] and in A neural conversational model [76],
where the technique is used to model technical support chats.

RNNs can learn vector representations for words and remember a huge context,
but they also have some disadvantages to which different solutions have been re-
searched. One disadvantage of RNNs is that models tends to generate meaningless
and trivial sentences like "I don’t know" and "Okay" as found in [71], [37] and [68].
Li et al. [42] successfully implemented Maximum Mutual Information (MMI) as the
objective function of neural networks to overcome these trivial sentences. Another
limitation of RNNs is that the model will start computing very large vocabularies
when trained on full conversations. A solution to this is to create a vocabulary with
a maximum amount of words and replace other words with ’unknown’. This un-
known word can later be translated by using a separate dictionary as in [47][35].
RNNs are also limited in their understanding of copying, knowing in which cases
words from the input sequence need to be copied to the output sequence. To over-
come this limitation CopyNet [30] has a mechanism that can choose sub-sequences
from the input sequence and place these a the right places in the output. Other pro-
posed modifications to RNNs are adding a third network to model the intention of
words [88] and adding contextual features, like topics, to the model [25].

Generative-based models require a very large training set to give a coherent out-
come, due to the immense amount of possible words and sentences in human lan-
guage. Often when training models for a specific domain not enough training data
in this domain is available, and therefore other data is also used. Such a domain
mismatch can be solved by first training the neural network on all training data, and
then running a few iterations on only the domain-specific training data as shown by
Luong and Manning [46].

2.2.4 Chatbot evaluation methodologies

Whereas automatically evaluating models with one correct outcome is easy, eval-
uating models which can give numerous different but all correct outcomes is very
difficult. Evaluation of the response of a chatbot can in practice be applied in two

Chapter 2. Literature study 23

ways: supervised and unsupervised. First, supervised evaluation of the chatbots’
answers can be done manually by human experts giving scores to each answer. It
is also possible to ask users of the chatbot system to give a user satisfaction score at
the end of their conversation. Both these methods of supervised evaluation are user
intensive.

Unsupervised chatbot evaluation metrics can automatically evaluate the qual-
ity of the chatbots’ responses, but the quality of these metrics is often poor. Pop-
ular metrics for evaluating dialogue systems are BLUE [57] and METEOR [5], and
adaptations of these techniques. An assumption of these metrics is that right an-
swers have a big word overlap with the assumed correct answer to a question. In
chatbot systems this is a very strong, possibly too strong, assumption. An unsuper-
vised evaluation metric based on another technique than statistical word-overlap is
Word2Vec [51] in which word embedding is used.

In 2016 Liu et al. [44] researched the correlation between scores given to chatbot
replies by these unsupervised evaluation metrics and by humans. They found that
all unsupervised metrics show weak or no correlation with human scoring. On a
Twitter dataset, a small positive correlation between the unsupervised metrics and
human judgement was found, but on the big and technical Ubuntu Dialogue Corpus
no correlation could be found at all. This shows that unsupervised metrics are still
far away from replacing human judgement in evaluating dialogue systems.

2.3 Natural Language Processing

Natural Language Processing (NLP) is a set of techniques that enables computers to
analyse and have an (shallow) understanding of human language. Unlike common
word processors, NLP takes the hierarchical structure of a language into account
(like letters forming words and words forming a sentence). NLP is seen as a hard
problem in computer science, because of the ambiguity found in languages. When
a computer needs to understand a language it needs to not only know the meaning
of the words, but also the concepts and how these concepts are linked together to
create the meaning of a text.

We divided the process of understanding natural language into three stages:
morphological analysis, syntactic analysis and semantic analysis. These three stages
and the corresponding NLP techniques are discussed here.

2.3.1 Morphological analysis

Morphological analysis focuses on studying the elements within words. In this first
stage of NLP, individual words are extracted from text, ignoring non-word tokens
like punctuation. The words are then analysed down to their components. Impor-
tant terms in morphological analysis are:

• Tokenization
Tokenization is the process in which a text is broken down into symbols, words,
phrases, or other text elements called tokens. The list of processed tokens be-
comes input to further processing steps. These further steps need a tokenizer
to remove or transform text components like punctuation, abbreviations and
white space. Tokenization is mainly used to identify meaningful keywords in
a text.

• Stop-word removal
Stop-words are the most common words in a language, like ’a’, ’the’ and ’are’.

Chapter 2. Literature study 24

These words occur very frequently and cannot be used to separate the topic
of one text from another. If these words are not useful in the classification of
certain texts (this can be different per domain), they can be removed. Because
of the inconsistency of words being meaningful or meaningless in certain do-
mains, it is difficult to create standard stop-word lists. The process of stop-
word removal is needed because it leads to a smaller data size and it improves
the performance of text classification.

• Stemming
Stemming is the process of reducing conjugated words back to their origi-
nal word stem. For example, the conjugated words "walking", "walk" and
"walked" can all be stemmed to the word stem "walk". This technique is used
to make matching of text documents with the same content easier. There are
four common types of stemming algorithms [4]:

1. Table look-up stemmers
A table look-up stemmer is based on a table that stores as many conju-
gated words and their stems as possible. A query is used to look-up a
conjugated word in this table. Look-ups are very fast, but disadvantages
of this method are the storage capacity needed and the lack of complete
conjugated word tables in most languages and domains.

2. Successor variety stemmers
Successor variety stemmers segment words into their stems by looking
at successor letter variety counts. For example, if we have the word-set:
"walk","world","warm" and "like" and we look at the successor letter va-
riety counts of the word "warm" we start with the first letter w, in the
word-set this letter is followed by an a and an o, thus the successor letter
variety count is two. If we then look at the variety count of "wa", we see
that this combination is followed by an l and an r, thus this successor let-
ter variety count is also two. The combination "war" is only followed by
an m, and thus from now on the successor letter variety count is only one.
This way we can create successor letter variety counts for every word in
the text. These counts are then used to segment the words into the correct
stems.

3. N-gram stemmers
N-gram stemmers divide words into parts with N consecutive letters.
These parts are then compared between the words in a document. For
example, the words "walking" and "walker" can be compared by creat-
ing bi-grams like: walking to wa al lk ki in ng and walker to wa al lk ke
er. The word walking has six unique bi-grams and the word walker has
five unique bi-grams. The words share three bi-grams. Now a similarity
measure is used to compare these two words, called the dice coefficient
S.

S =
2C

A+B
(2.2)

Here A and B are the number of unique bi-grams in the first or second
word, respectively. C is the number of common bi-grams. In our example,
the dice coefficient is 6

11 . A matrix of all dice coefficients in a text is called
a similarity matrix. The chosen cut-off for the dice coefficient determines
if words are stemmed to the same base.

Chapter 2. Literature study 25

4. Affix removal stemmers
Affix removal stemmers focus on removing pairs of letters from the end
of words. For example, the stemmer could always remove "ing" from the
end of a word, so "walking" becomes "walk", but also "aging" becomes
"ag". Clearly, this is not a very precise method.

All types of stemming algorithms can make mistakes, definitely in hard to
stem languages. These errors can be divided into two types: over-stemming
and under-stemming. Over-stemming means that two words that stem from
different roots are stemmed to the same word base. Under-stemming means
that two words that stem from the same root are not stemmed to the same
word base.

• Lemmatization
Lemmatization is also a process of reducing conjugated words back to their
original word stem. However, where stemming often crudely chops off the
end of a word to get to the word stem, lemmatization does this more properly
using a vocabulary and aiming to transform the word to its base or dictio-
nary form, called the lemma. For example, if a stemmer encounters the word
’wound’, the past form of ’to wind’ it will probably leave this word as is, where
lemmatization will either transform this word to ’wind’, its base form, or, if it
is a noun, it will also leave the word as ’wound’ [49].

• Automatic query expansion
Query expansion is the process of reformulating a query to encourage match-
ing between texts. This involves evaluating the input query and expanding
this query to match additional texts. Some techniques used to expand queries
are: using synonyms of words, stemming all words and fixing spelling errors
[87].

• Part-of-Speech (PoS) tagging
PoS tagging is annotating each word in a sentence with its part-of-speech. For
example, a word can be tagged as a noun, verb, pronoun or article. Assign-
ing such a part-of-speech to words in a sentence can be done in two ways:
with rule-based approaches [9] and with statistical approaches. Statistical ap-
proaches often make use of Markov models, which capture the linguistic and
contextual information. Parameters of this model can then be estimated from
(un)tagged text [19]. The output of PoS tagging is very useful in sentence pars-
ing and for use in word sense disambiguation in NLP stages two and three,
respectively.

2.3.2 Syntactic analysis

Syntactic analyses focuses on studying the elements within sentences. In this second
stage of NLP, sequences of words are transformed into structures that show how the
words in the sequence are related to each other. Important terms in syntactic analysis
are:

• Parsing
Sentence parsing is the process of converting a sequence of words into the
structure of a formal grammar. In computational linguistics parsing usually
outputs a parse tree showing the syntactic relation between the words in the

Chapter 2. Literature study 26

input sentence. Shallow parsing consists of building only partial trees for one
sentence, whereas deep parsing builds complete trees [1].

• Bag-of-words
A bag-of-words model is a very simple representation of a text. Here a text
is portrayed as the set of its words, without any relations between words and
also disregarding grammar. Bag-of-words only represents the words in the text
and their multiplicity. This model is often used for document classification.

• N-grams
Whereas bag-of-words is an orderless representation of a text, N-gram mod-
els are used to store this spatial information. N-grams were briefly mentioned
in section 2.3.1 where this technique was used for stemming. Using N-gram
models the probability of a certain word following a sequence of words is es-
timated. The N in N-gram stands for the amount of words considered. For ex-
ample, a bi-gram (N=2) transforms the sentence "When do I get my pension?"
into "When do","do I","I get","get my" and "my pension". The estimation of the
probability of a word following another word, results from the frequency of
word co-occurrences. This means that the probability that a given word ap-
pears next is equal to the number of times that this word follows the studied
sequence in the training data divided by the number of times that the studied
sequence is present in the training data (with and without the new word fol-
lowing). In practice, not every word combination can be present in the training
data. This problem can be solved by smoothing the probability distribution for
a word appearing next [14].

• Term Frequency-Inverse Document Frequency (TF-IDF)
TF-IDF is a statistic that reflects how important a certain word is to a text in a
collection of texts. This statistic was defined by Salton and McGill [67] in 1983,
and is now one of the most used term-weighting metrics. The TF-IDF statistic
increases when a word appears more often in a text, but this is offset by the
amount of times the word appears in all texts. If t is the term frequency in the
input, d is the number of text documents the term appears in and D is the total
number of text documents, then

TF-IDF = t log
D

d
. (2.3)

With this definition, a term that appears in every document and is thus of
little value for separating the documents, will have an almost zero IDF (log D

d)
value, leading to a small TF-IDF value. However, a term that only appears in
one document will have a very high IDF and thus also a higher TF-IDF.

Berger et al. [8] used an adapted version of TF-IDF in their question-answering
system. This adaptive TF-IDF algorithm had adjusted IDF-weights of each
word, so it could be used to maximize the probability of retrieving a correct
answer for every question. The IDF-weights were adjusted by applying gradi-
ent descent to bring questions and answers closer together.

2.3.3 Semantic analysis

Semantic analyses focuses on assigning meaning to words, sentences and texts. In
this third stage of NLP, structures are created to represent the meaning of words and
combinations of words. A lot of research is going on in this stage as there are still no

Chapter 2. Literature study 27

optimal solutions for automatically deriving meaning from text. Important terms in
semantic analysis are:

• Named Entity Recognition (NER)
NER maps words in the text to proper names, like people or places, and rec-
ognizes the type of each proper name, like a person, organization or location.
NER is still being researched a lot, as better approaches are needed. The exist-
ing approaches are list look-up, triggering and pattern matching. In list look-
up the system only recognizes the entities stored in a list . This system is fast
and easy to adapt to another text, but there are high costs for collecting and
maintaining the entities and it gives problems handling name variants. The
triggering approach uses structures that are often embedded in names. For
example, "Mount Everest" can be recognized through the rule "Mount + Cap-
italized Word". Lastly, in the pattern matching approach, the whole pattern is
manually constructed. For example, the pattern "<Name> stays in <Location>
on <Date>", will find the named entities in the sentence "Maria stays in New
York on May 3" [2].

• Word sense disambiguation
Word sense disambiguation is used to determine which meaning of a word is
used in a text. A lot of words have more than one meaning, and differentiating
between them is difficult. Methods used in word sense disambiguation include
empirical methods, knowledge-based methods and AI methods [72].

• Latent Semantic Analysis (LSA)
LSA is a technique in NLP that assumes that words that are alike in meaning
will occur in similar texts. In LSA relationships between documents sets and
the terms they contain are analyzed by producing a concept set related to the
terms and documents. A word-document matrix is constructed which contains
word counts, here the unique words are in the rows and the text documents
in the columns. Singular value decomposition is used to reduce the amount of
unique words, while maintaining the similarities between the text documents.
The words that remain are compared by taking the cosine of the angle between
two word count vectors. A cosine value close to one means that words are very
similar, while a cosine value close to zero means that words are very different
[41].

• Semantic (role) labelling
Semantic labelling detects the semantic roles of words in a text. For example,
in the sentence "Maria stays in New York", semantic labelling would recognize
"Maria" as the one who stays, the verb "to stay in" and "New York" as the
place to stay in. Being able to recognize these relationships makes it easier to
understand the meaning of the sentence [56].

• Lexical Answer Type (LAT)
LATs are the terms in a question that indicate what kind of entity is begin
asked for [23]. For example, in the question "Who is the president of the US?",
the LAT is "Who" which indicates that the answer will be the name of a person.

• Relation detection
Relation detection is used to find semantic and syntactic relationships between
entities in a sentence [23]. For example, in the question "Who is the president
of the US?" the relation is(president, ?x, the US) can be found.

Chapter 2. Literature study 28

2.4 Vector space model

The vector space model is a mathematical model used to represent text documents
as vectors. Using this model vectors of text documents can be compared and thereby
we can calculate the similarity of two documents. This model was first used in the
SMART Information Retrieval System [66].

The vector space model leads to a document-term matrix by assigning values to
the terms that appear in the text documents that are to be compared. There are sev-
eral ways to do this term weighting, but the most popular one is TF-IDF weighting
as explained in the previous section. The dimensionality of a vector is the number
of words in the vocabulary (all words used in the text documents to be compared).

To compare text documents we can use vector operations. These operations are
also called similarity measures. The similarity measures can lead to a ranking based
on relevance when comparing a text document to a set of text documents. The most
popular similarity measure is cosine similarity. This measure calculates the cosine
between the vectors of two text documents using the following formula:

cos θ =
d1 · d2

||d1|| · ||d2||
. (2.4)

Where d1 · d2 is the intersection of the two document vectors and ||d1|| · ||d2|| is used
to normalize this score by the length of the document vectors. This normalization
is important as it ensures that the chance of matching is not higher for longer doc-
uments (containing more words). A higher cosine value means a higher similarity
between two documents.

A limitation of the vector space model is that words in one document must ex-
actly match words in another document. This limitation can be overcome by prepro-
cessing all documents with NLP techniques and by using lists of synonyms.

2.5 Machine learning models

Machine learning is a field in computer science in which computers get the ability
to learn without rules for learning being explicitly programmed. Machine learning
algorithms make data driven predictions through a model of sample inputs and
thereby overcome the need of following strict programming instructions.

Machine learning methods can be divided into categories in multiple ways. One
way is by learning method, here a difference is made between supervised and unsu-
pervised learning. In supervised learning the computer is presented with a training
dataset with predictive variables and the output obtained by using these variables.
The goal here is to learn a rule or pattern that matches the values of the predictive
variables to the output. In unsupervised learning there is no output variable or label.
There is a dataset with the values for a set of variables for a number of observations,
leaving it to the algorithm to find structure in this data. Unsupervised learning can
be used to find hidden patterns in data or to engineer a good set of features.

Another way to divide machine learning methods into categories is by looking
at the type of output they produce. Classification methods give answers in two or
more classes. This method is usually used as a supervised learning method that
labels to which class a new instance belongs. Regression methods also solve super-
vised problems but give continuous outputs instead of categorical ones. Clustering
methods divide a set of data into different groups without knowing anything about
the groups beforehand, thus this an unsupervised learning method.

Chapter 2. Literature study 29

In this section we explain the machine learning techniques used for the chatbots
in section 2.2 and new upcoming techniques suitable for question matching. There
exist many more machine learning techniques, but we focus on the ones that can be
used in question-answering systems.

2.5.1 K-means clustering

K-means clustering is used to divide n observations into k groups. The idea is that
each observation belongs to the group with the nearest mean. The k-means algo-
rithm works in five steps:

1. Choose k: the number of clusters

2. Initialize the centroids (the centers of the clusters)

3. Assign data points to the cluster with the nearest centroid

4. Update the position of the centroids based on the new clusters

5. Re-assign the data points to the cluster with the nearest centroid

Step 4 and 5 are repeated until the centroids stop moving and the data points stop
moving from one cluster to another.

Initializing the centroids can be done by random choice, but it is better to use the
"farthest" heuristic. Here the first centroid is chosen randomly, but the second cen-
troid is the data point farthest away from the first centroid. The following centroids
are also chosen to be as far away as possible from all preceding centroids [24].

2.5.2 k-Nearest Neighbours (kNN)

The kNN algorithm is a supervised learning method that can be used for classifi-
cation and regression. In classification the k closest data points to a new point are
used to determine to which class this new point belongs. A majority vote is used
to classify the new point, meaning that it is assigned to the class that most of its k
neighbours belong to. An example of classification with kNN can be found in figure
2.11. Here the idea is to classify the red star into class 1 (green) or class 2 (blue). If
we look at the three (k=3) nearest neighbours of the red star, it would be classified
into class 2 (blue), but if we look at the five (k=5) nearest neighbours the star would
be assigned to class 1 (green). This shows how sensitive kNN is to the local structure
of the data.

FIGURE 2.11: Example of classification with the kNN algorithm [59].

Chapter 2. Literature study 30

In regression with kNN the input again consists of the k closest data points to the
new point, but the output is now a property value. This property value is the mean
of the values of the k nearest neighbours of the new point.

For both classification and regression with kNN, the algorithm can be improved
by taking the distance of the neighbours to the new data point into account. We
can assign a higher weight to nearer neighbours and a lower weight to more distant
ones. Often the approach of giving each neighbour a weight of 1

d is used, where d is
the distance between the new point and the neighbour [24].

2.5.3 Random Forest

Random Forest is a machine learning model that is very versatile and can perform
regression and classification tasks. It is an ensemble learning method, as it combines
a group of weak models to form one bigger more powerful model. The models that
are combined are decision trees, tree based structures that split the data on a certain
condition at every node.

Using Random Forest we grow multiple decision trees, with each there own fea-
tures and conditions on the nodes. The nodes in the trees are different because when
selecting which feature is best to split on, only a randomly selected part of all fea-
tures are given as options. To appoint a new incoming question pair to a class, each
tree gives a classification (a vote) and the Random Forest model chooses the class
with the highest number of votes over all trees.

2.5.4 XGBoost

XGBoost (eXtreme Gradient Boosting) is an upcoming gradient boosting algorithm,
which is popular because it is ten times faster than current gradient boosting models.

Boosting uses a combination of different weak rules and combines them to a
more powerful model by voting (like in Random Forest), by averaging or by weighted
voting (one weak rule might be more important than others). An example of a weak
rule would be "if two questions have more than 5 words the same, it is the same
question". The weak rules are found by applying basic machine learning algorithms
to the dataset.

XGBoost is special because of its speed, which is due to the fact that it imple-
ments parallel computing. However it also has other benefits over other boosting
algorithms like the fact that it works well against overfitting by implementing regu-
larization and that it has a very high flexibility as users can set their own optimiza-
tion objective and evaluation criterium.

2.5.5 Logistic regression

Logistic regression is a regression model with a categorical output. Here supervised
learning is used for classification purposes. Usually, there are two classes in logistic
regression, logistic regressions with more classes are analysed with multinomial or
ordinal logistic regression.

The goal of logistic regression is to find the best description of the relationship
between the independent variables and the response variable. This is done using a
logit transformation of the probability of the output being positive:

logit(p) = ln(
p

1− p
) = b0 + b1X1 + b2X2 + ...+ bkXk (2.5)

Chapter 2. Literature study 31

Here p is the probability of the response variable being positive, b are the parameters
of the model and X are the independent variables [24].

2.5.6 Support Vector Machines (SVM)

An SVM is a binary classifier, based on independent variables it appoints observa-
tions to one out of two classes. SVM is a supervised learning method with classifica-
tion as output. When an SVM is trained a linear boundary is searched which divides
the two classes as good as possible. This boundary is called the maximum margin
hyperplane. This hyperplane is found by maximizing the margin, i.e. the perpendic-
ular distance between the hyperplane and the closest observation of each class. In
figure 2.12 the margin of the bold black hyperplane is shown with the smaller black
lines. The bold black line is the maximum margin hyperplane, because it creates a
larger margin than the orange or green hyperplanes. When a new observation is
added to the dataset, we can easily classify it based on which side of the maximum
margin hyperplane it is located on.

FIGURE 2.12: An example of finding the maximum margin hyper-
plane in SVM [39].

In some cases it seems hard to divide the data into two classes with a linear
hyperplane, as shown in the left figure of figure 2.13. In SVM this problem can still
be solved linearly, but in a higher dimension. This higher dimension is calculated
using a kernel function, i.e. a mathematical transformation of our data. When we
translate the linear boundary back to the input space it becomes non-linear [24].

FIGURE 2.13: An example of non-linear SVM: using a kernel to lin-
early divide the data in a higher dimensional space [55].

Chapter 2. Literature study 32

2.5.7 Neural networks

Artificial neural networks are based on the structure of human brains. Human brains
can solve complicated problems fast because they are composed of billions of cells,
called neurons, which are all working together. In figure 2.14 an artificial neural net-
work is depicted. As in the human brain, this network consists of neurons where
the information is processed. Signals are passed between neurons over weighted
connection links. Each individual neuron applies a certain activation function over
its input to determine its output. An artificial neural network can consist of many
more layers than in the figure, and all layers between the input and output layer are
called hidden layers. The input layer has as many neurons as there are independent
variables, and the output layer has as many neurons as their are dependent vari-
ables. The amount of hidden layers, and the amount of neurons in the hidden layers
depends on the type and amount of data.

FIGURE 2.14: The structure of an artificial neural network with one
hidden layer [22].

When a neural network is trained, the weights on the connection links between
the neurons are modified, as to reach the optimal model for the training dataset. Of
course, for learning to work there needs to be an element of feedback, the network
needs to know what it is doing right or wrong. With this information it can modify
the weights on the connection links, and see if the result is better. The larger the
difference between the model outcome and the actual outcome, the more radically
the connection weights will be altered. In neural networks this feedback process
is called backpropagation, as it works back from the output neurons through the
hidden neurons to the input neurons. Once the network is done training, it can be
presented with new inputs to generate responses.

There are many types of artifical neural networks. The network in figure 2.14
is a feed-forward neural network (FNN) as the information propagates only in one
direction. In chatbot systems recurrent neural networks (RNNs) are used because
these networks can learn vector representations from words and can remember a
huge context compared to other neural networks. RNNs, in contrast to FNNs, have
bi-directional data propagation. Data is propagated from input to output, but data
from later processing stages is also propagated to earlier stages [24].

When a RNN is trained on a large dataset it is usually not possible to optimize
the weights of the connection links in a way that the model output is exactly the

Chapter 2. Literature study 33

same as the actual output for each observation. The sum of the difference between
these outputs for all observations is the total error of the model. To minimize this
error, gradient descent can be used to change the weights on the connection links in
proportion to its derivative. A lot of different RNN architectures were developed to
minimize the total error, and the one used for chatbot systems is Long Short-Term
Memory (LSTM).

LSTM networks are good at remembering values, in the chatbot case context, for
long durations of time. These networks contain gated cells outside the normal flow
of a RNN. These gated cells are used to store, write and read information from. The
cell itself learns what to store, write and erase and when to allow reads, via gates that
can open and close. The gates are implemented with element-wise multiplication by
sigmoids, giving analog output in the range of zero to one. The gates work based on
signals they receive, and block or pass information based on the strength and sign of
the signal, which is processed with the gates own set of weights. These weights, like
the weights on the connection links of the RNN, are adjusted during training. Thus
the gated cells learn when to import, leave or delete data. In figure 2.15 an example
of the structure of a gated cell is shown at the word "free".

FIGURE 2.15: Diagram of a sequence-to-sequence neural network as
used in Google Smart Reply [18].

The neural network shown in figure 2.15 is an example of an end-to-end memory
network. These networks allow the model to read the input multiple times before
creating an output. This way the memory content can be updated at each step. The
specific end-to-end network in the figure is called a sequence-to-sequence network.
This network is constructed of two LSTM RNNs, as used in Google Smart Reply.
The first RNN encodes the data and the second RNN generates the output. Each
green or blue box in figure 2.15 represents a cell of the LSTM RNN. The encoder and
decoder networks can share weights, or, more commonly, use different parameters
[18].

Another popular type of RNN in NLP is the dual encoder LSTM network, which
is shown to give good performance on the Ubuntu dialogue corpus [36]. The archi-
tecture of a dual encoder LSTM is shown in figure 2.16. To use this network both
question and answer are split by words, and each word is embedded in a vector.
These vectors are fed into the same RNN word-by-word. In the figure c represents
the question words and r the response words. The RNN now generates a vector that
represents the meaning of the question-answer pair. We can multiply c with a matrix
M to generate a response r′. This matrix M will be learned during the training of the
network. Finally, we can measure the similarity of the actual answer r and the pre-
dicted answer r′ by taking the dot product between their respective word vectors.

Chapter 2. Literature study 34

A sigmoid function can be used to convert the dot product outcome to a similarity
score [45].

FIGURE 2.16: Architecture of a dual encoder LSTM network [45].

35

Chapter 3

Methodology

In this chapter we give an overview of the models used to create a chatbot and the
chatbot implementation. Figure 3.1 shows a simple diagram of a chatbot. A user
can sent a message to the chatbot to which the chatbot formulates a reply using
the question-answer dataset. The user and chatbot can sent multiple messages and
replies, creating a chat conversation. We have modelled the chatbot using a vector
space model, as explained in section 3.1, and using machine learning models, as
explained in section 3.2. For both models we have created a chatbot implementation,
which is explained in section 3.3. The chatbot implementation section describes the
physical manifestation of the end product and its features.

In this thesis financial question-answer and question-to-question datasets are
used as the basis for the chatbot, but the same models can also be applied to other
domains. The chatbot is very general as it can be applied to any domain for which
question-answer and/or question-to-question datasets exist.

User Chatbot

Question-
Answer dataset

Message

Reply

FIGURE 3.1: A diagram of the chatbot framework.

3.1 Vector space model

In figure 3.2 the same diagram as for the simple chatbot model is used to show
the inner workings of the vector space chatbot model. The vector space model is a
mathematical model used to represent text documents (in this case questions) and is
often applied to relevancy rankings. Our vector space model consists of four steps.

The first step in this model is data preprocessing, in which the question goes
through an NLP pipeline.

After data preprocessing, the terms in the questions are weighted using term
frequency-inverse document frequency (TF-IDF). In this process we create term vec-
tors for the incoming question and the questions in the dataset.

Chapter 3. Methodology 36

In step 3, the similarity between the question vectors is calculated using cosine
similarity.

Finally, the dataset question with the highest similarity to the incoming question
will be ranked highest, and the answer to this dataset question will be returned as an
answer for the incoming question. We describe the details of the vector space model
in chapter 4.

User

Data pre-
processing

Question-
Answer dataset

Term
weighting

Measuring
similarity

Ranking

Question

Answer

Chatbot

FIGURE 3.2: A diagram of the vector space model.

3.2 Machine learning model

Figure 3.3 gives an overview of the inner workings of the machine learning chatbot
model. The first step in this model is data preprocessing, which is done with the
same NLP pipeline as in the vector space model.

In the second step, features are created from the preprocessed data. These fea-
tures include question length, TF-IDF vector similarity, TF-IDF vector similarity us-
ing synonyms, TF-IDF score similarity for the most used words, and more.

In the machine learning step a machine learning model trained on the question-
to-question dataset is used to score how well two questions match. In this step a
confidence level is calculated for the match between the incoming question and each
question in the dataset. The machine learning models used are XGBoost, neural
networks, random forest and SVM.

In the ranking step, we retrieve the dataset question with the highest confidence
level for matching. The answer to this dataset question is returned to the user. We
describe the details of the machine learning model in chapter 5.

Chapter 3. Methodology 37

User

Data pre-
processing

Question-to-
Question dataset

Question-
Answer dataset

Feature en-
gineering

Machine
learning

Ranking

Question

Answer

Chatbot

FIGURE 3.3: A diagram of the machine learning model.

3.3 Chatbot implementation

The implementation of the vector based model and the machine learning model in
a chatbot application is shown in figure 3.4. Both models output the best matching
question from the dataset and the cosine similarity (vector space model) or confi-
dence level (machine learning model) with which this question matches the user
question. If the confidence level for this question is high enough (bigger than x in
the figure) an answer can be given. This answer is the answer given to the matched
dataset question.

If the confidence level is not high enough different terms will be added to the
question. By running the newly formed question through the chatbot system again
and again (with different terms), we can see if adding a certain term to the question
increases the confidence level of matching enough to reach the threshold (x). If the
threshold is reached, a return yes/no question is asked to the user. For example,
if adding the term "AOW" to the question makes it reach the threshold, the return
question is "Does your question have to do with AOW?" If the answer to this ques-
tion is yes, then the answer to the dataset question that reached the confidence level
will be given. If the answer is no, then the question will be sent through to an ex-
pert. Also, if adding words to the question does not lead to reaching the confidence
level than the question will be sent through to an expert. An expert, in this case, is a
human trained in the financial domain.

We describe more details about the chatbot implementation and the results of the
chatbots in section 6.

Chapter 3. Methodology 38

User Chatbot

Question-to-
Question dataset

Question-
Answer dataset

Add terms
to question

ExpertUser

Yes No

Question

Answer

Return question

Expert answer

cl ≥ x cl < x

cl ≥ x cl < x

FIGURE 3.4: A diagram of the implementation of the chatbot. Cl

stands for the confidence level of the match between the incoming
question and the best matching question in the dataset. If the confi-
dence level is high a question is immediately answered by the chat-
bot. A lower confidence level can lead to a return question, or the

question being sent through to an expert.

39

Chapter 4

Vector space model

In this chapter we create a vector space model to answer questions. The basis of the
vector space model is described in section 2.4. Vector space models are most often
used for document retrieval. In this chapter we do not use the model for retriev-
ing documents, but for retrieving an answer to a question. Answers are retrieved
from a question-answer dataset, which is described, cleaned and explored in section
4.1. Natural Language Processing techniques that are applied to this dataset and
incoming questions are described in section 4.2 and we describe the creation of the
document-term matix using TF-IDF in section 4.3. The cosine similarity measured
used to compare questions and select an answer, and the final ranking is described in
section 4.4. Finally, the results of the vector space model on the dataset are described
in section 4.5.

4.1 Data

The data used in this study comes from Kandoor, an online platform on which Dutch
people can ask financial questions to experts. The framework in which the questions
are asked is a chat setting. Therefore the conversation between user and expert is not
limited to one question and one answer, but can also contain an entire chat session.

The data is stored in three JSON1 files. The first one contains the first question
a user asked, the second one contains all messages in the rest of the chat session
and the third one contains information about who typed which message. The data
contains 3936 first questions in total.

4.1.1 Data cleaning

A first glance at the data reveals that there are many unanswered questions. This
is not because the experts did not answer (they almost always did), but because the
experts asked a return question to the user to be able to answer their question and
this return question was never answered. Since our model returns answers from the
dataset as an answer to a new question, we need the set of answers to be as correct
as possible. To achieve this we clean the dataset by removing question-answer pairs
that do not meet our criteria.

In the chat sessions it is difficult to distinguish which chat message is the real
question and which message is the real answer (instead of the expert just greeting the
user). To make sure our final dataset consists only of financial question-answer pairs
(and not chat sessions), we select all sessions in which the first reply was given by an
expert and the second reply was either non-existent or given by a user. From these

1JavaScript Object Notation

Chapter 4. Vector space model 40

sessions we extract only the question and the first reply (the answer). After this pro-
cedure we are left with 3592 question-answer pairs. These pairs are further manually
cleaned to remove test questions, double questions which got an answer like ’This
is a double question. Please, check my previous response.’, vaguely posed ques-
tions, questions which do not include enough background information and other
non-representative questions. Finally, we are left with 3153 question-answer pairs.

4.1.2 Data exploration

To provide an insight into the dataset, consider table 4.1 for a random sample of ten
question-answer pairs from the cleaned dataset. Some observations we make from
this table are:

• There is a large variation in question and answer length

• There is a large number of spelling mistakes in the questions

• Many answers contain hyper-links

• Answers are often formulated for very specific cases

• Answers often contain a salutation with the user’s name, and a greeting with
the expert’s name

In the process of cleaning the data we found that there were some questions and
answers that appeared more frequently than others. A lot of questions were about
pensions and AOW (a basic state pension in the Netherlands). Many questions were
also about insurance, unemployment benefits and an AOW gap for which a bridging
benefit exists. In the answers we saw that many users were sent through to a website
where they could find their pension information and another website where they
could find their AOW age. We have counted how many times these questions and
answers were given and the results can be found in figure 4.1. As this figure shows,
more than half of the question-answer pairs contain the word ’pension’ and more
than 30% of the question-answer pairs contain a hyper-link.

FIGURE 4.1: A bar chart displaying how many question-answer pairs
contain a certain word or hyper-link.

Question Answer
kan ik met deeltijd pensioen . 3dagen werken 2 dagen pen-
sioen. hoe wordt er dan gerekend

Beste Jan,
Als u met u werkgever kunt afstemmen dat u 3 dagen gaat werken en u voldoende pensioen
heeft opgebouwd, kunt u een deeltijd pensioen aanvragen bij uw pensioeninstelling. Het reke-
nen gaat ongeveer als volgt: U werkt 3 dagen in de week: dit is meestal een 60% (3/5) parttime.
U bouwt verder pensioen op over uw parttime loon. U neemt twee dagen pensioen in de week.
Dat is dan ca. 40% van uw voltijdspensioen. U kunt het beste een pro forma berekening aan
uw pensioeninstelling vragen. Dan weet u waar u aan toe bent.
Met vriendelijke groeten, Jurgen
Kandoor.nl is een platform dat mensen met een financiële vraag verbindt aan mensen die meer
weten. Deze mensen zijn een soort gidsen en helpen anderen in hun vrije tijd met financiële
kwesties. Ben je goed geholpen? Sluit de vraag dan af! Bedankt!

Mijn moeder van 94 ontvangt van het begin al aow, sinds
een paar maanden ontvangt ze geen aow meer, er is niks
veranderd in haar situatie, kan dat?

Geachte Frans,
Ik zou geen redenen weten zo direct. Hebt u ingelogd bij het SVB om te zien wat er gaande
is. Kunt daar de status zien. U kunt inloggen met het digid http://www.svb.nl/int/nl/.
Mocht u daar rare dingen tegen komen kunt u direct mailen of bellen.
vr.gr. Andre

Ben ik als ik voor onderzoek naar het Albert Sweitzer
ziekenhuis in Dordrecht moet, ook verzekerd?
Mevr. A Verstraten-Mies

Beste mevrouw Verstraten, Op de website van het Albert Schweitzerziekenhuis kunt u vinden
met welke verzekeraars allemaal een contract is afgesloten. U vindt dit als u dit internetadres
in uw adresbalkje op internet plakt: https://www.asz.nl/patienten/Zorgkosten/
Zorgverzekering/gecontracteerde-zorgverzekeraars-2016/ Als uw verzekeraar
er niet bijstaat adviseer ik u even contact op te nemen met de verzekeraar. Zij moeten u in dat
geval vertellen: - onder welke voorwaarden u toch naar het ASziekenhuis kunt -welk ander
ziekenhuis bij u in de buurt bezocht kan worden.
Veel succes. Ellen den Boer

Mijn vraag ,worden pesioenen ergens centraal gereg-
istreerd.

Geachte mevrouw of heer, Veel pensioenen worden in het pensioenregister geregistreerd
(niet allemaal). U kunt dat raadplegen op de volgende website. https://www.
mijnpensioenoverzicht.nl/pensioenregister/Met vriendelijke groet, Ernst de Reus

http://www.svb.nl/int/nl/
https://www.asz.nl/patienten/Zorgkosten/Zorgverzekering/gecontracteerde-zorgverzekeraars-2016/
https://www.asz.nl/patienten/Zorgkosten/Zorgverzekering/gecontracteerde-zorgverzekeraars-2016/
https://www.mijnpensioenoverzicht.nl/pensioenregister/
https://www.mijnpensioenoverzicht.nl/pensioenregister/

Mag een reisverzekering (abnamro) bij twijfel over een
aankoop een machtiging toesturen voor de site waar je je
aankoop hebt gedaan. Terwijl dat de facturen al zijn gezien
en meegenomen door een expert die thuis is geweest van
de verzekering. Hoe zit het met privacy wetgeving en waar
ligt de grens. Tot hoe ver moet ik meewerken?

Beste heer/mevrouw,
De reisverzekering (ABNAMRO) vraagt niet zomaar gegevens van u op. Dat zou in het kader
van de privacywet niet moeten mogen. Maar daarom sturen ze u eerst een machtiging om
toestemming te krijgen om gegevens op te vragen. Het kan zijn dat zij dit nodig achten voor-
dat zij tot vergoeding van een gedane aankoop overgaan. Verzekeringsbedrijven willen door
fraude die helaas vaak voorkomt niet teveel risico’s nemen. Het is in die zin dus wel begri-
jpelijk dat ze onderzoek willen doen. Maar u bepaalt of u de machtiging wilt geven of niet. U
kunt misschien wel bij ABNAMRO navragen voor welke gegevens de machtiging geldt. En,
voor zover ze dit niet gedaan hebben, of ze op de machtiging willen aangeven welke info ze
precies gaan opvragen zodat u alleen daarvoor tekent.
mvg Daniëlle

Hoeveel belasting is er ingehouden van het vakantiegeld
van een alleenstaande AOWer?

Hoi
Dit is o.a. afhankelijk van: "bent u altijd verzekerd geweest" en "is er loonheff-
ingskorting" toegepast. Uw betaalspecificatie zou daar opheldering over moeten
geven. Tip: op de site https://www.rekenkeizer.nl/pensioen-aow-leeftijd/
aow-vakantietoeslag-vakantiegeld-vakantiebijslag-bruto-netto-berekenen
kunt u eea precies narekenen!
Succes!
Patrick

Ik kreeg net een mail van Salarisadministrateur. Hierin
staat: Voorheen betaalde het pensioenfonds meer premie
dan de werknemer over deze opbouw. Echter, per 1 januari
2016, heeft het pensioenfonds dit aangepast naar 50% voor
beide partijen. Dus 50% voor de werknemer en 50% voor
het pensioenfonds. Voor jou betekent dit dat wij vanaf jan-
uari t/m juni een correctie moeten doen. Het gecorrigeerde
bedrag hebben wij verdeeld over de rest van het jaar of tot
eind van de ouderschapsverlof periode indien deze voor
eind van het jaar eindigt. Vanaf juli is het bedrag dat wij in-
houden voor het pensioen dus hoger ivm de verhoging en
de correctie. Het verschil voor de medewerkers ligt tussen
de +-e5 en e28. Ik heb vanaf 01-01-2016 ouderschapverlof.
Vraag mag dit zomaar?

Beste Quinten, Pensioen is een arbeidsvoorwaarde. Als sociale partners afspreken (werkgever
of werkgeversorganisatie en vakbonden) om de premieverdeling te wijzigingen dan kan dat.
In die zin is pensioen vergelijkbaar met andere arbeidsvoorwaarden, waar soms ook verbe-
teringen en verslechteringen worden afgesproken. Het zou slechts anders zijn als u niet onder
een CAO valt, maar een individuele afspraak heeft gemaakt met uw werkgever over uw ar-
beidsvoorwaarden. In dat geval zou het alleen in onderling overleg kunnen. Met vriendelijke
groet, Ernst de Reus

https://www.rekenkeizer.nl/pensioen-aow-leeftijd/aow-vakantietoeslag-vakantiegeld-vakantie bijslag-bruto-netto-berekenen
https://www.rekenkeizer.nl/pensioen-aow-leeftijd/aow-vakantietoeslag-vakantiegeld-vakantie bijslag-bruto-netto-berekenen

Ik ben 73 mijn vrouw is 60 ik krijg nu een extra AOW bij-
drage voor mijn vrouw wij overwegen om in Suriname te
gaan wonen. Kunt u mijn zeggen wat het gevolg is voor
deze extra bijdrage en de aow opbouw van mijn vrouw.
Als mijn vrouw in nederland blijft ingeschreven en 3 mnd
in suriname verblijft en dan weer 3 mnd in Nederland en
zo verder wat is dan het gevolg

Beste heer Vernooij,
U kunt op de website van de sociale verzekeringsbank informatie vinden over het ontvangen
van toeslag op uw AOW ivm. een jonger partner. Zover ik kan zien, kunt u dit behouden
als u naar Suriname verhuist. Zie: http://www.svb.nl/int/nl/aow/wonen_buiten_
nederland/beu/index.jsp
Met vriendelijke groeten, Jurgen
Kandoor.nl is een platform dat mensen met een financiële vraag verbindt aan mensen die meer
weten. Deze mensen zijn een soort gidsen en helpen anderen in hun vrije tijd met financiële
kwesties. Ben je goed geholpen? Sluit de vraag dan af! Bedankt!

Is extra aflossen van mijn hypotheek een goed idee op de
lange termijn?

Je kunt 30 jaar hypotheekrente aflossen, dus uiteindelijk stijgen je kasten bij niet aflossen, om
voor uw persoonlijke situatie af te wegen of dit interssant is kan ik niet direct beoordelen. Ik
raad je aan om bijv de calculator op fiscalert.nl te gebruiken

Tussenpersoon van verzekering geeft per mail door dat de
schade uitbetaald wordt ik regel een bedrijf dat de hele
schade gaat maken , het bedrijf besteld alles en begint met
de reparatie , op dat moment krijg ik een mail (3 weken na
het eerste mailtje) dat de schade niet wordt vergoed ivm te
laat betalen van een premie ?

Beste heer Vink,
Als u de premie voor je autoverzekering niet of (te) laat hebt betaald zult u in eerste instantie
incassoherinneringen ontvangen hebben. Als u daarop niet gereageerd heeft. Dan zal uw
verzekering opgeschort worden. Dat betekent dat uw verzekering als het ware in de pauzes-
tand wordt gezet. Als u dan gaat auto rijden, bent u dus niet verzekerd! De gevolmachtigde
agent maakt dan een een extra polisblad waarin staat dat de verzekering per de premieverval-
datum is opgeschort. Uw kenteken wordt dan ook afgemeld bij de RDW. Zij melden in hun
systeem (het kentekenregister) dat de verzekering voor jouw auto is beëindigd.
Echter ook nadat een verzekering is beëindigd of opgeschort wegens wanbetaling blijft een
verzekeraar aanspreekbaar voor eventuele schade die met het onverzekerde voertuig wordt
toegebracht. De verzekeraar moet zich namelijk houden aan wettelijke bepalingen. Zo moet
de verzekeraar het kenteken afmelden bij de RDW, maar dat moet gebeuren binnen 30 dagen
nadat de premie betaald had moeten worden. Is uw verzekering opgeschort? Dan blijft de
verzekeraar wel tot 16 dagen daarna nog aanspreekbaar voor de schade. Zo worden eventuele
slachtoffers zoveel mogelijk beschermd. Let op: verzekeraars kunnen de schade-uitkering die
ze in deze periode moeten doen aan een onschuldige tegenpartij, wel verhalen op de onverzek-
erde persoon.
In uw situatie heeft u schade. De verzekering hoeft de schade cf bovenstaande dan niet te
betalen. Geldt er een bijzondere reden dat u de premie niet betaald heeft of heeft u geen herin-
nering gehad, dan zou ik in ieder geval bezwaar maken tegen het besluit van uw verzekeraar.
Met vriendelijke groet, Daniëlle Blezer

TABLE 4.1: Ten randomly sampled questions with answers from the Kandoor dataset.

http://www.svb.nl/int/nl/aow/wonen_buiten_nederland/beu/index.jsp
http://www.svb.nl/int/nl/aow/wonen_buiten_nederland/beu/index.jsp

Chapter 4. Vector space model 44

Word counts and sentences counts

To analyse the text in the questions and answers we first gathered statistics and
made visualizations of the number of words and sentences they contain. In figure
4.2 histograms and box plots of the number of words in the questions and answers
can be found. Figure 4.3 show the same figures for the number of sentences.

In figure 4.2 we see that questions containing 0 to 30 words already span more
than 50% of the dataset. This histogram is fat-tailed as it shows a large skewness to
the right. In this histogram we cut off the number of words at 300, while the actual
word maximum was 411. In this procedure we cut off 0.13% of the question data.
The questions have an average of 36 words and a median of 27 words. Considering
the histogram we expected the average to be higher than the median, as questions
exist with up to 411 words.

Comparing the number of words in the questions and answers, we see that the
answers are on average more than twice as long as the questions. This can have
multiple causes, for example because financial answers are complex and the expla-
nation of financial measures or procedures can take up many words. The histogram
for the answers shows that the number of words most frequently used in answers is
between 30 and 70 words. The answers with 30 to 70 words also make up more than
50% of the dataset. The median is a bit higher with 71 words in an answer. The cut
off of the histogram at 300 words removes 2.25% of the answers from the histogram.

The box plot in figure 4.2 shows that questions have a statistically significant
lower number of words than answers. This can be seen by the interquartile ranges
of the box plots not overlapping each other.

Figure 4.3 shows that about 40% of the questions consist of one sentence and that
most answers consist of 3 to 6 sentences. The histograms are fat-tailed and show a
large skewness to the right as the mean is higher than the median. The median
number of sentences in questions and answers is 2 sentences per question and 6
sentences per answer, respectively.

The box plot in figure 4.3 shows that questions have a statistically significant
lower number of sentences than answers. This can be seen by the interquartile
ranges of the box plots not overlapping each other. This was also expected as the
questions also have a significantly lower number of words.

After these first word and sentences counts, we became interested to see whether
there was a relation between question and answer length. To explore this relation we
created the heat maps in figure 4.4. From these heat maps we can see that there is
no relation between question length and answer length. We expected differently, as
longer questions can describe a more specific situation to which a very specific and
short answer, can be given.

To research the keywords and topics of the questions and answers more closely
we made an ordered bar chart with the 25 most used words in the questions and
answers. To generate these bar charts we first made all letters in the questions and
answers lowercase and then removed stop-words. The removed stop-words con-
tained a standard list of Dutch stop-words and we added some frequently occurring
words which had little meaning in our dataset to this list. These were salutations,
frequently mentioned names of experts, and Dutch stop-words that were not in the
standard list.

In figure 4.5 we can see that the most used words in the questions are ’pen-
sioen’, ’jaar’, ’aow’ and ’uitkering’. The most used words in the answers are ’pen-
sioen’,’aow’, ’pensioenfonds’ and ’jaar’. In the questions ’pensioen’ makes up 3.1%
of all words in all questions and in the answers it makes up 2.3%.

Chapter 4. Vector space model 45

(A) Histogram (B) Box plot

FIGURE 4.2: Charts displaying the distribution of the number of
words in the questions and answers.

(A) Histogram (B) Box plot

FIGURE 4.3: Charts displaying the distribution of the sentences of
words in the questions and answers.

Chapter 4. Vector space model 46

(A) Words (B) Sentences

FIGURE 4.4: Heat maps displaying the relation between the number
of words and sentences in question and answer.

Chapter 4. Vector space model 47

FIGURE 4.5: A bar chart displaying the frequency of the 25 most used
words in the questions and answers.

Chapter 4. Vector space model 48

N-grams

In this section we look at the unigrams and bigrams in the questions and answers.
When looking at common unigrams in question and answer, we are essentially look-
ing at words (after stop-word removal) that occur in the question and the corre-
sponding answer. The number of common unigrams and bigrams in our dataset can
be seen in the histogram in figure 4.6(A). In this figure, we see that question-answer
pairs with 0 to 3 words in common make up more than 50% of the dataset. Surpris-
ingly, we also see that about 12% of the question-answer pairs do not contain any of
the same words. An example of this is:

Question Ik ben weduwe en ontvang partnerpensioen vervalt die als ik hertrouw

Answer Geachte mevrouw, Dat valt niet zo te zeggen maar hangt af van de pen-
sioenregeling. In sommige regelingen stopt de uitkering op het moment dat
de overgebleven partner opnieuw gaat samenwonen of trouwen. U kunt dat
het beste navragen bij de pensioenuitvoerder hoe dat voor u geregeld is. Met
vriendelijke groet, Ernst de Reus

This question-answer pair does not contain words that are exactly the same, but it
does contain compound words, like ’partnerpensioen’ in the question of which both
parts are used in the answer. Also, the question contains the word ’weduwe’ where
the answer has the synonym ’overgebleven partner’.

Figure 4.6(A) also shows the bigrams occurring in the question and the corre-
sponding answer. An example of a common bigram is when the question contains
the bigram ’accrued pension’ and the answer too. As we can see in the figure, com-
mon bigrams do not occur very often. About 72% of question-answer pairs do not
have any common bigrams. This is probably due to the fact that words that are
often a bigram in English are compound words in Dutch. For example, in English
’pension fund’ can be a bigram, where this in Dutch becomes the compound word
’pensioenfonds’.

A longer question (or answer) has a higher chance of containing unigrams and
bigrams from the corresponding answer (question). Therefore displaying a ratio of
unigrams and bigrams in comparison to the total number of words gives a better
representation. To do this we used the Jaccard index:

J(Q,A) =
|Q ∩A|
|Q ∪A|

(4.1)

This index takes the number of common unigrams |Q∩A| in the question Q and the
answer A and divides this by the set of the total number of words |Q ∪ A|. Figure
4.6(B) shows a histogram of the Jaccard distances for the unigrams and bigrams.
Here the Jaccard index takes the number of common bigrams and divides this by
the set of the total number of bigrams. This histogram shows that about 70% of the
question-answer pairs in the dataset have a Jaccard distance smaller than or equal to
0.06 for unigrams. The Jaccard distance for bigrams is smaller than or equal to 0.02
in 83% of the dataset.

Chapter 4. Vector space model 49

(A) Count (B) Jaccard distance

FIGURE 4.6: Histograms displaying the count and Jaccard distance of
the common unigrams and bigrams in the question-answer combina-

tions.

Conclusion

After this exploration of the dataset, we have found some key points that we need
to pay attention to when applying NLP and when modelling:

• Many answers contain salutations with names in them, and sometimes very
personal messages, for example if someone passed away. Therefore we have
to make sure that answers we return to new questions are directed towards
this new user and do not contain messages that are not suited to this user.

• There is a large number of spelling mistakes in the questions

• Compound words and synonyms make it seem like question and answer are
not similar

• Question and answer are very dissimilar. Common unigrams do occur often,
but common bigrams are very rare.

As question and answer are very dissimilar, we do not focus on matching a new
question to an answer from the dataset. We only focus on matching a new question
with the questions in the dataset, and if we find a match we return the answer that
corresponds to the matched question.

Chapter 4. Vector space model 50

4.2 Natural Language Processing

In this section NLP techniques are applied to the questions and answers to prepare
them for modelling.

In the data exploration phase we found that answers often contain personalised
salutations.To improve the dataset from which we return answers, we replaced these
personalised salutations with general salutations. This process is further specified
in section 4.2.1.

The questions go through our NLP pipeline. An overview of the NLP pipeline
and a more detailed explanation of the techniques in the NLP pipeline can be found
in section 4.2.2.

4.2.1 Salutation replacement in the answers

During data exploration we found that the answers in the dataset contained personal
salutations and closings. For example, an answer could start with "Dear Jonathan,"
and end with "Kind regards, Suzanne". To make sure that all questions are suitable
as an answer to any user we changed all salutations into "Dear Sir/Madam," and
endings into "... regards, KanBot". In the ending we kept the word in front of ’re-
gards’, so for example it could be just "regards" or "kind regards" or "best regards" or
another variation. KanBot is the name of the chatbot, which was already thought of
by Kandoor. The replacement of the opening salutations was done with the pseudo-
code in algorithm 1 and the replacement of the greetings was done with algorithm
2. With algorithm 1, we managed to replace 90% of our greetings with the standard
"Dear Sir/Madam, " greeting. Most answers that were not affected by the algorithm
did not start with a greeting to begin with. With algorithm 2, 80% of answers was al-
tered to end with "KanBot" instead of the name of an expert. The unaffected answers
can still contain names of experts, but these are hard to replace with an algorithm
without also replacing parts of the last sentence that should not be replaced. An ex-
ample of this is an answer ending with just the name of an expert without a greeting
word like "Groeten". We cannot remove all last words from answers as this could
also mean removing the last word of answer that has no greeting or expert name at
the end. In that case we would accidentally remove the last word of an answer.

Algorithm 1 Replacement of opening salutations
1: Break up each answer into its sentences.
2: Collect "greeting words" from the first sentence of each answer. "Greeting words"

is a list of words that we composed specifically for this dataset.
3: If the first sentence of an answer contains either a greeting word or the second

word in the answer is a comma, then substitute everything before (and includ-
ing) the first comma in the answer with "Dear Sir/Madam, ". Else do nothing.

Some examples of original sentences are:

• "Dear Jonathan, this is a financial answer. Best regards, Suzanne"

• "Jonathan, this is a financial answer. Regards, Suzanne"

• "Hi Jonathan, this is a financial answer. Good luck with it! Suzanne"

After salutation replacement these sentences would transform into:

• "Dear Sir/Madam, this is a financial answer. Best regards, KanBot"

Chapter 4. Vector space model 51

Algorithm 2 Replacement of closing salutations
1: Break up each answer into its sentences.
2: Collect "closing words" from the last sentence of each answer. "Closing words"

is again a list of words that we composed specifically for this dataset.
3: If the last sentence of an answer contains a closing word, then substitute every-

thing from (and including) the closing word with "closing word, KanBot". If
else, the last sentence only contains one word than replace this word by "Kan-
Bot". Else do nothing.

• "Dear Sir/Madam, this is a financial answer. Regards, KanBot"

• "Dear Sir/Madam, this is a financial answer. Good luck with it! KanBot"

4.2.2 The NLP pipeline for the questions

During the data exploration phase, we found some key points we needed to take
into account in NLP. This resulted in the NLP pipeline for the questions in figure
4.7. The order of applying these NLP techniques is very important. For example, if
we would want to extract a word from a compound word before spelling correction,
we could miss extracting words in which the compound words are misspelled. The
word "pensjoenfonds" will not lead to "pensioenfonds" if compound word extraction
is done first and it will lead to "pensioenfonds pensioen" if spelling correction is
done first. Of course "pensioenfonds pensioen" can lead to more matches than only
"pensioenfonds".

That said, the placement of stop-word removal in this order of techniques is only
dependent on spelling correction. Stop-word removal has to take place after spelling
correction, as also stop-words can be misspelled. We apply stop-word removal early
on in the process to shorten the calculation time of later parts but the actual outcome
is not influenced by this placement. Therefore, if later on we decide to expand the
list of stop-words to try and achieve better results we can just subtract these extra
stop-words from the already prepared dataset.

Tokenization

Tokenization, as explained in section 2.3.1, is the process of breaking down a text
into words and symbols. We apply this by separating all words and punctuation
with white space.

Lower-casing

From this point on, we changed all letters in our dataset to lower-case to make sure
that identical words match each other, regardless of the letters begin lower-case or
upper-case.

Spelling correction

In the data exploration we found that the questions in our dataset contained many
spelling mistakes. These spelling mistakes can influence matching a new question
with the questions in the dataset. Therefore, we build a spelling corrector. To do
this we started with a list of all the words currently used in our dataset. Now we
removed the words from this list that were used 5 times or less (these words are very

Chapter 4. Vector space model 52

Hoevel geld ontvang ik als ik 65 jaar word? Ik heb nu vroegpensjoen en ik
word s 16-12 2016 65 jaar.

Tokenization

To
lowercase

Spelling
correction

Stop-word
removal

Compound
words

Stemming

Final cleaning

Hoevel geld ontvang ik als ik 65 jaar word ? Ik heb nu vroeg-
pensjoen en ik word s 16-12 2016 65 jaar .

hoevel geld ontvang ik als ik 65 jaar word ? ik heb nu vroeg-
pensjoen en ik word s 16-12 2016 65 jaar .

hoeveel geld ontvang ik als ik 65 jaar word ? ik heb nu vroeg-
pensioen en ik word s 16-12 2016 65 jaar .

hoeveel geld ontvang 65 jaar word vroegpensioen word s 65
jaar

hoeveel geld ontvang 65 jaar word vroegpensioen word s 65
jaar pensioen

hoevel geld ontvang 65 jar word vroegpensioen word s 65 jar
pensioen

hoevel geld ontvang 65 jar word vroegpensioen word 65 jar
pensioen

FIGURE 4.7: A schematic overview of the NLP pipeline.

Chapter 4. Vector space model 53

likely to be misspelled). We also removed some extra words that we found in the list
for this dataset specifically, that were misspelled even more than 5 times. Now that
we have our list of correct words, we ran the words in all of our questions through
the spelling corrector in algorithm 3. This algorithm made one or more spelling
corrections in 42% of the questions.

Algorithm 3 Spelling correction
1: Calculate the probability of this word occurring for this specific dataset. This is

done by dividing the frequency with which the word occurs in the dataset and
dividing it by the total number of words in the dataset.

2: Find all edits that are only one correction away from the word. One edit can be
a deletion of a letter, an insertion of a letter, a swap of two adjacent letters or a
replacement of one letter for another.

3: Find all edits that are two corrections away from the word. This means running
step 2 again on its own outcome.

4: Restrict the sets of words (one and two edits away from the initial word) to only
include words that are in our existing word list.

5: Generate the corrected spelling candidates for the word. These candidates are
(in order of replacement): the word itself (if it is in the word list), words in the
word list that are one edit away, words in the word list that are two edits away,
and finally if none of these exist it will be the word itself.

6: Correct the word. This is done based on the word candidates generated in the
previous step. If the word itself is in the word list it will not be altered. If the
word is not in the word list the first option is the words that are one edit away
and in the word list. If these exist we choose the one with the highest probability
of occurring in our dataset, as calculated in step 1. Otherwise, we look at the
words that are two edits away and in the word list, again choosing the one with
the highest probability of occurring. If all of these options do not generate words,
we just give the word that was supplied back as this is then a rare word that is
potentially important for the meaning of the question.

Stop-word removal

After spelling correction, we used algorithm 4 to remove stop-words and other char-
acters with little meaning from our dataset. The standard Dutch stop-word list and
a list of stop-words specific to our dataset can be found in appendix A.1. The stan-
dard Dutch stop-word list contains 101 words, and the list with extra words specific
to our dataset contains 37 words.

Extracting words from compound words

In the Dutch language many compound words exist, making a match between two
similar phrases more difficult. For example, ’pensioenfonds’ is a word in Dutch
which will not match with ’pensioen’ while questions containing these words can
be very similar. Therefore we have extracted some words from their compounds
and placed this extra word at the end of the sentence. This way, we can now match
this sentence with other sentences containing either the compound word (e.g. pen-
sioenfonds) or the extracted word (e.g. pensioen). The list with words to extract was
manually constructed and contains 54 words. This list can be found in appendix A.2.

Chapter 4. Vector space model 54

Algorithm 4 Stop-word removal
1: Remove all standard Dutch stop-words using a pre-made Dutch stop-word list.
2: Remove extra words that are specific to the dataset and contain little meaning in

this case. For example, "hello" or "question".
3: Remove all loose punctuation (the punctuation that is separated from words,

like a dot at the end of a sentence).
4: Remove all words which contain numbers except for "65" and "67", because these

have special meanings (pension age) in our dataset.
5: Remove all hyper-links.
6: Change all punctuation that is still present (this is only possible inside words), to

spaces. For example, "pension-age" is changed to the words "pension" and "age".

Some words appear in compound words but not in the list, because these words are
not relevant in our dataset. This is for example the word "vroeg" in figure 4.7.

Stemming

A stemming algorithm was applied on the words in the questions to reduce words
back to their original stem. This is done to make matching of questions with the
same content easier. We used an already existing popular stemming package for the
Dutch language, called Snowball2. This stemming algorithm does not always stem
to the original stem of a word, but it does get words with the same stem to the same
form, which also works. For example, in figure 4.7, the word "hoeveel" is stemmed
to "hoevel" which is not the original stem, but as "hoeveel" is stemmed to "hoevel" in
every question the words will still match.

Final alterations

Finally, upon inspection of the words left in the dataset, we noticed that there were
some words left that consisted of only one character. In the Dutch language no word
consists of one character therefore we removed all words with only one character.

4.2.3 Situation after NLP

After applying the NLP pipeline we are left with a dataset containing three columns:
the original question, the terms left in the question after data preparation, and the
corresponding answer to give back if this question is selected (with improved salu-
tations). Our prepared questions still contain a total of 4978 different words. This
is still a large set of different words, therefore on further inspection we might re-
move more words which seem less useful in the matching of the questions. This
can be done in steps in creating different chatbot versions to see the impact of these
decisions.

4.3 Term weighting

In our vector space model we use the TF-IDF score to create the document-term
matrix. The theory behind TF-IDF was already explained in section 2.3.2, but here
we will give an intuitive example of how this score works in practice. Consider a

2http://snowballstem.org/

http://snowballstem.org/

Chapter 4. Vector space model 55

new question and a dataset of three questions to match it to:
Question: Wat is mijn pensioenleeftijd? Geboortedatum 13-07-1952.
Dataset:

• Question 1: Wanneer krijg ik mijn pensioen? Mijn leeftijd is 65 jaar.

• Question 2: Wat is mijn AOW-leeftijd?

• Question 3: Hoeveel studiefinanciering krijg ik? Geboortedatum 17-05-1992.

Of course, these questions all first go through our NLP pipeline and this results in:
Question: pensioenleeftijd geboortedatum leeftijd pensioen
Dataset:

• Question 1: wanner pensioen leeftijd 65 jar

• Question 2: aow leeftijd

• Question 3: hoevel studiefinancier geboortedatum studie

Some terms appear in only one question in the dataset, other terms appear in mul-
tiple questions. The total number of questions in the dataset is 3. With this we can
calculate the IDF (Inverse Document Frequency) for all terms, by taking the loga-
rithm of the total number of questions divided by the amount of questions in the
dataset the term appears in. The IDF can be found in table 4.2.

Term IDF

65 log(31) ≈ 0.48

aow log(31) ≈ 0.48

geboortedatum log(31) ≈ 0.48

hoevel log(31) ≈ 0.48

jar log(31) ≈ 0.48

leeftijd log(32) ≈ 0.18

pensioen log(31) ≈ 0.48

pensioenleeftijd log(30)set to 0

studie log(31) ≈ 0.48

studiefinancier log(31) ≈ 0.48

wanner log(31) ≈ 0.48

TABLE 4.2: Inverse document frequencies for the questions in the
dataset.

To calculate the TF (Term Frequency), we count how many times a term appears in
a question. To normalize this term count we divide the term count by the maximum
term count in that question. In this example none of the questions have a term that
appears more than once, so no normalization is needed. The term frequencies can
be found in table 4.3.

Chapter 4. Vector space model 56

Question Question 1 Question 2 Question 3
65 0 1 0 0
aow 0 0 1 0
geboortedatum 1 0 0 1
hoevel 0 0 0 1
jar 0 1 0 0
leeftijd 1 1 1 0
pensioen 1 1 0 0
pensioenleeftijd 1 0 0 0
studie 0 0 0 1
studiefinancier 0 0 0 1
wanner 0 1 0 0

TABLE 4.3: The document-term matrix with term frequencies.

We now have the TF and the IDF scores and can calculate the TF-IDF score by mul-
tiplying the TF scores with the IDF values belonging to each term. Doing this we
obtain the document-term matrix in table 4.4.

Question Question 1 Question 2 Question 3
65 0 0.48 0 0
aow 0 0 0.48 0
geboortedatum 0.48 0 0 0.48
hoevel 0 0 0 0.48
jar 0 0.48 0 0
leeftijd 0.18 0.18 0.18 0
pensioen 0.48 0.48 0 0
pensioenleeftijd 0 0 0 0
studie 0 0 0 0.48
studiefinancier 0 0 0 0.48
wanner 0 0.48 0 0

TABLE 4.4: The document-term matrix with TF-IDF scores.

4.4 Measuring similarity

In the previous section we showed how to calculate a TF-IDF vector for a question
given a certain dataset. Many measures exist to compare these question vectors to
each other. We use cosine similarity as this is an often used measure and it works
well for scores between 0 and 1. Also, cosine similarity corrects for document length
(or in our case question length) whereas many other measures do not keep this into
account.

We revisit the example from the previous section. To calculate the cosine sim-
ilarity between the new question and the questions in the dataset we first need to
calculate the length of each question vector:

Length of input question vector =
√
0.482 + 0.182 + 0.482 = 0.70

Length of question 1 vector = 0.98

Length of question 2 vector = 0.51

Length of question 3 vector = 0.96

Chapter 4. Vector space model 57

The cosine similarity between two question vectors is defined as taking the dot
product of the two question vectors and dividing this by the lengths of the respective
vectors:

CosSim(Q,Q1) =
0 · 0.48 + 0 · 0 + 0.48 · 0 + ...+ 0 · 0 + 0 · 0 + 0 · 0.48

0.70 · 0.98
= 0.38

CosSim(Q,Q2) = 0.09

CosSim(Q,Q3) = 0.34

The cosine similarity between the input question and question 1 from the dataset
is the highest, therefore question 1 is chosen as the best match to the new question.
The second best match is question 3 and the third best match is question 2. In the
chatbot model, the answer to question 1 would now be returned as an answer to the
question. However, we do not have exactly these three questions in our dataset but
a set of 3153 other financial questions. The actual answer returned to the question
using our vector space model can be seen in the chat screen in figure 4.8.

FIGURE 4.8: The chatbot screen with an answer to a newly typed
question.

This answer is not a correct answer to the question, and therefore we are inter-
ested to see what the question was that our question is matched to. The matched
question can be seen in figure 4.9.

Chapter 4. Vector space model 58

FIGURE 4.9: The chatbot screen showing the question that is matched
to a newly typed question.

Comparing the two questions, we do understand that a machine that has no
actual understanding of the meaning of the question would find these two questions
quite similar. After all, the questions are both about pension and they both contain
the words "pensioenleeftijd", "pensioen" en "leeftijd" after NLP, which is 3 of the 4
words in the incoming question after NLP. The difference is that the first question
is about "when the pension age is" and the second question is about "pension gap"
but the TF-IDF scores could not distinguish this. Machine learning models might be
better at making this distinction.

4.5 Results

To apply the vector space model we used our entire question-answer dataset as the
training set, and a new set of questions from Kandoor as the test set. We have 3153
questions to match to, and answers to return, and the test set contains 400 new ques-
tions. Special about this test set is that the questions are labelled by category and
therefore we can see how well the model scores on questions in 14 different financial
categories.

Evaluation is done manually in our evaluation framework, which can be seen in
figure 4.10. The evaluation framework shows a question from our test set and the
answer selected for it. We now have 3 options in evaluating this question-answer
pair and one button to go back to the previous question. The 3 options are a correct
answer, a wrong answer or the question being unclear. This last option is added
because we did not clean the test set before evaluation and therefore it still contains
questions that cannot be answered. For example, the question "De 1 weeks Euribor
rente is in 1 werkdag fors gestegen. Was deze rente afgelopen vrijdag nog 0,182%,

Chapter 4. Vector space model 59

vandaag noteert deze rente 0,242%. Daarmee stijgt deze rente in 1 dag met 33%."
which cannot be answered because there is no actual question but a stated fact.

FIGURE 4.10: The evaluation framework.

Out of the 400 questions, 145 questions (36%) were unclear questions and were
therefore removed from the results. Out of the remaining 255 questions, 171 were
answered incorrectly and 84 (33%) were answered correctly. Thus the overall result
of the statistical chatbot model is that the chatbot can answer 33% of questions cor-
rectly. The percentage of questions answered correctly in the 14 financial categories
can be found in table 4.5. These results should be interpreted with caution, because
many financial categories have very few samples which might not be representa-
tive for this category. As shown, the category "Buitenland wonen/werken" has the
highest percentage of correctly answered questions, but this category only contains
6 questions. More reliable is that the category "Hypotheek" has a quite high score
with 52% of questions answered correctly as there are 33 samples in this category.
The lowest score is for the category "ZZP & ondernemen" with only 11% of questions
answered correctly.

Category Number of samples Correctly answered
Pensioen werkgever 76 32%
Pensioen overheid (AOW) 34 38%
Hypotheek 33 52%
Impact werksituatie 24 17 %
Verzekeringen 18 22%
Lenen & schulden 10 40 %
Belasting 10 30%
Pensioen individueel 9 33%
ZZP & ondernemen 9 11%
Beleggen 7 29%
Sparen & vermogen 7 29%
Huisvesting 7 29%
Buitenland wonen/werken 6 67%
Wet & recht 5 20%

TABLE 4.5: Results of the vector space model per financial category.

60

Chapter 5

Machine learning model

In this chapter we apply multiple machine learning models to classify whether two
questions are the same or not. The machine learning models that are compared are
XGBoost, Random Forest, Neural Networks, SVM and logistic regression.

The chapter starts with a description of the dataset in section 5.1. Then we apply
NLP techniques to our dataset in section 5.2 and create features from the textual
data in section 5.3. Furthermore, in section 5.4 we use these features in our machine
learning models with which we classify whether two questions match or not. Finally,
in section 5.5 we show the results of our machine learning models.

5.1 Data

5.1.1 Data creation

The data used in the machine learning model is created with the data used in the
vector space model in chapter 4. This dataset is cleaned and explored in sections
4.1.1 and 4.1.2, respectively. To be able to train a machine learning model, we needed
labeled data. Data with which we could learn a computer whether two (financial)
questions are the same or not. A question can be asked in many different ways,
and we consider two questions to be the ’same’ when they ask for the same financial
information, regardless of the personal information given. For example, the question
"Wanneer krijg ik AOW? Ik word morgen 65." and the question "Op welke leeftijd
gaat mijn staatspensioen in? Ik ben geboren op 17-07-1952." are considered the same
because both questions ask for the state pension age. To be able to learn a computer
whether two questions are the same or not we create a question-to-question (Q2Q)
dataset, as shown in table 5.1.

ID Q1 Question 1 ID Q2 Question 2 Match
1 Wanneer krijg ik... 33 Op welke leeftijd... 1
1 Wanneer krijg ik... 2987 Bij welke pensioenfondsen... 0
1 Wanneer krijg ik... 3 Wanneer ga ik... 1
1 Wanneer krijg ik... 435 Wat is mijn... 0
1 Wanneer krijg ik... 875 Is prinsjesdag op... 0
1 Wanneer krijg ik... 1542 Wordt mijn AOW... 0
2 Krijg ik studie... 16 Is studiefinanciering ook... 1
...

TABLE 5.1: The framework of the Q2Q dataset.

Ideally the Q2Q dataset is a dataset consisting of all combinations of the ques-
tions in the Kandoor dataset. However, this dataset contains 3153 questions (after

Chapter 5. Machine learning model 61

cleaning) and therefore all combinations would give us 3153·3152
2 ≈ 5 million combi-

nations of questions. Since we need to manually label whether two questions match
(are the same) or not, we created a smaller set of questions to label. In creating this
dataset we tried to make sure that the class imbalance (between matching and non-
matching questions) was as small as possible. If we randomly picked two questions,
then the chance that they match is small. Therefore, to increase the chance of match-
ing we used the vector space model created in chapter 4 to match the questions.
To not overly focus on matching questions with similar words we also added some
random question combinations to the Q2Q dataset. Finally, the Q2Q dataset was cre-
ated by taking each question, its 4 closest matches according to the cosine similarity
measure in the vector space model, and 2 random questions. This means that each
question was in the dataset at least 6 times, and in total there were 6 · 3153 = 18918
combinations. However, there were also some duplicates in this dataset. For ex-
ample, if question 1 was matched with question 3 by cosine similarity but also ran-
domly, or if question 1 was matched to question 3 by cosine similarity but question 3
was also matched to question 1 by cosine similarity. These duplicates were removed
and then we were left with 16050 question combinations. All these combinations
were manually labelled on whether they match or not.

5.1.2 Data exploration

The Q2Q dataset is created from the question-answer dataset already explored in
section 4.1.2. Therefore, we need not explore the questions themselves again but
concentrate on exploring the data with regard to the matching (or non-matching)
of two questions. The first observation after creating the Q2Q dataset, is that only
15% of the question combinations match. This class imbalance needs to be taken
into account when modelling, as predicting all question combinations to not match
would lead to a model accuracy of 85%. Clearly, accuracy is not a good measure
here.

Word counts and sentences counts

We studied the influence of question length on the matching of questions to find out
if longer questions match more or less often to other questions than shorter ques-
tions. When it is the case that longer questions match more or less often, then ques-
tion length would be a good feature in our machine learning models.

We studied the relation and found no significant effect of question length on the
question matching or not. Therefore we conclude that question length is not a good
predictor for whether a question matches or not.

We also researched the most used words in our dataset and their distribution
over matching and non-matching questions. Gathering all words in questions that
match (do not match), it turns out that 3.2% (2.3%) of these words are the word "pen-
sioen". We find that the top 3 terms: "pensioen", "jaar" and "aow" appear relatively
more often in matching questions than in non-matching questions. This can happen
because questions involving these terms occur often in our dataset and therefore
also match with each other often. From this result we conclude that the appear-
ance of certain most used words in questions could be good predictors for whether
questions match or not.

Chapter 5. Machine learning model 62

N-grams

In this section we look at N-grams in the matching and non-matching question com-
binations. When looking at common unigrams in the questions, we are essentially
looking at words (after stop-word removal) that occur in both questions. The ratio
of common unigrams in the question combinations in our dataset can be seen in the
histogram in figure 5.1. In this figure, we see that matching question pairs have a
distribution that is less right skewed than non-matching questions. Looking at the
box plot in the same figure shows that matching questions are statistically likely to
have a higher common unigram ratio. We cannot say this with certainty though as
the interquartile ranges of the box plots do overlap a bit.

To see if we can improve the prediction of questions matching or not using com-
mon unigrams we applied TF-IDF weighting to the unigrams. This means that we
value words that appear in both questions, but do not appear a lot in the dataset,
as more important than words that appear a lot in the dataset. Thus we care more
about uncommon words than about frequently appearing words. Comparing the
histogram in figure 5.2 to the histogram in figure 5.1, we see that it seems like the sep-
aration between matching and non-matching questions actually became less clear
with the TF-IDF weighting. The box plot in figure 5.2 still shows that it is statisti-
cally likely that the common unigrams ratio of matching questions is higher than the
common unigrams ratio of non-matching questions. However, also here the separa-
tion between matching and non-matching questions seems smaller than without the
TF-IDF weighting.

To further investigate the prediction of questions matching or not using uni-
grams and TF-IDF weighted unigrams we calculated the AUC score for both fea-
tures. AUC stands for Area Under the Curve and is used in classification analysis
to determine which of the used features or models predicts the classes best. When
predicting whether questions match in our dataset, AUC is a better measure than
accuracy because of the large class imbalance. The AUC is the expectation that a
uniformly drawn random positive is ranked above an (also uniformly drawn) ran-
dom negative. In our dataset this area can show the predictive power of our (TF-IDF
weighted) unigram feature on whether questions match. The AUC for our non-
weighted unigram feature is 0.81 and the AUC for our TF-IDF weighted unigram
feature is 0.76 meaning that, as expected from the figures, the non-weighted uni-
gram feature actually has a better predictive power than the TF-IDF weighted un-
igram feature. Regardless of this result we do still think that the TF-IDF weighted
unigram feature can provide extra information in a prediction model next to the
non-weighted unigram feature.

We also studied the common bigrams in our question combinations, but com-
mon bigrams occur so little that we could not draw any valid statistical conclusions
for this feature. It might be the case that for the Dutch language bigrams are less im-
portant predictors of similarity than for, for example, the English language because
of compound words. In English "pension fund" would be an often occurring bigram
in our dataset, but in Dutch this just becomes one word "pensioenfonds" which is a
unigram.

Chapter 5. Machine learning model 63

(A) Histogram (B) Box plot

FIGURE 5.1: Charts displaying the distribution of the common uni-
grams Jaccard distance for matching and non-matching questions.

(A) Histogram (B) Box plot

FIGURE 5.2: Charts displaying the distribution of the TF-IDF
weighted common unigrams Jaccard distance for matching and non-

matching questions.

Chapter 5. Machine learning model 64

Conclusion

In the exploration of the Q2Q dataset we have found that the amount of words or
sentences in a question combination does not have an influence on the chance of
the combination matching. We have also found that certain most used words in
the dataset occur relatively more often in matching questions than in non-matching
questions. Lastly, we found that common unigrams and TF-IDF weighted common
unigrams are likely to be good features for predicting whether questions match or
not.

5.2 Natural Language Processing

The data was prepared for modelling by applying the same NLP pipeline used in
the vector space model to the questions in our dataset. A description of the NLP
pipeline can be found in section 4.2.2. Figure 4.7 shows an example of a prepared
question.

After applying the techniques in the NLP pipeline we added one extra NLP step.
In this step synonyms of words are added to a question to make sure that two ques-
tions about the same topic, but containing different words, match. For example,
synonyms of the Dutch word "pensioenoverzicht" are "upo" and "pensioenbrief". If
a question contains either the word "upo" or "pensioenbrief", the word "pensioen-
overzicht" will be added to this question to make it match to other questions con-
taining one of these three words. We do not remove the original word "upo" in
the question, as the meanings of synonyms might differ slightly and two questions
containing "upo" might match slightly better than a question containing "upo" and
a question containing "pensioenoverzicht". The list with synonyms was manually
constructed and contains 62 synonym groups. This list can be found in appendix
A.3.

As a result of applying these NLP techniques our Q2Q dataset is now build up
as shown in table 5.2.

ID Q1 Question 1 Prep Q1 ID Q2 Question 2 Prep Q2 Match
1 Wanneer... Wanneer... 33 Op... leeftijd... 1
1 Wanneer... Wanneer... 2987 Bij... pensioenfondsen... 0
1 Wanneer... Wanneer... 3 Wanneer... Wanneer... 1
1 Wanneer... Wanneer... 435 Wat... pensioenleeftijd... 0
1 Wanneer... Wanneer... 875 Is... prinsjesdag... 0
1 Wanneer... Wanneer... 1542 Wordt... aow... 0
2 Krijg... Krijg... 16 Is... studiefinanciering... 1
...

TABLE 5.2: The framework of the Q2Q dataset including the ques-
tions prepared with NLP techniques.

5.3 Feature engineering

In this section, we create the features used in the machine learning models. These
features are partly based on features that were successfully used in the cases in our
literature study, partly based on our data exploration and partly based on new ideas

Chapter 5. Machine learning model 65

while constructing the features. In our literature study we found that TF-IDF trans-
formations, document lengths and looking at common and different words are good
features. Our data exploration showed that common words (unigrams) are likely to
be a good feature, even without TF-IDF weighting and that certain often used words
appear more in matching questions than in non-matching questions.

5.3.1 Nouns

Nouns are words that identify a person, place, thing, or idea. For example, in our
dataset nouns would be "AOW-leeftijd", "pensioengat" and "studie". Nouns are very
important in conveying the meaning of a sentence. Therefore we extracted all nouns
from the questions and created a feature that counts how many nouns overlap be-
tween the questions.

5.3.2 Lengths

During the exploration of the data we found that the length of a question does
not have a significant influence on the probability that it matches another ques-
tion. Therefore we do not include the length of the original question as a feature.
The length of a prepared question however is a measure for how many "important"
characters or words there are in a question, and we do include this feature.

We have one feature that describes the length of the first question (after applying
the NLP pipeline) in number of characters (including white space) and one feature
that describes this length in the number of words. We have the same features for
the second question in the pair, giving us four features. Then we also have two
difference features which describe the length difference between the two questions
in number of characters and number of words, respectively.

5.3.3 Sequence matching

When comparing two questions, not only matching words but also longer sequences
are important. For instance, "waar heb ik ergens pensioen opgebouwd?" and "heb ik
pensioen opgebouwd?" both contain the exact sequence " pensioen opgebouwd?".
The Ratcliff-Obershelp pattern-matching algorithm [63] can be used to calculate a
sequence matching ratio between two text documents. This algorithm was intro-
duced in 1983 as a measure to improve educational software and automated answer
checking.

The Ratcliff-Obershelp matching ratio returns a value between 0 and 1, where 0
is no match and 1 is a perfect match of the two compared texts. The algorithm is
expressed as

DRO =
2 ·Km

|S1|+ |S2|
, (5.1)

where DRO is the matching ratio, Km is the number of matching characters and
S1 and S2 are the lengths of the compared texts.

The number of matching characters Km is found in steps. First, the longest com-
mon substring between the two texts is found. This is called the anchor. Then the
parts on both sides of the anchor are examined as new strings. This process is re-
peated until all characters are examined. Km is the length of the anchor plus the
lengths of other matched subsequences.

Chapter 5. Machine learning model 66

To clarify the working of the algorithm, consider again the questions "waar heb
ik pensioen opgebouwd?" and "heb ik ergens pensioen opgebouwd?". The length of
the first question is 31 characters (including white space) and the length of the sec-
ond sequence is 33 characters. The longest matching substring is " pensioen opge-
bouwd?", this is the anchor with 20 characters. To the right of the anchor there are
no more characters. To the left of the anchor we find the matching substring " heb
ik ", with 8 characters. On the right of this substring we find "ergens" in the second
question but there is nothing there in the first question. To the left of the substring
we find "waar" in the first question, but nothing to match it to in the second question.
Now we have examined all characters, and are done. The total number of matching
characters Km is 28 and therefore the matching ratio is 2·(20+8)

(31+33) = 0.875.
The Ratcliff-Obershelp matching ratio calculated for the question pairs is in-

cluded in our models as a feature.

5.3.4 Fuzzy sequence matching

In the previous section, we compared two questions using sequence matching. Often
questions are similar but contain spelling mistakes, have a different word order or
one is a substring of the other. In the Ratcliff-Obershelp algorithm this would lead
to a lower matching ratio, but in fuzzy sequence matching these alterations can be
overcome.

Our fuzzy sequence matching features make use of the Levenshtein distance
to calculate the differences between two questions. The Levenshtein distance is
the minimum number of edits (insertion, deletion or substitution of one character)
needed to change one question into the other. Seven features are created using the
Levenshtein distance:

1. The Q-ratio. The simple ratio of how many characters to edit in the first ques-
tion to get the second one, divided by how many characters the first question
has.

2. The token sort ratio. The questions are broken down into words and then these
words are alphabetically ordered. After ordering the Q-ratio is calculated.

3. The token set ratio. The questions are again broken down into words, and
then the separate words are split into an intersection (words that are the same
in both questions) and a remainder. These sets are used to build a compari-
son string to which the Q-ratio is applied. This ratio gives good results when
sorting does not help because one of the questions has a lot more words. For
example, when comparing "pensioen van abp" and "krijg ik pensioen bij abp",
when we sort the strings we get "abp pensioen van" and "abp bij ik krijg pen-
sioen" where "abp" and "pensioen" are far apart. In the token set ratio these
words are put next to each other to get a better match. The token set ratio
gives us the strings "abp pensioen van" and "abp pensioen bij ik krijg", with
first the two matching words ("abp" and "pensioen") in alphabetical order and
then the rest of the words in alphabetical order.

4. The partial ratio. This feature is the same as the Q-ratio except that it recog-
nizes when the first question is a substring of the second question and then it
returns a full match. For example, the words "pensioen" and "pensioenfonds"
would get a 100% match with the partial ratio.

Chapter 5. Machine learning model 67

5. The partial token sort ratio. This uses the same algorithm as the token sort
ratio, but after sorting it uses the partial ratio instead of the Q-ratio.

6. The partial token set ratio. This uses the same algorithm as the token set ratio,
but on the sets of tokens it uses the partial ratio instead of the Q-ratio.

7. The W-ratio. This is a weighted ratio of all previous ratio’s. The idea is to get
the highest score among all calculated ratio’s. Some scaling is also used here
when one question is much longer than the other.

5.3.5 Word matching

In section 5.1 we explored the data, and found that the amount of common unigrams
seem to be a good predictor of whether two questions match. Therefore we have
included a feature which computes a ratio of matching words. The ratio is calculated
by

R =
M1 +M2

|W1|+ |W2|
, (5.2)

where R is the ratio, M1 and M2 are the number of words in question 1 (2) that
are also in question 2 (1) and |W1| and |W2| are the lengths of the questions in the
number of words.

Now we consider the questions "over pensioen, waar heb ik pensioen opge-
bouwd?" and "heb ik ergens pensioen opgebouwd?". Question 1 has 7 words and
question 2 has 5 words. The words in question 1 that are also in question 2 are [pen-
sioen, heb, ik, pensioen, opgebouwd], 5 in total. The words in question 2 that are
also in question 1 are [heb, ik, pensioen, opgebouwd], 4 in total. Therefore the ratio
word match ratio is 0.75.

This word match ratio is calculated for each question pair and included as a
feature in our models.

5.3.6 TF-IDF

TF-IDF was already used in the vector space model, and for this model we also create
some features with it. We trained the TF-IDF vectorizer on all unique questions and
then fed it one question at a time and calculated scores. The TF-IDF transformation
of a question is a vector with a TF-IDF score for each unique word and bigram in
the question. The sum of this vector, mean of this vector and length of this vector
are used as features for question 1 and question 2 separately. From these 6 features
we also calculate the difference between the sum, mean and length of the TF-IDF
transformations of question 1 and 2, generating three more features.

The sum or mean of a TF-IDF vector in itself does not have a lot of meaning,
but more rare words get higher IDF values and therefore a question with many rare
words might get a much higher sum or mean. A question with many rare words
will not match many questions, and therefore these features might help in predicting
this. The length of a TF-IDF vector gives the number of unique words added with
the number of unique bigrams in the question.

5.3.7 Similarity scores

In the vector space model, we used the cosine similarity between two questions to
predict if they were a match. In the machine learning model cosine similarity is used
as a feature. More information about cosine similarity can be found in section 4.4.

Chapter 5. Machine learning model 68

Another similarity measure is the Jaccard similarity. We introduced the Jaccard
index in section 4.1.2 and the same formula is used here. The Jaccard similarity is
the number of words used in both questions divided by the total number of words.
This is different from the word match ratio as it does not take into account words
that are used twice in one sentence.

5.3.8 Common and different words

In the data exploration section we found that many of the most used words were
used more often in matching questions than in non-matching questions. This fact
can help us predict whether two questions have a high chance of matching.

To create the common words features we have selected the 200 words that occur
in both questions, most often. These are not the most often used words, but words
that are most often in common between the two questions. Now for each question
pair we find the words in common and, if these words were in the top 200, we fill in
their counts in the 200 word features.

The different words features are created similarly, but instead of finding the 200
words that occur in both questions, we use the 200 words that occur most often in
only one of the questions (the set difference). Now for each question pair we find the
words that are in only one of the questions and fill in their counts in the 200 word
features.

Up to this point all features were created using the questions prepared with NLP
techniques. However for these common and different words we have also created
100 common and 100 different word features using the original questions. This was
done to retrieve some of the information that might have been lost in preprocessing.

5.3.9 Category

The questions in our dataset are all financial questions, and they can be subdivided
in 14 financial categories as shown in section 4.5. In a previous project for Kandoor,
a classifier was built to appoint one of these 14 financial categories to a new ques-
tion. We have helped to improve this classifier and applied it on the questions in
our dataset. These categories give us a new binary feature, namely whether two
questions are predicted to fall into the same financial category or not.

5.3.10 Word embedding

Word embedding is mapping words or sentences to vectors containing real num-
bers. In section 2.2.3, we already explained that these vector representations can
hold important linguistic information. A very popular word embedding method is
word2vec [52]. Word2vec was created by Google and consists of neural networks
which are trained to build and understand the context of words. The input for a
word2vec model is a text corpus and the output is a vector space, where each word
from the corpus has been assigned a vector. These word vectors are placed in the
vector space in such a way that words that occur in similar contexts are placed close
to each other in the space.

We trained a word2vec model on the Kandoor dataset to see which words occur
in similar contexts and to be able to use this model as a feature in our classifier. In
table 5.3, we have shown a few terms and the 5 words most often used in the same
context as these terms.

Chapter 5. Machine learning model 69

Term 1st most similar 2nd 3rd 4th 5th
Pension Pension fund accrued employer where contact
AOW svb since receives partner 65
65 year since age receives the Netherlands

TABLE 5.3: A table depicting a word and the words most often used
in the same context as this word. In this case the five words which are

used in the most similar context are shown.

From table 5.3, we see that the word2vec model works well on our dataset, as we
would expect words like ’pension’, ’pension fund’, ’accrued’ and ’employer’ to be
used in the same context.

This word2vec model produces a vocabulary in which each word is represented
as an 300-dimensional array. To visualize the similarity and dissimilarity between
words and their contexts, we compressed these 300-dimensional feature vectors to
two-dimensional coordinate pairs using Principal Component Analysis (PCA). This
was done with the idea to keep similar words together on the x,y-plane, and maxi-
mize the distance between words used in different contexts. The result of this vector
compression is shown in figure 5.3. Unfortunately, we cannot draw many conclu-
sions from this figure, as we can see no logical clustering of words in different re-
gions of the plot. This is probably due to only using words which occurred at least
400 times in our dataset (otherwise the plot would be enormous) and due to the in-
formation loss from compressing a 300-dimensional vector space to a 2-dimensional
vector space.

FIGURE 5.3: A visualization of the word2vec model. Only words
used at least 400 times in the dataset are displayed.

Chapter 5. Machine learning model 70

To create the word2vec features we trained a word2vec model on all unique ques-
tions in our dataset with 300 dimensions and used all words that were used at least
40 times. Each word in a question has values for each of these 300 dimensions. To
make it more tangible you could image that the word "woman" has semantic features
like "femininity", "human" and "powerful".

We created 300 features for both questions (600 in total), by averaging the scores
for all words in the question for each dimension. For example, if a question con-
tained both "woman" and "man" it would have a high average score for "human".
The difference in each of these dimensions for the two questions might also be of
importance and therefore we also generated 300 difference features.

5.4 Modelling

To predict whether questions are the same, we built multiple machine learning mod-
els using the features described in the previous section. The machine learning mod-
els we use are XGBoost, Random Forest, Support Vector Machines, Neural Net-
works and logistic regression. XGBoost was selected as it is an upcoming method
with great results in applied machine learning challenges like Kaggle1 competitions.
Random Forest, Support Vector Machines and Neural Networks were selected as
these are established methods proven to give good results on many machine learn-
ing problems. In particular, Random Forest is easy to tune and to interpret, Support
Vector Machines work well with a large number of features and Neural Networks
can give great results if the dataset turns out to be large enough. Finally, we also
apply logistic regression to the dataset as this algorithm gave the best results in Wat-
son [27]. The theory behind all of these machine learning models is explained in
section 2.5. In this section we explain how we applied these models on our dataset
and which features were important in the models.

5.4.1 Feature selection

Feature selection is the process of selecting which features to use in a model. Feature
selection can be applied to simplify the model, to shorten the training time of a
model, to avoid the curse of dimensionality and to reduce model variance. In our
case especially shortening the training time (a user expects a fast answer from a
chatbot) and reducing model variance (reducing overfitting) are important.

We apply two different feature selection methods, namely the chi-squared test
and the Random Forest model. We chose these methods as applying them costs little
time and the results are easily interpretable. The chi-squared test is a statistical test
which determines whether there is a dependency between two variables. For each
feature it determines whether it has a significant influence on the outcome variable
(match or no match). When using the Random Forest model for feature selection,
the best performing number of features is found by eliminating features based on
their feature importance (Gini importance) in the model. The Gini importance of a
feature is the total decrease in node impurity averaged over all trees when removing
this feature.

In applying the chi-squared test to our features we could not test the dependence
of the Word2Vec features as they have negative values in them. After chi-squared

1https://www.kaggle.com/

Chapter 5. Machine learning model 71

feature selection we were left with 362 significant features of our original 1528 fea-
tures. The features with the smallest P-values (most significant features) were the
length features and the fuzzy sequence matching features.

When using the Random Forest model for feature selection, the best results were
reached when using only features with a minimum Gini importance of 0.01370. This
led to the model using only the 14 features shown in figure 5.5.

We are now left with three sets of features: the full set (1528 features), the set
selected with the chi-squared test (362 features) and the set selected with Random
Forest (14 features). These three feature sets were all tested in every model and
results are given for the set with the best performance in the respective model.

5.4.2 Downsampling

As described the Q2Q dataset consists of 16050 question pairs of which about 15%
is a match. This means that there is a large class imbalance in our dataset. XGBoost
models generally work well with datasets with class imbalances as their evaluation
metric can be manually set. However other the standard programming packages
for other models like Random Forest generally optimize for accuracy, which will
lead to the model predicting almost everything to be negative. To overcome this
problem we have downsampled the dataset. This was done by selecting all question-
pairs that matched and just as many question-pairs (randomly sampled) that did
not match. Now we have a smaller dataset but with an even class balance. For
the XGBoost model we also applied the full dataset but the results were better with
the downsampled dataset. For all other models we just applied the downsampled
dataset.

5.4.3 XGBoost

XGBoost is a boosting algorithm that combines weak rules from simple machine
learning models to form one strong model. The theory behind this method is ex-
plained in section 2.5.4. While applying XGBoost to a specific dataset many param-
eters can be tuned.

We now explain the most important parameter settings in our XGBoost model.
These parameters were tuned by a grid searching algorithm that finds the optimal
combination in a grid of parameter values. For this tuning 5-fold cross validation
was used to ensure that the settings are not just optimal for one part of the dataset.

1. Objective function
The objective function defines the loss function to be minimized. We use logis-
tic regression for binary classification as the objective function because we only
have 2 classes (matching and non-matching). This objective function returns
the probability that two questions match (not in which class the question-pair
belongs).

2. Evaluation metric
The evaluation metric is the metric to be used on the validation set. We have
used AUC, the Area Under the ROC Curve. Why this measure works well for
our dataset is explained in section 5.5.

3. Learning rate
The learning rate (also denoted as eta) makes the model more robust as it
shrinks the feature weights for each step. This is done to prevent overfitting.

Chapter 5. Machine learning model 72

A higher learning rate leads to a more conservative model. Using our grid op-
timization algorithm the learning rate was set to 0.05 where the default value
is 0.3.

4. Minimum child weight
The minimum child weight is the minimum sum of all instances in a leaf node
for which the algorithm will still partition further. If the sum of all instance
weights in a leaf node is lower than this value, the building process of the tree
will stop there. A higher minimum child weight leads to a more conservative
model. Using our grid optimization algorithm the minimum child weight was
set to 0.3 where the default value is 1.

5. Maximum depth
The maximum depth specifies the maximum depth of the trees, meaning that it
limits the number of nodes in a tree. A higher maximum depth leads to a more
complex model and a higher chance of overfitting. Using our grid optimization
algorithm the maximum depth was set to 6 which is also the default value.

6. Subsample
The subsample ratio denotes the fraction of observations in the training set to
be randomly sampled and used in each tree. A low subsample value makes
the algorithm more conservative and prevents overfitting, but a too low ratio
might lead to underfitting. Using our grid optimization algorithm the subsam-
ple ratio was set to 1 which is also the deafult value.

7. Column sample by tree
Whereas the subsample ratio determines the fraction of observations to be
used for each tree, the column sample by tree determines the fraction of fea-
tures to be randomly sampled and used in each tree. Also here, a low sub-
sample value makes the algorithm more conservative and prevents overfitting,
but a too low ratio might lead to underfitting. Using our grid optimization al-
gorithm the column sample by tree was set to 0.3 where the default value is
1. This means that 30% of the features is randomly sampled at each splitting
point and out of these features the best one is selected for splitting.

8. Scaling the positive weights
This parameter is used in cases where there is a high class imbalance to help
the algorithm converge faster. As a rule of thumb the scale is set to the number
of negative cases divided by the number of positive cases, which would be 5.7
for our full dataset. However the downsampled dataset made the performance
a lot better and with this dataset the scale was set at the default value of 1 since
there is no class imbalance.

In tree based ensemble methods, like XGBoost, each feature is seen as a potential fea-
ture to split on. This makes the algorithm quite robust to unimportant features, as
these cannot discriminate between classes. A caveat is that the importance given to
highly correlated variables might not be a good indicator of their actual performance
as a splitting point might have been good for both variables. We expected that fea-
ture selection would not improve our XGBoost model, as the algorithm selects the
features with the best splitting points. However, the set of features selected with the
chi-squared test gave the best results and XGBoost used 340 of the 362 features in
this model to reach its optimal AUC score. The top 25 best performing features and
there F-scores can be seen in figure 5.4. The most important features are the sums

Chapter 5. Machine learning model 73

of the TF-IDF vectors of the 2 questions separately, something we did not expect as
these sums don’t have a clear meaning. Another important feature is the cosine sim-
ilarity which we did expect as we built an entire model (the Vector Space Model) on
this feature.

FIGURE 5.4: A bar chart displaying the feature importances in the
best performing XGBoost model.

5.4.4 Random Forest

Random Forest combines decision trees to form a forest of trees which each have
a vote in deciding which class an object falls in. The theory behind this method is
explained in section 2.5.3. While applying Random Forest to a specific dataset many
parameters can be tuned.

We now explain the most important parameter settings in our Random Forest
model. These parameters were tuned by a grid searching algorithm that finds the
optimal combination in a grid of parameter values. For this tuning 5-fold cross val-
idation was used to ensure that the settings are not just optimal for one part of the
dataset.

1. Maximum number of features
The maximum number of features Random Forest can try at each split in each

Chapter 5. Machine learning model 74

tree. We have created around 1500 features for our dataset and this parame-
ter specifies what randomly sampled fraction of these features can be at each
splitting point. A higher maximum number of features can lead to better per-
forming individual trees but also to more similarity of the trees which can re-
duce the overall performance of the forest as it eliminates some variation in
the trees. Using our grid optimization algorithm the maximum number of fea-
tures was set to the square root of the number of input features which is also
the default value.

2. Number of estimators
The number of estimators is the number of trees that a Random Forest grows.
When there are more trees in the forest the maximum of the votes is a more
robust measure. More trees always give better prediction results, but it makes
the computation time a lot longer. We set the number of estimators to 10000
as this was the maximum value that our processor could handle. The default
value is 10, and this value is way to small for our dataset.

3. Minimum sample leaf size
The minimum sample leaf size is the minimum number of samples needed in
an end node of a tree. When the leaf size is smaller the model has a higher
chance of capturing noise in the end leaves. The default value for this parame-
ter is 1, but this will catch a lot of noise. Using our grid optimization algorithm
the minimum sample leaf size was set to 30.

Like XGBoost, Random Forest is a tree based ensemble method where each feature is
seen as a potential feature to split on. We did perform feature selection while apply-
ing our Random Forest model, as the algorithm selects only a fraction (the maximum
number of features) at each splitting point. The best performing number of features
was found by eliminating features based on their feature importance (Gini impor-
tance) in the model. The Gini importance of a feature is the total decrease in node
impurity averaged over all trees when removing this feature. The best results were
reached when using only features with a minimum Gini importance of 0.01370, and
this led to the model using only 14 features. The performance of these 14 features in
the model can be seen in figure 5.5.

FIGURE 5.5: A bar chart displaying the feature importances in the
best performing Random Forest model.

Chapter 5. Machine learning model 75

5.4.5 Support Vector Machine

Support Vector Machine (SVM) is a machine learning algorithm that plots each ob-
servation as a point in an n-dimensional space, where n is the number of features
in the model. The objective of the algorithm is to perform classification by finding
a hyper-plane that separates the two classes as good as possible. The hyper-plane
does not have to be linear but can take on all kinds of shapes due to transformations
of the space using kernels. Further theory behind SVM is explained in section 2.5.6.

We now explain the most important parameter settings in our SVM model. These
parameters were tuned by a grid searching algorithm that finds the optimal combi-
nation in a grid of parameter values. For this tuning 5-fold cross validation was used
to ensure that the settings are not just optimal for one part of the dataset.

1. Kernel
The kernel of an SVM model take the low dimensional input space and con-
verts it to a space in which the classes can be well separated. The kernel trans-
formation options are linear, polynomial, radial basis function and sigmoid.
Using the linear kernel is advised when the number of features in the model
is large (>1000) as then it is likely that the data is linearly separable in a high
dimensional space. Using our grid optimization algorithm we tried all 4 kernel
settings and found that the linear kernel was indeed optimal for our dataset.

2. Gamma
Gamma is the kernel coefficient used in the radial, polynomial and sigmoid
kernels. A higher value of gamma means that the model will try to fit the
training data points more closely. A too high value can lead to overfitting, and
a too low value can lead to underfitting. Using our grid optimization algorithm
we found that a gamma value of the inverse of the number of features was
optimal. This is also the default value

3. C
C is the penalty parameter of the error. The setting of this parameter needs to
be a balance between a smooth decision boundary and a correct classification
of the training points. Using our grid optimization algorithm we found that a
C value of 0.1 was optimal for our dataset. The default value of C is 1.

SVM implements regularisation (ridge regression) to avoid overfitting. Ridge regres-
sion is a measure to solve multicollinearity problems between features in a model.
Using ridge regression highly correlated features get a small bias to overcome this
problem. Therefore if we carefully set the C parameter, the performance of the model
should be good without first using feature selection. We found out that this was in-
deed the case as the best performing model for SVM was the model with the full set
of features.

5.4.6 Neural Networks

Neural networks consist of layers with neurons connected by weighted connection
links. The weights on these connection links are modified as to reach the optimal
model from the training set. Further theory behind Neural Networks is explained in
section 2.5.7.

Setting an optimal number of layers and neurons in these layers can be done
using a set of rules. The input layer consists of as many neurons as there are features
in the model, and the output layer consists of 1 neuron. Then for the large majority

Chapter 5. Machine learning model 76

of problems and datasets one hidden layer is sufficient. An empirically derived rule-
of-thumb says that the optimal number of neurons in the hidden layer is between
the number of neurons in the input and output layers.

We now explain the most important parameter settings in our NN model. These
parameters were tuned by a grid searching algorithm that finds the optimal com-
bination in a grid of parameter values. For this tuning 5-fold cross validation was
used to ensure that the settings are not just optimal for one part of the dataset. We
also scaled the features before modelling as this is needed to get meaningful results
from a neural network.

1. Hidden layer size
We use one hidden layer as literature shows that this is sufficient for the ma-
jority of datasets. According to a rule-of-thumb the number of neurons in this
layer optimally lays between the number of features and 1 (the number of neu-
rons in the output layer). We have experimented with layers with all, three
quarters, half and one quarter of the number of features as the number of neu-
rons. Using our grid optimization algorithm we found that 1146 neurons (3/4
of the number of features) in the hidden layer is optimal for our dataset.

2. Solver
The solver used for the optimization of the weights on the connection links
can be chosen. The options are lbfgs, sgd and adam. Lbfgs is a quasi-Newton
method optimizer, sgd uses stochastic gradient descent and adam (default)
uses a specific gradient-based optimizer. Using our grid optimization algo-
rithm we tried all three and found that adam is optimal for our dataset.

3. Alpha
Alpha is a regularization parameter, that helps prevent overfitting by con-
straining the size of the weights on the connection links. A high value of alpha
can help in datasets with high variance and a low value of alpha can help
in datasets with high bias. Using our grid optimization algorithm we found
that an alpha value of 1× 10−5 is optimal for our dataset. The default value is
1× 10−4

Unfortunately, neural network models lack in interpretability. Therefore it is not
possible to find out which features had a high contribution in the model without
learning an interpretable model around the neural network. This was not further
studied in this research. We did find that the full set of features led to better results
than the selected feature sets.

5.4.7 Logistic regression

Logistic regression is a regression model with a categorical (in our case binary) out-
put. The theory behind this model is explained in section 2.5.5. While applying
logistic regression to a specific dataset many parameters can be tuned.

We now explain the most important parameter settings in our model. These
parameters were tuned by a grid searching algorithm that finds the optimal com-
bination in a grid of parameter values. For this tuning 5-fold cross validation was
used to ensure that the settings are not just optimal for one part of the dataset.

1. Penalty
The penalty parameter is used to specify what type of penalty is given to a

Chapter 5. Machine learning model 77

wrong match. Since most solvers only support I2 penalties we have chosen
this penalty.

2. C
As in SVM, C is the inverse of the regularization strength. Thus a higher value
specifies a stronger regularization. Using our grid optimization algorithm we
found that a C value of 0.1 was optimal for our dataset. The default value is 1.

To get a good prediction using most logistic regression models, feature engineer-
ing is crucial. However our logistic regression model already uses regularization.
Therefore we expected that the full feature set would return better results than the
selected feature sets. This was not the case as the model with the features that were
significant in the chi-squared test performed best.

5.5 Results

In this section we will evaluate the best results of the 5 different machine learning
models. There are many methods and metrics to evaluate the results of a classifica-
tion problem. Well-known metrics are the confusion matrix, from which precision,
recall, sensitivity, specificity, F-score and accuracy can be derived and AUC score.
We know explain the pros and cons of using these metrics for evaluation on our
dataset.

The confusion matrix, as shown in figure 5.7a, depicts the performance of an
algorithm at a certain cut-off value. We have used our machine learning models for
a binary classification: match or no match. However, these models can also give a
probability with which they predict that it is a match or not, and this is the value we
actually use. The cut-off value is the probability at which we round up to say that the
questions match or not. Most generally, a cut-off value of 50% is used, but the choice
depends on the business case. In our case a higher cut-off value means that less
questions will be considered as pairs, in the larger chatbot scheme this means that
we will answer less questions, but also that less questions will be answered wrongly.
The optimal cut-off (or confidence level) will be chosen during the implementation
of the chatbot in chapter 6. In this section we will use 50% as the cut-off value.

The confusion matrix shows the number of true positives, false positives, false
negatives and true negatives. When relating this to our chatbot implementation we
can see those terms as follows:

1. True positives
The true positives are question-pairs that match and that are also predicted to
match. In a chatbot this means that there is an incoming question to which we
have a match and that we find this match and give a correct answer.

2. False positives
The false positives are question-pairs that do not match but are predicted to
match. In a chatbot this means that there is an incoming question to which we
think we have a match, but is not. This means that we give a wrong answer.

3. False negatives
The false negatives are question-pairs that match but we predict that they do
not match. In a chatbot this means that there is an incoming question to which
we have a match but we do not find this match. This means that we could have
answered the question, but we did not. This is a missed opportunity.

Chapter 5. Machine learning model 78

4. True negatives
The true negatives are question-pairs that do not match and that are also pre-
dicted to not match. In a chatbot this means that there is an incoming question
to which we do not have a match and we also identify it as such. This means
that it is a new question to which we do not have an answer yet.

The outcome would be optimal if there are only true positive and negatives and no
false positive and negatives. This gives an accuracy of 100%. However, this optimal
outcome is not achievable and therefore we have to consider what type of mistakes
are worse than others. In our case a false positive means giving a wrong answer,
which is something that companies do not want their chatbots to do. However,
when minimizing the amount of false positives we also decrease the amount of true
positives, which leads to the chatbot not answering most questions which is also
costly for the company as experts have to do all the work. Therefore we have to find
a balance between the four components in the confusion matrix that works for this
specific business case.

Metrics like accuracy, precision, recall (also known as sensitivity), specificity and
F-score are used to show the performance of a model. In our case those terms can be
interpreted as:

1. Accuracy
The accuracy shows how often the classification outcome is correct. It divides
the sum of the correctly answered and correctly not answered questions by
all questions asked. This means that it is the percentage of correctly handled
questions. A higher percentage of correctly handled questions is of course
better, but this measure does not say anything about the incorrectly handled
questions. It does not show whether the incorrectly handled questions are
mostly wrongly answered questions or missed opportunities.

2. Precision
Precision is the number of correctly answered questions divided by all an-
swered questions. This is an important percentage as wrongly answered ques-
tions are bad for the company. We strive for a high precision.

3. Recall (also sensitivity)
Recall is the number of correctly answered questions divided by all questions
that we could have been able to answer. Having a low recall means that there
are many missed opportunities, i.e. questions that we did have an answer for
but we did not find them.

4. Specificity
Specificity is the number of questions that we correctly did not answer divided
by all questions that cannot be answered. We strive for this percentage to be
high, as it means that we can correctly identify when not to answer a question,
and ultimately that we do not give too many wrong answers.

5. F-score
The F-score is the harmonic mean of the precision and recall. It combines the
percentage of correct answers and the percentage of missed opportunities.

From these definitions we can say that we find it important to have a high preci-
sion. However, when optimizing a model for precision, all questions which are not
sure will not be answered. Therefore optimizing for precision makes for giving less

Chapter 5. Machine learning model 79

answers. A better metric is the F-score, which looks at the percentage of correct
answers but also at the percentage of missed opportunities.

A downside of all these metrics derived from the confusion matrix is that we
have to choose a cut-off level in the probability of matching before assessing these
scores. This way we do not look at the whole performance of the model, but at the
performance of the model at a specific confidence level. This confidence level might
not turn out to be optimal when implementing these models in a chatbot application.

The Area Under the Curve (AUC) is a metric that does give a score for the whole
model at every confidence level. The intended curve under which the area is calcu-
lated is the Receiver Operating Characteristic (ROC). One point on this curve spec-
ifies the sensitivity of the model in relation to the inverse of the specificity. That
means that one point on the curve is the relation between missed opportunities (de-
creasing further up the y-axis) and the incorrectly answered questions rate. One
point on the curve is a representation of the model at a certain cut-off level. The
whole curve represents the model at all cut-off levels. Optimizing the Area Under
the Curve means optimizing the combination of missing answering opportunities
and giving wrong answers.

Since the AUC is a measure for the whole model, at every cut-off level, and it
takes the false positive rate into account we have chosen to optimize our models for
this metric.

In the next section we show the results for the machine learning models on the
most important metrics. In the end we choose one model to implement in the chat-
bot.

5.5.1 Model comparison

The results of the machine learning models on the different scoring metrics are
shown in figure 5.6 and the confusion matrices at a cut-off of 50% can be seen in
figure 5.7.

As shown, the XGBoost model gives the best results on AUC, accuracy and preci-
sion (percentage of given answers that is correct), but the Random Forest model has
the highest F-score. The F-scores of the Random Forest model and XGBoost model
only differ by 0.001, and XGBoost performs much better on the other evaluation
metrics. Therefore we consider the XGBoost model to be the best performing model.
When looking at the confusion matrices for XGBoost and Random Forest we can see
that the Random Forest model gives a lot more answers, but also a lot more wrong
answers (which explains the lower precision). The F-score of the Random Forest
model is high because the recall (percentage of answering opportunities taken) is
very high. We conclude that the XGBoost model performs best on our dataset and
therefore this model will be used in the chatbot implementation.

Chapter 5. Machine learning model 80

FIGURE 5.6: The results of all machine learning models on different
evaluation metrics.

Chapter 5. Machine learning model 81

True
positive

p

p

False
negative

n

False
positive

n
True

negative

actual
value

prediction outcome

(A) Confusion matrix

373p

p

86

n

106n 357

actual
value

prediction outcome

(B) XGBoost

391p

p

68

n

132n 331

actual
value

prediction outcome

(C) Random Forest

376p

p

83

n

114n 349

actual
value

prediction outcome

(D) SVM

322p

p

137

n

96n 367

actual
value

prediction outcome

(E) Neural Network

371p

p

88

n

109n 354

actual
value

prediction outcome

(F) Logistic regression

FIGURE 5.7: The confusion matrices for all machine learning models
at a confidence level of 50%.

82

Chapter 6

Chatbot implementation

In this chapter we implement the vector space model and the machine learning
model in a chatbot application. The application is a simple GUI built on top of the
models. In the process of creating this GUI some business decisions were made.

First we determined the chat flows, which describe the way in which a user is
answered by the chatbot. Our chat flows are described in section 6.1. Then, we de-
cided on the confidence levels needed to answer a question or ask a return question
as described in section 6.2. Finally, we added an extra functionality to the chatbot
making it improve its answer matching with every use. This is described in section
6.3. The results of the implemented models can be found in section 6.4.

6.1 Chat flows

A chat flow is the way in which a user is answered by the chatbot. In our application
a user asks a financial question and, based on the characteristics of this question, he
ends up in one of three chat flows as shown in figure 6.1.

If the user question is close to a question in the database the chatbot thinks that
it "understands" the question, and the user goes into flow 1. In flow 1 the user is
greeted by the bot, receives an answer to his question and the bot asks whether this
answer is satisfying to the user. If the answer was satisfying the conversation stops
there. If the user finds the answer incorrect, then his question is sent through to a
human expert on the topic.

If the user question has some similarity with a question in the database the chat-
bot "maybe understands" the question, and the user goes into flow 2. In flow 2 the
user is greeted by the bot, and the bot tries to formulate a yes/no return question.
This return question is formed by one-by-one adding important financial terms (e.g.

Flow 1: Chatbot answer
"Understand question"

User: [question]
Bot: [greeting]
Bot: [answer]

Bot: [check answer]
User: [correct] or [incorrect]

Flow 2: Return question
"Maybe understand question"

User: [question]
Bot: [greeting]

Bot: [return question]
User: [yes] or [no]

Flow 3: Expert answer
"Don’t understand question"

User: [question]
Bot: [greeting]

Bot: [sent to expert]

FIGURE 6.1: A schematic overview of the chatbot flow.

Chapter 6. Chatbot implementation 83

"aow" or "zzp") to the user question and then checking if it now matches a question
in the database more closely. When a term is found that makes the user question
match a database question closely, then the user is asked "Does your question have
something to do with [term]?" This question is shown in a pop-up window and the
user can click yes or no. If the user answers yes, then the answer to the closely
matched question is given and the question is further handled like in flow 1. If the
user answers no, then the original user question is sent through to a human expert.

If the user question cannot be matched (with a high enough score) to the ques-
tions in the database then the chatbot "doesn’t understand" the question, and the
user goes into flow 3. In flow 3 the user is greeted by the bot and the question is then
sent through to a human expert.

6.2 Confidence levels

The scores, or confidence levels, at which point a user is sent through to flow 1, 2 or 3
need to be determined. The goal is to answer as many questions as possible but not
to answer a too high percentage of those questions wrongly. To set these confidence
levels, we use a validation set for which we know whether two questions match
or not and for which we have the cosine similarity and XGBoost score between the
questions. We could not use our test set here, as then we would tune our application
to the test set and the measured performance would be higher than it actually is.

The validation set was ran through our chatbot model and the chatbot of the re-
spective model selected the best possible answer. After this procedure we manually
labelled these answers as matching or non-matching. The vector space model chat-
bot found a match for 33% of the questions and the machine learning model chatbot
found a match for 38% of the questions in our validation set.

6.2.1 Vector space model

In the vector space model we measure the cosine similarity between two questions
to predict if they match or not. To find the confidence level at which two questions
match, maybe match or don’t match we have created the graphs in figure 6.2 and
6.3.

In the histogram in figure 6.2, we see that non-matching questions have cosine
similarities between 0.18 and 0.72, and that the histogram overlaps quite much with
the one for matching questions. The matching questions have cosine similarities
between 0.22 and 1, and their distribution is more towards higher cosine similarities.

In the box plot in figure 6.2, we see that the difference in cosine similarities be-
tween non-matching and matching questions is not significant as the inter-quartile
ranges of the box plots overlap. Since the medians of the box plots do not overlap
with the interquartile ranges of the other box plot it is likely that the cosine similari-
ties of matching and non-matching questions do differ.

Vector space model confidence levels

To find the right cosine similarities to use as confidence levels (or cut-off points) in
the chatbot application we look at the cumulative distribution in figure 6.3. This fig-
ure shows that from about a cosine similarity of 0.7 there are no more non-matching
questions. However choosing 0.7 as the confidence level for answering a question
would also mean that we answer less than 20% of the questions to which we do
have a correct answer. Looking at the non-matching cumulative distribution we see

Chapter 6. Chatbot implementation 84

(A) Histogram (B) Box plot

FIGURE 6.2: Charts displaying the distribution of the cosine similar-
ity for matching and non-matching questions.

that at a cosine similarity of 0.6 we have already cut-off more than 95% of the non-
matching questions. At a cosine similarity of 0.6 we answer more than 30% of the
matching questions. This sounds like a good balance but since only 33% of questions
match we would still end up answering very few questions. At a cut-off of 0.45 we
would answer 50% of matching questions and 20% of non-matching questions. We
think this is a good balance between right and wrong answers and therefore set a
cosine similarity of 0.45 as the confidence level to go into flow 1.

FIGURE 6.3: A chart displaying the cumulative distribution of the
cosine similarity for matching and non-matching questions.

Some questions might be a bit unclearly posed or phrased very differently from
questions in the dataset. To give these questions a second chance at matching we
ask the return question in flow 2. To set the minimal cosine similarity at which a
question can go into flow 2, we look at figure 6.3 again. At a cosine similarity of

Chapter 6. Chatbot implementation 85

0.35 we have already filtered out 60% of non-matching questions, and only 30% of
matching questions. Setting the confidence level for getting into flow 2 at a cosine
similarity between 0.35 and 0.45 means that this gives us the potential to still answer
the 20% of matching questions that falls between these cosine similarities correctly.
Therefore we think that a minimum confidence level of 0.35 for the return question
is appropriate.

If the confidence level is below 0.35 the user will go into flow 3, and receive an
expert answer.

6.2.2 Machine learning model

In the machine learning model we estimate the matching probability of two ques-
tions using an XGBoost model. To find the confidence level at which two questions
match, maybe match or don’t match we have created the graphs in figure 6.4 and
6.5.

In the histogram in figure 6.4, we see that non-matching questions have an aver-
age XGBoost score of 0.80, and that the histograms for non-matching and matching
questions overlap for many XGBoost scores. The matching questions have an aver-
age XGBoost score of 0.89, and this group is distributed more towards high XGBoost
scores.

In the box plot in figure 6.4, we see that the difference in XGBoost score between
non-matching and matching questions is not significant as the inter-quartile ranges
of the box plots overlap. Also the medians overlap with the inter-quartile ranges of
the other box plot meaning that it is likely that matching and non-matching ques-
tions have similar XGBoost scores.

(A) Histogram (B) Box plot

FIGURE 6.4: Charts displaying the distribution of the XGBoost score
for matching and non-matching questions.

Chapter 6. Chatbot implementation 86

Machine learning model confidence levels

To find the right XGBoost scores to use as confidence levels (or cut-off points) in the
chatbot application we look at the cumulative distribution in figure 6.5. This figure
shows again that the differences between non-matching and matching questions in
XGBoost score is small. At an XGBoost score of 0.92 and higher the matching ques-
tion graph is steeper than the non-matching question graph. This means that there
are more matching than non-matching questions here (percentually). At an XGBoost
score of 0.92 we answer 40% of matching questions and 20% of non-matching ques-
tions. We think that this is a good balance between right and wrong answers and
therefore set an XGBoost score of 0.92 as the confidence level to go into flow 1.

Some questions might be a bit unclearly posed or phrased very differently from
questions in the dataset. To give these questions a second chance at matching we ask
the return question in flow 2. To set the minimal XGBoost score at which a question
can go into flow 2, we look at figure 6.5 again. What stands out is that the slopes of
non-matching and matching questions between 0.6 and 0.92 are very similar. This
means that the percentage of non-matching and matching questions between these
XGBoost scores are similar. Because of this similarity asking a return question is
garantueed to lead to the answer "No" in at least 50% of cases. This is the reason for
deciding not to implement the return question for the machine learning model.

If the confidence level is below 0.92 the user will go into flow 3, and receive an
expert answer.

FIGURE 6.5: A chart displaying the cumulative distribution of the
XGBoost score for matching and non-matching questions.

6.2.3 Combination model

In the previous sections we found that the vector space model chatbot found a match
for 33% of the questions and the machine learning model chatbot found a match for
38% of the questions, when answering every question with its closest match. We
also found that the cosine similarity seems to be able to better differentiate between
matching and non-matching questions than the XGBoost score. This can be seen
when comparing the box plots in figure 6.2(B) and 6.4(B). Therefore we have decided
to test a model that selects the closest match based on XGBoost score, and decides
which flow a question belongs to using cosine similarity. To find the confidence
level at which two questions match, maybe match or don’t match we have created
the graphs in figure 6.6 and 6.7.

Chapter 6. Chatbot implementation 87

In the histogram in figure 6.6, we see that non-matching questions have an aver-
age cosine similarity of 0.21. The matching questions have an average cosine simi-
larity of 0.40, and this group is distributed more towards higher cosine similarities.

In the box plot in figure 6.6, we see that the difference in cosine similarity be-
tween non-matching and matching questions is not significant as the inter-quartile
ranges of the box plots overlap. However, the medians of the box plots do not over-
lap with the interquartile ranges of the other box plot which indicates that it is likely
that the cosine similarities of matching and non-matching questions do differ.

(A) Histogram (B) Box plot

FIGURE 6.6: Charts displaying the distribution of the cosine similar-
ity for matching and non-matching questions in the XGBoost model.

Combination model confidence levels

To find the right XGBoost scores to use as confidence levels (or cut-off points) in the
chatbot application we look at the cumulative distribution in figure 6.7. At a cosine
similarity of 0.4 about 95% of the non-matching questions are cut-off and we answer
40% of the matching questions. This leads to a high percentage of correct answers
but also to not answering many questions. To answer more questions we can im-
plement the return question flow on questions with a cosine similarity between 0.25
and 0.4. At a cosine similarity of 0.25 we cut-off 80% of non-matching questions and
we keep 60% of matching questions.

Other possibly good scenarios, where we answer more questions, would be to set
the confidence level at 0.25 or 0.3 for getting an immediate chatbot answer. At 0.25
we cut-off 80% of non-matching questions and we keep 60% of matching questions.
This would lead to a lower percentage of correct answers than at 0.4 but it would also
lead to giving many more answers. A confidence level of 0.3 would be somewhere
in between. What the correct balance is between how many questions to answer and
what percentage of questions to answer is a business decision. A company wants
the chatbot to be of use, but also to answer a lot correctly.

Chapter 6. Chatbot implementation 88

FIGURE 6.7: A chart displaying the cumulative distribution of the co-
sine similarity for matching and non-matching questions in the XG-

Boost model.

6.3 Dynamic learning

To increase the amount of questions that the chatbot can answer we extend the
question-answer dataset with questions that are correctly answered by the chatbot.
When the chatbot gives an answer to the user it also asks whether this answer was
satisfactory, and if the user presses the green smiley this will lead to the user ques-
tion and the given answer being added to the question-answer dataset.

In the case of the machine learning chatbot the combination of the user question
and the matched question could also be added as a positive or negative match in the
Q2Q dataset. This would lead to a process of dynamic learning. This is not applied
in this chatbot prototype as we use the already trained model in the chatbot and to
apply this we would need to retrain the model at certain time intervals. Applying
the retraining of the chatbot overnight would be a good functionality for a real (non-
prototype) implementation of the chatbot.

6.4 Results

In this section we give the results of the chatbot implementation. First, in section
6.4.1 we shows some examples of answers given by the chatbot. Then in section
6.4.2, 6.4.3 and 6.4.4 we give the results for the vector space model, machine learning
model and combination model chatbot implementation, respectively.

6.4.1 Answer examples

The features of the chatbot described in the beginning of this chapter, like the return
question and dynamic learning are all implemented in our vector space model chat-
bot. Therefore we show some examples of answers this chatbot gives. Examples of
the machine learning chatbot are very similar. Figure 6.8, is an example of a user
question that is sent to "Flow 1: Chatbot answer". This user question is immediately
answered by the chatbot, and the chatbot asks whether the answer was satisfactory.
In this case we pressed the green smiley as the answer was correct and helpful.

Chapter 6. Chatbot implementation 89

FIGURE 6.8: The chatbot screen with a good answer to a newly typed
question.

Figure 6.9 and 6.10 are steps in "Flow 2: Return question". After the user asks
a question that ends up in flow 2, the chatbot tries to add a word to the question
that makes the user question get the score needed to be answered by the chatbot.
In this case that word is "alleenstaande", as shown in figure 6.9, which has to do
with getting a different amount of state pension if you live alone than if you live
together. This question has something to do with "alleenstaande" and therefore we
press "Yes". After pressing "Yes" the answer belonging to the matched question is
given as shown in figure 6.10.

Chapter 6. Chatbot implementation 90

FIGURE 6.10: The chatbot screen after correctly answering a question
in which a return question was answered with "Yes".

FIGURE 6.9: The chatbot asking a return question.

Finally, it can also happen that the chatbot does not find a high enough cosine
similarity for a question to go into flow 1 or 2. The question then ends up in "Flow
3: Expert answer" as shown in figure 6.11. In this flow the user is greeted and then
the question is sent through to a human expert.

Chapter 6. Chatbot implementation 91

FIGURE 6.11: The chatbot screen with a question that cannot be an-
swered by the chatbot and is sent through to an expert.

6.4.2 Vector space model implementation

In section 4.5, we already saw the results of the vector space model without bound-
aries. Meaning that we answered every question with the answer to the question
with the highest cosine similarity. This led to answering 33% of the questions cor-
rectly.

The results of the implementation of the vector space model are shown in figure
6.12 and 6.13. In figure 6.12, we see that 38% of questions is immediately answered
by the chatbot, for 29% we try to formulate a return question and 33% is immediately
sent through to an expert. From the questions that are sent to flow 2, we cannot find
a suitable return question for 31% of cases. For the user questions to which we do
ask a return question, 29% of these questions are answered with "Yes" and 71% are
answered with "No". In total this all means that 44% of questions are answered by
the chatbot and of the given answers 55% is correct. The other 56% of questions is
sent to experts.

In figure 6.13, we show the vector space model implementation results in a con-
fusion matrix of sorts. On the top we have the cosine similarity scores, where ques-
tions with scores higher than 0.45 receive an answer and questions with lower scores
do not. On the left axis we show if the correct answer to a question was selected (no
matter if it was answered or not). The numbers in the confusion matrix including
the return question add up to different numbers of correct/incorrect answers se-
lected and different cosine score results, as asking the return question can improve
cosine scores and alter the answer selected.

Figure 6.13a, shows that 61 questions were answered correctly, we did not an-
swer 22 questions to which we did select the right answer (missed opportunity), we
answered 50 questions incorrectly and 122 questions were correctly not answered. If
we would not have asked the return question but just have cut-off the cosine values

Chapter 6. Chatbot implementation 92

Question

Flow 1: Chatbot answer

Flow 2: Return question

No return
question found

Flow 3: Expert answer

44% of questions end here
55% is answered correctly

56% of questions end here

38%

29%

33%

31%

Yes
29%

71%
No

FIGURE 6.12: An overview of the results of the vector space model
chatbot implementation.

at 0.45 we would have had the results in figure 6.13b. This means that we would
have answered 52 questions correctly, we would not have answered 32 questions
to which we did select the right answer (missed opportunities), we would have an-
swered 44 questions incorrectly and 127 questions would correctly not have been
answered. Comparing these two outcomes we see that the return question leads to
answering more questions, but also to answering more questions wrongly. In per-
centages, if we calculate the precision, we see that the model including the return
question answers 55% of questions correctly and the model excluding the return
question answers 54% of questions correctly. Since the number of given answers is
higher and the percentage of correct given answers is higher we prefer the vector
space model implementation with the return question.

61

cos ≥ 0.45

22

cos < 0.45

50 122

Correct
answer

selected

Incorrect
answer

selected

(A) Including return question

52

cos ≥ 0.45

32

cos < 0.45

44 127

Correct
answer

selected

Incorrect
answer

selected

(B) Excluding return question

FIGURE 6.13: The confusion matrices for the implementation of the
vector space model.

6.4.3 Machine learning model implementation

In section 5.5, we showed the results of the machine learning model on a question-to-
question test set. In that section the objective was to predict whether two questions

Chapter 6. Chatbot implementation 93

were the same or not. For the chatbot implementation this works a little differently.
A user question is matched to all questions in our database and then the match with
the highest XGBoost score is selected. The test set used contains 255 user questions
and is the same one as for the vector space model. We give the results for the ques-
tion match with the highest XGBoost score. Without any cut-off we correctly answer
38% of the questions.

The results of the implementation of the machine learning model are shown in
figure 6.14 and 6.15. In figure 6.14, we see that 40% of questions is answered by the
chatbot and 60% of questions is sent through to an expert. From the questions that
are answered by the chatbot 52% is answered correctly.

Question

Flow 1: Chatbot answer

Flow 3: Expert answer

40% of questions end here
52% is answered correctly

60% of questions end here

40%

60%

FIGURE 6.14: An overview of the results of the vector space model
chatbot implementation.

In figure 6.15, we show the machine learning model implementation results in a
confusion matrix of sorts. On the top we have the XGBoost scores, where questions
with scores higher than or equal to 0.92 receive an answer and questions with lower
scores do not. On the left axis we show if the correct answer to a question was
selected (no matter if it was answered or not).

Figure 6.15, shows that 53 questions were answered correctly, we did not answer
45 questions to which we did select the right answer (missed opportunities), we
answered 49 questions incorrectly and 108 questions were correctly not answered.

53

XGB ≥ 0.92

45

XGB < 0.92

49 108

Correct
answer

selected

Incorrect
answer

selected

FIGURE 6.15: The confusion matrix for the implementation of the ma-
chine learning model.

6.4.4 Combination model implementation

For the combination model implementation we decided to try multiple confidence
levels to be able to make a good choice of confidence level. The results of the imple-
mentation of the combination model at all of these confidence levels are shown in
figure 6.16, 6.17, 6.18, 6.19 and 6.20.

Chapter 6. Chatbot implementation 94

Comparing figures 6.16 to 6.19, we clearly see that a lower confidence level leads
to a higher percentage of chatbot answers and a lower percentage of correct an-
swers. Adding the return question also leads to a lower percentage of correct an-
swers. When comparing figure 6.16 to figure 6.18, we see that at a confidence level
of 0.3 without return question more questions are answered and we answer a higher
percentage of questions correctly. Therefore the combination model at a confidence
level of 0.3 is superior to the combination model at a confidence level of 0.4 with
return question.

Question

Flow 1: Chatbot answer

Flow 2: Return question

No return
question found

Flow 3: Expert answer

27% of questions end here
66% is answered correctly

73% of questions end here

23%

19%

58%

43%

Yes
36%

64%
No

FIGURE 6.16: An overview of the results of the combination model
chatbot implementation at a confidence level of 0.4 with a return

question at a cosine similarity of 0.25.

Question

Flow 1: Chatbot answer

Flow 3: Expert answer

23% of questions end here
74% is answered correctly

77% of questions end here

23%

77%

FIGURE 6.17: An overview of the results of the combination model
chatbot implementation at a confidence level of 0.4 without return

question.

Question

Flow 1: Chatbot answer

Flow 3: Expert answer

31% of questions end here
67% is answered correctly

69% of questions end here

31%

69%

FIGURE 6.18: An overview of the results of the combination model
chatbot implementation at a confidence level of 0.3 without return

question.

Chapter 6. Chatbot implementation 95

Question

Flow 1: Chatbot answer

Flow 3: Expert answer

42% of questions end here
58% is answered correctly

58% of questions end here

42%

58%

FIGURE 6.19: An overview of the results of the combination model
chatbot implementation at a confidence level of 0.25 without return

question.

In figure 6.20, we show the combination model implementation results in confu-
sion matrices. On the top we have the cosine similarity scores, where questions with
scores higher than 0.4 receive an answer and questions with lower scores do not. On
the left axis we show if the correct answer to a question was selected (no matter if
it was answered or not). The numbers in the confusion matrix including the return
question add up to different numbers of correct/incorrect answers selected and dif-
ferent cosine score results, as asking the return question can improve cosine scores
and alter the answer selected.

45

cos ≥ 0.4

47

cos < 0.4

23 140

Correct
answer

selected

Incorrect
answer

selected

(A) Including return question at 0.4

43

cos ≥ 0.4

55

cos < 0.4

15 142

Correct
answer

selected

Incorrect
answer

selected

(B) Excluding return question at 0.4

53

cos ≥ 0.3

45

cos < 0.3

26 131

Correct
answer

selected

Incorrect
answer

selected

(C) Excluding return question at 0.3

62

cos ≥ 0.25

36

cos < 0.25

45 112

Correct
answer

selected

Incorrect
answer

selected

(D) Excluding return question at 0.25

FIGURE 6.20: The confusion matrices for the implementation of the
vector space model.

When comparing the confusion matrices in figure 6.20, we see that adding the
return question in figure 6.20a leads to bad results compared to figure 6.20b. Adding
the return question leads to two additional correct answers, but also 8 additional
wrong answers. Therefore we prefer the combination model excluding the return
question. When comparing figure 6.20b with figure 6.20c and 6.20d, it doesn’t come

Chapter 6. Chatbot implementation 96

down to a scientific decision but to a business decision. In figure 6.20b we answer
only 58 questions in total and 15 of these are incorrect answers, in figure 6.20c we
answer 79 questions in total of which 26 are incorrect answers and in figure 6.20d
we answer 107 questions in total of which 45 are wrong answers.

We decide to choose the combination model excluding return question at a confi-
dence level of 0.4. We choose this confidence level as lower confidence levels lead to
more answers but also to even more wrong answers. For example, if the confidence
level goes from 0.4 to 0.3, we give 10 more correct answers but also 11 more wrong
answers.

6.5 Model comparisons

Figure 6.21 shows the results of all implemented models at all researched confidence
levels.

FIGURE 6.21: The results of the chatbot implementations of all mod-
els.

Comparing the results of the machine learning model with the results of the vec-
tor space model implementation, we see that we answer more questions and have
a higher percentage of correctly answered questions using the vector space model.
Therefore we find that the vector space model chatbot implementation performs
better than the machine learning chatbot implementation at the selected confidence
levels. We did not expect this finding as without any cut-off the vector space model
answers 33% of questions correctly and the machine learning model answers 38%
correctly. The difference is that the cosine similarity measure is a better measure for
distinguishing between questions that we can and cannot answer than the XGBoost
score. Therefore when implementing the confidence levels the vector space model
performs better. This does not imply that the vector space model would perform
better than implementations of the other machine learning models (like Random
Forest), as the scores for these models might be better in distinguishing between
questions that it can and cannot answer than the XGBoost score.

The combination model, that consists of using the XGBoost score for matching
two questions and the cosine similarity to decide whether the chatbot should answer
a question or not, performs similar to the vector space model looking at figure 6.21.

Chapter 6. Chatbot implementation 97

Here we see that if we would draw a line through the combination model points
and extend it, we would reach to vector space model point. However, looking at
figure 6.20b and 6.13a, we see that the vector space model implementation gives 18
correct answers more, but also 35 wrong answers more than the combination model
at a confidence level of 0.4. We decide that the combination model with a confidence
level of 0.4 is the best model for our business case.

98

Chapter 7

Conclusion & Discussion

The main objective of this graduation project was to build a chatbot to answer very
complex questions, which often require even more complex answers, in a well de-
fined domain (the financial domain). The focus was on only answering questions
to which high-quality answers can be given. Three chatbot implementations based
on different underlying models have been built and compared. The best performing
chatbot answers 23% of user questions (the rest is sent through to human experts),
and 74% of these questions are answered correctly. Success criteria for this gradua-
tion project were: a working chatbot system, use of NLP techniques, use of machine
learning techniques and an evaluation of the chatbot system. These success criteria
have all been met, but the answer quality of the chatbot is not very high.

We now discuss some reasons for the low chatbot answer quality. The first thing
we notice is that there is a big gap between the results of the machine learning model
on a Q2Q dataset and when implemented in a chatbot. This happens because in the
implementation we select the question match with the highest XGBoost score for ev-
ery test question and then evaluate. Our question-answer dataset is small and does
not have an answer to many question variations and certainly not to very specific
questions. When a question for which we do not have a matching question enters
our chatbot we select the question with the highest XGBoost score for matching it.
This means that we actually select the worst result (a non-matching question with a
high matching score). If a question for which we do have a matching question enters
our chatbot we also select the match with the highest XGBoost score, this is likely to
be a good result. Now in total, if more than half of the questions do not have match-
ing questions in our question-answer dataset it is logical that the machine learning
chatbot implementation gives worse results than the model itself.

Another reason for the low chatbot answer quality is the specificity of the an-
swers in the question-answer dataset. Since the question-answer dataset only con-
tains answers given to a specific user question, sometimes the topic of the answer is
correct but it is so specifically applied to a personal situation that it does not apply
to the new user question.

We were surprised to find that the vector space model chatbot implementation
gives better results than the machine learning model implementation. Without im-
plementing a confidence level, that means that we answer every question with its
closest match, the vector space model chatbot gave 33% correct answers and the
machine learning model chatbot gave 38% correct answers. However, when imple-
menting confidence levels it turns out that the cosine similarity measure is better at
distinguishing between questions that the chatbot did and did not select the correct
answer for. Due to this distinguishing capability the vector space model answers a
bigger percentage of questions and answers a bigger percentage of these questions
correctly. This does not imply that the vector space model implementation would
give better results than all machine learning model implementations. Other models,

Chapter 7. Conclusion & Discussion 99

like Random Forest, could have scores that are better than XGBoost at distinguishing
between questions the model can and cannot answer in a chatbot framework.

The combination model, in which the machine learning model is used to select
the best matching question and the cosine similarity is used to determine whether
the chatbot gives an answer or not, is chosen as the best model. This choice was
based on a business decision as the model is not obviously superior to the vector
space model. The business decision was made while focusing on obtaining a high
percentage of correct answers.

We have many recommendations for future research in this area as much is yet
to be discovered.

1. Use a bigger question-answer dataset or a smaller domain
We used a question-answer dataset containing 3153 questions after cleaning.
We found that for the broad domain (financial domain) we had these 3153 did
not cover many of the potential questions. For future research we advise to
either extend the question-answer dataset or choose a smaller domain (e.g.
only pension questions).

2. Create a model answer set
Our chatbot gives back answers that were meant for a specific question. Often
this leads to the answer not being appropriate for a new question in the same
category. Therefore we advise to go through all the answers and rewrite them
in a way that they can be applied to more questions.

3. Add more chat functionalities
Our chatbot can answer a question, ask a yes/no return question and sent a
question through to an expert. However you cannot have a back-and-forth
conversation, as it works more like a question answering system. Therefore
we advice to research how to integrate more chat functionalities in a chatbot
meant for giving information.

4. Add hand-coded rules to the chatbot
We wanted to research adding hand-coded rules to the chatbot as we can imag-
ine that matching questions like "When will I get pension?" and "At what age
do I get pension" is difficult for a cosine similarity or machine learning based
chatbot. However when evaluating the test set we did not find many questions
like this. Adding hand-coded rules might be very useful in a domain with less
complicated and personalised questions.

5. Improve the Dutch NLP pipeline
We created an NLP pipeline for Dutch, as there were no existing ones. In future
work this pipeline can be improved and extended with more NLP techniques.
An important point of improvement is the stemmer. We used the Dutch stem-
mer from the Python package Snowball. This word stemming improved our
results, but the stemmer often transformed the words in a strange way. We
advise to research the quality of this stemmer and/or build a dataset specific
stemmer in the future.

6. Speed up the chatbot
Our vector space model chatbot gives results in under a second, but the ma-
chine learning chatbot takes 15 seconds to answer on average (longer for longer
questions). A similar version of this chatbot implemented in Scala takes under
a second, so that is a solution. If you want to operate the chatbot in Python we

Chapter 7. Conclusion & Discussion 100

advise to parallel program the feature creation process for the machine learn-
ing chatbot.

7. Research ensemble learning
When studying the machine learning models we used standard ensembling
methods like XGBoost and Random Forest. However we did not try to ensem-
ble our machine learning models themselves. Combinations of our machine
learning models might give better results than one single model.

8. Research generative-based chatbots
In our literature study we did some research on generative-based chatbots. We
think that these are the chatbots of the future as they can give the impression
that you are talking to a human being. However it is difficult to implement
a generative-based chatbot on a specific domain as huge amounts of training
data are needed.

Research done in the area of text mining is very time consuming as cleaning,
creating and evaluating the data has to be done manually and consists of reading
large amounts of text. Models applied on textual data take much time to evaluate.
This is the case because checking if an answer to a question or a found document is
correct has to be done manually, while if you are predicting a certain value checking
if it is correct can be done computationally. Therefore we want to encourage others
working on textual data to think about easy evaluation methods. In this thesis we
built an evaluation framework, but we still had to manually read all selected answers
and check there correctness.

The work done in this research adds to the body of work done in the area of chat-
bots. The main contributions are the NLP pipeline developed for Dutch questions
which can easily be applied to text from other domains, applying the vector space
model to question matching instead of document retrieval, researching the quality
of different types of machine learning models on question matching and creating
a new type of chatbot implementation using different chat flows including return
questions.

Financial questions are highly complex and require reliable answers. Our success
shows that even this type of questions can be handled by a chatbot. The NLP and
machine learning techniques researched in this study can be applied to text mining
problems in many domains, even domains with complex text data.

101

Appendix A

NLP: word lists

This appendix contains word lists which were used while applying NLP techniques
to our dataset. Stop-word lists can be found in section A.1 and a compound word
list can be found in section A.2.

A.1 Stop-word lists

The standard Dutch stop-word list built-in to the Python NLTK package contains:

• de

• en

• van

• ik

• te

• dat

• die

• in

• een

• hij

• het

• niet

• zijn

• is

• was

• op

• aan

• met

• als

• voor

• had

• er

• maar

• om

• hem

• dan

• zou

• of

• wat

• mijn

• men

• dit

• zo

• door

• over

• ze

• zich

• bij

• ook

• tot

• je

• mij

• uit

• der

• daar

• haar

• naar

• heb

• hoe

• heeft

• hebben

• deze

• u

• want

• nog

• zal

• me

• zij

• nu

• ge

• geen

Appendix A. NLP: word lists 102

• omdat

• iets

• worden

• toch

• al

• waren

• veel

• meer

• doen

• toen

• moet

• ben

• zonder

• kan

• hun

• dus

• alles

• onder

• ja

• eens

• hier

• wie

• werd

• altijd

• doch

• wordt

• wezen

• kunnen

• ons

• zelf

• tegen

• na

• reeds

• wil

• kon

• niets

• uw

• iemand

• geweest

• andere

Extra stop-words we added to this list, specifically for this dataset are:

• wel

• groeten

• vragen

• via

• mogelijk

• graag

• gaan

• weten

• informatie

• beste

• heer/mevrouw

• bent

• vraag

• kunt

• bedankt

• dank

• hallo

• krijgt

• goedenavond

• krijg

• kun

• wilt

• hebt

• gaat

• vriendelijke

• groet

• wij

• even

• we

• geachte

• hoi

• hi

• groetjes

• hoogachtend

• meneer

• mevrouw

• heer

Appendix A. NLP: word lists 103

A.2 Compound word list

The list with words to extract from compound words contains the following words:

• alleenstaand

• aow

• arbeidsongeschikt

• bank

• belast

• belegg

• bewijs

• bezwaar

• bijstand

• contact

• dekking

• erf

• huis

• huur

• hypotheek

• kind

• leeftijd

• levensloop

• lijfrente

• loon

• mantelzorg

• minimum

• nabestaand

• offerte

• ontslag

• ouderdom

• overbrugging

• overlijd

• overstap

• partner

• pensioen

• polis

• premie

• reis

• rekening

• rente

• samenleving

• schade

• scheid

• spaar

• studie

• telefon

• toeslag

• uitkering

• vakantie

• verzeker

• vrijwillig

• werkgever

• werklo

• werknemer

• woon

• ziek

• zorg

• zzp

A.3 Synonym list

The list of synonyms contains words in table A.1.

Model word Synonym 1 Synonym 2 Synonym 3 Synonym 4 Synonym 5 Synonym 6
pensioen pension pesion pesioen
partner man vrouw
pensioenopbouw opbouw bouw
tijdens terwijl tegenlijk tegelijk
ontvang ontvangen ontving ontvangt
pensioenoverzicht upo pensioenbrief uniform
voorwaardelijk voorwaardelijke
waardeoverdracht overdracht overgedragen
invloed effect gevolg gevolgen effecten
recht rechtmatig wettig aanspraak
dekkingsgraad beleidsdekkingsgraad dekkinggraad
gebeurt gebeuren gebeurde
herplaatsingstoelage hpt herplaatsing
buitenland buiteland emigratie emigreren belgie duitsland meer landen
informatie info kennisgeving inlichting mededeling kennis inzicht
ww wwuitkering werkloosheidsuitkering
inkomen loon salaris vergoeding broodwinning
invaliditeitspensioen arbeidsongeschiktheidspensioen ip
betekent betekend
pensioenregeling pensioenregels pensioenreglement
bijdrage contributie afdracht premie
ex expartner exman exvrouw
indexatie indexering
hoogte hoog hoeveel
aow overheidspensioen sow
loonheffingskorting loonheffing loonbelasting
aanmelden meld meldt aanvragen
fiscale fiscaal belasting belastingtechnisch fiscus
woon gevestigd verblijf verblijven
werken gewerkt
arbeidsongeschiktheid arbeidsongeschikt
overlijden gestorven overleden overlijdt
berekend vastgesteld
uitkering toeslag tegemoetkoming toelage bijstand
werkgever bedrijf baas
ingehouden gekort verlaagd korten
zorgverzekeringswet zvw volksverzekeringen
verevening verdeling
anw nabestaandenpensioen nabestaandenuitkering anwpensioen overlijdensuitkering anwuitkering anwcompensatie
jaaropgave jaaroverzicht
wijzigen veranderen verandert wijziging verandering

looptijd duur duurtijd loopt
pensioenpremie premie
bijsparen inleggen
pensioenfonds fonds abp spw pfzw bpfb meer pensioenfondsen
verlaging korting mindering
werk arbeid job baan
65 pensioenrekenleeftijd vijfenzestig pensioenleeftijd aowleeftijd 65ste
diensttijd werkgevers werkverleden
wao arbeidsongeschiktheidsuitkering
gehuwd getrouwd
aanvulling aanvullen
echtscheiding scheiden scheiding
burgerservicenummer bsn sofi sofinummer
bijspaar bijsparen ruimte
afkoop uitbetaling afkoopbedrag afkopen
deeltijd deeltijdpensioen vroegpensioen keuzepensioen
opgebouwde opbouwen
nabestaande nabestaanden
levensloopverlof levensloop levensloopregeling
iban rekening bankrekening banknummer rekeningnummer
wia ziekteuitkering

TABLE A.1: Table of synonyms

106

Bibliography

[1] Alfred V Aho and Jeffrey D Ullman. The theory of parsing, translation, and com-
piling. Prentice-Hall, Inc., 1972.

[2] Tomoyosi Akiba, Katunobu Itou, and Atsushi Fujii. “Question Answering Us-
ing" Common Sense" and Utility Maximization Principle.” In: NTCIR. 2004.

[3] Amara D. Angelica. “How Watson Works: a conversation with Eric Brown,
IBM Research Manager”. In: Kurzweil Accelerating Intelligence (2011).
URL: http : / / www . kurzweilai . net / how - watson - works - a -
conversation-with-eric-brown-ibm-research-manager.

[4] Ricardo Baeza-Yates and William Bruce Frakes. Information retrieval: data struc-
tures & algorithms. Prentice Hall, 1992.

[5] Satanjeev Banerjee and Alon Lavie. “METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments”. In: Proceed-
ings of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. Vol. 29. 2005, pp. 65–72.

[6] Alistair Barr. Google plans new, smarter messaging app. 2015. URL: https://
www . wsj . com / article _ email / google - plans - new - smarter -
messaging-app-1450816899-lMyQjAxMTA1OTI5MjUyMDI5Wj (visited
on 01/24/2017).

[7] Yoshua Bengio et al. “A neural probabilistic language model”. In: Journal of
machine learning research 3.Feb (2003), pp. 1137–1155.

[8] Adam Berger et al. “Bridging the lexical chasm: statistical approaches to
answer-finding”. In: Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval. ACM. 2000,
pp. 192–199.

[9] Eric Brill. “A simple rule-based part of speech tagger”. In: Proceedings of the
workshop on Speech and Natural Language. Association for Computational Lin-
guistics. 1992, pp. 112–116.

[10] Peter F Brown et al. “Class-based n-gram models of natural language”. In:
Computational linguistics 18.4 (1992), pp. 467–479.

[11] Chris Buckley. Implementation of the SMART information retrieval system. Tech.
rep. Cornell University, 1985.

[12] Robin D Burke et al. “Question answering from frequently asked question
files: Experiences with the faq finder system”. In: AI magazine 18.2 (1997), p. 57.

[13] Claire Cardie et al. “Examining the role of statistical and linguistic knowledge
sources in a general-knowledge question-answering system”. In: Proceedings of
the sixth conference on Applied natural language processing. Association for Com-
putational Linguistics. 2000, pp. 180–187.

http://www.kurzweilai.net/how-watson-works-a-conversation-with-eric-brown-ibm-research-manager
http://www.kurzweilai.net/how-watson-works-a-conversation-with-eric-brown-ibm-research-manager
https://www.wsj.com/article_email/google-plans-new-smarter-messaging-app-1450816899-lMyQjAxMTA1OTI5MjUyMDI5Wj
https://www.wsj.com/article_email/google-plans-new-smarter-messaging-app-1450816899-lMyQjAxMTA1OTI5MjUyMDI5Wj
https://www.wsj.com/article_email/google-plans-new-smarter-messaging-app-1450816899-lMyQjAxMTA1OTI5MjUyMDI5Wj

BIBLIOGRAPHY 107

[14] Stanley F Chen and Joshua Goodman. “An empirical study of smoothing tech-
niques for language modeling”. In: Proceedings of the 34th annual meeting on
Association for Computational Linguistics. Association for Computational Lin-
guistics. 1996, pp. 310–318.

[15] Kenneth Ward Church. “A stochastic parts program and noun phrase parser
for unrestricted text”. In: Proceedings of the second conference on Applied natural
language processing. Association for Computational Linguistics. 1988, pp. 136–
143.

[16] Mark Clark. A Chatbot Framework. 2016. URL: http://info.contactsolutions.
com/digital-engagement-blog/a-chatbot-framework (visited on
02/01/2017).

[17] K. M. Colby. Computer Model of Thought and Language. Ed. by R. C. Schank. W.
H. Freeman and Company, 1973.

[18] Greg Corrado. Computer, respond to this email. 2015. URL: https : / /
research . googleblog . com / 2015 / 11 / computer - respond - to -
this-email.html (visited on 02/16/2017).

[19] Doug Cutting et al. “A practical part-of-speech tagger”. In: Proceedings of the
third conference on Applied natural language processing. Association for Compu-
tational Linguistics. 1992, pp. 133–140.

[20] Simon Dennis et al. “Introduction to latent semantic analysis”. In: Slides from
the tutorial given at the 25th Annual Meeting of the Cognitive Science Society,
Boston. 2003.

[21] Alan Descoins. Chatbots and automated online assistants. 2015. URL: https :
//tryolabs.com/blog/2015/07/23/chatbots-and-automated-
online-assistants/ (visited on 02/09/2017).

[22] Kjell Magne Fauske. Example: Neural network. 2006. URL: http : / / www .
texample . net / tikz / examples / neural - network/ (visited on
02/27/2017).

[23] David Ferrucci et al. “Building Watson: An overview of the DeepQA project”.
In: AI magazine 31.3 (2010), pp. 59–79.

[24] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statisti-
cal learning. Vol. 1. Springer series in statistics Springer, Berlin, 2001.

[25] Shalini Ghosh et al. “Contextual LSTM (CLSTM) models for Large scale NLP
tasks”. In: arXiv preprint arXiv:1602.06291 (2016).

[26] Ben Goertzel and Cassio Pennachin. Artificial general intelligence. Vol. 2.
Springer, 2007.

[27] D. C. Gondek et al. “A framework for merging and ranking of answers in
DeepQA”. In: IBM Journal of Research and Development 56.3.4 (2012), pp. 14–1.

[28] Bert F. Green Jr. et al. “Baseball: An Automatic Question-answerer”. In: Papers
Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM Computer Confer-
ence. IRE-AIEE-ACM ’61 (Western). New York, NY, USA: ACM, 1961, pp. 219–
224. DOI: 10.1145/1460690.1460714. URL: http://doi.acm.org/10.
1145/1460690.1460714.

[29] Seth Grimes. Unstructured data and the 80 percent rule. 2008. URL: https://
breakthroughanalysis.com/2008/08/01/unstructured-data-
and-the-80-percent-rule/ (visited on 01/23/2017).

http://info.contactsolutions.com/digital-engagement-blog/a-chatbot-framework
http://info.contactsolutions.com/digital-engagement-blog/a-chatbot-framework
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://tryolabs.com/blog/2015/07/23/chatbots-and-automated-online-assistants/
https://tryolabs.com/blog/2015/07/23/chatbots-and-automated-online-assistants/
https://tryolabs.com/blog/2015/07/23/chatbots-and-automated-online-assistants/
http://www.texample.net/tikz/examples/neural-network/
http://www.texample.net/tikz/examples/neural-network/
https://doi.org/10.1145/1460690.1460714
http://doi.acm.org/10.1145/1460690.1460714
http://doi.acm.org/10.1145/1460690.1460714
https://breakthroughanalysis.com/2008/08/01/unstructured-data-and-the-80-percent-rule/
https://breakthroughanalysis.com/2008/08/01/unstructured-data-and-the-80-percent-rule/
https://breakthroughanalysis.com/2008/08/01/unstructured-data-and-the-80-percent-rule/

BIBLIOGRAPHY 108

[30] Jiatao Gu et al. “Incorporating copying mechanism in sequence-to-sequence
learning”. In: arXiv preprint arXiv:1603.06393 (2016).

[31] Sanda M Harabagiu et al. “Falcon: Boosting knowledge for answer engines”.
In: (2000).

[32] Peter A Heeman. “POS tags and decision trees for language modeling”. In:
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora. 1999, pp. 129–137.

[33] Eduard Hovy et al. “Toward semantics-based answer pinpointing”. In: Pro-
ceedings of the first international conference on Human language technology research.
Association for Computational Linguistics. 2001, pp. 1–7.

[34] Jason L. Hutchens and Michael D. Alder. “Introducing MegaHAL”. In: Pro-
ceedings of the Joint Conferences on New Methods in Language Processing and Com-
putational Natural Language Learning. NeMLaP3/CoNLL ’98. Stroudsburg, PA,
USA: Association for Computational Linguistics, 1998, pp. 271–274. ISBN: 0-
7258-0634-6. URL: http://dl.acm.org/citation.cfm?id=1603899.
1603945.

[35] Sébastien Jean et al. “On Using Very Large Target Vocabulary for Neural Ma-
chine Translation”. In: CoRR abs/1412.2007 (2014). URL: http://arxiv.
org/abs/1412.2007.

[36] Rudolf Kadlec, Martin Schmid, and Jan Kleindienst. “Improved deep learn-
ing baselines for ubuntu corpus dialogs”. In: arXiv preprint arXiv:1510.03753
(2015).

[37] Anjuli Kannan et al. “Smart Reply: Automated Response Suggestion for
Email”. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD) (2016). 2016. URL: https://arxiv.org/pdf/
1606.04870v1.pdf.

[38] Harksoo Kim and Jungyun Seo. “Cluster-based faq retrieval using latent term
weights”. In: IEEE Intelligent Systems 23.2 (2008), pp. 58–65.

[39] Kyoung jae Kim. Financial time series forecasting using support vector machines.
2003. URL: https://www.slideshare.net/HouwLiongThe/time-
series-forecasting-using-svm (visited on 02/24/2017).

[40] Julian Kupiec. “MURAX: A robust linguistic approach for question answering
using an on-line encyclopedia”. In: Proceedings of the 16th annual international
ACM SIGIR conference on Research and development in information retrieval. ACM.
1993, pp. 181–190.

[41] Thomas K Landauer. Latent semantic analysis. Wiley Online Library, 2006.

[42] Jiwei Li et al. “A diversity-promoting objective function for neural conversa-
tion models”. In: arXiv preprint arXiv:1510.03055 (2015).

[43] Jimmy Lin et al. “What Makes a Good Answer? The Role of Context in Ques-
tion Answering”. In: PROCEEDINGS OF INTERACT 2003. 2003, pp. 25–32.

[44] Chia-Wei Liu et al. “How NOT to evaluate your dialogue system: An empirical
study of unsupervised evaluation metrics for dialogue response generation”.
In: arXiv preprint arXiv:1603.08023 (2016).

[45] Ryan Lowe et al. “The ubuntu dialogue corpus: A large dataset for research in
unstructured multi-turn dialogue systems”. In: arXiv preprint arXiv:1506.08909
(2015).

http://dl.acm.org/citation.cfm?id=1603899.1603945
http://dl.acm.org/citation.cfm?id=1603899.1603945
http://arxiv.org/abs/1412.2007
http://arxiv.org/abs/1412.2007
https://arxiv.org/pdf/1606.04870v1.pdf
https://arxiv.org/pdf/1606.04870v1.pdf
https://www.slideshare.net/HouwLiongThe/time-series-forecasting-using-svm
https://www.slideshare.net/HouwLiongThe/time-series-forecasting-using-svm

BIBLIOGRAPHY 109

[46] Minh-Thang Luong and Christopher D Manning. “Stanford neural machine
translation systems for spoken language domains”. In: Proceedings of the Inter-
national Workshop on Spoken Language Translation. 2015.

[47] Minh-Thang Luong et al. “Addressing the rare word problem in neural ma-
chine translation”. In: arXiv preprint arXiv:1410.8206 (2014).

[48] Steven Lytinen and Noriko Tomuro. “The use of question types to match ques-
tions in FAQFinder”. In: AAAI Spring Symposium on Mining Answers from Texts
and Knowledge Bases. 2002, pp. 46–53.

[49] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduc-
tion to information retrieval. Vol. 1. 1. Cambridge university press Cambridge,
2008.

[50] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic Regularities in
Continuous Space Word Representations.” In: Hlt-naacl. Vol. 13. 2013, pp. 746–
751.

[51] Tomas Mikolov et al. “Distributed representations of words and phrases and
their compositionality”. In: Advances in neural information processing systems.
2013, pp. 3111–3119.

[52] Tomas Mikolov et al. “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781 (2013).

[53] George A Miller. “WordNet: a lexical database for English”. In: Communica-
tions of the ACM 38.11 (1995), pp. 39–41.

[54] Amit Mishra and Sanjay Kumar Jain. “A survey on question answering sys-
tems with classification”. In: Journal of King Saud University-Computer and In-
formation Sciences 28.3 (2016), pp. 345–361.

[55] Catarina Moreira. “Learning to rank academic experts”. PhD thesis. Master
Thesis, Technical University of Lisbon, 2011.

[56] Martha Palmer, Daniel Gildea, and Nianwen Xue. “Semantic role labeling”.
In: Synthesis Lectures on Human Language Technologies 3.1 (2010), pp. 1–103.

[57] Kishore Papineni et al. “BLEU: a method for automatic evaluation of machine
translation”. In: Proceedings of the 40th annual meeting on association for compu-
tational linguistics. Association for Computational Linguistics. 2002, pp. 311–
318.

[58] Nicole Perlroth. “Siri Was Born A Man And Other Things You Don’t Know
About Apple’s New Personal Assistant”. In: Forbes (Oct. 2011). URL: http:
//www.forbes.com/sites/nicoleperlroth/2011/10/12/siri-
was-born-a-man-and-other-things-you-dont-know-about-
apples-new-personal-assistant/#666618592ed8.

[59] Perseus. Classification parameter optimization. 2015. URL: http : / / www .
coxdocs . org / doku . php ? id = perseus : user : activities :
matrixprocessing:learning:classificationparameteroptimization&
do= (visited on 02/21/2017).

[60] Gerasimos Potamianos and Frederick Jelinek. “A study of n-gram and deci-
sion tree letter language modeling methods”. In: Speech Communication 24.3
(1998), pp. 171–192.

[61] John Prager et al. “Question answering by predictive annotation”. In: Advances
in Open Domain Question Answering. Springer, 2008, pp. 307–347.

http://www.forbes.com/sites/nicoleperlroth/2011/10/12/siri-was-born-a-man-and-other-things-you-dont-know-about-apples-new-personal-assistant/#666618592ed8
http://www.forbes.com/sites/nicoleperlroth/2011/10/12/siri-was-born-a-man-and-other-things-you-dont-know-about-apples-new-personal-assistant/#666618592ed8
http://www.forbes.com/sites/nicoleperlroth/2011/10/12/siri-was-born-a-man-and-other-things-you-dont-know-about-apples-new-personal-assistant/#666618592ed8
http://www.forbes.com/sites/nicoleperlroth/2011/10/12/siri-was-born-a-man-and-other-things-you-dont-know-about-apples-new-personal-assistant/#666618592ed8
http://www.coxdocs.org/doku.php?id=perseus:user:activities:matrixprocessing:learning:classificationparameteroptimization&do=
http://www.coxdocs.org/doku.php?id=perseus:user:activities:matrixprocessing:learning:classificationparameteroptimization&do=
http://www.coxdocs.org/doku.php?id=perseus:user:activities:matrixprocessing:learning:classificationparameteroptimization&do=
http://www.coxdocs.org/doku.php?id=perseus:user:activities:matrixprocessing:learning:classificationparameteroptimization&do=

BIBLIOGRAPHY 110

[62] M Ross Quillan. Semantic memory. Tech. rep. DTIC Document, 1966.

[63] John W Ratcliff and David E Metzener. “Pattern-matching-the gestalt
approach”. In: Dr Dobbs Journal 13.7 (1988), p. 46.

[64] Alan Ritter, Colin Cherry, and William B Dolan. “Data-driven response gen-
eration in social media”. In: Proceedings of the conference on empirical methods
in natural language processing. Association for Computational Linguistics. 2011,
pp. 583–593.

[65] Ronald Rosenfeld. “Adaptive statistical language modeling: A maximum en-
tropy approach”. PhD thesis. Department of the Navy, Naval Research Labo-
ratory, 2005.

[66] Gerard Salton. “The SMART retrieval systemexperiments in automatic docu-
ment processing”. In: (1971).

[67] Gerard Salton and Michael J McGill. “Introduction to modern information re-
trieval”. In: (1986).

[68] Iulian V Serban et al. “Building end-to-end dialogue systems using genera-
tive hierarchical neural network models”. In: arXiv preprint arXiv:1507.04808
(2015).

[69] Lifeng Shang, Zhengdong Lu, and Hang Li. “Neural responding machine for
short-text conversation”. In: arXiv preprint arXiv:1503.02364 (2015).

[70] Eriks Sneiders. “Automated faq answering: Continued experience with shal-
low language understanding”. In: Question Answering Systems. Papers from the
1999 AAAI Fall Symposium. 1999, pp. 97–107.

[71] Alessandro Sordoni et al. “A neural network approach to context-sensitive
generation of conversational responses”. In: arXiv preprint arXiv:1506.06714
(2015).

[72] Mark Stevenson and Yorick Wilks. “Word sense disambiguation”. In: The Ox-
ford Handbook of Comp. Linguistics (2003), pp. 249–265.

[73] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning
with neural networks”. In: Advances in neural information processing systems.
2014, pp. 3104–3112.

[74] Noriko Tomuro. “Question terminology and representation for question type
classification”. In: Terminology. International Journal of Theoretical and Applied Is-
sues in Specialized Communication 10.1 (2004), pp. 153–168.

[75] A. M. Turing. “Computing Machinery and Intelligence”. In: Mind. 236th ed.
Vol. 59. Oxford University Press, Oct. 1950.

[76] Oriol Vinyals and Quoc Le. “A neural conversational model”. In: arXiv preprint
arXiv:1506.05869 (2015).

[77] Ellen M Voorhees and L Buckland. “Overview of the TREC 2003 Question An-
swering Track.” In: TREC. Vol. 2003. 2003, pp. 54–68.

[78] Richard S. Wallace. The Elements of AIML Style. ALICE A. I. Foundation, Inc.,
2003.

[79] Shaojun Wang et al. “Combining statistical language models via the latent
maximum entropy principle”. In: Machine Learning 60.1-3 (2005), pp. 229–250.

BIBLIOGRAPHY 111

[80] Joseph Weizenbaum. “ELIZA - a computer program for the study of natural
language communication between man and machine”. In: Communications
of the ACM 9.1 (Jan. 1966), pp. 36–45. URL: http : / / s3 . amazonaws .
com / academia . edu . documents / 31085335 / ElizaScript . pdf ?
AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1486718310&
Signature = xQgYrGh % 2BBib4QkdXadoxjh2dLCA % 3D & response -
content - disposition = inline % 3B % 20filename % 3DELIZA _ a _
computer_program_for_the_study_o.pdf.

[81] Steven D Whitehead. “Auto-FAQ: An experiment in cyberspace leveraging”.
In: Computer Networks and ISDN Systems 28.1-2 (1995), pp. 137–146.

[82] Terry Winograd. “Procedures as a representation for data in a computer pro-
gram for understanding natural language”. PhD thesis. Massachusetts Insti-
tute of Technology, Jan. 1971.

[83] Terry Winograd. Understanding Natural Language. New York: Academic Press,
1972.

[84] Wilson Wong. “Practical approach to knowledge-based question answering
with natural language understanding and advanced reasoning”. In: arXiv
preprint arXiv:0707.3559 (2007).

[85] W. A. Woods. “Progress in Natural Language Understanding: An Application
to Lunar Geology”. In: Proceedings of the June 4-8, 1973, National Computer Con-
ference and Exposition. AFIPS ’73. New York, NY, USA: ACM, 1973, pp. 441–
450. DOI: 10.1145/1499586.1499695. URL: http://doi.acm.org/10.
1145/1499586.1499695.

[86] Chung-Hsien Wu, Jui-Feng Yeh, and Ming-Jun Chen. “Domain-specific FAQ
retrieval using independent aspects”. In: ACM Transactions on Asian Language
Information Processing (TALIP) 4.1 (2005), pp. 1–17.

[87] Jinxi Xu and W Bruce Croft. “Query expansion using local and global docu-
ment analysis”. In: Proceedings of the 19th annual international ACM SIGIR con-
ference on Research and development in information retrieval. ACM. 1996, pp. 4–
11.

[88] Kaisheng Yao, Geoffrey Zweig, and Baolin Peng. “Attention with intention
for a neural network conversation model”. In: arXiv preprint arXiv:1510.08565
(2015).

[89] Victor Zue et al. “PEGASUS: A spoken dialogue interface for on-line air travel
planning”. In: Speech Communication 15.3-4 (1994), pp. 331–340.

http://s3.amazonaws.com/academia.edu.documents/31085335/ElizaScript.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1486718310&Signature=xQgYrGh%2BBib4QkdXadoxjh2dLCA%3D&response-content-disposition=inline%3B%20filename%3DELIZA_a_computer_program_for_the_study_o.pdf
http://s3.amazonaws.com/academia.edu.documents/31085335/ElizaScript.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1486718310&Signature=xQgYrGh%2BBib4QkdXadoxjh2dLCA%3D&response-content-disposition=inline%3B%20filename%3DELIZA_a_computer_program_for_the_study_o.pdf
http://s3.amazonaws.com/academia.edu.documents/31085335/ElizaScript.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1486718310&Signature=xQgYrGh%2BBib4QkdXadoxjh2dLCA%3D&response-content-disposition=inline%3B%20filename%3DELIZA_a_computer_program_for_the_study_o.pdf
http://s3.amazonaws.com/academia.edu.documents/31085335/ElizaScript.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1486718310&Signature=xQgYrGh%2BBib4QkdXadoxjh2dLCA%3D&response-content-disposition=inline%3B%20filename%3DELIZA_a_computer_program_for_the_study_o.pdf
http://s3.amazonaws.com/academia.edu.documents/31085335/ElizaScript.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1486718310&Signature=xQgYrGh%2BBib4QkdXadoxjh2dLCA%3D&response-content-disposition=inline%3B%20filename%3DELIZA_a_computer_program_for_the_study_o.pdf
http://s3.amazonaws.com/academia.edu.documents/31085335/ElizaScript.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1486718310&Signature=xQgYrGh%2BBib4QkdXadoxjh2dLCA%3D&response-content-disposition=inline%3B%20filename%3DELIZA_a_computer_program_for_the_study_o.pdf
https://doi.org/10.1145/1499586.1499695
http://doi.acm.org/10.1145/1499586.1499695
http://doi.acm.org/10.1145/1499586.1499695

	Abstract
	Introduction
	Chatbots
	Kandoor
	Research goals
	Report structure

	Literature study
	Chatbot types & functionalities
	Chatbot literature
	Natural Language Processing
	Vector space model
	Machine learning models

	Methodology
	Vector space model
	Machine learning model
	Chatbot implementation

	Vector space model
	Data
	Natural Language Processing
	Term weighting
	Measuring similarity
	Results

	Machine learning model
	Data
	Natural Language Processing
	Feature engineering
	Modelling
	Results

	Chatbot implementation
	Chat flows
	Confidence levels
	Dynamic learning
	Results
	Model comparisons

	Conclusion & Discussion
	NLP: word lists
	Stop-word lists
	Compound word list
	Synonym list

	Bibliography

