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Abstract

Due to the significantly growing amount of personal data stored online by users, businesses
must handle this incoming flow of sensitive information as adequately as possible. However,
companies often struggle to comply with changing data security regulations due to challenges
or unawareness of requirements. To comply with strict data privacy and security regulations,
companies request their users to black out any sensitive information that is unnecessary for
document usage. Although this method can be successful, its effectiveness heavily depends on
users following instructions, and not all may comply with the provided guidelines. Alternatively,
companies may opt for manually detecting sensitive information by employees. While this method
may prove effective, the process is time-consuming and disadvantageous to the company.

To address these challenges, this research proposes a comparative analysis of two object detection
models for face detection on camera-captured identity documents, focusing on the face as a
sensitive information part present on any identity document. The two object detection models
employed in this research are Faster R-CNN and RetinaNet, both with a ResNet-101 backbone and
FPN. Furthermore, to augment the limited available data to train on and assess the effectiveness
of data augmentation techniques, three transformations and a combination of all are applied to
the training data: a horizontal flip, a random crop, and colour jittering. Additionally, both models
are evaluated without any augmentation to enable a conclusive evaluation of the performance
of all techniques. The comparative study on object detection models and data augmentation
techniques will provide more knowledge on face detection on camera-captured identity documents,
which will be useful for businesses across all fields in processing large amounts of personal data
quickly and efficiently while adhering to data privacy and security regulations.

According to the results of the comparative study, RetinaNet produced more accurate predictions
than Faster R-CNN, as determined by various average precision metrics and false positive and
false negative rates. Additionally, the RetinaNet model, when combined with random crop
augmentation, yielded the best results based on the evaluation of false positive and false negative
rates. In conclusion, this research recommends that businesses such as Vesteda use the RetinaNet
model with random crop augmentation to detect and ultimately blur faces effectively on camera-
captured identity documents submitted by potential tenants.
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Chapter 1

Introduction

In the current era of digitization that characterizes our society to date, the amount of personal
data stored online is growing significantly. The increasing number of online processes extend the
spread of personal information across all types of businesses, such as banks, online retail, and
residential companies. These businesses must handle the constant flow of personal information as
adequately as possible, ensuring sensitive data is securely maintained in protected environments to
minimize the risk of leaks and fraud. However, companies often struggle to comply with changing
data security regulations such as the General Data Protection Regulation (GDPR) [1]. They may
not be adequately prepared for the challenges and could be unaware of the requirements stated
by such legislation, possibly resulting in major complications such as privacy violations, unlawful
storing of data, or identity fraud. The identity document is an example of personal information
often uploaded by users to participate in processes online. This document should be handled
with great care by a company gathering personal information from users since it contains large
amounts of sensitive information.

In order to adhere to the strict regulations on data privacy and security, companies ask their users
to black out any sensitive information present on such documents that are not required to be
visible. While this approach can be effective, it relies heavily on users to follow instructions, and
not everyone may adhere to the guidelines. Alternatively, companies may introduce the manual
detection of sensitive information by employees, followed by a request for the user to re-upload a
correct document version. While this approach may work accordingly, the process is considered
very time-consuming and disadvantageous for the company. To address these challenges, this
research proposes a comparative analysis of object detection models for face detection on camera-
captured identity documents, focusing on the face as a sensitive information part present on a
personal identity document. Such detection models will detect the location of each face present
on an identity document making it possible to black out this part of the document or make it
illegible. Existing literature on face detection typically encompasses datasets that contain images
captured across diverse environmental conditions [2], while previous studies on the detection of
identity documents mainly include classification [3], and the detection of identity documents as a
whole [4]. Therefore, this research combines both by introducing face detection specifically for
camera-captured identity documents to address that challenge accordingly. Despite deep learning
models such as object detection models significantly outperforming traditional machine learning
methods on the task of face detection, they show poor performance when evaluated on datasets
containing a limited number of instances [5]. Therefore, in addition to the comparative study on
object detection models, various data augmentation techniques will be utilized to augment the
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available data as well as to assess the effectiveness of these different augmentation techniques.

1.1 Research Questions

To effectively address the challenges above, this research is centred around the following main
research question:

RQ: How accurately can object detection models detect faces on camera-captured identity docu-
ments?

The following sub-questions are formulated to give a conclusion with regard to the main research
question. Each sub-questions addresses one of the challenges mentioned above.

SQ 1: Which object detection models in the literature effectively detect faces in identity docu-
ments?

Rather than attempting to develop a novel technique, several detection models from previous work
in related fields are chosen for comparison in this research. Model performances are compared
through various metrics, including the mean average precision (mAP) and false positive and false
negative rates to answer this sub-question.

SQ 2: How effectively will various data augmentation techniques influence the robustness of a
detection model? Will a combination of multiple yield a different effect?

This research features a limited dataset and includes augmentation techniques to broaden the
available data further. Additionally, several augmentation techniques will be compared to
determine their influence on the performance of the object detection models. To answer this sub-
question, the detection models are combined with several different data augmentation techniques
as well as the combination of all to analyze and compare their performance. Furthermore, the
models are also fine-tuned without any augmentation to enable a conclusive evaluation of the
performance of all augmentation techniques. Finally, the performances are compared through the
metrics mentioned above.

1.2 Report Structure

In Chapter 2, several subjects relevant to the topic of this thesis are broadly explained. In
Chapter 3 relevant literature is reviewed. Chapter 4 provides an analysis of the dataset used for
the comparative study. Thereafter, Chapter 5 gives a description of the implemented models
and augmentation techniques and is followed by Chapter 6, the experimental setup. Chapter
7 presents the analysis of the results. Finally, chapter Chapter 8 discusses the limitations and
possibilities for future research and Chapter 9 concludes this research by answering the main
research question and its sub-questions and providing a recommendation.
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Chapter 2

Background

This chapter clarifies necessary knowledge about several subjects closely related to the research
question. First, the internship company Vesteda is introduced. Thereafter, the different types
of machine learning are specified and explained, followed by a description of deep learning.
Furthermore, the structure and utilization of an artificial neural network often used in deep
learning, as well as its fundamental building block, the backpropagation algorithm, are formulated.
The components of a Convolutional Neural Network (CNN), a specific type of neural network
generally used for image datasets, are summarized. Last, several milestones in the ImageNet
Competition are discussed due to their essential role in how object detection models evolved.

2.1 About Vesteda

Vesteda is a Dutch residential investor focusing primarily on the mid-rental segment in urban
and economically strong regions. They invest funds for institutional investors such as pension
funds and insurers and hold a portfolio of over 27,500 homes. Every month, approximately
300 apartments become available for rent, for each of which an estimated 20 applicants express
interest in the apartment. Every new possible tenant registering at Vesteda must upload several
personal documents before they can sign up for an apartment visit. One requirement is a copy
of the identity document, such as an ID or passport. With this in mind, one can conclude that
Vesteda owns large amounts of personal information from all their current, possible future, and
past tenants. Handling this substantial amount of data poses some challenges for Vesteda. All
collected identity documents should be handled carefully since they contain large amounts of
sensitive information. Moreover, with the increasing emphasis on data privacy and security, it is
important to strictly adhere to regulations such as the GDPR legislation. To comply with these
regulations and minimize the amount of sensitive information present on every identity document
while still making sure all necessary parts are visible, Vesteda asks their potential tenants to
black out various parts of their identity document before sending it in.

2.2 Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence that enables computers to learn and
make predictions and decisions based on data using algorithms. A model will be trained on a
dataset, allowing the model to then make predictions and choices based on what has been learned
during training. Machine learning can be divided into various learning types, with the first being
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supervised learning. In this form of learning, a model is trained on a dataset that contains labelled
instances, where the corresponding target values are provided for all instances in the training
and test set. After training, the model can predict the label for unseen samples [6]. Examples of
supervised learning are predicting customer churn, classifying sentiment in reviews, or identifying
objects in images. In the case of unsupervised learning, a model is trained on an unlabeled dataset,
where the correct target values for all instances are absent, and the model must find patterns
and relationships within the data [7]. Examples of unsupervised learning are customer clustering
based on characteristics and identifying patterns in stock price fluctuations. Semi-supervised
learning is a variation of supervised and unsupervised learning where a model is trained on a
partially labelled dataset, allowing the model to learn from both labelled and unlabeled instances
[7]. Examples of semi-supervised learning are document classification on labelled and unlabeled
documents or predicting disease types based on labelled data and unlabeled medical records. Last,
in reinforcement learning, an agent is trained to maximize reward by taking a series of actions
in an environment and learning through trial and error, translated into rewards and negative
rewards. Examples of reinforcement learning are robotics training, optimizing manufacturing
processes, or teaching a machine how to play a game of chess [8].

The extensive domain of machine learning results in a broad application of its capabilities through-
out various fields, including object detection. Most object detection studies are presented as a
supervised learning problem where bounding boxes around all objects present in each image serve
as the labels of the dataset. Focusing on the different supervised machine learning algorithms
types, Osisanwo et al. [9] elaborates on a broad selection. First, linear classifiers classify input
based on the value of a linear combination of features and are often used when classification
speed is considered important since linear classifiers are rated the fastest. Different types of linear
regression include simple and multiple linear regression. Logistic regression is a classification
algorithm that predicts a binary or multi-class output by modelling the probability of a particular
outcome based on the input variables. It is commonly used in predicting the likelihood of an
event happening. Another supervised learning algorithm is Naive Bayes which assumes features
are independent of each other and calculates the probability of a certain outcome based on the
input variables. It is a simple and efficient classifier that can handle high dimensional data
and is commonly used in text classification and sentiment analysis [9]. Next, Support Vector
Machines (SVMs) can also handle high dimensional data and are therefore used in both linear
and non-linear problems. SVMs try to find the hyperplane that best separates the data into
different classes by finding the maximum margin between the hyperplane and the closest data
points of each class [9]. Furthermore, Decision Trees recursively split a dataset into smaller
subsets based on the most significant feature and can be used for classification and regression
problems. Random Forest is an ensemble learning method that consists of many decision trees.
Last, Neural Networks can perform several regression and classification tasks simultaneously and
depend upon three fundamental aspects: input and activation functions, network architecture,
and the weights of each input connection. They require rather large amounts of data and compu-
tation power to train and are commonly used in image recognition and natural language processing.

In traditional machine learning approaches, before the rise of deep learning, feature engineering
was often a crucial step in the modelling pipeline, as it can significantly affect the model’s
performance. Feature engineering is the process of selecting, extracting, and transforming raw
input data into a more suitable format for training a machine learning model. The goal of
feature engineering is to create a set of input features that can effectively represent the underlying
patterns and relationships in the data, which can be learned by the neural network model to
make accurate predictions [10]. However, with the rise of deep learning and the availability
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of large amounts of data, it has become increasingly common to use neural networks to learn
features directly from raw input data without manual feature engineering. For example, the
adaption of machine learning for object detection generally includes deep learning models, which
are considered a type of neural network with many hidden layers. This deep network structure
enables it to learn more complex patterns in data, making it suitable for object detection tasks.

2.3 Deep Learning

Deep Learning (DL) is a subfield of ML that utilizes artificial neural networks with a large number
of hidden layers to learn and make intelligent decisions. An artificial neural network comprises
multiple layers of interconnected nodes, including an input layer receiving raw data, an output
layer producing a model’s final output, and one or more hidden layers used to extract features and
recognize patterns within the data. The ability to learn complex patterns and extract features
from data is one of the key advantages of deep learning models. As a result, it establishes its
success in a wide range of applications, including natural language processing, speech recognition,
and object detection.

2.3.1 Artificial Neural Networks

An Artificial Neural Network (ANN) can be described as an interconnected assembly of simple
processing units, i.e., neurons. The processing ability of the network is stored in the interunit
connection strengths, i.e., weights, and obtained by the process of adaption to, or learning from,
a set of training patterns [11]. Figure 2.1 shows a schematic structure of an ANN consisting of an
input layer, two hidden layers, and an output layer. Starting from the input layer, each neuron
receives input from several other neurons in the previous layer and uses this input to compute
and output a signal to the connected neurons in the successive layer. For example, in Figure
2.1, the weight wmr represents the strength of the connection between the value of neuron xm

in the input layer and the value of neuron hr in the next layer of the network. By adjusting
the weights and biases of the connections between neurons and the parameters of the activation
functions, a neural network can learn to perform a wide range of tasks, particularly tasks that
involve recognizing complex patterns and relationships.
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Figure 2.1: Artificial Neural Network with Three Hidden Layers [12]

For further clarification, Figure 2.2 shows a schematic structure of the operations done by a
single neuron. In general notation, the weighted sum of the input of a specific neuron, denoted
by

∑
Wixi, is combined with a bias b and inserted into an activation function f , which gives the

rescaled output of that neuron, denoted by y. Finally, M indicates the total number of input
values connected to this specific neuron (Formula 2.1).

a =

M∑
i=1

wixi + b =⇒ y = f(a) (2.1)

Figure 2.2: Operations within a Neuron [13]

There are several activation functions generally used in neural network architectures. The most
common is the rectified linear unit (ReLU), which outputs the exact input when positive and zero
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when negative. Other commonly used activation functions include the sigmoid and hyperbolic
tangent (tanh) functions. In every activation function shown below, the value of x represents the
weighted sum of the input values, including the added bias.

ReLU(x) = max(0, x) Sigmoid(x) =
1

1 + e−x Tanh(x) =
ex − e−x

ex + e−x

2.3.2 Backpropagation

During the forward pass of a neural network, the input data is passed through the network layers
to produce a prediction. The error between the predicted and actual output is then calculated
using a loss function. An ANN uses backpropagation to minimize its error by traversing back
through the network and letting the model learn from its mistakes. It works by propagating this
error back through the network layers to update the weights based on how much they contributed
to the error. This process is repeated iteratively until the network converges to a satisfactory
level of performance. Backpropagation is a method to calculate the gradient of the loss function
with respect to the weights and biases of the network. Subsequently, this gradient can be used to
update the weights and biases using gradient descent. The process of backpropagation can be
decomposed into four steps [14] [15] [16].

Feed forward propagation The input data is passed through the network, first encoun-
tering the hidden layers and last the output layer. As previously mentioned, given input
vector x, the network calculates the output vector y by using the current weights and biases:

a(l+1) = W (l)x(l) + b(l), for l = 1, ..., L− 1

z(l+1) = f(a(l+1)), for l = 1, ..., L− 1

y = f(a(L),

where a(l) and z(l) are the input and output of layer l, respectively, W (l) is the weight
matrix for layer l, b(l) the bias vector for layer l, f is the activation function and L the total
number of layers in the network.

Loss calculation The loss L is determined by calculating the difference between the
predicted output ŷ and the true output y. Various types of loss functions can be utilized in
machine learning, with one of the commonly employed ones being the Mean Squared Error
(MSE). The MSE loss function is mathematically defined as:

L =
1

2
(y − ŷ)2

Backpropagation The next step is to perform backpropagation by calculating the gradient
of the loss function with respect to the weights and biases of the network. Intuitively,
backpropagation works by adjusting the weights and biases in the neural network to minimize
the difference between the predicted and actual outputs. It does this by calculating the
gradient of the error with respect to each neuron’s weights and biases and then adjusting
them in a direction that reduces the error. First, the error at each layer is calculated and
propagated backwards through the network. The error ϵ is first calculated for the output
layer (upper formula) and then for every hidden layer (lower formula):

ϵ(L) = (y − ŷ) · f ′(a(L)),
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ϵ(l) = (W (l))T ϵ(l+1) · f ′(a(l)), for l = L− 1, ..., 1

where f ′ is the derivative of the activation function and W (l)T is the transpose of the weight
matrix of layer l. Last, the gradient of the loss functions with respect to the weights and
biases, namely ∂L

∂W (l) and ∂L
∂b(l)

, are calculated:

∂L

∂W (l)
= ϵ(l+1)(z(l))T ,

∂L

∂b(l)
= ϵ(l+1),

where (z(l))T is the transpose of the output of layer l.

Weight and bias update The algorithm continues to iterate through the network,
adjusting the weights and biases, until it finds the set of weights that produces the most
accurate predictions.

2.4 Convolutional Neural Networks

A specific type of Neural Network often used when handling image data is a Convolutional Neural
Network (CNN). This type is specialized in pattern recognition with a grid-like architecture, such
as images. It is designed as a sequence of a combination of three possible layers: the convolutional
layer, the pooling layer, and the fully connected layer, where all layers generally occur multiple
times. Each neuron in the network processes the data in its receptive field, making sure simpler
patterns such as lines, curves, and edges are detected first and more complex patterns such as
faces and objects later subsequently [17]. A schematic picture of a CNN is shown in Figure 2.3.

Figure 2.3: Schematic picture of Convolutional Neural Network [18]

Convolution Layer The convolution layer (Conv layer) carries the most significant part of the
network’s computational load. Therefore, it is considered the core building block of any CNN [19].
Goodfellow et al. discuss three important aspects of the convolution layer that motivate its use in
applying the CNN [15]. First, the Conv layer has sparse interaction created by a filter size smaller
than the input image. It uses the same set of filter weights across the entire input image, which
reduces both the number of parameters and improves efficiency. A filter is a 2D weight matrix
that captures a pattern or feature in the input data, such as an edge or a corner. Furthermore,
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the sliding filter of the Conv layer enables the detection of a feature regardless of the location of
that feature on the image. Figure 2.4 shows a schematic representation of calculations done in
the convolution layer.

Figure 2.4: Schematic representation of Convolution Layer [20]

A filter or kernel (a set of learnable parameters) traverses over the image and performs the dot
product between the kernel and a fraction of the total image resulting in a two-dimensional
representation of the image, also known as the activation map or feature map. Let X be an image
with dimensions H,W,D representing height, width, and depth, respectively. Let K be a kernel
with dimensions kH, kW,D, kF , which represent the kernel’s height, width, depth, and number
of filters of the Conv layer, respectively. The output at position (i, j) of the activation map from
the kth filter can be written as [15]:

outputi,j,k =

kH−1∑
a=0

kW−1∑
b=0

D−1∑
c=0

Xi+a,j+b,c ·Ka,b,c,f ,

where output depicts the total activation map with dimensions mH,mW,mF representing the
maps height, width, and number of filters, respectively. The height and width dimensions of the
activation map can be calculated with the following formulas:

mH =
H − kH + 2P

sH
+ 1, mW =

W − kW + 2P

sW
+ 1,

where P is the amount of padding and S with dimensions sH, sW is the number of pixels the
filter is shifted each time, also known as the stride.
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Pooling Layer The pooling layer is able to derive a summary statistic of a fraction of input
which reduces the number of training parameters and decreases the amount of computation
and weights. This operation reduces the spatial dimensions of the input image while retaining
important features. Different pooling functions are min pooling, max pooling, and average pooling,
where the kernel’s minimum, maximum and average value in each slice is passed onto the next
layer, respectively. For max pooling, a pooling window traverses over the image with a certain
stride and extracts the maximum value of each window, resulting in a new image with reduced
dimensions. Figures 2.5a and 2.5b illustrate an example of max pooling and average pooling,
respectively.

(a) Max pooling (b) Average pooling

Figure 2.5: Example of max pooling and average pooling

The calculation done by a max pooling window P with dimensions pH, pW can be formulated as:

outputi,j,c =
pH−1
max
a=0

pW−1
max
b=0

Xi·S+a,j·S+b,c,

where X is the input image, S is the stride of the window, and (i, j) the coordinates of the top
left corner of the window. The output dimensions can be calculated with the formulas used in
the convolution layer.

Fully Connected Layer All neurons in the fully connected layer (FC) have full connectivity
with all neurons in the preceding and succeeding layer, similar to the neuron operation shown in
Figure 2.2. The output value is calculated by matrix multiplication followed by an optional bias
function and activation function.

2.5 Evaluation

In object detection, the most common evaluation metric is mean average precision (mAP), a
metric that calculates the area under the precision-recall curve to measure the performance of
an object detection model [21]. Precision is the fraction of true positive predictions among all
predictions made by the model, whereas recall is the fraction of true positive predictions among
all actual objects in the image. A detection is positive if the intersection over union (IoU) between
the prediction and ground truth bounding box is higher than a certain threshold. The mAP
evaluation metric will be further explained as a performance indicator in Chapter 6.

2.6 ImageNet Competition

Within the field of object detection, the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [22] played a significant role in the establishment of state-of-the-art object detection

10



models. The challenge aimed to evaluate and advance state-of-the-art object detection and image
classification by providing a large-scale dataset, ImageNet, with millions of labelled images and
a standardized evaluation protocol. From 2010 until 2017, the ImageNet challenge was hosted
each year, enabling researchers to develop better models for computer vision tasks such as image
classification, object localization, and object detection. The ImageNet dataset consists of over 1.2
million images and 1000 classes, partly annotated with labels and partly annotated with bounding
boxes. Competitors were asked to correctly classify or detect different objects and scenes across
subsets of the ImageNet dataset. Despite it being the world’s largest labelled dataset of images
publicly available on release, there was little interest in the dataset. Researchers were particularly
focused on building better models by increasing performance and overlooked the benefit of having
significant training data. This view permanently changed with the emergence of ILSVRC, and it
became the primary benchmark for computer vision tasks.

During the first years of the ImageNet competition, simpler tasks such as image classification were
part of the main challenges. In the 2013 challenge, a new object detection task was introduced,
and later on, object localization and object detection in videos [22]. The ImageNet competitions
initiated the use of deep neural networks, specifically CNNs, for image classification tasks, resulting
in researchers developing these techniques, further leading to significant model improvements
compared to traditional machine learning algorithms. Another important development in ImageNet
competitions is the adoption of transfer learning. Using pre-trained models as a starting point
for new models significantly reduced training time and the data required to accurately train
models [23]. A significant benefit of the competition element of the ILSVRC is that it stimulated
competing research groups to attempt to outperform each other. It created an environment
of innovation where participants constantly strive to develop improved solutions to the given
problems. This made the ImageNet competition a competitive playground where inventive ideas
for the classification, localization, and detection problems rapidly succeed one another.
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Chapter 3

Related Work

This chapter will define and refine the main research question and sub-questions based on existing
literature. The topics of this thesis are closely related to different fields of study, namely object
detection methods, specifically for the detection of faces, and data augmentation techniques for
image datasets.

3.1 Object Detection

Object detection is a method used in computer vision to identify and locate objects in images and
videos. Zou et al. [24] state that object detection is one of the most fundamental and challenging
problems in computer vision, with many improvements and advancements made over the years.
It is considered the basis for many other computer vision tasks such as instance segmentation,
image captioning, and object tracking. It is widely used in many real-world applications including
autonomous driving, surveillance, and robotics [24]. The technology has come a long way since it
was first developed, with many improvements and advancements made over the years. Object
detection first began with simple methods like template matching, where a template image is
compared to the input image to find the best match at each pixel location [25]. The evaluation
was based on the algorithm’s accuracy and computational efficiency, which performed well in ideal
conditions but had serious limitations in scalability and robustness. Later, methods like edge
detection and blob detection were developed, which allowed for the detection of objects based
on their edges or certain features [26]. The methods performed well if they accurately detected
boundaries and regions in the images. However, edge and blob detection methods were limited
in accurately detecting objects in more complex images containing many objects or an agitated
background. In the early 2000s, histogram of oriented gradients (HOG) and scale-invariant feature
transform (SIFT) methods were developed, which were evaluated based on their ability to detect
and match objects across changes in scale, orientation, and lighting conditions. Dalal et al. [27]
showed good performance using HOG and SIFT methods for person detection by reducing false
positive rates by more than an order of magnitude relative to in comparison to the earlier methods.
The techniques above were extensively employed in the field of object detection, with feature
engineering playing a significant role in their functioning. However, with the emergence of deep
learning, neural network structures have replaced these traditional methods in object detection.

In recent years, CNNs have become the most commonly used method for object detection. CNNs
are a type of deep learning algorithm that is able to learn and detect objects in images by analyzing
the pixel data directly. This allows them to achieve much higher accuracy than earlier methods.
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However, it should be noted that CNNs need large amounts of training data and computation time
to train effectively. In literature, CNN based object detection models are often divided into two
categories: a two-stage approach and a one-stage approach. The difference between a two-stage
and one-stage detector lies primarily in the use of the Region Proposal Network (RPN) and is
visualized in Figure 3.1. Two-stage detectors make use of the RPN to identify and classify anchor
boxes and then refine the bounding boxes to better align with the ground truth. In contrast,
one-stage detectors perform classification and regression on all anchor boxes without relying
on the RPN [28]. As two-stage object detection methods, literature introduces region-based
convolutional neural networks (R-CNNs), which are able to identify and locate objects in an
image by generating a set of bounding boxes around each object and consecutively running a
classifier on these proposed boxes. R-CNNs have significantly improved the accuracy and speed
of object detection by introducing the two-stage detection framework that separates the region
proposal generation and the object detection tasks [29]. In the first stage, the network generates
a set of region proposals, which are potential object locations, using a selective search algorithm.
The proposed regions are classified and refined in the second stage using a CNN. One-stage
object detection methods discussed in the literature primarily include the algorithms YOLO (You
Only Look Once) and SSD (Single Shot Detector), which are able to detect objects in real-time
and can be used for applications like self-driving cars and security surveillance. These model
types are trained on the full image and directly optimize detection performance by minimizing
their loss function taking into account both classification and regression losses, making them
significantly faster than R-CNNs [30]. Benchmarks such as the PASCAL VOC dataset and the
MS COCO dataset evaluate the performance of object detection models in terms of the mean
average precision (mAP).

Figure 3.1: Basic Structure of Two-stage and One-stage Object Detector [28]

3.1.1 Two Stage Object Detection

Two-stage object detection methods first generate region proposals and then classify these pro-
posals and refine the bounding box coordinates to fit the object better. The region proposal with
convolutional neural network (R-CNN) is the first CNN based two-stage object detection model
with an architecture based on three components shown in Figure 3.2 [31]. The first segment uses
a selective search algorithm to generate a large number of region proposals for each input image.
The second segment follows the AlexNet architecture of a CNN with five convolutional layers
and two fully connected layers to extract a fixed-length feature vector from each region proposal.
Affine image warping [32] is used to obtain the fixed-sized input from each region proposal. The
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third component classifies each region proposal into one of the object categories that the detection
model is trained to detect using a category-specific linear support vector machine (SVM). To
summarize, a region proposal is processed by a series of convolutional layers and max pooling
layers to extract features. These features are then fed into a fully connected layer, which performs
a linear transformation of the feature vector followed by a softmax activation function to output
class probabilities for each object category. The employment of R-CNNs for object detection
problems resulted in a significant accuracy increase for bounding box prediction [33], achieving a
state-of-the-art mAP of 58.5% and 53.3% for the PASCAL VOC 2007 and 2012 dataset for that
time, respectively [33].

Figure 3.2: Schematic representation of R-CNN [33]

However, R-CNN has some serious limitations. The multi-stage approach of feature extraction
on each object proposal, network fine-tuning, SVM training and bounding box regression makes
inference rather slow and requires cautious hyperparameter tuning to obtain good results. R-CNNs
also demand large amounts of training data and computational resources. Girshick et al. [31]
modified the R-CNN and proposed Fast R-CNN, a two-stage classifier able to train 9 times faster
than R-CNN. Fast R-CNN factorizes the recurrent weight matrix into two smaller matrices using
low-rank approximation. This factorization technique reduces the time complexity of Fast R-CNN
significantly compared to R-CNN. Girshick et al. found that Fast R-CNN achieves a good result
on PASCAL VOC 2012 with a mAP of 68.4% [31].

Both R-CNN and Fast R-CNN depend on the region proposal algorithm for object detection which
is a time-consuming computation affecting the overall performance of the network. Ren et al. [34]
propose Faster R-CNN, where the region proposal algorithm is replaced with a region proposal
network (RPN) which is a fully convolutional network (FCN) taking an image of arbitrary size as
input and outputs a set of rectangular candidate object proposals. Faster R-CNN is achieving
state-of-the-art object detection accuracy on PASCAL VOC 2007 (73.2% mAP) and 2012 (70.4%
mAP) [35].

The multilevel feature map of CNN is used in a different way by Lin et al. [36] to construct
Feature Pyramid Network (FPN) resulting in object detection models with superior state-of-the-
art performance. FPN uses a bottom-up and top-down architecture, taking feature maps as input
and concatenating those to produce the output. RPN is again used to generate region proposals
to perform feature extraction. Experimental results on the COCO dataset show a significant
detection performance increase for FPN of +3.2 mAP compared to Faster R-CNN [37]. Zhao
et al. [38] achieves state-of-the-art detection accuracy on the PASCAL VOC 2007 with 79.2%
mAP. On the COCO dataset, a mAP of 62.3% for object detection was achieved by He et al. [39].
According to a comprehensive literature review, this selection of two-stage detection methods
includes the most commonly used models. To clarify the differences between all discussed models,
Table 3.1 summarizes the most relevant advantages and disadvantages.
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Table 3.1: Advantages and Disadvantages of Two Stage Object Detection Models

Object Detection Model Advantages Disadvantages

R-CNN
Good accuracy
Can handle small objects

Slow inference speed
High memory use

Fast R-CNN
Faster inference than R-CNN
Can handle small objects

Requires selective search

Faster R-CNN
Even faster than Fast R-CNN
Handles small and multiple objects

Computationally expensive
during training

FPN Strong performance for different scales
Computationally expensive
during training

3.1.2 One Stage Object Detection

In one-stage object detection models, the input is fed through the neural network exactly once,
making it possible to predict bounding boxes and class probabilities for all objects in an image
in one shot. You Only Look Once (YOLO) is a single-stage model that uses a simple CNN to
predict both class probabilities and bounding boxes directly from the input image [30]. An input
image is divided into a fixed number of grids that predict a fixed number of bounding boxes
with a confidence score, calculated by the difference between the predicted and ground truth
bounding box, also known as the IoU. The remaining predictions with an IoU above the threshold
value are further explored. For object detection, the YOLO model was first published in 2016
by Redmon et al. in [30]. Subsequent to its initial release, the model has undergone multiple
improvements, with development continuing to date. Redmon presents a mAP of 63.4% on the
PASCAL VOC 2012 dataset for YOLO and a mAP of 44.0% and 57.9% on the COCO dataset
for YOLOv2 and YOLOv3, respectively. YOLOv4 achieved a mAP of 43.5% on the COCO
dataset, a state-of-the-art result for that time [40]. Another improvement of the YOLO detector
is YOLO9000 [41], a real-time object detector capable of detecting over 9000 object categories
by jointly optimizing detection and classification. It achieved a mAP of 76.8% on the PASCAL
VOC 2007 dataset, a state-of-the-art result for that time.

The single shot multibox detection (SSD) [42] model also takes a complete image as input
and passes it through multiple Conv layers with various size filters. The bounding boxes are
predicted using the feature maps from these layers, and the model generates a probability vector
corresponding to the confidence level for each object class. Liu et al. [42] achieved a mAP of
74.3% and 68.5% on the PASCAL VOC 2007 and 2012 datasets, respectively. Next, Fu et al. [43]
proposed the Deconvolutional Singe Shot Detector (DSSD) to introduce large-scale context in
object detectors and improve accuracy for small objects and achieved state-of-the-art performance
on both PASCAL VOC 2007 and MS COCO dataset with a mAP of 81.5% and 76.9%, respectively.
Last, Lin et al. [44] proposed RetinaNet, a simple one-stage object detector that uses dense
sampling of the object locations in an input image. The backbone consists of two sub-networks,
the first performing convolutional object classification, and the second performing convolutional
bounding box regression. The sub-networks operate as small FCNs connected to the FPN level to
be able to share parameters. As a result, mAP of 81.8% and 80.4% were achieved for the PASCAL
VOC 2007 and 2012 datasets, respectively. This selection of one-stage detection methods includes
the most commonly used models according to a comprehensive literature review. To clarify the
differences between all discussed models, Table 3.2 summarizes the most relevant advantages and
disadvantages.
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Table 3.2: Advantages and Disadvantages of One Stage Object Detection Models

Object Detection Model Advantages Disadvantages

YOLO
Very fast inference,
real-time performance

Difficulty detecting small object

SSD
Fast inference,
can handle objects of
varying sizes

Difficulty detecting objects
at a distance

DSSD
Good accuracy,
can handle objects of
varying sizes and orientations

Computationally expensive
during training

RetinaNet
Good performance on small objects,
Effective handling of class imbalance

Computationally expensive
during training

In Table 3.3 [33], the performance of the above-mentioned object detection models on the PASCAL
VOC and MS COCO datasets are displayed. Again, the model selection is based on the occurrences
in a comprehensive literature review.

Table 3.3: Performance Comparison (mAP) of Object Detection Models on different datasets

Object Detection Model PASCAL VOC 2007 PASCAL VOC 2012 MS COCO
Two Stage Models

R-CNN 58.5% 53.3%
Fast R-CNN 70.0% 68.4%

Faster R-CNN 73.2% 70.4%
FPN 79.2% 62.3%

One Stage Models
YOLO 63.4%

YOLOv2 44.0%
YOLOv3 57.9%
YOLOv4 43.5%

YOLO9000 76.7%
SSD 74.3% 68.5%

DSSD 81.5% 76.9%
RetinaNet 81.8% 80.4%

3.2 Data Augmentation

Data augmentation is the process of increasing the amount of data present by making slight
alterations in such a way that new data points arise [45]. More training data often makes
machine learning algorithms more effective, which makes data augmentation an important step in
creating robust models. Traditional transformations that alter and manipulate existing data entail
geometric modifications such as cropping, flipping and scaling, while photometric alterations
tweak for example the brightness, contrast or saturation of an image [46]. The usefulness of
augmentation techniques is highly dependent on the domain and data characteristics, with certain
techniques proving more effective in specific domains than others.
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3.2.1 Geometric transformations

Geometric transformations alter the geometry of an image by mapping the individual pixel values
to new destinations [47]. Transformations such as rotation, cropping and flipping are widely
used because of their computationally efficient and easy-to-implement nature. Krizhevsky et
al. popularized flipping and cropping in [23] as augmentation techniques for image datasets.
Tang et al. [48] proposes a model named PyramidBox with a single-shot architecture. Using
augmentation techniques horizontal flipping and random crop, the model achieved a mAP of
94.8% on the WIDER FACE dataset, compared to 92.9% without augmentation. These same
augmentation techniques used by Li et al. in [49] resulted in a mAP of 88.8% on the WIDER
FACE dataset, compared to 86.3% without augmentation. Furthermore, literature illustrates that
random deletion or addition of parts of images can be used to improve a models accuracy [50],
robustness [51] or both [52]. In some research, a combination of augmentations is carried out to
enrich the training set with transformed original samples, balance the size of the dataset, and
avoid overfitting [53].

3.2.2 Photometric transformations

Besides geometric transformations, other popular augmentation techniques to increase the amount
of training data are photometric modifications, also known as colour transformations. These
kinds of transformations alter the RGB channels of an image by shifting each pixel value (r, g, b)
to a new pixel value (r’, g’, b’) according to a pre-defined heuristic [47]. Popular transformations
are enhancing contrast or brightness, white-balancing and sharpening or blurring [54]. Other
photometric transformations such as coarse dropout, edge detection, saturation change, inverting
and adding noise are proposed by Wang et al. in [55].

Taylor et al. [47] evaluated six geometric and photometric data augmentation methods by
implementing them during training of a simple CNN and achieved a significant performance
increase generated by the cropping method. Besides research where only geometric or photometric
transformations are applied, literature also shows research where these two transformation types
are combined. Wu et al. [56] adopted a series of geometric transformations to enrich the training
dataset and reduce overfitting. Nair et al. [57] performed two augmentation techniques, namely a
random crop combined with a horizontal reflection and varying the intensity of the RGB channels.
This prevented overfitting and increased accuracy for the AlexNet. A single-stage joint face
detection and alignment method using FPN, single-stage detector, context modelling and cascade
regression proposed by Deng et al. [58] achieved a mAP of 56.7% on the WIDER Face And
Person Challenge 2019 using data augmentation techniques such as random crop, horizontal flip
and colour distortion, against a baseline of 54.8%.
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Chapter 4

The Data

On the Vesteda website, potential tenants upload a copy of their identity documents. An available
selection from this collection is extracted to serve as a dataset for this research. However, the
high variability due to a wide range of upload possibilities and inaccurately uploaded documents
ask for data preparation. In addition, the absence of labels in the dataset necessitates annotation
to assess the performance of all models.

4.1 Data Preparation

An identity document can be uploaded in three formats: PDF, JPEG, and PNG. Table 4.1 shows
the number of uploads of all types. Algorithms having images as input do not accept PDF
as input format. It was decided to convert all uploads to PNG format for simplicity and size
considerations. Almost all PDF uploads contained multiple pages, such as the front and backside
of an identity document. These uploads were separated per page before converting them to PNG
format.

Table 4.1: Number of uploads per image format

Number of uploads PDF JPEG PNG
21,566 8,312 4,443 8,811

After conversion, the data collection of 30,803 images amounted to more than 100 gigabytes
containing images with sizes exceeding 60,000 kilobytes. For processing purposes, it was necessary
to carry out a size reduction for all uploads by resizing the width of each image to 400 pixels and
altering the height according to the width/height ratio. The resize dimensions were based on
considerations of the manageability of the images and the preservation of image quality. This
reduced the size of the data collection to around 7 gigabytes. In addition, data exploration made
clear that not all uploaded images were identity documents such as passports or identity cards,
and not all images of an identity document contained a visible face. Therefore, both image types
were manually removed from the collection since the models used in this comparative study only
acknowledge images containing labels, i.e., faces. In total, 6,712 images were manually deleted.
Figure 4.1 shows the number of files after each preprocessing step.
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Figure 4.1: Total number of files after each preprocessing step

4.2 Data Annotation

After data preparation, the remaining 24,091 images needed to be annotated. Since completing
this task manually is very time-consuming, an out-of-the-box YOLOv5 model was used to speed
up the annotation process. The YOLOv5 model is primarily employed for real-time detection
and is, therefore, excluded from this research, which does not involve any real-time detection.
First, a small dataset was created by manually labelling 100 images using LabelImg, a popular
graphical image annotation tool created by Tzutalin [59]. LabelImg is part of the Label Studio
community, the most flexible open-source data labelling tool for images, text, hypertext, audio,
video and time-series data. These 100 images were then used to fine-tune a pre-trained YOLOv5s
model [60]. Default settings for image size (640 pixels) and batch size (8 images) were selected,
and 30 epochs were carried out. Thereafter, the trained model could be used for inference on
all other images to generate output predictions. The annotations of each image were saved in
a .txt file with the same name as the associated image. Each row in the .txt file corresponds
to one annotation on that image in the format shown in Table 4.2, where x centre and y centre
represent the normalized x and y coordinate of the centre of the bounding box. The output of the
YOLOv5 model consists of two folders, one storing all images and the other holding all .txt files
for each image containing the variables of each annotation per row. Visualizing these predictions
with the LabelImg tool showed many inaccuracies; therefore, manual inspection and adjusting
were required. The quantity of errors made by the YOLO model is substantial enough to make it
unsuitable for the purpose of detecting faces on identity documents.

Table 4.2: Annotation format of bounding box used by YOLOv5 model

class x centre y centre width height

Several different types of prediction errors were made by the final model. First, approximately 2,400
images contained faces that were not detected and, therefore, not annotated as faces. Furthermore,
around 14,000 images contained annotations that did not point to a face. These bounding boxes
enclosed parts of the background, fingers holding down the identity document, blacked out parts of
the image, logos or watermarks. Finally, the bounding box size of approximately 6000 annotations
was changed since it was too wide or tight around the face. The manual annotation check resulted
in a final data collection of 24,091 images containing 43,702 faces.

4.2.1 Dataset Structure

The annotation structure of the YOLOv5 model, shown in Table 4.2, differs from those needed
by the models used in this comparative study and needs to be changed accordingly. Therefore, a
DataFrame containing each annotation from all images in separate rows is created, shown in Table
4.3, where x min, x max, y min and y max represent the minimum and maximum x-coordinate
and minimum and maximum y-coordinate of the bounding box, respectively.
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Table 4.3: First five rows of the final data set structure

file name width height x min y min x max y max class name
0 e393d06...978117.png 400 866 249 438 285 482 face
1 e393d06...978117.png 400 866 54 380 120 478 face
2 c437dcd...1730 1.png 400 565 100 310 178 372 face
3 c437dcd...1730 1.png 400 565 112 458 146 483 face
4 c8a54df6...82df 2.png 400 249 34 31 68 80 face

The sizes of the bounding boxes exhibited substantial variation across all images. To illustrate
these differences in size, Figure 4.2a and 4.2b present histograms displaying the distributions
of bounding box width and height in pixels, respectively. The minimum and maximum values
encountered for the width of a bounding box were 5 and 305 pixels, respectively, whereas the
minimum and maximum values encountered for the height of a bounding box were 6 and 303
pixels, respectively.

(a) Distribution bounding box width (b) Distribution bounding box height

Figure 4.2: Size distributions of bounding box width and height in percentages

A significant amount of the 24,091 images contained multiple faces and thus multiple annotations
resulting in a total of 43,702 instances. Figure 4.3 illustrates the percentages of the total count of
faces present in each image through a bar plot. A train/validation/test split of 80%/10%/10%,
taking into account that the split was not done in such a way that annotations from the same
image ended up in multiple sets, resulted in a train, validation and test set of 34,958, 4,374 and
4,370 instances, respectively.
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Figure 4.3: Count of faces present in each image in percentages
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Chapter 5

Methods

Based on an extensive literature review, the implementation of two object detection models,
namely Faster R-CNN and RetinaNet, will be carried out. Literature portrays these object
detection models as effective models for the purpose of face detection tasks. Ren et al. [35]
introduces Faster R-CNN, a faster and more accurate object detection system that uses a region
proposal network (RPN) to generate object proposals. RetinaNet, proposed by Lin et al. [44],
outperforms other one-stage models for the object detection task and will therefore be imple-
mented in this research. Moreover, the extensive academic research done in Chapter 3 shows
there are advantages and disadvantages to both one-stage and two-stage approaches. Typically,
two-stage approaches exhibit good accuracy and can handle smaller objects. However, they are
computationally demanding and require significant memory use. While one-stage approaches
have real-time performance, they can have difficulty detecting small objects. Comparing the two
models above, the performance of both one-stage and two-stage approaches can be evaluated
for the specific face detection task on identity documents. Both models are equipped with a
ResNet-101 backbone and FPN feature extractor. The Feature Pyramid Network (FPN) enhances
the quality of feature maps by combining features from different scales. The ResNet-101 backbone
uses the weights of a ResNet-101 model as starting point for fine-tuning on a specific object
detection task. Recent literature shows the use of this specific backbone for face detection tasks
in different environments [61] [62].

In addition to the comparative study, the effectiveness of different data augmentation techniques
on improving the performance of detection models will be evaluated. In addition to their ability
to generate additional data, the effectiveness of several data augmentation techniques for object
detection tasks has been demonstrated in the literature. Geometric transformations such as image
flipping, random cropping and rotation improve the robustness of the model to variations in face
orientation [63] [64]. Photometric transformations such as contrast and brightness alterations
and Gaussian blur can simulate variations of lighting conditions, making detection models robust
to changes in illumination [54]. Taylor et al. discuss the use of several geometric and photometric
data augmentation methods by implementing them during training [47]. Grounded on an exten-
sive literature review, the data augmentation techniques included in the training process of the
aforementioned models are horizontal flip, random crop, colour jittering and a combination of all
three. For comparison, the two models are also trained without the use of any data augmentation
techniques.
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Both detection models deployed in this research include the ResNet-101 and FPN backbone. This
architecture will therefore be defined first before further explaining the operations of the two
detection models present in the comparative study.

5.1 Backbone: ResNet-101 and Feature Pyramid Network

Within deep learning networks for object detection tasks, the backbone network represents the
implemented structure which performs feature extraction. A deep residual network (ResNet)
is considered well-suited to serve as the underlying architecture for object detection models
because of its excellent performance in various related tasks [63]. ResNet-101 is a convolutional
neural network of 101 layers. It utilizes residual connections which enable the training of very
deep networks. This architecture is designed to minimize the vanishing gradient problem that
often occurs within networks having a large depth. Mathematically, the ResNet-101 network
performs a sequence of operations that transform the input image into a feature representation, a
concise description of the input image that captures the most important characteristics of the
image. First, the input image is passed through a Conv7 × 7 with stride 2, followed by a batch
normalization layer and a ReLU activation function. Subsequently, a max pooling layer with 3× 3
kernel and stride 2 is applied to reduce the spatial resolution of the feature representation. The
output of the max pooling layer, denoted by f(x), is then passed through a series of bottleneck
building blocks, shown in Figure 5.1, creating the deep network structure. These residual units
are considered the key innovation of a ResNet-101 architecture and reduce the computational
cost of the network while improving its accuracy.

Figure 5.1: ”Bottleneck” building block [63]

Each bottleneck building block consists of two Conv1 × 1 layers with ReLU activation function
separated by a Conv3 × 3 layer, also with ReLU activation function. The Conv1 × 1 layers are
responsible for the dimensionality reduction and restoration by decreasing and increasing the
number of channels in the input feature maps, leaving the Conv3× 3 layer as the bottleneck layer
having smaller dimensions for input and output. The output of the second Conv3 × 3 layer is
added to the input block before passing through another bottleneck building block, also known as
the skip connection. After the series of bottleneck residual units, the output of the last residual
block is passed through an average pooling layer to reduce the spatial dimensions of each feature
map and create the final feature representation of the input image. The schematic representation
of the ResNet-101 combined with FPN is shown in Figure 5.2.
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Figure 5.2: Structure of ResNet-101 backbone and FPN [28]

The figure shows that ResNet is utilized as the bottom-up pathway and outputs five different
feature maps, {C1, ..., C5}, representing features of different scales. Subsequently, the top-down
structure of the FPN takes each bottom-up feature map as input to acquire and merge multi-scale
features into new feature maps P , to generate a pyramid of feature maps with different spatial
resolutions. Bottom-up feature map C1 is not included in the pyramid because of its large memory
requirement. The top-down pathway of the FPN generates these higher-resolution feature maps by
upsampling feature maps from higher pyramid levels with lower spatial resolution but capturing
higher-level semantic information. These features are then combined with features from the
bottom-up pathway using lateral connections. Each lateral connection merges feature maps of
the same spatial size from both the bottom-up and top-down pathway [36]. Smaller-sized feature
maps (P6) are spatially coarser, have lower resolutions and therefore capture more contextual
information, whereas feature maps covering a smaller receptive field (P2) are semantically stronger
and capture more fine-grained detail and higher-level semantic concepts.

The upsampled feature map is combined with the corresponding bottom-up feature map through
element-wise addition after the latter is passed through a Conv1 × 1 layer to reduce its channel
dimensions. This operation is repeated for all levels of the FPN pyramid until the finest resolution
map is obtained. To start the process, a Conv1 × 1 layer is applied to the feature map of the
highest pyramid level (C5) to produce the feature map with the lowest resolution. Subsequently,
the final feature map is obtained after applying a Conv3 × 3 layer to each merged feature map
to mitigate the aliasing effect caused by upsampling. The aliasing effect is caused by the loss of
high-frequency information during upsampling and can make an image appear less sharp because
of distorted edges. The feature dimension, i.e., the number of channels, is kept at a fixed number
of 256 because shared classifiers and regressors are used across all levels of the FPN pyramid [36].
Formally, the generation of a feature map Pi can be defined by the formula:

Pi = upsample(pi+1) + conv3 × 3(conv1 × 1(Pi−1)),

where upsample() represents an upsampling operation of the spatial resolution with factor 2,
Conv1 × 1 and Conv3 × 3 are convolutional layers with ReLU activations, respectively. The
ResNet-101 backbone and FPN have been pre-trained on a large image dataset, thus already
possessing trained weights. For both methods 1 and 2, the models and their weights will undergo
further fine-tuning using the identity document dataset.
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5.2 Method 1: Faster R-CNN

Faster R-CNN is a two-stage object detector that combines a Region Proposal Network (RPN) to
generate object proposals and a Fast R-CNN detector to classify. The model is composed of three
main components starting with the ResNet-101 backbone and FPN, followed by the RPN, a fully
convolutional network generating high-quality candidate bounding boxes, and a Fast R-CNN
network for object classification and bounding box regression. The RPN shares a common set of
convolutional layers with the detector network, which reduces the running time of this two-stage
detector significantly by accelerating the process of candidate box exploration [35]. Figure 5.3
shows a schematic representation of the Faster R-CNN network.

Figure 5.3: Schematic representation of Faster R-CNN network [28]

Region Proposal Network Each feature map Pi, generated by ResNet-101 and FPN, is
taken as input by the RPN to generate a set of rectangular object proposals pi. Each object
proposal is represented as a bounding box with four coordinates (xi, yi, wi, hi), where (xi, yi)
are the coordinates of the top-left corner of the bounding box, and (wi, hi) are the width and
height of the bounding box, respectively. Additionally, every proposal includes a corresponding
confidence score (si) indicating the proposal’s likelihood of containing that object. The RPN is a
fully convolutional network that achieves this output by traversing a small network (the anchor
network) over each feature map at different scales and ratios. At each sliding-window location, k
region proposals are predicted simultaneously, resulting in 4k outputs in the regression layer, the
coordinates of k boxes, and 2k scores in the classification layer that determine the probability
of a proposal being an object or not. The k proposals are characterized by their parameters
relative to k reference boxes, referred to as anchors. These anchors are positioned at the sliding
window’s centre and linked to a particular scale and aspect ratio [35]. To be more precise, at
each position of the anchor network, the RPN outputs a set of confidence scores and bounding
box offsets, i.e., a representation of the difference between coordinates of the predicted anchor
box and nearest ground truth bounding box. The anchor scales are of sizes 322, 642, 1282, 2562

and 5122 pixels, and the aspect ratios are 1:1, 2:1 and 1:2, resulting in a total of 15 anchors at
each sliding position.

During the training of the RPN, the confidence scores are computed using a binary classifier
that predicts whether an anchor box contains an object or not. The bounding box offsets are
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computed using a regression network that predicts the offsets between each anchor box and the
corresponding ground truth bounding box. Furthermore, binary class labels are given to each
anchor. A positive label is assigned to anchors with either the highest IoU value with a ground
truth box or an anchor having an IoU value higher than 0.7 with any ground truth box. A
negative label is given with an IoU lower than 0.3. Anchors that are not classified as positive or
negative do not affect the training objective. Although the hyperparameters can be adjusted,
this research employs default settings. Following these definitions, the RPN objective function
will be minimized, consisting of a classification and regression loss function. These components
are trained using the loss functions, which are identical to the classification and regression loss
function of the multi-task loss function from Fast R-CNN in [31]:

L(zi, vi) =
1

Ncls

∑
i

Lcls(zi, z
∗
i ) + λ

1

Nreg

∑
i

z∗i Lreg(vi, v
∗
i ), (5.1)

where i is the index of an anchor in a batch, zi represents the predicted probability of the anchor
i being an object, and vi is the vector representation of the parameterized coordinates of the
bounding box offsets. z∗i and v∗i are the corresponding ground truths of zi and vi, respectively.
The classification loss Lcls is the log loss over the two classes ”object” and ”not object” and the
regression loss Lreg is the robust loss function smooth L1 [35]:

Lcls(zi, z
∗
i ) = −(z∗i log(zi) + (1 − z∗i ) log(1 − zi)) (5.2)

Lreg(vi, v
∗
i ) =

{
0.5(vi − v∗i )2 if |vi − v∗i | < 1

|vi − v∗i | − 0.5 otherwise,
(5.3)

where Lreg is only triggered when the anchor is positive (z∗i = 1). The two terms are normalized
by Ncls and Nreg, representing the number of anchor boxes, and weighted with parameter λ
to balance the contribution of the two losses [35]. When the confidence scores and bounding
box offsets for each anchor box are computed, non-maximum suppression (NMS) is utilized to
generate a selection of region proposals based on their confidence score by removing overlapping
proposals with a lower confidence score. The IoU threshold for NMS is set to 0.7.

Fast R-CNN The selection of region proposals generated by the RPN is taken as input by the
Fast R-CNN detector to output the final set of object detections. First, features are extracted
from each region proposal with a Region of Interest (RoI) pooling layer. These extracted features
provide a representation of the appearance and spatial characteristics of the object in the region
proposal and are used by the model to classify the object and refine its bounding box location.
RoI pooling layer divides the region proposal into a fixed number of sub-regions of equal size, and
inserts the value in each sub-window corresponding to the output grid cell using max-pooling.
This operation results in a fixed-size feature map of each region proposal, regardless of its size or
aspect ratio [31]. However, this pooling operation can lead to misalignments between extracted
features and the original region proposal, resulting in information loss and reduced accuracy.
Therefore, the version of Fast R-CNN used in this research includes a refined version of the RoI
pooling layer, namely RoI Align. Since the size of the sub-windows may not align exactly with
the size of the pooling grid, bilinear interpolation is used to interpolate the feature values at each
grid point. This involves using a weighted average of the four nearest feature points in the feature
map to compute the value at the grid point. Bilinear interpolation computes the values of the
features at their exact locations corresponding to the sub-regions rather than using the discrete
values obtained by max-pooling. RoI Align is able to reduce information loss and improve the
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accuracy of extracted features in each region proposal [39].

After RoI Align, the extracted features from each region proposal are fed into a series of fully
connected layers that predict the confidence scores and bounding box offsets. During training,
Fast R-CNN uses a multi-task loss function, as defined in [31], which is also employed as the
objective function for the RPN, as mentioned earlier. However, it should be noted that the
input for both loss functions is different. The RPN takes all anchor boxes as input, whereas Fast
R-CNN receives the region proposals. Finally, the output of Fast R-CNN consists of the final set
of bounding box predictions along with their corresponding confidence scores.

5.3 Method 2: RetinaNet

RetinaNet is a one-stage object detection model that extracts features and performs classification
and regression directly. The model is composed of three main components starting with the
ResNet-101 backbone and FPN, followed by two separate sub-networks for object classification
and bounding box regression [28]. Figure 5.4 shows a schematic representation of RetinaNet.

Figure 5.4: Schematic representation of RetinaNet [28]

Each feature map Pi, generated by ResNet-101 and FPN, carries different spatial resolutions and
is utilized to generate anchor boxes at varying scales. An anchor box is a predefined bounding
box placed at different locations and scales in the image. At each spatial location in the feature
map, RetinaNet creates a set of k anchor boxes associated with a scale and aspect ratio and
parameterizes the centre (xctr, yctr), width (w) and height (h) of each anchor box into a 4-tuple
(xctr, yctr, w, h). Let’s denote A = {a1, a2, ..., ak} as the set of anchor boxes at a given spatial
location. Taking the multi-scale feature maps as input, the classification sub-network predicts
the probability of an anchor box containing an object of a certain class, resulting in a set of class
probabilities for each anchor box [28]. In order to achieve this, the feature maps {P2, ..., P6}
are passed through the classification sub-network of RetinaNet, consisting of a set of shared
convolutional layers followed by a final Conv(4 × 4) layer. This final layer produces a feature
map of size ck, where k is the number of anchor boxes and c is the number of object classes.
Subsequently, this feature map is then fed into a sigmoid function to produce a c-dimensional
vector z = [z1, z2, ..., zc], where zi is the probability that anchor box ai contains the object of
that specific class [44].
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The regression sub-network of RetinaNet also takes the multi-scale feature maps {P2, ..., P6}
as input and is designed to predict the difference between the anchor box coordinates and the
corresponding ground truth coordinates of each anchor, also known as the offset. First, the
feature maps are fed into a set of shared convolutional layers followed by a final Conv(4 × 4)
layer, which produces a feature map of size 4k, where k is the number of anchor boxes, and 4
represent the four parameters of each bounding box (i.e., centre coordinates, width and height).
Subsequently, the vector of bounding box regression offsets is passed through a linear activation
function to produce the final vector denoted by v = [v1, ..., vk], where vi = (vx, vy, vw, vh) is the
offset of anchor box ai and represent the centre, width and height of the anchor box, respectively.

vi =
(
vx, vy, vw, vh

)i
=

(
x−xa

wa
, y−ya

ha
, log( w

wa
), log( h

ha
)
)i
,

where (xa, ya, wa, ha) are the centre coordinates, width, and height of the ith anchor, and
(x, y, w, h), are the corresponding values for the ground-truth bounding box. The model parame-
ters are adjusted in order to minimize the offsets of each anchor.

RetinaNet separately computes the classification and regression loss. For the classification loss, a
modified focal loss function is utilized to address the class imbalance issue in object detection
datasets, where the number of background samples is significantly higher than that of object
samples. Focal loss can be described as a balanced combination of the standard binary cross-
entropy loss and a modulating factor that down-weights the contribution of the samples with
high confidence scores [44]. This gives more attention to the samples that are harder to detect.
The classification loss is defined as:

Lcls(zi) = −αi(1 − zi)
γ log(zi), (5.4)

where zi represents the predicted probability of the anchor containing an object. Furthermore,
αi is the balancing parameter addressing the class imbalance, and γ represents the focusing
parameter which down-weights the samples with high confidence scores. The regression loss is
computed using the smooth L1 loss (Formula 5.3), which is robust to outliers and also used in
Faster R-CNN.

L(zi, vi) = Lcls(zi, z
∗
i ) + λLreg(vi, v

∗
i ) (5.5)

The total loss function is a linear combination of the classification and regression losses which are
balanced by the weight parameter λ [44].

Once the losses have been calculated, RetinaNet combines the object class probability and the
regression offset at each anchor box to obtain a single score that reflects both components. The
class probability indicates the likelihood that an object of a particular class is present in that
anchor box. At the same time, the regression offset predicts the offset between the predicted box
and the ground truth box. These offsets are used to adjust the position and size of the anchor
box to more accurately fit the object. To compute the final scores for each anchor box at a
specific location, the predicted probability of the object’s class is multiplied by the regression
offset, effectively combining the information on the class and spatial location. The boxes having
the highest score are selected as final detection for that specific location and used to output the
coordinates of the bounding box predictions and corresponding confidence scores.

28



5.4 Data Augmentation Techniques

An extensive literature review has established that data augmentation techniques play a vital
role in achieving better performance in object detection tasks. The effectiveness of deep learning
models is highly dependent on the availability of large amounts of labelled data. In this research,
the dataset consists of identity document images captured under varying conditions, such as
different orientations and lighting conditions. Augmenting this data can improve the model’s
robustness to such variations and enhance its accuracy on new, unseen data [46]. Literature
suggests that both geometric and photometric techniques have been used for data augmentation in
object detection tasks. Geometric techniques such as horizontal flips and random crops have been
popular and have shown good performance. Colour jittering to adjust brightness and contrast
has been commonly used for photometric techniques. Additionally, some literature has shown a
combination of both types. Hence, in this research, it was decided to apply the following data
augmentation techniques both individually and in combination.

Horizontal Flip The horizontal flip is a simple yet effective augmentation technique to increase
the diversity of the training set. The original image is flipped from left to right by flipping the
image horizontally. Although a horizontally flipped image is not often encountered in camera-
captured images of identity documents, it is widely recognized as the most popular technique for
augmenting training data and increasing its quantity [35] [65].

Figure 5.5: Horizontal flip on identity document copy

Random Crop This transformation involves randomly selecting a portion of the original image
and cropping it to create a new augmented image for training. This transformation takes two
arguments: crop type and crop size. The crop type argument can either be relative or absolute.
If crop type is set to absolute, crop size should be a 2-tuple specifying the width and height of
the cropped region in pixels. If the crop type is set to relative, the crop size should be a tuple
of two floats specifying the width and height of the cropped region as a fraction of the original
image. In this research, a relative crop is done with size ( 13 ,

1
3 ) meaning the crop size is randomly

selected as a fraction of the input image size, with both the height and width of the crop ranging
from 33% to 100% of the input image size. To clarify hyperparameter choices, their respective
values are presented in Table 5.1.

Table 5.1: Hyperparameter values random crop augmentation

Hyperparameter Value

Crop type Relative
Crop size, width 1

3
Crop size, height 1

3
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The random crop transformation ensures that at least one entire object of interest is contained
within the cropped region, guaranteeing the recognizability of the object. Random crop aug-
mentation technique is designed to simulate the occlusion present on camera-captured identity
documents. An example of a random crop is presented in Figure 5.6.

Figure 5.6: Random crop on identity document copy

Colour Jittering The goal of colour jittering is to randomly modify the colour or intensity of
an image in order to create additional training examples helping the model recognize different
lighting conditions and colour variations. In this research, two methods are utilized, specifically
colour jittering for adjusting the brightness or contrast. The first technique adjusts the brightness
of an image by multiplying the pixel values by a random scaling factor between intensity min
and intensity max, which reduces or increases the brightness if the values are below or above 1,
respectively. The second technique also chooses the contrast scaling factor randomly between
intensity min and intensity max before applying it to the input image. In this research, the
intensity min and intensity max are set to (0.3, 0.8) and (0.2, 1.8) for the brightness and contrast
technique, respectively. These values are intended to replicate the lighting conditions and colour
variations encountered on camera-captured identity documents by imitating bad lighting and
heavy sunlight. To clarify hyperparameter choices, their respective values are presented in Table
5.2.

Table 5.2: Hyperparameter values colour jittering augmentation

Hyperparameter Value

Brightness
Min intensity 0.3
Max intensity 0.8

Contrast
Min intensity 0.2
Max intensity 1.8

Figure 5.7: Colour jittering adjusting brightness or contrast on identity document copy
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Combination In this research, a combination of all is additionally carried out besides an
individual implementation of the aforementioned data augmentation techniques. All four methods
are performed independently with a probability of 0.5.
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Chapter 6

Experimental Setup

This research will evaluate the performance of all possible combinations of detection methods
and data augmentation techniques previously discussed. Every possibility will be considered a
separate detection approach, with a total of 10 possible combinations stated in Table 6.1.

Table 6.1: Overview of detection methods and data augmentation techniques

Detection method Augmentation method
Faster R-CNN No augmentation
RetinaNet Horizontal flip

Random crop
Colour jittering
Combination

As stated before, the train/validation/test split adopted in this study is 80%/10%/10%, resulting
in 34,958, 4,372, and 4,370 randomly assigned instances present in each set, respectively. The
split ensures that annotations of the same image end up in the same part of the sets. All models
are developed using Detectron2 [66], a PyTorch-based library. The training process is conducted
on a Microsoft Azure NCv3-series virtual machine, leveraging an NVIDIA Tesla V100 GPU with
16 GB of GPU memory and 112 GB of RAM.

6.1 Hyperparameters

The training of the models in both detection methods involves multiple hyperparameters, and a
detailed explanation of these parameter values is provided subsequently.

IoU Thresholds The hyperparameter values utilized in this research for the IoU thresholds are
the default settings that are commonly used in the literature. In Faster R-CNN, a bounding box
is labelled as positive if its IoU with a ground truth box is 0.7 or higher and labelled as negative
if its IoU is lower than 0.3. In contrast, for RetinaNet, a bounding box is assigned a positive label
if its IoU with a ground truth box is 0.5 or higher, while a negative label is given if its IoU is 0.4
or lower. Bounding boxes that fall between the positive and negative thresholds are ignored.

Loss Parameters In Faster R-CNN, the Cross-Entropy Loss and Smooth L1 Loss are utilized
when calculating the classification and regression loss, respectively, for both the RPN and the RoI
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Align layer. Weight parameter λ is set to 1 for all experiments. RetinaNet introduces focal loss
when calculating the classification loss and sets parameters γ and α to 2 and 0.25, respectively.
Again, the weight parameter λ is set to 1. The selection of hyperparameters for all loss functions
is based on a comprehensive review of the relevant literature and therefore chosen at their default
settings.

Batch Size The batch size parameter represents the number of images the model sees per
iteration. A higher batch size generally results in faster training but needs more memory since a
higher number of images are loaded into the system at the same time. In this research, the batch
size is chosen as high as possible, making optimal use of the present GPU. The choice resulted in
a batch size of 16 and 12 images for the Faster R-CNN and RetinaNet, respectively.

Learning Rate The learning rate controls the step size at which the model weights are updated
during training, affecting both the training speed and accuracy of the model. A high learning
rate can lead to the model diverging and failing to converge to an optimal solution. In contrast,
a low learning rate causes the training process to be very slow, resulting in the model getting
stuck in a suboptimal solution. Additionally, to prevent this, common practice is to use several
warm-up iterations in which the learning rate is gradually increased from a small value to the
desired value at the beginning of the training process. Literature shows a good starting point
for the learning rate is a value of 0.001. In order to preclude the model from failing to converge,
some trial runs of the training process are started with learning rates of 0.001 and 0.0005. The
evaluation showed that the model’s training process with a lower learning rate was indeed slower,
and the model with a higher learning rate did not show any signs of divergence. Therefore it
was decided to proceed with a learning rate of 0.001 in the training process. Furthermore, 1000
warm-up iterations were set in which the learning rate linearly increased from a small value of
0.00002 to 0.001. Due to computational constraints, hyperparameter tuning for the learning rate
could not be performed.

Number of Epochs After one epoch, a model has seen each training example exactly once
and subsequently updates its weights based on the error it made on each example. Training with
too few epochs results in a model unable to capture all relevant patterns in the data and can
therefore lead to underfitting. Alternatively, too many epochs can lead to overfitting when a
model becomes too specialized to the training data and performs poorly on unseen examples. In
the aforementioned trial runs, every 2000 iterations, the validation set was evaluated, showing
little to no validation loss improvements after 6000 iterations. Therefore, given the size of the
training set and batch size, a total of approximately three epochs was carried out. This fast
convergence of the model may be attributed to the visual resemblances of images in the dataset,
which predominantly contains identity documents generally with shared characteristics.

6.2 Performance Evaluation

The mean average precision (mAP) is the most commonly used evaluation metric for object
detection tasks [21]. The mAP is the mean of the average precisions of all object classes. Since
this research focuses exclusively on the detection of objects in a single class, specifically faces,
the average precision (AP) for this class is equivalent to the mAP. Therefore, utilizing the AP
alone is sufficient for the purposes of this study. The AP is computed as the area under the
precision-recall curve. In order to understand the concepts of precision and recall, the following
components are defined:
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True Positive (TP): A correct detection of a ground truth bounding box;

False Positive (FP): An incorrect detection of a nonexistent face or misplaced detection
of an existing face;

False Negative (FN): An undetected ground truth bounding box.

It should be noted that the True Negative (TN) metric is discarded in the context of object
detection since every image contains an infinite amount of correctly classified negative bounding
boxes. The criterion for determining a detection as either correct or incorrect is based on the
Intersection over Union (IoU) metric, which is obtained by dividing the shared region between a
predicted and ground truth bounding box by their combined region, as illustrated in Figure 6.1.

Figure 6.1: Intersection over Union (IoU) [21]

To distinguish between correct and incorrect detections, a threshold value t is applied to the
Intersection over Union (IoU) metric. The detection is classified as correct if the IoU value is
greater than or equal to t. Alternatively, the detection is classified as incorrect if the IoU value is
less than t. Based on a comprehensive literature review, an IoU threshold of 0.5 was the most
frequently used. Now, the precision P and recall R can be defined as [21]:

P =
TP

TP + FP
=

TP

all detections
,

R =
TP

TP + FN
=

TP

all ground truths
,

where the precision demonstrates the ability of the model to identify only relevant objects, i.e.
faces, and the recall presents the ability of the model to find all possible ground truth boxes. The
precision × recall curve represents its trade-off for varying confidence values set by a detector. If
the detector wants the number of false positives to be low, the precision will be high, considering
only detections with a high confidence level will be included. However, this approach may
cause many positives to be missed, resulting in a low recall. On the contrary, if the model
lowers the bar for accepting positives, the recall and the number of false positives will increase,
resulting in a lower precision. To conclude, a good object detector should find all ground-truth
objects while only identifying relevant objects [21]. In other words, with precision staying high as
the recall increases, a high area under the precision × recall curve indicates a good object detector.

Since it is rather challenging to accurately measure the area under the precision × recall curve in
its zig-zag shape, a 101-point interpolation of the Average Precision (AP) is utilized to summarize
the shape of the curve by computing the mean of the highest precision values at 101 uniformly
distributed recall levels ranging from 0 to 1, which can be expressed as:
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AP101 =
1

101

∑
R∈{0,0.01,...,0.99,1}

Pinterp(R),

where the AP is obtained by utilizing the maximum precision Pinterp(R) whose recall value is

grater than R with Pinterp(R) = max
R̃:R̃≤R

P (R̃). Padilla et al. [21] initially proposed an 11-point

interpolation method. However, in these experiments, a 101-point interpolation was utilized for
evaluation.

The Average Precision (AP) metric is used to evaluate the model performance on different subsets
of the test data based on the IoU threshold between predicted and ground truth bounding boxes.
In total, six metrics are calculated:

• AP: The overall AP metric, averaged over 10 different IoU thresholds uniformly distributed
between 0.5 to 0.95.

• AP50: The AP metric at IoU threshold of 0.5.

• AP75: The AP metric at IoU threshold of 0.75.

• APs: the AP metric for small objects, i.e. boxes with an area smaller than 322 pixels.

• APm: the AP metric for medium objects, i.e. boxes with area between 322 and 962 pixels.

• APl: the AP metric for large objects, i.e. boxes with an area larger than 962 pixels.

Although the above-mentioned metric types are commonly used in literature to evaluate object
detection performance [44] [67], the overall AP metric is utilized most frequently. Ren et al. [35]
and Girshick et al. [31] use the general AP metric for the evaluation of a Faster R-CNN model
and a Fast R-CNN, respectively. Similarly, one-stage object detection models are also evaluated
using the general AP metric in [30] and [42] to evaluate a YOLO and SSD detector, respectively.
In literature, performance evaluation is also reported using the AP50 metric, which is the most
frequently used metric for assessing detection performance on the PASCAL VOC dataset.
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Chapter 7

Results

In this section, the various Average Precision metrics for all possible combinations of detection
methods and data augmentation techniques will be stated and discussed. In addition, more
in-depth insights into the performance differences concerning wrongly classified and missed faces,
i.e. false positives and false negatives, will be featured. Last, the different models will be compared
based on their performance regarding several image types. The test set consisted of 2,409 images
that contained 4,370 ground truth bounding boxes pointing to a face. For each model, a prediction
file is generated for the test set, where each prediction consists of an image ID, a category ID, the
width and height of the bounding box and the coordinates of the upper-left corner enclosed in a
tuple (xmin, ymin, bwidth, bheight), and a confidence score that reflects the certainty of the model
regarding the prediction.

7.1 Average Precision

Table 7.1 displays the various Average Precision metrics for all combinations of model and
augmentation techniques which are most commonly used in evaluating object detection models
according to recent literature. The highest and lowest AP values are denoted in bold and italicized
font, respectively. The average precision metrics are calculated with all predictions regardless
of their confidence score. Considering the outcomes based on all metric types, the general AP
metric is regarded as the main metric in this research. It is the most prevalent metric employed
in literature for evaluating the performance of object detection models. RetinaNet without
any augmentation illustrates the highest AP score. In contrast, Faster R-CNN with random
crop demonstrates the poorest performance on the general AP metric and four of the other
metrics. Although RetinaNet combined without any augmentation performed the best on the
general AP metric, a one-sample t-test concluded that this result is not significantly better
than the second-best model. Interestingly, it is worth noting that the RetinaNet with random
crop augmentation exhibits the highest AP score on smaller objects while struggling with larger
objects as its APl is lowest. This observation is likely caused by the random crop augmentation
technique, making smaller objects easier to predict accurately and larger objects more difficult.
However, it should be noted that all models perform considerably lower on the classification
of small-sized objects compared to the classification of medium and larger-sized objects. The
best-performing model scored an APs of 68.91% contrasted with 82.07% and 82.85% on APm
and APl, respectively.
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Table 7.1: Average precision metrics for all model and augmentation combinations

Model Augmentation AP AP50 AP75 APs APm APl

Faster R-CNN No augmentation 78.96% 98.38% 93.64% 67.44% 81.31% 82.58%
Faster R-CNN Horizontal flip 75.94% 97.54% 93.29% 63.90% 78.61% 79.59%
Faster R-CNN Random crop 74.17% 97.08% 91.22% 65.75% 77.40% 76.35%
Faster R-CNN Colour jittering 78.93% 98.36% 94.53% 67.50% 81.26% 81.87%
Faster R-CNN Combination 76.38% 98.50% 93.13% 64.77% 78.78% 79.53%
RetinaNet No augmentation 79.54% 98.67% 95.10% 66.88% 82.07% 82.85%
RetinaNet Horizontal flip 78.06% 98.60% 93.96% 66.23% 80.36% 80.94%
RetinaNet Random crop 77.70% 98.65% 92.38% 68.91% 79.89% 75.97%
RetinaNet Colour jittering 78.53% 98.63% 93.94% 64.87% 81.37% 82.36%
RetinaNet Combination 78.04% 98.77% 93.83% 65.31% 80.71% 81.83%

7.2 False Positives and False Negatives

Besides the average precision metric presented above, a detailed examination of the false positive
and false negative rate per model and a confidence score is conducted. Given the specific use
case of these experiments, it is important to examine the frequency of errors that arise when
attempting to locate faces within an image. Such errors can be categorized into two distinct types:
firstly, a portion of the image may be mistakenly classified as a face, despite not containing one;
and secondly, a face may be entirely overlooked and not identified by the model. These two error
types are false positive and false negative predictions, respectively. Vesteda aims to minimize
both error types. Avoiding false positives is crucial as it can lead to blurring an important part of
the passport. Similarly, false negatives must be avoided as they can result in sensitive parts of the
passport being overlooked and left unblurred. The number of false positives is interpreted as the
number of predicted bounding boxes mistakenly classified as faces. A bounding box is denoted as
a false positive if its IoU with the ground truth of the closest bounding box on that image is below
0.5. This IoU threshold of 0.5 is chosen based on a comprehensive literature review illustrating this
value as most commonly used. The total number of predicted bounding boxes a model produces
is the number of true positives and false positives together. The number of false negatives is
interpreted as the number of missed faces, i.e., faces not detected by the model. As stated earlier,
every prediction is made with a certain confidence score, indicating the model’s certainty in that
prediction. When calculating the false positive and false negative rates, a confidence score of, for
example, 60% only considers the predicted bounding boxes with a confidence score of 60% or higher.

Figures 7.1a and 7.1b present the false positive and false negative rates averaged over all data
augmentation techniques of the Faster R-CNN and RetinaNet models for several confidence
scores, respectively. The Faster R-CNN models demonstrate a gradual reduction in the average
false positive rate and a moderate development in the false negative rate as the confidence score
increases. In contrast, the RetinaNet models exhibit a swift decrease in the false positive rate
with lower confidence values and a rapid increase in the false negative rate as the confidence score
reaches higher levels. Overall, the RetinaNet models show a lower percentage of false positives
and false negatives compared to Faster R-CNN. Drawing on the insights from Figure 7.1a, it can
be concluded that the RetinaNet models often assign a low confidence score to predictions that
ultimately turn out to be false positives. Specifically, the false positive rate swiftly decreases as
the confidence level increases, indicating that many of RetinaNet’s low-confidence predictions are
inaccurate. When considering a higher confidence level, these false positives will be effectively
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(a) False positive rate (b) False negative rate

Figure 7.1: Percentage of total predictions denoted as false positive 7.1a and false negative rate
7.1b per confidence score with step size 5%

filtered out. Furthermore, Figure 7.1b suggests that not all true positive predictions of RetinaNet
are assigned a high confidence score, as the number of false negatives increases significantly with
increasing confidence level. In contrast, the lines representing Faster R-CNN in both figures
show a more constant distribution of confidence scores. Together, these observations demonstrate
that the confidence scores of RetinaNet’s predictions are generally lower and more variable than
those of Faster R-CNN. The structural dissimilarities between the two models can account for
this observation. Faster R-CNN first generates a set of region proposals using RPN, resulting in
a set of possible predictions with high confidence scores, which are then utilized to determine
the final set of bounding box predictions. In contrast, RetinaNet divides the image into a fixed
number of regions and includes the bounding box with the highest score based on confidence and
bounding box offset in each region as part of the ultimate set of bounding box predictions. This
differential approach results in Faster R-CNN making a prediction only when highly confident,
whereas RetinaNet adopts lower criteria for a final bounding box prediction. It should be noted
that the distribution of confidence scores does not influence the performance of the models, as
the false positive and false negative rates can be minimized by optimizing the confidence level
accordingly.

Figure 7.2: Absolute number of true positives per confidence score
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Figure 7.2 shows the average absolute number of true positives per confidence score for Faster
R-CNN and RetinaNet. RetinaNet models, on average, obtain more true positives in comparison
to Faster R-CNN models. However, as the confidence score increases, the number of true positives
stays constant for Faster R-CNN, whereas RetinaNet shows a rapid decrease once the confidence
score reaches higher levels. The figure illustrates that on average RetinaNet models assign a lower
confidence score to true positive predictions compared to Faster R-CNN since those models exhibit
an earlier decrease in the absolute number of true positives. On average, when making a prediction,
Faster R-CNN tends to assign a higher confidence score than RetinaNet. From the false positive
and false negative rates can be derived that RetinaNet makes more accurate predictions, albeit
with lower confidence scores, in comparison to Faster R-CNN. The aforementioned dissimilarities
in the models’ structures can also account for this presumption. RetinaNet demonstrates a greater
accuracy in detecting objects, i.e. faces, that Faster R-CNN fails to detect.

Taking a closer look at the ratio between false positives and false negatives on average between
the two models, a bar plot is presented in Figure 7.3 presenting the percentage of false positives
and false negatives stacked per confidence score. Once again, the two models are averaged over
all data augmentation techniques applied. Compared to RetinaNet, the Faster R-CNN model
displays a notably higher average false positive rate (light green). Furthermore, the average false
negative rate for both RetinaNet and Faster R-CNN models (blues) remain relatively constant,
with RetinaNet experiencing a sudden escalation once the confidence score increases. From this
can be concluded that RetinaNet models, on average, perform better considering the number of
wrongly classified and missed faces as performance indicators.

Figure 7.3: Percentages of false positives and false negatives made by Faster R-CNN and
RetinaNet, on average, per confidence score with step size 5%

As previously mentioned, the evaluation thus far has entailed averaging the performance of various
data augmentation techniques utilized in both models. However, notable performance differences
can be observed between these techniques. Henceforth, each model’s analysis will be conducted
separately to enable a comparative analysis of the effects of different augmentation techniques on
each model’s performance. Subsequent analysis of the false positive and false negative rates will
include the confidence score at which the cumulative percentage of the two is minimal. Table
7.2 displays the optimal confidence score for each model. The RetinaNet models exhibit better
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performance at lower confidence scores than the Faster R-CNN. As stated earlier, this could be
attributed to the fact that RetinaNet models tend to generate predictions with lower confidence
scores on average, while Faster R-CNN models only provide a prediction when they are highly
confident about it.

Table 7.2: False negative and false positive rate for every model at their relevant optimal
confidence score

Model Augmentation False positive False negative Confidence score

Faster R-CNN No augmentation 21.73% 21.03% 85%
Faster R-CNN Horizontal flip 19.59% 19.7% 85%
Faster R-CNN Random crop 24.10% 16.68% 90%
Faster R-CNN Colour jittering 23.77% 23.11% 90%
Faster R-CNN Combination 30.42% 28.76% 75%
RetinaNet No augmentation 15.9% 16.0% 50%
RetinaNet Horizontal flip 13.7% 13.91% 55%
RetinaNet Random crop 8.11% 8.79% 65%
RetinaNet Colour jittering 18.2% 18.26% 50%
RetinaNet Combination 19.58% 19.54% 40%

Figure 7.4: False positive and false negative rate for each model at optimal confidence score

In Figure 7.4, each model’s false positive and false negative rate is shown at its appropriate optimal
confidence level. Again, the RetinaNet models have a lower false positive and false negative rate
compared to Faster R-CNN, where RetinaNet combined with the crop augmentation resulted in
the model with the lowest rates. Additionally, the flip and crop augmentation illustrate lower rates
for both model types than the model without any augmentation. Including these augmentation
techniques prior to training enabled the models to improve their ability to detect the faces
present on the identity documents. Furthermore, both the colour jittering augmentation and the
combination of augmentation techniques resulted in the worst performance when considering the
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false positive and false negative rates as performance indicators. This poor performance may be
attributed to the potential confusion caused by applying multiple data augmentation techniques.
Confusion may arise from the presence of conflicting augmentation techniques that generate
unpredictable outcomes and from the possible loss of critical information due to augmentation
techniques.

7.3 Image Type Analysis

To analyze the performance variations of each model based on the image types in the test set, a
manual annotation process was conducted on all 2409 images. These images were classified based
on ten characteristics, and the resulting distribution of the test set is presented in Table 7.3. For
instance, the test set included 432 images that were rotated.

Table 7.3: Frequency of images labelled with characteristic in test set

Characteristic Frequency

rotated 432
small document 143
occlusion 24
bad lighting 85
international document 827
dutch passport 1090
dutch ID 417
dutch drivers license 71
watermark text 464
troubled background 366

Again, the optimal confidence level for each model is utilized for all subsequent analyses. Table
7.4 displays the percentage of images with a specific characteristic that each model correctly
predicted at their respective optimal confidence scores. This part of the evaluation defines a
prediction as correct if no faces are left undetected, i.e. no false negatives on that image. Only
characteristics present in more than 15% of the test set images are included in the table. Each
characteristic’s highest and lowest percentage are denoted in bold and italicized font, respectively.
Faster R-CNN with a combination of augmentation techniques yields the poorest performance on
all six characteristics, while RetinaNet with crop augmentation performs the best on five of the
six characteristics.
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Table 7.4: Percentage of images with specific characteristic correctly predicted by each model at
relevant confidence score

Model Rotated International Dutch passport Dutch ID Text Background

faster noaug 74.77% 80.05% 63.21% 67.15% 71.98% 65.03%
faster flip 74.54% 82.83% 62.48% 69.78% 72.84% 68.31%
faster crop 86.57% 86.46% 68.44% 75.3% 74.78% 74.59%
faster colour 68.98% 78.48% 60.28% 64.99% 68.32% 63.93%
faster combo 65.05% 77.63% 48.62% 53.24% 64.01% 55.19%
retina noaug 78.7% 84.4% 67.98% 79.38% 74.57% 72.4%
retina flip 78.47% 86.34% 70.0% 82.97% 76.29% 71.86%
retina crop 83.1% 88.75% 84.13% 91.13% 82.97% 84.15%
retina colour 77.31% 83.31% 64.22% 74.1% 69.18% 72.4%
retina combo 72.22% 84.04% 60.09% 72.9% 71.98% 65.03%

The two models that demonstrate the best and worst performance are those that exhibit the
lowest and highest false positive and false negative rates displayed in Table 7.2, respectively.
It is evident that their performance is comparable to the performance on images featuring a
specific characteristic. To determine whether a model performs exceptionally well on a particular
characteristic, the performance ranking of each model concerning that characteristic is compared
to the performance ranking based on Figure 7.4, and the results are presented in Figure 7.6.
It should be noted that the performance ranking is based only on the false negative rate, as a
prediction is denoted as correct if no false negatives are present on that image. Figure 7.5 displays
the order of performance based on the false negative rate. The models are ranked in descending
order, with model 1 (RetinaNet with random crop) performing the best. Figure 7.6 illustrates the
performance of all models for each characteristic, also in descending order. The model numbers
are presented in each column, revealing that model 4 (Faster R-CNN with random crop) performs
the best on rotated images. Notably, Faster R-CNN with random crop performs moderately
better on all image types except Dutch ID compared to its performance according to Figure
7.5. Additionally, a slightly poorer performance is observed for RetinaNet with a combination
of augmentations on rotated images, those with a troubled background, and those containing a
Dutch passport. From these observations, the utilization of random crop augmentation positively
impacts the model’s performance while examining images containing various characteristics.
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Figure 7.5: Model perfor-
mance ranked in descending
order based on false negative
rate

Figure 7.6: Model performance based on number of images
without missing faces ranked in descending order for every
characteristic with numbers corresponding to rank in Figure
7.5
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Chapter 8

Discussion

This study revealed several limitations and areas that warrant further investigation by evaluating
and comparing different object detection models and augmentation techniques for detecting faces
on identity documents. The subsequent section will address these limitations identified during
this research, as well as several potential avenues for future research.

The foremost limitation in this study concerns the data availability, specifically images with
complicated characteristics such as rotation, occlusion and bad lighting. The use of advanced deep
neural networks such as Faster R-CNN and RetinaNet necessitates a substantial amount of data
for training to be able to detect all different types of faces and not miss any hard-to-detect faces.
A larger dataset containing more images with complicated characteristics would be beneficial
to enhance the model’s performance in future research. Furthermore, the manual labelling of
the dataset also presents some limitations. Manual annotation is susceptible to errors, with the
possibility of missing objects, i.e. faces, or incorrect annotations due to human error during the
annotation process. Additionally, some images contain partially blacked-out faces or faces that
are not clearly visible, making the annotation challenging due to its dependence on the subjective
judgment and interpretation of the annotator. Lastly, Vesteda cannot guarantee the complete
absence of duplicate images in the dataset, potentially resulting in identical images in the training,
validation, and test set, thereby affecting the performance on the validation and test set.

The comparative study in this research involves two object detection models and three augmenta-
tion techniques, selected due to the limited memory size of the Microsoft Azure virtual machine
utilised for training. A larger GPU in future research would permit the inclusion of additional
detection models and augmentation techniques in a comparative study, as well as accelerate
training through the use of larger batch sizes. Although YOLO models are primarily utilised
for real-time detection, the thorough literature review conducted in this study demonstrated
their strong performance across multiple model versions. As a result, it would be worthwhile to
consider integrating them into future comparative research. Default values were employed for
many model parameters, such as loss parameters, IoU thresholds for true positive predictions,
and the batch size per image representing the number of regions an image is divided into. Fu-
ture research could provide insightful model performance comparisons by varying these parameters.

All final models were trained until 6000 iterations with a learning rate of 0.001, determined by
multiple trials on the training dataset. Incorporating hyperparameter tuning for both the learning
rate and the number of iterations would be a beneficial addition in future research to help prevent
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overfitting. By fine-tuning these hyperparameters, the models can learn to detect objects better
and reduce errors such as false positives or negatives. Besides the object detection models, the
chosen augmentation techniques possess certain limitations. The random crop and colour jittering
augmentation methods were executed using fixed parameters based on literature, which may
have significantly influenced the model’s performance. Therefore, implementing augmentation
techniques with varying parameters would be a useful addition to future research.

The false positive and false negative rates are evaluated using a IoU threshold of 0.5, the most
commonly utilised threshold in the literature. However, future research could consider a more
comprehensive evaluation of these rates by varying the IoU threshold values. Subsequently,
the evaluation treats the importance of both the false positive and false negative rates equally.
However, the significance of these rates can vary considerably depending on the specific use case.
Therefore, future research could consider a weight-off analysis between the false positive and false
negative rates to enable a more nuanced evaluation of the model’s performance and facilitate
better decision-making in different applications. Furthermore, evaluating the test set based on
image type is also subject to certain limitations. Since some characteristics have a relatively small
number of occurrences, future research could include a test set with more images and a broader
range of characteristics to draw more reliable conclusions. Moreover, the image type analysis
defines an accurately predicted as an image without any false negatives. Future research could
expand this evaluation by incorporating different definitions of an accurately predicted image,
such as one that contains no false positives or false negatives.
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Chapter 9

Conclusion

This chapter restates the research questions and presents this study’s findings. Furthermore, a
summary of the main research findings is provided, and a recommendation is made for Vesteda.

This research focused on the main question: How accurately can object detection models detect
faces on camera-captured identity documents? To address this question, the process of manual
annotation created a dataset containing identity documents, including labels. Subsequently, two
object detection models were fine-tuned on that identity document dataset. Their performance
was evaluated based on average precision metrics and false positive and false negative rates.
Additionally, the two models were combined with various augmentation approaches to augment
the available data and ascertain if the augmentation techniques improved the performance of the
models. Finally, two sub-questions were formulated to address these comparisons.

SQ 1: Which object detection models in the literature effectively detect faces in identity docu-
ments?

SQ 2: How effectively will various data augmentation techniques influence the robustness of a
detection model? Will a combination of multiple yield a different effect?

To address the first sub-question, an extensive literature review was conducted, which revealed
that both two-stage and one-stage detection models are commonly used in object detection tasks.
Therefore, a two-stage approach, the Faster R-CNN, and a one-stage approach, the RetinaNet,
were made for the comparative study. An evaluation of the results showed that the RetinaNet
achieved higher average precision on all AP metrics and displayed lower false positive and false
negative rates than the Faster R-CNN. The most effective RetinaNet model demonstrated an
AP of 79.54%. Nonetheless, this result lacked statistical significance when compared to the
second-best model. Furthermore, the mean false positive rate and false negative rate for the
RetinaNet models were found to be 15.1% and 15.3%, respectively.

The second sub-question examined the influence of data augmentation techniques on model
robustness. Literature review revealed numerous possible augmentation techniques, and this
research included three, namely horizontal flip, random crop, and colour jittering. The training
dataset was also augmented with a combination of all augmentations to determine if combining all
three techniques would yield a different effect. The comprehensive evaluation of the results showed
that both horizontal flip and random crop decreased the false positive and false negative rate of
both detection models, with random crop resulting in the most significant benefit. Returning
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to the main question of this research, it has been found that the combination of the RetinaNet
detection model and random crop augmentation can effectively detect faces on identity documents
with a false positive rate of 8.11% and a false negative rate of 8.97%. These results indicate that
this approach has the potential to detect faces on camera-captured identity documents accurately.
In conclusion, Vesteda is recommended to use the RetinaNet detection model combined with
random crop augmentation for face detection on camera-captured images.
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