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Management summary

The insulated rail joint (IRJ) is an essential component of the Dutch railway network and
typically causes network disturbances in case of malfunctioning. Automatic detection of
malfunctioning IRJs on video inspection data requires reliable image processing and detec-
tion algorithms. This research explores the possibility of detecting defective IRJs by using
a semi-supervised learning-based approach, whereby the detection methods are trained on
images of exclusively functional IRJs. This allows for detection regardless of the type of
defect and solves the issue of class imbalance between functional and defective IRJs. This
thesis contributes to literature by being the first to research this approach for detection of
defective IRJs and rail surfaces in general.

The research includes the development of a novel dataset of over 4250 IRJ images, which
are collected by a video inspection train on the Dutch railway network. The images are
manually labeled according to the presence of IRJ defects as described by ProRail. The
labeled dataset is used to evaluate 30 different semi-supervised approaches for the detection
of defective IRJs. Each approach is a distinct combination of two image processing heuris-
tics (rail surface crop, end post region crop), five localization methods (L2-AE, SSIM-AE,
Adversarial SSIM-AE, PaDiM-R18, PaDiM-WR50) and three scoring functions (mean, stan-
dard deviation, maximum patch). A selection of these approaches are capable of creating
class separation and detect defective IRJs with reasonable accuracy.

The best performing approach applies the PaDiM-WR50 model, which is a state-of-the-art
detection framework introduced by [1], utilizing a pre-trained Wide ResNet-50 network.
This approach also uses the standard deviation scoring function and the end post cropped
imagery. It achieves a F1-score of 0.507, recall of 0.755 and precision of 0.382. In addition,
it shows that the correct detections include 88% of IRJs with spark erosion and over 95% of
IRJs with squats. These outcomes reveal that it is possible to detect defective IRJs regard-
less of the defect, but only by also incorrectly detecting many functional IRJs. The primary
reason for the false detections is the sensitivity of the methods to harmless irregularities on
the metal rail surface and the subtlety of most IRJ defects.

The research concludes that the semi-supervised approach shows potential, but may not yet
be suitable as a standalone solution for detecting defective IRJs. For further research it is
recommended to connect track circuit failure data to the defective IRJ images to discover
which ones are truly malfunctioning. Furthermore, it is worth it to implement the PatchCore
framework by [2], which is shown to be even better performing than the PaDiM framework.
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1 Introduction

1.1 Problem

This study is carried out in collaboration with ProRail, which is the organization respon-
sible for the railway network in the Netherlands. The company is privately owned by the
Dutch government and placed under the Ministry of Infrastructure and Water Management.
The Dutch railway network consists of approximately 7021 kilometers of rail tracks, 7.071
switches and 404 railway stations. This amount of infrastructure located in a relatively
small an densely inhabited country as the Netherlands, makes it one of the most densely
connected rail networks in the world.

ProRail has the ambition to maximize the availability of this heavily used railway network.
The company must therefore efficiently monitor rail assets and keep track of their condi-
tion. Nowadays, monitoring is largely automated with various devices mounted on special
inspection trains. The monitoring data is both used to discover present defects in rail assets
and to predict asset failures before they occur. This allows for more efficient maintenance
scheduling which subsequently minimizes the number of network disturbances.

On behalf of the Asset Management Inspection (AMI) Renewal department, this thesis will
focus on the development of a solution to predict the condition of an important rail asset,
namely the the Insulated Rail Joint (IRJ). The IRJ is a crucial part of the track circuit
mechanism, which is widely used for train detection and signalling on the Dutch railways.
Track circuit failures are often cause by damaged IRJs and typically result in alerts referred
to as Falsely Occupied Track (TOBS). The IRJ condition prediction will be focused on the
presence of defects in visual image data from a video inspection train.

The importance of a prediction system based on visual image data for IRJ condition is
explained by various reasons. Firstly, are IRJs and track circuits very important for the
safety of the railways. Therefore, failures are handled with extreme caution and play a
major role in networks disturbances. Secondly, previous attempts to predict IRJ condition
with other types of monitoring data have not been sufficient. It is difficult to create an all-
encompassing condition statement as IRJs can suffer from various types of damages. Lastly,
ProRail has received fines for not being able to sufficiently predict IRJ condition at locations
such as the rail yard of Kijfhoek. An image-based prediction system is hoped to contribute
significantly to an overall solution for each issue.

1.2 Research aim

The detection of defective IRJs is a typical anomaly detection task as the majority of im-
ages show undamaged IRJs. Furthermore, do defective IRJs cause track circuit failures
due to multiple types of damages with each their own characteristics. Although this task
can be addressed as a supervised learning problem, this thesis will aim to solve it with a
semi-supervised learning-based approach. Motivation for this is three-fold. Firstly, does the
semi-supervised approach solve the data imbalance problem as the associated methods only
require images of functional IRJs for training. Secondly, it allows for one single method
to detect malfunctioning IRJs regardless of the type, size or shape of the defects. On the
contrary, supervised methods require to be trained on a balanced dataset of functional and
defective IRJs and are typically optimized to detect one type of defect. This would imply the
development of multiple models which is impractical. Lastly, the AMI Renewal department
has never researched the semi-supervised approach for the detection of defects. Even more
significantly, there is also an absence of literature on this specific topic. To our knowledge,
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this study is unique as it will be the first to apply semi-supervised learning methods for the
detection of defective IRJs and rail defects in general.

The aim of this research is in essence to examine the possibility to detect defective IRJs
with a semi-supervised learning-based approach. It will investigate various methods which
do not require prior knowledge of the various IRJ defects to be appled for detection. Their
performance will be measured on the basis of a manually labeled dataset of functional and
defective IRJs. Furthermore, the impact of image cropping on the prediction performance
will be examined. During this research, the following research question will be addressed:

How and to what extent can a semi-supervised learning-based approach be ap-
plied to detect IRJs with various defects?

This is answered on the basis of the following sub-questions:

1. How to express IRJ abnormality with semi-supervised learning methods?

2. Which detection approach is most promising in terms of test set perfor-
mance?

3. Which IRJ image crop is the most promising in terms of test set perfor-
mance?

1.3 Outline

The remaining part of this work is structured as follows:

• Chapter 2 discusses the background concerning railway inspection, track circuits,
IRJs and associated defects.

• Chapter 3 introduces anomaly detection and discusses related work, which covers
literature on rail surface defect detection and general semi-supervised defect detection
for image data.

• Chapter 4 examines the IRJ images from the video inspection train and discusses
the procedures for labelling, cropping and splitting of the dataset.

• Chapter 5 states our semi-supervised learning-based approach and explains the im-
plemented methodology. Furthermore, it discussed the evaluation metrics to measure
performance.

• Chapter 6 states the parameters of the methodology and the procedures for training,
calibration and testing. Subsequently, it presents the results of these procedures.

• Chapter 7 discusses the results and highlights limitations. Furthermore, it concludes
by answering the research questions and by providing recommendations.
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2 Railway inspection and IRJs

This chapter explains how ProRail performs railway inspection and introduces train detec-
tion systems and the importance of IRJs. Furthermore, it describes the defects seen on IRJs
and the surrounding rail surface.

2.1 Railway inspection

ProRail is responsible for the management, maintenance and expansion of the Dutch railway
network, which consists of approximately 7021 kilometers of rail tracks, 7.071 switches and
404 railway stations. Their ambition is to optimize the networks availability and facilitate
the development of the infrastructure. Despite the heavy railway usage each day, the or-
ganization is able to keep the network punctual and reliable. The actual maintenance and
construction of the railway is however not performed by ProRail itself, but outsourced to
certified railway contractors and other specialized maintenance companies. This happens on
the basis of Performance Oriented Maintenance contracts (PGOs), which are performance
agreements between ProRail and the contractor to stimulate innovation. Each PGO is linked
to one of 21 maintenance regions in the Netherlands and re-assigned every 5 years. At the
time of writing, the main contractors are [REDACTED].

In order to guarantee the high standards expected from the railway network and the con-
tractors, ProRail inspects all its infrastructure at least once a year. The following types of
data are then collected and evaluated:

• Configuration data: describes the location of rail parts and their usage measured
in number of train passages or amount of axle load.

• Condition data: describes the current condition of rail parts as obtained from mea-
surements and inspection.

ProRail stores and analyzes most of this data in their Sector-Wide Monitoring System
(BBMS). The monitoring system establishes an assessment of the network’s condition and
notifies when certain components are in need of replacement. Maintenance contractors also
have access to BBMS and use the information to adjust their maintenance. This ensures
that components do less often fail unexpectedly and cause disturbances of train services.

In the past, condition data was manually collected by patrols walking along the rail track.
To improve safety and reduce train schedule interruptions, ProRail largely replaced manual
patrols by more automated data collection techniques. Apart from being safer, it is more
accurate and enables the collection of a larger variety of condition data. According to [3],
the existing inspection technologies include:

• Ultrasonic inspection: reflections of ultrasonic beams help to detect internal rail
defects.

• Eddy current inspection: disturbances of a magnetic field help to detect rail surface
and near-surface defects.

• Acoustic emission inspection: inspection based on the noise produced in the wheel-
rail interface of the moving inspection train.

• Visual video inspection: inspection based on video recordings with line scan cam-
eras to detect external rail defects, as can be seen in Figure 2.
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Figure 2: The video inspection train equipped with line scan camera equipment.

This research will focus on the image data captured during visual video inspection. Since
2008, ProRail has increasingly invested in the usage this type of inspection for both config-
uration and condition data. Back than and still today, inspection of the video recordings
is largely done by hand. Due to the enormous amount of imagery required to capture the
entire railway network, manual inspection is very time consuming, tedious and also error
prone. Fortunately, computer vision algorithms are able to take over this manual inspection.
Algorithms are faster, cheaper and sometimes more accurate than their human counterparts.

Starting in 2018, ProRail began implementing computer vision algorithms with a focus on
supplementing the configuration data. The ConfigurationAI team of the AMI Renewal de-
partment developed algorithms for detecting IRJs, recognizing rail dampener types, and
identifying rail sleeper types during this time. In 2021, the focus expanded to the develop-
ment of algorithms for the extraction of conditional information as well. This became the
responsibility of the newly formed ConditionAI team. Their initial project involved devel-
oping a segmentation algorithm for railway fasteners, which are assets used to secure the
rail head to the rail sleepers. The model can automatically identify the shape of a fastener
and reject it if it’s abnormal. In the future, ProRail likes to add more condition predictions
based on image data to BBMS to improve maintenance planning. This thesis contributes to
that goal.

2.2 Train detection systems

The Dutch railway infrastructure consists of many individual rail assets which all have to
perform optimally for the network to function and remain safe. In an ideal scenario, ProRail
would be up to date about the condition of each individual part at any time. However, this
is not feasible at the moment, which is why ProRail prioritizes some components over others
when monitoring condition.

2.2.1 Track circuit and IRJs

One component of high priority is the Insulated Rail Joint (IRJ), which is important for the
functioning of the most prevalent train detection system in the Dutch railways, the track
circuit mechanism. This is an electric system working on an insulated segment of rail track.
This segment, which can have a length ranging from several meters to kilometers, is used to
transfer current from a power source to a relay on the other end. As long as the segment is
not occupied, the relay is being energized and for instance turns on the green signal light,
notifying approach trains that the segment is free. When a train enters the section, its
wheels and axles short the electrical circuit, preventing the current from reaching the relay.
This de-energizes the relay and activates a red signal light, warning approaching trains to
stay clear of the track for safety. A schematic overview of a track circuit is shown in Figure 3.
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Figure 3: Occupied track circuit

The IRJ plays a crucial role in ensuring that each track circuit segment is electrically insu-
lated and that the current cannot escape into another segment. This special type of joint is
depicted in Figure 4. It separates adjacent track circuits by using a 6mm gap filled with a
high strength composite plate known as an end post. The two rail ends are secured together
with two insulated joint bars on each side.

Figure 4: Insulated rail joint

The principle of short-circuiting makes the track circuit fail-safe, meaning that the system
will always indicate occupation of the segment when one of its components fails. Such an
event is known as a Falsely Occupied Track (TOBS) and extremely important for railway
safety, but it also causes disturbances and limits network availability. ProRail found that
track circuits failures are the third most occurring cause of network disturbances and are
roughly 90% of the time resulting from damages to IRJs. All in all, defective IRJs account
for about 15% of network disturbances and therefore it is essential to monitor and predict
the condition of these assets. The actual damages responsible for track circuit failures are
addressed in Section 2.3.
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2.2.2 Other

The track circuit is the most common train detection system in the Dutch railways and will
still be used for decades to come. However, it not the only type of detection system as two
replacing systems exist.

Axle counters. Axle counters are sensors mounted near the rail tracks and count the
number of passing axles to determine the presence of a train. An axle counter system
includes a sensor installed at either end of a rail track segment and an evaluator which
compares the counts of both sensors. The segment is occupied at the moment a train passes
the first sensor. Only when the second sensor has counted the same amount of axles as the
first, the segment is cleared. Axle counters are more reliable than track circuits and used as
a replacement.

ECTS. The European Train Control System (ECTS) is a collection of communicating
train and track-side devices and part of a European system of standards for signalling of
railways (ERTMS). It mainly promotes the interoperability of trains in Europe, enables
higher train speeds and also improves safety. Different to track circuits and axle counters,
the detection with ECTS is partly done with equipment onboard of the train. This onboard
equipment receives the location of the train when it passes fixed transponders on rail sleepers,
called Eurobalises. The onboard device calculates the live train location with the received
location and the travelled distance since passing. Therefore, ECTS is the most precise train
detection system to date. Over the coming 30 years, the introduction of ECTS and ERTMS
will eventually lead to the disappearance of other train detection systems. At the time of
writing, the route from Amsterdam to Utrecht is the only Dutch rail route using these new
systems.

2.3 Condition assessment

The Dutch rail network contains around 44,000 IRJs of which between 3,000 and 3,500 are
replaced each year. IRJs have an average lifespan of 10 to 15 years and are replaced preven-
tively during renewal projects or because of excessive wear and malfunctioning. ProRail has
specified various condition criteria for IRJs and defects of surrounding rail surface, which
are linked to track circuit failures.

2.3.1 Defects of IRJs

Condition assessment starts with criteria specific to the construction of the IRJ. If these
criteria are not met, the IRJ should be replaced:

• Spacing: The minimum remaining thickness of the end post on the rail head surface
should be at least 3mm. The original thickness of the end post is 6mm but decreases
over time as trains smear the rail ends over this composite plate. It can potentially
lead to a connection between two adjacent track circuits and result in TOBSs. See
Figure 5a.

• Play: The maximum gap between the end post and either one of the adjacent rail
heads has to be less than 1mm. These gaps can be a result of rail contraction caused
by temperature fluctuations. See Figure 5b.

• Indentation: The maximum vertical indentation of the rail track surface around the
end post should be less than 0.5mm. Indentation can be caused by bouncing movement
of passing trains when the end post is not completely flush with the track surface. It
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can also be caused by insufficient support from the underlying rail way sleeper and
ballast. See Figure 5c.

• End post deterioration: The end post of an IRJ should be undamaged, in the sense
that is not fractured or chipped. Otherwise it could result in track circuit failures as
it does not guarantee complete insulation of two adjacent segments.

(a) Minimum end post thickness (b) Maximum end post play

(c) Maximum indentation

Figure 5: Defects of IRJs

2.3.2 Defects of surrounding rail surface

IRJ condition also considers general rail defects as IRJs are rail components. Hereby it is
important to make a distinction between internal and external rail defects, as only external
rail defects are visible on the video inspection data. As Chapter 4 will discuss, this study
uses top-down imagery, which makes the following external rail surface defects relevant:

• Spark erosion is a rail surface defect which typically occurs around the IRJ end post.
The intense friction of slipping train wheels and the transition from one track circuit
into another, can cause an electrical arc which burns of a tiny bit of rail surface. See
Figure 6a.

• Squats are indentations or short regions of flattened rail and can be accompanied by
internal cracks in the rail. In severe cases, squats can cause crumbling or breakage of
the rail. See Figure 6b.

• Studs are areas where the metal rail surface is flaking off, which is also caused by the
high stresses created by slipping wheels.

• Head checks are transverse cracks on the inside of the rail surface. In severe cases,
it can lead to chipping of the rail head. See Figure 6c.
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• Corrugation is a cyclic wave-like irregularity on the rail surface. See Figure 6d.

(a) Spark erosion (b) Squat

(c) Head check (d) Corrugation

Figure 6: Defects of surrounding rail surface
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3 Related work

The identification of defective IRJs is visual anomaly detection task. This chapter will
outline this subject and identify its challenges. Additionally, it reviews previous studies on
railway defect detection and underscores the requirement for a semi-supervised learning-
based approach, which will be explored in greater detail by the final section.

3.1 Anomaly detection

Anomaly detection, also known as outlier or novelty detection, is generally defined as the
identification of events or observations which differ from the majority of the data or from an
expected normal behaviour [4]. Anomaly detection has a wide variety of applications such
as credit card fraud detection, computer network intrusion detection or tumor detection on
medical images. In our case, the task is to detect IRJs with end post defects or defects of
the surrounding rails. Therefore, a region has to be defined which describes the appearance
of normal functional IRJs. Any IRJ which strongly deviates from this region is declared an
anomaly. Defect detection can be seen as an subcategory of anomaly detection as it is more
specified what has to be detected. Typically defect detection is harder as non-defective and
defective samples are largely similar.

Challenges. In essence, the visual anomaly detection task seems simple. However, as [4]
discuss, there are several reasons why this is often challenging:

• Imperfect boundary: The region of normal behaviour is difficult to define since the
boundary between normal and anomalous behaviour is often not precise. Normal data
samples lying close to the defined boundary could actually be anomalies or vice versa.
Especially with defect detection this is emphasized as normal samples and defective
samples are typically very similar.

• Noise: The normal data samples often contain noise with similar properties as actual
anomalies, making it difficult to distinguish or remove.

• Data availability: The availability of labeled data for training and testing of de-
tection techniques is usually an issue. Anomalies typically occur in small quantities,
making datasets of normal and abnormal samples imbalanced. Moreover, it is not
guaranteed that all types of anomalies are known beforehand as anomalous behaviour
is often dynamic and new anomalies might arise.

• Varying definition: The exact definition of an anomaly is different for each applica-
tion domain. A technique developed for one domain should often be adapted for use
in another domain.

• Data dimensionality: Specific to visual anomaly detection is the typical large dimen-
sionality of the input data. Each image is a spatial structure of pixels with continuous
attributes such as color, lightness and texture.

Modes. The mode of an anomaly detection technique describes its dependency on the
availability of labelled data. The following three modes exist:

• Supervised anomaly detection requires labelled data from both normal and anoma-
lous classes to train a model and optimize a boundary between normal and abnormal
samples. It is the least applied mode of anomaly detection, because data imbalance and
accurate labelling of defects are often encountered problems. Without these problems,
supervised techniques can typically generate accurate results.
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• Semi-supervised anomaly detection is more frequently used because it only requires
partly labeled data. In most cases, the training data consists of exclusively normal
samples and is used to model normal behaviour. The distance between this normal
behaviour and anomalies is afterwards used to manually set a boundary.

• Unsupervised anomaly detection is also widely applied as it does not require any
labelled data. These techniques find a boundary under the assumption that normal
samples are both more frequently seen and strongly deviating from abnormal samples.
When these assumptions are however not true, unsupervised methods create a high
number of false positives. Unsupervised anomaly detection is typically not applicable
for computer vision tasks as the high dimensionality of images makes boundaries very
complex.

Detection, localization or segmentation? Images are spatial structures in which de-
fects are typically specific region of pixels. Detection techniques for images are therefore
often extensions of localization or segmentation techniques. In literature these three topics
are frequently discussed together and intermixed:

• Detection is the task of classifying an image as either normal or anomalous.

• Localization is the task of assigning each pixel or region of pixels in an image with
an anomaly score. The result is an localization map showing how abnormal each given
pixel or region of the image is. The map can be formed into an overall anomaly score by
aggregating over the pixels or into a segmentation map by setting an pixel threshold.

• Segmentation is the task of classifying each pixel or patch of pixels in an image as
either normal or anomalous. This pixel-level classification can directly be extracted
from a localization map by setting a certain threshold on the pixel values.

Localization and segmentation are harder tasks than detection. Techniques can serve an
own goal or be used to explain the results of detection techniques.

3.2 Rail surface defect detection

Various researches have developed visual defect detection techniques for application in a
railway setting. The topic of railway surface defect detection comes with some additional
challenges as described by [5] and [6]:

1. Illumination inequality: Rail images are captured under a train in an open circum-
stance. Natural light and vibration of the train have influence on the illumination of
the images.

2. Variation of reflection property of rail surface: The rail head does not share the
same reflection characteristics over its running surface because of the curved geometry.
The center of the rail surface is typically smooth and reflects more light than periphery
areas which are often covered with rust.

3. Limited features available for recognition: Discrete rail surface defects do not
share common texture or shape resulting in limited feature availability. This is mainly
problematic for localization and segmentation techniques.
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3.2.1 Classical methods

A large portion of rail surface defect detection models are based on image processing tech-
niques and additionally conventional machine learning methods. These models detect and
segment rail surface defects commonly in a four stage approach. First, the rail has to be ex-
tracted from the raw input image. [5] and [6] both show that the rail profile can be visualised
in a histogram by projecting the average gray-scale pixel intensities over the longitudinal
axis of the rail. This histogram effectively shows which columns of the image show the edges
of the rail and thus how the image should be cropped to extract the rail.

Second, the illumination inequality and reflections are removed from the extracted rail im-
age. Both [5] and [7] propose a local Michelson-like contrast measure which is nonlinear and
illumination independent. For the same task, [6] implement longitudinal gray-scale equal-
ization and [8] implement dynamic Gamma correction.

Third, the equalized rail surface is enhanced with spectral methods to make defects more
pronounced. [9] find that Gabor filters work better than wavelet transforms or combined
Gabor wavelet transforms. [6] implements curvature filters to remove noise an make defects
easier to detect. [8] apply the most complete approach by enhancing images on sub-image
level, region level and pixel level with their coarse-to-fine model (CTFM).

Fourth, the enhanced rail surface is transformed into a segmentation. This can be done
manually [7], with OTSU thresholding [8] or with the proportion emphasized maximum
entropy (PEME) algorithm proposed by [5], which maximizes entropy while remembering
the low proportion of defects. Lastly, [6] segment defects with an enhanced Gaussian mixture
model (GMM), which incorporates spatial information between neighbouring pixels.

3.2.2 Deep learning methods

More recently, focus shifted to rail defect detection techniques based on convolutional neural
networks (CNNs), which are not reliant on carefully engineered image processing techniques
to accurately detect defects on unevenly illuminated rail images.

Deep learning methods are far better than image processing and conventional machine learn-
ing methods in their ability to process raw data as they automatically extract multiple levels
of representations. These representations are obtained by transforming input in one layer
with non-linear modules into a more abstract lower layer. Enough of these layers and very
abstract functions can be learned, making them very flexible in addressing high-dimensional
problems, without prior assumptions about the properties of the data [10].

Especially the introduction of the convolutional layer, to which the CNN owes its name,
made deep learning applicable for computer vision tasks like visual defect detection [11].
The convolutional layer makes networks more efficient to train and generalize better than
networks with fully connected layers. Units in such a layer are organized in feature maps,
within which each unit is connected to patches in the feature maps of the previous layer, as
can be seen in Figure 7. Different feature maps uses different set of weights, but the weights
within a single feature map are shared. The design is influenced by the fact that groups
of values within an image are often highly correlated and local statistics are not bound to
specific image regions [10]. Enough convolutional layers, in combination with non-linear
activations and max pooling, make the use of image processing techniques for feature ex-
traction redundant.
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Figure 7: The convolutional layer maps each patch of features in a network layer (blue) to
a single feature in the next layer (green).

[12] implement a relatively shallow CNN architecture which includes three convolutional
layers, three max pooling layers followed by three fully connected layers. The authors la-
beled more than 20.000 images of normal rails, joints and squats in varying severity and
trained the network in a supervised manner to classify each image correctly. The network is
able to automatically extract features from the raw data. An interesting observation by the
authors is that the last convolutional layer of their model produces output similar to what
Gabor filters would do. [13] propose the use of the SegNet architecture to segment defects in
images of rail surfaces. SegNet is a CNN architecture with 59 layers up- and down-sampling
convolutional layers. Their implementation is trained on 120 images and shows very good
results. However, testing was performed on only 13 images, which were also accurately seg-
mented with a simple threshold. [14] implement multiple deep CNN architectures for object
detection of rail surface defects. The feature extraction is performed with the well-known
MobileNetV2 and MobileNetV3 CNNs. The design of detection layers with multi-scale fea-
ture maps is inspired by YOLOv3. The experimental results show that the proposed models
can detect and locate the rail surface defects in real time and achieve high detection accuracy.

However, all these CNN architectures are trained in a supervised learning setting. As dis-
cussed in Section 3.1, this is actually undesirable for defect detection because defect data
is often imbalanced and incomplete. Interestingly, [12] make a final remark about this in
their research: ”In the current context, detection and classification of all types of rail defects
is often carried out while spending much time and cost. With this in mind, exploring a
deep learning approach that would be general enough to be used for automatic detection of
other types of rail defects is our immediate future work of interest. In particular, we will
explore the use of auto-encoders and other deep networks for this purpose”. They refer to
a semi-supervised deep learning approach, which exclusively uses undamaged rail surfaces
to model normality and detect everything that deviates from this. To our knowledge, this
approach has never been applied for rail defect detection.

3.3 Semi-supervised defect detection with deep learning

This section discusses the topic of semi-supervised defect detection with deep convolutional
architectures. The techniques are specifically designed for image data and often applicable
for defect localization as well. As mentioned, these techniques have never been applied to
rail surface defects in literature.

Historically, most proposed semi-supervised techniques in literature are applied on non-
defect image classification datasets such as MNIST [15] and CIFAR10 [16] of which one
arbitrary image class is than relabelled as the anomalous class. The use of these datasets is
motivated by a previously long lasting absence of publicly available datasets with labelled
industrial defects. However, as the classes within MNIST and CIFAR10 are structurally very
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different, it is unclear if the developed methods generalize well to defect detection. Fortu-
nately, the first public multi-object and multi-defect dataset with real world applications was
released in 2019: the MVTec AD dataset by [17]. This dataset contains over 5000 images of
different objects and textured surfaces with more than 70 different types of defects, ranging
from scratches to dents to contamination. An example of the classes is shown in Figure 8.
Especially the textured surface classes in the data are comparable to rail surface defect data.

Figure 8: The image categories in the MVTec AD dataset contain normal samples (top),
defective samples (middle) and segmentations (bottom).

The semi-supervised methods, which will be discussed, fall into two distinct categories. The
first category covers generative models which are trained from scratch and detect defects
on the basis of image reconstruction. The second category represents models which detect
defects based on the feature representations extracted by pre-trained classification networks.

3.3.1 Reconstruction-based methods

The most intuitive semi-supervised approach for visual anomaly detection and localization
is based on image reconstruction. This is typically performed with unsupervised learning
models, such as autoencoders and generative adversarial networks, which are trained from
scratch to reconstruct only normal image samples. The network learns the explicit under-
lying distribution of normal data as its weights are adapted to only output reconstructions
which are similar to the normal image samples. The assumptions is that such network will
afterwards struggle to reconstruct anomalous samples, specifically the image area deviating
from normality. The reconstruction error of normal images will be small, while that of ab-
normal images will be large. The aggregate reconstruction error indicates the abnormality
of the entire image and can be applied for detection. The pixel-wise reconstruction errors
between will result in a residual map showing the location of abnormal areas in the image
and is applied for localization.

Autoencoders. The Autoencoder (AE) architecture consists of an encoder part and a
decoder part and is an unsupervised method to learn the identity mapping of an input. The
encoder encodes the input to a latent space representation with a reduced number of dimen-
sions, which will only retain non-redundant information. Therefore, the latent space can be
seen as an approximation of the underlying distribution of the training data. After encoding,
the decoder attempts to build a representation of the original input from this latent space.
Traditionally, it was used for feature learning and dimensionality reduction [18], but [19]
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were the first to apply it for anomaly detection on high-dimensional data. Nowadays, the
Convolutional Autoencoder (CAE), with convolutions in the encoder and transposed con-
volutions in the decoder, is commonly used as a benchmark for visual anomaly detection [17].

Research tried to complement the CAE architecture in various ways. [20] introduced MemAE
as a solution to the observation that AE are sometimes able to reproduce anomalous sam-
ples as well. The MemAE uses a memory module to save the latent space representations
of normal training samples. Given an input during inference, it selects the normal latent
representation which is most similar to the encoding. [21] apply multiple CAEs at different
Gaussian pyramid levels while adding salt and pepper noise to the input during training to
improve robustness. The reconstruction residual maps at each level are afterwards synthe-
sised to form a final anomaly localization map.

Variational autoencoders. The Variational Autoencoder (VAE) is an adaptation of the
AE enabling control over the latent space. The VAE encodes input to a latent space which
is represented as a distribution instead of a point. The decoder samples a random point
from this distribution to recreate an image similar to the input. The VAE is considered as
a probabilistic generative model as the point sampled from the latent space influences the
generated output. [22] and [23] applied VAEs for visual anomaly detection, but both do not
report significant improvements over using standard AEs.

Generative adversarial networks. The Generative Adversarial Network (GAN) is a
neural network architecture introduced by [24]. The network is comprised of two separate
neural networks, namely a generator and a discriminator. As originally proposed, the gen-
erator attempts to generate samples from a randomly initialized latent space distribution,
similar to the decoder of the VAE. The idea is that the generator tries to create realistic
data while the discriminator has to distinguish what data samples are real and fake. Dur-
ing training they improve by penalizing each other in a zero-sum game, where one’s loss is
the others gain. This adversarial training component allows the GAN to capture a more
accurate representation of the distribution underlying the input data and to generate more
realistic samples than a VAE. One disadvantage of the GANs is the risk of mode collapse.
This is when the model gets stuck in a local optimum during the early phase of training. The
generator has than found a realistic output which it keeps regenerating as the discriminator
is not able to distinguish from the real samples yet.

Figure 9: Architectures of AnoGAN (A), BiGAN (B) and GANomaly (C)

Researches have implemented GANs or applied the adversarial training component for vi-
sual anomaly detection in various forms. One of the first to use a Convolutional GAN
(CGAN) for this cause were [25] with their AnoGAN model. Training happens in two stage.
First, the generator learns to map the latent space distribution to the normal image sam-
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ples and the discriminator learns to distinguish the samples from real samples. Afterwards,
they make an inverse mapping of the generator, such that given a new image, a point in
latent space can be selected for generation of a similar image. During inference, images
are scored with a combined generator and discriminator loss. The authors show a signifi-
cant improvement over a standard CAE. Later, [26] investigate the use of BiGAN model,
which simultaneously learns an encoder to map input samples to latent space, along with
a generator and discriminator. This avoids the computationally expensive inverse mapping
step of AnoGAN. BiGAN performs slightly better than AnoGAN, but is mostly much more
efficient. Then, [27] propose GANomaly, an adversarially trained encoder-decoder-encoder
architecture. GANomaly jointly learns representations for both image and latent space with
adversarial, contextual and encoder losses. During testing, scoring happens by the difference
between the the encoding of the input sample and the encoding of the generated output.
Overall, the model performs better than AnoGAN and BiGAN, while also showing faster
inference times.

Loss functions. Reconstruction models are commonly trained with a per-pixel loss func-
tions to measure the error between input and reconstruction image in terms of independent
pixel brightness. L2-loss is most frequently used and implements the mean squared error
(MSE) [17] as a loss function. Also L1-loss, implementing mean absolute error (MAE), is
used in some cases and can lead to less blurry image reconstruction as shown by [28]. Both
loss functions however share the incorrect assumption that nearby pixels or image regions
are completely independent of each other. As a solution for image comparison, [29] propose
Structural Similarity (SSIM), which is a perceptual difference measure more closely aligned
with human perception of image quality. Unlike the per-pixel loss functions, SSIM takes
into account differences in local contrast en structure, instead of only brightness. Both [30]
and [23] adapt SSIM for application as a loss function for model training and conclude that
it improves reconstruction and segmentation ability over per-pixel loss functions. The au-
thors do nevertheless point out that SSIM is a parametric function and only applicable on
gray-scale images.

Skip connections. Based on GANomaly, [31] propose the Skip-GANomaly model, which
adapted with skip-connections similar to U-Net [32]. Skip-connections allow down-sampling
layers of the encoder to be concatenated with the corresponding up-sampling layers of the
decoder. The use of skip-connections provides the advantage of direct information transfer
between the layers. This preserves local information of initial layers and global informa-
tion of later layers and therefore yields sharper reconstructions. One shown disadvantage
is however that the Skip-GANomaly model sometimes reconstruct anomalies while being
trained on normal samples only. Nevertheless, detection performance is improved over the
standard GANomaly architecture. Skip-connections are also applied by [33] to improve de-
tection and localization performance of a standard CAE. Unlike U-Net, the skip-connections
perform addition of layers instead of concatenation. Furthermore, the authors propose to
randomly add staining noise to images during training. It shows that the CAE with only
skip-connections performs worse than the standard CAE as anomalies are unintentionally
reconstructed. This behaviour is however eliminated by adding noise to training images as
the skip-connected denoising CAE is the best performer in their study.

3.3.2 Feature representation-based methods

The second semi-supervised anomaly detection and localization approach employs hand-
crafted modeling techniques on top of the feature representations extracted from normal
images. The extraction of these representations, also known as embeddings, typically hap-
pens with CNNs which are trained for classification of natural images from ImageNet [34].
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Interestingly, these pre-trained networks are able to extract meaningful representations from
entirely different images as well and can thus be used to model normal behaviour. This
section discusses four methods which use this approach and currently belong to the state-
of-the-art, namely MahalanobisAD [35], PaDiM [1], SPADE [36] and PatchCore [2].

Multivariate Gaussian. [35] propose MahalnobisAD as a framework for defect detection
exclusively. The techniques models normality by fitting a multivariate Gaussian (MVG)
distribution on the feature representations of normal image samples. These features are
extracted with an EfficientNet [37], which is trained on ImageNet. Their technique subse-
quently uses Mahalanobis distance between the embedding of every network layer and the
modeled MVG to score the abnormality of test samples. Furthermore, by applying Prin-
cipal Component Analysis (PCA) the authors find that the feature components containing
little variance in normal data are the ones crucial for discriminating normal and anomalous
samples. Only using the high variance components actually reduces performance.

[1] propose the Patch Distribution Modeling (PaDiM) approach on Resnet-18 [38] and Wide-
ResNet-50. Broadly speaking, PaDiM is similar to MahalanobisAD as it employs MVG
distribution to describe the normal feature representations and scores samples with the Ma-
halanobis distance. However, PaDiM applies these procedures on individual image patches
instead of the entire image, making it applicable for defect localization as well. During
training, the feature representations of each image patch are modeled as MVG distribu-
tions. During testing, each patch of a given sample is scored individually with the Ma-
halanobis distance between its feature representation and the learned distribution at that
patch location. All scored patches form a localization map of which the maximum patch
value acts as the anomaly score of the entire image. As the generated patch representations
may carry redundant information, the authors furthermore apply dimensionality reduction
before concatenation to improve inference speed. It turns out that random dimensionality
reduction outperforms PCA while being more efficient. Overall, PaDiM shows an excellent
combination of detection performance and inference speed.

Memory bank and K-Nearest Neighbours. The Sub-Image Pyramid Anomaly De-
tection (SPADE) model by [36] performs both detection and localization with feature rep-
resentation of a pre-trained Wide-ResNet-50 [39]. SPADE extracts and stores the feature
representations of the normal training samples at the last layer of this network. Given
the representation of an image sample during testing, it runs K-Nearest Neighbor (KNN)
algorithm to retrieve the K closest normal image representations from the training set. Ab-
normality is scored by the average distance between the test sample representation and the
found K neares representations. Pixel-wise abnormality for localization is computed with
the similar multi-image approach and matching of pixel feature pyramids. SPADE is a well
performing method for detection and localization, but its usefulness is greatly affected by the
KNN algorithm, which inference complexity scales linearly with the size of the training data.

One of the most recent additions to the feature represenation-based approach is PatchCore
by [2], which uses specific components of both SPADE and PaDiM. Similar to PaDiM,
PatchCore divides images into patches of which feature representations are extracted from
a Wide-ResNet-50 network. The idea of PatchCore is that if a single patch is anomalous the
whole image can be classified as anomalous. During training, normal patch representations
are added to a memory bank, similar to SPADE. The complexity of the subsequent KNN
is however reduced by coreset-subsampling of the memory bank, which approximates its
structure while reducing its size. During testing, an image is scored by the maximum distance
between its patch representations and the nearest neighbor normal patch representations in
the memory bank. The localization map is created by realigning the patch anomaly scores
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to their respective spatial location. In summary, PatchCore maximizes nominal information
at test time, reduces the bias towards ImageNet and retains high inference speeds.

3.3.3 Comparison on MVTecAD

The performance on the MVTec AD dataset of several of the discussed methods can be found
in the research by [33], [1] and [2]. This data is shown in Tables 1 and 2. It is observable that
within the class of reconstruction models, SSIM-loss and the combined skip-connection and
staining solution improves performance over a standard CAE. The GANomaly model with
its adversarial training architecture also shows a slight performance improvement. However,
the discussed feature representation-based models all show much further improved perfor-
mance. Especially, PaDiM and PatchCore belong to the state-of-the-art in terms of defect
detection and localization. To our knowledge, the AUC scores of 0.991 and 0.981 achieved
by the PatchCore method are currently the highest recorded on the MVTec AD data.

Method L2-AE L2-AESc L2-AESc + Stain SSIM-AE VAE GANomaly
Detection 74,0 62,0 89,0 - - 76,2

Localization 74,0 63,0 81,0 79,0 67,4 -

Table 1: Detection and localization performance measure in AUROC(%) of several discussed
reconstruction-based techniques over all classes of the MVTec AD dataset.

Method MahalanobisAD SPADE PaDiM PatchCore
Detection 95,2 85,5 95,3 99,1

Localization - 96,5 97,5 98,1

Table 2: Detection and localization performance measure in AUROC(%) of several discussed
feature representation-based techniques over all classes of the MVTec AD dataset.

22



4 Data

This chapter discusses the collection, labeling, processing and dataset splitting of the IRJ
images.

4.1 Collection

In order to train a model to detect damages on IRJs, image data needs to be collected.
As mentioned previously, image data is widely available since ProRail deploys video inspec-
tion of the railway network for maintenance purposes. Every PGO area of the network is
inspected twice a year. As with all maintenance tasks, ProRail has outsourced the video
inspection to two independent contractors named [REDACTED], who both operate their
own video inspection train. The trains are equipped with cameras which generate video
data from 10 different angles. In Figure 10 it can be seen that eight cameras are pointed
directly towards the track and two at the surrounding environment.

Figure 10: Camera angles of the video inspection train

The data of particular interest for this thesis is generated by the two cameras pointed per-
pendicular to the running surface of the rail tracks (camera 2 and 3). One is pointed at the
left rails and the other is pointed at the right rails. After recording, the gray-scale video data
of both cameras is split into non-overlapping frames. The use of these camera angles lim-
its this study to the detection of IRJ and surrounding rail defects as described in Section 2.3.

The imagery provided by the two contractors is not perfectly identical as shown in Figure
11. Firstly, the size of the frames is different as [REDACTED] images have a resolution of
1024x851 pixels, while [REDACTED] images are a smaller 840x850 pixels. Secondly, the
contractors presumably use different camera equipment or settings, because [REDACTED]
frames have higher contrast and detail than the ones from [REDACTED]. Despite their dif-
ferences, this study has chosen to utilize both contractors as each PGO area is only captured
by one of them. Therefore, it would be more beneficial if our detection method is able to
handle both type of images.

The Dutch railway network contains approximately 44.000 IRJs. Fortunately, the AMI
Renewal department at ProRail developed a computer vision algorithm to distinguish IRJ
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(a) [REDACTED] (1024x851) (b) [REDACTED] (840x850)

Figure 11: Raw image samples from both video inspection train contractors

frames from all other rail track frames. The used data consists of 7154 images of which the
distribution between [REDACTED] and [REDACTED] is half-and-half.

4.2 Labelling

The collected images of IRJs are investigated to determine which ones are normal and which
ones are damaged. The author was trained by a domain expert on how to recognize each
type of IRJ and surrounding rail defect as described in Section 2.3. After training, the
images could be classified individually. This was done as an multi-class labelling project in
Microsoft Azure ML Studio. Given the collected data and types of defects, the following
initial labels were chosen:

• Functional: IRJ containing no visible damage.

• Constriction: IRJ of which visible end post thickness is less than 3mm.

• Play: IRJ of which the end post and adjacent rail head are separated by a gap of at
least 1mm.

• Crumbled: IRJ of which the end post is fractured, chipped or missing.

• Spark erosion: IRJ containing spark erosion on the adjacent rails. Spark erosion
regions can be recognized as black areas with white spots directly adjacent to the end
post.

• Squat: IRJ containing a squat on the surrounding rail surface. Squats are recognized
as smooth transitions in reflection but lack clear boundaries.

• Uncertain: IRJ of which the condition is uncertain for various reasons. The image
could be poorly illuminated, the condition between normal and very slightly defective
or the end post is on the extreme edge of the image such that surrounding rail is not
entirely visible. Furthermore, it is impossible to accurately label damages such as IRJ
indentation from top-down imagery.

• Other: Either an uninterrupted rail head, regular joint or rail switch.
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The images classified as Constriction, Spark erosion, Play, Squat and Crumbled will be
merged under the Defect label. Images classified as Uncertain or Other will not be included
in the datasets. The use of more specific sub-labeling for the defective IRJs gives the op-
portunity to analyze results per type of defect in a later stage. This could provide insights
into how capable our detection model was in retrieving the different defects. It is already
evident that spark erosion is most common defect and end post play the least. Examples of
labeled images are shown in Figure 12.

Label Number Sub-label Number
Functional 3079 (72,4%) Functional 3079

Defect 1173 (27,6%)

Constriction 372
Spark erosion 466

Play 93
Squat 143

Crumbled 99

- -
Uncertain 1507
Other 1395

Table 3: Results of manual data classification

In Table 3 it can be observed that 3079 images are classified as Functional and 1173 images
as Defect. The ratio of normal and defective IRJs is therefore 72,4% against 27,6%, showing
a clear class imbalance. This exact imbalance will be used for dataset splitting in Section 4.4.

Data labeling was time-consuming, but even more so rather difficult as evidenced by the
relatively high number of Uncertain classifications. The is due to factors such as the vary-
ing illuminations and reflections of the rails, the differences between [REDACTED] and
[REDACTED] images and the subtlety of some defects. Despite extensive documentation
on defects, it regularly happens that even domain experts at ProRail disagree about the
classification of certain images. In some cases, a clear classification simply does not exist.
Some further comments on data labelling:

• In case an image is labeled as Defect, the sub-label does only highlight the type of
defect and not the the severity of the defect.

• When an image shows multiple defects, the sub-label indicates the most severe defect,
although this has no influence on the number of defective samples.

• Vertical indentation of IRJs is described in Section 2.3 and on second thought also seen
in the data, but not explicitly labeled. For most instances, the camera angle makes
it impossible to decide if the depth of the indentation is more than 0.5mm. These
images are labeled with the Uncertain tag. Severe indentation is often accompanied
by constriction of the end post or confused with squats, so indirectly represented.

• Slight corrugation is described and occasionally seen in the data, but not explicitly
labeled. In some cases, corrugation is confused with squats.

• Head checks and studs are described but not observed in the data.
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(a) Functional (b) Constriction

(c) Spark erosion (d) Play

(e) Squat (f) Crumbled

Figure 12: Examples of labeled images of functional and defective IRJs
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4.3 Processing

The labeled images are cropped to reduce unwanted noise which could affect the detection
performance of the semi-supervised learning methods. This study opts for two varying cut-
outs to investigate what is most practical and compatible with our approach. The first
cut-out extracts the complete rail surface from the image. The second cut-out reduces this
area further to merely the IRJ end post region. The images are also slightly enhanced after
cropping.

4.3.1 Rail surface extraction

Rail surface extraction is done to prevent the environment of the rail to influence model
training and prediction. Although the environment is typically not illuminated, some im-
ages clearly show non-relevant IRJ components, such as the joint bars and joint bolts.

To obtain accurate rail cut-out, histogram-based extraction methods of [6] and [5] were
implemented but unfortunately were not reliable enough. The non-relevant IRJ components,
which should be cut away, trick the methods to crop wider than the actual rail surface. The
varying reflections and shadows also caused the methods to often crop narrower than the rail
surface. Therefore, rail extraction was performed passively by cropping each image with an
identically sized cut-out. The height of this cut-out is 850 pixels similar to the height of the
[REDACTED] frames as these are the smallest. The width of the cut-out is estimated with
an analysis of the average gray scale value per pixel column and turns out to be roughly 420
pixels. [REDACTED] images are cropped from pixel column 341 to 761 and [REDACTED]
imagery from 231 to 651. This simple approach works better than the histogram-based
extraction but is unfortunately also not perfect. Even though the rail surface is typically
centered in the frame, there is also a slight offset present. As a result, after cropping, some
cut-outs may still contain a small amount of non-relevant rail environment. Examples of
rail extraction are shown in Figure 13.

(a) [REDACTED] (b) [REDACTED]

Figure 13: A fixed-sized cut-out is used to extract the rail surface and remove the impact
of non-relevant IRJ components.

4.3.2 End post extraction

As seen in Figure 12 and 13, the height of the IRJ end post is inconsistent across individual
images. This could lead to the semi-supervised method not being able to model the end
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post as normality, resulting in many false positive classifications during prediction. To en-
sure consistency across individual images, the region around the IRJ end post is extracted.
By doing so, the end post is always centrally located, making the images more similar to
one another than after rail extraction.

In order to accurately crop the IRJ end post region, its vertical position within an image
must be determined. One way to accomplish this is by using a ridge detector filter. This type
of computer vision method is effective in capturing the interior of elongated image objects,
such as IRJ end posts in this case. Our proposed method for end post extraction therefore
utilizes the Frangi ridge detector filter, proposed by [40]. This filter effectively highlights
the location of the IRJ end post in the image, as shown in Figure 14a. Since the rail is
typically centered in the image, it is assumed that the highlighted ridge will be present on
the vertical center axis of the image. The highest pixel value on this axis is then assumed to
be the location of the IRJ end post. In both [REDACTED] and [REDACTED] images, the
region around the found image coordinates is cropped with a cut-out of 350 pixels in height
and width, so that the end post is centered in the frame.

This procedure is not possible for 1609 images as the vertical location of the end post varies,
and the fixed cut-out is not able to accommodate the end post centrally in frame. This
highlights a significant drawback of end post cropping compared to rail cropping, which
allows all images to be used. Additionally, 160 images are manually deleted as the Frangi
filter sometimes highlighted incorrect ridges, resulting in unsuccessful extraction. Ultimately,
the end post extraction process results in 2483 cropped images, as shown in Figure 14b.

(a) Frangi filter (b) End post crop

Figure 14: A fixed-sized cut-out is used to crop the region with the highest activation from
the Frangi ridge detector to extract the end post.

4.3.3 Other

The capability of deep learning methods to extract features from raw data makes image
enhancement largely unnecessary. Only two operations are performed. First, the rail ex-
tracted images are padded left and right to make the image dimension square. Second, all
images are resized to a resolution of 256x256 pixels.

4.4 Datasets

The rail extracted images and end post extracted images will be split into independent
datasets, respectively the rail dataset and the end post dataset. Both datasets will be

28



split into training, calibration and test sets. As mentioned, this study will research semi-
supervised detection methods, which is why the training sets will contain exclusively IRJ
images which are labeled Functional. The calibration and test sets contain IRJ images of
both labels and are respectively used to obtain a suitable anomaly threshold and to evaluate
the final performance of the methodology. These sets have a realistic class proportion of
roughly 72% Functional and 28% Defect to ensures that the methodology can be evaluated
to the standards of real-world implementation. Tables 4 and 5 respectively show the distri-
bution of samples over the rail dataset and end post dataset.

Label Number Train Calibration Test
Functional 3079 (72,4%) 1907 586 586
Defect 1173 (27,6%) - 228 228

Table 4: The rail cropped images are divided into a training set with only functional IRJs
and a calibration and test set with both functional and defective IRJs, reflecting the actual
class distribution.

Label Number Train Calibration Test
Functional 1766 (72,1%) 1049 358 358
Defect 717 (27,9%) - 139 139

Table 5: The end post cropped images are divided similarly to the rail cropped images.

As in both cases many functional IRJ images are reserved for the training sets, the realistic
distribution of the calibration and test sets has to be created by randomly under-sampling
the Defect class. This procedure is performed with 42 as the seed. It is verified that after
under-sampling, both calibration and test sets contain every type of defect.
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5 Methodology

This chapter formulates our semi-supervised defect detection approach. Then it discusses the
different reconstruction based methods, feature representation-based methods and scoring
functions to implement this approach. Lastly, it describes the evaluation metrics to measure
performance.

5.1 Definition: semi-supervised defect detection

Define the following data sets:

• Training set Dtrain = (x1, y1), . . . , (xN , yN ) containing N normal samples, where yi
= 0 denotes the normal class.

• Calibration set Dcal = {(x1, y1), ..., (xK , yK)} of K normal and defective samples
where yiϵ[0, 1] denotes a normal or defective sample respectively.

• Test set Dtest = {(x1, y1), ..., (xK , yK)} of K normal and defective samples where
yiϵ[0, 1] denotes the class.

where N > K. The samples of each data set are unique and the class distributions within
Dcal and Dtest is true to reality.

An image sample x is a matrix of RH×W features (also known as pixels), where Rϵ[0, 255]
denotes the range of gray-scale values and H and W are the height and width of the matrix.
Due to the spatial structure of the image samples, matrix notation is applied for clarity. A
bold character is used to denote a sample with a certain spatial structure, while a regular
character is used to denote a single value within a sample. Furthermore, when iterating
over image samples, the subscript in xi denotes the image number. When iterating over the
pixels of an image sample, the subscript in xij denotes the row and column of the pixel.
However, when iterating simultaneously over image samples and the pixels within, the image
designation becomes a superscript. Thus xkij is the pixel at location (i, j) in sample k. The
same notation holds for other spatial structures such as image patches p and latent space
representations z.

The first goal is to learn the underlying normal data distribution of image sample within
Dtrain with a model f , such that anomalous samples of Dcal and Dtest can be distinguished
from normal samples. Model f should be able to create an anomaly localization map M(x)
showing the local abnormality of sample x in the original image space. An anomaly scor-
ing function A(x) should transform map M(x) into a score denoting the abnormality of
sample x during calibration or testing. Given the fact that model f is adapted to exclu-
sively normal image samples, the anomaly score is assumed to be higher for defective images.

The second goal is to find a cut-off threshold τ which separates normal and defective images
on their computed anomaly score. The optimal threshold value is determined by classifying
normal and defective samples of Dcal at multiple thresholds, such that prediction ŷ = 0 if
A(x) < τ and ŷ = 1 if A(x) ≥ τ . Classification performance is quantified by a given metric
c, which compares predictions {ŷ1, ..., ŷK} with the respective ground truths {y1, ..., yK}.
The threshold τ maximizing metric c is selected for the combination of model f and score
function A(x).

During testing, the combination of model f , anomaly score function A(x) and threshold τ
are applied on samples of Dtest to distinguish normal and defective samples. The results for
various combinations of f an A(x) are evaluated and compared to obtain conclusions about
their applicability for IRJ defect detection.
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5.2 Reconstruction-based methods

This section describes the following reconstruction-based methods for implementation of
model f , namely L2-AE, SSIM-AE and Adversarial SSIM-AE. Each method is able to
produce a defect localization map M(x) of input image x.

5.2.1 L2-AE

Our first and most basic reconstruction-based localization method is defined as L2-AE. This
CAE network is trained to reconstruct normal IRJs by minimizing the Mean Squared Error
(MSE) between input and reconstruction with L2-loss. As discussed in Section 3.3, this
method is often applied as a benchmark for defect detection and localization.

The architecture consists of an encoder network E and a decoder network D. In multiple
blocks of convolutional layers, batch normalization and non-linear activation, the encoder
E encodes input images x to latent space representations z = G(x). The number of fea-
tures in z is strongly reduced in comparison to the original input x, such that x̂ can not
be a one-to-one mapping of x. From this reduced representation z the decoder D creates
reconstructions x̂ = D(z) similar to the original input x. The decoder mirrors the encoder
using transposed convolutional layers instead of standard convolutional layers for trainable
upsampling.

Figure 15: Architecture of the L2-AE and SSIM-AE models

During the training phase, the weights of the convolutional layers in the L2-AE are adapted
such that normal samples of Dtrain are reconstructed with the smallest possible error. Low
reconstruction errors imply that z will only contain the most descriptive features for normal
images. The L2-AE is trained using a L2-loss function, which measures the reconstruction
error between the samples x and reconstructions x̂ = D(E(x)) as follows:

L2(x, x̂) =

W∑
i=1

H∑
j=1

(xij − x̂ij)
2 (1)

where W and H are the respective width and height in pixels. As discussed, L2-loss is a
per-pixel loss function which assumes pixel values are independent of each other. During
the calibration and testing phases, localization map M(x) is constructed from the pixel-level
residuals between input x and reconstruction x̂:

M(xij) = (xij − x̂ij)
2 for 1 ≤ i ≤ W, 1 ≤ j ≤ H (2)

Large pixel-wise differences in map M(x) indicate the presence of defects. The map is
translated into an anomaly score A(x) by using the anomaly scoring functions discussed in
Section 5.4.

31



5.2.2 SSIM-AE

The second reconstruction-based localization method we propose is called SSIM-AE. This
model uses the same network architecture as the L2-AE model, but it is trained with a
reconstruction loss function based on Structural Similarity (SSIM) instead of MSE. As men-
tioned in Section 3.3, SSIM was introduced by [29] as a more perceptually based image
similarity function, which considers dependencies between local pixel regions of the input
and reconstructed image. The SSIM-loss is anticipated to enhance the reconstruction of nor-
mal images and negatively impact the reconstruction of defective areas afterwards, thereby
improving detection performance.

Figure 16: Responsibilities of the luminance, contrast and structure terms deployed by SSIM

According to [29], the SSIM index defines a distance measure which is best applied locally
by comparing K ×K patches p and q from two distinct images:

SSIM(p, q) = l(p, q)αc(p, q)βs(p, q)γ (3)

where α, β, γ are user-defined weights. The luminance formula l(p, q) compares the mean
patch intensities µp and µq, the contrast formula c(p, q) compares the variances of the
patches σ2

p and σ2
q . Lastly, the structure formula s(p, q) considers the covariance σpq of the

two patches. When we consider α = β = γ = 1 for simplicity, the SSIM index between
patches p and q is reduced to its common form:

SSIM(p, q) =
(2µpµq + c1)(2σpq + c2)

(µ2
pµ

2
q + c1)(σ2

pσ
2
q + c2)

(4)

in which terms c1 and c2 ensure numerical stability and are typically set to 0.01 and 0.03
respectively. The value of SSIM(p, q) lies between −1 and +1, where a value of 1 signifies
that p and q are exactly the same, a value of −1 represents complete dissimilarity, and a
value of 0 indicates no similarity. Figure 16 shows how the luminance, contrast and structure
terms in SSIM react to different patches p and q. In each scenario MSE would generate a
value of 0.25 according to [23].

The SSIM between an image x and its reconstruction x̂ is calculated by moving a sliding
window of size K ×K across both images and computing the SSIM at each location. The
SSIM index, as defined in Equation 4, is differentiable, allowing it to be used as a loss
function LSSIM to train the SSIM-AE architecture [23]. To use SSIM as a loss function, it
must be subtracted from 1 since LSSIM = 0 is considered a perfect reconstruction. Patches
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created by the sliding window on the input image x and the reconstruction x̂ are denoted
as p and p̂, respectively.

LSSIM (x, x̂) = 1− 1

WH

W∑
i=1

H∑
j=1

SSIM(pij , p̂ij)) (5)

whereW andH are respectively width and height of input x. During calibration and testing,
a localization mapM(x) is created by computing the SSIM of corresponding patches between
the input and reconstruction image, without aggregating the results:

M(xij) = 1− SSIM(pij , p̂ij) (6)

The outputted map is translated into an anomaly score A(x) by using the anomaly scoring
functions discussed in Section 5.4.

5.2.3 Adversarial SSIM-AE

Our third reconstruction-based localization method is the Adversarial SSIM-AE. The archi-
tecture is essentially similar to SSIM-AE, but during training accompanied by a discrimi-
nator network Edisc, which task it is to distinguish input images x from reconstructions x̂.
As discussed in Section 3.3, the adversarial training component is anticipated to enhance
the reconstruction of normal images. This should negatively impact the networks ability to
reconstruct defects and thus improve detection performance.

Figure 17: Architecture of the Adversarial SSIM-AE model

The Adversarial SSIM-AE model is trained using a combination of three loss functions
aimed at accurately reconstructing normal image samples xtrain. First, the reconstruction
loss Lrec penalizes the distance between the input image x and output x̂ = D(E(x), identical
to SSIM-AE:

Lrec(x, x̂) = 1− 1

WH

W∑
i=1

H∑
i=1

SSIM(pij , p̂ij)) (7)

where W and H are respectively the width and height of input x. Second, the adversarial
loss Ladv is utilized during training to further maximize the normal image reconstruction
capability, while discriminator Edisc learns to classify original from reconstructed samples.
The output of Edisc is a probability score that indicates if the provided image is in fact a
real input image and not a reconstruction. The objective is to minimize Ladv for SSIM-AE
part of the architecture and to maximize it for Edisc:
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Ladv(x, x̂) = log[Edisc(x)] + log[1− Edisc(x̂)] (8)

Third, the latent loss Llat is added with the intention to encode latent representations for
input image x and reconstruction x̂ as similar as possible. According to [31] this ensures
that the model becomes capable of producing contextually sound latent representation for
normal samples. The contextual loss is measured before the last layer of the discriminator
network Edisc. Define this part of Edisc as Eshort such that the latent representations are
z = Eshort(x) and ẑ = Eshort(x̂):

Lcon(x, x̂) =

N∑
i=1

(zi − ẑi))
2 (9)

where N is the number of features in the latent space representations. The overall loss
function for training the Adversarial SSIM-AE is created by the weighted sum of the three
previously defined loss functions:

L = ωrecLrec + ωadvLadv + ωlatLlat (10)

where ωrec, ωadv and ωlat control the impact of each individual loss. During the calibration
and testing phases, only the SSIM-AE part of the network is regarded and localization map
M(x) is constructed in similar fashion:

M(xij) = 1− SSIM(pij , p̂ij) (11)

The map is translated into an anomaly score A(x) by using the anomaly scoring functions
discussed in Section 5.4.

5.3 Feature representation-based methods

This section outlines the implementation of two feature representation-based methods for
model f , PaDiM-R18 and PaDiM-WR50. These methods differ in their use of pre-trained
network backbones, with PaDiM-R18 using ResNet-18 and PaDiM-WR50 usingWide ResNet-
50. Both methods are capable of generating a defect localization map M(x) from an input
image x, which is a key feature of the PaDiM framework. As described in Section 3.3, the
PaDiM framework is one of the best performing methods on MVTec AD and more efficient
than other models as it does not rely on the K-Nearest Neighbor (KNN) algorithm.

5.3.1 PaDiM

The Patch Distribution Modelling (PaDiM) framework was introduced by [1]. It uses pre-
trained Convolutional Neural Networks (CNNs) to extract features from normal image
patches and model their distribution using multivariate Gaussians (MVGs). As discussed in
Section 3.3, the pre-trained CNNs are trained on ImageNet, which includes images that are
intrinsically different from the IRJ images. However, the CNNs can still generate meaningful
feature representations that be used to model normality and afterwards distinguish defective
IRJs. The overall structure of the PaDiM framework is depicted in Figure 18.

Feature extraction and concatenation PaDiM extracts feature representations from
the first three layers of the CNN to model multivariate Gaussian distributions. Each patch
of the input image x is associated with a corresponding vector in these representations as
shown in Figure 18. The activation vectors from the different layers are concatenated to
contain both local and global context, resulting in a lower-dimensional representation for
nearby pixels in the input image. As a result, the input image x can be divided into a
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Figure 18: The PaDiM framework models the embedding vectors of image patches as pa-
rameters of multivariate Gaussian distributions during training.

grid of patches, each associated with a representation vector zij , where i and j indicate the
location of the patch in the input image.

Dimensionality reduction The authors of [1] propose to randomly reduce the number
of dimensions in the patch representation vectors to d to eliminate the redundancy of in-
formation. This random dimensionality reduction method is more efficient than Principal
Component Analysis (PCA), while the performance of the model is still maintained.

Distribution modeling During training, normality is modeled by computing sets of rep-
resentation vectors for similar patch positions in each sample of Dtrain. The set at patch
location (i, j) is Zij = {zk

ij , kϵ[1, N ]} where N is the number of training samples. Each set
is assumed to be generate by a MVG distribution N (µij ,Σij) where µij is the sample mean
of Zij and where Σij is the sample covariance:

Σij =
1

N − 1

N∑
k=1

(zk
ij − µk

ij)(z
k
ij − µk

ij)
T + ϵI (12)

in which the term ϵI ensures that the sammple covariance is full rank and invertible. After
µij and Σij are computed for each set Zij , we end up with a matrix of Gaussian parameters
as shown in Figure 18.

Mahalanobis distance During calibration and testing, the abnormality of each image
patch is scored with Mahalanobis distance to create localization map M(x). The scoring
metric expresses the distance between patch embedding zij and the modeled N (µij ,Σij) at
that position:

M(zij) =
√
(zij − µij)TΣ

−1
ij (zij − µij) (13)

The matrix M(z) is then resized to the resolution of the input image x using bilinear inter-
polation, resulting in the localization map M(x). Finally, the anomaly map is transformed
into an anomaly score A(x) through the use of the anomaly scoring functions outlined in
Section 5.4.
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5.4 Anomaly scoring

This section describes the anomaly scoring functions applied to transform localization map
Mx) into a anomaly score A(x), indicating the overall abnormality of image x. The com-
bination of each anomaly scoring function and localization method creates a multiple of
detection methods. We propose the following scoring functions: mean scoring (A1), stan-
dard deviation scoring (A2) and maximum patch scoring (A3).

5.4.1 Mean

Mean scoring (A1) returns the average value of the pixels in localization map Mx). This
function is the most straightforward way to score an image and assumes that defective IRJs
have large defective areas which strongly show up in an anomaly map. As a result, it may
struggle to identify smaller and less pronounced defects.

A1(x) =
1

W ×H

W∑
i=1

H∑
j=1

M(xij) (14)

5.4.2 Standard deviation

The standard deviation scoring (A2) calculates the spread of pixel values in the anomaly
map M(x). This scoring method is considered to be slightly better at handling inaccurate
anomaly maps than mean scoring. For instance, if the score map of a functional IRJ has
equally activated pixels, mean scoring would assign a high anomaly score due to the sub-
stantial brightness of each pixel in M(x). However, standard deviation scoring would assign
a low anomaly score as there is limited variation between pixel values.

A2(x) =

√√√√ 1

W ×H − 1

W∑
i=1

H∑
j=1

(M(xij)−A1(x))2 (15)

5.4.3 Maximum patch

Maximum patch scoring (A3) calculates the average of the highest scoring region of pixels
in the localization map M(x). This method involves setting a patch size K for the width
and height of the patch and a step size S for the sliding operation. Unlike mean and
standard deviation scoring, it assumes that the defect is concentrated in a specific region
of the localization map, which is supported by the fact that all labelled defects are clusters
of pixels. In comparison, mean and standard deviation scoring may generate high anomaly
scores if defects in an IRJ and surrounding rails are unrealistically spread out over a large
area. The formula for max patch scoring is defined as follows, with p being an KxK image
patch of x:

A3(x) = max(M(pi)1≤i≤(W
S −K+S)2) (16)

in which i is the patch number and W is the width of x assuming that it has a square
dimension. The patch size K is set to 64 pixels and step size S is 32 pixels for rail cropped
images and K is increased to 96 pixels for end post cropped images. The maximum patch
score is then determined by the maximum value of 49 patch averages for rail cropped images
and 36 patch averages for end post cropped images. The reason for using bigger patches for
end post crops is that the closer view of the IRJ allows defects to appear larger. The size of
these patches in comparison to the corresponding input images is visualized in Figure 19.
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(a) Rail cropped image (b) End post cropped image

Figure 19: The patch size of the A3 scoring function varies based on the dataset. The visu-
alization uses input images x to show the patch size, but in actual scoring, the localization
maps M(x) are used.

5.4.4 Normalization

The set of anomaly scores generated by each invidudal scoring function is defined as A =
{A(xi), 1 ≤ i ≤ N} and as a final step during calibration and testing, normalized to scale
within the range of [0,1]. This creates the set of normalized anomaly scores A′, which is
used to rank images from normal to more anomalous:

A′(x) =
A(x)−min(A)

max(A)−min(A)
(17)

5.5 Evaluation metrics

The aim of the binary classification task, as stated in Section 5.1, is to correctly predict the
class of unseen IRJ image samples x. The results of this task can be summarized using a
confusion matrix with the following categories:

• TP : the number of defective IRJs correctly classified as Defect

• FP : the number of functional IRJs wrongly classified as Defect

• TN : the number of functional IRJs correctly classified as Functional

• FN : the number of defective IRJs wrongly classified as Functional

Different evaluation metrics can be derived from these classification outcomes to assess
model performance in the calibration and test phases. However, since our data classes are
imbalanced, some metrics like accuracy are not suitable, as they would give misleading re-
sults. This is because accuracy measures the ratio of correct predictions over all predictions,
and simply classifying all samples as the majority class would result in high accuracy, even
though the minority class predictions are wrong. Hence, this study opts for the use of AUC
and F1-score, which are more appropriate for imbalanced data.

5.5.1 ROC curve and Area Under Curve

The Receiver Operating Characteristic (ROC) curve is a graph showing the performance of
the binary classifier for different thresholds. The curve is generated by plotting two metrics
on either axis, namely the true positive rate (TPR) and the false positive rate (FPR):
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TPR =
TP

TP + FN
(18)

FPR =
FP

FP + TN
(19)

The curve shows at what rate lowering of the threshold will lead to more positive classifica-
tions, increasing the number of true and false positives and vice versa.

The Area Under the Curve (AUC) aggregates the information in the ROC curve and provides
information about the classifier’s performance for all possible thresholds. The outcome,
which ranges between 0 and 1, can be seen as the degree to which the samples of the two
classes can be separated. AUC is less sensitive to data imbalance because it is invariant to
the threshold value. As our approach requires a threshold, the AUC score will only serve as
an indication of model performance during the calibration phase.

5.5.2 Precision, Recall and F1

Precision, recall and F1-score are metrics to evaluate binary classification performance for
a specified threshold. First, precision is the ratio of true positive classifications over the
total number of positives classifications and therefore describes the classifier’s ability to not
unnecessarily label functional IRJs as defective:

Precision =
TP

TP + FP
(20)

Second, recall is the ratio of true positive predictions over the total number of positive
instances and thus shows the classifier’s ability to retrieve all defective IRJs:

Recall = TPR =
TP

TP + FN
(21)

Lastly, F1-score tries to balance the trade-off between precision and recall by being the
harmonic mean of the two metrics. his makes F1-score less sensitive to imbalanced data
than accuracy.

F1 =
TP

TP + 1
2 (FP + FN)

= 2× precision× recall

precision+ recall
(22)

All three metrics are scored on a scale from 0 to 1, with 1 being the perfect score. For
the evaluation of our detection methods, F1-score is considered a suitable choice due to its
capability of incorporating information from both precision and recall and its resistance to
data imbalance. The metric will therefore serve to establish optimal thresholds for each
detection method on the calibration data and rank the performance of each method and
calculated threshold on the test data. However, precision and recall are still significant
metrics to analyze, as the aim of our solution is to minimize manual inspection and accurately
detect all defective IRJs. Precision roughly indicates the reduction in manual inspection,
while recall represents the effectiveness of the model in identifying defects.
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6 Experiments

This chapter discusses the experimental setup, which regards the parameters of the models
the procedures of training, calibration and testing. Furthermore, it shares the results of each
procedure.

6.1 Experimental setup

This study will evaluate the performance of all possible combinations of dataset, localization
method, and scoring function. Each combination will be considered as a distinct detection
approach, with a total of 30 possibilities due to the use of two datasets, five models, and
three scoring functions, as shown in Table 6.

Dataset Method Scoring
Rail crop L2-AE Mean (A1)

End post crop SSIM-AE Standard deviation (A2)
Adversarial SSIM-AE Maximum patch (A3)

PaDiM-R18
PaDiM-WR50

Table 6: Each approach is a different combination of dataset, method and scoring function.

6.1.1 Parameters of reconstruction-based methods

The architectures of the reconstruction-based methods, described in Section 5.2, are based
on the GANomaly model by [27], which itself is based on the DCGAN architecture by [41].
Table 7 shows the outline of encoder network E of the L2-AE, SSIM-AE and Adversarial
SSIM-AE models. The network is composed of seven blocks of convolutional layers, with
batch normalization applied after layers 2 to 6. Layers 1 to 6 are furthermore followed by
the Leaky Rectified Linear Unit (LeakyReLU) function for non-linear activation:

LeakyRelu(z, a) =

{
z if z > 0

az if otherwise
(23)

in which z is an arbitrary value from a feature map output and a is the slope set to 0.2.
Trough all layers, the encoder networks reduces an input sample x of 256x256x1 pixels down
to d = 2048 features in latent space z. This implies that the input is compressed to approx-
imately 3% of its original size.

The architecture of encoder E is copied over to discriminator network Edisc in the Adver-
sarial SSIM-AE model. The only difference is that the last layer in Edisc is followed by
a sigmoid activation function. This transforms the embedding of the input sample into a
probability score, indicating the likelihood of the sample being real:

sigmoid(z) =
1

1 + e−z
(24)

The network design of E is inverted to create the decoder network D in the L2-AE, SSIM-
AE and Adversarial SSIM-AE models. To perform trainable upsampling, the convolutional
layers are replaced with transposed convolutional layers. These layers generate an output
feature map with a larger spatial dimension than the input feature map. Given the kernel size
k, padding size p and stride s of a standard convolutional layer, the transposed convolutional
layer inserts r = s − 1 zeros between each row and column of the input map. It then pads
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Layer Output Size Parameter
Kernel (k) Stride (s) Padding (p)

Input 256x256x1
Conv1 131x131x4 4 2 4
Conv2 65x65x8 4 2 1
Conv3 32x32x16 4 2 1
Conv4 16x16x32 4 2 1
Conv5 8x8x64 4 2 1
Conv6 4x4x128 4 2 1
Conv7 1x1xd 4 1 0

Table 7: Outline of encoder network E, which is also applied as discriminator network Edisc.
The inverse version of E becomes decoder network D.

the input with p
′
= k − p− 1 zeros and carries out a standard convolution with a modified

stride s
′
= 1. After upsampling the latent space z to the original resolution of the input x,

the final layer of the decoder applies a tanh activation function:

tanh(z) =
ez − e−z

ez + e−z
(25)

Lastly, regarding the loss functions of the SSIM-AE and Adversarial SSIM-AE models, the
window size for SSIM-loss is set to K = 11, in line with [29]. The weights in the combined
adversarial loss function are ωrec = 10, ωadv = 1, and ωlat = 1.

6.1.2 Parameters of feature representation-based methods

The implementation of the PaDiM framework will follow the original form as described
by [1]. As stated in Section 5.3, this framework will be used for the PaDiM-R18 and
PaDiM-WR50 models, which vary in the underlying pre-trained CNNs and the number
of randomly selected dimensions from the extracted patch embeddings, as shown in Table
8. The random dimensionality reduction is done with a seed of 42. The other specified
parameters are ϵ = 0.01 in the sample covariance formula and standard deviation σ = 4 of
Gaussian blurring, which is applied after resizing the localization map M(x) with bilinear
interpolation.

Model Backbone Patch representation
Dimensions Selected (d)

PaDiM-R18 ResNet-18 448 100
PaDiM-WR50 Wide ResNet-50 1792 550

Table 8: The PaDiM-R18 and PaDiM-WR50 models use different underlying feature extrac-
tor and number of randomly selected embedding vectors.

6.1.3 Training

Each reconstruction-based method and feature representation-based method is trained on
exclusively functional IRJ images from the rail and end post crop training sets. This training
procedure thus consists of 10 training runs.

The L2-AE, SSIM-AE and Adversarial SSIM-AE models learn to reconstruct input images
from scratch. The networks are optimized using Adam with an initial learning rate lr = 2e−4
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and momentum terms β1 = 0.9 and β2 = 0.999. The training set of both rail and end post
crops is randomly partitioned into 90% actual training data and 10% validation data with a
batch size of 32 samples. During training, the network weights are only saved when the loss
over the validation samples is lowered. Training stops if the maximum number of epochs
is reached or if the validation loss is not lowered for a specified number of epochs. The
early stopping procedure can saves time and counteract overfitting on the training data.
On the rail crop data, the networks are trained for 50 epochs with early stopping after 15
epochs, on the end post crop data, these values are respectively 100 and 20 epochs. The
higher number of epochs is justified by the smaller training set size of the end post crop
data. The PaDiM-R18 and PaDiM-WR50 models are based on pre-trained ResNets and do
therefor not use any hyperparameters. These models will be trained on the original number
of samples in the rail and end post training sets.

All models are implemented with the PyTorch and NumPy libraries for Python. The training
procedures will be carried out on a GPU compute unit in Microsoft Azure ML studio which
uses NVIDIA’s Tesla K80 GPU and 56 gigabytes of RAM memory. Each model is after
training able to output a localization map showing the abnormal areas of an unseen IRJ
image.

6.1.4 Calibration

During calibration, the trained methods are paired with each scoring function to generate
anomaly scores for the IRJ images in the two calibration sets. The ROC-curve, AUC score,
and score distribution of each approach are analyzed to indicate its class separation ability
during testing. Afterwards, the optimal threshold τ for each of the 30 approaches is deter-
mined by maximizing the F1-score, considering the calculated anomaly scores and actual
ground truths. Figure 20 illustrates the score distribution of two classes and the impact of
the threshold on the number of binary classification results. If the classes cannot be sepa-
rated completely based on the anomaly scores, it is be possible to set a threshold without
encountering classification errors.

Figure 20: Effect of the threshold on the binary classification results

6.1.5 Testing

In the testing phase, each of the 30 approaches will be applied using the determined thresh-
olds to score and classify unseen IRJ images of the test sets. The results will be presented
in terms of the F1-score, recall, and precision outcomes of each approach. The approach
with the highest F1-score will undergo further evaluation to determine its ability to identify
individual defect types as defined by the sub-labels discussed in Section 4.2.
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6.2 Results

6.2.1 Training

This section will first examine the observations made during the training of the reconstruction-
based methods. The loss curves for each method are shown in Figure 30 in Appendix A.1.
For the training set of rail crop images, all three reconstruction models were trained for 50
epochs and displayed continuous improvement in validation loss. The L2-AE achieved the
lowest validation loss at the final epoch, while the SSIM-AE reached its lowest validation
loss at epoch 41 and the Adversarial SSIM-AE at epoch 45. For the training set of end post
crop images, the reconstruction models were trained for 100 epochs with early stopping after
20 epochs without improvement. The L2-AE and Adversarial SSIM-AE were trained for the
full number of epochs and achieved the best validation loss at epoch 83 and 97 respectively.
However, the SSIM-AE converged faster and stopped training after 31 epochs as it did not
show any improvement in validation loss after epoch 11. The SSIM-AE training loss curve in
Figure 30d shows a relatively linear trajectory, which suggests that the model started with
good weight initialization, as its reconstruction ability is comparable to the other methods.

Figure 21: The Adversarial SSIM-AE is able to replicate (bottom) the metallic rail surface
of the input rail crop images (top).

The reconstruction-based methods are all able to broadly reconstruct the input images after
training. Figures 21 and 22 show sample reconstructions of rail and end post crops from the
Adversarial SSIM-AE respectively. The rail crop reconstructions mostly capture metallic
reflections and shadows, but small surface imperfections are lost. The end post crop recon-
structions are more detailed as they provide a closer perspective of the IRJs, but they are
still blurry and do not accurately reconstruct small surface irregularities. The most apparent
difference between the image crops is that the IRJ end post is only reconstructed in end
post crops, as expected due to its central positioning within the frames. Additionally, it is
noted that models trained with the SSIM-loss function occasionally produce white artifacts
in some of the reconstructions, as seen in the rightmost example of Figure 22.

The training of the feature representation-based models is less opaque than the reconstruction-
based methods for learning normality. As a result, there is less to observe and compare.
However it can be commented that the training of both PaDiM models is much quicker
compared to the AE models. While the AE methods typically take 1 to 2 hours to com-
plete on either training set, with the exception of the SSIM-AE on the end post crops, the
PaDiM-R18 and PaDiM-WR50 finish within just 10 and 20 minutes on rail and end post
crop training data. The only problem was that the hardware crashed multiple times during
the training of the PaDiM-WR50 model on the rail crop images. To resolve this issue, the
complexity of the training process had to be reduced either by decreasing the number of
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Figure 22: The Adversarial SSIM-AE reconstructs (bottom) both the metallic rail structure
and IRJ end posts of the input end post crop images (top). The use of SSIM-loss can lead
to reconstruction artifacts, as seen in the rightmost image.

randomly selected embedding vectors or the number of training samples. The latter was
preferred as we aimed to avoid changing model parameters. The number of training samples
was reduced from 1907 to 1000.

In short:

• The SSIM-AE on the end post crop dataset is the only reconstruction-based method
which stopped early during training.

• The reconstruction-based methods are only able to reconstruct the end post in the end
post cropped images.

• The reconstruction methods applying SSIM-loss sometimes produce reconstruction
artifacts.

• The PaDiM methods are more efficient in learning normality than the AE methods as
they are based on pre-trained networks.

• The PaDiM-WR50 method only finishes training on the rail crop dataset after reducing
the number of training samples from 1907 to 1000.

6.2.2 Calibration

In the calibration phase, the ability of each approach to separate functional and defective
IRJs is determined by examining the AUC scores and score distributions. The results, pre-
sented in Tables 14 and 15 in Appendix A.2, show that the AUC scores range from 0.5 to
0.75, indicating that class separation ability ranges from non-existent to substantial. The
results are illustrated by two extreme scoring approaches. The Adversarial SSIM-AE with
A1 scoring on the end post crops (Figure 23a and 23b) results in an AUC score of 0.506
and does not separate functional and defective IRJs, making predictions no better than ran-
dom guessing for any threshold. Conversely, the PaDiM-WR50 with A2 scoring on the end
post crops (Figure 23c and 23d) produces an AUC of 0.746, creating substantial separation
between functional and defective IRJs. However, the still substantial overlap between the
score distributions implies that false positives and false negatives will occur for any threshold.

Following this inspection, the thresholds for each approach are determined by optimizing
the F1-score over the calibration images. The found thresholds and accompanying F1-scores
are presented in Table 9 and 10 for the calibration set of rail crops and end post crops. The
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(a) Score distribution of Adversarial
SSIM-AE with A1 scoring function

(b) ROC-curve of Adversarial SSIM-AE
with A1 scoring function

(c) Score distribution of PaDiM-WR50
with A2 scoring function

(d) ROC-curve of PaDiM-WR50 with
A2 scoring function

Figure 23: The performance of two approaches is compared through their anomaly score
distributions and ROC-curves. The Adversarial SSIM-AE with A1 scoring (a-b) does not
effectively differentiate between normal and defective IRJs, while the PaDiM-WR50 with
A2 scoring (c-d) shows substantial differentiation.

use of F1-score for thresholding, results in relatively low thresholds for approaches creating
completely overlapping score distributions, such as seen in Figure 23a. Approaches creating
more separated class distributions receive a higher threshold, typically at the intersection of
score distributions, such as seen in Figure 23c. Obviously it holds that more class separation
results in higher F1-score.

L2-AE SSIM-AE Adv. SSIM-AE PaDiM-R18 PaDiM-WR50
A1 0.090 (0.454) 0.084 (0.446) 0.196 (0.449) 0.261 (0.458) 0.176 (0.450)
A2 0.102 (0.468) 0.324 (0.456) 0.340 (0.450) 0.348 (0.461) 0.286 (0.491)
A3 0.069 (0.469) 0.254 (0.457) 0.318 (0.468) 0.420 (0.455) 0.370 (0.542)

Table 9: The optimal thresholds for each approach on the rail crop calibration set with
accompanying F1-scores stated between brackets.
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L2-AE SSIM-AE Adv. SSIM-AE PaDiM-R18 PaDiM-WR50
A1 0.065 (0.459) 0.140 (0.448) 0.115 (0.450) 0.280 (0.449) 0.412 (0.509)
A2 0.048 (0.461) 0.341 (0.473) 0.395 (0.482) 0.302 (0.550) 0.232 (0.578)
A3 0.066 (0.455) 0.176 (0.449) 0.344 (0.472) 0.165 (0.485) 0.169 (0.499)

Table 10: The optimal thresholds for each approach on the end post crop calibration set
with accompanying F1-scores stated between brackets.

In short:

• The different approaches show none to substantial ability to separate functional and
defective IRJs on their calculated anomaly scores. The AUC scores range from 0.506
to 0.746.

• The thresholds are obtained by optimizing for F1-score. Completely overlapping score
distributions lead to low thresholds and low F1-scores, more separated distributions
are thresholded at the intersection point and result in higher F1-scores.

6.2.3 Testing

Each approach is combined with its optimal threshold to classify the functional and defective
IRJs in the test set. The F1-scores on the rail and end post crop test sets are respectively
presented in Tables 11 and 12. The related precision and recall scores are presented in Tables
16 and 17 in Appendix A.3.

The combination of the PaDiM-WR50 method with A3 scoring yields the highest F1-score
of 0.498 on rail crop images. It is worth noting that this specific method was trained with a
reduced number of training samples as discussed in Section 6.2.1. The PaDiM-R18 with the
same scoring function actually returns a higher score of 0.502, but should be disregarded
as the localization map analysis in Section 7.1 reveals that this approach incorrectly local-
izes. The aggregated results of the individual methods and scoring functions provide more
insights.The Adversarial SSIM-AE is the highest scoring reconstruction-based method with
an aggregated F1-score of 0.451. The highest scoring feature representation-based method
is the PaDiM-WR50 with an overall F1-score of 0.471. The rail crops appear to be best
evaluated with the A3 scoring function, yielding an aggregate F1-score of 0.483, significantly
higher than A1 and A2 scoring.

L2-AE SSIM-AE Adv. SSIM-AE PaDiM-R18 PaDiM-WR50 Average
A1 0.421 0.442 0.441 0.433 0.434 0.434
A2 0.423 0.430 0.428 0.467 0.480 0.446
A3 0.470 0.460 0.484 0.502 0.498 0483

Average 0.438 0.444 0.451 0.467 0.471 0.454

Table 11: F1-scores for each model scoring combination on the rail crop test set. The bold
faced results are highlighted in the text.

The highest ranking model scoring combination on end post crop images is the PaDiM-
WR50 with A2 scoring, which has a F1-score of 0.507. The aggregated results of the different
methods and scoring functions show similarities to those from the rail crop test set. The
Adversarial SSIM-AE and PaDiM-WR50 remain the best ranking reconstruction-based and
embedding-based methods with F1-scores of 0.461 and 0.488, respectively. These scores are
both higher than their scores on the rail crop images. The most appropriate scoring function
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for end post crops appears to be A2 with an aggregated F1 of 0.485.

L2-AE SSIM-AE Adv. SSIM-AE PaDiM-R18 PaDiM-WR50 Average
A1 0.428 0.461 0.444 0.460 0.472 0.453
A2 0.473 0.460 0.490 0.494 0.507 0.485
A3 0.387 0.452 0.449 0.484 0.484 0.451

Average 0.429 0.458 0.461 0.479 0.488 0.463

Table 12: F1-scores for each model scoring combination on the end post crop test set. The
bold faced results are highlighted in the text.

The average F1-score for the complete test set is 0.454 for rail crops and 0.463 for end
post crops, indicating better model performance on the more zoomed in end post crops.
Additionally, it observed in Tables 11 and 12 that the L2-AE has the lowest aggregated
F1-score, while the other models rank progressively higher. The SSIM-loss and adversarial
training improve performance compared to the standard L2-AE. The PaDiM-R18 performs
better than the Adversarial SSIM-AE, and the PaDiM-WR50 is the best performing method
on both crop types.

(a) Confusion matrix (b) Score histogram

Figure 24: The detection results of PaDiM-WR50 with A2 scoring on end post crop test set,
which is the highest scoring approach.

Evaluation of highest scoring approach The approach with the highest F1-score is
shown to be the PaDiM-WR50 with A2 scoring on end post crops. Table 17 in Appendix
A.3 shows that this approach scores a recall of 0.755 and precision of 0.382. The confusion
matrix in Figure 24a depicts the exact true and false detection numbers. It reveals that this
approach is able to retrieve over 75% of the defective IRJs, but also falsely classifies 45% of
functional IRJs as defective. Furthermore, the truly defective IRJs are categorized by their
respective sub-label, as described in Section 4.2. Table 13 shows the number of correctly
and incorrectly classified defective IRJs per type of defect. It turns out that this specific
PaDiM-WR50 approach is able to retrieve 88.2% of the IRJs with spark erosion regions and
95.6% of IRJs with squats. Most false negatives are made on IRJs of which the end post is
either constricted, crumbled or loose. These categories of defective IRJs are retrieved 55.8%,
54.5% and 63.6% of the time, respectively.
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Constriction Spark erosion Squat Crumbled Play Total
Correct 24 45 22 6 7 104
Incorrect 19 6 1 5 4 35
Recall 0.558 0.882 0.956 0.545 0.636 0.755

Table 13: The number of correct and incorrect detections of defective IRJs by the best-
performing approach, categorized by type of defect.

In short:

• The F1-scores of the different approaches on the test set range from 0.387 to 0.507.

• The best scoring reconstruction-based method is the Adversarial SSIM-AE and the
best scoring feature representation-based method the PaDiM-WR50. On both rail
and end post crop test sets, both PaDiM variants still perform better than all AE
variants.

• On rail crop images the A3 maximum patch function scores highest overall, while on
end post crop images the A2 standard deviation function works better.

• The approaches score on average higher on end post crop images than on rail crop
images.

• The highest ranking approach is the PaDiM-WR50 with A2 scoring on end post crops
with a F1-score of 0.507. The accompanying recall is 0.755 and precision is 0.382.

• By categorizing defective IRJs by type of defect, this approach is shown to retrieve
nearly all IRJs with spark erosion and squats. It struggles with IRJs showing end post
constriction, crumble or play.
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7 Discussion and conclusions

This chapter discusses the results of the experiments and highlights a few limitations. Fur-
thermore, it concludes the thesis by answering the research questions and by providing
recommendations.

7.1 Discussion

This section discusses the most important outcomes presented in Section 6.2 and attempts to
explain these on the basis of the localization maps created by each method. The localization
maps of example input images of functional and defective IRJs are shown in Figures 26-29
at the end of this chapter. In these maps, blue pixels correspond to low abnormality, green
and yellow pixels to moderate abnormality and red pixels to high abnormality.

Mediocre detection performance. The calibration and test results in Sections 6.2.2
and 6.2.3 show that the best performing approaches are capable of creating reasonable sep-
aration between the anomaly scores of functional and defective IRJs classes. However, the
AUC scores between 0.506 and 0.746 during calibration are lower than the scores seen with
similar methods on the MVTec AD dataset, as presented in Section 3.3.3. After finding suit-
able thresholds for each approach, the F1-scores between 0.387 and 0.507 are also slightly
worse than expected. The mediocre performance is mainly explained by the difficult IRJ
imagery, given that the same methods perform significantly better on the MVTec AD data.
The localization maps should highlight what exactly makes IRJ imagery difficult.

Firstly, the localization maps show that both reconstruction-based and embedding-based
approaches are very sensitive to small harmless irregularities in the rail surface. This sen-
sitivity is inherent to a semi-supervised detection approach and allows for the detection of
multiple types of defects. However, in this case it works against itself as metal rail surfaces
are inherently irregular and these irregularities typically have no correlation with an IRJ
being functional or defective. Irregularities can also not be modelled as the methods can
only capture the most frequently observed patterns. This behaviour is for instance seen
in the reconstructions of the AE methods, which are all slightly blurry. In the end, these
irregularities lead to relatively high anomaly scores for functional IRJs and a substantial
overlap with the anomaly scores of defective IRJs.

Secondly, it is shown after testing that the highest scoring approach is more often able to
retrieve IRJs with spark erosion region or squats than IRJs with end post defects (Constric-
tion, Play and Crumble). Figures 31-40 in Appendix A.4 shows localization maps per defect
sub-label. It is observed that localization is more accurate in images of IRJs with spark
erosion or squats. This is probably explained by their larger size and stronger deviation
from regular rail surface textures. In images of IRJs with end post defects the methods are
indecisive in terms of localization as the actual defects are very small and because of the
previously mentioned surface irregularities.

Lastly, it is observed that imperfect image cropping also leads to detection errors. As
explained in Section 4.3, the heuristics for rail and end post cropping are not always flawless,
resulting in near-rail environment being visible in a small number of input images. These
areas are irregular and thus highlighted in the localization maps by the semi-supervised
methods. A handful of functional IRJs are therefore falsely classified as defective IRJs, such
as the example in Figure 25.
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Figure 25: This functional IRJ is falsely classified as defective due to imperfect end post
region cropping.

Performance difference between methods. The test results furthermore show that
the feature representation-based methods are significantly better than the reconstruction-
based methods for detection of defective IRJs. This aligns with the results on the MVTec
AD data and can only be explained by the intrinsically different modelling setup. An actual
theoretical explanation is difficult to provide as all methods are based on CNNs, which
are known for being hard to interpret. Within the group of embedding-based models, the
PaDiM-WR50 probably has better detection performance than the PaDiM-R18 as the Wide
ResNet-50 variant extracts more features. For the reconstruction models, the Adversarial
SSIM-AE arguably performs better than the SSIM-AE because of the adversarial training
component. Both methods perform better than the L2-AE as the SSIM-loss is more sensitive
to small differences in contrast and texture.

Relation between image crops and scoring functions. In addition, the test results
show that A3 maximum patch scoring is best combined with the rail cropped images and
A2 standard deviation scoring with the end post cropped images. From Figures 26 and 27 it
can be observed that with rail crops the abnormality is typically found in a condensed area.
Apart from the fact if this area is rightly or wrongly linked to a defect, it aligns best with
the assumption of maximum patch scoring that an IRJ can already be defective if it shows
high abnormality in a specific image region, as explained in Section 5.4. Then Figures 28
and 29 show that the more close-up view provided by the end post crops leads to a higher
sensitivity to small imperfections and thus more spread in the highlighted abnormalities.
This aligns best with with A1 mean scoring and A2 standard deviation scoring as these
techniques consider the entire localization map. In these specific localization maps, func-
tional IRJs generally show an evenly distributed moderate abnormality (green highlighting)
as no image region stands out. The maps of defective IRJs on the contrary show more
defined abnormality in terms of more blue and red highlighting. This explains why standard
deviation scoring works better than mean scoring for end post cropped images.

Unexpected behaviour of PaDiM-R18. Inspection of the localization maps lastly re-
veals that the PaDiM-R18 model on the rail crop data exhibits unexpected behaviour. It
exclusively highlights anomalous areas in the image corners, which in fact are part of the im-
age padding used to make the rail crops square, as explained in Section 4.3. Localization of
this PaDiM-R18 model is thus entirely incorrect. It is unknown what causes this behaviour
as the PaDiM-WR50 does not display it on the same data. Nevertheless, this study will
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disregard the results of the three approaches using this method. Interestingly, one of these
approaches showed the highest F1-score of 0.502 on the rail data.

7.2 Limitations

The presented research has two limitations both in data processing and in modelling. The
first data processing limitation was already reflected on in Section 7.1 and concerns the
sometimes imperfect image cropping. The presence of near-rail environment in cropped im-
ages can lead to unintended false positives on functional IRJs, negatively impacting overall
detection performance. The second data related limitation is that the sub-labelling of our
dataset is not completely free of errors as discussed in Section 4.2. For instance, vertical
indentation of IRJs was seen in some images during labelling but often placed under the
Uncertain label as its severity could not accurately be examined from the top-down camera
angle. Other cases of indentation were labeled as Constriction or Squat. Although, this
has no major consequences for the main labels (Functional and Defect) and the overall de-
tection performance of our methods, it should be kept in mind when observing the defect
specific detection performance in Section 6.2.3 or when using the dataset for future research.

The first limitation in terms of modeling is that the PaDiM-WR50 approach for rail cropped
images could only be trained on 1000 out of 1907 training samples. As explained in Section
6.2.1, the hardware encountered crashes when attempting to train on more samples. The
smaller training set size arguably affects the detection performance of the PaDiM-WR50
implementation negatively, although it still performed better than the other methods on the
test set. The second modelling related shortcoming is that the PaDiM-R18 approach for rail
cropped images falsely identifies abnormality in the image padding as explained in Section
7.1. This padding was added to meet the requirement of the ResNet architectures for square
image inputs. Although the exact reason for this behaviour is unknown, the results of these
specific approaches should be disregarded.

7.3 Conclusions

The aim of this research was to examine the possibility to detect defective IRJs with a semi-
supervised learning-based approach, as stated in Section 1.2. This approach exclusively uses
images of functional IRJs to model normality and assumes that everything deviating from
this normality is considered abnormal. After having reviewed related works and having im-
plemented various semi-supervised detection methods, we are now able to formulate answers
to the three research sub-questions and subsequently the main question.

1.How to express abnormality of an IRJ with semi-supervised learning methods?

Two distinct categories of semi-supervised learning methods are identified, which are both
suitable for expressing the abnormality of IRJs in images. The first category of methods is
based on image reconstruction ability. Convolutional AE or GAN architectures are trained
for reconstruction of functional IRJ images, based on the assumption it makes them unable
to afterwards reconstruct the defects present in defective IRJ images. An image of a dam-
aged IRJ will be reconstructed as the same IRJ without defects. The pixel-wise differences
between input and reconstruction result in a localization map showing the local abnormality
of the IRJ. This study implemented this category of methods with the L2-AE, SSIM-AE
and Adversarial SSIM-AE models, which architectures are based on GANomaly of [27].

The second category of methods is based on feature representation extractions of CNNs,
which are typically pre-trained for ImageNet classification. The methods each apply hand-
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crafted techniques to build a model of normality from the extracted embeddings of functional
IRJ images, based on the assumption that embeddings of functional and defective IRJs de-
viate. This study implemented the PaDiM framework by [1], which models the embedding
vectors of functional IRJ image patches as multivariate Gaussian distributions. The local
abnormality of a defective IRJ image is then highlighted in a localization map of Maha-
lanobis distances between the embedding vectors and modelled distributions.

The resulting localization maps are aggregated to global scores, depicting the overall abnor-
mality of IRJs. This study opted to perform aggregation with mean, standard deviation and
maximum patch scoring techniques. These are based on the assumptions that localization
maps of defective IRJs show either higher abnormality or more spread of abnormality than
the ones of functional IRJs.

2.Which detection approach is most promising in terms of test set performance?

Several semi-supervised detection approaches, which differ in data processing, localization
method and scoring function, have the ability to distinguish functional from defective IRJs
to some extent. According to the results on the test set in Section 6.2.3, the most promis-
ing approach is the PaDiM-WR50 method which uses A2 standard deviation scoring and
is trained on end post cropped images. This specific approach is able to create the largest
separation between the anomaly scores of functional and defective IRJs. Given the optimal
threshold of 0.232, the performance on the test set is expressed with a F1-score of 0.507,
recall of 0.755 and precision of 0.382. This approach thus retrieves over 75% of all defective
IRJs, while roughly 60% of the detections are incorrectly made on functional IRJs. The
correct detection do include over 88% of IRJs with spark erosion and over 95% of IRJs with
squats. The IRJs with end post specific defects are only retrieved between 50 and 65% of
the time.

3.Which IRJ image crop is the most promising in terms of test set performance?

The detection methods perform better on the end post cropped images than on the rail
cropped images as the aggregated F1-scores compare with 0.463 to 0.454, respectively. This
difference of approximately 2% indicates that it is slightly more beneficial to crop the IRJ
images such that the end post region is centrally in frame. It also proves that it is important
to keep imagery as uniform as possible for the effectiveness of a semi-supervised detection
approach. The only downside of end post region cropping is that 1769 of the 4252 images in
the dataset could not be used due to the current division of raw video inspection data into
separate frames, as explained in Section 4.4.

Given these conclusions, the main research question can now be answered.

How and to what extent can a semi-supervised learning-based approach be ap-
plied to detect IRJs with various defects?

This thesis demonstrates the feasibility of using a semi-supervised learning-based approach
for the detection of defective IRJs. This approach overcomes the challenge of detecting IRJs
with defects that can have varying appearances and effectively handles the class imbalance
present in the manually labelled dataset of over 4250 images of functional and defective
IRJs. The research furthermore fills a gap in existing literature on railway defect detection.

The research evaluated three reconstruction-based methods (L2-AE, SSIM-AE, and Adver-
sarial SSIM AE) and two feature representation-based methods (PaDiM-R18 and PaDiM-
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WR50), which were trained using images of only functional IRJs to establish normality.
Each method is able to afterwards generate localization maps that indicate local IRJ abnor-
mality and can be scored using three different scoring functions (mean, standard deviation,
and maximum patch). The impact of IRJ image processing was also studied through rail
surface cropping and end post region cropping.

The best performing approach is the PaDiM-WR50 method using the A2 standard deviation
scoring on end post region cropped images, yielding a recall of 0.755, precision of 0.382, and
an F1 score of 0.507 on the test set. The method is effective in identifying defective IRJs,
particularly those with spark erosion regions and squats, although it also produces many
false detections on functional IRJs. The PaDiM-WR50 method also has reasonable results
on rail surface cropped images using the A3 maximum patch scoring function, with an F1
score of 0.498. Other approaches, including those incorporating different scoring functions
and reconstruction-based methods, performed worse and in some cases were only slightly
better than random prediction.

The precarious performance of the semi-supervised methods can be attributed to the chal-
lenging nature of IRJ images as identical methods have shown great results in literature.
Primarily the irregular and harmless imperfections in the metal rail surface of functional
IRJs and the subtlety of most defects in defective IRJs make that both classes are some-
times difficult to distinguish. As discussed in Section 4.2, even domain experts sometimes
disagree on the classification of defective IRJs, indicating that perfect detection does not
exist. While the semi-supervised approach shows potential, it may not yet be suitable as a
standalone solution for detecting defective IRJs.

7.4 Recommendations

The results of this study demonstrate that certain semi-supervised approaches can differenti-
ate between functional and defective IRJs with adequate accuracy, however, the performance
is not entirely sufficient for practical use by ProRail yet. Hence, this section provides rec-
ommendations for further research.

The first recommendation is to connect track circuit failure data with corresponding IRJ
images. This study classifies IRJs as defective according to criteria set by ProRail, but it is
unknown which of these IRJs are actually causing track circuit failures. Knowledge about
which IRJs are truly defective could potentially result in improved model performance as
these IRJs may show more severe defects and would therefore be more easily distinguishable
from undamaged IRJs.

The second suggestion is to implement the PatchCore framework of [2] instead of the PaDiM
model as the feature representation-based method. As mentioned in Section 3.3.3, Patch-
Core outperforms PaDiM on the MvTecAD benchmark with a state-of-the-art AUC of 0.991,
compared to PaDiM’s 0.953. It would be worth exploring if a similar performance improve-
ment can be achieved for detecting defective IRJs. Combined with the additional connection
between track circuit failures and defective IRJs, this setup could potentially work to stan-
dards. PatchCore was not implemented in this research because its image scoring uses a
KNN algorithm and was therefore not comparable to our relatively simple scoring functions.

The third recommendation may serve as an alternative when the previous two recommenda-
tions do still not result in satisfactory detection performance. It is to switch to a supervised
detection approach similar to the literature in Section 3.2. The number of damaged IRJs in
the data, as observed in Section 4.2, seems substantial enough to train separate supervised
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models for each type of defect. It is then recommended to use segmentation models because
these only use defect-specific information for classification, which can improve performance
on the smaller end post defects. Most methods used by the AMI Renewal department are
supervised segmentation methods, such as the railway fastener defect detection solution.
The convolutional U-Net architecture by [32] may be a good starting point.
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Figure 26: Rail cropped test samples (Functional) with corresponding localization maps

Figure 27: Rail cropped test samples (Defect) with corresponding localization maps
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Figure 28: End post cropped test samples (Functional) with corresponding localization maps

Figure 29: End post cropped test samples (Defect) with corresponding localization maps
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A Appendix

A.1 Training loss curves of reconstruction-based methods

(a) L2-AE (rail) (b) L2-AE (IRJ)

(c) SSIM-AE (rail) (d) SSIM-AE (IRJ)

(e) Adversarial SSIM-AE (rail) (f) Adversarial SSIM-AE (IRJ)

Figure 30: Loss curves of reconstruction algorithms after training on rail data (a,c,e) and
IRJ data (b,d,f)
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A.2 AUC scores on calibration set

L2-AE SSIM-AE Adv. SSIM-AE PaDiM-R18 PaDiM-WR50
A1 0.566 0.525 0.527 0.606 0.593
A2 0.582 0.551 0.560 0.680 0.667
A3 0.612 0.597 0.624 0.714 0.731

Table 14: AUC scores of each model scoring combination on the rail calibration 0.set

L2-AE SSIM-AE Adv. SSIM-AE PaDiM-R18 PaDiM-WR50
A1 0.528 0.526 0.506 0.555 0.649
A2 0.512 0.578 0.601 0.708 0.746
A3 0.551 0.554 0.568 0.622 0.664

Table 15: AUC scores of each model scoring combination on the IRJ calibration set

A.3 Precision and recall on test set

L2-AE SSIM-AE Adv. SSIM-AE PaDiM-R18 PaDiM-WR50
A1 0.311 / 0.654 0.285 / 0.982 0.290 / 0.921 0.296 / 0.807 0.284 / 0.917
A2 0.314 / 0.649 0.302 / 0.746 0.299 / 0.754 0.322 / 0.851 0.332 / 0.864
A3 0.335 / 0.789 0.315 / 0.855 0.361 / 0.732 0.373 / 0.768 0.358 / 0.820

Table 16: Precision / recall scores of each model scoring combination on the rail test set

L2-AE SSIM-AE Adv. SSIM-AE PaDiM-R18 PaDiM-WR50
A1 0.311 / 0.683 0.302 / 0.971 0.287 / 0.986 0.305 / 0.942 0.323 / 0.878
A2 0.320 / 0.906 0.318 / 0.835 0.308 / 0.899 0.384 / 0.691 0.382 / 0.755
A3 0.309 / 0.518 0.297 / 0.920 0.308 / 0.827 0.338 / 0.849 0.340 / 0.842

Table 17: Precision / recall scores of each model scoring combination on the IRJ test set
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A.4 Localization maps per defect sub-label

Figure 31: Rail cropped test samples (Constriction) with corresponding localization maps
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Figure 32: Rail cropped test samples (Spark erosion) with corresponding localization maps

Figure 33: Rail cropped test samples (Play) with corresponding localization maps

62



Figure 34: Rail cropped test samples (Squat) with corresponding localization maps

Figure 35: Rail cropped test samples (Crumbled) with corresponding localization maps

63



Figure 36: End post cropped test samples (Constriction) with corresponding localization
maps

Figure 37: End post cropped test samples (Spark Erosion) with corresponding localization
maps
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Figure 38: End post cropped test samples (Play) with corresponding localization maps

Figure 39: End post cropped test samples (Squat) with corresponding localization maps
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Figure 40: End post cropped test samples (Crumbled) with corresponding localization maps
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