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VRIJE UNIVERSITEIT AMSTERDAM

Abstract

Production Duration Estimation in a Mass-Customization Age

by D.J.M. VAN WEERDENBURG

In today’s animal feed industry, the schedulers deal with a lot of complexity. Some pro-
ducts need to be produced at certain production lines, some products cannot be produced
in a row due to contamination issues and orders need to be delivered in time. Therefore,
there is a demand for a scheduling algorithm that takes these complexities into account and
minimizes the total manufacturing time.

Experts at ENGIE Industrial Automation develop such a scheduling algorithm, for which
accurate estimations of the production durations are needed. The current estimations are
created based on the duration of the previous batches of the same produced article. A batch
is a quantity of product that is produced in a single production step. However, customers
are increasingly demanding tailored products, a trend known as mass-customization [1],
which results in too few produced batches of the same article. Therefore, there are often
too few data points available for an accurate estimation of the current approach. Besides,
the current approach is not able to give an estimation for new products. This is the direct
motivation for this study.

Since products are specified by their nutritions instead of ingredients, the ingredient
composition of the same article could change over time, which could result in variation of
the production durations. Besides, changes in batch-related machine settings (setpoints),
the weather and the quality of the harvest can potentially affect the production duration.
Therefore, the research question of this research is formulated as follows:

Is it possible to enhance production duration estimations by incorporating the ingre-
dient composition of products, seasonal effects, and machine settings?

The results of this research show that it is possible to enhance the production duration
estimations. In all production steps, the duration could be estimated significantly better
than the benchmark. Except for the duration estimation of the transportation system, which
is as good as the benchmark.

The estimations were divided into complex machine learning models (for production
durations) and simple time-based models (for transportation durations). For the complex
machine learning models, we can conclude that all models estimate the durations for all
production steps significantly better than the benchmark, except for the Neural Network,
which estimates the pressing duration at press line 3 worse than the benchmark.

Extra Trees and Robust Regression show generally good results when less than one year
of training data is available. Also, the Robust Regression model performs generally well in
cases where Extra Trees is less accurate. Therefore, ENGIE Industrial Automation is advised
to implement these two models and to use them for the production duration for which they
are appropriate according to their performance described in the results of this research.

Finally, we can conclude that the models proposed in this research can help the schedu-
ling algorithm of ENGIE Industrial Automation to be more accurate.

HTTPS://WWW.VU.NL
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1 Introduction

1.1 Business context and problem statement

ENGIE is a global energy company, a leading provider of electricity, natural gas, and energy
services. The department Industrial Automation focusses on designing, realizing, maintain-
ing and exploiting software solutions for the automation of industrial plants. By automating
the production process, the total production time is significantly reduced. To optimize the
production process even more, a scheduling algorithm is created to allocate machines as
efficient as possible. This algorithm assumes known production durations for each batch
(quantity of product) on each machine. ENGIE Industrial Automation is currently testing
this algorithm in an industrial plant in the animal feed industry. Hereby, the production
durations are estimated by taking the moving median over the same product type. How-
ever, this approach is unsatisfactory, because customers are increasingly demanding tailored
products. In literature, this trend is known as mass-customization [1]. As a result, there are
often too few data points available per product type, or even none in case of new products.

A lot of research has been done on scheduling algorithms in general. Most of these algo-
rithms assume deterministic production durations, others assume a certain distribution to
hold which should comprehend the uncertainty in the durations. However, little research
is done on the usage of the ingredient composition, seasonal effects and machine settings
for the estimation of the production durations in industrial plants. Therefore, it would be
interesting to investigate if it is possible to enhance production duration estimations by in-
corporating these features.

Besides the effect of mass-customization, there are more reasons for ENGIE Industrial
Automation to be interested in a model to estimate production durations based on the in-
gredient composition, seasonal effects, and machine settings. For example, the ingredient
composition of existing product types can deviate over time. A product is namely defined
by its nutrients and therefore the ingredient composition can change if some ingredients are
cheaper than others. This suggests that it would be better to use the ingredient composition
of products instead of taking the moving median over the product type. Moreover, the qual-
ity and texture of organic ingredients can deviate depending on, for example, the amount of
water and sunlight it got during its growth. But also, the temperature and the humidity in
the industrial plant affect the production process. In addition, it is not uncommon to change
machine settings for the production of a certain product. This results in a lot of possible
features that are likely to affect production durations. Not only the final model created in
this research would be relevant for ENGIE Industrial Automation, but also the analysis of
which features most affect the production durations and how.

The production durations are already estimated by ENGIE Industrial Automation for
scheduling purposes. However, the current method is relatively simple and does not use
all of the above-mentioned variables. Therefore, it could likely be improved. Besides, the
current method is not able to provide an estimation for newly produced articles. The cur-
rent estimation method will be used as a benchmark for the estimations proposed in this
research.
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1.2 Research question

The goal of this research is to estimate production durations by using features that are avail-
able for all products, including newly created products. This results in the following re-
search question:

Is it possible to enhance production duration estimations by incorporating the ingre-
dient composition of products, seasonal effects, and machine settings?

By providing good estimations, the uncertainty in the scheduling algorithm will be re-
duced, which enables the algorithm to plan more accurately. In this way, the planning algo-
rithm could perform better and this helps to reach the final goal: deliver all orders in time
and decrease the total manufacturing time.

In addition, the analysis of the importance of features would be very relevant for ENGIE
Industrial Automation as well, because it could confirm the suggested influence of above-
mentioned variables and it provides insights in the degree of their influence. This results in
the following two sub-questions:

1. What are the explanatory variables for the production duration?

2. Which models lead to better production duration predictions compared to the benchmark ap-
proach?

Since the production durations will be used in the scheduling algorithm, the predicted
durations should be defined in the same way as assumed by the scheduling algorithm,
which is clearly described by the current production duration estimations. For these pre-
dictions, only features can be used which are available at the moment of scheduling, and
therefore, the model can only use variables which are known before the moment of execu-
tion of the corresponding production step.

This project will focus on a single industrial plant in the animal feed industry. How-
ever, the results can most likely be generalized to other industrial plants in the animal feed
industry, which means that ENGIE Industrial Automation could reuse the results for other
clients.

1.3 Research approach

As mentioned above, it is assumed that there exist variables, like the ingredients, seasonal
effects, and machine settings, that influence the durations of animal-feed production steps.
However, the exact relationship is not defined. Since there is a lot of data available, the
suggested relationship could most likely be "learned" from past production durations. This
approach is called machine learning, see the definition given by T. Mitchell (1997) below:

"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E." [2]

To be able to apply machine learning for the estimation of production durations, seven steps
are taken in this research, see Figure 1.1.

The first step is problem understanding, of which an introduction was given in this section.
In the next section, an introduction is given to concepts in industrial automation and the
production process of the specific animal-feed industrial plant. In addition, an overview
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FIGURE 1.1: Visualization of the research approach with references to the
related sections in this report.

of the relevant literature is given in Section 3. When we obtained the required background
knowledge of the production process in the animal feed industry, we can continue with the
second step in the research approach, data collection. This process and the collected data are
described in Section 4.

The data variables that are used in a machine learning model are commonly called fea-
tures. These features can be similar to the original data attributes, but can also be created by,
for example, aggregations and/or subtractions. This process is the third step of the research
approach and will be described in Section 5.

The fourth step is feature analysis. In this step, the created features are analysed. For
example, how the features are correlated to each other and the production durations. The
feature analysis is described in Section 6.

The next step in the research approach is the model creation step. Some state-of-the-art
machine learning models that are relevant for this research are described in Section 7. In
addition, the experimental setup is discussed in that section too.

The performance evaluation takes place in Section 8. The results of different hyperparam-
eter settings and feature sets for different kind of models are evaluated, by which the best
hyperparameters and features will be selected for each model. It is also the section in which
we will answer the first sub-question of this research. In addition, the performance on un-
seen data will be examined by performing the final models on a test set of samples that
were left out so far. For a new product, the current approach for estimating production du-
rations, the benchmark, is not able to provide an estimation. Therefore, the test samples will
be split into two sets: batches with benchmark estimation and batches without benchmark
estimation. The performance of the final models will be compared with the performance of
the benchmark on batches with benchmark estimation. On top of that, the results will be
compared to the results on the batches without benchmark estimation to compare the per-
formance of the models on new products. Based on these two performance measures, the
best model can be determined, which provides the answer to the second sub-question and
the research question.

Finally, the discussion and the conclusion are given in Section 9 and Section 10, respec-
tively.
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2 Preliminaries

The production durations will be estimated for a single industrial plant in the animal feed
industry, which is further denoted by plant X. Plant X will serve as an example for other
industrial plants. To understand how the plant and its production process looks like, the
manufacturing process of plant X will be described in this section.

FIGURE 2.1: Schematic overview of plant X with the different areas it includes.

Figure 2.1 shows how an animal feed plant looks like. The manufacturing process starts
with the intake and storage of raw materials. Dosing takes place to obtain the right amount
of the raw materials for the production of animal feed. After that, the production of animal
feed takes place in which the raw materials could be ground, mixed and pressed. Finally, all
end-products are stored in silos from which the right amount is dosed and loaded in trucks.

2.1 Overview of the manufacturing process

FIGURE 2.2: Animal feed forms: mash, crumble
and pellets. [3]

Plant X produces three forms of animal
feed: mash, crumble and pellets, see Fig-
ure 2.2. To produce these products, plant
X contains four different production line
types: two roller lines, one grinder-mixer
line (GML), four parallel press lines (PLs)
and finally three bulk lines. What these
production lines do, is described in detail
below. See also Figure 2.4 for a schematic
overview of the GML and the four PLs.

The overall process starts with the in-
take of the several raw materials which are
transported to silos. Some raw materials
need to be rolled in a pre-processing step.
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The roller lines are used for this. All materials will be stored in silos so they are available for
further production. This is visualized by the raw material silos in Figure 2.3.

FIGURE 2.3: Abstract visualization of the manufacturing process.

The first step in the production of animal feed consists of grinding and mixing. This hap-
pens at the grinder-mixer line (GML). From the silos, the desired weight of the raw materials
is weighed and they fall into a bunker (BU5), before they are ground in the hammer mills
(HA1 and HA2) in the first production step of the GML, see Figure 2.4A. The ground mate-
rials fall into the bunker below the hammer mills (BU6). The second production step of the
GML is the mixing phase (NM1), in which the ground materials could be mixed with fine
raw materials or liquids. The mixed materials fall into the bunker (BU7) below the mixer.
Finally, the product is transported. In this transportation step, there is the possibility to add
some liquids (e.g., molasses). These liquids are added while the product is passing (MX1).
The reason for the addition of these liquids in this step and not in the mixing phase is that
they can be sticky.

The second step in the production of animal feed is pelleting. This happens at the press
line (PL). Mash products do not have to be pressed and are therefore directly transported
to the finished product silos. Only the intermediate products for crumble and pellets are
processed at a press line, see Figure 2.3.

There are four parallel press lines available in plant X, which are all shown in Figure 2.4.
The press lines differ slightly from each other, and therefore it is possible that some products
cannot be produced at every press line.

All press lines contain two pre-press silos in which the intermediate products from the
GML are stored after transportation. From the pre-press silos, the materials are transported
by the press elevator to the press bunker (PB-01, PB-02, PB-03A or PB-03B, and PB-04). After
that, the materials are heated using steam (MX-01, MX-02, MX-03A or MX-03B, and MX-04).
Press line 2 is the only press line with a BOA (BOA-02). The BOA destroys enzymes using a
pressure of normally around 60 to 80 bar.

The next step is to actually press the materials. This happens in a press unit. In PL 2
and PL 3, the materials are pressed by one press unit (PO-02, and PO-03A or PO-03B). In
PL 1 and PL 4, two press units can be used in series (PO-01A and PO-01B, and PO-04A and
PO-04B). The diameter of the pellets is determined by the size of the compressing holes in
the die that is used in the pellet mill.

The pressed materials need to be cooled, which happens in a cooler (KO-01, KO-02, KO-
03, and KO-04). The materials are cooled by blowing air in the opposite direction (from
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(A) Grinder-mixer line (B) Legend

(C) Press line 1 (D) Press line 2

(E) Press line 3 (F) Press line 4

FIGURE 2.4: Abstract visualization of the production lines of plant X.
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down to up). This could result in dust, which is caught in the fan and returned to the press
elevator, so it can be reused. There is a small difference in the cooler of PL 3 compared to the
others; KO-03 does not have an intermediate floor. Therefore, the press units at PL 3 have
to wait for KO-03 to be finished, in contrast to the other press lines where pressing can start
when the first floor of the cooler becomes empty. The cooling process can then continue
on the second floor. When the pellets are cooled, they fall into the bunker below the cooler
(OB1, OB2, OB3 and OB4), so the cooler becomes available again.

Except for PL 4, there is the possibility to crumble the pressed materials in a crumbler
(KR-01, KR-02 and KR-03). This is the production step where the difference between crum-
ble feed and pellets is made. Finally, the products are transported by a pellet elevator to the
final product silos. In the meantime, there is the possibility to filter out too fine parts, also
called grit, and return it to the press elevator, so the materials can be reused.

Finally, the end-product will be stored in final product silos, until the truck arrives and
transports the product to the client. The bulk lines are used to retrieve the right amount of
product for the client out of the silos.

This study focusses on the grinder-mixer line and the press lines because the other pro-
duction lines are not found to be the bottleneck in the production schedule of plant X.

2.2 Orders

After the introduction to the production process of animal feed, we will give an introduction
to the buyers of animal feed. Most customers of plant X are farmers. Nowadays, farmers
are increasingly demanding tailored products, a trend known as mass-customization [1]. This
results in many different products to produce.

FIGURE 2.5: Hierarchical
structure of orders.

A customer (farmer) can order multiple products at a time.
This results in a customer order (CO). An order is created for
each product in the CO, see Figure 2.5. Since one order needs
to be processed at different production lines, we introduce the
concept of a production order (PO): an order for a specific pro-
duction line.

The process at the GML and PL differ in type. The pro-
cess at the GML is a batch process, while the process at a PL is
defined as a continuous process. The GML works in steps, in
which the production takes place at one location and is trans-
ported to the next location for the next production step. The
quantity of product that is processed in a single step of the pro-
duction line is called a batch. For example, if a customer orders
10,000 kg of a product, but the hammer mill in the first step of
the GML can only handle 5,000 kg at a time, the production
order will be split into two batches of 5,000 kg. Note that the
size of the batches depends both on the PO and the capacity
of the machines. Therefore, the size of a batch is typically not
constant.

In contrast, at a PL the product is processed "on the fly": it is a continuous process. In
general, plant X would like to produce the full size of the production order continuously,
without interruption. This would result in one "batch" per production order. Therefore, one
PL batch could contain multiple GML batches.
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Besides the production for customer orders, plant X can also produce stock products.
The current scheduling algorithm focusses on customer orders. However, stock produc-
tion orders can be processed as customer orders, by adding a due-date for which the stock
products should be produced.

2.3 Industrial automation

The whole manufacturing process is automated, which means that the whole process is
modelled and controlled by a computer. A batch engine controls how each production order
is produced. The batch engine consists of a physical model, a procedural control model,
a recipe model and a production planning. The first three can be described by the ISA-88
framework. ISA-88 is a process control standard for describing the manufacturing process,
both in terminology as in modelling. By using ISA-88, the colloquial language in the au-
tomation of industrial plants is standardized.

2.3.1 Physical model

The physical model is used to divide the industrial plant into smaller parts based on location
and function. Figure 2.6 shows the structure of the ISA-88 physical model. The highest
level is enterprise, which is the organization that coordinates one or more sites. A site is a
physical, geographical, operational or logical subdivision of the enterprise [4]. For example,
a customer of ENGIE Industrial Automation (enterprise) with multiple industrial plants at
different locations (sites). In general, ENGIE Industrial Automation automates enterprises
with only one site. Therefore, the site is the highest level that is implemented by ENGIE
Industrial Automation.

FIGURE 2.6: Structure of the
ISA-88 physical model.

A site may consist of one or multiple areas, which are de-
fined by a physical, geographical, operational or logical sub-
division of the site [4]. In our case, we can divide plant X into
six different areas: the intake area, the storage area of the raw
materials, the dosing area, the grinding and mixing area, the
press area and the loading area, see Figure 2.3 and Figure 2.1.

An area may consist of one or multiple process cells. A
process cell is defined as a logical group of equipment that
should work together to serve an identifiable processing pur-
pose to process one or multiple batches [4]. For example, a
single press line in the press area is a process cell.

A process cell may consist of one or more units, equipment
modules and/or control modules. A unit is a collection of
equipment and/or control modules that are required to per-
form one or more major processing tasks [4], such as a ham-
mer mill in the GML (e.g., HA1 in Figure 2.4A) or a press unit
in one of the PLs (e.g., PO-01A in Figure 2.4C).

An equipment module is defined as a collection of func-
tional equipment that is required to perform one or more mi-
nor processing tasks or process actions [4]. An example of an
equipment module is the collection of equipment that is used
to change the sieve of a hammer mill.

A control module is the lowest level of equipment in the
physical model. It is defined as (a collection of) equipment
that is used to perform a basic control function [4]. It is not
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able to perform procedural logic. Control modules are often building blocks that directly
drive the input/output (I/O) device that communicates between the information system,
e.g., computer, and the physical system. An example of a control module is a valve that can
be opened/closed or an empty detector that detects if a bunker is empty or not.

2.3.2 Procedural control model

The procedural control model is a multi-level hierarchical model to accomplish the task of
a complete process (or part of a process) based on the resources of a specific process cell
[4]. The structure of the procedural control model is shown in Figure 2.7. The ultimate goal
of the hierarchy is to efficiently organize the process-oriented tasks that are to be executed
(either automatically or manually) at its lowest level [4].

FIGURE 2.7: Structure
of the ISA-88 procedural

control model.

The highest level of the procedural control model is the proce-
dure. The procedure defines the order of processing for an entire
batch. It may specify the execution order of one or more unit pro-
cedures, which may be in series, in parallel, or a combination of
both [4].

A unit procedure specifies a contiguous production sequence
that takes place within a single unit [4]. For example, everything
that needs to be done at a hammer mill: supplying, sieve switching
and grinding.

A unit procedure may consist of one or more operations. Each
operation specifies a major processing sequence, usually to take
material being processed from one state to another involving a
chemical or physical change [4].

A phase is the lowest level procedural element in the proce-
dural control model and is intended to accomplish all or part of a
process action [4]. It is linked to an equipment module in the phys-
ical model. Examples of phases are sieve switching, grinding and
mixing.

Since the unit procedures of plant X consist of only a few phases, ENGIE Industrial
Automation does not consider the concept of operations in its procedural control model.

2.3.3 Recipe model

The last model described in the ISA-88 process control standard is the recipe model. Recipes
provide a way to describe products and how those products are produced [4]. There are
four recipe types: the general recipe, the site recipe, the master recipe and the control recipe,
see Figure 2.8A.

The general recipe serves as the basis for lower-level recipes. It contains information
about nutritional requirements. This recipe is applicable at the enterprise level and is inde-
pendent of the specific site. It is created without specific knowledge of or information about
the process of cell equipment that will be used to manufacture the product [4].

The site recipe is specific to a particular site. It may accommodate specifications like the
language, the policy or locally available raw materials [4]. This recipe is still independent of
the equipment.

The master recipe is created to produce one or more batches. It is specific to the equip-
ment, raw materials and the capabilities of a process cell or a subset of process cell equip-
ment [4]. A master recipe is required for the creation of a master control recipe.

A control recipe serves as the production instructions of a unique batch. It is initiated
by the master control recipe, but it may contain modifications that can be made at any time,
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(A) Recipe types (B) Recipe contents

FIGURE 2.8: Structure of the ISA-88 recipe model.

for example, to account for actual raw material quantities, material properties, the selection
of units, or appropriate sizing [4]. Since modifications of a control recipe can be made over
a period of time based on schedule, equipment, and operator information, a control recipe
may go through several modifications during the batch processing.

Each recipe consists of header information, the procedure, the ingredients and the set-
points, see Figure 2.8B. The header information contains the product name, version and
code, when the recipe is used and how much of the product is produced. The procedure
contains the PFC (procedural function chart), which can be thought of as a drawing of the
physical process, in which is described when each equipment module is allocated and the
corresponding phase is started, and what happens afterwards. The formula of the ingredi-
ents may contain multiple ingredients, of which it specifies their codes and how much of
them is required. Finally, the formula of the setpoints contains the settings of the required
equipment modules. For example, the power of the mixer, the size of the holes in the sieve
of each hammer mill and the power of the press unit.

2.4 Production durations

The goal of this research is to accurately estimate the duration of the production processes in
plant X. Since these estimations will be used in the scheduling algorithm, these estimations
should comprehend the time that equipment is occupied for a specific production step. This
includes the time that is used for transportation. However, we do not expect that there is
much spread in these transportation durations.

The scheduling algorithm used by ENGIE Industrial Automation in plant X does not
take the intake-process, and the loading process of trucks into account yet. It specifically
focusses on the grinding and mixing area and the press area. Which means that the schedul-
ing algorithm chooses which press line to use for which production order, and schedules
the order of the batches in the GML. The production durations of the GML are visualized in
Figure 2.9.

The first production duration, (1) in Figure 2.9, we would like to estimate is the time it
takes to grind the raw materials in the hammer mills. Since the two hammer mills in the
GML are used simultaneously, it was chosen to estimate the duration of this step by the
production duration of the left hammer mill (HA1). The difference in the start time of the
supply conveyor and the end time of the grinding phase represents this duration, because
the supply starts when the hammer mill is allocated and the hammer mill is deallocated
after completion of the grinding phase. The grinding phase completes when all materials fit
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FIGURE 2.9: Production durations of the GML.
The legend is shown in Figure 2.4B.

through the sieve of the hammer mill and fall into the bunker beneath it (BU6). This process
is improved by creating a vacuum between the hammer mill and BU6. Therefore, the ham-
mer mill and BU6 are allocated simultaneously by the scheduling algorithm. The duration
of this step will further be denoted by HA1_TOEV ("toevoeren" is the Dutch translation of
supplying).

The second duration, (2) in Figure 2.9, is the time it takes to switch the sieve of the
hammer mill. This duration is only relevant if the batch requires another sieve size as the
previous batch, and can be performed during waiting time. The sieve switch is automated,
so we do not suspect to see much differences in the sieve switching durations. Since we
focus on only the left hammer mill (HA1), we will also focus on the time to change the sieve
of the left hammer mill (HA1). This duration will be referred to as HA1_ZEEF (the Dutch
word for sieve is "zeef").

After the hammer mills are finished, the bunker beneath it (BU6) will be emptied. The
time to empty the bunker is the third estimated duration, see (3) in Figure 2.9. This duration
is calculated by taking the time the valve of the bunker is open, with four additional seconds
for the deallocation of the hammer mills. This duration will further be denoted by BU6_LOS
("lossen" is the Dutch word for unloading).

While unloading the bunker, the batch falls into the mixer (NM1). The time it takes to
mix the materials of the batch, (4) in Figure 2.9, is obtained by taking the start and stop time
of the mixing phase, further referred to as NM1_step. Note that this duration includes the
time to dose the right amount of liquids from the liquid silos.

The fifth duration, (5) in Figure 2.9, is the time it takes to empty the mixer. There are two
reasons to estimate this duration independently from NM1_step. First of all, the duration to
empty the mixer is more constant than the mixing duration and the durations likely depend
on other variables. Secondly, the valve must wait to open until the bunker beneath it is
empty. So, there might be waiting time in between. The time to empty the mixer is further
referred to as NM1_Los_step.

Since it can take some time to transport a batch to the next destination, another bunker
(BU7) is included so the mixer can already become available for a new batch. When the
transportation of the previous batch finishes, the bunker (BU7) can unload into the trans-
portation system, see (6) in Figure 2.9. The time it takes to become completely empty could
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not be obtained by the unloading step of the bunker, because this happens to be inaccurate.
The difference in the finishing time of the addition of liquids like molasses (MX1) and the
starting time of the transportation equipment is used instead. However, the bunker becomes
earlier available than MX1 finishes. The time that the bunker is earlier available than MX1
was accurately estimated by 11 seconds, and thus we could easily correct for this. The time
it took to empty the bunker (BU7) is further mentioned as MML_AFV_TR ("MML" is the
Dutch abbreviation for the grinder and mixer line, "afvoeren" is Dutch for discharging and
"TR" stands for transportation).

The last duration of GML we would like to estimate accurately is the time it takes to
transport a batch to the next destination, see (7) in Figure 2.9. Off course, this duration
depends on the location of the destination. This duration can only be observed in the data
when the next batch is of another product (if not, the batches are transported continuously),
because plant X has a transportation system that can switch the destination "on the fly"
("vliegend-om" in Dutch). Some orders are called "special", which means, in practice, that
the product cannot be stored in the same place as other orders for the same product. In
general, the reason for becoming special is that there is a (small) change in the recipe, for
example, the addition of medicines. If the order is special, the product is seen as different
from other orders.

If the product of a batch is different from the previous batch, the batch has to wait for the
transportation equipment to become completely empty to avoid mixing. The time it takes
to empty the transportation equipment is calculated by taking the difference between the
finishing time of the transportation equipment and the moment that the bunker (BU7)
becomes empty. As mentioned before, the time at which the bunker becomes empty is given
by the finishing time of MX1 minus 11 seconds. The time to empty the transportation system
is referred to as MML_AFV_TR_NADRAAI ("nadraai" can literally be translated to "after-
wards rotating", which refers to the rotation of a conveyor).

In contrast to the GML, a PL concerns a continuous process. Since we assume that the
transportation to the final product silos is not a bottleneck in the system, the last unit of a
press line that is taken into account in the scheduling algorithm is the cooler. The dead-
lines of the orders are therefore brought forward in the scheduling algorithm to make time
available for the loading of the truck.

The coolers of PL 1, 2 and 4 contain an intermediate floor, with as result that the press
unit can already start before the cooler finishes. Therefore, the cooling durations of these
press lines can be ignored too. Only the cooling duration of PL 3 is relevant because the
press unit of PL 3 has to wait for the cooler to finish.

The pressing duration is calculated by taking the difference between the start and stop
time of the unit procedure of the press unit. This results in four production durations, for
each production line one: PL_PO1, PL_PO2, PL_PO3 and PL_PO4. The production dura-
tion of the cooler at PL 3 is calculated by taking the difference between the stop time of
pressing and stop time of the cooling phase of the cooler. This duration is referred to as
KO3_idle_time.

An overview of all production durations and the current approach of estimating them
are given in Table 2.1. The goal of this research is to accurately estimate these production
durations. Therefore, these production durations are the target variables of this research.
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Target variable Line Description Benchmark estimator

1 HA1_TOEV GML
Production time of
the grinding step.

Median duration per
1,000 kg of last 5
batches of the same
article.

2 HA1_ZEEF GML
Sieve switching
time of a grinder.

Median over all sieve
switching times.

3 BU6_LOS GML
Time it takes to
empty the bunker
under the grinders.

Median duration over
all batches of the same
article plus 4 seconds
to correct for time
between HA1_ZEEF
and BU6_LOS.

4 NM1_step GML
Production time at
mixing unit.

Median duration per
1,000 kg of last 21
batches of the same
article.

5 NM1_Los_step GML

Time it takes to
empty the mixing
unit into the
bunker.

Median over all
batches.

6 MML_AFV_TR GML

Duration to empty
a batch from the
bunker under the
mixing unit.

Median duration per
1,000 kg over all
batches of the same
article.

7 MML_AFV_TR_NADRAAI -

Transport time
from the bunker
under the mixing
unit to destination.

Median duration over
the last 31 batches
with the same
destination.

8
9
10
11

PL_PO1
PL_PO2
PL_PO3
PL_PO4

PL

Production time at
the press unit of
respectively PL 1, 2,
3 and 4.

Robust regression
estimationa to relate
batch size to duration
per article for each
feasible PL.

12 KO3_idle_time PL
Time to empty the
cooler after the
press unit at PL 3.

Median duration of
last 31 batches.

TABLE 2.1: Overview of the different durations to estimate.

ahttps://www.statsmodels.org/stable/generated/statsmodels.robust.robust_linear_model.RLM.

html

https://www.statsmodels.org/stable/generated/statsmodels.robust.robust_linear_model.RLM.html
https://www.statsmodels.org/stable/generated/statsmodels.robust.robust_linear_model.RLM.html
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3 Literature

This section discusses some relevant literature in the estimation of production durations for
scheduling purposes.

Until the late 1990s, the majority of the literature assumed deterministic production du-
rations [5], which are often estimated by taking the average over the production durations
of the same product type. For example, Toso et al. (2009) assume the same production times
per batch for products within the same product family [6].

However, in practice, production durations are typically not constant and, in general, un-
certainty in the production durations makes a scheduling algorithm less accurate. Schedul-
ing under uncertainty is a field of study in which these kinds of uncertainties are taken into
account in the scheduling algorithm. This field can be split by three different descriptions of
the uncertainty: fuzzy scheduling, stochastic scheduling and robust scheduling [5].

In stochastic scheduling, uncertainties like the variability in the production durations
are incorporated in the model by introducing random variables for them. For these random
variables are particular processing time distributions assumed, which should comprehend
the randomness in the production durations. For example, the exponential distribution is
frequently used for this purpose [7].

Robust scheduling focusses on the creation of a schedule which is robust. According to
Goren and Sabuncuoglu (2008), a schedule is robust if its performance "does not significantly
degrade in the face of disruption" [8]. Therefore, robust scheduling aims to find the best
schedule in the worst-case scenario [9].

The last approach in scheduling under uncertainty is fuzzy scheduling. "Fuzzy schedul-
ing is based on the claim that probability distributions cannot be estimated correctly most
of the time and therefore it models the imprecision of input data by using fuzzy numbers
rather than probability distributions" [8]. For example, Yao and Lin (2002) represented job
processing times by interval-valued fuzzy numbers [10].

As mentioned, most literature focusses on the incorporation of the variability in the
scheduling algorithm by using fuzzy, stochastic or robust scheduling. However, relatively
little research has been done to the predictability of this variation of the production dura-
tions.

Most of the research in this area has been done to the effect of deterioration and/or learn-
ing phenomena on production durations, which focusses on the idea that "in many indus-
trial settings, the processing time of a job changes due to either job deterioration over time
or machine/worker’s learning through experiences" [11]. Biskup (1999) firstly introduced
the concept of the learning effect into scheduling problems [12] and Gupta and Gupta (1988)
firstly introduced job deterioration into scheduling [13]. Later, these two phenomena were
combined "because the phenomena can be found in many real-life situations" [11]. For this
purpose, models were created which consist of a mathematical formula that should compre-
hend these phenomena [11].

F. Matsunari et al. (1996) made use of more variables in their "process time estimating
apparatus" [14]. The "process time estimating section" of this apparatus aims to estimate
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the production durations by using a neural network. The apparatus is applied in a metal
die manufacturing plant. First, drawing information (CAD) is transformed into other vari-
ables, e.g., size. After that, these product variables and the machine settings of the current
production step are selected. With this information, a neural network was trained. Every
time a new duration is measured that deviates less than 20% with the predicted value, it
is assumed that this record is not related to a machine failure (or another kind of outlier),
and thus can be used to update the neural network. So this apparatus is designed to keep
learning.

F. Matsunari et al. claim to accurately estimate the production durations in the metal die
manufacturing plant. Therefore, it would be interesting to investigate if a neural network
would also be able to accurately estimate the production durations of the specific industrial
plant of this research.

Neural networks and other machine learning algorithms show many successes in many
industries. Jiang et al. (2017) show an increase in the number of articles about deep learning
in healthcare and disease category on PubMed [15], Spiegeleer et al. (2018) showed how ma-
chine learning could be used for quantitative finance [16], and Antoniou and Koutsopoulos
(2006) estimated traffic dynamics models using machine learning methods [17].

In the industrial manufacturing sector, an increase in the usage of machine learning algo-
rithms can be observed too. This trend is part of the fourth industrial revolution or Industrial
4.0 [18] in which a modernization of the manufacturing industry takes place by adapting
recent advances in the ICT [19]. Fault detection is an example of such a machine learning
application, which is subject of many recent studies [19], [20]. In this context, more and more
data of industrial plants are stored. This offers possibilities for data science.

It would be interesting to not only implement a neural network for the estimation of
the production durations, but also to compare the results with the results of other machine
learning algorithms that already showed good results for other applications, but are not
used for the estimation of production durations in literature before. Note that the study of
F. Matsunari et al. in which neural networks were used, was performed in 1996. Therefore,
it is interesting to see if more recent models are able to outperform the neural network. For
example, LightGBM and XGBoost are models that are often used in on-line machine learning
competitions, for example, Kaggle. "Among the 29 challenge winning solutions published at
Kaggle’s blog during 2015, 17 solutions used XGBoost" [21]. In this research, some modern
and/or frequently used machine learning models will be used and compared. These models
will be described in Section 7.
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4 Data

The data that is used to estimate the production durations, is described in this section. This
section starts with a description of the data collection process. After that, an explanation is
given about which filters are used and how many records are removed because of them.

4.1 Collecting data

All data used for this research is provided by ENGIE Industrial Automation. The data was
obtained by directly querying a SQL-database. There are two databases available: one with a
data dump of 2017 (2016/08/14 – 2017/08/14) and one of 2018 (2017/12/14 – 2018/12/17).
Note that there is a time gap of four months between the first and second database. All
records of both databases belong to the same animal-feed plant; plant X.

There is a lot of data available, and therefore we should be very selective in what to
query at the same time, to prevent memory errors. This resulted in several SQL-queries.
First of all, the orders were obtained. One order contains the information of which article
is produced. From each order, the corresponding production orders can be obtained, which
contain the information of which production lines are used for the production of the article.

After that, all batches at the GML were queried and combined with the production order
information. The same is done for the batches at the PLs.

Finally, all production durations of the batches are queried separately, to which we can
add the batch information of the corresponding production line.

The setpoints were obtained for each production step and are merged with the produc-
tion durations for which the setpoints are relevant. For example, the setpoints of the press
units are relevant for the production durations at the press units (PL_PO1, PL_PO2, PL_PO3
and PL_PO4) and not for the production durations at the hammer mills (HA1_TOEV and
HA1_ZEEF).

The ingredients were obtained the same way as the setpoints. There are three locations
where ingredients could be added in the process (see material inputs in Figure 2.9). The first
is the input of the hammer mills. These ingredients are relevant during the full production
process. In the mixer, other ingredients could be added. Since only the liquid dosing is part
of the mixing duration, only the liquid ingredients are potentially relevant for the predic-
tion of the mixing duration (NM1_step), and all ingredients are potentially relevant for the
production steps after the mixer. Finally, (sticky) ingredients could be added during trans-
portation, which are possibly relevant for the predictions after the transportation; PL_PO1,
PL_PO2, PL_PO3 and PL_PO4.

Since the temperature and humidity may affect the production durations, weather data
for each day between the 14th of August in 2016 and the 17th of December in 2018 was
downloaded from the website of the KNMI1 for the nearest weather station of plant X.

1https://www.knmi.nl/kennis-en-datacentrum/achtergrond/data-ophalen-vanuit-een-script

https://www.knmi.nl/kennis-en-datacentrum/achtergrond/data-ophalen-vanuit-een-script
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4.2 Cleaning batches

Querying all production orders from the database results in 40,832 unique orders and 103,436
unique production orders in the 2017 database, and 40,446 unique orders and 108,521 unique
production orders in the 2018 database, see Table 4.1.

4.2.1 Orders and production orders

To obtain the relevant orders for this research, some filters are applied. First of all, only
orders are selected which contain at least the first step of the GML (the supply to the hammer
mills), because we are not interested in orders that only contain production orders for the
rolling lines and bulk weighers. Approximately a quarter of the orders is removed by this
filter, see Table 4.1.

2017 2018 Total

Filters Orders
Production

Orders
Orders

Production
Orders

Orders
Production

Orders
- 40,832 103,436 40,446 108,521 81,278 211,957
1 29,546 91,478 31,213 98,573 60,759 190,051
2 29,546 90,025 31,213 97,328 60,759 187,353
3 29,540 90,015 31,213 97,328 60,753 187,343
4 29,537 57,201 31,213 61,115 60,750 118,316
5 29,519 57,183 31,199 61,101 60,718 118,284

TABLE 4.1: Overview of the number of (production) orders after applying each filter.

The second filter ensures that all considered production orders contain a minimum of
one finished batch, and the third filter removes orders that were changed after the data
dump date because these orders are considered as unreliable.

Finally, only production orders for the GML and the press lines are selected by applying
the fourth filter. The removed production lines are not relevant to this research. For the sake
of completeness, orders which suggest going to a press line after the completion of the GML
must contain a production order for that press line. This is ensured by the fifth filter.

Applying all filters results in a total of 60,718 orders and 118,284 production orders over
two years of data, see Table 4.1. The 3,502 orders for mash products contain at least one
production order for the GML. The 57,217 orders for crumble and pellet feed contain at least
two production orders: one production order for the GML and one for a press line. There-
fore, the number of production orders of the complete dataset is rough twice the number of
orders in the dataset.

Note that there is one order (3,502+57,217=60,719) which was first produced as mash
product, and then corrected to pellet feed. This order contains, therefore, two production
orders for the GML: one that goes to the end-silos afterwards, and one that goes to the press
lines. Since the first production order was already finished before it was corrected, we could
still use the observations of the production durations of this order.

4.2.2 Batches

Three filters are applied to the individual batches corresponding to the obtained production
orders. The first filter ensures the batches to be finished by selecting completed batches
(state=3). The second filter filters out all rejected batches (rejected=0). The last filter requires
the batch to have a batch size of more than zero kilograms.
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As mentioned, one order corresponds to one or multiple production orders, and one
production order corresponds to one or multiple batches, see Figure 2.5. As mentioned,
the 60,718 orders from 2017 and 2018 can be split into two groups: 3,502 orders belonging
to mash products, and 57,217 orders belonging to crumble and pellet feed. All orders are
produced at the GML. To these 60,718 orders belong 60,749 GML production orders. The
batches are obtained for these production orders, which results in 127,705 GML batches.

The mash products are not produced at the press lines. The 57,217 orders for crumble
and pellet feed correspond to 57,535 press line production orders. The batches are obtained
for these production orders, which results in 57,536 press line batches. Note that the process
at the press line is a continuous process. Therefore, the number of production orders and
batches are approximately the same.

4.2.3 Batch sizes

The batch sizes at the GML are used as a global unit in the scheduling algorithm of ENGIE
Industrial Automation. It is assumed that the requested and produced amount are approxi-
mately the same. However, when something went wrong during the production process, for
example, a significant deviation could occur. Therefore, we require the produced amount of
kilograms to be approximately the same as the requested batch size. To define how similar
the produced amount and requested amount should be, the interquartile range (IQR) rule is
used, which was introduced by J. Tukey in 1977 while he was inventing the boxplot [22].

IQR rule The IQR rule is a rule of thumb for separating outliers from a dataset
by defining some boundaries, called Tukey’s fences [22], between which the data
points are seen as ’normal’ and outside which the data points are seen as ’outliers’.
The IQR rule first defines the interquartile range (IQR), which is equal to the dif-
ference between the first (Q1) and third (Q3) quartile, see Figure 4.1, and therefore
consists of the ’centre’ 50% of the data. Using the IQR, the lower bound is defined
as the first quartile minus k * IQR, and the upper bound as the third quartile plus
k * IQR [22]. Generally, k is set to 1.5 for detecting outliers. The reason for 1.5 is
that when the IQR rule is applied to a standard normal distributed dataset, the per-
centage of the data points that is seen as an outlier is approximately 1%. However,
when there is more variation in the dataset and k=1.5 results in too many outliers,
k is often set to 3, which indicates data that is "far out" [22]. See Figure 4.1 for a
visualization.

FIGURE 4.1: Visualization of a boxplot with outlier boundaries k=1.5 and k=3
based on the IQR rule of J. Tukey [22].

Now, we could calculate the percentage difference between the produced and requested
batch size, which could be seen as some tolerance on the batch size, where 0% means that
the produced and requested amount are the same. The IQR rule could then be used to
separate the ’normal’ tolerances from the outliers, by using k=1.5 because the tolerances are
approximately normal distributed, see Figure 4.2.
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FIGURE 4.2: Histogram of the batch size tolerance: the percentage difference between the
produced and requested batch size.

However, the dosing procedure in plant X could be changed in time, which could change
the batch size tolerance distribution. Therefore, we prefer adapting outlier detection above
the usage of fixed boundaries. An adaptation of the IQR rule of J. Tukey is introduced in
this research to accomplish this, which is called the windowed IQR rule. In this method,
the IQR rule of J. Tukey is applied in a ’windowed’ fashion. The next batch, say batch A, is
detected as outlier if it is detected as outlier by the IQR rule, in which only the most recent
B batches are taken into account that were produced up and until batch A. In this way, the
outlier boundaries respond to changes in the underlying distribution that can occur over
time.

For the selection of this window size B, the numbers 50, 100, 500, 1,000, 5,000, 10,000,
50,000, 100,000 and the total number of batches (127,705) were tested, and the value was se-
lected with the least number of detected outliers. This approach is taken to limit the number
of filtered out batches and to select the window that best ’follows’ the distribution of the
data points over time. This resulted in the choice of a window size of 10,000 batches, which
marks 1,578 batches (1.24%) as outliers. Figure 4.3 shows the tolerance of all batches in the
dataset, sorted by their starting date. The tolerances that are marked as outliers by the IQR
rule are visualized as red dots, and the accepted tolerances by blue dots.

FIGURE 4.3: Batch size tolerance defined as the percentage difference between the produced
and requested batch size of GML batches, marked as outlier or not.

As we assume the produced and requested amount to be approximately the same, the
detected outliers are removed from the dataset. This results in 126,127 GML batches which
belong to 60,306 orders. The resulting histogram of the tolerances is shown in Figure 4.2.
Figure 4.2 shows three peaks: one at 0%, one at 1% and one at 2.5%. An explanation can be
found in the three product types, see Figure 4.4.
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The centre histogram of Figure 4.4 shows the distribution of the batch size tolerance of
mash products, which happens to be located around 0%, which means that approximately
the same amount was produced as requested.

The produced amount of crumble products is approximately between 1 and 2.5% more
than the requested amount, see the left histogram of Figure 4.4. Finally, the pellet products
have the highest batch size tolerance, of approximately 2.5%, see the right histogram of Fig-
ure 4.4. These percentages suggest that more product is produced than requested. However,
this is the result of additional liquids, e.g., water, which evaporates at the press line when
the product is heated.

FIGURE 4.4: Difference between produced and requested batch size in percentages of batches
at the GML, filtered per article type.

The final remaining number of batches per production line are shown in Figure 4.5. Note
that these batch size filters are only applied on the GML batches because the GML batches
are the used unit in the scheduling algorithm. The estimation of future PL batches will
be performed by the summation of the corresponding GML batches because pressing is
a continuous process. Therefore, no such filter is applied to the PL batches. This results
in differences in the number of orders at the GML going to the press lines and the orders
produced at the press lines.

FIGURE 4.5: Orders per production line.

In addition, remember the single order that was first used for the production of mash,
and after that was corrected to produce pellet feed. This single order corresponds with the
difference of one GML order in the first (60,306) and second step (3,484+56,823=60,307) in
the flow diagram shown in Figure 4.5.
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4.3 Cleaning production durations

For each batch, the production durations can be obtained by looking at the start and end
times of the individual production steps. This results in a distribution of durations for each
target variable that is listed in Table 2.1. The final cleaning filters are used to filter out
’abnormalities’ in these observed durations of each individual target variable.

First of all, it could happen that, for example, an error occurs during the production
process which could not be solved immediately. Such events could result in very long du-
rations. However, the goal of this research is to predict the production durations for the
scheduling algorithm, which optimizes the schedule for a ’normal’ situation. When some-
thing happens, the scheduler could rerun the algorithm after solving the issue, to obtain a
new optimized schedule. Therefore, the outliers, mostly occurring above the mean value,
should be filtered out.

The shape of the production duration distributions could change over time. For example,
when a new article is created which requires some other machine settings which influence
the production duration. Therefore, the outlier detection should be able to understand the
difference between outliers and the change in the distribution. For this, the IQR rule of J.
Tukey [22] (Paragraph 4.2.3) could be used again in a windowed fashion. However, the
distributions are overall very right-skewed, and therefore it was decided to use a lower
bound of k=1.5 and an upper bound of k=3 in the IQR rule, which limits the number of
detected outliers.

For the selection of the window size the values 50, 100, 500, 1,000, 5,000, 10,000, 50,000,
100,000 and the total number of batches (126,127) are tested. The value with the least num-
ber of detected outliers is chosen because this window size is likely the best fit for the dis-
tribution of the data points over time. However, this does not guarantee the best-selected
window size. Therefore, the detected outliers are checked visually, so the selected window
size could be changed if needed. The same window size can be used for future batches.
However, it is important to keep monitoring which batches are detected as outliers, in or-
der to prevent undesirable changes in filtered batches. This could, for example, be done by
notifying experts when a significant increase in the number of detected outliers occurs.

Secondly, the setpoints (machine settings) of batches could be changed during the pro-
duction step. However, the final model needs to predict the duration before the production
step starts, for which the influence of setpoint values of changed batches is not completely
representative. Therefore, all batches of which the setpoints are changed after the produc-
tion step started are filtered out. This is done by looking at the batch related events.

4.3.1 Production durations at grinder-mixer line

The filters are applied to all target durations of the GML. In this way, the target-specific data
is obtained which is used to estimate the corresponding durations.

HA1_TOEV

The first target variable is HA1_TOEV, which represents the duration of the supplying and
mixing phase of the first hammer mill. Since not always the first hammer mill is used, for
example, because of a machine failure, not all GML batches have an observation for this
duration. The number of batches with an observation of HA1_TOEV is 125,732 (99.6%).
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(A) Violin chart which shows the correlation
between the (produced) batch size and the
HA1_TOEV duration. Each violin shows the
shape of the distribution and the total area
of the violin indicates the number of data

points.

(B) Distribution of the HA1_TOEV dura-
tions per 1,000 kg per sieve size.

FIGURE 4.6: Figures showing correlations between the HA1_TOEV durations and the batch
size and the sieve size.

Since the HA1_TOEV duration depends a lot on the batch size and the sieve size, see
Figure 4.6, it was decided to apply the windowed IQR rule on the production duration per
1,000 kg per sieve size, instead of the total production duration. The window size with the
smallest number of detected outliers was found to be 10,000 for a sieve size of 2.5 mm, the
total history for a sieve size of 3 mm (49,906 batches), and 50,000 batches for a sieve size of 5
mm. This results in 4,998 detected outliers (3.97%). These outliers and the other data points
are shown in Figure 4.7.

FIGURE 4.7: HA1_TOEV durations sorted by start date, marked as outlier or not.

The outlier filtering results in 120,734 batches with an observation for the HA1_TOEV
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duration. From these batches, the batches with a change in the setpoints (the start or max-
imum capacity of the supply conveyor, the power of the supply conveyor, the speed of the
mixer and the sieve size) after the start time are filtered. This filter removes another 207
observations, resulting in 120,527 batches.

(A) Total production duration. (B) Duration per 1,000 kg.

FIGURE 4.8: The distribution of the HA1_TOEV durations after applying filters.

The Figures in 4.8 show the final distributions of both the HA1_TOEV total durations
(Figure 4.8A) and the durations per 1,000 kg (Figure 4.8B) of the 120,527 remaining batches.
The duration per 1,000 kg ranges from approximately 31 seconds to 178 seconds with a mean
value of 67.8 seconds. This results in a range of 48 seconds to 793 seconds (13.2 minutes) for
the total HA1_TOEV duration, with a mean value of 276 seconds (4.6 minutes).

HA1_ZEEF

The second target variable is HA1_ZEEF, which represents the duration of switching the
sieve of the hammer mill. When we filter the 126,127 GML batches on the occurrence of a
sieve switch and a duration of at least 5 seconds (the maximum time to register that no sieve
switch is needed), 44,897 batches (35.6%) are left.

FIGURE 4.9: HA1_ZEEF durations sorted by start date, marked as outlier or not.

By applying the windowed IQR rule, 1,434 observations of the HA1_ZEEF durations
(3.19%) are classified as an outlier, based on a selected window size of 1,000 batches. The
markings of the HA1_ZEEF durations sorted on start date are shown in Figure 4.9. Around
batch 10,000, the durations shift from approximately 78 seconds to 73 seconds, which results
in approximately 250 wrongly detected outliers. In addition, around batch 15,000 many
red dots are present in Figure 4.9, which are the result of very consistent sieve switching
durations of 72 and 73 seconds (more than 50%). The consistent durations result in an IQR
of 1 second, and therefore in a lower bound of 70.5 seconds and upper bound of 76 seconds.
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FIGURE 4.10: Remaining HA1_ZEEF durations plotted over time.

Removing the outliers results in the durations shown in Figure 4.10. Figure 4.10 shows
also the need for a windowed-based outlier detection method because the median duration
switches from approximately 78 to 73 seconds after the 1th of January in 2017. Note that
there is a time gap of approximately 4 months between the first and second data dump
(2017/08/15 – 2017/12/13). The change in the median value happens to be related to a
replacement of an element of the sieve switching equipment.

Finally, the sieve size should not be changed after the sieve switching procedure started.
However, this filter has no effect on the remaining batches. The final HA1_ZEEF dura-
tions range from 68 seconds until 127 seconds. The maximum duration of 127 occurs in
the beginning, when not enough data was known to detect this maximum as outlier. After
approximately 70 batches ranges the data from 68 until 87 seconds.

BU6_LOS

The third target variable is BU6_LOS, which represents the duration to empty the bunker
under the hammer mills. This duration is measured for all 126,127 GML batches. Again, the
windowed IQR rule is applied.

FIGURE 4.11: BU6_LOS durations sorted by start date, marked as outlier or not.

The window size that was selected for the windowed IQR rule is 500 batches, which was
selected because it resulted in the least number of detected outliers. The results are shown
in Figure 4.11, which shows the markings of the durations sorted by start date. Note that
again a windowed outlier detection method was needed because the median value changes
over time, which is probably due to the change in some machine setting that is not batch
related.

By applying the windowed IQR rule, 1,805 batches (1.43%) were removed from the ob-
servations. Therefore, 124,322 observations are left, which range from 22 until 72 seconds,
see Figure 4.12.
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FIGURE 4.12: Remaining BU6_LOS durations plotted over time.

NM1_step

The fourth target variable is NM1_step, which represents the duration for mixing the ingre-
dients in the mixer and adding liquids to it. This duration is measured for all 126,127 GML
batches.

First of all, the windowed IQR rule was applied to remove the outliers from the data.
The window size that was found to detect the least amount of outliers was the full history
(126,127 batches). In this case, 9,100 batches (7.2%) were detected as outliers. See Figure 4.13
for the visualization of the classification of the windowed IQR rule with a window size of
126,127 batches.

FIGURE 4.13: NM1_step durations sorted by start date, marked as outlier or not.

Secondly, all batches with a change in setpoints at the mixing unit after the production
step has started should be removed. However, this filter has no effect because there are no
changes made in the remaining batches after their start date.

Figure 4.14 shows a histogram of the final 117,027 NM1_step durations. The observa-
tions range from 60 until 251 seconds, with a mean value of 121.6 seconds.

FIGURE 4.14: Histogram of the remaining NM1_step durations.



Chapter 4. Data 26

NM1_Los_step

The fifth target variable is NM1_Los_step, which represents the duration to empty the bunker
under the mixing unit. Again, 126,127 observations are available of which the outliers need
to be removed.

The selected value for the window size in the windowed IQR rule is 500 batches, which
results in 463 outliers (0.37%). Figure 4.15 shows which mixing durations are detected as
outliers and which not.

FIGURE 4.15: NM1_Los_step durations sorted by start date, marked as outlier or not.

The resulting 125,664 observations are shown in Figure 4.16. Again, the importance of a
windowed outlier detection method becomes clear since a shift in the durations occurred on
the 13th of February in 2018. Before this moment the mean emptying duration of the mixer
was 20.4 seconds and after this moment 26.3 seconds. Probably a non-batch related machine
setting was changed on that day, which negatively influenced the durations.

FIGURE 4.16: Remaining NM1_Los_step durations plotted over time.

MML_AFV_TR

The sixth target variable is MML_AFV_TR, which represents the duration to empty the
bunker under the mixing unit. Since this transportation step includes a screw conveyor,
the duration is strongly correlated with the batch size. This can also be observed in Figure
4.17, which shows a higher duration for bigger batch sizes.
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FIGURE 4.17: Violin chart which shows the correlation between the (produced) batch size and
the MML_AFV_TR duration. Each violin shows the shape of the distribution and the total area

of the violin indicates the number of data points.

Therefore, the windowed IQR rule is applied to the duration per 1,000 kg, instead of
the total duration. The selected window size resulting in the smallest number of detected
outliers is 1,000 batches, which detected 2,534 outliers (2.00%).

FIGURE 4.18: MML_AFV_TR durations sorted by start date, marked as outlier or not.

The second filter filters out all batches with a change in setpoints (the speed of the screw
conveyor) after the bunker started emptying. This filter removes 79 batches.

Finally, 123,513 batches are left for the estimation of the MML_AFV_TR durations. The
histograms of the MML_AFV_TR durations and the durations per 1,000 kg are shown in
Figures 4.19A and 4.19B, respectively.

(A) Total production duration. (B) Duration per 1,000 kg.

FIGURE 4.19: The distribution of the MML_AFV_TR durations after applying filters.
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The remaining observations range from 85 seconds (1.42 minutes) until 570 seconds (9.5
minutes). The mean value is 220.46 seconds (3.67 minutes). The duration per 1,000 kg is
found to be between 31.1 seconds and 126.8 seconds, with a mean value of 57.4 seconds.

MML_AFV_TR_NADRAAI

The last target variable of the GML is MML_AFV_TR_NADRAAI, which represents the du-
ration to transport the final product of the GML to its destination: an end-silo or an input
cell of a press line. As mentioned in the Preliminaries (Section 2), the transport duration
can only be observed from the last batch of the same (special) article. Removing unusable
batches results in 69,197 batches (54.86%). Since the MML_AFV_TR_NADRAAI durations
strongly depend on the destination, the windowed IQR rule will be applied for each desti-
nation separately.

There are 13 different destinations observed in the dataset: 5 end-silos and 8 input cells
for the press lines (two per press line). However, 3 end-silos occur only a few times: E-362
and E-384 occur 2 times and E-42 occurs 3 times.

The window size of the windowed IQR rule was also fitted for each destination sepa-
rately, see Figures 4.20 and 4.21. This results in the window sizes and corresponding outlier
percentages shown in Table 4.2. There are 67,492 remaining batches after filtering the out-
liers (2.46%).

FIGURE 4.20: MML_AFV_TR_NADRAAI durations with an end-silo as destination sorted by
start date, marked as outlier or not.
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FIGURE 4.21: MML_AFV_TR_NADRAAI durations with an input cell of a press line as desti-
nation sorted by start date, marked as outlier or not.
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Destination
Number of

observations
Window size

Outliers
percentage

Number of remaining
observations

E-362 2 2 0% 2
E-364 2,298 500 0.96% 2,276
E-382 1,579 500 1.01% 1,563
E-384 2 2 0% 2
E-42 3 3 0% 3
P-1A 8,576 50 2.85% 8,332
P-1B 8,382 50 2.05% 8,210
P-2A 7,819 50 3.16% 7,572
P-2B 7,676 100 2.70% 7,469
P-3A 7,971 50 2.26% 7,791
P-3B 7,816 50 2.69% 7,606
P-4A 8,587 50 2.68% 8,357
P-4B 8,486 50 2.09% 8,309

TABLE 4.2: Results of the windowed IQR rule per destination.

4.3.2 Production durations at press lines

The next target variables take place at the press lines. The durations at the press units are
handled differently from the previous target variables at the GML. The reason is that press-
ing is a continuous process. The pressing durations compose of a warm-up period (and
cool-down period), further denoted as period A, and a period of maximal power of the
press unit or supply, further denoted as period B, see Figure 4.22.

FIGURE 4.22: Abstract visualization of periods A and B.

Interrupting the press line results in an extra warm-up period, and is therefore slower.
This knowledge is used in the scheduling algorithm by splitting the total pressing duration
in periods A and B. When a new schedule is made, the pressing duration starts with period
A, followed by multiplying the batch size with the estimated speed in period B. Therefore,
the estimation of the press unit target variables (PL_PO1, PL_PO2, PL_PO3 and PL_PO4)
made in this research should contain both an estimation of period A (intercept) and an esti-
mation of the speed in period B (slope).
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How long the warm-up period takes is defined by the adjustment characteristic (’opregel-
karakteristiek’ in Dutch). One adjustment characteristic is composed of multiple settings,
like the starting speed and the incremental speed that is added each number of seconds that
is specified. Five possible adjustment characteristics can be used for the press line batches.
The idea of an adjustment characteristic is that the operator could choose one of the charac-
teristics instead of tuning all underlying settings.

By definition, the impact of an adjustment characteristic can change over time when the
underlying settings are changed. However, the underlying settings are only available for
the last three months of the dataset, and the adjustment characteristics themselves for the
full dataset. Therefore, only the adjustment characteristics are used in this research.

To find the effect of an adjustment characteristic, a robust regression model is used. The
model fits a robust regression line per adjustment characteristic to the pressing durations
by using the batch sizes as a variable. The intercept of this regression line represents the
warm-up period and the slope, the coefficient of the batch size, represents the speed during
period B. To track differences in period A when the adjustment characteristic changes, the
robust regression model is fitted per adjustment characteristic in a windowed fashion. More
details of the robust regression model are given in Section 7.

In this research, the assumption is made that the adjustment characteristic determines
the warm-up period. This assumption is important because it makes it possible to split
periods A and B beforehand. Dropping this assumption would create the complexity of
fitting both period A and the speed in period B without having the real value of periods
A and B, but only the total pressing duration. By eliminating period A by assuming the
intercept proposed by the robust regression model per adjustment characteristic is right, a
machine learning model could be used relatively easily to predict the newly created target:
the production duration minus period A divided by the batch size, which could be seen as
the assumed ’real’ speed in period B, see Table 4.3. Figure 4.23A shows (almost) parallel
fitted robust regression lines for the different adjustment characteristics, which confirms the
reasoning behind the assumption.

(A) Fitted robust regression per adjustment
characteristic.

(B) Estimated values for the warm-up period with
window size = 1,000 batches.

FIGURE 4.23: The adjustment characteristics of PL 3 durations using both press units.

The windowed robust regression method for determining period A of different adjust-
ment characteristics was used for all press lines and each combination of used press units.
So for PL 1 press unit A, press unit B and both press units, for PL 2 the single press unit, for
PL 3 one and two press units (in parallel) and PL 4 press unit B and both press units. As
mentioned, a windowed fashion is used. This is done by only looking at maximal B previ-
ous batches for fitting the robust regression line to the data of an adjustment characteristic.
For B were the following values tested: 50, 100, 500, 1,000, 5,000, 10,000 and the size of the
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dataset. The value 1,000 (or the total size if that is smaller than 1,000) was selected for each
fit, which was chosen by visual comparison of the intercepts over time. Selecting less than
1,000 batches as window size results in discontinuity, which indicates uncertainty in the esti-
mation of period A. Figure 4.23B shows the estimated warm-up periods of the batches at PL
3 which use both press units. The approximately horizontal lines show that the adjustment
characteristics are not frequently changed for PL 3.

Target duration Period A variable
Speed period B variable

(assuming period A is correct)

PL_POi PL_POi_intercept PL_POi_slope = PL_POi − PL_POi_intercept
batch size (1,000 kg)

TABLE 4.3: Separated target variables of the pressing duration of press line i, which is used
for the estimation of the targets variables PL_PO1, PL_PO2, PL_PO3 and PL_PO4.

For the outlier removal, the same approach is used as at the GML. First, the outliers are
found by applying the windowed IQR rule (Paragraph 4.2.3) to the batches, in which again
the lower bound is defined by 1.5 ∗ IQR and the upper bound by 3 ∗ IQR. In the case of
the pressing durations, this method was applied to the assumed ’real’ speeds of period B,
which are shown in Table 4.3. Secondly, the batches were removed that contain changes in
setpoints after the start of the production step.

PL_PO1

The eighth target variable of this research is PL_PO1, which represents the duration at the
press units of PL 1. Previously was described how the estimation of period A, PL_PO1_intercept,
was made. By assuming these estimations are correct, the assumed ’real’ speed in period B,
PL_PO1_slope, could be analysed. There are 15,308 batches available at PL 1: 312 batches
using both press units, 1,634 using only press unit A and 13,362 using only press unit B.

The outliers are detected for PL_PO1_slope by applying the windowed IQR rule to the
PL_PO1_slope values per press unit combination. This results in 102 outliers at press unit
A (6.24%), 172 at press unit B (1.29%) and 15 at both press units (4.81%), by using each
full history as the window size. See Figure 4.24 for a visualization of which PL_PO1_slope
values are defined as outliers and which not.
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FIGURE 4.24: PL_PO1_slope values sorted by start date, marked as outlier or not.

After filtering the detected outliers, 15,019 batches are left (98.11%). From these remain-
ing batches are the batches removed which contain changes to the setpoints while the press
unit already started pressing, which are 409 batches (2.72%). Removing them results in
14,610 final batches. The histogram of the speed of the 14,610 final batches at PL 1 is shown
in Figure 4.25.

FIGURE 4.25: Final histogram of PL_PO1_slope.

PL_PO2

The ninth target variable is PL_PO2, which represents the duration at the press unit of PL 2.
As before, this target is split into period A, PL_PO2_intercept, and in the speed in period B,
PL_PO2_slope. PL_PO2_slope will be estimated by the models created in this research.
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PL 2 contains only one press unit, at which 13,875 batches are produced. Detecting out-
liers results in 364 outliers (2.62%), with a window size of 500 batches. Figure 4.26 shows
these outliers and the other values in a sequence.

FIGURE 4.26: PL_PO2_slope values sorted by start date, marked as outlier or not.

Filtering the batches with changes after the press unit started pressing results in the
removal of 455 batches. The final dataset for the estimation of the speed at press line 2
contains 13,056 batches. The histogram of the PL_PO2_slope values is given in Figure 4.27.
It shows two peaks, which are further investigated in Section 6.

FIGURE 4.27: Final histogram of PL_PO2_slope.

PL_PO3

The tenth target variable is PL_PO3, which represents the duration at the press units of PL
3. Again, the same procedure is followed as for the other press lines.

There are 12,028 batches available for the estimation of PL_PO3_slope. 11,396 batches
(94.75%) use two press units in parallel and 632 batches (5.25%) use only one press unit. By
applying outlier detection, 389 batches were defined as an outlier by the use of two press
units (window size = 5000), and 18 batches by the use of a single press unit (window size =
full history). Figure 4.28 shows which values of PL_PO3_slope were defined as outliers and
which not.
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FIGURE 4.28: PL_PO3_slope values sorted by start date, marked as outlier or not.

Outlier removal results in 11,621 batches (96.6%). Besides, the batches with a change
in setpoints after the start date are removed. The final 11,336 batches are used to estimate
PL_PO3_slope, of which a histogram is shown in Figure 4.29.

FIGURE 4.29: Final histogram of PL_PO3_slope.

Note that the speed while using two parallel press units is approximate twice the speed
while using only one press unit. This explains the shape of Figure 4.29.

KO3_idle_time

The eleventh target variable is KO3_idle_time, which represents the cooling duration after
the press units at PL 3. The KO3_idle_time durations can be observed for all PL 3 batches,
which are 12,028 batches. Again, the windowed IQR rule is applied for the detection of
outliers in the dataset. The results are shown in Figure 4.31, for a window size of 500. In
contrast to the earlier selected window sizes was this selection not the one with the least
number of detected outliers: 529 outliers with window size 500, and 527 outliers with a
window size of the full history. The reason is that using a bigger window size results in a
bigger IQR, because of the bigger variance in the cooling durations at the beginning of the
dataset, which resulted in fewer detected outliers, see Figure 4.30. Since we want the outlier
detection method to ’follow’ the shape of the data over time, the window was set to 500,
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which is the second window size with the fewest outliers. A window size of 500 results in a
better visual fit, see Figure 4.31 compared to Figure 4.30.

FIGURE 4.30: KO3_idle_time durations sorted by start date, marked as outlier or not, based
on a window size of the full history.

FIGURE 4.31: KO3_idle_time durations sorted by start date, marked as outlier or not, based
on a window size of 500 batches.

Since there are no setpoints of the cooler available that could be changed after the cooling
step started, the second filter does not affect. After removing the outliers, 11,499 batches are
left, which are shown over time in Figure 4.32. The data ranges from 56 seconds to 597
seconds (9.95 minutes), with a mean value of 180 seconds (3 minutes).

FIGURE 4.32: Remaining KO3_idle_time durations plotted over time.

PL_PO4

The last target variable is PL_PO4, which represents the duration at the press units of PL
4. This press line contains two press units: A and B, of which B is always used. Therefore,
there are two possibilities: using press unit B, or both. Historically, 6,662 batches are using
only press unit B, and 9,663 batches using both press units.

For the outlier detection of the batches using only press unit B is a window size of 1,000
used, and for the batches using both press units a window size of the full history. This
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resulted in 160 outliers using press unit B (2.40%) and 184 outliers using both press units
(1.90%). The batches are shown in sequence in Figure 4.33, in which the colour indicates if
the PL_PO4_slope value is classified as an outlier or not.

FIGURE 4.33: PL_PO4_slope values sorted by start date, marked as outlier or not.

The outliers are removed from the PL_PO4 observations, which results in 15,981 remain-
ing batches (97.89%). Another 268 batches were removed because they contained changes
after the production step was started.

The final dataset, which is used to estimate the PL_PO4 durations, contains 15,713 batches
in total. The histogram of the assumed ’real’ speed values is shown in Figure 4.34.

FIGURE 4.34: Final histogram of PL_PO4_slope.
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5 Feature engineering

In the previous section, the collected dataset was described and the outliers were removed.
The variables that will be used in the models, commonly called features, are described in this
section. These features can be split into seven groups: batch size, time, setpoints, ingredi-
ents, weather, articles and storage unit related features.

5.1 Batch size

The first group that is used to estimate the production durations are the batch-size-related
features, see Table 5.1. The production durations are assumed to be related to the produced
amount, which results in the first feature bookProducedKg. Since the produced amount is
not known in advance, but only the requested amount, it would make sense to use the
requested amount as an indicator for the produced amount. However, the batch size of the
GML is used as a global unit in the scheduling algorithm. Therefore, this research focuses on
the produced amounts instead of the requested amounts in the estimation of the production
durations. For future predictions, the produced amount could be estimated by, for example,
multiplying the requested batch size at the GML with 1.025 for pellet products and with 1.01
for crumble products, as mentioned in Section 4.2.3. The produced amount at the press lines
will then be the summation of the estimated produced amounts of the GML batches.

Feature name Database name Description
bookProducedKg bookProducedKg Produced batch size (in kg).

kgLiquids deliveredAmountKg
Amount of dosed liquids at
the mixer (in kg).

TABLE 5.1: Features based on the batch size.

In addition, the amount of dosed liquids is included as feature kgLiquids. The NM1_step
durations consist of a mixing phase and a liquid dosing phase by definition. The amount of
dosed liquids is assumed to be related to the liquid dosing duration.

5.2 Time

The second category of features contains time-based features. These features are created to
comprehend the time, so the model could use them to find some trends in time. The features
are shown in Table 5.2.
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Feature name Description Value range

dayNr
Time since first observation in

dataset, expressed in days.
Positive float

year Year of observation. Positive integer
month Month of observation. (1, ..., 12)

dayOfMonth Day of month. (1, ..., 31)
dayOfWeek Weekday. (Monday=0, ..., Sunday=6).

season Season of the year.
(winter=1, spring=2,

summer=3, autumn=4)

TABLE 5.2: Time features.

The first feature is dayNr, which indicates how many days past since the first observation
of the production duration. This feature is introduced to capture information on when the
production duration occurred in time. The year and month features could help the model
to understand yearly and monthly patterns. The same holds for the features dayOfMonth,
dayOfWeek and season for respectively inner monthly, inner weekly and seasonal patterns.

5.3 Setpoints

The setpoints are used to define the batch related settings of the machines. Since the machine
settings directly influence the production durations, this information should be given to the
model.

5.3.1 Hammer mill

The first setpoints are from the hammer mill (HA1). Table 5.3 lists the features and gives a
description of them.

Feature name Setpoint name (Dutch) Description

HA1_supplyStartCapacity
HA1_TOEV

Start capaciteit doseerrol

Start capacity of the supply
conveyor of HA1 (in
percentages).

HA1_supplyMaxCapacity
HA1_TOEV

Max. capaciteit doseerrol

Maximum capacity of the
supply conveyor of HA1 (in
percentages).

HA1_supplyPower
HA1_TOEV

Gewenst vermogen
Desired power of the supply
conveyor of HA1 (in kW).

HA1_grindingSpeed
HA1_MAAL

Gewenst toerental

Desired grinding speed of
HA1 (in
revolutions/minute).

HA1_sieveSize
HA1_ZEEF

Gewenste zeefmaat
Desired sieve size of HA1 (in
mm).

HA1_sieveSwitch
HA1_ZEEF

Gewenste zeefmaat

Previous sieve size of HA1
(in mm) to current sieve size
of HA1 (in mm).

TABLE 5.3: Features based on the setpoints of the hammer mill.
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The desired sieve size (HA1_sieveSize) determines the maximum size of the materials
after the grinding step. To grind the materials, the hammers need to rotate with a certain
speed (HA1_grindingSpeed) for which the hammer mill needs power.

The supply conveyor, which doses the amount of material that goes into the hammer
mill, determines the start of the HA1_TOEV duration. The supply conveyor starts with
a certain start capacity (HA1_supplyStartCapacity), which is increased until the maximum
capacity of the supply conveyor (HA1_supplyMaxCapacity) or the maximum power of the
hammer mill (HA1_powerSupply) is reached. The supply conveyor stops when the material
detector detects the hammer mill to be empty.

Finally, a feature HA1_sieveSwitch is created to keep track of the previous compared to
the current sieve size. This is used to determine what kind of switch was made during the
HA1_ZEEF durations.

5.3.2 Mixer

The NM1_step durations compose of the mixing duration and the liquid dosing duration.
The mixing duration NM1_totalMixDuration can be created by the sum of the dry and wet
mixing durations, which are defined in the setpoints of the batches produced at the mixer.

Feature name Setpoint name (Dutch) Description

NM1_totalMixDuration
NM1_Droge_Mengtijd

+ NM1_Natte_Mengtijd

Total mixing duration: sum
of dry and wet mixing
duration (in seconds).

TABLE 5.4: Features based on the setpoints of the mixer.

5.3.3 Screw conveyor

How long it takes to empty BU7, the bunker beneath the mixer depends on the speed of the
screw conveyor. Therefore, a feature is created of this setpoint, see Table 5.5.

Feature name Setpoint name (Dutch) Description

BU7_speedScrewConveyor
BU7_Los

Snelheid_schroef

Speed of screw conveyor (in
percentage of maximum
speed).

TABLE 5.5: Features based on the setpoints of the screw conveyor of BU7.

5.3.4 Press units

Since the press lines differ slightly from each other, not all setpoints exist on every press line.
Therefore, the created features will be described per press line.

The setpoint related features that are present at PL 1 are shown in Table 5.6. This press
line contains two press units in series. The features PO1A_usePress and PO1B_usePress indi-
cate which press units are used to press the batch. Of these press units the desired power
is given by PO1A_pressPower and PO1B_pressPower, respectively. Note that missing values
are created for the features that are specific for a press unit if the press unit is not used for
the production of the batch. When the materials are relatively ’difficult’ to press, the power
of the press is the bottleneck of this production step. However, when the materials are rela-
tively ’easy’ to press, the power of the press is not the bottleneck but the maximum capacity
of the supply conveyor (PO1_supplyCapacity) is. It is not uncommon that during one batch
the bottleneck shifts between the maximum power and the maximum supply.
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Feature name Setpoint name (Dutch) Description

PO1_supplyCapacity
PO1_TOEV

Capaciteit toevoer

Maximum capacity of the supply
conveyor of PL 1
(in kg/second).

PO1_temperature
PO1_SDOS

Gewenste temperatuur
Desired temperature of pressing
(in Celsius).

PO1A_usePress
PO1_PO_1A

Pers gebruiken
Use press unit A (Yes=1, No=0).

PO1B_usePress
PO1_PO_1B

Pers gebruiken
Use press unit B (Yes=1, No=0).

PO1A_pressPower
PO1_PO_1A

Gewenste vermogen pers
Desired power of press unit A (in
kW).

PO1B_pressPower
PO1_PO_1B

Gewenste vermogen pers
Desired power of press unit B (in
kW).

PO1A_smearingOffset
PO1_PO_1A

Versmeer offset pers

Offset of how much smearing is
allowed at press unit A (in kW). If
the offset is exceeded the supply is
automatically reduced.

PO1B_smearingOffset
PO1_PO_1B

Versmeer offset pers

Offset of how much smearing is
allowed at press unit B (in kW). If
the offset is exceeded the supply is
automatically reduced.

TABLE 5.6: Features based on the setpoints of PL 1.

It is known that different variables have effect in the two scenarios. For example, the
temperature (PO1_temperature) and the ingredient composition do have a direct impact on
the pressing speed when the maximum power is reached because these variables contain
information on how ’easy’ it is to press the materials. However, when the maximum supply
is reached, improving the circumstances of the press unit does not relate to faster pressing,
because it is not the bottleneck.

Finally, ’smearing’ could happen during pressing, which means that materials accumu-
late inside the pellet mill. See Figure 5.1 for a visualization of a pellet mill. When this
happens, and the offset is exceeded (PO1A_smearingOffset or PO1B_smearingOffset), the sup-
ply is reduced. This kind of relationships should be recognized by the model proposed in
this research.

FIGURE 5.1: Ring die of pellet mill: 1-ring die; 2-gear; 3-crushed material; 4-material input;
5-die; 6-roller; 7-cutter; 8-pellet compressing hole; 9-pellet. [23], [24]

The second press line, PL 2, has only one press unit. Similar to PL 1, PL 2 has features for
the maximum capacity (PO2_supplyCapacity), the temperature (PO2_temperature), the power
of the press (PO2_pressPower) and the smearing offset (PO2_smearingOffset), see Table 5.7.
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On top of that, PL 2 has a BOA, which could be used. PO2_useBOA determines if the BOA
is used or not. When it is used, it starts with an opening of PO2_BOAStartSize millimetres,
which is increased until the final opening size is reached. The final opening size has never
been changed in plant X and is therefore not used as a feature. Since the BOA has a maximal
power, PO2_BOAPower, the BOA could be another bottleneck for PL 2.

Feature name Setpoint name (Dutch) Description

PO2_supplyCapacity
PO2_TOEV

Capaciteit toevoer
Maximum capacity of the supply
conveyor of PL 2 (in kg/second).

PO2_temperature
PO2_SDOS

Gewenste temperatuur
Desired temperature of pressing (in
Celsius).

PO2_pressPower
PO2_PO

Gewenste vermogen pers
Desired power of the press unit (in
kW).

PO2_smearingOffset
PO2_PO

Versmeer offset pers

Offset of how much smearing is
allowed at the press unit (in kW). If
the offset is exceeded the supply is
automatically reduced.

PO2_rollingDistance
PO2_PO

Rolafstand
Rolling distance of press unit (in mm).

PO2_useBOA
PO2_BOA

Voorverdichten
Use BOA (Yes=1, No=0).

PO2_BOAStartSize
PO2_BOA

Start opening spleet
Start opening of BOA (in mm).

PO2_BOAPower
PO2_BOA

Gewenst vermogen BOA
Desired power of BOA (in kW).

TABLE 5.7: Features based on the setpoints of PL 2.

The last difference between PL 2 and PL 1 is the feature PO2_rollingDistance. This feature
defines the distance between the rollers and the die of the pellet mill, see Figure 5.1. For PL
1, this setpoint is not optional, but for PL 2 it is.

PL 3 is different from the other press lines; it has two parallel press units. This results
in two different setpoints for the temperature (PO3A_temperature and PO3B_temperature)
and supply capacity (PO3A_supplyCapacity and PO3B_supplyCapacity), see Table 5.8. Nor-
mally both press units are used simultaneously. However, it is possible that one of them
is not available, for example, because it is broken, which is then indicated by the features
PO3A_usePress and PO3B_usePress.
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Feature name Setpoint name (Dutch) Description

PO3A_usePress
PB3_VUL

Pers A gebruiken
Use press unit A
(Yes=1, No=0).

PO3B_usePress
PB3_VUL

Pers B gebruiken
Use press unit B
(Yes=1, No=0).

PO3A_supplyCapacity
PO3A_TOEV

Capaciteit toevoer

Maximum capacity of the
supply conveyor of PL 3 to
press unit A
(in kg/second).

PO3B_supplyCapacity
PO3B_TOEV

Capaciteit toevoer

Maximum capacity of the
supply conveyor of PL 3 to
press unit B
(in kg/second).

PO3A_temperature
PO3A_SDOS

Gewenste temperatuur

Desired temperature of
pressing at press unit A (in
Celsius).

PO3B_temperature
PO3B_SDOS

Gewenste temperatuur

Desired temperature of
pressing at press unit B (in
Celsius).

PO3A_pressPower
PO3_PO_3A

Gewenste vermogen pers
Desired power of press unit A
(in kW).

PO3B_pressPower
PO3_PO_3B

Gewenste vermogen pers
Desired power of press unit B
(in kW).

PO3A_smearingOffset
PO3_PO_3A

Versmeer offset pers

Offset of how much smearing
is allowed at press unit A (in
kW). If the offset is exceeded
the supply is automatically
reduced.

PO3B_smearingOffset
PO3_PO_3B

Versmeer offset pers

Offset of how much smearing
is allowed at press unit B (in
kW). If the offset is exceeded
the supply is automatically
reduced.

TABLE 5.8: Features based on the setpoints of PL 3.

Similar to the other press lines, PL 3 has features for the power of the press units (PO3A-
_pressPower and PO3B_pressPower) and the smearing offset (PO3A_smearingOffset and PO3B-
_smearingOffset). These features and the features for the maximal capacity represent the
bottleneck of PL 3.

Finally, the last press line, PL 4, is very similar to PL 1. However, the second press
unit, press unit B, could not be skipped. Therefore, only the feature PO4A_usePress is
needed to describe which press units are used, instead of two features. When the feature
PO4A_usePress is set to ’no’, the batch is only produced at press unit B, otherwise, both
press units are used. The other features of PL 4 are similar to the features of PL 1, see Table
5.9.
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Feature name Setpoint name (Dutch) Description

PO4_supplyCapacity
PO4_TOEV

Capaciteit toevoer

Maximum capacity of the
supply conveyor of PL 4
(in kg/second).

PO4_temperature
PO4_SDOS

Gewenste temperatuur
Desired temperature of
pressing (in Celsius).

PO4A_usePress
PO4_PO_4A

Pers gebruiken
Use press unit A
(Yes=1, No=0).

PO4A_pressPower
PO4_PO_4A

Gewenste vermogen pers
Desired power of press unit A
(in kW).

PO4B_pressPower
PO4_PO_4B

Gewenste vermogen pers
Desired power of press unit B
(in kW).

PO4A_smearingOffset
PO4_PO_4A

Versmeer offset pers

Offset of how much smearing
is allowed at press unit A (in
kW). If the offset is exceeded
the supply is automatically
reduced.

PO4B_smearingOffset
PO4_PO_4B

Versmeer offset pers

Offset of how much smearing
is allowed at press unit B (in
kW). If the offset is exceeded
the supply is automatically
reduced.

TABLE 5.9: Features based on the setpoints of PL 4.

5.3.5 Crumbler

For the production of crumbled feed is a crumbler used, which crumbles pellets. The use of
the crumbler is likely to affect the moment of emptying the cooler because it indicates the
next destination in the continuous process. Availability of the next destination in a continu-
ous process affects the duration. Therefore, a feature is created based on the corresponding
setpoint of the crumbler, see Table 5.10.

Feature name Setpoint name (Dutch) Description

PO3_crumble
OB3_KRUIM

Kruimelen
Crumble product
(Yes=1, No=0).

TABLE 5.10: Features based on the setpoints of the crumbler at PL 3.

5.4 Ingredients

As already mentioned in the introduction, we expect the ingredient composition of a batch
to affect the production durations. In order to select the ingredients that are contained in
the batch, the ingredients are selected based on their input location. By looking at the input
location, four ingredient location groups are created, see Table 5.11.
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Ingredient group Percentage features nIngredients feature

Until hammer
mills

84 features representing the
ingredient percentages of a

hammer mill batch.

Number of ingredients of
hammer mill batch.

Liquids at mixer
16 features representing the

ingredient percentages of
dosed liquids at the mixer.

Number of different liquids
at mixer added to the batch.

Until mixer
174 features representing the
ingredient percentages of a
BU7 batch after the mixer.

Number of ingredients of
BU7 batch.

All

176 features representing the
ingredient percentages of a

press line batch, which
contains all ingredients of the

whole production process.

Number of ingredients of
press line batch.

TABLE 5.11: Percentages and nIngredients features per ingredient group.

First of all, the ingredients of the hammer mills are obtained by the ingredients of the
dosing steps above the hammer mills. This results in 84 different ingredients. For each of
these ingredients, a feature articleId is created which contains the percentage of the ingredi-
ent amount compared to the total batch amount, see Table 5.11. The percentage instead of
the amount is used, to make the batches comparable with each other. In addition, another
feature, nIngredients, is created which represents the number of ingredients that are present
in the batch, see Table 5.11.

The second ingredient location group contains all liquids that are added at the mixer.
This group does not include the previous ingredient location group, because only the liquids
are relevant for the NM1_step durations, and not the ingredients that were already present
in the batch. For this ingredient location group, the same features are created as for the first
ingredient location group, see Table 5.11.

The third ingredient location group represents all the ingredients that could be present in
a batch at the bunker below the mixer (BU7). This group contains, therefore, all ingredients
that are present at the hammer mills (84), as both the liquids (16) and non-liquids (74) that
are added at the mixer. This results in 174 ingredient percentage features. In addition, the
feature nIngredients is added which counts the number of ingredients that are present in the
batch.

Finally, the last ingredient location group contains all ingredients that are added some-
where in the process to the batch. Therefore, the last ingredient location group contains all
the ingredients that were present at BU7. On top of that, it includes the (sticky) ingredients
that are added during the transportation to the next destination after the production at the
GML. Since there are only two unique ingredients added during the transportation step,
this group contains only two more ingredients than the third ingredient location group, see
Table 5.11. Again, for each ingredient is a feature created, and another feature to count the
number of ingredients in the batch, see Table 5.11.

5.4.1 Ingredient Groups

To limit the number of ingredient features per ingredient location group, we can use a sum-
mary by grouping all ingredients by their ingredient article group. This results in a feature
per ingredient article group representing the percentage of which the batch consists of the
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ingredient article group. For example, to obtain the percentage of liquids, all liquid ingre-
dients in the batch are summed together. In total, there are five ingredient article groups,
which results in five features, see Table 5.12. These summarizing features are created for the
ingredients of the four ingredient location groups of Table 5.11.

Feature name Ingredient group Description

igrGroup_ENK ENK
Percentage of ingredients amount
in batch belonging to single feeds.

igrGroup_GR GR
Percentage of ingredients amount
in batch belonging to raw
materials.

igrGroup_PM PM
Percentage of ingredients amount
in batch belonging to premixes.

igrGroup_UNKNOWN None
Percentage of ingredients amount
in batch of which the ingredient
group is missing.

igrGroup_VL VL
Percentage of ingredients amount
in batch belonging to liquids.

TABLE 5.12: Features based on the ingredient group percentages.

5.5 Weather

The data collection process of the KNMI weather dataset was described in Section 4.1. Many
weather variables are available, but only the variables of which some potential influence
on the production durations is expected are included in this research. This results in the
following list of variables, see Table 5.13.



Chapter 5. Feature engineering 47

Feature name
Variable name

KNMI
Description

windSpeedMean FHVEC
Vector mean windspeed
(in 0.1 m/s).

windDirectionMean DDVEC

Vector mean wind direction
in degrees (360=north,
90=east, 180=south,
270=west, 0=calm/variable).

temperatureMean TG
Daily mean temperature
(in 0.1 degrees Celsius).

temperatureMin TN
Minimum temperature
(in 0.1 degrees Celsius).

temperatureMax TX
Maximum temperature
(in 0.1 degrees Celsius).

precipitationDuration DR
Precipitation duration
(in 0.1 hour).

precipitationAmount RH
Daily precipitation amount
(in 0.1 mm) (-1 for <0.05
mm).

relAtmosphericHumidityMean UG
Daily mean relative
atmospheric humidity (in
percentages).

TABLE 5.13: Features based on the KNMI weather data.

The first two weather features, windSpeedMean and windDirectionMean, contain informa-
tion about the wind. The windDirectionMean is created by taking the average over the wind
direction in degrees (360=north, 90=east, 180=south, 270=west, 0=calm/variable). By the
combination of the wind speed and the wind direction, the effect of the wind is examined. In
addition, three temperature features, temperatureMean, temperatureMin and temperatureMax,
representing the daily mean, minimum and maximum temperature respectively, are used to
investigate the effect of the temperature on the production durations. The precipitation and
humidity are evaluated too. This results in three other features: the precipitationAmount and
precipitationDuration, and the relAtmosphericHumidityMean, see Table 5.13.

5.6 Article

The next group of features provides information of the previous observations of the same
article. Since there are 959 different articles, creating one feature for each would lead to
many different features and associated complexity. To help the model, features were created
by aggregating information of the article, see Table 5.14. These features have as purpose to
indicate how fast the previous batches of the same article were.
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Feature name Aggregation function Aggregated group

articleMedian5 Median duration
Previous 5 batches of the
same article id.

articleMin5 Minimum duration
Previous 5 batches of the
same article id.

articleMax5 Maximum duration
Previous 5 batches of the
same article id.

articleGroupMedian5 Median duration
Previous 5 batches of the
same article group.

articleGroupMin5 Minimum duration
Previous 5 batches of the
same article group.

articleGroupMax5 Maximum duration
Previous 5 batches of the
same article group.

articleRecipeGroupMedian5 Median duration
Previous 5 batches of the
same article recipe group.

articleRecipeGroupMin5 Minimum duration
Previous 5 batches of the
same article recipe group.

articleRecipeGroupMax5 Maximum duration
Previous 5 batches of the
same article recipe group.

TABLE 5.14: Features based on aggregated article information.

The first three features are created by taking the median, minimum and maximum value
of the duration of the last 5 batches of the same article (articleMedian5, articleMin5 and arti-
cleMax5 respectively). The selection of 5 batches was made in order to coop with both noise
and time effect. The same is done for article group (articleGroupMedian5, articleGroupMin5
and articleGroupMax5) and recipe group (articleRecipeGroupMedian5, articleRecipeGroupMin5
and articleRecipeGroupMax5).

The information that is aggregated depends on the target variable. If the target variable
shows a strong correlation with the batch size, the duration per 1,000 kg is used, otherwise
the total duration. In case of the press durations, the target speed values are used.

Finally, another feature is created, that specifies the specific weight of the article (article-
SpecificWeight), see Table 5.15.

Feature name Description
articleSpecificWeight Specific weight of produced article (in kg/m3).

TABLE 5.15: Features based on the article.

5.7 Storage unit

For the duration of the transportation system, the destination is important. Therefore, the
last included feature toStorageUnitNameLast indicates which storage unit is the last destina-
tion of the batch, see Table 5.16.

Feature name Setpoint name (Dutch) Description

toStorageUnitNameLast toStorageUnitName
The last destination of the
transported batch.

TABLE 5.16: Features based on the destination of the transportation system after the GML.
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6 Feature analysis

The features that are created for the estimation of the production durations were described
in the previous section. These features will be analysed in this section in the context of each
target variable.

The Pearson correlation coefficient is used as a correlation measure. Both the correlation
with the target variable and the correlation between features is measured with this coeffi-
cient. The Pearson correlation indicates how much linear correlation there is between two
variables. The Pearson correlation ρX,Y can be calculated as follows, see Equation (6.1). The
cov(X, Y) denotes the covariance between variables X and Y, and σX and σY are respectively
the standard deviation of variable X and Y.

ρX,Y =
cov(X, Y)

σXσY
with ρX,Y ∈ [0, 1] (6.1)

When ρX,Y is close to 1, it indicates that X and Y are positively correlated and a value
close to -1 indicates a negative correlation. A value close to zero indicates that there is no
linear correlation between the two variables. Note that a strong correlation is not the same
as a causal relation.

6.1 HA1_TOEV

The first production duration is the duration of the grinding step at the GML: HA1_TOEV.
In total there are 120,527 observations available for this target. In Figure 6.1 is shown how
these observations are spread over the week. The production at plant X is much higher
during the working week than at the weekend. In addition, a small increase in the number
of batches per day can be observed during the working week.

FIGURE 6.1: Number of HA1_TOEV observations per day of the week.

In the previous section, many features were created. The correlation between HA1_TOEV
durations and the batch size was already mentioned in Section 4.3 (Figure 4.6A), which has
a Pearson correlation of 0.6.
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The second group of features are the time features, which show little correlation with the
HA1_TOEV durations, see Figure 6.2A. Only the Pearson correlations between HA1_TOEV
and the day number and year are not zero but are -0.1. In contrast, there is a strong corre-
lation between some time features. For example, the month number and the season have a
Pearson correlation of 0.6, and the day number has a Pearson correlation of 0.9 with the year
number.

(A) Time features. (B) Setpoint features.

FIGURE 6.2: Pearson correlation between features and HA1_TOEV durations (targetSeconds).

(A) Sieve size. (B) HA1_TOEV duration per 1,000 kg.

FIGURE 6.3: Maximum supply capacity.

The third group of features are the setpoint features. In Section 4.3 was already men-
tioned that the HA1_TOEV durations and the sieve size show much correlation (Figure
4.6B). The same can be concluded from the Pearson correlation, which is -0.6, see Figure
6.2B. Besides the sieve size, the maximum supply capacity shows a high correlation with
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the HA1_TOEV duration too, see Figure 6.3B, which has a Pearson correlation of -0.5. The
features themselves are correlated as well (Pearson correlation = 0.6), see Figure 6.3A. When
a sieve size of 2.5 mm is used, the maximum supply capacity is in 90% of the batches smaller
than 60%. When the sieve size is 3 mm, in approximately 65% of the batches is the maxi-
mum supply capacity bigger than 80%. Finally, if a sieve size of 5 mm is used, the maximum
supply capacity is smaller than 100% in only less than 5% of the batches.

The fourth group of features are the ingredient features. The Pearson correlations of the
ingredient percentage features are shown in Figure A.1 in the Appendix. The correlations
are computed against the HA1_TOEV durations per 1,000 kg in order to account for the
dependency on the batch size. Roughly speaking, the ingredients 5333, 975, 993 and 6552
result in smaller HA1_TOEV durations and 1074, 964, 970 and 974 in a larger HA1_TOEV
duration. Note that this only shows the correlation. This does not necessarily have to be the
cause of the production duration. For example, it may be that one specific ingredient is used
more for "fine" articles (small sieve size) and therefore correlate with a longer production
time.

The number of ingredients is slightly negatively correlated (Pearson correlation = -0.2)
with the production duration per 1,000 kg. An explanation could be that the ingredients
which are more difficult to grind, appear more often in a smaller composition (fewer ingre-
dients) than the ingredients that are easier to grind.

The ingredients that are ground at the hammer mill could be divided into two ingredient
groups: GR (raw material) and PM (premix). The raw materials are slightly positively cor-
related with the production duration per 1,000 kg (Pearson correlation = 0.1), which means
the more raw materials, the slower grinding, and premixes are slightly negatively corre-
lated with the production duration per 1,000 kg (Pearson correlation = -0.1), which means
the more premixes, the faster grinding.

The fifth group of features are the weather features. However, none of these features
shows a linear correlation (Pearson correlation = 0) with the HA1_TOEV durations, see Fig-
ure A.2 in the Appendix.
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FIGURE 6.4: Pearson correlation between article features
and HA1_TOEV durations (targetSeconds).

Finally, the last group of features are the article features. There is a very high correlation
(Pearson correlation = 0.7) between the median duration of the previous five batches of the
same article and the current batch, see Figure 6.4.

6.2 HA1_ZEEF

The second target variable is HA1_ZEEF: the duration of switching the sieve of the hammer
mill. In Section 4.3, the HA1_ZEEF durations were already shown over time (Figure 4.10).
On the first of January 2017, the sieve switching duration was significantly reduced.

(A) Boxplots of HA1_ZEEF
durations per sieve switch.

(B) HA1_ZEEF durations over time, including which sieve switch
was performed.

FIGURE 6.5: Relation sieve switch and HA1_ZEEF durations.

The HA1_ZEEF durations can be split to which sieve switch was performed. This sieve
switch feature is linearly correlated with the HA1_ZEEF durations (Pearson correlation =
0.2). A relation can also be observed from Figures 6.5A and 6.5B. The switch from 2.5 mm to



Chapter 6. Feature analysis 53

3 mm and reversed have a smaller duration than the switch from 2.5 mm to 5 mm and
reversed. To test if these durations are significantly different over the performed sieve
switches, a two-sample t-test can be performed. This test can be applied to two samples
and tests if the mean is significantly different. When a p-value is observed that is smaller
than a certain α, the hypothesis that the means are equal is rejected, which means that there
is a significant difference in the means of the two sample sets. Common values of α are 0.01
(1%), 0.025 (2.5%) or 0.05 (5%). When the t-test is applied to the HA1_ZEEF durations of
every combination of the sieve switches, the durations are all significantly different (p-value
« 0.01), except for the sieve switches 3 to 5 mm and 5 to 3 mm which has a p-value of 0.047,
which is not rejected for an α of 0.01. We can conclude that the HA1_ZEEF durations are
significantly different over the sieve switches (only 3 to 5 and 5 to 3 mm can be considered
as the same), which indicates the importance of including the sieve switch in the proposed
model.

Note that the spread in the HA1_ZEEF durations per sieve switch is very small. In ad-
dition, there was no correlation found between the HA1_ZEEF durations and the other fea-
tures. Therefore, we conclude that this production duration is not the focus of this research.
The proposed model will be a simple time-based model that calculates the median duration
of the last B batches with the same sieve switch.

6.3 BU6_LOS

The third target variable is BU6_LOS: the duration to empty the bunker below the ham-
mer mills. In Section 4.3, the BU6_LOS durations were already shown over time (Figure
4.12). The BU6_LOS duration shifts several times over the past two years. This results in a
correlation between the time features and the BU6_LOS durations, see Figure 6.6.

FIGURE 6.6: Pearson correlation between time features
and BU6_LOS durations (targetSeconds).

From this analysis can be concluded that the BU6_LOS durations hardly show any cor-
relation with non-time features. Therefore, we conclude that a simple time-based model is
most appropriate for the estimation of the BU6_LOS durations. The proposed model will be
a simple time-based model that calculates the median duration of the last B batches.



Chapter 6. Feature analysis 54

6.4 NM1_step

The fourth target variable is NM1_step: the duration to mix the ground materials and the
liquids in the mixer. The liquid amount has a large correlation (Pearson correlation = 0.5)
with the NM1_step durations compared to the other features suggested in the previous sec-
tion (Section 5). This relation can also be observed in Figure 6.8A. The batch size is linearly
correlated with the liquid amount (Pearson correlation = 0.4) as well, but it is less correlated
(Pearson correlation = 0.1) with the NM1_step durations, see Figure 6.7.

FIGURE 6.7: Pearson correlations of batch size features and NM1_step durations.

When looking at the specific liquids that are added at the mixer, we can calculate the
seconds per liquid kg by subtracting the median duration without liquids (64 seconds) and
divide it by the liquid amount. In this way, the liquid dosing duration can be compared with
which liquids are dosed. Since multiple liquids are dosed simultaneously, the correlation
gives only an indication of which liquids correlates most with the liquid dosing duration.
From the Pearson correlation, we can observe that the liquid 1050 shows the most negative
linear correlation (Pearson correlation = -0.2) with the dosing durations per liquid kg. This
could be interpreted as follows: the dosing of liquid 1050 is generally faster than the normal
dosing duration per kg. The most positive linear correlation (Pearson correlation = 0.1) can
be observed for the liquids 1455, 5721 and 1020, which can be interpreted as the ’slower’
liquids to dose (seconds per kg).

(A) NM1_step durations per liquids amount rounded
to nearest 25 kg.

(B) Pearson correlations of liquid ingredient
percentage features and NM1_step durations per kg

liquid.

FIGURE 6.8: Relation between liquid amounts and the NM1_step durations.
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Besides looking at the ingredient amount, the number of liquid dosages was evaluated
too. The number of liquid dosages also correlate with the mixing duration, see Figure 6.9.
However, the correlation is less strong than the correlation with the liquid amount.

FIGURE 6.9: NM1_step durations per number of liquid dosages.

The NM1_step durations and the weather features show little correlation, see Figure
A.3 of the Appendix. Only a small correlation between the NM1_step durations and the
temperature (Pearson correlation = 0.1) and the humidity (Pearson correlation = -0.1) can be
observed.

However, despite the small Pearson correlations between the time features and the NM1-
_step durations (Figure 6.10A), a trend can be observed over time, see Figure 6.10B. A non-
linear model may be appropriate to extract such a relationship.

(A) Pearson correlation between time
features and NM1_step durations

(targetSeconds).

(B) Median NM1_step duration per month.

FIGURE 6.10: Relation between time features and the NM1_step durations.



Chapter 6. Feature analysis 56

Finally, the article features show a correlation with the NM1_step durations, see Figure
6.11B. However, the article features show a correlation with the liquid amount too. There-
fore, the article features might not be as important as Figure 6.11B suggests because it re-
sembles the relation of the liquid amount. The relation between the liquid amount and the
median NM1_step duration of the last five batches is shown in Figure 6.11A.

(A) Median NM1_step duration of last 5
batches compared to the liquid amount.

(B) Pearson correlation between article
features and NM1_step durations

(targetSeconds).

FIGURE 6.11: Article features.

6.5 NM1_Los_step

The fifth target variable is NM1_Los_step: the duration to completely empty the mixer
unit. In Section 4.3, a shift in the NM1_Los_step durations could be observed (Figure 4.16).
This shift results in a positive linear correlation (Pearson correlation = 0.8) between the
NM1_Los_step durations and the time features year and dayNr, see Figure 6.12.

FIGURE 6.12: Pearson correlations of time features and NM1_Los_step durations.

Since the spread in the NM1_Los_step durations is small over time (less than 10 sec-
onds) and there is no correlation found between the NM1_Los_step durations and the other
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features, we conclude that this production duration is not the focus of this research. The
proposed model will be a simple time-based model that calculates the median duration of
the last B batches.

6.6 MML_AFV_TR

The sixth target variable is MML_AFV_TR: the duration to empty the bunker below the
mixer. In Section 4.3 was already shown how the MML_AFV_TR duration correlates with
the batch size, which has a Pearson correlation of 0.8. This high correlation is not surpris-
ing, because the transportation system below the bunker contains a screw conveyor, which
automatically implies a correlation to the batch size.

Besides the correlation to the batch size, another correlation (Pearson correlation = -0.1)
is not surprising: the dependence on the speed of the screw conveyor. However, this corre-
lation is small because the speed of the screw conveyor is almost always (97%) set to 93%,
95% or 100%, which does not result in a much different MML_AFV_TR duration. In addi-
tion, the time features month and season show little linear correlation (Pearson correlation =
0.1) with the MML_AFV_TR durations per 1,000 kg.

(A) Time features. (B) Ingredient group features.

FIGURE 6.13: Pearson correlation between features and MML_AFV_TR durations
per 1,000 kg (targetSecondsPer1000kg).

(A) Pearson correlation article features. (B) Pearson correlation weather features.

FIGURE 6.14: Relation between the MML_AFV_TR durations per 1,000 kg
(targetSecondsPer1000kg) and the article and weather features.
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The ingredients features show some correlation with the MML_AFV_TR durations. Ac-
cording to Figure 6.13B, including more raw materials (igrGroup_GR) results in a smaller
duration per 1,000 kg (Pearson correlation = -0.2), and more pre-mixes (igrGroup_PM) or liq-
uids (igrGroup_VL) results in a larger duration per 1,000 kg (Pearson correlation = 0.1). The
Pearson correlations of individual ingredients with the MML_AFV_TR durations per 1,000
kg are shown in Figure A.4 in the Appendix.

Only the temperature features of the weather features show some linear correlation with
the MML_AFV_TR durations per 1,000 kg (Pearson correlation = 0.1), see Figure 6.14B. In
addition, the MML_AFV_TR durations per 1,000 kg show correlation (Pearson correlation =
0.5) with the median duration per 1,000 kg of the last 5 batches, see Figure 6.14A.

6.7 MML_AFV_TR_NADRAAI

The seventh target variable is MML_AFV_TR_NADRAAI: the duration to transport the
product of the GML to the next destination. As already mentioned in 4.3, the MML_AFV_TR-
_NADRAAI durations depend on the location of the destination (feature toStorageUnitName-
Last). When the MML_AFV_TR_NADRAAI durations are plotted over time for each indi-
vidual destination, we can observe some shifts in the durations, see Figures 6.15 and 6.16.
These shifts are most likely due to some changes in the settings of the transportation system.

FIGURE 6.15: MML_AFV_TR_NADRAAI durations over time per storage destination.
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FIGURE 6.16: MML_AFV_TR_NADRAAI durations over time per press destination.

Since the spread in the MML_AFV_TR_NADRAAI durations is small over time (less
than 10 seconds) and there is no correlation found between the MML_AFV_TR_NADRAAI
durations and other features than the destination, we conclude that this production duration
is not the focus of this research. The proposed model will be a simple time-based model that
calculates the median duration of the last B batches of the same destination.

6.8 PL_PO1_slope

The eighth target variable is PL_PO1_slope: the pressing speed of 1,000 kg after finishing the
warm-up period at press line 1. Since pressing is a continuous process, after the warm-up
period we expect the PL_PO1 duration to be linearly dependent on the batch size, see Figure
4.22. Therefore, we expect the PL_PO1_slope values to be uncorrelated with the batch size,
which is indeed the case (Pearson correlation = 0), see Figure 6.20B.
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FIGURE 6.17: Median PL_PO1_slope value per month over time.

The PL_PO1_slope values show a small correlation (Pearson correlation = 0.1) with the
time features dayNr and year. Figure 6.17 shows the median PL_PO1_slope values per month
over time. This figure shows that the median PL_PO1_slope values per month are not con-
stant. This could be caused by a time effect. However, it could also be caused by the de-
composition of the press durations in Section 4.3.2, which could result in large fluctuations
at the beginning of the dataset due to the small number of observations.

The setpoint features show correlation with the PL_PO1_slope values, see Figure 6.18A.
As already was mentioned in Section 4.3, the pressing speed depends on which press units
are used, see Figure 6.18B. This can also be observed from the Pearson correlation of the
features PO1A_usePress (0.6) and PO1B_usePress (-0.6) in Figure 6.18A. However, approxi-
mately 87% of the batches only use press unit B.

(A) Pearson correlation setpoint features. (B) Boxplot of PL_PO1_slope values
per combination of used press units.

FIGURE 6.18: Relation between the PL_PO1_slope values
(speedSecondsPer1000kg) and the setpoint features.

The capacity of the supply conveyor and the temperature correlate with the pressing
speed too. This can also be observed from Figures 6.19A and 6.19B respectively.
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(A) Supply capacity. (B) Temperature.

FIGURE 6.19: Relation between PL_PO1_slope values
and setpoint features.

The correlation between the PL_PO1_slope values and the use of the crumbler and the
sieve size of the hammer mills are probably caused by the correlation with which press units
are used, the selected supply capacity and the selected temperature, see Figure 6.18A.

(A) Ingredient group features. (B) Article features.

FIGURE 6.20: Pearson correlation between PL_PO1_slope values and features.

The ingredient percentage features that show small negative correlation (Pearson cor-
relation = -0.2) with the PL_PO1_slope values are 1007, 4455 and 979. The ingredient per-
centage feature that shows the most positive correlation (Pearson correlation = 0.3) with the
PL_PO1_slope values is 7441, see Figure A.5 in the Appendix. The ingredient groups show
little correlation with the PL_PO1_slope values, see Figure 6.20A. Only premixes show little
negative correlation (Pearson correlation = -0.1).
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No correlation (Pearson correlation = 0) is found between the weather features and the
PL_PO1_slope values. Therefore, the weather features are not likely to be useful in the
proposed model.

Finally, the PL_PO1_slope values are linearly correlated (Pearson correlation = 0.7) with
the median PL_PO1_slope values of the last 5 batches. However, these features show also a
correlation with the setpoint and ingredient features because similar kind of setpoints and
ingredients are commonly used to produce the same article.

6.9 PL_PO2_slope

The ninth target variable is PL_PO2_slope: the pressing speed after finishing the warm-
up period at PL 2. PL 2 has only one press unit, which is always used. Like at PL 1,
PL_PO2_slope values are linearly correlated to the median speed of the previous 5 batches,
too, see Figure 6.21B. In contrast to PL 1, PL_PO2_slope shows no correlation with the tem-
perature, see Figure 6.21A.

(A) Pearson correlation setpoint features. (B) Pearson correlation article features.

FIGURE 6.21: Relation between the PL_PO2_slope values
(speedSecondsPer1000kg) and the setpoints and article features.

The PL_PO2_slope values mostly depend on the supply capacity (Pearson correlation =
-0.6), see Figure 6.21A and Figure 6.22A. The supply capacity is mostly set to 2.75 (30%), 3.00
(24%) or 3.50 (23%) kg/second, which explains the shape of the histogram (Figure 4.27) in
Section 4.3, see Figure 6.22B.
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(A) PL_PO2_slope values per supply capacity
(rounded to nearest 0.25 kg/second).

(B) PL_PO2_slope histograms for the
most occurring supply capacities.

FIGURE 6.22: Relation between the PL_PO2_slope values and the supply capacity.

6.10 PL_PO3_slope

The tenth target variable is PL_PO3_slope: the pressing speed of 1,000 kg after finishing
the warm-up period at press line 3. PL 3 has two parallel press units. As expected, the
PL_PO3_slope values mostly depend on how many press units are used, see Figures 6.23A
and 6.23B. When both press units are used, the time it takes to press is approximately twice
so small as when only one press unit is used.

(A) PL_PO3_slope values per combi-
nation of used press units.

(B) Pearson correlation between PL_PO3_slope values
and setpoint features.

FIGURE 6.23: PL_PO3_slope mostly correlate with which press units are used.

Furthermore, the PL_PO3_slope values are both correlated with the supply capacity to
press unit A (Pearson correlation = -0.1) and the supply capacity to press unit B (Pearson
correlation = -0.2). Again, the correlation to the use of the crumbler is most likely caused
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by its correlation with the supply capacity. Other features show little correlation with the
PL_PO3_slope values.

6.11 KO3_idle_time

The eleventh target variable is KO3_idle_time: the cooling duration at press line 3. This
cooler works based on the amount of product that is inside the cooler. When there is more
product than a certain level, the cooler empties. Since it is part of a continuous process, the
duration depends both on the speed of the pressing process as the availability of units after
the cooler.

FIGURE 6.24: KO3_idle_time durations over time including whether the crumbler will be used
or not.

Since the supply capacity correlates with the use of the crumbler and the use of the
crumbler indicates which unit will be used after the cooler, the cooling durations are likely
to depend on the use of the crumbler. Therefore, the KO3_idle_time durations are plotted
over time for both using and not using the crumbler, see Figure 6.24. The figure confirms
the suspicion of a correlation with the use of the crumbler. The Pearson correlation between
the KO3_idle_time durations and the use of the crumbler is 0.2.

Since March 2017, there is not much spread in the KO3_idle_time durations. In addition,
no correlation with other features was found. Therefore, we conclude that this production
duration is not the focus of this research. The proposed model will be a simple time-based
model that calculates the median duration of the last B batches per usage of the crumbler.

6.12 PL_PO4_slope

The last target variable is PL_PO4_slope: the pressing speed of 1,000 kg after finishing the
warm-up period at press line 4. PL 4 has two press units in series, like PL 1. According to
Figure 6.25A, the PL_PO4_slope values mostly correlate which press units are used and the
selected supply capacity. These relations are visualized in Figures 6.26A and 6.26B.
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(A) Setpoint features and PL_PO4_slope values
(speedSecondsPer1000kg).

(B) Ingredient group features and PL_PO4_slope
values (speedSecondsPer1000kg).

FIGURE 6.25: Pearson correlations.

According to Figure 6.25B, the ingredient groups raw materials and liquids correlate
with the PL_PO4_slope values with 0.3 and -0.3 respectively. For more details on specific
ingredients, see Figure A.6 in the Appendix.

(A) Boxplot of PL_PO4_slope
values per combination of used

press units.
(B) PL_PO4_slope values compared to the

supply capacity.

FIGURE 6.26: Relation between the PL_PO4_slope values and the setpoints.
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7 Methods

The machine learning models and evaluation methods that will be used in this research are
discussed in this section. Since there is not one machine learning model that works best in
every situation, as addressed by the No Free Lunch Theorem [25], several machine learning
models are tested and the best model for our purpose is selected.

In this research, 12 target variables, or response variables, are defined, see Table 2.1. Note
that the target variables for the pressing durations at the press lines are changed to the
pressing speeds during period B, as mentioned in Section 4.3.2, see Table 4.3. Since it could
be the case that a model estimates one target duration accurately, but another target not
accurate at all, separate models are created for the prediction of the target variables. The
features described in the previous sections are used for this purpose, which are also called
explanatory variables, or attributes.

In general, prediction problems can be split into two classes: classification problems
and regression problems. The target variable in a classification problem consists of two or
more classes. For example, if you would like to predict if the produced article is mash,
crumble or pellets, you could define this as a classification problem in which the target
variable consists of the classes mash, crumble and pellets. In contrast, the target variable
in regression problems is a numerical value. This is the case in this research because all
production durations are numerical (positive) values. Therefore, this research aims to give
a solution to 12 regression problems.

Since the estimation of production durations is a regression problem, the focus of this
section will be on regression models, also called regressors. The regressors will be compared
with each other on a test sample set, further denoted as test samples or test set, which are
not used for the creation of the models. In contrast to the training samples or training set,
which are the observations on which the regressors’ estimations are based. The differences
between the estimated values and the observed values are commonly called residuals.

7.1 Linear Regression

The first regressor that is evaluated is Linear Regression. The idea is to fit a linear function
ŷ to the observations y using explanatory variables x. The model "learns" the weight wj of
each feature j, and the value of the intercept b. The prediction ŷi of production duration yi
is given by the sum of the weighted features, wjxij, and intercept b, see Equation (7.1).

ŷi = b +
m

∑
j=1

wjxij (7.1)

The weights w are "learned" by optimizing an objective function on n training samples,
which is in case of ordinary Linear Regression the sum of squared residuals r, which is the
sum of the squared difference between the estimated values ŷ and the observed values y,
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see Equation (7.2).

Objective = min
n

∑
i=1

ri
2

ri = yi − ŷi

(7.2)

FIGURE 7.1: Example estimation of y by ŷ using Linear Regression.

An example of a Linear Regression function with one explanatory variable x1 is given in
Figure 7.1. There is the possibility of dropping the intercept (setting b to zero) by changing
the hyperparameter fit_intercept from True to False, see Table 7.1. Both possibilities will be
tested in this research. Note that a hyperparameter is a predefined setting of the model. This
is different from a weight parameter w that is trained by optimizing the objective function.

Hyperparameter Description
Default
value

Evaluated
values

fit_intercept
Whether an intercept is
fitted or not.

True True, False

TABLE 7.1: Hyperparameter settings of Linear Regression.

7.2 Robust Linear Regression

The second model is much related to the first one. However, a Linear Regression model is
known to be sensitive for outliers, see the left plot in Figure 7.2 for an example. To make the
model more robust to outliers, the least squares, which are minimized in Linear Regression,
are iteratively reweighted using a robust criterion estimator [26]. Which robust criterion is
used is optional in the model, see Table 7.2 for the hyperparameter M.

The default value of M is the Huber’s loss function [26], which results in squared values
for small residuals (≤ t) and absolute values for large residuals (> t) [27], see Equation (7.3).
The default value of t is 1.345, which is also used in this research.

Objective = min L

L =

{
∑n

i=1 ri
2, if ri ≤ t

∑n
i=1 |ri|, if ri > t

ri = yi − ŷi

(7.3)
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FIGURE 7.2: Example estimation of y by ŷ using Linear Regression (left) and Robust Linear
Regression (right).

The result is a more robust model because big errors have a smaller weight (absolute
value) in Robust Linear Regression than in Linear Regression (squared value). Figure 7.2
shows the estimations of Linear Regression (left) and Robust Linear Regression (right) in an
example with an outlier (observation (17.6; 1)).

Hyperparameter Description
Default
value

Evaluated
values

M
The robust criterion function for
downweighting outliers [26].

HuberT HuberT

TABLE 7.2: Hyperparameter settings of Robust Linear Regression.

This model is used twice in this research. First of all, it is used for the separation of
periods A and B of the pressing durations at the press lines, as was described in Section
4.3.2. In this case, only the batch size is used as an explanatory variable (x1). The estimated
intercept (b) is taken as period A; the warm-up period. The new speed targets of the press
lines are created by subtracting the warm-up period (b) from the total duration (y) divided
by the batch size (x1), as was explained in Section 4.3.2, see Table 4.3.

In addition, this model is evaluated for the estimations of all target variables; the speed
of the press lines (Table 4.3) and the total duration of the other production durations of
Table 2.1. Hence, it is possible that this model is used twice in the estimation of the pressing
durations at the press lines.

7.3 Decision Trees

The previous models are linear models. However, non-linear relations might be present in
the data for which another kind of models could perform more accurately. Therefore, some
state-of-the-art non-linear models are evaluated too. Many of these models are based on the
concept of Decision Trees. Therefore, we will first describe what Decision Trees are and how
they can be used for regression problems.

Decision Trees are created by a set of if-then-else decision rules. An example is given
for the estimation of the HA1_TOEV durations per 1,000 kg in Figure 7.3A. These simple
decision rules are able to separate the three sieve sizes of the hammer mill (Figure 7.3B).
Hence, Decision Trees can be easily interpreted, which is one of the biggest advantages of
this model.

Another situation in which a Decision Tree could perform well is when a shift in the
production durations occurs in time, for example, due to the cleaning of the machine or
a change in the non-batch related machine settings. The Decision Tree would be able to



Chapter 7. Methods 69

(A) Example estimation by a Decision Tree, with the
hammer mill sieve size as feature.

(B) Boxplot for each used sieve size.

FIGURE 7.3: HA1_TOEV durations per 1,000 kg.

separate the data points before and after this point in time easily. In contrast to a Linear Re-
gression model, which needs this information to be explicit, for example by a binary feature
(1=before point in time, 0=after point in time).

The usage of a set of decision rules results in a step-wise function of an explanatory
variable, see the blue and green line in Figure 7.4. How many steps are created depends
on the depth of the Decision Tree, i.e., the number of decision rules. When the maximum
depth of a Decision Tree is not limited, a decision rule could be included for the separation
of each individual data point. This is the biggest disadvantage of Decision Trees: it is prone
for over-fitting, which means that it leads to "discovery" of effects that are actually spurious
[28], [29], see the green line in Figure 7.4. In that case, the model is not able to generalize
enough, which results in good estimations on the training samples, but bad estimations on
test samples. However, under-fitting, not discovering actual effects, should be avoided too.
For example, the step-wise blue line in Figure 7.4 could fit the data points better if the step
size becomes smaller, i.e. the number of steps increases. Therefore, hyperparameter tuning
is very important to find the hyperparameters that fit the data points best.

FIGURE 7.4: Example estimation of target y using Decision Tree Regression [30].

Other hyperparameters of Decision Trees consist of the number of samples in each end-
point in the tree, a leaf, and the number of samples needed for an additional decision rule,
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a split. Tuning the hyperparameters is important to make the model accurately estimate
future production durations.

7.3.1 CART

How the decision rules, or splits, are created depends on the selected Decision Tree al-
gorithm. One commonly used algorithm is Classification and Regression Trees (CART) [31],
which, as it states, can be used for both classification and regression problems. This algo-
rithm is used by many tree-based models and will, therefore, be described in this section.

The CART algorithm, introduced by Breiman et al. in 1984, is characterized by binary
splits. Each internal node has exactly two outgoing edges [31], [32], as in the example of
Figure 7.3A is shown. Each split is made on a single explanatory variable, for example,
sieve size. However, there is no limitation on the number of explanatory variables used in
the complete tree. Hence, it is possible to split, for example, first on the sieve size, then on
the year, and finally on the sieve size again.

The predictions of the CART Decision Tree are obtained by calculating the weighted
mean over the samples in each leaf. Since the Decision Tree of the example in Figure 7.3A
consists of three leaves, the predictions will consist of three unique values: the mean over
the batches using a sieve size of 2.5 mm, the mean over the batches using a sieve size of 3.0
mm and the mean over the batches using a sieve size of 5.0 mm.

The residuals of a node can be calculated by the predictions and observations in that
node. The algorithm decides how to make the next split by minimizing the squared resid-
uals of the two created leaf nodes [32]. The algorithm works in a greedy manner, which
means that it iteratively adds best splits. Note that this approach does not guarantee an
optimal tree, as sometimes worse splits should be made to be able to create a better split
in the next iteration. The splitting process stops when the number of samples in the node
is less than a certain minimum (min_samples_split), the number of samples contained in the
created leaves after the split is less than a certain minimum (min_samples_leaf ) or the maxi-
mum depth (max_depth) of the tree is reached. In that case, the final node is taken as a leaf
node.

7.3.2 Limitations

As already mentioned, Decision Trees are prone for over-fitting. Besides that, there are other
limitations to Decision Trees. First of all, a Decision Tree has a high variance. This means
that the predicted values depend a lot on the training set. When the training set changes,
the predictions could change a lot too.

In addition, Decision Trees have the problem of the lack of smoothness. In the example
of Figure 7.3A only three different values are predicted. There is nothing in between. Hence,
the predicted values are not smooth.

These limitations of Decision Trees are the reason that single trees are not frequently
used. However, ensembles of Decision Trees have success in many applications [21].

7.4 Extra Trees

The first tree-based ensemble model that is used in this research, is Extra Trees [33]. This
model tries to improve the accuracy of a Decision Tree and to control over-fitting [34]. This
is done by the creation of multiple CART Decision Trees. Each tree is build using the whole
dataset. However, the features used for a split can be limited to a random choice of a certain
number of features [33], which is specified by hyperparameter max_features. In addition,
instead of the greedy splitting approach, each split of a certain feature is made at random
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[33]. This results in extremely randomized trees, which are able to reduce the model variance.
The model combines the information to one prediction by taking the arithmetic mean over
the individual Decision Trees. An advantage of this model is that the confidence interval of
a prediction could be defined based on the individual Decision Trees.

How many Decision Trees are created in the model is determined by the hyperparameter
n_estimators, see Table 7.3. In general, the larger the number of Decision Trees, the better the
results, but the longer it will take [34]. Therefore, it was decided to use the default number
of 100 Decision Trees, which is "large enough to ensure convergence of the ensemble effect"
with all datasets used by Geurts et al. (2006) [33].

In addition, hyperparameters are included for the individual Decision Trees: the maxi-
mum depth (max_depth), the minimum number of samples to split (min_samples_split) and
the minimum number of samples in each leaf (min_samples_leaf ). Since the best hyperpa-
rameters are not known, several are tested and evaluated on a validation set to decide which
hyperparameters are the best, see the overview in Table 7.3.

Hyperparameter Description
Default
value

Evaluated
values

n_estimators
The number of created Decision
Trees.

100 100

max_depth
Maximum depth of each Decision
Tree.

∞
∞, 10, 20,
30, 40, 50

min_samples_split
Minimum number of data samples
for split in Decision Tree.

2 2

min_samples_leaf
Minimum number of data samples
in each leaf of each Decision Tree.

1
1, 10, 50,
100, 200,

500

max_features
The number of features to consider
when looking for the best split in a
Decision Tree.

Total
number of

features

Total
number of

features

TABLE 7.3: Hyperparameter settings of Extra Trees.

The evaluated values of max_depth are set to infinity, 10, 20, 30, 40 and 50 and the eval-
uated values of min_samples_leaf to 1, 10, 50, 100, 200 and 500, which are chosen to see the
influence of limiting the complexity of the individual Decision Trees.

Finally, the max_features hyperparameter is chosen to be the total number of features,
which is the default value of max_features in regression problems and is recommended by
Geurts et al. [33]. For more details on Extra Trees, please refer to the original paper proposed
by Geurts et al. in 2006 [33].

7.5 Gradient Boosting Machine

There exist other ensemble models. One variant is the Gradient Boosting Machine (GBM)
[35], which uses a boosting technique. "The idea of boosting is to use the weak learner to form
a highly accurate prediction rule by calling the weak learner repeatedly on different distri-
butions over the training samples" [36]. In which a weak learner is defined as a model that
performs "just slightly better than guessing" [37]. The reasoning is that each of these weak
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learners represents a "rule-of-thumb", which are by themselves "very rough and inaccurate",
but combining many "rules-of-thumb" could lead to a very accurate prediction [37].

Objective = min L + Ω (7.4)

First of all an objective is specified, see Equation (7.4). This objective consists of a loss
function L and a regularisation term Ω. The loss function represents the error made on
the observations. For the standard GBM model, the sum of squared residuals is taken, see
Equation (7.5).

L =
n

∑
i=1

ri
2

ri = yi − ŷi

(7.5)

The seconds part of Equation (7.4) is the regularization term. The purpose of the regu-
larisation term is to penalize complicated models, which "encourages simple models" [38].
"Simpler models tend to have smaller variance in future predictions, making prediction sta-
ble" [38].

As mentioned, the prediction of a boosting model is based on multiple simple models. In
the case of standard GBM, also called Gradient Boosting Decision Trees (GBDT), CART De-
cision Trees are used [38], which were introduced in Section 7.3.1. We define the prediction
of a single Decision Tree as ft, then the prediction of the GBM is the sum of all (T) individual
trees, see Equation (7.6) [35], [38]. This function is used to estimate all (n) observations in
the training set.

ŷi =
T

∑
t=1

ft(xi) (7.6)

Hence, the objective function to be minimized contains many Decision Trees instead
of numerical vectors and therefore standard optimization techniques can not be used [38].
Since it becomes "intractable" to train all Decision Trees at the same time, an iterative proce-
dure is used [38], of which an abstract visualization is shown in Figure 7.5.

FIGURE 7.5: Abstract visualization of Gradient Boosting Machine [35], [38]. Orange: trained
in current iteration, grey: reuse previous iteration.

In each iteration, a new Decision Tree is added, which aims to reduce the remaining error
of the previous trees. This results in the summation of the prediction of the previous trees
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(1, ..., t− 1) plus the prediction of the current tree (t), see Equation (7.7) [38]. The objective
function of created tree in iteration t is shown in Equation (7.8). Decision Trees are added
until T trees are created, see Figure 7.5.

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (7.7)

So far, we did not specify the regularisation term Ω. As mentioned, this term indicates
how complicated the created Decision Trees are. Since only one Decision Tree is build per
iteration, the regularisation term of the previous build Decision Trees are constant in the
objective function of the current iteration, see Equation (7.8).

Objective(t) =min
n

∑
i=1

(yi − ŷ(t)i )
2
+

t

∑
i=1

Ω( fi)

=min
n

∑
i=1

(yi − (ŷ(t−1)
i + ft(xi)))

2
+

t

∑
i=1

Ω( fi)

=min
n

∑
i=1

((yi − ŷ(t−1)
i )− ft(xi))

2
+ Ω( ft) + constant

(7.8)

There are multiple regularisation methods. Commonly used regularisation methods are
described by the following function, see Equation (7.9). The function contains three ele-
ments. The first part (γB) penalizes trees with many leaves; with B leaves and weight γ.
The second part is the L1-regularization on the values of the leaves, in which α is the weight
of regularization and wj is the value of leaf j. Finally, the last part is the L2-regularization
term, which is very similar to the L1-regularization, but now it takes the square instead of the
absolute value of the leaf value and its weight parameter is λ. If and which regularization is
used can be chosen by setting the hyperparameters γ, α and λ.

Ω( ft) = γB + α
B

∑
j=1
|wj|+

1
2

λ
B

∑
j=1

wj
2 (7.9)

For standard GBM, as described by Friedman et al. in 2001 [35], no regularization was
implemented, which is the same as setting these three hyperparameters to zero. Setting to
zero simplifies the objective function (Equation (7.4)) to only the minimization of the loss
function L.

The objective function is defined above. Note that the predictions of many Decision
Trees are summed together in the GBM. For the optimization of the GBM, the Decision Tree
that is created in an iteration should make the best contribution to the whole GBM model.
Steepest descent is used for that purpose [35]. Steepest descent calculates the gradient of
the objective function. Since the objective is a minimization function, the negative gradient
is taken as the direction to which the parameters of the weak learner are updated [35]. The
splits of the new Decision Tree should be created in such a way that it results in leaf values
most parallel to the negative gradient. Therefore, the defined response variable, containing
"pseudo responses", of the Decision Tree created in iteration t, can be given by Equation
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(7.10) [35].

Pseudo responses(t) : {−gt(xi)}N
i=1

with N training samples
and gt the gradient of the objective function in iteration t− 1

(7.10)

7.6 XGBoost

XGBoost [21], "eXtreme Gradient Boosting", is a boosting model inspired by the Gradient
Boosting Machine from Friedman et al. The initial version of the model was released in
2014 as a Python and R module [39]. The corresponding paper was published in 2016 [21].
According to the paper, it has been successful in many applications and many winners of
machine learning competitions used XGBoost [21].

As mentioned, regularisation was not implemented in standard GBM. This was intro-
duced by XGBoost, and is therefore sometimes called "regularized boosting" [21]. The de-
fault implementation of XGBoost has γ = 0, α = 0 and λ = 1 (Equation (7.9)) [40], which
only includes the L2-regularisation term.

Another difference that was made by XGBoost compared to the original implementation
of Gradient Boosting Machine is that XGBoost uses parallel computation. Since the Decision
Trees are built in series, they cannot be built simultaneously. However, how the Decision
Tree grows could be parallelized. According to Chen et al., "the system runs more than ten
times faster than existing popular solutions on a single machine and scales to billions of
examples in distributed or memory-limited settings" [21].

7.7 Light Gradient Boosting Machines

Recently, another Gradient Boosting framework was introduced by Ke et al. in 2017: Light-
GBM [41]. It was developed to improve the efficiency and scalability of the Gradient Boost-
ing model, and they succeeded. According to Ke et al., "LightGBM can accelerate the train-
ing process by up to over 20 times while achieving almost the same accuracy". Two novel
techniques were used, which will be described in this paragraph.

Firstly, Ke et al. noticed that training samples with larger gradients will contribute more
to the creation of the Decision Trees. To speed up the learning process, we can downsample
data instances. Ke et al. proved that random downsampling data instances with small
gradients (below the top percentiles or under a certain threshold) can lead to a more accurate
gain estimation than uniformly random sampling [41]. This technique is called Gradient-
based One-Side Sampling (GOSS) [41]. However, this technique is not used in the default
implementation of LightGBM, and it is therefore not used in this research.

The second technique, Exclusive Feature Bundling (EFB) [41], is part of the default imple-
mentation and will, therefore, be used in this research. This technique bundles exclusive
features to a single feature, which is specifically useful in a sparse feature space [41]. For
example, the ingredient features in the estimation of production durations are often zero,
because many ingredients are contained in only a part of the produced articles. Accord-
ing to Ke et al. combining exclusive features reduces the complexity without hurting the
accuracy [41]. However, the graph colouring problem [42] could be reduced to this feature
bundling problem. The graph colouring problem is known to be NP-hard, which means that it
is impossible to find an optimal solution in polynomial time in general. But, there are greedy
algorithms available for the graph colouring problem, which can be used to efficiently give a
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good approximation in the feature bundling problem. For more information on EFB and
LightGBM, please refer to the original paper of Ke et al. [41].

In general, Gradient Boosting models have many hyperparameters to tune. First of
all, Decision Trees themselves have hyperparameters like the maximum depth of the tree
(max_depth) and the minimum number of data samples in the leaves of the tree (min_data-
_in_leaf ). In addition, the maximum number of leaves (num_leaves) could be specified in the
LightGBM model.

Since the model is trained using gradient descent, a learning rate is included, which is
used to shrink the updating step sizes. This learning rate is used to prevent the model
from over-fitting [41]. Since the direction of the gradient specifies the created Decision Tree,
shrinking the step size increases the need for more Decision Trees (n_estimators) because
more steps are needed to reach the same distance. However, including more Decision Trees
increases the training time of the model.

Finally, the regularisation term of the objective function could be specified using γ, α
and λ of Equation (7.9). Which are zero by default in LightGBM, but λ is 1 by default in
XGBoost.

Since the training time of LightGBM is much smaller than that of XGBoost, and they
reach approximately the same accuracy [41], only LightGBM is used in this research. The
following hyperparameters will be evaluated, see Table 7.4.

Hyperparameter Description
Default
value

Evaluated values

max_depth
Maximum depth of each
Decision Tree.

∞ ∞, 6, 8, 10

min_data_in_leaf
Minimum number of data
samples in each leaf of each
Decision Tree.

1 10, 50, 100

num_leaves
Step size shrinkage used in
update to prevents
over-fitting.

31 50, 100, 150, 200

n_estimators
The number of created
Decision Trees.

100 100, 300, 500

learning_rate
Step size shrinkage used in
update to prevents
over-fitting.

0.1 0.05, 0.1, 0.2

lambda_l2 L2 regularisation factor 0 0, 1

TABLE 7.4: Hyperparameter settings of Light Gradient Boosting Machines.

According to J. Aarshay [43], common starting point of the max_depth hyperparameter
is 8 and general good values for the learning_rate are between 0.05 and 0.2. The number of
leaves (num_leaves) should be smaller than the maximum number of leaves that are possi-
ble based on the max_depth hyperparameter (2max_depth) to take effect. Hence, we will only
evaluate num_leaves = 50 for max_depth = 6, because 26 = 64.

To see how many Decision Trees are needed, the values 100, 300 and 500 will be tested.
Finally, three values of the minimum number of data samples in each leaf are evaluated:
10, 50 and 100 samples. Since not limiting the created trees (minimum number of data
samples = 1) likely results in over-fitting, some values larger than one are used. In addition,
not limiting the Decision Trees could result in very big trees, which increases the running
time significantly. To evaluate the effect of limiting the created trees in the number of data
samples in each leaf, the values 10, 50 and 100 are used.
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7.8 Artificial Neural Network

This section started with the introduction of Linear Regression, which "learns" the weights
of a linear function in order to optimize its estimation of the target variable, see Equation
(7.1). This function shows resemblance with an artificial neuron, which combines the feature
values x of m features, also named input signals, with weights w and an intercept b, also
named bias, using an activation function ψ, see Equation (7.11) and Figure 7.6.

FIGURE 7.6: Abstract visualization of an artificial neuron [44].

ŷi = ψ(b +
m

∑
j=1

wjxij) (7.11)

The first model containing an artificial neuron was the Perceptron, which was introduced
by F. Rosenblatt in 1957 [45]. The Perceptron is used for binary classification problems (pre-
dicting two classes, for example, yes or no) in which ψ is a threshold function, see Table 7.5
[45]. It fits a linear function to the training samples and predicts everything above the func-
tion (≥ 0) as positive (or yes) and everything below (< 0) as negative (or no).

Later, multiple artificial neurons were used in a Multi-Layer Perceptron (MLP). This
model is a class of the feed-forward Artificial Neural Networks. The MLP consists of at
least three layers: an input layer, one or more hidden layers, and an output layer. A visual-
isation of an example of a MLP with one hidden layer with four neurons is given in Figure
7.7.

FIGURE 7.7: Example of an Multi-Layer Perceptron with 3 features (x1, x2 and x3), one hidden
layer with 4 neurons, a single output variable ŷ, and biases b0 and b1.
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The input layer consists of the input signals (the features), which are combined with
the bias on the input layer (b0) in the neurons of the first hidden layer. Each neuron of the
hidden and output layers works like described above in Equation (7.11). When there are
multiple hidden layers present, the output of the neurons of the previous layer (plus bias)
are the inputs of the next layer. Finally, the output layer combines the output of the neurons
of the last hidden layer. See Figure 7.7 for a visualization. Note that the signals in the MLP
go only forward to the next layer (feed-forward), and are connected to every neuron in a layer
(fully connected).

Since our problem is a regression problem, the output of the neuron in the output layer
should be a real number. This can be achieved by using a linear activation function, see
Table 7.5, which simplifies the estimation of the artificial neuron, Equation (7.11), into the
estimation of the Linear Regression, Equation (7.1).

For the hidden layers, many activation functions can be used. In general, non-linear
activation functions are used to enable the model to learn non-linear relations. See Table 7.5
and Figure 7.8 for an overview of common activation functions [46].

Activation function Formula Output range
linear ψ(x) = x (−∞, ∞)

threshold function ψ(x) =

{
1, if x ≥ 0
0, if x < 0

{0, 1}

hyperbolic tangent ψ(x) = tanh(x) = e2x−1
e2x+1

(−1, 1)
logistic ψ(x) = σ(x) = 1

1+e−x (0, 1)
rectified linear unit ψ(x) = max(0, x) [0, ∞)

TABLE 7.5: Activation functions [46].

FIGURE 7.8: Plot of the activation functions.

In the recent years, the Rectified Linear Unit (ReLU) [47] is most commonly used as
activation function in the hidden layers [48]–[51] because of its performance and speed.
Therefore, ReLU is selected as activation function in the hidden layers in this research.

7.8.1 Optimization algorithms

During the training phase of the model, the weights w and bias b in each neuron should
be optimized. For this purpose, the gradient could again be used for the direction of the
optimization steps (Section 7.5) [51], for which we should specify an objective function.
An example of an objective function is the least squares, as was used in Linear Regression
(Section 7.1). Another objective is the minimization of the mean absolute error (MAE), see
Equation (7.12), in which yi is the actual observation and ŷi the estimation of sample i. The
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mean absolute error equally weights the errors, in contrast to the mean square error (MSE),
which is the average of the squared residuals, which gives bigger weights to larger error, as
mentioned in Section 7.2. Since all errors deserve similar attention in the estimation of the
production durations, the MAE is used as objective function. For example, using MAE, a
model which makes two times an error of 5 seconds, or a model which makes one time an
error of 1 second and one time an error of 9 seconds are considered equally good. Since all
errors are equally important for the MAE method, it is more robust to outliers than the MSE
method. Since the used outlier detection method does not guarantee that all strange values
are filtered out, a robust method is preferred.

Objective = min L

L =
1
n

n

∑
i=1
|ri|

ri = yi − ŷi

(7.12)

Since the non-linearity of Neural Networks (as for GBM in Section 7.5) "causes most
interesting loss functions to become nonconvex" [51], multiple minima could be found, see
Figure 7.9. For this type of problems, Gradient Descent (or Steepest Descent) is commonly used
to optimize the parameters θ (the weights of a Neural Network) to receive the optimum
value of the objective function L, using an iterative process in which the update in each
iteration is in the direction of the negative gradient g [51], see Equation (7.13), as mentioned
in Section 7.5. The learning rate ε determines the step size in the direction of the gradient,
which should be big enough for significant steps towards a minimum, but small enough for
convergence to an acceptable minimum, see Figure 7.9. In such iteration, commonly called
epoch, all weights (θ) in the network are updated using the objective function (L) over all
training samples. The number of epochs should be large enough for convergence towards a
minimum, but small enough to compute.

FIGURE 7.9: Example of nonconvex objective function [51].

g = ∇θ L(θ)
θ ← θ − εg

(7.13)

The disadvantage of Gradient Descent (GD) is that it becomes very slow when the size
of the training set is very large, because the computational costs of a single gradient step be-
comes prohibitively long [51]. To limit the computational costs, Stochastic Gradient Descent
(SGD) was introduced, which uses the insight that the objective function is usually created
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per sample and averaged over the whole training set [51]; see our objective function in Equa-
tion (7.12). The gradient could be approximated by calculating the gradient g̃ over smaller
number of samples (B), called batch, see Equation (7.15). In SGD the number of batches D in
one epoch is equal to the total sample size (n) divided by the batch size (B). Hence, instead
of a single weight update per epoch (GD), the weights (θ) are updated D times per epoch
(SGD), which requires a smaller number of epochs for convergence. When a batch contains
only a single sample, the stochastic approximation of the gradient can be very different over
the batches, resulting in a "zig-zag" path towards a minimum.

L =
1
n

n

∑
i=1

Li (7.14)

g̃ =
1
B

B

∑
i=1
∇θ Li(θ)

θ ← θ − εg̃

(7.15)

Usually, batch sizes are small; ranging from one to a few hundreds and "especially when
using GPUs, it is common for power of 2 batch sizes to offer better runtime" [51]. The
recent study of Masters and Luschi (2018) showed that a batch size between 2 and 32 is
recommended [52].

In addition, other methods became available. Where SGD sometimes was still consid-
ered as slow, a new method Momentum [53] was introduced. This method tries to decrease
the "zig-zag" effect of SGD by remembering the previous direction and updating it to the
current gradient with a certain weight. In this way, oscillations of the gradient are damped.
Therefore, the step size depends on "how large and how aligned a sequence of gradients
are" [51]. Figure 7.10 shows an example of Momentum.

FIGURE 7.10: Example objective function with optimum at (0,0). The black arrows indicate
the direction of the gradient of the objective function, the red lines show the path taken by

Momentum [51].

In 2011, the Adaptive Gradient Algorithm (AdaGrad) [54] was introduced, which has
instead of one learning rate ε, a learning rate for each parameter. This allows the method
to "dynamically incorporate knowledge of the geometry of the data observed in earlier it-
erations to perform more informative gradient-based learning" [54]. In general, AdaGrad
outperforms SGD with Momentum if the gradients are sparse (mostly zero) [55].

In addition, Root Mean Square Propagation (RMSProp) is another method with per-
parameter learning rates, which "modifies AdaGrad to perform better in the nonconvex
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setting by changing the gradient accumulation into an exponentially weighted moving av-
erage", which comes with the introduction of the decay rate ρ that controls the period of
moving average on past squared gradients [51], [56], [57]. Using this parameter, RMSProp is
able to forget previous iterations, in contrast to AdaGrad in which the learning rate depends
on the entire history [51]. Therefore, RMSProp works well in "non-stationary settings" [55],
for example, due to noise in the data.

In 2014, Kingma and Ba introduced another method called Adam, which is derived from
"adaptive moment estimation" [55]. Adam combines RMSProp and Momentum (Nesterov’s
variant [58]): besides the decay rate on the squared gradients (similar to RMSProp), it applies
the same approach on the past gradients (similar to Momentum) [57]. To account for the
initial values of the gradient estimations, Adam introduces initialization bias correction. For
the complete algorithm, please refer to the work of Kingma and Ba (2014) [55].

According to Kingma and Ba (2014), Adam has multiple advantages: "the method is
straightforward to implement, is computationally efficient, has little memory requirements,
is invariant to diagonal rescaling of the gradients, and is well suited for problems that are
large in terms of data and/or parameters." [55]. On top of that, Adam is "fairly robust to
the choice of hyperparameters" [51], [55]. Finally, S. Ruder (2016) provides an overview of
modern optimization algorithms and recommends to use Adam because of its initialization
bias correction [57].

Since an ANN consists of multiple artificial neurons, the prediction can be obtained by
applying Equation (7.11) recursively. To obtain the gradient of the objective of the first neu-
ron, the chain rule of calculus can be used. Hence, for the objective function of each neuron,
the chain rule could recursively be applied. Note that because of the chain rule, the gra-
dients of the neurons are very similar. Therefore, we can store intermediate results to save
computations. This procedure is commonly referred to with Backpropagation [51]: the error
in the iteration is "propagated backwards" through the network. In this way, the gradient of
each batch can be obtained and be used for the weight updates.

7.8.2 Dropout

Since combining many artificial neurons leads to many parameters / weights that should
be optimized, the neural network is prone for over-fitting. Many methods exist to reduce
model complexity. In 2014, Google introduced such a method, called dropout [59], [60]. This
method randomly "drops" neurons from the network, see Figure 7.11 for a visualization.
The idea behind temporarily disabling neurons is to prevent units "from co-adapting too
much" [59].

FIGURE 7.11: Abstract visualization of a feed-forward Neural Network before applying
dropout (a) and after applying dropout (b) [59].
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During the training phase, each node in a layer is retained with probability p and is
dropped with probability 1− p. After training, during the test phase, all neurons will be
present and the weights are multiplied with p. "This ensures that for any hidden unit the
expected output (under the distribution used to drop units at training time) is the same as
the actual output at test time" [59]. Srivastava et al. (2014) found that a Neural Network with
dropout and using the approximate averaging method at test time "leads to significantly
lower generalization error on a wide variety of classification problems compared to training
with other regularization methods" [59].

7.8.3 Hyperparameters

An ANN could be used for the estimation of the production durations. In general, deep
Neural Networks are used for complicated classification tasks, like, image recognition [61],
[62] and speech recognition [63]. Deep Neural Networks are not frequently used in regres-
sion problems. Therefore, we decided to use a shallow Neural Network of an input layer,
one or two hidden layers and an output layer. As mentioned before, a ReLU activation
function is used in the hidden layers and a linear activation function in the output layer.

The values 2, 4 and 8 are tested for the number of neurons in each hidden layer. In
addition, to analyse if the model benefits from the introduction of dropout, dropping proba-
bilities 0 (no dropout) and 0.2 are both evaluated on the input layer and the hidden layer(s),
of which the latter is a typical value for dropout according to Srivastava et al. [59]. An
overview of the tuned hyperparameters is given in Table 7.6.

Hyperparameter Description Evaluated values
batch_size Number of samples in one batch 16

epochs Number of epochs

Use early stopping on
30% validation data,

with maximal 100
epochs

n_layer1 Number of nodes in hidden layer 1 2, 4, 8
n_layer2 Number of nodes in hidden layer 2 0, 2, 4, 8

dropout_input_layer
Dropout rate on visible layer
(input layer)

0, 0.2

dropout_hidden_layer Dropout rate on hidden layer(s) 0, 0.2

TABLE 7.6: Hyperparameter settings of the Neural Network.

For the optimization of the weights of the Neural Network, Adam optimizer will be
used, which was recommended by S. Ruder (2016) [57]. The default hyperparameters of
Adam were used in this research, because the method is fairly robust to the choice of them
[51], [55]. For this iterative optimization procedure, we need to specify the number of epochs
and the batch size. The recent study of Masters and Luschi (2018) recommends a batch size
between 2 and 32 [52]. Since it is common to use a power of 2 (i.e. 2, 4, 8, 16, 32, ...), we
decided to choose a batch size of 16.

The number of epochs that is needed for convergence is problem dependent. To eval-
uate if the model is under-fitting or over-fitting the training data, a validation set can be
used to which the performance can be compared. When the model both improves on the
training and validation set, it indicates that the optimizer did not converge so far. When the
model improves on the training set but does not on the validation set (or even get worse), it
indicates that the model starts over-fitting the training set. A technique which can be used
to stop training at the ’right’ moment is early stopping. Using this technique, the optimizer
stops when the performance on the validation set does not improve any more. According
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to S. Ruder (2016), early stopping should always be used while training an Neural Network
[57]. In this research, it was chosen to use 70% of the training data to fit the Neural Net-
work weights, and 30% of the training data as validation data to evaluate the performance.
Besides, to save computations, the training is stopped as soon as possible, without patience.

Finally, to efficiently perform Backpropagation, all input signals (features) were normal-
ized before passing to the network [64]. A standard scaler is used for this, which subtracts
the mean and scales to unit variance.

7.9 Evaluation methods

In the description of the machine learning models was mentioned that some evaluation will
be performed to choose the right hyperparameters. However, the used procedure was not
explained in detail yet, which we will do now.

7.9.1 Training and test set

As mentioned, twelve different target variables are aimed to be estimated in this research.
Therefore, twelve final models are created: one for each target. The data samples that are
used to create a model consist of the batches that were produced and of which the target du-
ration is observed. In this way, the model estimation could be compared with the observed
production duration. However, it is important to conclude the model performance on a dif-
ferent sample set as used for the creation of the model, due to the possibility of over-fitting.
Therefore, the data samples are split in a training set and a test set.

Most of the benchmark models (Table 2.1) are time-based: only the last x batches are
used for the estimation. Therefore, we need to split the training and test set in such a way
that this time property is not affected. This is ensured by splitting the training and test set
in time. It was chosen to use the last three months of 2018 (2018/10/01 – 2018/12/17) as
test set, and all records before 1 October 2018 as training set (2016/08/14 – 2017/08/14 and
2017/12/14 – 2018/09/30). The test set consists of approximately 10% of the data samples
using this approach. This results in the following amounts, see Table 7.7.

Note that the number of batches are different over the targets due to the outlier filter-
ing performed in Section 4.3. Also, the first few warm-up periods of the pressing durations
could not be estimated because at least a few observations are needed to perform the de-
composition using the Robust Regression model in a windowed fashion. This results in a
few missing speed target values in the training set. These samples are simply ignored.

7.9.2 Prediction horizon

The most recent batches are assumed to be most representative for the current production
durations, due to new harvests of ingredients, newly created articles and seasonal effects.
Therefore, when the final model proposed in this research will be used in practice, it will be
retrained frequently. Since the most computational effort of the selected machine learning
models is at training time, it would be reasonable to train the machine learning models
during the night, to limit the occupation of computing power during the day. With this in
mind, it is decided to use a prediction horizon of one day. Since there are 78 days in the test
set (31 in October, 30 in November and 17 in December), the models will be trained 78 times
and be evaluated on the next day. Therefore, the training set as defined in Section 7.9.1 is
incrementally enlarged with one day at the time. This is visualized in Figure 7.12.

Note that the selection of 78 days results in many more evaluated production durations
because many batches are produced every day, see Table 7.7 for the number of test samples.
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Target Training samples Test samples
HA1_TOEV 106,567 13,960
HA1_ZEEF 38,683 4,780
BU6_LOS 110,090 14,232
NM1_step 103,748 13,279
NM1_Los_step 111,267 14,397
MML_AFV_TR 109,292 14,221
MML_AFV_TR_NADRAAI 59,791 7,701
PL_PO1_slope 12,866 (+32*) 1,712
PL_PO2_slope 11,518 (+8*) 1,530
PL_PO3_slope 9,931 (+17*) 1,388
KO3_idle_time 10,172 1,327
PL_PO4_slope 13,835 (+13*) 1,865

TABLE 7.7: Number of samples in the training and test sets for the estimation of the twelve
targets. * = missing target observations due to decomposition of period A and B at press line.

FIGURE 7.12: Evaluation approach on test set using a planning horizon of 1 day. One row
represents the training of the model, in which the blue samples are used for training and the

pink samples are used for testing.

7.9.3 Goodness of fit

As mentioned, the estimation of the model will be evaluated against the observed produc-
tion duration. This comparison will always be made between the total estimated duration
and the total observed duration. Hence, the pressing duration decomposition will be re-
versed before evaluation.

Several goodness of fit measures exist. For example, the Mean Absolute Error (MAE)
and the Mean Square Error (MSE) were already mentioned in Section 7.8.1. In that section,
it was mentioned that all errors on the production durations (estimated versus observed) de-
serve similar attention, which resulted in the choice of the MAE. MAE has more advantages
compared to other goodness of fit measures. For example, it is highly interpretive because
it explicitly measures (in seconds) the performance of the model. Therefore, the MAE will
be used to determine which model is the best.

Also, the Mean Absolute Percentage Error (MAPE) is calculated for each model. This
metric computes the percentage error of each batch and takes the average value of these.
The percentage error compares the absolute error to the production duration. Therefore,
similar errors result in a big percentage error when the production duration is small and in
a small percentage error when the production duration is big.
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7.9.4 Missing values

Missing values may occur in the features of the training samples. For example, when the
BOA is not used at press line 2, the BOA opening size will be missing. Besides, the article
features are created by looking at the past observations of the same article. However, when
a new article is introduced, these observations are missing.

The missing values can be split in setpoint related features (described in Section 5.3) and
other features. Missing values in the setpoint related features occur only when the value
does not exist. Therefore, these missing values are imputed with zero. In contrast, the
missing values of the other features occur when the value is unknown. Therefore, these
missing values are imputed with the median value of the feature in the training set, because
the median value is robust for outliers.

7.9.5 Grid search for hyperparameter and feature selection

Previously, many features and many hyperparameters were discussed. To choose which
should be used in the final model, a grid search is performed. A grid can be created by
selecting all possible combinations of the features and hyperparameters. A single grid point
represents a single combination. The idea is to evaluate all grid points and search for the
best grid point, which represents the best selection of hyperparameters and features for the
model.

The evaluation of the grid points can be performed in the same way as the final model
comparison: split the data in a training and test set, and use a similar evaluation approach
as visualized in Figure 7.12. To avoid confusion, the training set used in the grid search will
be called exploration set, and the test set will be called validation set. The validation set is
chosen to be the last two months of the training set: August and September 2018, and the
exploration set will contain all months before August 2018. Splitting the data in this way, the
validation set contains again approximately 10% of the samples. Note that the grid search
will only use training samples. The test samples will never be used for training.

The validation set consists of 61 days (31 days in August and 30 days in September).
Training and testing a model 61 times for a single grid point results in a lot of computations.
Therefore, only a random selection of days will be used. Since it is important to evaluate
different hyperparameters (they affect the model performance), it is important to reduce the
computation time of a single grid point. To keep the average duration of a single grid point
of the tree-based models (these models have the most hyperparameters) below 60 seconds,
maximal four days could be evaluated. Therefore, four days were randomly selected from
the validation set. For fair comparison, the same four days will be used for all models. Note
that the selection of four days results in many more evaluated production durations because
on average 170 GML batches and 19 batches per PL are produced per day.

The evaluation on the four validation days is done in the same way as before, using
the MAE. The grid point with the smallest MAE is selected as the best hyperparameter
and feature combination of that model. The resulting best versions of the models will be
compared on the test set, which was described earlier.

Feature sets

Many features were described in Section 5. To limit the created number of grid points,
and thus the number of evaluations, the features are split into feature sets, see Table 7.8.
Of course, this choice creates some noise because a single feature set could contain both
useful and useless features. However, it gives an idea of how the different kind of features
contribute to the model performance.
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Feature set Features
1 batch size and article features
2 batch size, article and setpoint features
3 batch size, article, setpoint and ingredient features

4
batch size, article, setpoint, ingredient and weather
features

5
batch size, article, setpoint, ingredient, weather and time
features

6
batch size, article, setpoint, ingredient count, ingredient
group, weather and time features

7 batch size, setpoint, ingredient, weather and time features

TABLE 7.8: Feature sets.

The first feature set contains the batch size (Section 5.1) and article features (Section 5.6),
because these features show in general the most correlation with the production durations,
see Figures 6.4, 6.7, 6.11B, 6.14A, 6.20B and 6.21B. The second feature set includes the fea-
tures from the first feature set, and on top of that the setpoint features (Section 5.3). The
setpoint features consist of features like the sieve size, the supply capacity and which press
units are used, which are highly correlated with the production durations, see Figures 6.2B,
6.18A, 6.21A, 6.23B and 6.25A.

The third feature set also contains the ingredient features (Section 5.4), which consist of
ingredient percentage features and an ingredient count feature. These features are used on
top of the other features to see if the models can relate some variation in the production
durations to the ingredient composition of the batch.

The fourth feature set also includes the weather features, which show little correlation
with the production durations according to the feature analyse performed in this research,
see Section 6. The fifth feature set contains in addition the time features, which also show
little correlation with the production durations according to the feature analysis. Note that
the time-correlated production durations were concluded to be estimated by a simple time-
based model (Section 6).

The sixth feature set is included to see the effect of summarizing the different ingredients
to their ingredient group. The ingredient percentage features are removed from this feature
set. Finally, the seventh feature set is included to get an idea of the model performance when
the article information cannot be used at all.

Simple time-based models

The evaluated grid points for the advanced machine learning models are described in the
first part of this section for each explained model. For the models for which in Section 6 was
concluded to fit a simple time-based model to the last B batches, are the following numbers
evaluated in the grid search: 1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500,
600, 700, 800, 900 and 1000. Note that the simple time-based models do not use the different
feature sets. Therefore, the grid of the simple time-based models is much smaller (and the
grid search much faster) than the grid of the advanced machine learning models. Therefore,
the limitation of four days is not needed. The grid search of the simple time-based models
is evaluated against all days in the validation set.
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7.9.6 Evaluation final results

Previously was described how the performance of the models is measured. These models
can be compared using this performance measure. The final results will be compared in
three ways.

First of all, the model performances will be compared to the performance of the bench-
mark, see Table 2.1. This is done by filtering on all test samples for which the benchmark
could give an estimation.

The advantage of the benchmark model is that it is very fast to compute. This makes
it possible to use all data points right before the estimation. However to create a fair com-
parison, two benchmarks are created. Benchmark 1 uses all produced batches prior to the
estimated batch, which is compared with Benchmark 2, which uses only the batches of the
previous day and earlier. The used data by Benchmark 2 is similar to the data used by the
proposed machine learning models in this research, which are trained during the night. Both
benchmarks provide information about the predictive power. When a schedule is created
for the next day, Benchmark 2 provides the performance of the production duration estima-
tions. In contrast, when an estimation should be given for then next batch, Benchmark 1
provides the benchmark performance. The benchmark results will be compared to evaluate
the importance of the last batches to the estimation of the production duration.

Secondly, the performance of the models on the samples for which the benchmark (Bench-
mark 2) could not give an estimation (e.g., new products) are compared to the performances
with benchmark results. This shows how the model performs in the situations that the
benchmark could not give an estimation. For the target durations which were estimated
by a median per article, this comparison gives an idea of how the model performs on new
products. Table 7.9 shows the number of missing values in the predictions of Benchmark 2
on the test set.

Finally, all final models are evaluated on the test set while training on a smaller training
set, which only contains the last x batches. This evaluation provides information on how
many training data should be available at the animal feed plants before the model performs
well. For the value of x, we select 1, 2, 6 and 12 times the median number of batches per
month, see Table 7.9. Therefore, we can conclude if respectively 1, 2, 6 or 12 months of
training data are desired for the use of the model.

Target
Median number of
batches per month

Number of missing
values by benchmark

on test set
HA1_TOEV 4,877 155
HA1_ZEEF 1,769 0
BU6_LOS 5,139 59
NM1_step 4,858 517
NM1_Los_step 5,200 0
MML_AFV_TR 5,059 60
MML_AFV_TR_NADRAAI 2,788 0
PL_PO1_slope 590 216
PL_PO2_slope 534 84
PL_PO3_slope 454 70
KO3_idle_time 469 0
PL_PO4_slope 628 104

TABLE 7.9: Median number of batches per month of each target variable and the number of
missing values estimated by the benchmark.
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7.9.7 Feature importance

After comparing the final models as mentioned above. The best model is chosen for which
the importance of the features is analysed. For the linear and robust regression models, this
is done by analysing the fitted weights of the model. For the tree-based models Extra Trees
and LightGBM is the feature importance relatively easy to obtain. Each split in the Decision
Trees uses one feature. The feature importance can be derived from the improvement that
each split has made on the objective function. Features which significantly improve the
predictive power of the model are valued as the most important features.

The feature importances of the Neural Network are less straight-forward to obtain. One
way to achieve this is to use a shuffling technique [65]–[67]. The trained Neural Network
will be evaluated on an adapted test set. In this adapted test set, the values of a certain
feature, say feature a, are shuffled over the different batches. The relationship between the
target production duration and feature a is disturbed by this shuffle. Therefore, we expect to
see an increase in the Mean Absolute Error (MAE) of the model on the adapted test set. How
much the MAE increases indicates the importance of feature a. If feature a is not important
at all, the model did not find a strong relationship between feature a and the production
duration, so the shuffling will not have a big impact on the performance. In contrast, if
feature a is very important, the shuffling disturbs the strong relationship between feature a
and the production duration, and therefore a significant decrease of the model performance
(an increase of MAE) is expected. This procedure will be applied to all features, one at the
time, which results in an estimation of the feature importances in the Neural Network.

7.9.8 Implementation

All analysis and modelling is implemented in PythonTM, which is a common programming
language in data science. The package Scikit-learn1 is used for the implementation of Linear
Regression and Extra Trees, Statsmodels2 for the implementation of Robust Regression, and
the packages LightGBM3 and Keras4 for the implementation of respectively LightGBM and
Neural Networks. All computations are performed on a single Windows 10 laptop with the
following specifications: 2,20 GHz Intel R© CoreTM i7-8750H with 16GB RAM.

1https://scikit-learn.org/stable/index.html
2https://www.statsmodels.org
3https://lightgbm.readthedocs.io
4https://keras.io/

https://scikit-learn.org/stable/index.html
https://www.statsmodels.org
https://lightgbm.readthedocs.io
https://keras.io/


88

8 Results

In this section, the results are given for each target variable (Table 2.1). This happens in the
following way. First, the results of the grid search are given, as explained in Section 7, in
order to obtain the final models. Secondly, the benchmark results are given and the best
model is selected based on the three evaluation methods described in Section 7.9.6. Finally,
the importance of the features in the best model is analysed.

8.1 HA1_TOEV

The first target variable is HA1_TOEV, which is the duration of the grinding step in the GML.
First, the grid search is applied to find the best hyperparameters and feature set of the five
machine learning models; Linear Regression, Robust Regression, Extra Trees, LightGBM
and Neural Network. Since the HA1_TOEV durations show a strong linear relationship
with the batch size, see Figure 4.6A, the grid search is performed twice: once to predict the
total duration and once to predict the duration per 1,000 kg (and multiply the batch size
afterwards). For all models, the best target is found to be the duration per 1,000 kg. The best
feature set and hyperparameters of each model are shown in Table 8.1.

Model Feature set Hyperparameters MAE Std
Linear Regression 6 fit_intercept = True 19.092 5.145
Robust Regression 3 18.106 4.970

Extra Trees 3
max_depth = 30
min_samples_leaf = 10

18.181 7.271

LightGBM 3

max_depth = 8
min_data_in_leaf = 10
num_leaves = 50
n_estimators = 300
learning_rate = 0.1
lambda_l2 = 1

16.806 5.487

Neural Network 1

n_layer1 = 8
n_layer2 = 0
dropout_input_layer = 0
dropout_hidden_layer = 0

17.541 3.744

TABLE 8.1: Grid search results for the estimation of the HA1_TOEV durations.

To observe how much spread is in the created models of one grid point, the standard
deviation (std) is calculated over the MAE of the individual trained models, in other words,
the MAE of the four days in the validation set. Note that the same four days are used for all
models and all grid points for a fair comparison. Spread in the performance over the four
days can be observed, see Table 8.1. According to Table 8.1, the best grid point of the Neural
Network has the smallest spread over the four days compared to the best grid point of the
other models.
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The final models are obtained by selecting the feature set and hyperparameters of the
best grid point, see Table 8.1. These final models will be compared to the benchmark and to
each other on the test set. There are 78 days in the test set. The standard deviation (std) will
be calculated over the individual daily MAEs as a measure of the spread in the performance
of the model.

First, the benchmark model will be evaluated. According to Table 8.2, the MAE of Bench-
mark 2 is approximately 3 seconds (13%) higher than the MAE of Benchmark 1, which is
found to be significant while using the t-test (p-value of t-test « 0.01). Therefore, the most
recent batches (of the same article) provide a significant predictive power to the benchmark
model.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 17.879 6.620 6.242 13,820 140 (1.003%)
Benchmark 2 20.289 7.445 6.451 13,805 155 (1.110%)

TABLE 8.2: Benchmark results for the estimation of the HA1_TOEV durations.

Table 8.3 shows the results of the final models on the test set, including the split to
batches with and without benchmark estimations. The results show that all evaluated mod-
els outperform the benchmark, which is the answer to the second sub-question of this re-
search. According to the final results, the Neural Network is the best model with an MAE
of 16.293. However, the model LightGBM shows better estimations for the batches without
benchmark estimations, see Table 8.3.

With benchmark
estimation

Without benchmark
estimation

All

Model MAE MAPE MAE MAPE MAE MAPE Std
Linear Regression 17.495 6.529 26.539 9.593 17.595 6.563 5.848
Robust Regression 16.371 5.935 23.961 8.678 16.455 5.965 5.584
Extra Trees 16.853 6.354 22.000 7.861 16.910 6.371 5.565
LightGBM 16.423 6.153 20.436 7.448 16.467 6.167 5.475
Neural Network 16.182 5.914 26.174 9.376 16.293 5.952 5.519
Benchmark 2 20.289 7.445

TABLE 8.3: Model results for the estimation of the HA1_TOEV durations.

The difference between the results of LightGBM and the Neural Network can also be
observed from their usage of the features. The final LightGBM model uses feature set 3,
which includes batch size, article, setpoint and ingredient features, and the final Neural
Network model uses feature set 1, which only includes the batch size and article features.
The feature importance of the two models is shown in Figures 8.1 and 8.2.
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FIGURE 8.1: Feature importance LightGBM for the estimation of the HA1_TOEV durations.
(19 features are not shown, because these are not used by the model.)

According to Figure 8.1, not only the batch size and article features are important to
the LightGBM model, but also some ingredients and setpoint features. For example, the
ingredients 964, 901 and 994 show importance in the predictions of LightGBM, see Figure
8.1.

FIGURE 8.2: Feature importance Neural Network for the estimation
of the HA1_TOEV durations.

In contrast to LightGBM, the Neural Network estimations mostly depend on the features
articleMin5 and articleMedian5, and the importance of the batch size (bookProducedKg) feature
is much smaller, see Figure 8.2. Hence, the Neural Network works better when already some
batches of an article are observed (articleMin5 and articleMedian5 are known / not imputed
with the total median duration), which is the case for the batches where the benchmark
estimation exists too. This causes the difference in performance between the LightGBM and
the Neural Network model on the batches with and without benchmark estimation, see
Table 8.3.

Promising results are likely to be implemented by ENGIE Industrial Automation in other
industrial plants too. Therefore, we trained the model on fewer data samples as an indica-
tion of how much training data is needed. The results are shown in Table 8.4. Table 8.4
shows that the Robust Regression model performs best on fewer records compared to the
other suggested models.
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1 month 2 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 20.767 7.922 10.836 18.105 6.790 6.330
Robust Regression 16.128 5.756 5.577 16.018 5.716 5.688
Extra Trees 16.985 6.271 5.474 16.508 6.091 5.575
LightGBM 18.547 6.886 5.470 17.839 6.649 5.766
Neural Network 17.564 6.410 5.802 16.932 6.122 6.008

6 months 12 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 17.675 6.609 5.982 17.660 6.608 5.945
Robust Regression 16.390 5.912 5.738 16.527 5.976 5.574
Extra Trees 16.664 6.207 5.629 16.906 6.343 5.541
LightGBM 16.987 6.343 5.641 16.709 6.254 5.318
Neural Network 16.853 6.188 5.744 16.826 6.235 5.692

TABLE 8.4: Model results with smaller training sets for the estimation
of the HA1_TOEV durations.

The Robust Regression model uses the same feature set as the LightGBM model. In con-
trast to the feature importance of LightGBM, the feature coefficients of the Robust Regres-
sion function show directly if the feature positively or negatively influences the production
duration.

Figure 8.3 shows two features with a coefficient≤ −3 and five features with a coefficient
≥ 3. These features are ingredient features and happen to be non-zero for only one or two
batches. Therefore, these seven coefficients are likely the results of over-fitting to those few
observations. However, the model performs well (low MAE compared to the benchmark)
and is able to achieve this performance with only one month of training data.

FIGURE 8.3: Feature coefficients of the Robust Regression model for the estimation
of the HA1_TOEV durations.

The first sub-question of this research is "what are the explanatory variables for the pro-
duction duration?". According to Figures 8.1, 8.2 and 8.3, the most important features for
the estimation of the HA1_TOEV duration are the sieve size, articleMin5 and articleMedian5
features. However, the importance of the features depend on which model is used.

The estimations of the benchmark model and the Robust Regression can be observed in
Figure 8.4 for the observations in the test set. The diagonal line indicates the situation of a
perfect prediction (estimation=observation). Figure 8.4 shows indeed that the estimations
of the Robust Regression are closer to the diagonal than the estimation of the benchmark
model.
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FIGURE 8.4: Observed HA1_TOEV durations versus estimated HA1_TOEV durations by
Benchmark 2 and Robust Regression.

According to both the results based on the full training set as on a smaller training set, the
Robust Regression model is the best choice for the estimation of the HA1_TOEV durations.
This model reduces the MAE from 20.289 (Benchmark 2) to 16.371 for the same batches and
is able to give an estimation for all future batches.

8.2 HA1_ZEEF

The estimation of the HA1_ZEEF durations is done by a simple time-based model, as ex-
plained in Section 6. A grid search was performed to obtain the number of batches per
sieve switch which are used for the estimation. The optimal number of batches in this grid
is found to be 70 batches, resulting in an MAE of 0.988 seconds. A final model is created,
which estimates the production durations by calculating the median duration of the past
70 batches that perform the same sieve switch. This model is tested on the test set and
compared with the benchmark.

Benchmarks 1 and 2 are equal for the sieve switching durations. This happens because
the median duration since the first of January 2017 keeps the same for all estimations in the
test set (73 seconds). Therefore, the median at night (Benchmark 2) is the same as during
the day (Benchmark 1). The benchmark makes on average an absolute error of only 1.642
seconds, see Table 8.5.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 and 2 1.642 2.187 0.504 4780 0 (0%)

TABLE 8.5: Benchmark results for the estimation of the HA1_ZEEF durations.

Running the final model on the test set gives an MAE of only 0.864 seconds, see Table 8.6,
which is approximately half of the MAE of the benchmark. In addition, the standard devia-
tion of the MAE over the 78 days in the test set is 0.285 seconds, which is also smaller than
for the benchmark (0.504 seconds).

Model MAE MAPE Std
Median duration of the last 70
batches with the same sieve switch

0.864 1.158 0.285

Benchmark 2 1.642 2.187 0.504

TABLE 8.6: Proposed model results for the estimation of the HA1_ZEEF durations.
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Figure 8.5 shows the estimations of the benchmark and the proposed model for the ob-
servations in the test set. Note that the estimated duration of the benchmark does not change
for the batches in the test set, which results in a horizontal line in Figure 8.5. Figure 8.5 shows
a better fit to the diagonal line for the proposed model than for the benchmark, which results
in the lower MAE.

The t-test can be used to determine if the difference between the proposed model and the
benchmark is significant. The null hypothesis of the t-test is that the means of the absolute
errors are the same. The p-values is found to be much smaller than 0.01. Therefore, we can
conclude that our proposed model for the estimation of the HA1_ZEEF durations is better
than the benchmark.

FIGURE 8.5: Estimated durations versus observed durations for the benchmark (left)
and proposed model (right) for the estimation of the HA1_ZEEF durations.

8.3 BU6_LOS

The estimation of the BU6_LOS durations is done by a simple time-based model too, as
explained in Section 6. Again, a grid search was performed to obtain the number of batches
which are used for the estimation. The optimal number of batches in this grid is found to be
50, resulting in an MAE of 2.376 seconds on the validation set. The final model estimates the
durations by calculating the median duration of the past 50 batches. This model is compared
to the benchmark on the test set.

Benchmark 1 and 2 have respectively an MAE of 5.001 and 5.020 seconds on the test
set, see Table 8.7. This indicates that the most recent batches are not very important for
the predictive power of the benchmark, this is because the durations are fairly constant, see
Figure 4.12 in Section 4.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 5.001 11.796 2.250 14,200 32 (0.225%)
Benchmark 2 5.020 11.844 2.254 14,173 59 (0.415%)

TABLE 8.7: Benchmark results for the estimation of the BU6_LOS durations.

The disadvantage of the benchmark is that it is not able to give an estimation for new
articles. Therefore, less than 0.5 percentage of the batches could not be estimated by the
benchmark, see Table 8.7.

The proposed model gives an estimation based on the most recent 50 batches. It is,
therefore, able to estimate all batches in the test set. In addition, the MAE of the final model



Chapter 8. Results 94

is smaller than the MAE of the benchmark for both batches with (3.919 seconds) and without
benchmark (4.686 seconds), see Table 8.8.

Again, the t-test can be used to determine if the proposed model is significantly better
than the benchmark. The proposed model is found to be significantly better than the bench-
mark because the p-value of the t-test is much smaller than 0.01. Therefore, we can conclude
that the proposed model performs significantly better than the benchmark.

With benchmark
estimation

Without benchmark
estimation

All

Model MAE MAPE MAE MAPE MAE MAPE Std
Median duration
of the last 50
batches

3.919 9.133 4.686 10.634 3.923 9.139 2.283

Benchmark 2 5.020 11.844

TABLE 8.8: Model results for the estimation of the BU6_LOS durations.

8.4 NM1_step

The next production phase is mixing, which results in the NM1_step durations. The results
of the grid search on the estimation of the NM1_step durations are shown in Table 8.9.

Model Feature set Hyperparameters MAE Std
Linear Regression 5 fit_intercept = False 8.407 13.619
Robust Regression 3 8.000 16.651

Extra Trees 7
max_depth = 30
min_samples_leaf = 10

6.866 17.759

LightGBM 5

max_depth = 10
min_data_in_leaf = 100
num_leaves = 200
n_estimators = 500
learning_rate = 0.05
lambda_l2 = 0

6.637 14.799

Neural Network 1

n_layer1 = 8
n_layer2 = 0
dropout_input_layer = 0
dropout_hidden_layer = 0

8.035 16.857

TABLE 8.9: Grid search results for the estimation of the NM1_step durations.

The standard deviation of the MAE of the four days in the validation set is high for
the models in the grid search (around 15 seconds), see Table 8.9. The reason is that all
models perform worse on one of the four days (MAE of approximately 40 seconds instead
of approximately 7 seconds). A reason could be that this day still contains outliers that were
not filtered out by the filters described in Section 4.3.

According to Table 8.10, the MAE of the benchmark is approximately 17 seconds. This
model is not able to give an estimation for every batch due to its dependence on the occur-
rences of the same article. Approximately 3.8% of the batches could not be estimated.
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Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 16.985 13.727 3.788 12,770 509 (3.833%)
Benchmark 2 17.666 14.308 3.940 12,762 517 (3.893%)

TABLE 8.10: Benchmark results for the estimation of the NM1_step durations.

The proposed models in this research can estimate all batches. The results of the final
models with the hyperparameters selected based on the performance in the grid search are
shown in Table 8.11.

With benchmark
estimation

Without benchmark
estimation

All

Model MAE MAPE MAE MAPE MAE MAPE Std
Linear Regression 10.543 8.297 13.481 10.889 10.657 8.398 3.350
Robust Regression 9.608 7.240 12.719 9.803 9.729 7.340 3.457
Extra Trees 11.836 9.436 14.708 11.828 11.948 9.529 4.521
LightGBM 8.823 6.755 11.321 9.047 8.921 6.844 3.984
Neural Network 9.020 6.626 12.549 9.433 9.158 6.736 3.484
Benchmark 2 17.666 14.308

TABLE 8.11: Model results for the estimation of the NM1_step durations.

All models can improve the results on the same batches as were estimated by the bench-
mark, see Table 8.11, which answers the second sub-question of this research. The MAE of
the models on the batches without benchmark estimation are smaller than the MAE of the
benchmark, too. The overall performance of the LightGBM model is the best with an MAE
of 8.921 seconds, which is approximately half of the MAE of the benchmark. These scores
are measured over 78 days in the test set, which results in a standard deviation of 3.984
seconds for the LightGBM model.

Figure 8.6 shows the estimated and observed values for the benchmark and LightGBM.
The improvement on the performance by the LightGBM model can be observed: the blue
dots are closer to the grey diagonal line. In addition, the LightGBM is able to estimate the
other batches (red dots in Figure 8.6).

FIGURE 8.6: Estimated durations versus observed durations for the Benchmark (left)
and proposed model (right) for the estimation of the NM1_step durations.

Note that both models are less accurate while the production duration increases, see
Figure 8.6. On approximately 5% of the batches has the LightGBM model an absolute error
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of more than 30 seconds. The benchmark has an absolute error of more than 30 seconds on
approximately 18% of the batches.

The feature importance of the LightGBM model can be obtained, which is shown in
Figure 8.7. According to Figure 8.7, the most important features are dayNr, articleMax5,
articleRecipeGroupMax5, articleGroupMax5 and kgLiquids. In Section 6 was shown how the
NM1_step durations change over time, see Figure 6.10B. Therefore, the importance of the
dayNr feature is not surprising. In contrast, the importance of the three article features is
remarkable because the maximum duration is not robust to possible remaining outliers.
The reason is likely to be related to the shape of Figure 8.6: large durations are more likely
to be underestimated.

The most important ingredient for the LightGBM model is the ingredient 5721, see Figure
8.7. However, all features of feature set 5 show some importance to the estimation of the
mixing durations by the LightGBM model, which is the answer to the first research sub-
question.

FIGURE 8.7: Feature importance LightGBM for the estimation
of the NM1_step durations.

As mentioned before, it is relevant for ENGIE Industrial Automation how much training
data is needed for the model to perform well. Therefore, the model performance is observed
for less training data. The results are shown in Table 8.12.
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1 month 2 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 12.093 9.726 8.572 10.889 8.604 4.163
Robust Regression 9.491 7.141 3.634 9.794 7.421 3.539
Extra Trees 10.146 7.944 4.555 10.355 8.120 4.545
LightGBM 9.461 7.307 3.558 9.091 6.970 3.882
Neural Network 10.219 7.609 4.113 10.120 7.617 3.849

6 months 12 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 10.620 8.304 3.216 10.527 8.249 3.304
Robust Regression 10.235 7.811 3.438 9.872 7.464 3.406
Extra Trees 10.759 8.496 4.495 11.017 8.756 4.514
LightGBM 8.899 6.816 3.699 8.818 6.746 3.746
Neural Network 9.979 7.500 3.552 9.354 6.859 3.638

TABLE 8.12: Model results for the estimation
of the NM1_step durations by using smaller training sets.

According to Table 8.12, the LightGBM model is the best model for all tested amounts of
data, and it is performing better when more data becomes available.

It is striking that the MAE of the Extra Trees model increases as more data becomes avail-
able. A reason could be that relationships in the features change over time and that therefore
including more history to the model does not increase the performance. The importance of
the feature dayNr in the LightGBM model suggests the same. However, according to the
performances, the LightGBM can use this information better than the Extra Trees model.

Based on the results shown in Tables 8.10, 8.11 and 8.12, the LightGBM is the best model
for the estimation of the NM1_step durations. It performs almost twice as good as the bench-
mark.

8.5 NM1_Los_step

The estimation of the NM1_Los_step durations is performed with a simple time-based model,
as explained in Section 6. A grid search is performed to find the best number of batches in
the time window. The best number of batches is 80, which results in an MAE of 0.690 sec-
onds on the validation set. Based on this number of batches is the final model created.

Benchmarks 1 and 2 result in the same performance, because the median duration does
not change for the samples in the test set (21 seconds). This results in an MAE of 5.417
seconds, see Table 8.13. The benchmark is able to estimate all batches.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 and 2 5.417 20.407 0.186 14,397 0 (0%)

TABLE 8.13: Benchmark results for the estimation of the NM1_Los_step durations.

The model that is proposed in this research calculates the median duration of the last 80
batches. By using a moving window, changes in time are captured. Therefore, the proposed
model is better in estimating the NM1_Los_step durations in the test set than the benchmark,
see Figure 8.8.
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FIGURE 8.8: Estimated durations versus observed durations for the benchmark (left)
and proposed model (right) for the estimation of the NM1_Los_step durations.

The benchmark model is not accurate for the test samples, because the distribution of
the durations is changed over time, see Figure 4.16 in Section 4. Therefore, the blue dots are
not close to the grey diagonal in the left plot of Figure 8.8.

The proposed model has an MAE of 0.728 seconds, see Table 8.14. Also, the standard
deviation of the MAE over the 78 days in the test set is reduced to 0.092 seconds. Besides,
the p-value of the t-test is much smaller than 0.01. Therefore, the proposed model performs
significantly better in estimating the NM1_Los_step durations than the benchmark.

Model MAE MAPE Std
Median duration of the last 80 batches 0.728 2.712 0.092
Benchmark 2 5.417 20.407 0.186

TABLE 8.14: Proposed model results for the estimation of the NM1_Los_step durations.

8.6 MML_AFV_TR

The MML_AFV_TR durations are the time it takes to empty the bunker below the mixer
(BU7). A screw conveyor is used to transport the batch from BU7 to the transportation
system. Therefore, the MML_AFV_TR durations are correlated to the batch size. The grid
search is therefore performed for both the total duration, as for the duration per 1,000 kg
(and multiplied with the batch size afterwards). This approach is similar to the grid search
for the HA1_TOEV durations. However, the total durations happens now to be the best
objective for all models instead of the duration per 1,000 kg. The results of the grid search
are shown in Table 8.15.
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Model Feature set Hyperparameters MAE Std
Linear Regression 4 fit_intercept = False 20.589 2.723
Robust Regression 4 20.140 2.994

Extra Trees 5
max_depth = 30
min_samples_leaf = 10

18.689 4.788

LightGBM 4

max_depth = 10
min_data_in_leaf = 10
num_leaves = 100
n_estimators = 300
learning_rate = 0.1
lambda_l2 = 0

17.950 5.643

Neural Network 1

n_layer1 = 8
n_layer2 = 8
dropout_input_layer = 0
dropout_hidden_layer = 0

21.281 3.113

TABLE 8.15: Grid search results for the estimation of the MML_AFV_TR durations.

According to Table 8.15, the LightGBM performs the best on the validation set. However,
this model also has the biggest standard deviation over the four days. Based on the t-test,
we can conclude that the performance of the LightGBM, Extra Trees and Robust Regression
on the validation set is not significantly different (p-value t-test > 0.05). The best feature set
and hyperparameters, shown if Table 8.15, are used for the final models.

Benchmarks 1 and 2 perform approximately the same on the test set, see Table 8.16. They
have both a MAE of approximately 33 seconds (16.4%). Note that no benchmark estimation
could be given for less than 0.5 percentage of the batches.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 32.946 16.400 7.210 14,189 32 (0.225%)
Benchmark 2 32.962 16.412 7.190 14,161 60 (0.422%)

TABLE 8.16: Benchmark results for the estimation of the MML_AFV_TR durations.

In contrast, the final models can estimate all batches of the test set. The results of the final
models on the test set are shown in Table 8.17. All evaluated models are able to outperform
the benchmark estimations, see Table 8.17, which answers the second sub-question of this
research.

With benchmark
estimation

Without benchmark
estimation

All

Model MAE MAPE MAE MAPE MAE MAPE Std
Linear Regression 23.762 11.608 20.750 11.725 23.750 11.609 8.321
Robust Regression 23.670 11.549 21.179 12.068 23.659 11.551 8.365
Extra Trees 20.861 10.076 17.888 9.759 20.848 10.075 8.479
LightGBM 21.103 10.346 18.615 10.628 21.093 10.347 8.393
Neural Network 23.959 11.425 22.520 12.397 23.953 11.429 8.416
Benchmark 2 32.962 16.412

TABLE 8.17: Model results for the estimation of the MML_AFV_TR durations.
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According to Table 8.17, the Extra Trees model performs best with an MAE of approxi-
mately 20.8 seconds. In addition, the model performs best for batches with (20.9 seconds)
and without benchmark estimation (17.9 seconds). According to Table 8.17, all models seem
to perform better on the batches without benchmark estimation. However, these batches
happen to have small durations and the models are performing worse when the duration
increases, see the red dots in the right plot of Figure 8.9 for the batches without benchmark
estimation.

FIGURE 8.9: Estimated durations versus observed durations for the benchmark (left)
and the Extra Trees model (right) for the estimation of the MML_AFV_TR durations.

Figure 8.9 shows that both the benchmark model and the Extra Trees are not able to
accurately estimate large MML_AFV_TR durations. It might be the case that these durations
are still outliers that were incorrectly kept in the data in the data filtering step of the research.

Similar to the other production durations, the amount of training data is evaluated.
According to Table 8.18, the Extra Trees model is the best model for all evaluated train-
ing amounts. Therefore, the Extra Trees model is the best model for the estimation of the
MML_AFV_TR durations.

1 month 2 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 23.307 11.327 8.437 23.293 11.288 8.546
Robust Regression 22.481 10.880 9.031 22.658 10.985 8.957
Extra Trees 21.736 10.331 8.413 21.293 10.149 8.569
LightGBM 23.204 11.169 8.606 22.624 10.936 8.330
Neural Network 24.405 11.549 9.036 24.213 11.606 8.987

6 months 12 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 23.239 11.264 8.671 23.297 11.305 8.414
Robust Regression 22.860 11.097 8.670 23.097 11.206 8.475
Extra Trees 20.997 10.063 8.570 20.798 10.015 8.493
LightGBM 21.765 10.576 8.336 21.390 10.430 8.419
Neural Network 24.571 11.971 8.399 24.049 11.530 8.454

TABLE 8.18: Model results with smaller training sets for the estimation
of the MML_AFV_TR durations.
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To see which features affect the MML_AFV_TR durations, the first sub-question of this
research, the feature importances in the Extra Trees model are evaluated. The importances
can be obtained by looking at which features are used for the splits in the Decision Trees of
the Extra Trees model. The results are shown in Figure 8.10.

FIGURE 8.10: Feature importance Extra Trees for the estimation
of the MML_AFV_TR durations. (200 features are not shown, because these are not used by

the model.)

Figure 8.10 shows that the batch size (bookProducedKg) is very important in the estimation
of the MML_AFV_TR durations. This is also what we expected according to the feature
analysis in Section 6.

The ingredients 6552, 993 and 5333 are the most important ingredients, according to
Figure 8.10. These ingredients are also the ingredients with the largest positive Pearson
correlation, see Figure A.4 in the Appendix.

As mentioned in Section 6, the speed of the screw conveyor is not frequently changed.
Therefore, it is not surprising that this feature is not very important, see Figure 8.10.

8.7 MML_AFV_TR_NADRAAI

The seventh target variable, MML_AFV_TR_NADRAAI, is the transportation duration of
GML batches to the next destination. The benchmark calculates the median of the duration
of the last 31 batches that are transported to the same destination. The proposed model in
this research is very similar, but now the number of batches is determined by performing
a grid search. The best number of batches is found to be 600, which results in an MAE of
1.220 seconds on the validation set. Note that this 600 is the maximum window size, which
means that fewer batches are used when less data is available.

Benchmarks 1 and 2 are able to estimate all 7,701 batches, see Table 8.19. They both have
an MAE of approximately 1.24 seconds. The proposed model with a window size of 600
batches per destination has an MAE of 1.21 seconds, see Table 8.20.
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Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 1.238 1.165 0.132 7,701 0 (0%)
Benchmark 2 1.236 1.162 0.128 7,701 0 (0%)

TABLE 8.19: Benchmark results for the estimation of
the MML_AFV_TR_NADRAAI durations.

Model MAE MAPE Std
Median duration of the last 600
batches with the same destination

1.214 1.144 0.128

Benchmark 2 1.236 1.162 0.128

TABLE 8.20: Proposed model results for the estimation of
the MML_AFV_TR_NADRAAI durations.

To test if this proposed model is significantly better than the benchmark model, the t-test
is performed. The null hypothesis of the t-test is that the means of the absolute errors are the
same. The p-value of the performed t-test is 0.22, which is bigger than any common signifi-
cance level (0.05, 0.025 or 0.01). Therefore, the hypothesis is not rejected, which means that
the performance of the proposed model and the benchmark are not significantly different.
Both models could, therefore, be used for the estimation of the MML_AFV_TR_NADRAAI
durations.

8.8 PL_PO1

The pressing duration of the first press line, PL_PO1, is the next target variable. As de-
scribed in Section 4.3.2 and Section 7, the pressing duration is estimated by predicting
PL_PO1_intercept and PL_PO1_slope separately, see Table 4.3. The results are obtained by
comparing the estimated total pressing duration with the observed total pressing duration.

The results of the grid search are shown in Table 8.21. According to Table 8.21, all best
grid points use a different feature set.

Model Feature set Hyperparameters MAE Std
Linear Regression 2 fit_intercept = True 169.968 60.180
Robust Regression 4 167.710 69.522

Extra Trees 5
max_depth = 20
min_samples_leaf = 10

148.473 73.705

LightGBM 6

max_depth = 8
min_data_in_leaf = 10
num_leaves = 50
n_estimators = 100
learning_rate = 0.05
lambda_l2 = 0

142.777 61.844

Neural Network 1

n_layer1 = 8
n_layer2 = 0
dropout_input_layer = 0
dropout_hidden_layer = 0

167.895 61.183

TABLE 8.21: Grid search results for the estimation of the PL_PO1 durations.
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The final models will be compared to the benchmark on the test set. Benchmarks 1 and
2 have approximately the same MAE on the test set: 240 seconds (9.3%). Note that the GML
batches for the same order are processed continuously on the press line. Therefore, there is
less difference between Benchmark 1 and Benchmark 2 than at the GML. Both benchmarks
could not estimate 216 batches (12.617%) because the Robust Regression model, which is
used by the benchmark, needs at least 5 batches of the same article.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 239.589 9.314 229.938 1,496 216 (12.617%)
Benchmark 2 239.606 9.315 229.938 1,496 216 (12.617%)

TABLE 8.22: Benchmark results for the estimation of the PL_PO1 durations.

The results of the final models are shown in Table 8.23. According to Table 8.23, all
evaluated models are able to outperform the benchmark estimations, which is the answer
to the second sub-question of this research. It shows that the Extra Trees model performs
best, which results in an MAE of approximately 174.5 seconds (6.8%), see Table 8.23. Extra
Trees performs best on both batches with and without benchmark estimations. Note that
this model is able to estimate all batches in the test set.

With benchmark
estimation

Without benchmark
estimation

All

Model MAE MAPE MAE MAPE MAE MAPE Std
Linear Regression 194.466 7.485 186.814 7.148 193.501 7.442 213.849
Robust Regression 182.760 7.200 188.329 7.362 183.462 7.220 212.544
Extra Trees 173.427 6.760 181.607 6.840 174.459 6.770 186.964
LightGBM 179.569 7.062 193.269 7.158 181.298 7.074 163.199
Neural Network 190.586 7.413 208.392 7.830 192.832 7.466 219.969
Benchmark 2 239.606 9.315

TABLE 8.23: Model results for the estimation of the PL_PO1 durations.

The Neural Network only uses feature set 1 and is still able to show reasonably good
results. One reason for this performance is that the PL_PO1 duration primarily depends on
which press units are used, which is for approximately 87% of the batches only press unit B
(Section 6). Since almost all batches use the same press unit, the Neural Network is able to
show good results, despite the setpoints are not included.

The estimations of the benchmark and Extra Trees model are shown in Figure 8.11. The
blue dots show the batches with benchmark estimation and the red dots the batches without
benchmark estimation. The grey diagonal indicates a perfect fit between the estimations and
observations. The dots created by Extra Trees are closer to the diagonal than the dots created
by the benchmark, see Figure 8.11. Therefore, the improvement made by Extra Trees can also
be observed in this way.
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FIGURE 8.11: Estimated durations versus observed durations for the benchmark (left)
and the Extra Trees model (right) for the estimation of the PL_PO1 durations.

The required amount of training data can be evaluated based on the results in Table 8.24.
The Extra Trees model happens to be still the best model when less training data is available,
see Table 8.24. Therefore, the Extra Trees model is the best model for the estimation of the
PL_PO1 durations.

1 month 2 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 189.161 7.385 222.161 188.897 7.351 209.056
Robust Regression 215.431 8.614 239.610 198.869 7.731 364.882
Extra Trees 186.400 7.214 193.578 181.353 7.012 188.030
LightGBM 208.191 7.942 186.517 205.281 7.845 174.728
Neural Network 214.071 8.226 178.519 201.418 7.812 218.866

6 months 12 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 188.445 7.203 203.332 195.651 7.404 202.326
Robust Regression 185.068 7.239 197.602 185.332 7.219 214.374
Extra Trees 179.786 6.949 189.168 175.608 6.800 196.240
LightGBM 194.331 7.509 174.060 184.736 7.169 166.906
Neural Network 195.528 7.487 210.627 195.005 7.476 208.592

TABLE 8.24: Model results with smaller training sets for the estimation
of the PL_PO1 durations.

The features that are most important for the Extra Trees model can be observed in Figure
8.12. Only the features with an importance of more than 0.2% are shown in order to limit
the number of bars in the figure.
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FIGURE 8.12: Feature importance Extra Trees for the estimation of the PL_PO1 durations.
(210 features are not shown, because these are not used by the model.)

There are two features indicating if press unit A and/or press unit B is used. However,
only the feature PO1B_usePress is very important to the Extra Trees model, see Figure 8.12.
The reason for this is that before the first of January 2018, only press unit B or both press
units were used, and after then, either press unit A or B. Therefore, using a time feature (for
example year) and the usage of press unit B is enough to obtain the same information.

Since press unit B is the most used press unit (90%), the features belonging to this unit
are also more important to the model, see Figure 8.12. The ingredients do not seem to be
very important for the estimation of the pressing duration at PL 1. Figure 8.12 shows that
the setpoints are most important features for the Extra Trees model, which is the answer to
the first sub-question of this research.

8.9 PL_PO2

The pressing duration at PL 2, PL_PO2, is the ninth target variable of this research. The same
approach is used as for the estimations of the PL_PO1 durations. A grid search is performed
to find the best feature set and hyperparameters. The results are shown in Table 8.25.
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Model Feature set Hyperparameters MAE Std
Linear Regression 6 fit_intercept = False 181.426 68.802
Robust Regression 6 181.190 69.713

Extra Trees 6
max_depth = 20
min_samples_leaf = 10

168.676 63.318

LightGBM 6

max_depth = 8
min_data_in_leaf = 10
num_leaves = 100
n_estimators = 100
learning_rate = 0.1
lambda_l2 = 1

155.415 47.808

Neural Network 2

n_layer1 = 8
n_layer2 = 8
dropout_input_layer = 0
dropout_hidden_layer = 0.2

173.935 68.386

TABLE 8.25: Grid search results for the estimation of the PL_PO2 durations.

Note that for each model, except for the Neural Network, feature set 6 is selected, see
Table 8.25. The final models are created with the hyperparameters and feature set shown
in Table 8.25. The benchmark model will be compared to the final models, to evaluate the
performance.

Similar to the estimation of the PL_PO1 durations, Benchmarks 1 and 2 show very simi-
lar results, see Table 8.26. The MAE of the benchmark is approximately 221.6 seconds (7.6%),
and is not able to give an estimation for 84 batches (5.5%).

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 221.561 7.628 73.684 1,446 84 (5.490%)
Benchmark 2 221.596 7.628 73.659 1,446 84 (5.490%)

TABLE 8.26: Benchmark results for the estimation of the PL_PO2 durations.

The results of the final models are shown in Table 8.27, which shows that all evaluated
models are able to outperform the benchmark estimations, which answers the second sub-
question of this research. Table 8.27 shows that the Robust Regression model is the best
overall. However, the LightGBM performs best on the batches without benchmark estima-
tion.

With benchmark
estimation

Without benchmark
estimation

All

Model MAE MAPE MAE MAPE MAE MAPE Std
Linear Regression 158.352 5.985 244.346 9.389 163.073 6.172 68.558
Robust Regression 151.361 5.661 248.668 9.468 156.703 5.870 69.291
Extra Trees 154.296 5.909 230.513 8.843 158.481 6.070 56.267
LightGBM 163.825 6.063 225.471 8.463 167.209 6.195 74.214
Neural Network 163.744 6.116 253.639 9.672 168.679 6.311 66.630
Benchmark 2 221.596 7.628

TABLE 8.27: Model results for the estimation of the PL_PO2 durations.
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From Table 8.28 can be obtained that the Extra Trees model is the best model to estimate
the PL_PO2 durations with less than 12 months of training data. The Robust Regression
model outperforms the Extra Trees model when 12 months or more training data is available.
Note that the standard deviation of the daily Extra Trees models (56.3 seconds) is smaller
than the standard deviation of the daily Robust Regression models (69.3 seconds), see Ta-
ble 8.27. Besides, the Extra Trees model is the second best model to estimate the PL_PO2
durations using the full training dataset, see Table 8.27.

1 month 2 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 270.229 9.304 363.179 183.340 6.544 121.287
Robust Regression 220.754 7.713 208.809 175.800 6.209 126.802
Extra Trees 163.425 6.096 57.528 161.811 6.069 54.775
LightGBM 194.244 6.950 93.979 185.750 6.699 75.450
Neural Network 196.586 6.919 86.982 192.368 6.804 77.060

6 months 12 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 171.692 6.425 64.128 160.278 6.059 62.896
Robust Regression 161.697 5.983 62.352 155.507 5.753 67.913
Extra Trees 159.271 6.053 54.405 156.121 5.984 56.292
LightGBM 177.793 6.445 88.642 170.016 6.300 69.785
Neural Network 184.255 6.601 83.532 173.618 6.295 73.887

TABLE 8.28: Model results with smaller training sets for the estimation
of the PL_PO2 durations.

The percentage error made by the two models can be compared with the percentage
error of the benchmark, see Figure 8.13. Note that the peak of Extra Trees is not located at
zero, see Figure 8.13. This suggests that the predictions of the Extra Trees are influenced
by the batches that took unexpectedly long: it overestimates a little bit (positive percentage
error in Figure 8.13), to reduce the underestimation of a few batches (negative percentage
error in Figure 8.13). This can also be observed to a lesser extent for the benchmark and
Robust Regression, see Figure 8.13. They seem to be more robust to these outliers.

FIGURE 8.13: Density distribution of the percentage error of the benchmark, Extra Trees and
Robust Regression for the estimation of the PL_PO2 durations.

Both the density plot of the percentage error made by the Robust Regression and the
Extra Trees show less spread, i.e., smaller width, than the percentage error made by the
benchmark, see Figure 8.13. The standard deviation of the percentage error made by the Ro-
bust Regression, Extra Trees and benchmark are respectively 7.944, 7.878 and 9.987 seconds.
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Since both the Extra Trees and Robust Regression show good results (small MAE), the im-
portance of the features will be evaluated for both models to answer the first sub-question
of this research.

The coefficients trained by the Robust Regression are shown in Figure 8.14. From these
coefficients can be observed that the different ingredient article groups have the largest neg-
ative coefficients. Since the sum of the ingredient article groups is 100% of the batch, we can
observe that if the batch contains more liquids (igrGroup_VL), it results into a smaller press-
ing duration. Besides the ingredient article groups, the supply capacity shows the largest
negative coefficient, see Figure 8.14.

FIGURE 8.14: Feature importance Extra Trees for the estimation
of the PL_PO2 durations.

In addition, increasing the rolling distance (PO2_rollingDistance) reduces the pressing
duration and the usage of the BOA (PO2_useBOA) increases the PL_PO2 durations, accord-
ing to Figure 8.14. However, according to the importance of the features in the Extra Trees,
the usage of the BOA (PO2_useBOA) and the rolling distance (PO2_rollingDistance) have not
much effect on the PL_PO2 durations, see Figure 8.15.

FIGURE 8.15: Feature importance Extra Trees for the estimation
of the PL_PO2 durations.
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Feature igrGroup_VL is the most important ingredient article feature according to Ex-
tra Trees, which was also observed from the Robust Regression coefficients. However,
its importance is much smaller in the Extra Trees model than in the Robust Regresssion
model. The most important features for the Extra Trees model are the supply capacity
(PO2_supplyCapacity) and the article features, see Figure 8.15.

8.10 PL_PO3

The estimation of the PL_PO3 durations is comparable with the estimation of the other
pressing durations. However, PL 3 has two parallel press units, which is different from
the other press lines. Table 8.29 shows the best grid point found for each machine learn-
ing model during the grid search. Note that feature set 6 is selected by all models. This
suggests that the ingredient article groups are more useful than the individual ingredient
percentages. This will be examined during the evaluation of the feature importances.

Model Feature set Hyperparameters MAE Std
Linear Regression 6 fit_intercept = True 142.378 44.246
Robust Regression 6 132.395 46.783

Extra Trees 6
max_depth = 20
min_samples_leaf = 1

112.695 17.837

LightGBM 6

max_depth = 10
min_data_in_leaf = 50
num_leaves = 100
n_estimators = 300
learning_rate = 0.1
lambda_l2 = 0

95.749 11.683

Neural Network 6

n_layer1 = 4
n_layer2 = 0
dropout_input_layer = 0
dropout_hidden_layer = 0

134.952 50.383

TABLE 8.29: Grid search results for the estimation of the PL_PO3 durations.

The benchmark is evaluated similarly as before by looking at the results of Benchmark 1
(uses all batches to estimate the next batch) and Benchmark 2 (uses all batches of the days
before the day of the next batch). Benchmarks 1 and 2 show again very similar results. They
have an MAE of approximately 313 seconds (11%). Note that this benchmark performs
worse compared to the benchmark for the other pressing durations. Also, the benchmark is
not able to estimate 70 durations (5%) of the test set.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 313.148 11.052 218.232 1,318 70 (5.043%)
Benchmark 2 313.241 11.055 218.257 1,318 70 (5.043%)

TABLE 8.30: Benchmark results for the estimation of the PL_PO3 durations.

The final models are evaluated on the test set, see Figure 8.31 for the results. Note that all
MAEs on the test set (Figure 8.31) are significantly larger than the MAEs in the grid search
(Figure 8.29). The reason for this is that the grid search consists of only four days, which
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happen to be easier to estimate than the days in the test set. Since the test set consists of 78
days, the MAEs on the test set are more representative.

With benchmark
estimation

Without benchmark
estimation

All

Model MAE MAPE MAE MAPE MAE MAPE Std
Linear Regression 190.137 5.523 128.835 5.560 187.046 5.525 112.385
Robust Regression 180.694 5.223 124.620 5.394 177.866 5.232 132.810
Extra Trees 153.616 4.600 106.482 4.571 151.239 4.598 142.579
LightGBM 161.134 4.743 119.954 4.887 159.057 4.750 177.839
Neural Network 327.255 10.067 463.241 12.012 334.113 10.165 306.936
Benchmark 2 313.241 11.055

TABLE 8.31: Model results for the estimation of the PL_PO3 durations.

Besides, it is remarkable that the Neural Network is not able to outperform the bench-
mark, in contrast to the other machine learning models. Therefore, the answer to the second
sub-question of this research is that all evaluated models, except for the Neural Network,
are able to outperform the benchmark estimations. A reason for the performance of the
Neural Network could be that the one layer of the Neural Network is not able to combine
all features of feature set 6 in such a way that the MAE is reduced. Note that the difference
between the Neural Network and the regression models is (apart from the 4 neurons instead
of 1) the ReLU activation function. Therefore, it might be interesting to try other activation
functions in future research.

Except for the Neural Network, all machine learning models can significantly improve
the PL_PO3 duration estimations compared to the benchmark. One of the reasons for this
improvement is that the machine learning models are able to use the information if the batch
uses both parallel press units or just a single one. When only a single press unit is used, the
production duration is approximate twice the pressing duration with both press units. The
benchmark is not able to use this information, because it only takes the batch size and the
produced article into account.

The models are evaluated against the same test set, but now the amount of training data
is reduced to give an idea of how much training data is required for good PL_PO3 duration
estimations. The results are shown in Table 8.32.
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1 month 2 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 226.859 6.736 392.014 » 1,000 » 1,000 » 1,000
Robust Regression 202.539 6.228 463.859 161.143 4.865 261.735
Extra Trees 159.656 4.804 176.321 160.010 4.820 170.570
LightGBM 277.319 8.680 325.743 196.698 5.973 333.565
Neural Network 452.029 13.391 529.343 338.766 10.196 346.857

6 months 12 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression 175.324 5.267 141.535 174.388 5.255 116.902
Robust Regression 164.002 4.902 159.263 166.921 5.015 125.573
Extra Trees 156.076 4.697 141.142 153.542 4.624 128.107
LightGBM 161.382 4.868 114.336 161.729 4.828 132.100
Neural Network 308.153 9.369 280.482 268.489 8.226 376.420

TABLE 8.32: Model results with smaller training sets for the estimation
of the PL_PO3 durations.

According to Table 8.32, the Extra Trees model performs the best for all evaluated amounts
of training data. Note that the Linear Regression model has a very large (>> 1, 000) MAE
for the usage of two months of training data. A reason for this is that if an ingredient is
used in the test set that was not frequently used before (almost always zero) in the training
set, the coefficient trained on the training set can be very inaccurate. Multiplying to a very
inaccurate coefficient could result in such a wrong estimation. This will be further discussed
in the discussion (Section 9).

Based on the above-mentioned results, the Extra Trees model is recommended for the
PL_PO3 estimations. The feature importances of Extra Trees are shown in Figure 8.16.

FIGURE 8.16: Feature importance Extra Trees for the estimation
of the PL_PO3 durations.
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According to Figure 8.16, the most important ingredient article group are the liquids (igr-
Group_VL). Furthermore, all setpoints of the press units are important according to Figure
8.16. Only the setpoint PO3_crumble is not found to be important, which only indicates if
the batch will be crumbled afterwards or not. The Extra Trees model is able to find the same
features to be important as expected by ENGIE Industrial Automation, which is the answer
to the first sub-question of this research. Therefore, we can conclude that the Extra Trees
model is able to combine the features in such a way that it accurately estimates the PL_PO3
durations.

8.11 KO3_idle_time

The eleventh target variable is the cooling duration at press line 3: the KO3_idle_time du-
ration. As explained in Section 6, the proposed model will be a simple time-based model,
which estimates the production duration by calculating the median duration of the last B
batches by filtering if the batch uses the crumbler or not. The best number of batches in
the time window is found to be 100, which results in an MAE of 7.080 seconds on the val-
idation set. Therefore, the proposed model will estimate the KO3_idle_time durations by
calculating the median duration of the last 100 batches which also use or do not use the
crumbler.

To test if the proposed model is better than the benchmark, both models will estimate the
duration in the test set. Benchmarks 1 and 2 show very similar results, see Table 8.33. They
have an MAE of approximately 8 seconds (7%). In addition, they are both able to estimate
all cooling durations of the test set, see Table 8.33.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 7.729 7.057 2.713 1,327 0 (0%)
Benchmark 2 7.843 7.163 2.739 1,327 0 (0%)

TABLE 8.33: Benchmark results for the estimation of
the KO3_idle_time durations.

The proposed model reduces the MAE of the benchmark with approximately 1 second,
see Table 8.34 compared to Table 8.33. The difference in the performance of the benchmark
and the proposed model can be observed from Figure 8.17: the proposed model fits the grey
diagonal a bit better.

Model MAE MAPE Std
Median duration of the last 100
batches per usage of crumbler

6.891 6.115 2.659

Benchmark 2 7.843 7.163 2.739

TABLE 8.34: Proposed model results for the estimation of
the KO3_idle_time durations.
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FIGURE 8.17: Estimated durations versus observed durations for the Benchmark (left)
and proposed model (right) for the estimation of the KO3_idle_time durations.

The t-test is used to test if the difference between the MAE of the proposed model and
the benchmark is significant. The null hypothesis is that the mean of the absolute errors of
both models is equal. The p-value of the t-test is found to be approximately 0.0009, which is
smaller than 0.01. Therefore, the null hypothesis is rejected, which means that the MAE of
the proposed model and the benchmark are significantly different. The proposed model is
thus significantly better than the benchmark.

8.12 PL_PO4

The PL_PO4 durations are the last values to be estimated in this research. The same ap-
proach is used as for the other press lines. This press line is most similar to PL 1. However,
according to the feature analysis of Section 6, PL_PO1 mostly depends on the maximum
power of the press, and PL_PO4 on the capacity of the supply.

The results of the grid search are shown in Table 8.35. The tree-based models show the
smallest standard deviation on the four days in the validation set, see Table 8.35.

Model Feature set Hyperparameters MAE Std
Linear Regression 4 fit_intercept = False 128.165 25.522
Robust Regression 4 121.349 24.355

Extra Trees 6
max_depth = 30
min_samples_leaf = 10

122.634 8.498

LightGBM 6

max_depth = 8
min_data_in_leaf = 10
num_leaves = 50
n_estimators = 100
learning_rate = 0.1
lambda_l2 = 0

111.928 7.390

Neural Network 2

n_layer1 = 4
n_layer2 = 0
dropout_input_layer = 0
dropout_hidden_layer = 0

120.796 22.103

TABLE 8.35: Grid search results for the estimation of the PL_PO4 durations.
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Benchmarks 1 and 2 have approximately the same MAE on the test set of approximately
213 seconds (8%), see Table 8.36. They are not able to give an estimation for 5.6% of the
batches.

Model MAE MAPE Std
Number of
predictions

Number of unknown
predictions

Benchmark 1 212.687 8.012 92.538 1,761 104 (5.576%)
Benchmark 2 212.792 8.016 92.529 1,761 104 (5.576%)

TABLE 8.36: Benchmark results for the estimation of the PL_PO4 durations.

All proposed machine learning models can give an estimation for all batches in the test
set. The selected feature set and hyperparameters are shown in Table 8.35. The results of the
final models on the test set are shown in Table 8.37.

With benchmark
estimation

Without benchmark
estimation

All

Model MAE MAPE MAE MAPE MAE MAPE Std
Linear Regression 142.719 5.523 144.467 5.403 142.816 5.516 79.471
Robust Regression 144.354 5.546 148.050 5.463 144.560 5.541 80.745
Extra Trees 146.227 5.674 163.579 6.049 147.195 5.695 79.828
LightGBM 145.094 5.578 150.603 5.527 145.401 5.575 88.219
Neural Network 156.917 6.159 174.241 6.407 157.883 6.173 95.305
Benchmark 2 212.792 8.016

TABLE 8.37: Model results for the estimation of the PL_PO4 durations.

Table 8.37 shows that all evaluated models are able to outperform the benchmark esti-
mations, which is the answer to the second sub-question of this research. According to the
results shown in Table 8.37, a linear model is most appropriate to estimate the PL_PO4_slope
values of the pressing durations. The results suggest that the Linear Regression model per-
forms better than the other models. However, when we test if the differences are significant,
only the performance of the Neural Network is significantly different from the others using
the t-test with a significance level of 0.05. Note that the Linear Regression model is very
sensitive to features that are almost always zero, as explained in Section 8.10.

For the implementation, it is important how much training data is required for the mod-
els to perform well. The results of the final models using less training data are shown in
Table 8.38.
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1 month 2 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression » 1,000 » 1,000 » 1,000 » 1,000 » 1,000 » 1,000
Robust Regression 233.655 10.988 371.493 151.597 5.957 194.519
Extra Trees 152.439 5.790 80.746 153.291 5.842 81.540
LightGBM 164.862 6.276 92.461 165.116 6.295 94.522
Neural Network 177.036 6.664 98.948 177.638 6.662 542.320

6 months 12 months
Model MAE MAPE Std MAE MAPE Std
Linear Regression » 1,000 » 1,000 » 1,000 143.611 5.569 77.836
Robust Regression 136.567 5.385 120.044 141.817 5.504 79.347
Extra Trees 152.010 5.797 83.789 149.069 5.734 78.996
LightGBM 153.039 5.858 83.017 150.261 5.781 93.153
Neural Network 157.318 5.980 129.984 156.894 5.964 91.458

TABLE 8.38: Model results with smaller training sets for the estimation
of the PL_PO4 durations.

According to Table 8.38, the Linear Regression has a large MAE when the amount of data
is reduced. This can be the result of the coefficient of ingredient features, which are almost
always zero, see the explanation given for Table 8.32 in Section 8.10.

The Extra Trees model performs best on only one month of training data and has a
smaller standard deviation than the other models. Robust Regression performs better when
more data becomes available. However, as already mentioned, this difference was not found
to be significant.

The coefficients of the Robust Regression model are shown in Figure A.7 in the Ap-
pendix. Since 203 features are included in feature set 4, the coefficients of the Robust Re-
gression model are hard to interpret.

The importance of the features of the Extra Trees model are shown in Figure 8.18. Figure
8.18 shows that the article (articleMedian5 and articleMin5) provides most information to
the PL_PO4_slope estimations and after that the supply capacity (PO4_supplyCapacity), the
press power of press unit A (PO4A_pressPower) and if press unit A is used (PO4A_usePress).
Note that press unit B is always used at PL 4.

FIGURE 8.18: Feature importance Extra Trees for the estimation
of the PL_PO4 durations.
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Hence, similar features are important to the estimation of the PL_PO4 durations, as for
the other pressing durations: the article features, the setpoints and the liquid percentage of
the batch (igrGroup_VL), see Figure 8.18. This answers the first sub-question of this research.

8.13 Overview

Table 8.39 gives an overview of the above-mentioned results. The benchmark results in this
overview are the Benchmark 2 results. These results are very similar to the Benchmark 1
results, except for HA1_TOEV. The best model results are shown in Table 8.39, which are the
results of the best model on the full test set by training of the full training set.

Target variable
Benchmark

results
Best model

results

Best model
based on full
training set

Best model
based on small

training set

HA1_TOEV 20.289 16.293 NN, RR, LGBM
RR, ET, LGBM,

NN

HA1_ZEEF 1.642 0.864
MD 70 per sieve

switch
MD 70 per sieve

switch
BU6_LOS 5.020 3.923 MD 50 MD 50
NM1_step 17.666 8.921 LGBM, NN LGBM, RR
NM1_Los_step 5.417 0.728 MD 80 MD 80
MML_AFV_TR 32.962 20.848 ET, LGBM ET, LGBM
MML_AFV_TR
_NADRAAI

1.236 1.214
MD 600 per
destination

MD 600 per
destination

PL_PO1 239.606 174.459 ET, LGBM, RR ET

PL_PO2 221.596 156.703
RR, ET, LGBM,

NN
ET, RR

PL_PO3 313.241 151.239 ET, LGBM ET, RR, LGBM

KO3_idle_time 7.843 6.891
MD 100 per

usage of
crumbler

MD 100 per
usage of
crumbler

PL_PO4 212.792 142.816
LR, RR, LGBM,

ET
RR, ET

TABLE 8.39: Overview of final results. (LR=Linear Regression, RR=Robust Regression,
ET=Extra Trees, LGBM=LightGBM, NN=Neural Network, MD=Median duration of last B

batches)

The best models are listed in Table 8.39. The models listed for the same target variable are
not significantly different based on the t-test with a significance level of 0.05. They are sorted
based on the MAE score observed on the test set. Hence, it is significantly indifferent which
of these models is used. According to Table 8.39, LightGBM is listed for every target variable
by using the full training set. However, based on the smaller training sets, LightGBM is not
always the best choice. Similar to LightGBM, the Neural Network is generally not the best
choice when less training data is available. However, it performs best for the HA1_TOEV
estimations.

From Table 8.39 can be observed that the Extra Trees and Robust Regression model show
the best results on the smaller training sets. Since ENGIE Industrial Automation would like
to use a similar approach for other industrial plants, it is recommended to implement these
two models. It is recommended to use a Robust Regression model for the estimation of the
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HA1_TOEV, NM1_step and PL_PO4 durations. The Extra Trees model would be the best
model for the estimation of the MML_AFV_TR, PL_PO1, PL_PO2 and PL_PO3 durations.

Note that the proposed models all outperform the corresponding benchmark. Only the
proposed model for the MML_AFV_TR_NADRAAI durations is not significantly better.
Therefore, the answer to the research question is that it is possible to enhance production du-
ration estimations by incorporating the ingredient composition of products, seasonal effects,
and machine settings, for all production steps in plant X, except for the MML_AFV_TR-
_NADRAAI durations.



118

9 Discussion

The goal of this research was to enhance the production duration estimations of an animal
feed plant, which serve as input for a scheduling algorithm of ENGIE Industrial Automa-
tion. The research approach that was taken consisted of the following steps: problem under-
standing, data collection, feature creation, feature analysis, model creation and performance
evaluation.

The first step, problem understanding, was very important in this research. From this
step, the complexity of the problem became clear: what kind of variables do we have in
an animal feed plant, how are they related, how is a batch processed and how could the
data be retrieved. In addition, relevant literature was discussed to understand what kind of
approaches were already taken and how this research could be innovative in that regard.

The second step in the research approach is the data collection step. The data was ob-
tained from the database, which is also used by the software application which runs the
industrial plant. Besides the data of plant X, a dataset from the KNMI website was down-
loaded to obtain weather data from the nearest weather station to plant X. According to the
results of this research, the weather features have little impact on the production durations.
Reasons could be that the weather data of the KNMI is not local enough, give only a sum-
mary of the whole day, and show the weather outside. Therefore, it would be interesting
to use the temperature and humidity of inside the plant as model features, instead of the
KNMI weather data.

After the dataset was obtained, it was cleaned. First of all, some batches were removed
which were not reliable. Secondly, the outliers were removed. The outlier detection was
performed for the production durations and the difference between the produced and re-
quested batch size. However, no outlier detection was applied to other variables. It might
be a good idea to do so in the future.

For outlier detection, the windowed IQR-rule was applied. The advantage of this outlier
detection method is that it is easy to understand, and is easy to implement for future batches
because it automatically detects shifts in the distribution. However, the disadvantage is that
it takes some batches before it detects a shift in the distribution, which is a logical result of
such a method. In addition, the best value for the window size might change in the future,
and the selection of the least number of detected outliers does not guarantee the best value
for the window size. Therefore, which and how many batches are filtered, should be tracked,
so changes could be detected. One way of doing this would be to calculate the percentage
of detected outliers in the past x days, and when this is more than some constant, a system
expert is notified automatically.

The windowed IQR-rule was applied with k = 1.5 as lower bound and k = 3 as upper
bound for the outlier detection of the production durations. This was selected based on the
rule of thumb that value k = 1.5 filters suspected outliers and k = 3 filters real outliers.
The distributions of the production durations are all very right-skewed (many batches took
longer, but few shorter), therefore the selection of k = 1.5 as lower bound and k = 3 as upper
bound was made. However, this is still a rule of thumb and it does not guarantee that only
outliers are filtered and only non-outliers are kept. Future research could be done to find
the best method for outlier detection.
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The second step of the research approach also described the approach that was taken to
separate the ’warm-up’ period and period of full power or supply for the pressing dura-
tions. The assumption was made that the duration could be split by using the adjustment
characteristic. This assumption seems fair because it uses domain knowledge and it reduces
the complexity of the problem significantly. However, the ’warm-up’ period is estimated by
a Robust Regression model which is used in a windowed fashion. This approach introduces
noise, because the Robust Regression model needs enough data points for an accurate esti-
mation of the intercept (which is used as ’warm-up’ period), and needs to be small enough
to be able to track changes of the adjustment characteristic over time.

It would be interesting to investigate if the ’warm-up’ period could be calculated accu-
rately using the underlying parameters of the adjustment characteristic. This would elimi-
nate the need for the Robust Regression model and its corresponding created noise. How-
ever, at this moment, this is not possible, because the underlying parameters are not saved
for longer than 3 months. Therefore, for most batches in the data, these parameters are not
known. From this point of view, it is strongly recommended to save this kind of data for a
longer period.

In the third step of the research approach, features were created. The setpoint features
were almost all similar to the database columns. Only the feature for the sieve switch was
manually created. In addition, some article features were created, for which a window of 5
days was used. Other windows were not evaluated, because the total number of features
was already very high. However, it would still be interesting for future research to eval-
uate the effect of other window sizes and aggregation functions (we just used minimum,
maximum and median duration).

Two approaches were taken for the inclusion of the ingredient features. The first was
to include all ingredient features separately by their percentage of the batch. In the second
approach, the ingredient features were summed together per ingredient article group. How-
ever, other kinds of approaches could be taken too. For example, it would be interesting to
use Principal Component Analysis (PCA) to reduce the number of ingredient features. This
technique uses an orthogonal transformation to transform the possibly correlated ingredi-
ent features to linear uncorrelated features. This would be an interesting topic for future
research.

When the non-batch related machine settings are saved for longer than 3 months, they
could be used as features too. It would be interesting to see if the model performance
increases when these settings are included. Therefore, ENGIE Industrial Automation is
strongly recommended to save this kind of settings for longer than 3 months in the database.

The fourth step, feature analysis, showed the linear correlation between the different
features and target features. The Pearson correlation was included in this report to measure
the linear correlation. The Spearman rank correlation coefficient was calculated too. This
correlation metric measures the monotonic relationship between variables, whether linear
or not. However, both correlation measures showed approximately the same results. To
limit the size of this report, it was decided to only include the Pearson correlation.

The features were analysed per feature group, because including all features would re-
sult in a very large matrix, which would be to complex to analyse. However, the correlation
between feature groups would be interesting to examine too. Besides, the ingredient fea-
tures were only compared to the production duration and not to each other with the same
reason.

In the fifth step, model creation, the machine learning models were explained and a grid
search was performed to find the best feature set and hyperparameters. Each grid point was
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evaluated for four days in the validation set. However, the results suggest (high standard
deviation and large differences with performance on the test set) that four days are too few
to accurately perform the grid search. Therefore, when other values are tried, it would be
better to use the full validation set for comparison. The argument that was given for the
selection of four days, is that it takes a lot of computation time to run all the models for
all different hyperparameters and feature sets, and for all 12 target durations of the animal
feed plant. Note that for LightGBM more than 4,000 grid points were evaluated per target
variable.

In the grid search, only seven feature sets were evaluated. This approach gives an idea
of what kind of features are important. In addition, it is straight forward how this approach
could be used in other animal feed plants, and how new ingredients and changes in the
pilot plant (plant X) could be captured. However, the number of features can become very
large when the number of ingredients keeps growing. In addition, many features are not
important for the models, as can be observed from the feature importance figures in the
results section (Section 8), and therefore result in noise for the models.

It would be interesting for future research to investigate the possibility of dynamic fea-
ture selection. For example, to dynamically select the top k most important features. This
could be done in many ways. For example, by automatically selecting top k features based
on the feature importance of a machine learning model or based on the strongest correlations
of a Pearson or Spearman correlation matrix. The advantage of such an approach is that it
will reduce the number of useless features and it keeps the number of features the same over
time. However, the disadvantage of this approach is that the selected features can change
over time, which could result in different behavior of the machine learning models.

In addition, it would be interesting to investigate other approaches to limit the number
of ingredient features. As already mentioned, one common approach for feature reduction
is Principal Component Analysis (PCA). It would be interesting to see what the effect will
be on the performance of the models. The advantage of this approach is that the number of
ingredient features is reduced by limiting the information that is thrown away. The disad-
vantage of this approach is that the created ’summarized’ features are hard to interpret.

When the current approach of feature sets is implemented in practice, it would be good
to select a number of required observations before a new ingredient is added as a feature.
This is particularly important for Linear Regression, Robust Regression and the Neural Net-
work because these models train weights for the features, which are likely to be wrong when
only a few non-zero observations are present for a certain feature, which is the case for new
ingredient features. The Extra Trees and LightGBM models are more robust to these features
by their hyperparameter for the minimal number of samples in the leaves of their Decision
Trees.

Finally, the best feature set and hyperparameters are selected for each model. These final
models are evaluated on a test set. The results are compared to the benchmark. In addition,
the model performance is evaluated for less amount of training data.

Robust Regression and Extra Trees have the best overall performance. However, the
LightGBM performs best for the mixing durations (NM1_step) and the Neural Network
for the grinding durations (HA1_TOEV). Remarkable is that the Neural Network performs
worst on all other production durations than the grinding durations.

The early stopping technique that was used in this research, stopped the Neural Network
from training when the MAE on the validation set did not decrease. However, it would be
interesting to see if the performance of the Neural Network increases when the hyperpa-
rameters of the early stopping technique would be tuned. For example, we could set the
hyperparameter ’patience’, which is the number of epochs without improvement before we
stop the training of the Neural Network, to more than one. In addition, we could tune
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other hyperparameters of early stopping as well, like the minimum improvement. Finally,
it would be interesting to try more complex Neural Networks and other types of activation
functions, to see if the performance increases if it is able to create more complex relations.

In addition, the amount of training data was evaluated. For some models/production
durations, it was concluded that the error of the model increased while adding more data
points to the training set. This suggests that it would be better to ’forget’ old observations.
Therefore, it would be very relevant for ENGIE Industrial Automation to investigate how
much training data is best for the models to both provide the ability to forget and the ability
to learn. Another approach would be to examine the performance of a time-based model,
for example, a Recurrent Neural Network. This model is designed to understand temporal
behavior. Therefore, this would be an interesting topic for future research.

The Robust Regression and Extra Trees model show good results in this research. In
general, the Extra Trees shows low standard deviation in the performance over the 78 days
in the test set. In addition, the feature importances given by Extra Trees are clear. The model
is able to use some relevant features and ignores others. In contrast, the LightGBM tries
to use all features, which performs worse for most production durations using a smaller
training set, which is probably due to over-fitting to many useless features. In general, for
the production durations where the performance of the Extra Trees model is less accurate,
the Robust Regression model performs well. Therefore, ENGIE Industrial Automation is
advised to implement these two models and to use them for the production duration for
which they are appropriate according to their performance described in Section 8.

The current models estimate the production durations for the ’normal’ situation, for
which the scheduling algorithm is used. However, it would be interesting to create a sep-
arate model for the prediction when something is likely to go wrong. This would be an
interesting field of study for future research.
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10 Conclusion

The research goal of this study is to enhance the production duration estimations by in-
corporating the ingredient composition of products, seasonal effects, and machine settings.
For this purpose, machine learning models were created for each production step in the
manufacturing process of plant X. This research shows that the proposed models estimate
the production duration significantly better than the benchmark. Except for the duration
estimation of the transportation system, which is as good as the benchmark.

In addition, two sub-questions are answered in this research. First of all, the explanatory
variables of the production durations are both analysed during the feature analysis, as of
which the importance is given in the proposed models. The second question is which mod-
els lead to better production duration estimations compared to the benchmark approach.
From the results, we can conclude that all models estimate the durations for most produc-
tion steps well. Only for the pressing duration estimation at press line 3, the Neural Net-
work performed worse than the benchmark. In all other cases, all models outperformed the
benchmark significantly.

In general, the Extra Trees model shows low standard deviation in the performance over
the 78 days in the test set. In addition, the feature importances given by Extra Trees are clear.
The model is able to use some relevant features and ignores others. In contrast, the Light-
GBM tries to use all features, which performs worse for most production durations using a
smaller training set, which is probably due to the inclusion of many useless features. For the
production durations where the performance of the Extra Trees model is less accurate, the
Robust Regression model performs generally well. Therefore, ENGIE Industrial Automa-
tion is advised to implement these two models and to use them for the production duration
for which they are appropriate according to their performance described in Section 8.

By improving the production duration estimation in this research, the scheduling algo-
rithm of ENGIE Industrial Automation will be more accurate. Using the scheduling algo-
rithm in plant X will probably reduce the total manufacturing time. The accuracy of the
proposed schedules by the scheduling algorithm is very important, not only for its useful-
ness, but also for the trust of the employees of plant X in digital applications like this.
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A Additional figures

HA1_TOEV

FIGURE A.1: Pearson correlation between ingredient percentage features
and HA1_TOEV durations (targetSeconds).
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FIGURE A.2: Pearson correlation between weather features
and HA1_TOEV durations (targetSeconds).

NM1_step

FIGURE A.3: Pearson correlation between features
and NM1_step durations (targetSeconds).
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MML_AFV_TR

FIGURE A.4: Pearson correlations of ingredient percentage features
and MML_AFV_TR durations.
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PL_PO1_slope

FIGURE A.5: Pearson correlation between PL_PO1_slope values and ingredient percentage
features.
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PL_PO4_slope

FIGURE A.6: Pearson correlation between PL_PO4_slope values and ingredient percentage
features.
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PL_PO4

FIGURE A.7: Feature coefficients of Robust Regression for the estimation
of the PL_PO4 durations.
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