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Preface
This thesis is written as the conclusion of the Master’s degree in Business Analytics at the Vrije
Universiteit Amsterdam. Business Analytics is a multidisciplinary program revolving around mathe-
matics, computer science and economics. The program is concluded by following an internship at a
company. The host company presents a problem they are dealing with, to which the student must find
a solution. For at least six months, the student works at the company on the problem they are dealing
with. In addition, a report on the internship is written. The internship report serves as the master’s
thesis of the student.

Artificial intelligence (AI) is increasingly used in multiple business areas. As more companies use AI,
the concerns about possible differentiation in AI are also increasing. This research revolves around
the creation of a tool that can detect and measure possible differentiation of insurance pricing models.

This internship has taken place at Aegon at the Analytics & Datascience (A&D) department. The
A&D department performs various tasks related to data science for the different departments of Ae-
gon. In the department, I was assigned to the DINNO team. This team is responsible for handling
compliance and risk issues, concerning data science.

First of all, I am grateful to Aegon and the DINNO team for giving me the opportunity to write
my thesis there and for helping me with this research. I especially would like to thank Rogier, my
supervisor at Aegon, for his help and advice. Furthermore, I would like to thank my supervisors of the
university. I would like to express my gratitude to Botond for being my first supervisor and providing
me with different aspects to look into in this research. Finally, I also would like to thank René for
being the second reader of this thesis.
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Abstract
This thesis describes the creation of a tool that should detect any kind of bias or differentiation in
insurance pricing models used by Aegon. AI has become widely adopted in many business fields.
One of these fields is insurance. With AI becoming more widely adopted, concerns about this tech-
nology also grow. Aegon wants a tool that can detect possible differentiation in the models they use.
This way, Aegon can explain to customers and experts how their models behave and they can also
show whether their models are differentiating. Furthermore, Aegon can use it to determine if a model
works as expected. The tool measures differentiation for every variable in a given data set used by a
given model. It can decompose differentiation into direct differentiation and indirect differentiation.
This can be further dissected into categories if the feature of interest is categorical. The tool can also
show the flows of differentiation through the other variables in the case of indirect differentiation.
Other tools have been made by companies and scientists in the last couple of years. However, the tool
created in this study is easier to use and gives more narrowed-down information to the user. The tool
is tested on six models. Four of these models are created in a simulation. The other two models are
created by Aegon and serve as examples of the practicality of this tool. The tests show that differen-
tiation or bias can be found. Both direct and indirect differentiation is found. However, the tool has
problems with step functions and it can pick up ”noise differentiation” due to random correlation. In
addition, causality is implied in indirect differentiation, which does not always hold. Still, the tests
on the Aegon models do show that the tool can be of use in the industry.

keywords: AI, Aegon, Pricing models, Insurance, differentiation, Tool
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1 Introduction

In recent years, Artificial Intelligence (AI) has become widely adopted in a lot of industries [21].
Companies use AI to solve complex and, otherwise, time-consuming issues. Instead of humans per-
forming manual work, this new technology can automatize a lot of operations nowadays. The au-
tomation increases efficiency and reduces costs in the applied fields. This makes AI very valuable
and explains its growing use.

One of the fields in which AI is applied is insurances [11]. There are several ways in which insurance
companies apply the technology. An example is to predict insurance premia with machine learning
models [15]. However, there are also downsides to the use of machine learning methods in the pricing
process. Using AI can lead to optimization through personalizing prices, but it can also lead to biased
and differentiating pricing [7]. The main objective of this research is to find ways to measure and
detect possible bias or differentiating in pricing models used by insurance companies.

There are different causes for the possible differentiating in the algorithmic predictions. First of all,
the creator of a model that makes the predictions can be biased. Second, the data itself may be biased.
The models used are fed with lots of data. This data can be biased which can lead to biased model
outcomes. A third possible downside is the algorithm with which the model is created. If the goal of
the algorithm is to achieve an accuracy as high as possible, it can amplify certain biases in the data to
achieve that goal [9].

The mentioned sources of bias are hard or maybe even impossible to detect by humans. The pric-
ing models used by insurance companies are not simple functions where the outcome can easily be
derived and explained. They are rather black-boxes. Even the creators of the models can hardly ex-
plain the behavior of their creations. Data is given as input to the model and it produces an outcome.
However, how the outcome came to be is unknown. The hidden behavior of the model means that
the causes of possible differentiating are hard to detect and to prevent. It must be ensured that the
technology used by insurance companies is not differentiating.

An important question to ask in this research is: what is differentiating? The Oxford dictionary gives
the following definition for differentiating: ”The practice of treating someone or a particular group
in society less fairly than others” [23]. Insurers use groupings of people to determine insurance pre-
mia [2]. An insurance company treats some groups of people differently, or unfairly, compared to
other groups of people. So, insurance companies differentiate based on certain features and they are
allowed to do so. However, they are not allowed to differentiate or group people based on every
characteristic. Therefore, it is important to know which features are used by a pricing model and how
important these features are.

A possible solution for stopping differentiating in the pricing process is to take protected features out
of the data set used by the pricing model. A protected feature (or variable) is a feature on which it is
illegal to differentiate against people. Unfortunately, it is not a definitive solution to take the protected
variable out of the data set. The variable can still influence the model predictions indirectly, through
another variable [18]. In this case, the second variable is dependent on the protected variable.

This is in line with the legal definition of differentiating. differentiating consists of direct differen-
tiating and indirect differentiating [32]. Direct differentiating occurs when, for example, two nearly
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identical persons pay different insurance premia. Their only difference is their gender. There is a
direct way in which people of a certain gender are treated differently. An example of indirect differ-
entiating is the following. Men pay a higher car insurance premium than women since on average men
drive more kilometers with their car. Directly, people who drive a lot are treated differently compared
to people who drive less. However, in an indirect manner men are affected more than women. That
is because people who drive a lot are more often men. This distinction between direct differentiating
and indirect differentiating is also important because direct differentiating on a protected feature like
gender is illegal. However, indirect differentiating on a protected feature may be legal. This form of
differentiating is legal if the differentiating can be justified.

The goal of this research is to create a tool that can detect possible differentiating of insurance pricing
models. The commissioner of this research project is Aegon. Aegon is a Dutch multinational with
activities in several financial areas. One of these areas is insurance. Aegon uses various AI appli-
cations to calculate insurance premia for customers. The insurance company wants a differentiating
detection tool that measures the effect a variable has on the outcome of a pricing model. With this
tool the company can explain to clients and experts how Aegon determines insurance premia; is there
any differentiating going on? If there is differentiating going on Aegon wants to be able to tackle this
problem. Therefore, it is important to know what the detected differentiating consists of. Not only
must the tool be able to detect differentiating, but it must also be able to measure it and decompose it
into direct and indirect differentiating. Furthermore, if the tool works appropriately, it will be shared
with the Verbond van Verzekeraars. The Verbond van Verzekeraars is an interest association of Dutch
insurance companies. The Verbond van Verzekeraars will share the tool with other interested insur-
ance companies.

The tool consists of two components; programming code which can be used to detect and measure
differentiating and an app that can visualize the results of the code. This thesis will mostly describe
the differentiating detection and measuring methods used in the code. The tool is coded in the pro-
gramming language R.

1.1 Research Questions
To summarize, this thesis revolves around the creation of a tool that can measure and detect differen-
tiating of models. Therefore, this research focuses on the following problems:

Q1. Is it possible to detect differentiating in insurance pricing models?

Q2. Is it possible to measure differentiating in insurance pricing models?

1.2 Thesis Outline
The thesis is structured as follows. In section 2, the related literature is treated. Papers that describe
methods to detect differentiating are discussed, but also similar already existing tools are researched.
Section 3 describes the data sets used by the models on which the tool is tested. Multiple data sets
are used as each model is of course trained on its own data set. Section 4 describes differentiating in
the context of this research. The definitions stated in this introduction are used, but these definitions
have to be translated to a mathematical setting. In section 5, the basis methodology of differentiating
detection and measuring is explained. The algorithms and methods used by the tool are given in
section 6. Experiments are conducted to see if the methodology works as expected. Simulation
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models are created on which the tool is tested. The test setup is described in section 7. The results of
the tests are given in section 8. The workflow of the tool is described in section 9. It is also explained
how the app works that can be used to analyze the results of the tool. Lastly, section 10 brings the
conclusion of this research, and suggestions for future work are given.
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2 Related work

With the growing popularity of AI in daily life, the research area concerning the ethics of AI has also
become more popular. Since humans are ever more in contact with AI there is a rising interest in the
decision-making of the tools using this technology. Naturally, there will be more academics looking
into this field too.

Researchers of Pennsylvania State University have already created a tool that can detect differentia-
tion in algorithms [16]. Their research focuses on detecting differentiation against groups of people.
In the paper, two fairness definitions are introduced. Fair on average causal effect (FACE) and fair
on average-age causal effect on the treated (FACT). Both definitions look at the expected difference
between two sets of model outcomes for sub-groups in a variable.

In ”Hunting for Discriminatory Proxies in Linear Regression Models” [31] the authors look at poten-
tial differentiation of linear regression models through proxy variables. A proxy variable is a variable
that is causally influential on the model’s output and correlated with the protected variable. These
proxies are identified by solving a second-order cone program [1].

Lu Zhang et al., [32] try to remove differentiating data from data sets in their paper. To remove dif-
ferentiation, differentiation first has to be detected. This is done by making use of the causal network
to model the causal structure of the data. Furthermore, the researchers make the distinction between
direct and indirect differentiation. Both types of differentiation are modeled as path-specific effects in
the causal network. Lindholm et al., [18] use the same definitions to construct a differentiation-free
insurance pricing model.

The topic of this thesis is closely related to explainable AI (XAI) [25]. XAI aims to make opaque
models easily interpretable. The two most popular XAI techniques related to this research are LIME
and SHAP [4],[17]. SHAP is based on Shapley values [26]. It aims to explain individual predictions
through feature relevance [19]. This is done by comparing model outcomes with and without a vari-
able. LIME creates local surrogate models to explain predictions individually. It tests what happens
to the predictions when you give variations of input data to a model. An interpretable model is trained
on the resulting output data.

”Big Tech” has also entered the field of AI-fairness. Companies like Google (Fairness Indicators)
[30], Amazon (Clarify) [14], Microsoft (Fairlearn) [5] and IBM (AIF360) [3] have created tools
which can detect differentiation and remove it. Amazon Clarify uses Shapley values to detect differ-
entiation. Fairness Indicators and Fairlearn compare model quality metrics, like model accuracy and
the number of false positives, for the model outcomes of different groupings. An example is, how
accurate are the model predictions for men and how accurate are the model predictions for women.
AIF360 compares the number of favorable results of different groups of people. The user must define
what favorable results are. An example here is to compare the number of favorable results for men to
the number of favorable results for women.

This research uses the same formal definitions of direct and indirect differentiation as given in [32] and
[18]. differentiation, and hence differentiation detection, is defined in another way. In this research,
differentiation is measured by comparing the regular model outcome to the model outcome when a
variable in the input data has changed. This is similar to LIME. However, LIME is only able to explain
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classifying models. The methods used by the tool of this thesis work for any kind of model. What this
tool further adds, compared to earlier work, is the amount of information that is returned to the user.
differentiation is measured regarding every variable in the data set. differentiation measurements can
not only be decomposed into direct and indirect differentiation but each differentiation measurement
can be further decomposed into categories if the variable of interest is categorical. In addition, the
tool can show through which variables the indirect differentiation flows. Moreover, differentiation can
also be measured for numeric variables. This is something a lot of the current tools have difficulties
with. The tool described in this research is easier to use than its competitors. The user only needs to
give its model as input and a data set. The tools of the big tech companies require a lot of data and/ or
model preparation before they can be used. The output these tools give is also unclear and not easy
to understand. The differentiation detection tool created in this internship contains an app that can be
used to visualize the results. The app makes it easy to understand the results and to share the results
with others. Only Amazon provides an easy-to-use app.
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3 Data
The differentiation detection methods used in the tool are tested on six models. Four of those models
are simulation models which use the same data set. The other two models are Aegon models which
use the same base data set. The first Aegon model is an XGBoost model and the other model is
an insurance model created by Aegon themselves. Both Aegon models predict insurance premia for
customers. They use the same base data set, however, the XGBoost model can not use categorical
data. Therefore, the base data set is altered for the XGBoost model. Categorical variables are turned
into multiple binary variables. Each binary variable corresponds to a category. This alteration is
already performed by Aegon. So, this will not be explained further in this section. The data of
the Aegon models is also enriched by data of the Centraal Bureau voor de Statistiek (CBS). In this
section, the preparation of the data sets is described and the data sets are explored. Three data sets are
explored; the simulation data set, the base Aegon data set and the CBS data set.

3.1 Preparation

The data provided by Aegon is synthesized using GAN’s [12]. Synthetic data is data generated by a
model based on an actual data set. Anonymizing data has the problem of either deleting important
variables or otherwise not being actually anonymous. This is not a problem with synthesizing data.
Furthermore, synthesized data can accurately resemble the original data. The data synthesizing was
done by mostly.ai [20]. The data had to be synthesized to comply with GDPR [8].

The base data set of the Aegon models is provided by Aegon. This data set is enriched with data
of CBS [28]. CBS is the Dutch institute that collects and publishes data on Dutch society and does
research on the collected data. By enriching the data sets, more features are incorporated. This en-
riching is important since insurance companies do not collect certain sensitive data of customers. This
includes features like ethnic background. However, insurance companies can still be differentiating
based on these features without knowing. As explained in the introduction. Models can be differ-
entiate on features it does not know indirectly. So, more possible differentiation can be detected by
enriching data with CBS data. The two data sets are joined on the postal code variable.

Regarding the CBS data set, the location variable first has to be converted to postal codes. The loca-
tion variable in the CBS data set is denoted in units of Rijks-Driehoek (RD). This is a Dutch-specific
location unit. With the library of Simple Features (SF) [22] this unit can be converted to Dutch postal
codes. The CBS data set consists of aggregated data of the residents per postal code. Due to privacy
reasons, data can be missing. Every line where data is missing is dropped. This is done because it
doesn’t make sense to impute values at the missing spots, as these values are postal code specific; dif-
ferent groups of people live at different postal codes. If values were imputed in the places of missing
data this could lead to misleading differentiation detection results. Furthermore, only the variables of
interest for Aegon are chosen to work with further. Every residential variable is turned into percent-
ages of the number of residents living on a postal code.

More preparation is undertaken for each data set. First, each variable in the data set is classified
as either a numeric variable or a categorical variable. Next, it is checked if there are any missing
values or error values in the data set. If such a value is detected a new value is imputed. If the
variable of interest is numeric, the median value of the variable is imputed. If the variable of interest
is categorical, the most common value of the variable is imputed.
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3.2 Exploration

3.2.1 CBS data

The data set used from the CBS is the ”Statistiche gegevens per vierkant 2020” file. The CBS carves
up the whole Netherlands into squares of 100 x 100 meters. The institute collects data on every
resident inside these squares and aggregates this data. The features of the data set are given in Table
16 in appendix B.1. Not every variable is used to enrich the other data sets due to unimportance for
the users. Only the features displayed in Table 1 are used. The data consists of 132060 rows.

Table 1: selection CBS data

Feature Type Description
Man Numeric The percentage of men
Vrouw Numeric The percentage of women
INW 014 Numeric The percentage of residents aged -14
INW 1524 Numeric The percentage of residents aged 15-24
INW 2544 Numeric The percentage of residents aged 25-44
INW 4564 Numeric The percentage of residents aged 45-64
INW 65PL Numeric The percentage of residents aged 64+
P NL ACHTG Numeric The percentage of residents with Dutch native background
P WE MIG A Numeric The percentage of residents with western background
P NW MIG A Numeric The percentage of residents with non-western background
P KOOPWON Numeric The percentage of owner-occupied houses
P HUURWON Numeric The percentage of rental houses
WOZWONING Numeric The average value of the properties
UITKMINAOW Numeric The percentage of residents with welfare
Postcode Category The postal code

Next, the data is explored. The graphs are found in appendix B.1. The percentage of men and women
seem to be evenly distributed. Looking at Figure 7, the population seems to be evenly distributed with
regards to gender. The older age groups seem to be better represented than the age groups below 25.
Figure 8 shows that there are more rental houses than owner-occupied houses. According to Figure 9,
there are more people with a native Dutch background than people with a foreign background, which
is not surprising of course.

3.2.2 Simulation model data

The data is simulated. 14 features are created. The numeric variables are generated under a normal
distribution and the categorical variables are generated completely random. For some features depen-
dencies are built in to simulate interactions. The data set used in the simulation models contains the
following features (Table 2). The data consists of 100000 rows.
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Table 2: Simulation data

Feature Type
Age Numeric
Ethnicity Category
Education Category
Income Numeric
Gender Category
Income category Category
House value Numeric
Family size Category
Random variable 1 Numeric
Random variable 2 Numeric
Correlated variable 1 Numeric
Correlated variable 2 Numeric
Correlated variable 3 Numeric
Correlated variable 4 Numeric

The distributions of the numeric variables and the proportions of the categorical variables are given in
Table 17 and Table 18 in appendix B.2. In this data set, there are several dependencies or correlations.
House value and income category are dependent on income. Correlated variable 1 is dependent on
age and ethnicity. Correlated variable 2 is dependent on ethnicity. Correlated variable 3 is dependent
on gender. Correlated variable 4 is dependent on age. The correlations and dependencies are given in
appendix B.2.

The visualizations of the exploration are also found in appendix B.2. According to Figure 10, there
are more men than women. Dutch is the most dominant ethnic group and the other ethnicities seem
to have around even percentages. Education seems quite evenly distributed except for category 3.
The lower-income groups are better represented and there are more single people than big families.
Figure 11 shows the box plots of the numeric variables. The numeric data seem to have nice even
distributions except for income and house value. There are quite a lot of heavy extreme values in
these variables.
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4 Differentiation in this research
In the introduction, it was explained that differentiation consists of direct differentiation and indirect
differentiation. This means that a model can differentiate on a variable in two ways. Or rather, the
variable can influence the outcome of a model in two ways. With this in mind, the following ques-
tion can be formulated. How much does the outcome of the model change when the input variable
changes? Through this notion, the following definitions for differentiation can be formulated.

(1) differentiation in this research is defined as the change in the model outcome due to a change in
the variable of interest.

(2) Direct differentiation is defined as the change in the model outcome due to a change in the variable
of interest, while all other variables stay constant.

(3) Indirect differentiation is defined as the change in the model outcome due to a change in a second
variable caused by a change in the variable of interest.

So, the goals in this research are the following:

• Measure the influence the variable of interest has on the model outcome while the other vari-
ables stay constant.

• Measure the influence the variable of interest has on the model outcome through another vari-
able.

Consider the following simple example:

yi = β0 +β1 ∗ xi +β2 ∗ zi + εi,1

zi = γ0 + γ1 ∗ xi + εi,2,

εi,1 ∼ N(0,1), εi,2 ∼ N(0,1), i = 1,2, ..,n.

yi is the model outcome that is dependent on the variable of interest xi and another variable zi. It is
quite easy to measure the effect each variable has on the model outcome and thus it is easy to measure
differentiation. In this case, β1 is the measure of direct differentiation and β2 ∗ γ1 is the measure of
indirect differentiation. The following figure depicts this relationship.

Figure 1: The relationship between a model and its input variables

Figure 1 shows how the model outcome is dependent on xi and zi. It also shows the dependency of
zi on xi. xi can directly influence the model outcome and it can also indirectly influence the model
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outcome through zi. Indirect differentiation is measured by multiplying the effect of xi on zi with the
effect of zi on yi. Total differentiation is calculated by adding up direct differentiation and indirect
differentiation.

An important aspect to explain is how differentiation is measured for a variable that is not in the model
training data set. This corresponds to variables in the CBS data set. The model does not observe the
variables in the CBS data set, but it can still be differentiating on these features.

Figure 2: The relationship between a model and an unobserved variable and an input variable

Figure 2 depicts the situation where the variable of interest xi is not observed by the model. yi is not
dependent on xi in this situation. There is no way in which xi can directly affect the model outcome.
However, it can affect another variable in the data set zi which can influence the model outcome yi.
So, there is no direct differentiation measurement possible for features outside the model training data
set, but indirect differentiation can be found.
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5 Methodology
This chapter explains the methodology behind the tool. First, some general methodology will be ex-
plained. Second, further methodology used by the detection algorithms are described.

5.1 General methodology
In this section, an example will be used to explain the methodology. This example is in the form of a
linear model.

yi = f (xi,zi)+ εi,1, (1)

εi,1 ∼ N(0,1), i = 1,2...,N.

Furthermore,
zi = g(xi)+ εi,2, (2)

εi,2 ∼ N(0,1), i = 1,2...,N.

f (xi,zi) and g(xi) are linear functions in this particular example. i represents the index of an obser-
vation. Here yi is the outcome of a model. xi is the variable of interest for which differentiation is to
be measured. zi is another variable in the data set through which differentiation can flow from xi, as
shown in Figure 1. In this model zi is dependent on xi. g(xi) describes this relationship.

In practice, a lot is unknown about a model. A model is trained on a certain data set and this model
makes use of a prediction algorithm to produce outcomes. The model owner knows on which variables
the model outcome is dependent in a direct sense. Those variables are the input variables. However,
how important these variables are in the prediction is unknown. Furthermore, it is also unknown if
there are any interactions between the input variables. So, g(xi) is unknown. This means that possible
indirect differentiation is unknown. This does not matter for the differentiation measuring methods.
The methods use f (.), which is the function/ algorithm with which the model makes predictions, and
ĝ(xi), which is the estimation of g(xi), to measure direct and indirect differentiation. Models 1 and
2 are used to illustrate how the differentiation detection methods work in simple terms. However, in
practice, these models are opaque and difficult to interpret.

differentiation is measured for each variable in the data set. In the following sections, only the differ-
entiation measurement for one variable (xi) is considered. However, the tool created in this research
will measure differentiation for every variable. So, there is no difference in importance between xi
and zi. These notations are only used in this thesis to distinguish between the variable for which
differentiation is measured (xi) and one other variable in the data set (zi). Usually, a model is trained
on more than two variables. f (.) can be dependent on 10 variables for example. differentiation is
measured for each of these 10 variables.

The research makes a distinction between direct differentiation and indirect differentiation. Direct
differentiation is the direct effect of xi on yi. Indirect differentiation is the indirect effect of xi on yi,
through zi. When there are more than two variables in the data set the indirect differentiation of xi
is measured by summing the indirect differentiation measurements of xi through each of the other
variables. For example, a data set could harbor the following variables: xi, zi,1, zi,2 and zi,3. Indirect
differentiation on xi is measured through each of zi,1, zi,2 and zi,3. These measurements are added
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together to get the ”total” indirect differentiation measurement of xi.

Each variable is defined as either numeric or categorical. The methods to measure and detect differen-
tiation are defined differently for either type of variable. In numeric data, the values have an intrinsic
meaning. The values in a categorical variable represent a group to which the observation belongs.
For numeric data, differentiation is measured by how much the outcome of the model changes when
the variable of interest changes with an (infinitely small) step. For categorical data, differentiation is
measured by looking at the difference in model outcomes for the different categories of the variable.
First, the methodology behind differentiation detection in numerical data is described in 5.2. and 5.3.
Next, the methodology behind differentiation detection in categorical data is described in 5.4.

5.2 Derivative & difference quotient

The derivative and the difference quotient play an important role in the differentiation detection meth-
ods. The differentiation detection methods measure differentiation by comparing the regular model
outcome, or the fitted values of a model, to the model outcome when the variable of interest has
changed with a certain (infinitely small) step. This effect on the model outcome due to a change in a
variable can be calculated by the derivative and the difference quotient.

The calculations are fairly easy to compute. Consider the given model 1. When xi is a continuous
numeric variable, the derivative of f (xi,zi) with respect to xi, for observation i, is calculated as

D1 f (xi,zi) =
d f (x,zi)

dx |x=xi = limh−>0
f (xi+h,zi)− f (xi,zi)

h .

When xi is a discrete numeric variable, the forward difference quotient of f (xi,zi) with respect to xi,
for observation i, is calculated as

D1 f (xi,zi) =
d f (x,zi)

dx |x=xi =
f (xi+1,zi)− f (xi,zi)

xi+1−xi
.

Similarly, the derivative or difference quotient of f (xi,zi) with respect to zi, for observation i, can be
calculated as either

D2 f (xi,zi) =
d f (xi,z)

dz |z=zi = limh−>0
f (xi,zi+h)− f (xi,zi)

h ,

or

D2 f (xi,zi) =
d f (xi,z)

dz |z=zi =
f (xi,zi+1)− f (xi,zi)

zi+1−zi
.

D1 f (xi,zi) and D2 f (xi,zi) are the direct differentiation measurements of xi and zi. The effect of xi on
zi can also be measured by the derivative or difference quotient of g(xi) with respect to xi.

D1g(xi) =
dg(x)

dx |x=xi = limh−>0
g(xi+h)− f (xi)

h ,

or

D1g(xi) =
dg(x)

dx |x=xi =
g(xi+1)−g(xi)

xi+1−xi
.
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5.3 Regression
To measure the indirect differentiation, the relationship between zi and xi has to be estimated. i.e. The
function g(xi) has to be estimated. This can be done by fitting a model to the data. Most of the models
which are tested in the detection tool are expected to be machine learning models, which can be
classified as non-linear. Furthermore, the tool does not know what kind of model is given. Therefore,
non-parametric regression estimation is used. A cubic-smoothing spline is used to estimate g(xi)
by ĝ(xi). However, if the interquartile range (IQR) of xi is 0, a linear model is fitted. The IQR is
the difference between the 75th and 25th percentiles of a distribution. There is a tolerance check in
the smoothing spline estimation that checks if xi is varied enough. If the variability is too low, no
estimation can be made by the smoothing spline. The tolerance is calculated as a multiplication of the
IQR. So, if the IQR is 0, the smoothing spline can not estimate g(xi) [24]. Any other non-parametric
regression estimator seems to have the same problem if the input data is not varied enough.

5.3.1 Linear Regression

A linear model is fit on the data to estimate the function

g(xi) = E(zi|xi).

It is assumed that the relationship between zi and xi is linear. The estimation ĝ(xi) can be used to
make predictions to estimate the indirect differentiation. g(xi) is estimated using the ordinary least
squares (OLS) method. OLS minimizes the sums of the squared differences between the predicted
data and the observed data, also known as residuals. In the regression function

ĝ(xi) = γ̂0 + γ̂1 ∗ xi,

γ̂0 and γ̂1 are chosen such that the squared sum of the residuals is minimized. They are also known as
the least squares estimators

γ̂1 =
∑

n
i=1(xi−x̄)(zi−z̄)
∑

n
i=1(xi−x̄)2 ,

γ̂0 = z̄− γ̂1x̄.

5.3.2 Non-parametric regression

g(xi) can be estimated by non-parametric regression estimators. There is no assumption made on the
linearity of g(xi). The two most widely used methods are kernel regression and smoothing splines
[13]. Spline and kernel smoothing are asymptotically the same. To every kernel operator, there is
an equivalent spline operator. Both Kernel smoothing and spline smoothing have been compared in
several ways [27]. Since according to the literature there is not much difference between the two
non-parametric regression methods, both methods are tried.

First, kernel regression is explored. The two main kernel estimators are the Nadaraya-Watson (NW)
kernel estimator

ĝ(x) = ∑
n
i=1(wi(x)zi),

with wi(x) =
K(

x−xi
h )

∑
n
j=1 K(

x−x j
h )

,
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and the local linear (LL) estimator

ĝ(x) = argmin(α)(∑n
i=1(K(xi−x

h )(zi−α)2)) [13].

There are several kernel functions K, but the Epanechnikov kernel

K(x) = 3
4(1− x2)1(|x| ≤ 1)

is optimal giving the smallest mean squared error [29]. Asymptotically the NW and LL estimators
are similar, except for the bias function. In general, the LL estimator has a smaller bias than the NW
estimator. In addition, the LL estimator has a better performance on non-constant g(x). This estimator
also performs better near the boundary of the support of x [13]. The most important parameter to be
defined in kernel regression is the bandwidth variable h. The optimal value for h is usually obtained
through cross-validation [29]. Cross-validation is a technique to test the quality of the predictions of a
model. This is done by estimating the prediction error of the estimator. There are several R packages
that use cross-validation to determine the optimal h. The two Kernel estimators are compared to the
spline estimator.

The cubic smoothing spline is the most popular spline estimator [13]. The cubic smoothing spline
ĝ(xi) is the minimizer of

∑
n
i=1(zi− ĝ(xi))

2 +λ
∫
(ĝ
′′
(x)2)dx.

λ is the smoothing parameter. The optimal value for the smoothing parameter is obtained through
cross-validation. R incorporates packages which use cross-validation to determine the optimal λ.

So, the literature shows that there is not much difference between a kernel estimator and a spline
estimator. Both estimators are tried in this research. The optimal settings for the cubic smoothing
spline are computed much faster than the optimal settings for the kernel estimator. Therefore, the
cubic smoothing spline is used in the tool.

5.3.3 Cubic Smoothing spline

Consider Model 2. The cubic smoothing spline estimate ĝ(xi) of g(xi) is the minimizer of

∑
n
i=1(zi− ĝ(xi))

2 +λ
∫
(ĝ
′′
(x)2)dx.

This minimizing consists of two parts; minimizing the squared error

∑
n
i=1(zi− ĝ(xi))

2

and minimizing the curvature

λ
∫
(ĝ
′′
(x)2)dx.

The smoothing parameter λ controls the trade-off between accuracy and curvature. If λ = 0 the
smoothing spline will be an interpolating spline. Every data point is visited and no accurate predic-
tions can be made due to overfitting. If λ becomes infinitely big, the curvature becomes too important
in the minimization. This will result in the smoothing spline becoming a linear least squares estimate.
The optimal value of λ is determined through the generalized cross-validation method.
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5.4 Measuring differentiation in categorical data
In the previous subsections, it was described how differentiation can be measured in numeric data.
These methods can not be used for categorical data. Here, the values of a variable represent the group
to which an observation belongs. Still, comparable methods to numeric data can be used here. Instead
of calculating how much the model outcome changes when the protected variable changes by a small
step, the differences between the model outcomes for every category of xi is measured.

Define xi as a categorical variable, such that xi ∈ C. C consists of K categories such that C =
{c1,c2, ...,cK}. Then yi can be rewritten as:

yi = f (xi,zi)+ εi,1 = β0 +β1 ∗ Ixi=c1 +β2 ∗ Ixi=c2 + ...+βK ∗ Ixi=cK +βk+1 ∗ zi + εi,1.

The methods for numeric data can not be used here as it does not make sense to compare f (xi) to
f (xi+h). Instead, the predictions for each category are compared to one another. The predictions are
not directly compared to one another as this comparison will differ based on which category is taken
as a base category. Instead, they are compared to the weighted average of these predicted values. This
can be written in the following way.

The direct effect of xi on yi, for observation i is measured by:

∑
K
k=1 wk ∗ | f (ck,zi)−µi|,

µi = ∑
K
k=1 wk ∗ f (ck,zi),

wk =
1
N ∑

N
i=1 Ixi=ck .

wk is the weight corresponding to category ck. µi is the weighted average of the predictions at ob-
servation i. The difference is taken between the predictions where the value of xi is set to ck and the
weighted average of these predictions. It is taken into account how often a category occurs in the data.
This way a category with a high influence on the model outcome, but a low amount of occurrences
does not have too much influence on the differentiation measurement of xi.

In a similar way, the effect of xi on zi can be measured. Consider zi to be redefined as

zi = g(xi)+ εi,2 = γ0 + γ1 ∗ Ixi=c1 + γ2 ∗ Ixi=c2 + ...+ γk ∗ Ixi=ck + εi,2.

Instead of using regression estimation to obtain ĝ(xi), the average value of zi given each category of xi
is used. So, there is no effect measured for every observation of xi, but an average effect is measured.

∑
K
k=1 wk ∗ |ĝ(ck)−ν|,

ν = ∑
K
k=1 wk ∗ ĝ(ck).

ĝ(ck) =
∑

N
i=1 Ixi=ck∗zi

∑
N
i=1 Ixi=ck

wk =
1
N ∑

N
i=1 Ixi=ck .

ν is the weighted average of zi given xi. ĝ(ck) is the average of zi given ck. The difference is taken
between the average value of zi given a category of xi and the weighted average of zi given each
category of xi, while taking the weightings into account.
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6 Algorithms & methods

This chapter describes the algorithms and methods that are used in the tool to measure and detect dif-
ferentiation. Model 1 and 2, as given in section 5, are used as examples in this section. As explained
before, the data consists of numeric and categorical variables. Both types of variables correspond to
different ways to measure differentiation.

differentiation is measured in two ways; in a regular manner and an absolute manner. Both are
measured since differentiation is measured for every observation of a variable. This can lead to in-
corporating both negative and positive measurements which can cancel each other out. So, when for
example the variable gender consists of the values man and woman it could be the case that man has
a ”positive” effect on the model outcome and woman has a ”negative” effect on the model outcome.
These effects can cancel each other out and a differentiation measurement of 0 is found. This is not
a problem when the absolute calculations are performed. However, the direction of differentiation is
unknown for man and woman in this case. Since this is valuable information and the regular mea-
surements do show this direction, both methods are used to measure differentiation. The methods
below depict the absolute manner and the regular differentiation measurement methods are given in
Appendix A.1 - A.4.

Furthermore, the differentiation measurements are standardized. For numeric variables, this means
that the measurements represent how much the model outcome changes when the input variable
changes by 1 standard deviation, in percentages of the average fitted values of the model. For cate-
gorical variables, this means that the measurements represent how much the model outcome changes
when the input variable changes by a category, in percentages of the average fitted values of the model.

A point to note is that when a model incorporates discrete steps in its decision-making, like decision
tree-based models, the numeric variables are treated as discrete variables in the differentiation mea-
suring. This means that the difference quotient is taken of f (.) with respect to that variable instead of
the derivative. This only relates to direct differentiation, not indirect differentiation.

The final subsection contains the algorithm as used in the tool, A basic version is shown, because
otherwise, the algorithm becomes too big and hard to explain. It is explained how this algorithm
works in practice.

6.1 Situation 1: xi numeric, zi numeric

When both xi and zi are numeric, simple derivatives are taken to measure differentiation. First, the
direct effect of xi on f (xi,zi) is measured by the derivative D1 f (xi,zi). Second, g(xi) is estimated by
ĝ(xi). This is preferably done by using a cubic smoothing spline, but if the IQR is 0, a linear model
is fitted. Next, the effect of xi on ĝ(xi) is measured by D1ĝ(xi). This is multiplied with the effect of zi
on f (xi,zi): D2 f (xi,zi).

differentiation in the model on variable xi at observation i can be measured by the following methods.

Direct differentiation:
|D1 f (xi,zi)∗

σx
1
N ∑

N
i=1 f (xi,zi)

|. (3)
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Indirect differentiation:

|D1ĝ(xi)∗
σx

σz
∗D2 f (xi,zi)∗

σz
1
N ∑

N
i=1 f (xi,zi)

|, (4)

ĝ(xi) is the estimation of the function g(xi) = E(zi|xi).

Furthermore, differentiation in the model based on variable xi is present when:

Direct differentiation = 1
N ∑

N
i=1 |D1 f (xi,zi)∗ σx

1
N ∑

N
i=1 f (xi,zi)

| 6= 0.

Indirect differentiation = 1
N ∑

N
i=1 |D1ĝ(xi)∗ σx

σz
∗D2 f (xi,zi)∗ σz

1
N ∑

N
i=1 f (xi,zi)

| 6= 0.

6.2 Situation 2: xi numeric, zi categorical
If xi is numeric and zi categorical, indirect differentiation is measured differently compared to method
1. Since zi is not numeric, no derivative D2 f (xi,zi) can be calculated. Instead, to measure the effect of
zi on f (xi,zi), the difference is taken between the predictions where the value of zi is set to ck and the
weighted average of these predictions (µi). The weighting of each category is taken into account (wk).
This difference is denoted by Ei,k. Furthermore, for each category of zi a (nonparametric) regression
is made on xi to estimate the relationship between zi and xi.

Consider zi ∈C with K number of categories such that C = {c1,c2, ...,cK}.

differentiation in the model on variable xi at observation i can be measured by the following methods.

Direct differentiation:
|D1 f (xi,zi)∗

σx
1
N ∑

N
i=1 f (xi,zi)

|. (5)

Indirect differentiation :
K

∑
k=1
|D1ĝk(xi)∗σx ∗Ei,k ∗

1
1
N ∑

N
i=1 f (xi,zi)

|, (6)

Ei,k = wk ∗ | f (xi,ck)−µi|,

µi = ∑
K
k=1 wk ∗ f (xi,ck),

wk =
1
N ∑

N
i=1 Izi=ck ,

ĝk(xi) is the estimation of gk(xi) = E(ck|xi).

Furthermore, differentiation in the model based on variable xi is present when:

Direct differentiation = 1
N ∑

N
i=1 |D1 f (xi,zi)∗ σx

1
N ∑

N
i=1 f (xi,zi)

| 6= 0.

Indirect differentiation = 1
N ∑

N
i=1 ∑

K
k=1 |D1ĝk(xi)∗σx ∗Ei,k ∗ 1

1
N ∑

N
i=1 f (xi,zi)

| 6= 0.
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6.3 Situation 3: xi categorical, zi numeric

Now, the direct effect of xi on the model outcome and on zi are measured differently. The predictions
for xi set to ck are compared to the weighted average of these predictions (µi). This difference is
denoted by Ei,k. The weight per category, wk, is taken into account. Since zi is numeric, the effect of
zi on the model outcome can be calculated through D2 f (xi,zi). The effect of xi on zi, Ui,k, is measured
in a similar manner as the effect of xi on f (xi,zi), but now the average value of zi for a given category
of xi is used (ĝ(ck)), instead of predictions.

Consider xi ∈C with K number of categories such that C = {c1,c2, ...,cK}.

differentiation in the model on variable xi at observation i can be measured by the following methods.

Direct differentiation:
K

∑
k=1
|Ei,k ∗

1
1
N ∑

N
i=1 f (xi,zi)

|, (7)

Ei,k = wk ∗ | f (ck,zi)−µi|,

µi = ∑
K
k=1 wk ∗ f (ck,zi),

wk =
1
N ∑

N
i=1 Ixi=ck .

Indirect differentiation:
K

∑
k=1
|Ui,k ∗

1
σz
∗D2 f (xi,zi)∗

σz
1
N ∑

N
i=1 f (xi,zi)

|, (8)

Ui,k = wk ∗ |ĝ(ck)−ν|,

ν = ∑
K
k=1 wk ∗ ĝ(ck),

ĝ(ck) =
∑

N
i=1 Ixi=ck∗zi

∑
N
i=1 Ixi=ck

,

wk =
1
N ∑

N
i=1 Ixi=ck .

Furthermore, differentiation in the model based on feature x is present when:

Direct differentiation = 1
N ∑

N
i=1 ∑

K
k=1 |Ei,k ∗ 1

1
N ∑

N
i=1 f (xi,zi)

| 6= 0.

Indirect differentiation = 1
N ∑

N
i=1 ∑

K
k=1 |Ui,k ∗ 1

σz
∗D2 f (xi,zi)∗ σz

1
N ∑

N
i=1 f (xi,zi)

| 6= 0.
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6.4 Situation 4: xi categorical, zi categorical
Earlier subsections already showed how to measure the direct differentiation here for a categorical
variable. Regarding indirect differentiation, the differentiation is now measured for every category of
zi, given every category of xi. So, first, a category of zi is picked, then the average of the number of
occurrences of the category of zi given the category of xi is taken (ĝl(ck)). This is compared to the
weighted average vl , taking into account the weight of every category of xi. This results in the effect
of xi on zi, denoted by Uk,l . This is multiplied by the effect of zi on f (xi,zi). This effect is measured
similarly as the direct differentiation on xi and is denoted by Ri,l .

Consider xi ∈C with K number of categories such that C = {c1,c2, ...,cK}.
Consider zi ∈ O with L number of categories such that O = {o1,o2, ...,oL}.

differentiation in the model on variable xi at observation i can be measured by the following methods.

Direct differentiation:
K

∑
k=1
|Ei,k ∗

1
1
N ∑

N
i=1 f (xi,zi)

|, (9)

Ei,k = wk ∗ | f (ck,zi)−µi|,

µi = ∑
K
k=1 wk ∗ f (ck,zi),

wk =
1
N ∑

N
i=1 Ixi=ck .

Indirect differentiation:
L

∑
l=1

wl ∗
K

∑
k=1
|Uk,l ∗Ri,l ∗

1
1
N ∑

N
i=1 f (xi,zi)

|, (10)

Ri,l = wl ∗ | f (xi,ol)−υi|,
i = 1,2, ...,N, l = 1,2, ...,L,

υi = ∑
L
l=1 wl ∗ f (xi,ol),

wl =
1
N ∑

N
i=1 Izi=ol ,

Uk,l = wk ∗ |ĝl(ck)−νl|,
k = 1,2, ...,K, l = 1,2, ...,L,

νl = ∑
K
k=1 wk ∗ ĝl(ck).

ĝl(ck) =
∑

N
i=1 Ixi=ck∗Izi=ol

∑
N
i=1 Ixi=ck

,

wk =
1
N ∑

N
i=1 Ixi=ck .

Furthermore, differentiation in the model based on feature x is present when:

Direct differentiation = 1
N ∑

N
i=1 ∑

K
k=1 |Ei,k ∗ 1

1
N ∑

N
i=1 f (xi,zi)

| 6= 0.

Indirect differentiation = 1
N ∑

N
i=1 ∑

L
l=1 wl ∗∑

K
k=1 |Uk,l ∗Ri,l ∗ 1

1
N ∑

N
i=1 f (xi,zi)

| 6= 0.
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6.5 Algorithm
The basic algorithm is given. It only depicts the absolute differentiation measurements as explained
earlier. The algorithm does not include the regular differentiation measurements as the algorithm
would become hard to follow. Furthermore, measurement extractions as indirect differentiation per
variable and direct/ indirect differentiation per category are also not displayed for the same reason.
Bootstrap confidence intervals can also be extracted. This is not shown in the displayed algorithm
for the same reasons. However, in the actual algorithm, all these measurements are extracted. The
functions in the algorithm refer to the formulas in each of the four situations described above. Note
that f unction 3 is the same as f unction 5 and f unction 7 is the same as f unction 9.

Algorithm 1 differentiation measuring
1: xi,w is the variable in the input data set at (column) index w = 1,2, ...,W and with i = 1,2, ..,N

observations (rows).
2: for w = 1,2, . . . ,W do
3: if class(xi,w) =categorical then
4: directw = f unction 7(xi,w)
5: else if class(xi,w) =numeric then
6: directw = f unction 3(xi,w)
7: end if
8: for j = 1,2, . . . ,W −1 and j 6= w do
9: zi, j = xi, j

10: if class(xi,w) =categorical then
11: if class(zi, j) =categorical then
12: indirect j = f unction 10(xi,w,zi, j)
13: else if class(zi, j) =numeric then
14: indirect j = f unction 8(xi,w,zi, j)
15: end if
16: end if
17: if class(xi,w) =numeric then
18: if class(zi, j) =categorical then
19: indirect j = f unction 6(xi,w,zi, j)
20: else if class(zi, j) =numeric then
21: indirect j = f unction 4(xi,w,zi, j)
22: end if
23: end if
24: end for
25: Indirect di f f erentiationw = 1

N ∑
N
i=1(∑

W−1
j=1 (indirect j))

26: Direct di f f erentiationw = 1
N ∑

N
i=1(directw)

27: end for

The algorithm works as follows. The data enters the first loop of the algorithm. As described earlier,
differentiation is measured for each variable in the data set. The first loop picks the variable for which
differentiation is measured. First, direct differentiation is measured, depending on the type of vari-
able it is. Next, the second for-loop begins. Here all the other variables in the data set are considered.
Indirect differentiation is measured for each combination of (xi,w,zi, j). So, indirect differentiation on
xi is measured through every other variable in the data set. Depending on the data type of xi,w and
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zi, j, the corresponding method is picked to measure differentiation. At the end of the inner loop, the
distributions of differentiation measurements are added up and the mean is taken forward. The mean
value of the direct and indirect differentiation measurements are the results given in the tool. These
measurements are multiplied by 100% to get the percentages.

Indirect differentiation per variable can easily be retrieved by storing indirect j separately. An exam-
ple formula is given in Appendix A.5.

differentiation measurements per category can also be retrieved in a similar way. When xi is categor-
ical, differentiation measurements are calculated per category. These measurements per category can
be stored separately. Example formulas are given in Appendices A.6 and A.7. Note, that the weight
per category is not taken into account when taking the difference between the predictions (or aver-
ages) per category and the weighted average of these predictions (or averages). This way the exact
effect per category can be obtained.

Bootstrap confidence intervals around the differentiation measurements can be created. Confidence
intervals of 95% strength are created. Furthermore, the percentile interval method is used to create an
interval and 399 simulations are performed. 399 simulations are chosen as this does not take too long
to compute, which is preferable for the practicality of the differentiation detection tool. In addition it
is a good number to use according to research [10]. The percentile interval is used as it is one of the
most popular methods to use and no assumptions are made on the underlying distribution [6]. The
bootstrap algorithm is given in Appendix A.8.
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7 Experimental Setup
In this section, the experimental setup is explained. The goal of the experiments is to test the dif-
ferentiation detection methods used by the differentiation detection tool; test if the methods works
as intended and see if the tool can be of use in the industry. Four simulation models are created
to test the methods. Simulations are used because in a simulation it can easily be derived what the
expected results are. Thus, it can easily be concluded if the methods work as intended. Besides the
simulation models, two Aegon models are used to test the differentiation detection methods. It can
not be concluded if the detection methods work well based on the tests on the two Aegon models. It
is impossible to derive the expected results. However, the tests do show if the detection tool would
function on models used in real life. The testing on the two Aegon models serves as an example to
show how the tool can be used in practice.

This section is divided into two subsections. The first subsection describes the simulation models and
the experimental setup of the testing. The second subsection revolves around the two Aegon models
and the experimental setup there.

7.1 Simulation models
Four simulation models are created to test the differentiation detection methods. The data set used by
these models is described in section 3. The four models are different from one another. This is to see
how the tool functions when confronted with different types of models.

For simplicity’s sake in writing down the models, abbreviations of the variables in the data set are
used. The abbreviations are given in Table 3.

Table 3: Abbreviation simulation model data

Variable letter
Age ai

Gender gi

Ethnicity ti
Education di

Income vi

Income category oi

House value hi

Random variable 1 ri,1

Random variable 2 ri,2

Correlated variable 1 ci,1

Correlated variable 2 ci,2

Correlated variable 3 ci,3

Correlated variable 4 ci,4

Some models incorporate a variable going through step function. This is an extra test for the tool to
simulate how it reacts to models which make use of discrete steps in their decision making (decision-
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tree based models). The step-function s(xi) is defined as:

s(xi) =



1 if 16≤ xi < 18
2 if 18≤ xi < 20
3 if 20≤ xi < 22
4 if 22≤ xi < 24
5 if 24≤ xi < 26
6 if 26≤ xi < 28

7.1.1 Simulation model 1: A simple linear model with direct differentiation

yi = 0.5∗gi +0.01∗ai + Iti=Finnish +0.5∗di +2∗ ri,1 +3∗ ri,2

Simulation model 1 is used to test if direct differentiation can be picked up in a simple linear model.
This model differentiates on the following variables: gender, age, ethnicity, education, random vari-
able 1, and random variable 2. In this case, it is expected that the tool will pick up direct differentiation
for these variables. Furthermore, since it is a simple linear model the coefficients of every variable
give a clue to the differentiation measurement that should be measured. The differentiation measure-
ments are standardized. If this wasn’t the case, the differentiation measurements returned should be
equal to the model coefficients. The highest direct differentiation measurement should be picked up
for random variable 2 and the lowest measurement should be picked up for age.

7.1.2 Simulation model 2: A non-linear model with direct differentiation

yi = 0.001∗a2
i +4∗ log(ri,1)+1e−5 ∗ (ri,2)

3 +0.2∗ s(ci,1)

In simulation model 2 it is tested if direct differentiation can be picked up in a non-linear model.
The model differentiates on the variables age, random variable 1, random variable 2, and correlated
variable 1. Furthermore, it is also tested if differentiation can be picked up for a variable that goes
through a step function. Moreover, although it is not the main objective here, indirect differentiation
for age and ethnicity should also be picked up; correlated variable 1 is dependent on age and ethnicity.

7.1.3 Simulation model 3: A simple linear model with indirect differentiation

yi = ci,1 +2∗ ci,2 +3∗ ci,3−4∗ ci,4

In this simple linear model, the expected results for the direct differentiation should easily be found
for the four correlated variables. Model 3 differentiates on correlated variable 1, correlated variable
2, correlated variable 3, and correlated variable 4. The correlated variables are all dependent on other
variables. These are age (ci,1 & ci,4), ethnicity (ci,1 & ci,2) and gender (ci,3). Therefore, indirect
differentiation should be found in these three variables. So, it is tested if differentiation is detected
for variables that are not observed (directly) by the model, but which have an influence on the model
through other variables.
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7.1.4 Simulation model 4: A non-linear model with interaction terms

yi = 0.2∗ s(ci,1)+0.01∗ai ∗di +0.1∗ log(vi)∗ s(ci,2)+ log(hi)∗ (vi > 5000)∗ (Idi=3)+0.1∗ s(ci,4)

Simulation model 4 is a non-linear model with a step function. The model differentiates on correlated
variable 1, age, education, income, correlated variable 2, house value and correlated variable 4. Fur-
thermore, there are interactions between the input variables. This model is closer to reality as machine
learning models can create opaque relationships between variables. This makes it hard to understand
how the model behaves and how important each variable is in the predictions of the model. Still, some
expectations can be made. The input variables are expected to harbor direct differentiation. Indirect
differentiation is expected to be found in income, age and ethnicity due to dependencies. House value
is dependent on income. The three correlated variables are dependent on (one of) age and ethnicity.
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8 Results

In this section, the results are given for the experiments described in section 7. The results given
in the tables are related to the expectations made in section 7 and the two research questions. The
two research questions are: ”Can differentiation be detected in insurance pricing models?” and can
”differentiation be measured in insurance pricing models?”

The measurements in the tables for direct differentiation represent how much the model outcome
changes when the variable of interest changes (by a standard deviation/ category), in percentages of
the mean of the fitted model values. The indirect differentiation measurements should be read in the
same manner. Indirect differentiation measurements are given for the row variables coming through
a column variable. The row variables are the variables for which differentiation is measured.

The subsections below show only parts of the results. The full result tables are given in Appendix C.
The direct differentiation measurements are given in a regular manner and in an absolute manner, to
give a full picture of the differentiation measurements.

Lastly, the standard deviations of the numeric variables are given in Appendix B.2. in Table 23. The
mean fitted values of the four simulation models are given in the same Appendix in Table 24. With
this information, the un-standardized results can be calculated.

8.1 Simulation Models

8.1.1 Simulation model 1

Table 4 displays the direct differentiation measurements for the input variables of simulation model
1. As a first example of what the measurements mean: The mean of the model outcome changes by
5.915% if random variable 1 changes by one standard deviation. The mean of the model outcome
changes by 0.129% if ethnicity changes by a category.

Direct differentiation is only measured for the input variables of simulation model 1. The regular
measurements always have a differentiation measurement of 0 for categorical variables, but the ab-
solute measurements do show significant results. The size of the differentiation measurements also
correspond to the coefficient every variable has in the model. This can also be checked by recalcu-
lating the measurements to their un-standardized versions. The biggest differentiation measurement
is picked up for random variable 2 and the lowest measurement is picked up for age. In the case
of ethnicity, the methods have picked up that Finnish people pay more compared to other ethnicities
(Table 5). There were no expectations made about indirect differentiation. However, indirect ”noise”
differentiation is picked up for every variable as given by the tables in Appendix C.1.

Table 4: Direct differentiation measurements

Gender Age Ethnicity Education Random var 1 Random var 2
Regular 0.000 % 0.049 % 0.000 % 0.000 % 3.963 % 5.915 %
Absolute 0.207 % 0.049 % 0.129 % 0.429 % 3.963 % 5.915 %
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Table 5: Direct differentiation measurements for ethnicity

Belgian Dutch Finnish German Other
Regular -0.070 % -0.070 % 0.910 % -0.070 % -0.070 %
Absolute 0.070 % 0.070 % 0.910 % 0.070 % 0.070 %

Referring back to the two research questions. differentiation can be detected and measured as ex-
pected, given simulation model 1.

8.1.2 Simulation model 2

Table 6 shows that direct differentiation is picked up for all the input variables of simulation model
2. differentiation is found for correlated variable 1 which goes through a step function. However,
the measurement is not as expected. According to the measurement in a regular manner, a change in
correlated variable 1 has a negative effect on the model outcome.

Table 6: Direct differentiation measurements

Age Random var 1 Random var 2 Corr var 1
Regular 2.775 % 2.740 % 0.176 % -0.910 %
Absolute 2.775 % 2.740 % 0.176 % 1.690 %

Table 7 shows the indirect differentiation measurements for ethnicity and age coming through age,
random variable 1, random variable 2 and correlated variable 1. As an example: The table shows that
if ethnicity changes by a category the mean of the model predictions changes by 0.021% through age.
differentiation is picked up for ethnicity coming through age and correlated variable 1 and for age
coming through correlated variable 1. Other indirect differentiation measurements are also picked
up. However, these measurements are much smaller. Still, noise is picked up regarding indirect
differentiation for every variable as given in the Tables in Appendix C.2.

Table 7: Absolute indirect differentiation measurements for ethnicity and age

Age Random var 1 Random var 2 Corr var 1
Ethnicity 0.021 % 0.004 % 0.000 % 0.022 %
Age - 0.002 % 0.001 % 0.016 %

Referring back to the two research questions. differentiation can be detected as expected but not
measured as expected, given simulation model 2.

8.1.3 Simulation model 3

Direct differentiation is measured for all the input variables. The measurements also correspond
to the coefficients each variable has in model 3; correlated variable 1 has the lowest differentiation
measurement and correlated variable 4 has the biggest differentiation measurement.
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Table 8: Direct differentiation measurements

Corr var 1 Corr var 2 Corr var 3 Corr var 4
Regular 4.582 % 10.232 % 13.589 % -18.345 %
Absolute 4.582 % 10.232 % 13.589 % 18.345 %

Table 9 contains the absolute indirect differentiation measurements for age, ethnicity and gender.
Again, noise differentiation is picked up. For age, the biggest differentiation measurements flow
through correlated variable 1 and correlated variable 4. These are also the variables that are depen-
dent on age. Correlated variable 2 is only dependent on ethnicity. This is also shown in Table 9.
Indirect differentiation of ethnicity through correlated variable 2 has a big measurement. Gender only
has a dependency in correlated variable 3. Table 9 shows that the biggest indirect differentiation
measurement of gender goes through correlated variable 3. The full tables are given in Appendix C.3.

Table 9: Absolute indirect differentiation measurements for age, ethnicity and gender

Corr var 1 Corr var 2 Corr var 3 Corr var 4
Age 0.044 % 0.031 % 0.022 % 0.443 %
Ethnicity 0.059 % 3.379 % 0.034 % 0.074 %
Gender 0.010 % 0.030 % 1.381 % 0.061 %

Taking age as en example: when the measurement through correlated variable 4 is un-standardized
and the effect of correlated variable 4 on the model is taken away, the result is the effect of age on
correlated variable 4. This effect closely resembles the factor 0.01 by which correlated variable 4
is dependent on age, as given in section 3. The same holds for the male gender when it comes to
correlated variable 3. This is given in the following table.

Table 10: Indirect differentiation measurement for gender

Female Male
Regular -2.319 % 1.062 %
Absolute 2.453 % 1.005 %

Referring back to the two research questions. differentiation can be detected and measured as ex-
pected, given simulation model 3.

8.1.4 Simulation model 4

Table 11 shows that direct differentiation is picked up for all the input variables of the model, ex-
cept for correlated variable 4. Particularly high measurements are found for education, income and
correlated variable 2.
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Table 11: Direct differentiation measurements

Age Education Income House value Corr var 1 Corr var 2
Regular 1.838 % 0.000 % 15.344 % 1.396 % -1.804 % 5.896 %
Absolute 1.838 % 32.042 % 15.344 % 1.396 % 5.477 % 23.488 %

Corr var 4
Regular 0.000 %
Absolute 0.000 %

Not all the expected indirect differentiation measurements are found. No indirect differentiation mea-
surement is found flowing through correlated variable 4, regarding age. Moreover, the indirect differ-
entiation measurement of age through correlated variable 1 also is not that big compared to the noise
measurements through other variables. For ethnicity, the biggest indirect differentiation measurement
is found through correlated variable 2 and the second highest measurement is found through corre-
lated variable 1. Maybe the most surprising results are those of income category and house value.
It shows relatively big indirect differentiation measurements coming through income. Income is not
dependent on those two variables. On the contrary, income category and house value are dependent
on income. All the results can be found in Appendix C.4.

Table 12: Absolute indirect differentiation measurements

Age Education Income House value Corr var 1 Corr var 2
House value 0.029 % 0.133 % 15.085 % - 0.017 % 0.270 %
Age - 0.042 % 0.041 % 0.004 % 0.052 % 0.070 %
Ethnicity 0.013 % 0.018 % 0.037 % 0.004 % 0.070 % 7.760 %
Income category 0.009 % 0.077 % 7.244 % 2.294 % 0.011 % 0.087 %
Income 0.017 % 0.124 % - 1.372 % 0.012 % 0.217 %

Corr var 4
House value 0.000 %
Age 0.000 %
Ethnicity 0.000 %
Income category 0.000 %
Income 0.000 %

Referring back to the two research questions. differentiation can not be detected and measured as
expected, given simulation model 4.
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9 The tool
This section explains how the tool works that incorporates the differentiation detection methods de-
scribed in this research. As explained in the introduction, the tool consists of two components: pro-
gramming code that detects and measures differentiation and an app that can make visualizations of
the results. The two components of the tool are programmed in R.

The script in which the detection methods are programmed is shared with a model owner. When the
script is shared, the user gives a data set and a model (that has a prediction function). Next, the user
has to define a couple of fields. An example of such a field is whether the given data set should be
enriched with CBS data. After these fields are declared, the script can be run. The code includes
the same data pre-processing as described in section 3. The script produces a resulting data set with
differentiation measurements for each variable in the original data set. The measurements are given
in Table 15.

Table 13: The differentiation measurements performed by the tool

Description
1 Direct differentiation (regular)
2 Direct differentiation per category (regular)
3 Direct differentiation (absolute)
4 Direct differentiation per category (absolute)
5 Indirect differentiation (regular)
6 Indirect differentiation per variable (regular)
7 Indirect differentiation per category (regular)
8 Indirect differentiation (absolute)
9 Indirect differentiation per variable (absolute)
10 Indirect differentiation per category (absolute)
11 Total differentiation (regular)
12 Total differentiation per category (regular)
13 Total differentiation (absolute)
14 Total differentiation per category (regular)

The user gives the resulting data set to the app. When the data set is uploaded to the app, the user can
make several visualizations. These visualizations display the different measurements. The biggest
differentiating features can be displayed. The differentiation measurements for certain variables of
interest can be displayed and the differentiation measurements on a micro level can be displayed. The
next figures show how the app works.

First, a data set is uploaded with the upload button. Next, the user can choose what kind of graph
he or she wants to be displayed. The selection consists of the choices ”Every variable” and ”Distinct
selection”. ”Every variable” refers to the whole data set. A differentiation measurement and a sorting
can be chosen. The graph will display a number of variables sorted regarding the chosen differentia-
tion measurement. This is displayed in Figure 3.
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Figure 3: ”Every variable” graph

”Distinct selection” gives a new input option where the user can choose up to five features to display.
The user can choose what kind of metric, absolute or regular, the graph should display. For every vari-
able, the direct, indirect and total differentiation measurements are displayed for the chosen metric.
Figure 3 shows the result when ”distinct selection” is picked.

Figure 4: ”Distinct selection” graph

The app also contains a second graph. This graph displays the differentiation measurements per
category and the indirect differentiation measurements per variable. Figure 5 displays such a graph.
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Figure 5: Count per category

Furthermore, the app consists of a second tab. The same measurements as displayed in Figure 5 can be
displayed in box plots. This way the user can learn more about the distribution of the differentiation
measurements. A visualisation is given in Figure 6.

Figure 6: Count per category
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10 Conclusion

10.1 Summary

This thesis introduces a new tool to detect and measure differentiation in insurance pricing models.
The literature research shows that, although the academic field has only recently become popular,
there are already quite some tools that aim to do something similar. The tool in this research distin-
guishes its self by how easy it is to use and by the information the tool gives. So far, there does not
exist an alternative tool or technique which can detect and measure differentiation on the same level
as the methods used by the tool of this thesis. The detection tool is tested on four simulation models
and two Aegon models. The tests show that the tool can detect and measure differentiation in most
models. However, the tool has problems with measuring differentiation in a few situations. The tool
does not correctly measure or even detect differentiation when a model incorporates a step function.
Furthermore, the tool picks op noise differentiation. differentiation is detected where there should be
none found. The tests on the Aegon models showed that differentiation can be detected for variables
the models do not even observe. In the XGBoost model, the most differentiating features originated
from the CBS data set. This shows why it is important to enrich a given data set with the CBS data
set. This way Aegon can gather more information about the behavior of their pricing models.

The biggest difference between this tool and other tools and researches about differentiation detection
is the information this tool provides. The existing tools used in the industry do not make the distinc-
tion between direct and indirect differentiation and also do not work on numeric data. Furthermore,
no other research describes how to dissect the differentiation measurements into measurements per
category, for categorical variables, or into measurements per variables in the case of indirect differ-
entiation. So, it can be seen through which variables the variable of interest is differentiated on by a
model.

The experiments show that direct differentiation is almost always picked up. The tests in simulation
model 4 and simulation model 2 show that there can be difficulties in detecting direct differentia-
tion for variables that go through a step function. However, differentiation can be measured in the
XGBoost model, which also incorporates discrete steps in its decision-making. There are also some
problems with the indirect differentiation measuring. Noise differentiation is picked up here. Because
of this, the indirect differentiation measurements for variables that have a slight dependency on an-
other variable do not stand out compared to the noise differentiation measurements. Overall, the tests
do show that for a large part differentiation is detected and measured as expected.

With this tool, Aegon can get a lot of information about the behavior of the models they use. differ-
entiation can be detected and measured. It can be found where the differentiation originates from and
with this information the model owners can explain to interested people how their model behaves. The
most important part here is that any doubt about possible differentiating models can be taken away.
Because, if the tool finds differentiation, this can be negated with the information the model owner
gets from the tool. If unwanted direct differentiation is found, the model owner can take the variable
of interest out of the data set. The same can be done in the case of unwanted indirect differentiation.
In that case, the second variable can be taken out of the data set. This corresponds to taking xi or zi
out of the relationship depicted in Figure 1 in section 4. If the variables are too important in the model
predictions, the model owner can incorporate a contrary differentiation factor. If women pay a higher
insurance premium than men, Aegon can give a discount to women for example.
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There are some limitations to the methods to measure differentiation. First of all, the tool is very much
dependent on the data the user gives. The differentiation found does not necessarily imply that the
model is differentiating. It can also mean that there is a certain bias in the given data set. A category
within the variable ethnicity can be overrepresented for example. These biases will lead to biased
model predictions which are picked up by the tool. The tool will give a differentiation measurement,
but it does not say if this originates from the model or the data. The user has to keep in mind that not
only the model can be at fault, but there could also be problems in the given data.

Furthermore, the tool incorporates data pre-processing which has some room for improvement. If a
data set has a categorical variable with lots of missing values, the tool will perform a very skewed
pre-processing. All the missing values are imputed by the median value or the most common value.
Then again, this can easily be avoided if the user him- or herself performs the pre-processing. The
data preparation of the tool right now works as intended; fill up empty values, such that the tool can
run. Preparing a data set is not the objective of the tool.

Lastly, regarding the indirect differentiation measuring: a statistical relationship does not imply cau-
sation. The indirect differentiation measurement methods use regression estimations and average
values. These techniques will show relationships between variables, but they do not imply that a
change in one variable is caused by a change in the other variable. This causal relationship is implied
in the way differentiation is defined in this thesis. The test results in simulation model 4 show that
high indirect differentiation measurements are found for income category and house value through
income. This implies that a change in house value or income category causes a big change in the
model outcome through the income variable. This is not correct. Those two variables are dependent
on income, not the other way round. These measurements are found, because of the correlations be-
tween house value and income, and income category and income. This is also the reason why there
is a relatively big differentiation measurement of income category through house value. These two
variables are correlated, because they are correlated with income. However, neither house value or
income category have a causal relationship with one another.

10.2 Future Work
There are a couple of points which should be improved. First of all, more research should be put into
causation theory. As explained before, right now relationships are established where there actually
should be none. It is not weird that these correlations are detected, but for this tool to fully work as
intended, only relationships should be established where one variable causes the other variable. That
way, the indirect differentiation measurements truly represent the theory as introduced in this research.

Secondly, more work could be put into the data pre-processing. This is not one of the objectives of
the tool. However, a better data preparation would lead to more accurate results, as the data will not
be skewed because of the tool if it is not properly cleaned. This can be improved by incorporating
machine learning pre-processing techniques.

Lastly, more tests should be done on real models. The simulation model test shows that the tool has
problems with step functions. However, the test on the XGBoost model shows that the tool does detect
differentiation in this model which makes use of discrete steps in its decision making. Furthermore,
there are other types of models that have not been tested. These include classifying models.
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Appendices

A Algorithms & formulas
A.1 Numeric xi, numeric zi

Direct differentiation:

D1 f (xi,zi)∗ σx
1
N ∑

N
i=1 f (xi,zi)

.

Indirect differentiation:

D1ĝ(xi)∗ σx
σz
∗D2 f (xi,zi)∗ σz

1
N ∑

N
i=1 f (xi,zi)

.

A.2 Numeric xi, categorical zi

Direct differentiation:

D1 f (xi,zi)∗ σx
1
N ∑

N
i=1 f (xi,zi)

.

Indirect differentiation :

∑
K
k=1 D1ĝk(xi)∗σx ∗Ei,k ∗ 1

1
N ∑

N
i=1 f (xi,zi)

,

Ei,k = wk ∗ ( f (xi,ck)−µi),

µi = ∑
K
k=1 wk ∗ f (xi,ck),

wk =
1
N ∑

N
i=1 Izi=ck .

A.3 Categorical xi, numeric zi

Direct differentiation:

∑
K
k=1 Ei,k ∗ 1

1
N ∑

N
i=1 f (xi,zi)

,

Ei,k = wk ∗ ( f (ck,zi)−µi),

µi = ∑
K
k=1 wk ∗ f (ck,zi),

wk =
1
N ∑

N
i=1 Ixi=ck .

Indirect differentiation:

∑
K
k=1Ui,k ∗ 1

σz
∗D2 f (xi,zi)∗ σz

1
N ∑

N
i=1 f (xi,zi)

,

Ui,k = ∑
K
k=1 wk ∗ (ĝ(ck)−ν),

ν = ∑
K
k=1 wk ∗ ĝ(ck),

ĝ(ck) =
∑

N
i=1 Ixi=ck∗zi

∑
N
i=1 Ixi=ck

,

wk =
1
N ∑

N
i=1 Ixi=ck .
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A.4 Categorical xi, categorical zi

Direct differentiation:

∑
K
k=1 Ei,k ∗ 1

1
N ∑

N
i=1 f (xi,zi)

,

Ei,k = wk ∗ ( f (ck,zi)−µi),

µi = ∑
K
k=1 wk ∗ f (ck,zi).

wk =
1
N ∑

N
i=1 Ixi=ck

Indirect differentiation:

∑
L
l=1 wl ∗ (∑K

k=1Uk,l ∗Ri,l ∗ 1
1
N ∑

N
i=1 f (xi,zi)

),

Ri,l = wl ∗ ( f (xi,ol)−υi),

υi = ∑
L
l=1 wl ∗ f (xi,ol),

wl =
1
N ∑

N
i=1 Izi=ol ,

Uk,l = wk ∗ (ĝl(ck)−νl),

νl = ∑
K
k=1 wk ∗ ĝ(ck).

ĝl(ck) =
∑

N
i=1 Ixi=ck∗Izi=ol

∑
N
i=1 Ixi=ck

,

wk =
1
N ∑

N
i=1 Ixi=ck .

A.5 Indirect differentiation per variable

Absolute:
1
N ∑

N
i=1 |D1ĝ(xi)∗ σx

σz
∗D2 f (xi,zi)∗ σz

1
N ∑

N
i=1 f (xi,zi)

|.

Regular:
1
N ∑

N
i=1 D1ĝ(xi)∗ σx

σz
∗D2 f (xi,zi)∗ σz

1
N ∑

N
i=1 f (xi,zi)

.

A.6 Direct differentiation per category

Absolute:
1
N ∑

N
i=1 |Ei,k ∗ 1

1
N ∑

N
i=1 f (xi,zi)

|,

Ei,k = | f (ck,zi)−µi|,
µi = ∑

K
k=1 wk ∗ f (ck,zi),

wk =
1
N ∑

N
i=1 Ixi=ck .

Regular:
1
N ∑

N
i=1 Ei,k ∗ 1

1
N ∑

N
i=1 f (xi,zi)

,

Ei,k = ( f (ck,zi)−µi),

µi = ∑
K
k=1 wk ∗ f (ck,zi),

wk =
1
N ∑

N
i=1 Ixi=ck .
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A.7 Indirect differentiation per category

Absolute:

1
N ∑

N
n=1 |Ui,k ∗ 1

σz
∗D2 f (xi,zi)∗ σz

1
N ∑

N
i=1 f (xi,zi)

|,

Ui,k = |ĝ(ck)−ν|,

ν = ∑
K
k=1 wk ∗ ĝ(ck),

ĝ(ck) =
∑

N
i=1 Ixi=ck∗zi

∑
N
i=1 Ixi=ck

,

wk =
1
N ∑

N
i=1 Ixi=ck .

Regular:

1
N ∑

N
n=1Ui,k ∗ 1

σz
∗D2 f (xi,zi)∗ σz

1
N ∑

N
i=1 f (xi,zi)

,

Ui,k = ĝ(ck)−ν,

ν = ∑
K
k=1 wk ∗ ĝ(ck),

ĝ(ck) =
∑

N
i=1 Ixi=ck∗zi

∑
N
i=1 Ixi=ck

,

wk =
1
N ∑

N
i=1 Ixi=ck .

A.8 Bootstrap

Algorithm 2 Boostrap algorithm
1: B is the number of simulations
2: F∗ is the empirical distribution
3: x = {x1,x2, ...,xn}
4: T (x) = 1

N ∑
N
j=1 xi

5: for i = 1,2, . . . ,B do
6: x∗ = x∗1,x

∗
2, ...,x

∗
n ∼ F∗

7: Tbooti =T(x∗)
8: end for

The bootsrap confidence intervals:

Cn = (θ∗
α/2,θ

∗
1−α/2)

θ∗ is the mean obtained from the bootstrap algorithm.
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B Data
B.1 CBS

Table 14: Data of CBS

Feature Type Description
Inwoner Numeric Number of residents
Man Numeric Number of men
Vrouw Numeric Number of women
INW 014 Numeric Number of residents aged -14
INW 1524 Numeric Number of residents aged 15-24
INW 2544 Numeric Number of residents aged 25-44
INW 4564 Numeric Number of residents aged 45-64
INW 65PL Numeric Number of residents aged 64+
P NL ACHTG Numeric Percentage of residents with Dutch native background
P WE MIG A Numeric Percentage of residents with western background
P NW MIG A Numeric Percentage of residents with non-western background
AANTAL HH Numeric Number of households
TOTHH EENP Numeric Number of households with one person
TOTHH MPZK Numeric Number of households with multiple persons and no children
HH EENOUD Numeric Number of households with one parent and children
HH TWEEOUD Numeric Number of households with two parents and children
GEM HH GR Numeric The number of residents per household
WONING Numeric The number of houses
WONVOOR45 Numeric The number of houses built before 1945
WON 4564 Numeric The number of houses built between 1945-1965
WON 6574 Numeric The number of houses built between 1965-1975
WON 7584 Numeric The number of houses built between 1975-1985
WON 8594 Numeric The number of houses built between 1985-1995
WON 9504 Numeric The number of houses built between 1995-2005
WON 0514 Numeric The number of houses built between 2005-2015
WON 1524 Numeric The number of houses built between 2015-2025
WON MRGEZ Numeric The number of multiple-families houses
P KOOPWON Numeric Percentage of owner-occupied houses
P HUURWON Numeric Percentage of rental houses
WON HCORP Numeric Number of houses owned by corporations
WON NBEW Numeric The number of uninhabited houses
WOZWONING Numeric The average value of the houses
UITKMINAOW Numeric The number of residents with welfare
Postcode Category The postal code
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Figure 7: Box plots of the population variables
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Figure 8: Box plots of the property variables
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Figure 9: Box plots of the background variables
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B.2 Simulation

Figure 10: Count per category
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Figure 11: Box plot for numeric data

Table 15: Distribution of numeric variables

Feature Distribution
Age N(40,5)
Income N(49625,65765)
House value N(403945,535212)
Random variable 1 N(20,2)
Random variable 2 N(20,2)
Corr variable 1 N(20,2)
Corr variable 2 N(22,3)
Corr variable 3 N(20,2)
Corr variable 4 N(21,2)
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Table 16: Proportions of the categorical variables

Feature Proportions
Ethnicity D: 0.56, G: 0.07, F: 0.06, B: 0.09, O: 0.06
Education 1: 0.20, 2: 0.20, 3: 0.40, 4: 0.20
Gender M: 0.70, F: 0.30
Income category 1:0.34, 2: 0.27, 3: 0.14, 4: 0.12, 5: 0.11
Family size 1: 0.40, 2: 0.30, 3: 0.20, 4: 0.10

Table 17: Correlation with Income

Correlation
House value 0.989
Income category 0.736

Table 18: Correlation with Age

Correlation
Corr variable 1 -0.007
Corr variable 4 0.024

Table 19: Correlation with Ethnicity

Correlation
Corr variable 1 -0.001
Corr variable 2 0.447

Table 20: Correlation with Gender

Correlation
Corr variable 3 0.109
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Table 21: Standard deviations of numeric variables

σ

Age 4.993
Income 65764.530
House value 535211.700
Random var 1 2.027
Random var 2 2.019
Corr var 1 2.022
Corr var 2 2.255
Corr var 3 2.031
Corr var 4 2.021

Table 22: Mean of the fitted values of the simulation models

µ
Model 1 102.109
Model 2 14.572
Model 3 44.073
Model 4 7.063

Correlated variable 1 (cvi,1) is dependent on age (ai) and ethnicity (ti):

cvi,1 = ui + Iti=′Finnish′+ Iai<35,
ui ∼ N(20,2).

Correlated variable 2 (cvi,2) is dependent on ethnicity:

cvi,2 = ui + l(ti),
ui ∼ N(20,2).

l(ti) =



1 if ti = ’Belgian’
2 if ti = ’Dutch’
3 if ti = ’Finnish’
4 if ti = ’German’
5 if ti = ’Other’

Correlated variable 3 (cvi,3) is dependent on gender (gi):

cvi,3 = ui +0.5∗ Igi=′Man′ ,
ui ∼ N(20,2).

Correlated variable 4 (cvi,4) is dependent on age:

cvi,4 = ui +0.01∗ai,
ui ∼ N(20,2).
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C Results

C.1 Simulation model 1

Table 23: Regular direct differentiation statistics

Direct Indirect Total
Gender 0.000 % 0.000 % 0.000 %
Age 0.049 % -0.017 % 0.032 %
Ethnicity 0.000 % 0.000 % 0.000 %
Education 0.000 % 0.000 % 0.000 %
Income 0.000 % -0.024 % -0.023 %
Income category 0.000 % 0.000 % 0.000 %
House value 0.000 % -0.031 % -0.031 %
Family size category 0.000 % 0.000 % 0.000 %
Random var 1 3.963 % -0.019 % 3.942 %
Random var 2 5.915 % -0.014 % 5.901 %
Corr var 1 0.000 % -0.012 % -0.012 %
Corr var 2 0.000 % -0.023 % -0.023 %
Corr var 3 0.000 % 0.015 % 0.015 %
Corr var 4 0.000 % -0.004 % -0.004 %

Table 24: Absolute direct differentiation statistics

Direct Indirect Total
Gender 0.207 % 0.026 % 0.226%
Age 0.050 % 0.024 % 0.074 %
Ethnicity 0.129 % 0.019 % 0.148 %
Education 0.429 % 0.027 % 0.456 %
Income 0.000 % 0.029 % 0.029 %
Income category 0.000 % 0.017 % 0.017 %
House value 0.000 % 0.057 % 0.057 %
Family size category 0.000 % 0.581 % 0.581 %
Random var 1 3.963 % 0.020 % 3.983 %
Random var 2 5.915 % 0.012 % 5.927 %
Corr var 1 0.000 % 0.018 % 0.018 %
Corr var 2 0.000 % 0.033 % 0.033 %
Corr var 3 0.000 % 0.026 % 0.026 %
Corr var 4 0.000 % 0.024% 0.024 %
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Table 25: Regular indirect differentiation statistics

Gender Age Ethnicity Education Random var 1 Random var 2
Gender - 0.000 % 0.000 % 0.000% 0.000 % 0.000 %
Age 0.000 % - 0.000 % 0.000 % 0.004 % -0.021%
Ethnicity 0.000% 0.000 % - 0.000 % 0.000 % 0.000%
Education 0.000 % 0.000 % 0.000% - 0.000 % 0.000 %
Income 0.000 % 0.000 % 0.000 % 0.000 % -0.014% -0.010%
Income category 0.000 % 0.000 % 0.000 % 0.000 % 0.000% 0.000%
House value 0.000% 0.000 % 0.000 % 0.000 % -0.009% -0.022%
Family size category 0.000 % 0.000 % 0.000 % 0.000 % 0.000% 0.000%
Random var 1 0.000 % 0.000 % 0.000 % 0.000 % - -0.019%
Random var 2 0.000% 0.000 % 0.000 % 0.000 % -0.012% -
Corr var 1 0.000% 0.000 % 0.001 % 0.000 % 0.002 % -0.016%
Corr var 2 0.000% 0.000 % 0.006 % 0.000 % -0.009 % -0.014%
Corr var 3 0.010% 0.000 % 0.000 % 0.000 % -0.005% 0.010%
Corr var 4 0.000% 0.001 % 0.000 % 0.000 % 0.005% -0.02%

Table 26: Absolute indirect differentiation statistics

Gender Age Ethnicity Education Random var 1 Random var 2
Gender - 0.000% 0.000% 0.000% 0.007% 0.019%
Age 0.000% - 0.000% 0.000% 0.004% 0.020%
Ethnicity 0.000% 0.000% - 0.000% 0.005% 0.014%
Education 0.000% 0.000% 0.000% - 0.009% 0.016%
Income 0.000% 0.000% 0.000% 0.001% 0.014% 0.014%
Income category 0.000% 0.000% 0.000% 0.000% 0.007% 0.010%
House value 0.000% 0.001% 0.000% 0.001% 0.017% 0.038%
Family size category 0.000% 0.000% 0.000% 0.001% 0.020% 0.037%
Random var 1 0.000% 0.001% 0.000% 0.001% - 0.018%
Random var 2 0.000% 0.000% 0.000% 0.000% 0.012% -
Corr var 1 0.000% 0.000% 0.000% 0.000% 0.002% 0.016%
Corr var 2 0.000% 0.000% 0.009% 0.001% 0.009% 0.014%
Corr var 3 0.010% 0.000% 0.000% 0.001% 0.005% 0.010%
Corr var 4 0.001% 0.000% 0.000% 0.000% 0.005% 0.018%
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C.2 Simulation model 2

Table 27: Regular differentiation statistics

Direct Indirect Total
Gender 0.000 % 0.000 % 0.000 %
Age 2.775 % 0.006 % 2.781 %
Ethnicity 0.000 % 0.000 % 0.000 %
Education 0.000 % 0.000 % 0.000 %
Income 0.000 % -0.033 % -0.033 %
Income category 0.000 % 0.000 % 0.000 %
House value 0.000 % -0.049 % -0.049 %
Family size category 0.000 % 0.000 % 0.000 %
Random var 1 2.740 % 0.001 % 2.741 %
Random var 2 0.176 % -0.015 % 0.161 %
Corr var 1 -0.910 % -0.019 % -0.929 %
Corr var 2 0.000 % 0.007 % 0.007 %
Corr var 3 0.000 % -0.004 % -0.004 %
Corr var 4 0.000 % 0.064 % 0.064 %

Table 28: Absolute differentiation statistics

Direct Indirect Total
Gender 0.000 % 0.010 % 0.010 %
Age 2.775 % 0.018 % 2.793 %
Ethnicity 0.000 % 0.051 % 0.051 %
Education 0.000 % 0.038 % 0.038 %
Income 0.000 % 0.039 % 0.039 %
Income category 0.000 % 0.021 % 0.021 %
House value 0.000 % 0.068 % 0.068 %
Family size category 0.000 % 0.018 % 0.018 %
Random var 1 2.740 % 0.004 % 2.744 %
Random var 2 0.176 % 0.023 % 0.198 %
Corr var 1 1.690 % 0.020 % 1.710 %
Corr var 2 0.000 % 0.089 % 0.089 %
Corr var 3 0.000 % 0.014 % 0.014 %
Corr var 4 0.000 % 0.080 % 0.080 %
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Table 29: Regular indirect differentiation statistics

Age Random var 1 Random var 2 Corr var 1
Gender 0.000 % 0.000 % 0.000 % 0.000 %
Age - 0.002 % -0.001 % 0.005 %
Ethnicity 0.000 % 0.000 % 0.000 % 0.000 %
Education 0.000 % 0.000 % 0.000 % 0.000 %
Income -0.026 % -0.009 % 0.000 % 0.002 %
Income category 0.000 % 0.000 % 0.000 % 0.000 %
House value -0.044 % -0.007 % -0.001 % 0.003 %
Family size category 0.000 % 0.000 % 0.000 % 0.000 %
Random var 1 0.002 % - -0.001 % 0.000 %
Random var 2 -0.009 % -0.009 % - 0.003 %
Corr var 1 -0.019 % 0.001 % 0.001 % -
Corr var 2 0.011 % -0.007 % 0.000 % 0.003 %
Corr var 3 -0.001 % -0.004 % 0.000 % 0.001 %
Corr var 4 0.067 % 0.003 % -0.001 % -0.005 %

Table 30: Absolute indirect differentiation statistics

Age Random var 1 Random var 2 Corr var 1
Gender 0.001 % 0.004 % 0.001 % 0.004 %
Age - 0.002 % 0.001 % 0.016 %
Ethnicity 0.021 % 0.004 % 0.004 % 0.022 %
Education 0.007 % 0.007 % 0.000 % 0.024 %
Income 0.026 % 0.009 % 0.000 % 0.004 %
Income category 0.013 % 0.005 % 0.000 % 0.003 %
House value 0.044 % 0.012 % 0.001 % 0.005 %
Family size category 0.002 % 0.013 % 0.001 % 0.002 %
Random var 1 0.002 % - 0.001 % 0.001 %
Random var 2 0.009 % 0.009 % - 0.005 %
Corr var 1 0.019 % 0.001 % 0.000 % -
Corr var 2 0.011 % 0.007 % 0.000 % 0.071 %
Corr var 3 0.008 % 0.004 % 0.000 % 0.002 %
Corr var 4 0.067 % 0.003 % 0.001 % 0.009 %
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C.3 Simulation model 3

Table 31: Regular differentiation statistics

Direct Indirect Total
Gender 0.000 % 0.000 % 0.000 %
Age 0.000 % -0.443 % -0.443 %
Ethnicity 0.000 % 0.000 % 0.000 %
Education 0.000 % 0.000 % 0.000 %
Income 0.000 % -0.356 % -0.356 %
Income category 0.000 % 0.000 % 0.000 %
House value 0.000 % -0.574 % -0.574 %
Family size category 0.000 % 0.000 % 0.000%
Random var 1 0.000 % -0.054 % -0.054 %
Random var 2 0.000 % -0.022 % -0.022 %
Corr var 1 4.582 % -0.164 % 4.418 %
Corr var 2 10.232 % -0.021 % 10.211 %
Corr var 3 13.589% 0.068 % 13.657%
Corr var 4 -18.345 % - 0.004 % -18.341 %

Table 32: Absolute differentiation statistics

Direct Indirect Total
Gender 0.000 % 1.481% 1.481%
Age 0.000 % 0.539 % 0.539 %
Ethnicity 0.000 % 3.544 % 3.544 %
Education 0.000 % 0.234 % 0.234 %
Income 0.000 % 0.368 % 0.368 %
Income category 0.000 % 0.296 % 0.296 %
House value 0.000 % 0.616 % 0.616 %
Family size category 0.000 % 0.055 % 0.055 %
Random var 1 0.000 % 0.265 % 0.265 %
Random var 2 0.000 % 0.467 % 0.467 %
Corr var 1 4.582 % 0.203 % 4.785 %
Corr var 2 10.232 % 0.238 % 10.470 %
Corr var 3 13.589% 0.080 % 13.669 %
Corr var 4 18.345 % 0.060 % 18.405 %
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Table 33: Regular indirect differentiation statistics

Corr var 1 Corr var 2 Corr var 3 Corr var 4
Gender 0.000 % 0.000 % 0.000 % 0.000 %
Age -0.027 % 0.031 % -0.004 % -0.443 %
Ethnicity 0.000 % 0.000 % 0.000 % 0.000 %
Education 0.000 % 0.000 % 0.000 % 0.000 %
Income -0.008 % -0.089 % -0.235 % -0.025 %
Income category 0.000 % 0.000 % 0.000 % 0.000 %
House value -0.014 % -0.106 % -0.290 % -0.164 %
Family size category 0.000 % 0.000 % 0.000 % 0.000 %
Random var 1 0.002 % 0.001 % -0.018 % -0.039 %
Random var 2 -0.013 % -0.020 % -0.001 % 0.056 %
Corr var 1 - -0.040 % -0.018 % -0.096 %
Corr var 2 -0.015 % - 0.042 % -0.006 %
Corr var 3 -0.006 % 0.031 % - 0.043 %
Corr var 4 0.025 % 0.003 % -0.032 % -

Table 34: Absolute indirect differentiation statistics

Corr var 1 Corr var 2 Corr var 3 Corr var 4
Gender 0.010 % 0.030 % 1.380 % 0.061 %
Age 0.044 % 0.031 % 0.022 % 0.443 %
Ethnicity 0.059 % 3.379 % 0.034 % 0.073 %
Education 0.007 % 0.087 % 0.068 % 0.072 %
Income 0.010 % 0.094 % 0.239 % 0.025 %
Income category 0.009 % 0.038 % 0.133 % 0.116 %
House value 0.014 % 0.117 % 0.302 % 0.182 %
Family size category 0.005 % 0.010 % 0.023 % 0.018 %
Random var 1 0.002 % 0.166 % 0.018 % 0.069 %
Random var 2 0.013 % 0.278 % 0.120 % 0.056 %
Corr var 1 - 0.040 % 0.018 % 0.144 %
Corr var 2 0.191 % - 0.042 % 0.006 %
Corr var 3 0.006 % 0.031 % - 0.043 %
Corr var 4 0.025 % 0.003 % 0.032 % -
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C.4 Simulation model 4

Table 35: Regular differentiation statistics

Direct Indirect Total
Gender 0.000 % 0.000 % 0.000 %
Age 1.838% -0.026% 1.812%
Ethnicity 0.000 % 0.000 % 0.000 %
Education 0.000 % 0.000 % 0.000 %
Income 15.344 % 1.354 % 16.698 %
Income category 0.000 % 0.000 % 0.000 %
House value 1.396 % 15.020 % 16.416 %
Family size category 0.000 % 0.000 % 0.000 %
Random var 1 0.000 % -0.030 % -0.030 %
Random var 2 0.000 % -0.025 % -0.025 %
Corr var 1 -1.804 % -0.110% -1.914 %
Corr var 2 5.896 % -0.096 % 5.800 %
Corr var 3 0.000 % -0.019 % -0.019 %
Corr var 4 0.000 % 0.144 % 0.144 %

Table 36: Absolute differentiation statistics

Direct Indirect Total
Gender 0.000 % 0.115% 0.115%
Age 1.838% 0.209% 2.039%
Ethnicity 0.000 % 7.897 % 7.897 %
Education 32.042 % 0.277 % 32.0319 %
Income 15.344 % 1.742 % 17.086 %
Income category 0.000 % 9.720 % 9.720 %
House value 1.396 % 15.534 % 16.920 %
Family size category 0.000 % 0.215 % 0.215 %
Random var 1 0.000 % 0.527 % 0.527 %
Random var 2 0.000 % 0.744 % 0.744 %
Corr var 1 5.477 % 0.214% 5.691 %
Corr var 2 23.488 % 0.478 % 23.966 %
Corr var 3 0.000 % 0.478 % 0.478 %
Corr var 4 0.000 % 0.257 % 0.257 %
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Table 37: Regular indirect differentiation statistics

Age Education Income House value Corr var 1 Corr var 2 Corr var 4
Gender 0.000% 0.000% 0.000% 0.000% 0.000% 0.000 % 0.000 %
Age - -0.009% -0.041% -0.004% 0.011% 0.018 % 0.000 %
Ethnicity 0.000% 0.000% 0.000% 0.000% 0.000% 0.000 % 0.000 %
Education 0.000% - 0.000% 0.000% 0.000% 0.000 % 0.000 %
Income -0.016% 0.046% - 1.372% 0.003% -0.051 % 0.000 %
Income category 0.000% 0.000% 0.000% 0.000% 0.000% 0.000 % 0.000 %
House value -0.028% 0.019% 15.085% - 0.005% -0.062% 0.000 %
Family size category 0.000% 0.000% 0.000% 0.000% 0.000% 0.000 % 0.000 %
Random var 1 0.002% -0.035% 0.004% 0.000% 0.000% 0.000 % 0.000 %
Random var 2 -0.006% -0.022% 0.014% 0.002% 0.005% -0.019 % 0.000 %
Corr var 1 -0.013% -0.024% -0.045% -0.005% - -0.023 % 0.000 %
Corr var 2 0.006% -0.079% -0.026% -0.002% 0.004% - 0.000 %
Corr var 3 0.000% 0.043% -0.077% -0.006% 0.002% 0.018 % 0.000 %
Corr var 4 0.044% 0.085% 0.021% 0.002% -0.010% 0.002 % -

Table 38: Absolute indirect differentiation statistics

Age Education Income House value Corr var 1 Corr var 2 Corr var 4
Gender 0.001% 0.012% 0.018% 0.002% 0.012% 0.069 % 0.000 %
Age - 0.042% 0.041% 0.004% 0.052% 0.070 % 0.000 %
Ethnicity 0.014% 0.018% 0.037% 0.004% 0.070% 7.760 % 0.000 %
Education 0.005% - 0.060% 0.006% 0.008% 0.195 % 0.000 %
Income 0.017% 0.124% - 1.372% 0.012% 0.217 % 0.000 %
Income category 0.009% 0.077% 7.244% 2.294% 0.011% 0.087 % 0.000 %
House value 0.030% 0.133% 15.085% - 0.017% 0.269% 0.000 %
Family size category 0.001% 0.149% 0.033% 0.004% 0.006% 0.022 % 0.000 %
Random var 1 0.002% 0.139% 0.004% 0.001% 0.002% 0.379 % 0.000 %
Random var 2 0.006% 0.047% 0.034% 0.005% 0.015% 0.637 % 0.000 %
Corr var 1 0.013% 0.058% 0.045% 0.005% - 0.093 % 0.000 %
Corr var 2 0.007% 0.214% 0.026% 0.002% 0.229% - 0.000 %
Corr var 3 0.001% 0.258% 0.077% 0.006% 0.007% 0.072 % 0.000 %
Corr var 4 0.044% 0.153% 0.021% 0.002% 0.029% 0.007 % -


