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Abstract
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Predicting the ETA of cargo trains using AI models

by M.G. Vaessen

This thesis describes an approach for predicting the Expected Time of Arrival
(ETA) of cargo trains in real time using machine learning algorithms. More-
over, the thesis presents a concept for deploying a machine learning model in
production. The analysis in this thesis is based on spatial data derived from a
GPS tracker inside a locomotive. The spatial data is matched to timetable data
from the railway operator that operates the locomotive. A wide variety of ma-
chine learning algorithms is compared, including Linear Regression (with and
without regularisation), a Multi-Layer Perceptron, Support Vector Regression,
Random Forest Regression and Gradient Boosting Regression. Results show
that the best performing models are the Multi-Layer Perceptron (MLP) and
the Gradient Boosting Regression (GBR) model. The MLP model achieved the
lowest RSME (1553.36), however, the behaviour of the model causes it not to
be suitable for deployment in production. The lowest MAE (988.31) is achieved
by the GBR model. Despite having a higher RSME (1775.40) than the MLP
model, the GBR model’s low average error and desirable behaviour make the
model the best-suited model for implementation. The GBR model is deployed
in an application where a customer of a railway operator can track the arrival
time in real time. As the MAE of the GBR model is still considerable, the ETA
is presented as an interval that shrinks as a train comes closer to its destination.
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1 Introduction

1.1 Problem background
Trains are often used to transport cargo over great distances. In 2019, railway
transportation accounted for over 17% of all in-land transportation in Europe
[7]. There are a great number of factors why rail transit is a preferable op-
tion for transporting cargo. Railway transportation enables lots of goods to be
transported in one shipment, which would otherwise be transported with mul-
tiple trucks. This reduces the number of human and logistic resources involved
in the transportation process. Ultimately, this makes railway transportation a
cost-effective transportation mode [8].

Moreover, rail freight transport is one of the most environment-friendly
modes of transport. Transportation accounts for 25% of Europe’s total CO2

emissions. Of this 25%, railway transportation only constitutes 0,4% of the
greenhouse gas emissions [9]. In this day and age where the impact of the high
CO2 emissions becomes more and more apparent, rail freight transportation
forms a great alternative for road, marine, and short-distance aviation trans-
portation.

One of the great pitfalls of rail freight transportation is the lack of flexi-
bility. As trains are bound to their tracks, defective trains or poor weather
conditions can lead to long delays. Contrarily, trucks or aeroplanes can swerve
from their trajectory, choose different routes, and avoid potential delays. De-
lays cost money. Resources are allocated based on the scheduling of the railway
operators. An unexpected delay can lead to resources being allocated, while the
train is still hours away from its destination. This results in unnecessary costs
and resources not being utilised optimally.

1.2 Problem statement and context
Crossing borders within Europe by train is paired with multiple compatibility
issues. Each country used to have its own dimensions for the rail and voltage
systems. Over the years the dimensions have become more and more uniform.
However, there are still some discrepancies within Europe that complicate the
smooth transitions between borders.

New locomotives have been developed that tackles this problem. The loco-
motive considered in this research is a locomotive that has a variable system
configuration, i.e. components can be changed to fit country-specific railroad
dimensions. These locomotives are leased to railway operators and are used for
hauling cargo throughout Europe.

These locomotives are equipped with a GPS tracker. The GPS data from
these trackers provides the opportunity to perform analysis on these locomo-
tives. The trajectories the locomotive travels can be mapped accurately and the
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travel time can be determined accordingly. In this research, a framework is pro-
vided that can convert GPS data into useful features, such as the distance to the
next station, the speed of the train, etc. Furthermore, the GPS data is matched
to timetable data from the railway operator. This way additional features can
be extracted, e.g. the delay at departure and the weight and dimension of the
train.

An accurate prediction of the Expected Time of Arrival (ETA) is an impor-
tant asset in railway transportation. This research aims to improve the accuracy
of the ETA prediction for railway operators. Different machine learning algo-
rithms were examined to find the model that achieves the most accurate ETA
prediction. The models can predict the ETA in real time, so if unexpected de-
lays occur, the ETA will automatically be adjusted. The final model is deployed
in an application that can be provided to the clients of a railway operator. In
this application, a client can track the predicted ETA of the train that carries
their goods.

1.3 Anticipated added value
There exist plenty of comparable models for business-to-customer deliveries.
For example, when ordering a product online the ETA of the package is often
displayed and most of the times very accurate. For business-to-business deliv-
eries, these models are more scarce. This lack of accurate prediction models
forms a gap in the market. Hence, an accurate indication of the ETA of cargo
is highly valuable in the planning of processes.

This research can positively affect the planning of freight transportation.
The railway operator that is considered in this research operates from the port
of Rotterdam. When shipping freight from Rotterdam to another location in
the Netherlands or across the border, a so-called path must be reserved. This
path is reserved at ProRail and costs a certain amount of money. When this
timeslot is missed, the cost for the reservation still has to be paid partially.
When a train happens to run into an error, causing it to exceed the allocated
time of the path, the company will be fined. Hence, inaccurate planning can
lead to a lot of avoidable costs.

A freight train must be unloaded upon arrival. For this, employees must
be present along with all the equipment and machinery that is needed for the
unloading. An unexpected delay can result in employees being unnecessarily
idle while waiting on the arrival, which comes with avoidable costs. This does
not only hold for the unloading of the train, but also all the further steps in
the supply chain (e.g. further transportation from the train station to the final
destination).

Currently, when a train is delayed, it is communicated to the customers
over a series of phone calls. The railway operator is informed by the railway
manager or machinist that the train is delayed. Thereafter, the customer will
be informed by the railway operator. If the customer wants an update, again
a phone call needs to be made to the railway operator to enquire about the
whereabouts of the train. Evidently, this approach is outdated and unnecessar-
ily time-consuming. A simple application can greatly increase the transparency
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towards the customer and redundant phone calls between the different parties
involved can be avoided.

1.4 Research Question
The main research question in this thesis is:

How can machine learning algorithms be used to accurately predict
the ETA of cargo trains in real time?

From a business perspective, this question inherently raises a sub-question:

How can a machine learning model that predicts the ETA of a cargo
train be deployed in production?

1.5 Thesis outline
Section 2 presents a review of relevant literature on the topic of ETA predic-
tion in railway transportation. Furthermore, in this section, research on ETA
prediction for other modes of transportation is summarised, as well as other
implementations of data-driven models in railway transportation systems.

In section 3, the data that was used for this research is described. The
section explains the process of transforming data into useful features for the
machine learning models. Section 4 focuses on the different machine learning
models that were implemented.

The results of the models are presented in section 5. In section 6, a descrip-
tion of the application, where the machine learning model is deployed, is given.
In section 7, the results of the machine learning models are discussed. Finally,
section 8 offers a summary of the research and provides some limitations and
recommendations for further research.
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2 Literature review

2.1 Data-driven models in railway transportation
systems

Railway transport, among many other industries, is undergoing a digital trans-
formation. With this digital transformation comes a wide variety of opportu-
nities to innovate, possibilities to improve the business processes, and chances
to create new insights using data analytics. This phase of digitalisation in the
business world is referred to as “Industry 4.0”. The main goal of Industry 4.0
is to fundamentally change the traditional processes in industries into smart
solutions [10]. The three major fields of railway transportation can be classified
as maintenance, safety, and operations [11]. Each of these fields can benefit
greatly from the smart solutions resulting from the fourth industrial revolution.

Predictive models are used in decision support systems (DSS) to provide
timely, preventive maintenance. Preventive maintenance can increase the sus-
tainability of railway transportation systems [12]. Roberto Nappi has found
that condition-based maintenance models, when used correctly, represent an
element of absolute efficiency improvement compared to the use of the only
time-based and failure-driven strategies [13]. Yang et al. provide a decision
support framework for the maintenance of the signalling systems of trains [14].
Furthermore, a DSS approach can be used to monitor railway track mainte-
nance and renewal [15], scheduling the maintenance of rolling stock [16], and
conducting risk assessments based on the condition of the infrastructure [17].

The safety and maintenance of railway systems go hand in hand. Recog-
nising defects early on, performing preventive maintenance, and renewing parts
that are beyond repair will increase the safety of railway transportation signif-
icantly. However, railway safety is much broader than avoiding and repairing
defective parts. Most research on railway safety concerns statistical analysis on
accidents to gain an understanding of the cause, frequency, severity, and the
contributing safety factors related to infrastructure, operations, or environment
[11]. As the dataset on railway accidents is relatively small, predictive modelling
in this field is difficult. However, there exist some research on predictive mod-
els for railway safety. Yilboga et al. use an Artificial Neural Network (ANN)
to predict the failure of a railway turnout system [18]. Hu and Liu propose
a technique for modelling track geometry degradation using a Support Vector
Machine (SVM) [19]. An automated diagnosis network using a deep belief net-
work (DBN) is described by Yin and Zhao, which can be used to predict the
reason for a failure [20].

Railway operations include scheduling, signalling, rail traffic management,
and much more. In this field, smart solutions can be used to reduce costs,
reduce the number of delays, predict the travel time and estimate the time of
arrival. Kamburjan et al. present a comprehensive model of railway operations.
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This model uses a uniform approach to modelling that enables the global effects
of local changes to be analysed [21]. Delay prediction is an important factor in
train timetabling and dispatching. Wang and Zhang propose a gradient-boosted
regression trees model based on historical and weather data to predict the dura-
tion of delays [22]. Mou et al. compared a random forest, an ANN model, and
a Long Short-Term Memory (LSTM) model for predicting delay duration and
found that the LSTM model outperformed the rest [23]. Comparable models
were used for predicting the ETA and travel time of trains. Section 2.3 gives
an in-depth overview of research on this subject.

2.2 Travel time and ETA prediction in other trans-
portation methods

Accurate travel time and ETA prediction are valuable assets in timetabling
and planning processes in all forms of transportation. Each transportation
method raises its own issues when predicting travel time. Busses travel on
public roads. Although busses often use a separate bus lane, they are still
affected by high traffic density, accidents, traffic jams, and other obstructions
on the road. Historical average models, as opposed by Jeong and Rilett [24]
and Vanajakshi and Rilett [25], tend to only perform well when traffic flow is
small and stable. More complex traffic flows ask for more sophisticated models.
Artificial Neural Networks (ANN) are widely used in literature. Gurmu and
Fan show that an ANN outperforms historical average models in 70% of all
cases [26]. Amita et al. compared an ANN to a linear regression model and
found that the ANN performed better [27]. Despite that, Maiti et al. found
that an ANN only outperforms a historical data-based model by a neglectable
percentage, while the historical model is approximately two-and-a-half times
faster than the ANN, in terms of computation time [28].

In aviation, most models used by airlines to predict the travel time and ETA
are a combination of parametric models, physical models, and aeroplane perfor-
mance models [29]. These models are unable to capture external factors such
as the weather and high traffic density. Similar to railway cargo transportation,
although state-of-the-art models do exist, airlines still rely on simple models
due to insufficient data and real-time data integration[30]. Literature shows
that tree-based regression models tend to perform well on this matter. Kern
et al. showed that a Random Forest Regression (RFR) model outperforms the
traditional models used by airlines [31]. Glina et al. compared multiple regres-
sion tree ensemble models and found that the Quantile Regression Forest was
the most promising model [32].

When transporting cargo from A to B, freight is often shipped in intermodal
containers, i.e. it is shipped using multiple modes of transportation. This raises
a challenge because research has shown that each form of transportation has its
difficulties. As a result, no single model performs best for all modes of trans-
portation. Balster et al. argue that the best approach for ETA prediction for
intermodal transportation is to develop an individual machine learning model
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for each leg of the supply chain [33]. Servos et al. did attempt to use a sin-
gle model to predict the ETA of intermodal transportation and found that a
Support Vector Regression (SVR) model performs the best [34].

2.3 Railway travel time and ETA prediction
Timetables for trains are developed using mathematical optimisation. The basis
of the Dutch railway timetables is the Basis Uur Patroon (basic hourly pattern),
i.e. the timetable repeats every 60 minutes. This basis is adjusted with extra
trains in peak hours and fewer trains at night. This hourly timetable has to fulfil
certain constraints. For each section of the network (from station A to station
B) there is a minimum and a maximum time the train can take. Conflicting
schedules have to be prevented, only one train can travel along a certain track
at a certain time. Taking all the constraints into account, the timetable is
optimised using CPLEX [35; 36].

In railway transportation, we can distinguish between passenger and freight
trains. Most research in the field of rail transit is done on passenger trains.
Throughout literature, the predominant approach to predict the ETA of freight
trains is to predict delays. As the scheduled departure and arrival time are
fixed, it can be argued that the actual travel time is equal to the travel time
corresponding to the timetable plus a contingent delay [37; 38].

The models that were used in past research are similar to those we have seen
in other modes of transportation. The most promising models for ETA (and
delay) prediction for railway transportation are ANNs, tree-based models, and
SVMs. Artificial Neural Networks tend to work as a "black box". ANNs have
great predictive power, however, they are very hard to understand. As a result,
the choice of which model to use is not purely based on the performance, but also
on how interpretable the results are. Yaghini et al. found that a neural network
performs best for delay prediction compared to decision tree and multinomial
logistic regression models [39]. Prokhorchenko et al. also concluded an ANN to
be the best performing model, compared to a linear regression model, a ridge
regression model, and a Bayesian ridge regression model [40]. Hu and Noche
found that although an ANN performs very well, it can be approved by using
a combination of Genetic Algorithms (GA) and a Back Propagation Neural
Network (BPNN), resulting in a GA-BPNN model [41].

On the other hand, Babour et al. found that a random forest model outper-
formed five other models. The five models the random forest were compared to
were three different versions of Support Vector Regression models, a deep neural
network model, and a statistical model. The random forest improved the pre-
dictive accuracy by 60% and was found to be helpful for freight rail operational
decision making.[42] Li et al. came to a similar conclusion when comparing a
random forest model to an ANN, an Extreme Gradient Boosting model, a Gra-
dient Boosting Decision Tree model and a statistical average model. It emerged
that the random forest model achieves high accuracy while the training is low,
making it well suited for delay and travel time prediction [43].

Babour et al. compared different linear and non-linear Support Vector Re-
gression algorithms to create an individual model for predicting the ETA of
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each origin-destination pair freight railway network. They achieved an average
improvement of 14% over a historical average baseline model [44]. Markovic et
al. showed that statistical comparison of the generalisation power of a Support
Vector Regression (SVR) model and an ANN model indicated that the SVR
model performed better [45].

All things considered, there is not a single model that can be considered
the best for predicting the ETA or delays for railway transport. ANN models
perform satisfactorily throughout the literature. However, there is a good deal
of research that shows that other models, such as SVR and Random Forest
models, outperform ANN models in some instances. The only way to find
out which model performs best for a particular problem is to deploy multiple
suitable models and compare the results. Also, the computation time and the
interpretability should be considered when choosing a suitable model.
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3 Data Description

3.1 Datasets
There are two different types of datasets used in this research: Automated Ve-
hicle Location (AVL) data and timetable data. Both datasets consist of four
months of data from the months of January to April 2021.

3.1.1 AVL data

The AVL dataset contains the GPS data of one locomotive that travels between
the Port of Rotterdam and Germany. A GPS tracker inside of the locomotive
sends the GPS location to a database every second. Also, the velocity of the
locomotive is captured every minute. However, these data points are omitted
as they are in a different interval from the GPS data. The data fields contained
in the AVL data are described in Table 3.1.

Data field Description
Value name Type of the data point (Longitude, Latitude or Speed)
Value Decimal value of the data point
Timestamp Unix epoch timestamp of data point

Table 3.1: Description of AVL data fields

3.1.2 Timetable data

The timetable data is exported from RailCube, a tool that is used by a large
portion of the railway freight forwarders. RailCube can be used for visualising
data, making rosters, and monitoring processes. The data contains information
of each planned locomotive movement corresponding to the locomotive consis-
tent with the source of the AVL data. Tables 3.2 and 3.3 describe the data
fields that were used for analysis corresponding to the movement of the train
and the dimensions of the train, respectively.

3.2 Data processing
The AVL data is processed into time-series data, in which the GPS locations
and timestamps are contained in a one-second interval. The distance between
two points is calculated using the haversine formula1. This formula computes

1Haversine formula: https://www.en.wikipedia.org/wiki/Haversine_formula

https://www.en.wikipedia.org/wiki/Haversine_formula
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Data field Description
OriginLocationName Name of the origin station
OriginLocationLatitude Latitude of origin station
OriginLocationLongitude Longitude of origin station
DestinationLocationName Name of the destination station
DestinationLocationLatitude Latitude of destination station
DestinationLocationLongitude Longitude of destination station
RevisedDeparture Definitive planned departure time
RevisedArrival Definitive planned arrival time
ActualDeparture Time the train actually departed
ActualArrival Time the train actually arrived

Table 3.2: Description of movement specific data fields

Data field Description
WagonCount Number of wagons
WagonLength Length of all wagon combined
TrainWeightGross Weight of the train, including locomo-

tive and freight

Table 3.3: Description of train dimension specific data fields

the distance between two GPS locations, taking into account the curvature of
the earth. The haversine formula is defined as followed:

haversine

(
d

r

)
= haversine(φ2 − φ1) + cos(φ1) cos(φ2)haversine(λ2 − λ1),

where d is the distance between two points, r is the radius of the earth (6.371
km), φ1,φ2 are the latitudes of two points, and λ1,λ2 are the longitudes of the two
points. We can solve for d as all other variables are known, which results in the
distance between two GPS points in kilometres. This value can be multiplied
by 1000 to compute the distance in metres.

Subsequently, the average velocity between two data points can be calculated
by dividing the distance between two adjacent points in the data, by the time
in seconds between the points. The velocity can be used to determine whether
a train is idle or moving. There is some noise in the data (minor inaccuracies in
the GPS location), which is visible when a train is idle. The velocity fluctuates
from zero metres per second to a few decimetres per second. Therefore, a train
is considered to be idle when the velocity is less than 0.5m/s.

3.3 Data cleaning
As previously mentioned, the GPS data contains some irregularities. Apart
from the minor fluctuations when the train is idle, there are some undoubtedly
incorrect GPS locations within the AVL data. This becomes apparent in two
particular cases. The first case is when the train is idle for a while and suddenly
the velocity increases drastically and drops back to zero. A train accelerates
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gradually, so a big increase like that is physically impossible. The second case is
when the train is driving and suddenly "stops" for a few seconds and continues
driving at the same velocity afterwards. To battle this data issue, short stops
and short drives are deleted from the data. Short stops and rides are considered
to be those that are less than five seconds and are contained in the opposite
state. To be more precise, a short stop is a stop of fewer than five seconds while
the train is driving. On the other hand, a short ride is a ride of fewer than five
seconds while the train is stopped.

Apart from gaps in the data that appear after deleting short stops and
rides, there are additional gaps as a result of the GPS tracker losing signal (in
tunnels or areas with bad reception). Both types of gaps are filled using linear
interpolation. For each second between the last point before a gap and the
first after a gap the latitude and longitude can be estimated using the following
function for both:

y(t) = x0 +
(x1 − x0)

n
t,

where y(t) is the computed latitude/longitude t after the last timestamp before
the gap, x0 is the latitude/longitude of the last data point before the gap and x1
is the latitude/longitude of the first data point after the gap. Figure 3.1 shows
a comparison of the original data and the cleaned and interpolated data.

Figure 3.1: Comparison of origin data (left) and the cleaned
and interpolated data (right) projected on a map

3.4 Extracting timeline for GPS data
After having cleaned the data, a timeline can be computed from the GPS data.
For each station the locomotive can pass or stop at, the GPS locations are avail-
able. With these GPS locations and the current GPS location of the locomotive,
the distance of the locomotive to each station in the system can be determined
using the haversine formula. By taking the closest station to the locomotive at
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Figure 3.2: Ex-
ample of timeline
extracted from GPS

data

each timestamp, an initial timeline can be established.
However, a station should only be considered to be part
of the timeline, when the train either passes the station
or stops at the station.

To determine whether a train has stopped at a station,
an imaginary circle with a radius of 2,000 metres is drawn
around the centre of each station. If a locomotive stands
still in one of those circles, the train is considered to have
stopped at the corresponding station. The radius of the
circles is rather large, because, especially for cargo trains,
trains can stop at different terminals of a station. To
cover all the possible terminals the train can stop at, 2,000
metres was found to be a reasonable radius.

A train does not stop at each station. Some stations
the train just passes through. Nonetheless, these stations
should still be considered as part of the route. The ap-
proach for determining the stations the train passes through is similar to the
approach for determining whether the train is stopped. Again, an imaginary
circle is drawn, this time with a radius of 200 metres. If a train comes within
this circle (and does not stop) the train is considered to have passed the station.

Finally, the exact timeline of the train can be extracted as shown in Figure
3.2. For each station where the train has stopped, the arrival and departure
time can be determined. Furthermore, the exact time a train passes a station
can be computed by taking the timestamp for which the distance between the
GPS location of the locomotive and the station was minimal. The timeline is
used in the next step, where the train movements in the timetable data are
matched to the timeline found in the GPS data.

3.5 Data Matching
As the timetable data contains important information, only the sequences in
the timeline that can be matched to the timetable data will be considered in
further research. The two datasets are matched using a matching algorithm.
This algorithm loops through all train movements in the timetable data and
looks for the movement in the timeline. The search space is based on the actual
departure and arrival times provided in the timetable data. However, these
times turned out to be inaccurate in many instances. Therefore, the search
space was extended by six hours on both sides. The interval was chosen so that
the highest number of movements could be matched, without matching the
wrong movements to the timetable data. If the recorded actual arrival times
were more accurate, a smaller interval should be used. For each movement in
the timetable data, a subset of the timeline (from the actual departure time -
six hours to the actual arrival time + six hours) is searched. If the movement
is found, the movement is used for further analysis. If not, the movement is
discarded from the analysis.
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3.6 Features Engineering
After having matched the movements, additional information for each move-
ment can be computed. The actual arrival and departure times can be corrected,
using the timestamps found in the timeline. Using these corrected times, the
total travel time from origin to destination for each movement can be deter-
mined. The total distance covered during a movement can be calculated by
taking the sum of all distances between adjacent points in the AVL data within
one movement.

Feature Description
Distance_Travelled Distance the train has travelled since the

departure
Distance_Remaining Distance remaining to the destination
Distance_Percentage Proportion of the total trip that has

elapsed
Time_travelled Total time elapsed since the departure
Remaining_Traveltime_Planned Remaining time to the destination cor-

responding to the schedule
Current_Stop_Length Amount of seconds the train has been

standing still
Interval Time interval the current timestamp

falls in (Night, Morning, Afternoon,
Evening)

Weekday The weekday the current timestamp is
on (Monday - Sunday)

Movement Unique combination of origin and desti-
nation of movement

Speed Current speed of the train
Status Status of the train (1 is driving, 0 is idle)
Weight Total gross weight of the locomotive,

freight and wagons
Length Total length of the train
WagonCount Number of wagons the locomotive pulls
Target Description
Remaining_Traveltime Remaining time until the train reaches

the destination

Table 3.4: Overview of all features used in the machine learning
algorithms

The distances are used to compute the three distance-related features: Dis-
tance_Travelled, Distance_Remaining and Distance_Percentage. Distance_
Travelled is the distance the train has travelled since departure from the ori-
gin. Distance_Remaining is the distance the train has yet to travel to the
destination. Distance_Percentage is the proportion of the total distance of the
train movement that the train has already covered (= distance travelled / total
distance).
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The timestamps are not used as a feature as they are, however, they are used
to compute the following four features: Remaining_Traveltime, Time_Tra-
velled, Remaining_Traveltime_Planned, and Current_Stop_Length. Remain-
ing_Traveltime is the remaining time to the destination of the current move-
ment. This feature is the target feature, the value we want to predict with the
machine learning models. Time_Travelled is the total time elapsed since the de-
parture from the origin station. Remaining_Traveltime_Planned is the remain-
ing time to the destination corresponding to the schedule (= total scheduled
travel time - time travelled). Current_Stop_Length is the number of seconds
the train has been standing still for (= 0 if the train is driving).

Additionally, there are three categorical features: Interval, Weekday, and
Movement. The feature Interval defines in which time interval the current
timestamp falls. Four intervals are defined: Night [00:00 - 06:00], Morning
[06:00 - 12:00], Afternoon [12:00 - 18:00], and Evening [18:00 - 00:00]. Each
timestamp is mapped to the corresponding time interval. Similarly, the feature
Weekday is computed by mapping the timestamps to the corresponding week-
day. Movement defines the origin and destination station of the movement. As
the machine learning models that are used are only able to process numeric fea-
tures, the categorical features are transformed using one-hot encoding. One-hot
encoding transforms a categorical vector into multiple binary columns. Each
column represents one of the categories. The value in the columns is 1 if the
feature is equal to the corresponding category, and 0 if not. Figure 3.3 shows
how the one-hot encoding looks for the feature Interval. Finally, the previously
explained features Speed, Status, Weight, Length and WagonCount are used.

Figure 3.3: One-hot encoding of the feature Interval

An overview of all features is displayed in Table 3.4. The final dataset
contains the features in a one-second interval between the departure and arrival
times of all matched movements. This dataset is rather large with over 1,5
million data points. Training a machine learning model on a dataset of this
size takes a lot of computation time. It turned out that reducing the size of
the dataset to a one-minute interval had almost no impact on the performance
of the models. However, increasing the interval size decreases the computation
time of the model significantly. Therefore, the choice was made to proceed with
the data in a one-minute interval.
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4 Methods
The models in this section were implemented in Python using the Scikit-learn
library [1]. This library features multiple well-known machine learning algo-
rithms and provides an easy-to-use framework to train and deploy models.

4.1 Hyperparameter tuning
The hyperparameters of the models are optimised using a three-fold Cross-
Validation Grid-Search1 approach. This approach performs an exhaustive search
over a specified parameter search space. The three-fold Cross-Validation splits
the training data into three equally sized subsets (folds) as illustrated in Figure
4.1. For each parameter combination in the search space, the model is trained
on three splits. In each split, one of the folds is used as test data and the other
two folds are used to train the model. Each split outputs a score, the MAE
(section 4.2) of the model based on the training fold. The parameter combina-
tion that results in the lowest average score over all three splits, is found to be
the optimal hyperparameters for the model.

Figure 4.1: Representation of the data partitioning of three-
fold Cross-Validation (Adapted from Pedregose et al. [1])

4.2 Performance Measure
All the models considered are evaluated and compared on two metrics: the
Root Means Squared Error (RMSE) and the Mean Absolute Error (MAE). The

1GridsearchCV: https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html##sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html##sklearn.model_selection.GridSearchCV
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metrics are computed using the following formulas:

RMSE =

√∑n
i=1(ŷi − yi)2

n

MAE =

∑n
i=1 |ŷi − yi|

n

Where n is the number of sample in the evaluated dataset, yi is the actual
target value, i.e. the remaining travel time and ŷi is the remaining travel time
predicted by the machine learning models.

Both metrics are commonly used to measure the accuracy of a model that
predict continuous variables. The MAE measures the average magnitude of
the prediction error, neglecting whether the error is positive or negative. The
MAE can be interpreted as the average deviation between the prediction of
the model and the target value. In this particular case, the MAE defines how
many seconds the predicted arrival time of the train differs from the actual
arrival time. For example, an MAE of 1.200 means the difference between the
predicted and actual arrival time is 20 minutes on average.

The RMSE also measures the average magnitude of the prediction error.
This metric is the square root of the average squared prediction error. As the
error is squared, high errors have a bigger impact on the outcome of the metric.
In other words, the RMSE metric penalises higher errors. The RMSE is always
higher than the MAE. When comparing two models, the MAE of model 1 may
be higher than model 2 while the RMSE of model 1 is lower than model 2. This
means that on average model 1 has a lower error, but that there are bigger high
outliers in the errors of the first model.

4.3 Baseline Model
The original schedule functions as a simple baseline model to compare the ma-
chine learning models with. The total scheduled travel time can be deducted
from the timetable data (difference in seconds between planned departure and
planned arrival). The predicted remaining travel time (ŷi) is equal to the total
scheduled travel time minus the time that has elapsed since the train departed.
For example, a train that was scheduled to depart at 1 pm and arrive at 3 pm
has a total scheduled travel time of two hours. If the train were to depart at
1:30 pm, the prediction at 2 pm of the baseline model would be:

ŷi = total scheduled travel time− elapsed time since departure

= 2 hours− 0.5 hour

= 1.5 hours.
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4.4 Linear Regression
Linear regression is used to estimate the relation between one or more indepen-
dent variables and one dependent variable. As multiple independent variables
are considered in this research, multiple linear regression (MLR) is used. When
applying MLR a linear function of the form

y = β0 + β1X1 + ...+ βnXn + ε

is fitted to the data, where

• y is the predicted value of the dependent variable.

• β0 is the intercept of the function, i.e. the value of y if all values in X are
equal to 0.

• βi is the weight in the function of variable i.

• Xi is the value of independent variable i.

• n is the number of independent variables.

• ε is the error of the estimation, i.e. the difference between the predicted
value and the actual value of y.

The goal of MLR is to minimise the error ε of the estimate. This is achieved
by the ordinary least squares (OLS) approach. This approach minimises the
squared sum of the errors to find the best set of values for β. In other words,
the loss function that is minimised is

L(β) =
n∑

i=1

ε2i = ε′ε = (y −Xβ)′(y −Xβ),

which can be rewritten to

L(β) = y′y + β′X ′Xβ − 2β′X ′y.

To find the minimum of this function we have to find the point for which the
derivative of S(β) is equal to zero. We have,

δL(β)

δβ
= 2X ′Xβ − 2X ′y

δL(β)

δβ
= 0⇒ X ′Xβ̂ = X ′y ⇒ β̂ = (X ′X)−1X ′y.

Hence, β̂ minimises the sum of squared errors in the MLR approach. MLR can
be prone to overfitting. This means that the model performs very good on the
training set, but performs poor on the test set or new data. This is a result
of the model giving too much weight to noise (random outliers) in the training
data. Regularisation can be used to avoid overfitting. Regularisation forces the
weights in the function towards zero, in other words, it reduces the complexity
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of the model. In the following three sections three forms of regularisation for
linear regression are introduced: lasso, ridge, and elastic net regularisation.

4.4.1 Lasso Regression

Least Absolute Shrinkage and Selection Operator (Lasso) adds a penalty for
non-zero weight. Lasso penalises the sum of the absolute values of the weights.
This is also known as an L1 penalty. With Lasso regularisation, the loss function
is defined as

L(β) =
n∑

i=1

(yi − x′iβ)2 + λ
m∑
j=1

|βj|.

The variable λ regulates the amount of shrinkage of the weights in β. When λ is
equal to zero lasso regression is the same as OLS linear regression as explained
in the previous section. A high value for β forces more weight to be zero. This
eliminates variables from the model and results in a sparse model with few
weights. Therefore, Lasso can also be used for feature selection.

4.4.2 Ridge Regression

Similar to lasso regression, ridge regression adds a penalty for non-zero weights.
However, Ridge regression penalises the squared sum of the weights, called the
L2 penalty. The loss function for Ridge regression is

L(β) =
n∑

i=1

(yi − x′iβ)2 + λ
m∑
j=1

β2
j .

Again the penalty variable defines the amount of regularisation in the model.
The difference between Lasso and Ridge is that Lasso can force some weights to
be equal to zero, while Ridge forces weights towards zero but not equal to zero.
The L2 penalty increases exponentially, so weights far away from zero result in
a very high penalty. As a result, when minimising the loss function the weights
are chosen so that they are close to zero. This means that some variables have
a very low impact on the model, but they are still all used.

4.4.3 Elastic Net Regression

Elastic Net Regression combines both the L1 and L2 penalty. This form of
regularisation combines the best of both worlds of Lasso and Ridge regression.
Elastic Net regression minimises the following loss function:

L(β) =
n∑

i=1

(yi − x′iβ)2

2n
+ λ(

1− α
2

m∑
j=1

β2
j + α

m∑
j=1

|βj|),

where α ∈ [0, 1] is the trade-of variable between the L1 and L2 penalty. When
α = 0 Elastic Net is similar to Ridge regression, while for α = 1 it is similar
to Lasso regression. The λ for all three regularisation methods and the α of
Elastic Net need to be optimised. There is no "smart" way of doing this, it is a
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matter of testing different values and finding the values that work best for the
given problem.

4.5 Multi-Layer Perceptron
Artificial Neural Networks are inspired by the workings of the human brain.
These networks emulate how electrical activity moves through the brain and
nervous system [46]. The most commonly used ANN is a feed-forward multi-
layer perceptron (MLP). An MLP consists of three types of layers: an input
layer, one or multiple hidden layers, and an output layer. Each layer embodies
several nodes, which are connected to nodes in adjacent layers. Figure 4.2
illustrates the architecture of an MLP with a single hidden layer.

Figure 4.2: Architecture of a Multi-layer Perceptron (Adapted
from Hassan et al. [2])

An MLP is a feed-forward network, i.e. information moves forward through
the network from the input nodes to the output nodes. Each node in the network
has an activation function. This is mostly a non-linear function that is applied
to the sum of all inputs to the particular node. This great mixture of non-
linear functions enables an MLP to approximate extremely non-linear relations
in data [47]. The nodes in the network are connected by numerical weights.
The output of the activation function of a node is scaled by the corresponding
weight when it is fed forward to the next node.

An MLP is trained using the back-propagation algorithm. This algorithm
iteratively adjusts the weights in the network to find the optimal set of weights.
For a set of weights, the network can predict the target variable, given a set
of input values. The difference between the output of the MLP and the actual
target value is the error of the model, which needs to be minimised. This error is
minimised using gradient descent. Gradient descent is an algorithm that is used
for finding a local minimum of a differentiable function. The idea behind the
algorithm is to move in the opposite direction of the gradient of a function, i.e.
follow the direction of the steepest descent. Repeating this process will result
in finding the local minimum of a function. In the case of back-propagation,
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this function is the loss function (the error). The back-propagation algorithm
consists of the following steps [47]:

1. Initialise the weights

2. Randomly choose input and the corresponding target value

3. Propagate the input through the network to obtain the output value

4. Calculate the error by comparing the actual output to the target output

5. Propagate the error back through the network

6. Adjust the weights to minimise the error (gradient descent)

7. Repeat steps 2-7 until the error is satisfactorily small

There are multiple hyperparameters an MLP is subject to when implemented
in scikit-learn, that need to be tuned to achieve the best performance. The
activation function, the function that maps the weighted inputs to the output
of a neuron is, as mentioned before, a non-linear function most of the times. The
most commonly used activation functions are the logistic function, the sigmoid
function, and the rectifier linear unit (ReLU) function. The learning rate is
a numerical variable that regulates how fast the gradient descent algorithm
converges. Furthermore, the number of hidden layers and the number of nodes
in the hidden layers can be adjusted. Finally, an L2 regularisation penalty can
be added to the model. The amount of L2 penalisation is regulated by the
parameter alpha.

4.6 Support Vector Regression
Support Vector Machines are frequently used for classification problems. The
idea behind an SVM is to create a line or hyperplane between two separable
classes within data. This separation is chosen so that the margin between
the separation, and the point in each class that is closest to the separation,
is maximised. The closest points in each class are called the support vectors.
For a two-dimensional feature space, this easily visualised as seen in Figure 4.3,
where the separation is a line. For high-dimension feature spaces, the problem
becomes more complex.

Support Vector Regression follows the same idea as its classification coun-
terpart. Instead of fitting a hyperplane, a function is fitted to the data. This
approach is also known as ε - SV regression. Smola and Schölkopf provided a
good explanation of how a Support Vector Regression model works [48]. The
goal is to find a function f(x), with x being a vector with input features, so that
f(x) deviates at most ε from the actual target values, and that the function is
as flat as possible. This means that the error of function is ignored as long as it
does not exceed the given ε. This enables the possibility to choose a maximum
error that is allowed for the model.



20 Chapter 4. Methods

Figure 4.3: Two-dimensional Support Vector Machine classifi-
cation (Adapted from: Yadavendra and Chand [3])

If the function f(x) is linear, it has the form f(x) = 〈w, x〉+ b , where w has
the same dimension as the input vector x and b ∈ R. The smaller the values of
w, the more flat the function is. Therefore, we want to minimise the norm of
w. This leads to the following optimisation problem:

minimise 1
2
||w||2

subject to

{
yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε

If there exists a function f that approximates the target value yi of all input
vectors xi with precision ε, the problem is feasible and the solution is found
by solving the problem above. However, in some cases, a feasible solution can
not be found. This problem can be rectified by introducing some slack to the
model. This approach is known as the "soft margin" approach and is visualised
in Figure 4.4. The variables ξ and ξ∗ define the amount of slack in the model,
i.e. the amount that the actual error exceeds the maximum error ε.

Figure 4.4: Soft margin approach for linear Support Vector
Regression (Adapted from Schölkopf and Smola [4])
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This leads to a new formulation of the optimisation problem:

minimise 1
2
||w||2 + C

∑l
i=1(ξ + ξ∗)

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξ

〈w, xi〉+ b− yi ≤ ε+ ξ∗

ξ, ξ∗ ≥ 0

The hyperparameters of the SVR model are the kernel type, and the vari-
ables C and ε. The kernel type defines the form of the function f . In this
example f is linear, but f can also be polynomial, a radial basis function, a sig-
moid function, or any other viable function. The variable ε defines the amount
of prediction error the model allows. The variable C regulates the trade-off
between the flatness of the function f and the extend of the slack in the model.
A higher C would mean a more flat function with less slack.

4.7 Random Forest Regression
Random Forest models can be used for both classification and regression prob-
lems. In this case, we consider a Random Forest Regression model as the aim is
to predict a continuous variable, i.e. the travel time of a cargo train. A random
forest is an assembly technique that combines the prediction of multiple ma-
chine learning algorithms, i.e. multiple decision trees. The prediction results of
all the trees in the model are averaged to produce one single output value. The
structure of a random forest is shown in Figure 4.5. Note that in this example
the forest consists of 100 trees, yet in practice, the number of trees can be any
reasonable number.

Figure 4.5: Architecture of a Random Forest (Adapted from
Chakure [5])

A random forest model makes use of a technique called bootstrap aggregat-
ing, also known as bagging. This technique fits a decision tree on a bootstrap
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sample rather than on the original data sample. The trees in the forest run
in parallel, so there is no interaction between the trees. Decision trees are
commonly prone to overfitting. As each tree draws a random sample from the
original data, this added randomness prevents overfitting. In fact, the Strong
Law of Large Numbers shows that random forests always converge, so overfitting
is not a problem [49].

The most important hyperparameters of a random forest are n_estimators,
max_features, max_depth, min_samples_split, and min_samples_leaf. The
parameter n_estimators defines how many trees are built in the random forest.
A random forest model resamples the features before deciding the best split.
The parameter max_feature defines how many features to resample. The max-
imum depth of a tree in the forest is defined by max_depth. Min_sample_split
is the minimum number of samples needed to split a node. Lastly, the param-
eter min_samples_leaf defines the minimum number of samples required for
each leaf in a tree.

4.8 Gradient Boosting Regression
Gradient Boosting Regression (GBR) in an ensemble model, which means that
various simple individual models are combined to generate one powerful model.
GBR has recently gained more and more attention for being a fast and accurate
machine learning model for large and complex data sets. As the name of the
model shows, GBR uses boosting to create the ensemble. Boosting is a technique
where first an initial model is fitted to the data. Thereafter, a second model will
focus on improving the accuracy of the model for the instances where the initial
model performs poorly. The process of boosting transforms a weak predictor
into a strong predictor. The boosting procedure of GBR is illustrated in Figure
4.6.

Figure 4.6: Representation of the iterations of the Gradient
Boosting Regression algorithm (Adapted from Baturynska and

Martinsen [6])
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Gradient Boosting is used to optimise a given loss function, which can be any
differentiable function. Similar as in Random Forest Regression, the initial
model of GBR is a decision tree. After the initial tree is fitted, trees are added
to the model iteratively. In each iteration, a new tree is fitted that reduces the
loss of the model. This is achieved by using a variation of the gradient descent
procedure as explained in section 4.5. At each iteration, the gradient of the loss
function is computed and the tree is fitted on the negative gradient of the given
loss function [50].

The hyperparameters of GBR are similar to those of Random Forest Re-
gression as both are built from decision trees. Hence, GBR is subject to the
parameters n_estimators, max_features, max_depth, min_samples_split, and
min_samples_leaf. Furthermore, GBR has two additional parameters: the loss
function and learning rate. The four possible loss functions are the least square
function, the least absolute deviation function, the Huber function (a combina-
tion of the previous two), and the quantile loss function. The learning rate is
similar to the learning rate of an MLP, i.e. it regulates how fast the gradient
descent algorithm converges.
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5 Results
The models are trained on the data from January to March 2021. The data
from April 2021 is used as test data to compare the performance of the different
models. The models are trained to predict the remaining travel time of a train.
In this chapter, the results of each model are displayed in terms of the perfor-
mance metrics and two error plots. The first plot shows how the errors of the
model are distributed. The second plot, the cumulative MAE over the distance,
illustrates how the error behaves depending on the distance of the train to its
destination. Furthermore, the optimal values of the hyperparameters of each
model are portrayed.

5.1 Baseline Model
The baseline model offers much room for improvement. The MAE of the base-
line error is 2730.26 and the RSME is 4328.63. The high errors of the baseline
model are visualised in Figure 5.1. There are very high positive outliers in the
errors. The error is especially high when the train is close to its destination.

Figure 5.1: Distribution of errors (left) and Cumulative MAE
over distance (right) of the baseline model

5.2 Linear Regression
MLR resulted in an MAE of 1867.49 and an RSME of 2561.47. Figure 5.2
shows that the errors are not evenly distributed. The majority of the errors are
positive, although there are some very high negative outliers. The prediction
error increases the closer the train comes to its destination.
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Figure 5.2: Distribution of errors (left) and Cumulative MAE
over distance (right) of Linear Regression

5.2.1 Lasso Regression

The Lasso Regression model performed the best out of the three regularisation
approaches. The optimal value for variable λ, the amount of shrinkage or reg-
ularisation, was found to be 30. Lasso Regression achieved an MAE of 1284.01
and an RSME of 1753.48. The error distribution is shown in Figure 5.3. The
curve of the error distribution is not smooth, however, it shows that are only
a few (negative) outliers. The figure also shows that the prediction error is
particularly high when the train is 30-50 kilometres away from the destination.
There is a peak around a distance of 40 km, followed by a decrease in the error,
which more or less stagnates when the train is more than 150 km away from
the destination.

Figure 5.3: Distribution of errors (left) and Cumulative MAE
over distance (right) of Lasso Regression

5.2.2 Ridge Regression

Ridge regression performed slightly worse than Lasso regression, although the
difference between the two models is neglectable. The Ridge regression model
resulted in an MAE of 1293.15 and an RSME of 1757.24. The optimal value
for λ turned out to be 530. The error distribution and the cumulative average
distribution over the distance of Ridge is nearly identical to those of Lasso
Regression.



26 Chapter 5. Results

Figure 5.4: Distribution of errors (left) and Cumulative MAE
over distance (right) of Ridge Regression

5.2.3 Elastic Net Regression

Elastic Net Regression performed the worst out of the three regularisation ap-
proaches, with an MAE of 1293.93 and an RSME of 1761.31. The optimal value
trade-off parameter α between the L1 and L2 penalty was found to be 1. As
explained in section 4.4.3 if α = 1 Elastic Net is equal to Lasso regression. Still,
the grid search for optimal hyperparameters revealed that λ = 50 is the optimal
value instead of λ = 30 for Lasso Regression. Again the error plots in Figure
5.5 indicate that there is a minimal difference between the results of the three
regularisation approaches.

Figure 5.5: Distribution of errors (left) and Cumulative MAE
over distance (right) of Elastic Net Regression

MAE = 1293.93 RSME = 1761.31

5.3 Multi-Layer Perceptron
The MLP model is one of the best performing models with an MAE of 1073.76
and an RSME of 1553.36. The optimal values for the hyperparameters of the
MLP model are displayed in Table 5.1.

The errors are distributed smoothly as shown in Figure 5.6. The error of
the model is more or less stable when the train is far away from the destination.



5.4. Support Vector Machine 27

Parameter Value
Activation function ReLu
# of hidden layers 1
# of hidden nodes 5
Learning rate 0.0001
α 1

Table 5.1: Hyperparameters of the MLP model

There is a sudden error decrease when the train is 10 to 20 kilometres away
from the destination. When the train is even closer to the station the error
increases again.

Figure 5.6: Distribution of errors (left) and Cumulative MAE
over distance (right) of Multi-Layer Perceptron

5.4 Support Vector Machine
The SVR performs well in terms of MAE (1165.04) but achieved one of the
worst RSME scores (2173.09). Table 5.2 shows the hyperparameters that were
found using the Grid Search approach.

Parameter Value
Kernel RBF1

C 500
ε 100

Table 5.2: Hyperparameters of the SVR model

Figure 5.7 shows that there are high negative outliers in the errors. The
second figure shows that the error decreases gradually as the train approaches
the destination.

1Radial Basis Function: https://en.wikipedia.org/wiki/Radial_basis_function

https://en.wikipedia.org/wiki/Radial_basis_function
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Figure 5.7: Distribution of errors (left) and Cumulative MAE
over distance (right) of Support Vector Regression

5.5 Random Forest Regression
Overall, the Random Forest Regression performs poorly with an MAE of 1368.57
and an RSME of 2326.94. The optimised hyperparameters are displayed in
Table 5.3.

Parameter Value
# of estimators 300
Max. features Auto
Max. depth 40
Min. samples split 3
Min. samples leaf 4

Table 5.3: Hyperparameters of the RFR model

The error plots in Figure 5.8 show that there are both high negative and
positive errors. Nonetheless, the behaviour of the error over the distance does
look as expected, i.e. the error increases gradually.

Figure 5.8: Distribution of errors (left) and Cumulative MAE
over distance (right) of Random Forest Regression
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5.6 Gradient Boosting Regression
GBR is one of the better models with an MAE of 988.31, the lowest out of all
the models, and an RSME of 1775.40. The many hyperparameters of the model
were optimised and are displayed in Table 5.4.

Parameter Value
Loss function LAD2

Learning rate 0.1
# of estimators 90
Max. features Auto
Max. depth 53
Min. samples split 2
Min. samples leaf 1

Table 5.4: Hyperparameters of the GBR model

Figure 5.9 shows that the errors of the model are distributed smoothly,
with some high negative outliers. The error gradually decreases as the train
approaches the destination.

Figure 5.9: Distribution of errors (left) and Cumulative MAE
over distance (right) of Gradient Boosting Regression

2Least Absolute Deviations: https://en.wikipedia.org/wiki/Least_absolute_
deviations

https://en.wikipedia.org/wiki/Least_absolute_deviations
https://en.wikipedia.org/wiki/Least_absolute_deviations
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6 Implementation
The data and the machine learning model were deployed in an application, that
can be both used on a phone and in a web browser. The application was build
using Mendix1 and UbiOps2.The application can be seen as a proof of concept,
as it does not work yet in actual production. The app is based on the data
that was used to train and test the models and is not able to process data in
real-time yet.

6.1 Implementation in UbiOps
A so-called deployment was created in UbiOps. This deployment contains the
full dataset (train and test data), the machine learning model, and a python
script. The deployment acts as an API endpoint, i.e. requests can be sent to the
deployment to extract the prediction and additional data. Figure 6.1 illustrates
the process of extracting data from the deployment using a request.

Figure 6.1: Representation of how a request in UbiOps works

When making a request to the deployment, a timestamp has to be passed
along. The python script is run using the timestamp as an input variable. In the
python script, the database will be searched for the data point corresponding
to the timestamp defined in the request. As we have a dataset containing data
points in a one-minute interval, the last available data point before the defined
timestamp will be used to predict the ETA.

The data point is used as input for the prediction (Gradient Boosting Re-
gression) model. The model predicts the remaining travel time, which can be
easily converted into a timestamp, the ETA. The ETA prediction, along with
other features that are interesting for the user, is outputted as a JSON format.
Thereafter, the output can be displayed in an application using Mendix.

1Mendix: https://www.mendix.com/
2UbiOps: https://www.ubiops.com/

https://www.mendix.com/
https://www.ubiops.com/
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6.2 Implementation in Mendix
Upon opening the application the user is presented with an overview of all
locomotives that are used by the railway operator, which is shown on the left
of Figure 6.2. In this case, only the data of the first locomotive is available and
the other locomotives are added to demonstrate how the application would look
in production. The user can select the locomotive that he is interested in from
the start screen.

Figure 6.2: Start screen of the application (left) and start
screen for a specific locomotive (right)

After selecting the locomotive, a request is sent to the UbiOps deployment.
In this demo version of the app, the user is asked to specify the current time.
As mentioned earlier, the app does not work in real-time yet, so the application
will act as if the selected time is the current time of the device. A request is sent
to the UbiOps deployment, which outputs the prediction and other information
to the application.

When the request is processed (after a few seconds) the home screen that is
displayed on the right in Figure 6.2 is shown. On this page, the user has two
options: the user see an overview of the prediction (output of deployment), or
the user can view an overview of the rides the locomotive has made in the past.

6.2.1 Prediction Overview

After clicking on the button "Current Movement", the user is given an overview
of the current state of the locomotive, including the predicted ETA. However,
the ETA is displayed as an interval, rather than a single timestamp. This
approach was inspired by postal service and grocery delivery applications. Por-
traying the ETA as an interval allows some room for errors. When the train is
more than 50 kilometres away from its destination, the interval is half an hour
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to each side of the predicted ETA. As the train comes closer to the destination,
the interval shrinks. When the train is closer than 50 kilometres to its destina-
tion, the interval is reduced to 15 minutes to each side. Finally, when the train
is within ten kilometres of its destination the interval is five minutes to each
side. The different interval sizes are portrayed in Figure 6.3.

Figure 6.3: Prediction overview of a train that is ahead of
schedule (left), a train that is on time (middle) and a train that

is delayed (right)

Figure 6.3 shows the prediction overview screen of the application. The page
shows the origin and destination of the current train movement. Along with the
prediction interval of the ETA, the scheduled arrival time is also shown. This is
used to compute whether the train is ahead of schedule (scheduled time is after
the interval), on time (scheduled time is contained in the interval) or delayed
(scheduled time is before the interval). Furthermore, the remaining distance to
the station and a map with the current location of the locomotive are displayed.
Of course, this screen is only relevant when a train is on an active journey. If
the train has already arrived, the user will be informed of the arrival time on
the screen displayed in Figure 6.4.

Figure 6.4: Screen when the train has already arrived
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6.2.2 Train Movement Overview

The application can also be used to view the rides a locomotive has made in
the past. To access this overview the user can click on "Historic Movements"
on the home screen. The user will be presented with a list of all the movements
the locomotive has made, as seen on the left in Figure 6.5. The user can scroll
through the list of movements and click on the movement he/she is interested
in. A second screen will load where the specifics of the selected movement are
displayed.

Figure 6.5: Overview of train movements (left) and informa-
tion of a specific movement (right)

The information of a specific movement that is portrayed is the planned
departure and arrival times (from the timetable data), and the actual departure
and arrival times (from the AVL data). The difference between the planned
arrival time and the actual arrival time is the delay of the train. If this value is
negative, i.e. the train arrived earlier than the planned arrival time, the train
is ahead of schedule and the caption "Delayed by" is changed to "Ahead by".
Additionally, the total distance of the movement and the total amount of time
the journey took are displayed at the bottom of the page.
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7 Discussion
The results presented in section 5 are summarised in Table 7.1. The table
shows the MAE and RSME of each model, along with a comparison between
the models and the baseline model. The percentages shown in the table depict
how much the metric of a model improved compared to the baseline model.

Model MAE MAE (%) RSME RSME (%)
Baseline 2730.26 - 4328.63 -
MLR 1867.49 31.60 2561.47 40.82
Lasso 1284.01 52.97 1753.48 59.49
Ridge 1293.15 52.64 1757.24 59.40
Elastic Net 1293.93 52.61 1761.31 59.31
MLP 1073.76 60.67 1553.36 64.11
SVR 1165.04 57.33 2173.09 49.80
RFR 1368.57 49.87 2326.94 46.24
GBR 988.31 63.80 1775.40 58.98

Table 7.1: Summary of model results

All the models were able to outperform the baseline model significantly.
Multiple Linear Regression is the worst performing model of all models con-
sidered, however, the model still offered a great improvement of the baseline
model. The model could be further improved upon by adding regularisation.
The models with regularisation performed surprisingly well, especially in terms
of their RSME scores.

The three regularisation approaches achieved nearly equivalent results. There
is a 0.36% difference in MAE improvement between the best performing ap-
proach (Lasso) and the worst performing approach (Elastic Net). In the same
manner, the difference in RSME improvement is 0.18%. This difference in the
performance of the three approaches is so insignificant that no binding conclu-
sion can be made on which approach is best in this case. Having said that,
it has become evident that adding any form of regularisation is a major step
forward.

Nonetheless, the linear models with and without regularisation are not suit-
able for actual implementation. Linear regression fits a linear function to the
data. This linear function contains coefficients that can be both positive and
negative. Hence, the function can also output negative values. In practice, a
negative prediction makes no sense. Predictions are only made when the train
is not yet at its destination. A negative prediction would mean the train has
already arrived, hence the ETA is in the past. The effect of negative predictions
is visible in the error graphs of the linear regression models (fig 5.2 - 5.5). The
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errors of the linear models are the highest when the train is close to its desti-
nation. This is a result of negative predictions when the remaining distance to
the destination is close to zero.

The lowest RSME was achieved by the MLP model. Furthermore, the model
achieved a competitive MAE score. A low RSME score shows that the model
has few extreme errors. This can also be concluded from the error distribution
plot in figure 5.6. The error plot for the MLP model is the smoothest plot of all
the models considered, i.e. MLP has the densest error distribution. However,
the second plot in figure 5.6 shows some unpreferable behaviour. There is a
sudden drop in the error when the train gets closer to its destination, yet the
error increases when the train is in immediate proximity. Again, this can be
explained by the MLP model outputting negative predictions. Although this
occurs less often with the MLP often than for the Linear Regression models,
this still has an adverse impact on the performance of the model.

Both the Support Vector Regression and Random Forest Regression models
failed to live up to the expectations. Even though the MAE score of the SVR
model is acceptable, the RSME can not hold up with the other models. This
means on average the SVR model performs reasonably well, yet the model is
subject to a lot of high errors. This can be explained by the hyperparameters
that were used for the model. The optimal value for ε is relatively low (100),
while the optimal value for C is high (500). This means the model initially
allows the prediction error to be 100 seconds. However, the high value for C
means the model has a high tolerance for errors that exceed the margin of 100
seconds. The resulting model has a relatively low error on average but has a
high risk for big outliers.

The RFR performed poorly on both metrics. The model does behave as
wanted, i.e. the error increases as the distance increases as seen in figure 5.8.
Despite that, the errors are too high for the model to be implemented in pro-
duction. The disappointing performance of the RFR model could be the result
of the sparsity of the data. Data is considered to be spare when most ele-
ments are equal to zero. As stated in section 3.6, there are three categorical
features included in the data. However, these three features have 79 categories
combined (4 intervals, 7 weekdays, 68 movements), of which only three are non-
zero. Hence, as the majority of the data is filled with zero values, the data is
sparse. Random Forest models tend to not perform well on sparse data [51],
which is most likely also the case for this model.

The Gradient Boosting Regression achieved the lowest MAE score of all
the models. This indicates that the model has the lowest error on average.
The RSME score is in the midfield of all the models. Still, the GBR model
was found to be the best-suited model for implementation. Figure 5.9 shows
that although the error distribution is reasonably smooth and dense, there are
some big negative errors. The reason the GBR model is prefered over the MLP
model is the behaviour of the errors over the distance. The cumulative error
plot in figure 5.9 shows that the error of the model gradually decreases as the
train approaches its destination. While there are some high outliers in the
predictions of the model, the low average error, and the desirable behaviour of
the model outweigh the limitations of the model.
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The best model, the GBR model, still has a considerable MAE of 988.31
seconds (over 16 minutes). When the model is deployed in an application,
the error could mislead a potential user. If the exact ETA is presented to
the user, this raises the expectation of the user that the train will arrive at
that exact time. However, as research has shown it is almost impossible to
predict the ETA exactly, especially for long-distance train rides. Inspiration
was drawn from applications of postal services (DHL, PostNL, UPS, etc.) to
present the user with an ETA interval, rather than an exact ETA. The interval
has to be big enough that the actual arrival time is contained in the interval
on most occasions. However, the interval should be kept small enough that the
prediction of the ETA has an added value. The decision was made to take twice
the MAE as an interval to each side of the ETA. The bounds were rounded to a
presentable number (from 32 minutes to 30 minutes). As the error of the model
decreases as the train approaches its destination, the interval size also decreases
as the train comes closer. When the train is less than 50 kilometres away from
the destination the interval shrinks to 15 minutes to each side. When the train
is within 10 kilometres from the destination the interval shrinks again to five
minutes to each side.
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8 Conclusion
To conclude, an accurate prediction of the ETA of a cargo train is an important
asset in railway transportation. Knowing when a train arrives and recognising
deviations from the schedule on time can help reduce cost. Furthermore, re-
sources can be allocated to exactly where they are needed, which can save time,
resources and money.

Two datasets were used for this project, both entailing four months of data.
One dataset contains the GPS data from a locomotive and the second dataset
consists of the timetable data corresponding to the locomotive. The GPS data
was transformed into temporal features, such as the distance travelled and the
speed of the train. Inconsistencies in the data were removed and the gaps were
filled using linear interpolation. Thereafter, the timeline of the train could be
extracted, i.e. a timeline of when the train has passed or has stopped at a
station. The timeline was matched to the timetable data, using a matching
algorithm. Multiple time, distance and train dimensions related features were
engineered. This resulted in a dataset of data points in a one-minute interval.

The data was split into a test and a train set. A wide variety of models
was trained and examined. The models were evaluated on their MAE and
RSME scores. A Multiple Linear Regression model was found to perform the
worst. The model could be improved by adding regularisation. Lasso, Ridge
and Elastic Net regression all formed a significant improvement compared to
the MLR model. The difference in the performance of the three regularisation
methods was so small that no conclusion could be made on which approach
works the best.

Support Vector Regression and Random Forest Regression both performed
considerably worse than expected. The Multi-Layer Perceptron and Gradient
Boosting Regression model were the two best performing models. The MLP
model resulting in the lowest RSME score, while the GBR model achieved the
lowest MAE. The choice for the best model could therefore not solely be based
on which model achieved the lowest metric scores. The behaviour of the errors
of the model over the distance was the decisive factor in which model would
be considered "the best". The MLP model showed some unintended behaviour
when the train comes close to its destination due to the model returning negative
predictions, whereas the GBR model behaves as expected. Hence, the GBR is
considered to be the best-suited model for predicting the ETA of cargo trains.

The GBR model was deployed in an application that acts as a proof of
concept. The application shows how the machine learning model could be im-
plemented by a railway operator. The application can be provided to customers
of a railway operator. The application can be used to monitor the ETA of a
cargo train. The ETA is presented as an interval, rather than as an exact times-
tamp. This approach was chosen so that despite the model being subject to a
considerable error, the ETA prediction is still accurate and valuable.
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8.1 Limitations and further research
A limitation of the research is the data, or rather the lack thereof. The available
data was limited, as only the data of one locomotive over the span of four
months was considered. This results in certain rides being overrepresented in the
data, while other rides are only contained once or twice. An extensive dataset,
spanning over a year or even multiple years would enable the possibility to
include each ride the same amount of times as train data. An evenly distributed
training dataset reduces the bias of the models and would increase the overall
accuracy of the models.

The arrival times of trains are highly influenced by external features. Delays
often occur when there are bad weather circumstances, such as heavy rainfall,
snow or storms. Therefore, including features on the current weather condi-
tions (temperature, wind and precipitation) would further enhance the predic-
tive power of a machine learning model. However, in this research including
the weather conditions would have an adverse result. As the training data is
from January until March, the weather conditions are more or less the same
throughout the data. The weather in this particular winter was extremely bad,
with a lot of snow, rain and heavy wind. If the weather conditions were to be
included, the models would only be trained on bad weather. As the weather
in the month the test data stems from and the months that followed was a lot
better, the model would have to make a prediction on weather conditions the
model has not been trained on. If the model would be trained on a year of data
or more, including the weather conditions would make more sense.

Another important external feature that impacts the arrival time of trains
is other trains in the network. A train can be held up by other trains in front of
them. Delays are more likely to occur when there is a high traffic density. On
the other hand, trains can get ahead of schedule when there are no afflicting
trains in their way. For public transportation in the Netherlands, there are open
databases, called NDOV data1, where data on traffic density and the network
can be found. However, for cargo trains, this data is more restricted as there
are a lot of parties involved (multiple railway operators and clients). The data
can only be accessed with the permission of the railway manager ProRail. It
would be interesting to look into a cooperation with ProRail, so that data on
the entire network could also be included in the model.

A lot of models were examined to find which model performs best for pre-
dicting the ETA. The conformity between all the models is that they are deter-
ministic. The models are used to predict the remaining travel time of a train
to its destination. For any data point between the departure and arrival of the
train a prediction can be made how long the train will need from the current
location to the destination. As we have data of a fixed interval size, time-series
models such as a Long Short-Term Memory (LSTM) models or a Seasonal Au-
toregressive Integrated Moving Average (SARIMAX) model would also be very
fitting for this problem.

1NDOV loket: https://www.ndovloket.nl/

https://www.ndovloket.nl/
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Traditionally, time-series models are used on continuous data of fixed interval
size, i.e. for each data point there are previous data points are available. Time-
series models can find patterns in data based on the prior data points. For
example, a time-series model can be used to predict the demand of a product
based on the demand of the product in the previous week. The difficulty of
implementing a time-series model in this particular case is that we do not have
continuous data. The data points when a train is stationary (at a station, a
depot or for maintenance) are not used for training the models. The problem of
using time-series models on data with gaps is known as the cold-start problem.
Due to time limitations, the decision was made to focus on deterministic models.
However, there are approaches to bypass the cold-start problem [52], which
would be interesting to explore in the future.

The application described in section 6 works on historical data. To be able
to use the application in actual production, the data needs to be processed in
real-time. The GPS tracker sends the data to a database. The raw GPS data
needs to be transformed into features as explained in section 3. Thereafter,
a prediction can be made on the last available data point. For the data to
be up-to-date at all times, there should be a script running in a cloud that
constantly transforms the latest GPS location of the train into features. The
UbiOps deployment should be slightly altered so that the last data point in
the database is used as input for the machine learning model, rather than the
last point before the given timestamp. The deployment would no longer take a
timestamp as input. Instead, the deployment should have access to the database
containing the transformed data.
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