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Abstract

Varo Energy is a company which specializes in international trading, refining, sales, storage and dis-
tribution of (bio) fuels. For the two refinery’s Varo requires crude oil for production. The exposure on
the margin of the refinery’s is a process which fluctuates through time because of the moving crude
and product prices. Varo handles this exposure by hedging the margin of the refineries. Varo wants to
understand how this margin behaves. There are two ways to model the margin, the first is modelling
the margin as a univariate series and the second is modelling the margin as a multivariate portfolio
consisting of all the individual products. This thesis discusses two types of time series models to
describe the univariate and multivariate model, the first one are the GARCH models and the second
the continues models. For the multivariate model, the interaction between the products is modelled
via a vine copula. Both the GARCH and continuous models are used to forecast one month ahead.
The accuracy of the multivariate model is better but it does not provide a consistent model. The
univariate model is a consistent model but lacks in accuracy. The univariate model is preferred over
the multivariate model since the slight increase in accuracy is less important than the consistency of
the model. This is because the multivariate model underestimates the volatility of the margin which
results in a tight interval which does not capture the full extend of the margin volatility.
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1 Introduction

Varo Energy is a company which specializes in international trading, refining, sales, storage and dis-
tribution of (bio) fuels. With two refineries (Bayernoil and Cressier) and 47 inland terminals, it is one
of the major suppliers of (bio) fuels in north-west Europe. The refineries combined produce about
165.000 barrels per day.

From a refinery perspective Varo has an exposure which is the difference between the value of the
products and the crude from which the products are produced. At the moment Varo handles this
exposure by hedging the margin of the refinery (The margin is the difference between the price of one
barrel of crude and a combination of the price of the produced products from one barrel). Varo has
constructed margin baskets to hedge its margins. The tool Varo uses to hedge are forward contracts.
Forward contracts are contracts where one party buys a product in the future for a fixed price. The
baskets are a weighted average of product forward prices minus the cost of forward crude price (for
example, a margin basket could be 2 barrels of gasoline, 1 barrel of diesel, 3 barrels of crude; in this
case a margin basket sale would be selling 2 barrels of gasoline, sell 1 barrel of diesel, buy 3 barrels of
crude). With these baskets, Varo makes sure that they receive a steady cash flow and fix their exposure
to the market. The ratios in the basket are now pre-determined by historical refinery yields (yields are
product ratios in terms of output from one barrel of crude). These ratios might not be optimal. To
determine what the optimal hedge ratios are, it is possible to minimize certain risk measures. These
risk measures depend on the distribution of the forward prices and their interaction, or the univariate
refinery margin distribution.

Ultimately Varo is interested in the distribution and behaviour of the refinery margin. The refinery
margin can be modelled in two ways:

1. Model the forward prices per product and the interaction between the products. From these
models construct the margin as a multivariate model.

2. Model the margin as a univariate time series.

This thesis discusses both methods and compares the results to see which approach achieves the best
results. The focus of this paper lies on the following products: Mogas (Benzine), Jet fuel, High sulfur
fuel oil (HSFO), Low sulfur gasoil (LSGO also known as Diesel), Naphtha, Brent (Crude oil) and the
Bayernoil refinery. Another important point is that there is only one type of forward contract analyzed
in the thesis: the one month ahead contract.

Other applications of these models consist of:

• Calculating option prices to compare to the market.

• Calculate forward curves.

• Optimizing the amount of barrels hedged.

• Maximizing Profit.

1.1 Problem statement

Is modelling the margin as a univariate time series better than modelling the underlying products and
their interaction?

1.2 Thesis organization

The thesis contains the following sections. Section two contains a list of symbols. Section three contains
the literature review here the related literature and models are discussed. Section four contains the
data analysis, the analysis consist of general statistics, checking data requirements and preparing data
for the models discussed in section three. Section five discusses the estimation methods used and some
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proofs are given to see if the parameters converge to the true parameters. Section six is about fitting
and evaluating the models to the data and interpreting the output. Section seven contains some of
the packages and functions used to get the results. Section eight contains the conclusions and the
discussion about the results. Section nine contains possible extensions to the approach discussed in
this thesis.
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2 List of symbols

T Length of time series
ρ̂j j-lag sample autocorrelation
rt tth return of a time series defined as ln(Pt)− ln(Pt−1)
r2
t tth return volatility
ε̂2t tth sqaured residual

L̂ Likelihood function
k Number of estimated parameters
θ True parameter vector

θ̂ Estimated parameter vector
d Number of products (variables)
ce Copula density of edge e
Be Type of Copula of edge e
j(e), k(e) Conditional nodes of edge e
D(e) Conditional set of edge e
τ Kendall’s tau coefficient
F Marginal distribution
f probability distribution function
χ2
l Chi-squared distribution with l degrees of freedom
m Number of AR terms in the ARMA model
n Number of MA terms in the ARMA model
p Number of past volatility’s in the GARCH model
q Number of error terms in the GARCH model
X,Y Random variables
x̄, ȳ Mean of variables X,Y
rX,Y Pearson correlation between variables X,Y
E(X), V (X), S(X), K(X) Central moments of random variable X (Mean, Variance, Skewness, Kurtosis)
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3 Literature overview and methodology

The topic of financial time series modelling contains a lot of information and methods which can be
used to model prices of stocks and commodities. According to [4] this topic of research is rather new
has been developing rather fast since data is widely available nowadays. In this thesis, two types of
models are discussed. First, the generalized autoregressive conditional heteroskedasticity (GARCH)
type of models and second the continuous time processes are discussed. An important note is that
these two models model the log-return of the financial time series. This is a widely used technique
due to making the financial time series a white noise series which makes the financial time series a
stationary process. A stationary process is easier to model; c.f. [4].

The goal of this thesis is not only to find a univariate model for the margin but also a combined
portfolio containing all the prices. To model the portfolio, it is necessary to model the dependency
between the prices.

3.1 GARCH Models

There is a lot of literature available on GARCH models, such as [11] which introduces the GARCH
model for the first time and [4] which gives a good introduction into all type of GARCH models and
what they try to model. In this paragraph a small introduction is made into GARCH and some
properties are discussed. GARCH models are discrete-time models which have been developed to
reflect the so called stylized features of financial time series. Stylized features are features such as tail
heaviness, volatility clustering and asymmetric leverage effects; c.f. [8]. GARCH models are a type of
models which are derived from the ARCH models. The ARCH model is developed by Engle in 1982. Let
εt be a random variable conditionally on the information set Ft−1 (the σ-field created by by εt−j , j ≥ 1).
Engle assumed that εt = zt

√
ht where zt is a sequence of independent, identically distributed (iid)

random variables with zero mean and unit variance. This implies that εt|Ft−1 ∼ D(0, ht) where
D stands for the distribution. Distributions as normal, student t or leptokurtic ones are generally
assumed. An ARCH model of the order q looks as follows:

ht = α0 +

q∑
j=1

αjε
2
t−j , (1)

where α0 > 0, αj ≥ 0, j = 1, ..., q − 1 and αq > 0. The process (εt, t ∈ Z) is assumed to be strictly
stationary, ergodic and nonanticipative solution of (1) and (2). An extension to (1) was introduced by
Bollerslev (1986) and is as follows:

ht = α0 +

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiht−i, (2)

where in addition βi > 0. in comparison to (1) Bollerslev model can have a slow decay of ε2t which
is often observed in financial time series; c.f. [27]. The GARCH model is one of the popular ARCH
models there are other extensions such as exponential GARCH (EGARCH), nonlinear GARCH and
time varying GARCH model; c.f. [27]. The choice of GARCH model is dependent on the data set
and some of the characteristics of the data set. For example, there are test/diagnostics to find out if
there is are asymmetric leverage effects present in the time series, asymmetric leverage effects are when
time series react more to negative shocks then to positive shocks (shocks can be news are the market
suddenly collapsing). When there are asymmetric leverage effects present one would prefer to use a
model which can handle these types of effects such as EGARCH or threshold GARCH (TGARCH).
The form of the TGARCH model is as follows:

ht = α0 +

q∑
j=1

αjε
2
t−j +

q∑
j=1

γjSt−jε
2
t−j +

p∑
i=1

βiht−i, (3)
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where

St−j =

{
1 if εt−j < 0

0 if εt−j ≥ 0.

So, when εt−j is less than zero the effect is larger than when it is greater than zero; c.f. [1].
Further, we discuss test/diagnostics in section 4. The results of these test/diagnostics determine

the most probable model.
The GARCH models discussed do not have any explanatory variables but it is possible to extend

the models such that they can incorporate explanatory variables. This is accomplished by adding
dummy variables. Which yields the following expression:

ht = α0 +

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiht−i +
K∑
k=1

δket−k, (4)

where et is the vector with the explanatory variables. Variables which might improve the fit of the
models are trading volume, news announcements or overnight return; c.f. [1].

3.1.1 ARMA-GARCH Models

The GARCH models discussed in paragraph 3.1 model the volatility of the log return series. GARCH
models are called conditional variance models so they model variance or volatility of a time series. An
extra model is needed to predict the mean process of the log returns. The log returns can be viewed
in the following way:

rt = yt + εt,

εt = zt
√
ht,

Where ht and zt are as defined in paragraph 3.1. The mean process yt can be described by an Auto
Regressive Moving Average (ARMA) model. An ARMA model of the order (m,n) is defined as follows:

yt = µ+
m∑
i=1

airt−i +
n∑
j=1

bjεt−j .

The mean process consists of a combination of past log returns and errors.

3.2 Continuous time models

Continuous models try to describe an infinitely small step in X in time interval dt. The models are
described in the form of diffusion equations. The general model consists of a drift term and a volatility
term see for example (5). In (5) the first term defines the drift term and the second term the volatility
term. Equation (5) is called the arithmetic Brownian motion.

dXt = µdt+ σdWt. (5)

Another continuous model which is considered is a model with mean reversion. This model is called
the Ornstein-Uhlenbeck process and is defined as follows:

dXt = κ(α−Xt)dt+ σdWt,

where κ is the rate of convergence to α and α is the mean of the time series; c.f. [15].
These continues models assume that the volatility is constant through time. In paragraph 4.3.1 we

demonstrate that this is not the case for the data used in this research. The Heston model introduced
by [16] is a model which can model time-varying volatility. Such models have the following form:

dXt = µXtdt+
√
σtXtdW1t

,

dσt = κ(α− σt)dt+ v
√
σtdW2t

,
(6)
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where dW1t
and dW2t

are Brownian motions. dW1t
and dW2t

may be correlated via the following
equation:

dW2t
= ρdW1t

+
√

1− ρ2dW3t
,

where dW3t is a independent of dW1t

3.3 Copulas and dependency

A portfolio of more than one model consists of two parts. The first part being the models for the
prices and the second part being the dependency between the prices. Dependency between prices
is often expressed in correlations like the Spearman rank or the Pearson correlation. These types of
dependencies are on a linear scale and are based on the assumption that the prices are jointly elliptically
distributed; c.f. [10]. Since for many prices the dependency structure is non normal another method
is needed to model the dependency; c.f. [24].

Copula’s are functions that link univariate distributions functions to form a multivariate distribu-
tion function. Consider a vector with random variables X = [X1, X2, ..., Xn] with joint distribution F
and marginal distributions F1, F2, ..., Fn. Sklar (1959) introduces Sklar’s theorem, which provides the
mapping from the individual marginal distribution functions to the joint function which is as follows:

F (x) = C(F1(x1), ..., Fd(xd)),∀x ∈ R,

where C is the chosen copula. If the joint cumulative distribution function is absolutely continuous
and marginal cumulative distribution functions are strictly increasing and continuous, then the copula
density can be expressed as; c.f. [23]:

f(x1, ..., xd) =
n∏
i=1

fi(xi)c(F1(x1), ..., Fd(xd)). (7)

An important feature of this approach is that the marginal distributions do not need to be similar
nor does the choice of the copula depend on the marginal distributions; c.f. [24]. Another important
feature of copulas is that they are very flexible and there exist many types of copulas. Examples of
copula are shown in figure 1. Copulas cannot model trends, seasonality or volatility clustering which
might all be present in the data; c.f. [23]. The copulas are used to model the remaining errors which
cannot be explained by the models described in paragraphs 3.1 and 3.2.

3.3.1 Vine Copulas

It is highly probable that the dependency structure between the prices is not identical this means that
a single type of copula cannot accurately model the dependency between all the prices. To account
for this problem we introduce the notation of Vine copulas. Vine Copulas make it possible to have
different dependency structures between prices. This means that the joint distribution in equation (7)
needs to be expressed using only the marginal distributions and single copulas; c.f. [2]. For example
the density of a three dimensional vine looks as follows:

f(x1, x2, x3) =f1(x1)f2(x2)f3(x3)

·c12[F1(x1), F2(x2)]c23[F2(x2), F3(x3)]

·c13|2[F (x1|x2), F (x3|x2)],

(8)

where c can be different copulas. The amount of different combinations of the pair copulas increases
drastically when having more dimensions. With a problem of six different prices the possible combina-
tions reaches 23,040; c.f. [23]. To handle this appropriately [5] introduces a graphical model denoted
as the regular vine model. A d-dimensional graphical model can be represented as d − 1 linked trees
with nodes N and edges E. The definition is as follows:

6



Figure 1: Different types of copulas

1. Let V = {Tr1, T r2, ..., T rd−1} be a set of d− 1 trees,

2. Tr1 has nodes N1 = {1, 2, ..., d} and edges E1,

3. For i ≤ Tri has nodes Ni = Ei−1,

4. for i = 2, 3, ..., d− 1 and {a, b} ∈ Ei it must hold that |a ∩ b| = 1.

|a ∩ b| = 1 Is the proximity condition which states that an edge in Tri (where i ≥ 2) connecting two
nodes then those two nodes are edges in Tri−1 and they share a common node. This tree structure
can be translated into copulas and marginal distributions as follows:

1. (F, V,B) is a regular vine copula,

2. F = (F1, F2, ..., Fd) (the marginal distributions),

3. V is a set of d− 1 trees defined as above,

4. B = {Be|i = 1, 2, ..., n− 1; e ∈ Ei} where Be is a copula and Ei is the edge set of Tri of V .

With these definitions it is possible to create an regular vine copula; c.f. [14]. The vine structure of
example (8) is shown in figure 2. This is one of the ways to order the x’s there are six different ways

7



of structuring the density but only three are unique. The uniquely determined density of the regular
vine is as follows:

c
(
F1(x1), ..., Fd(xd)

)
=
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)

(
F
(
xj(e)|xD(e)

)
, F
(
xk(e)|xD(e)

))
,

where e = j(e), k(e)|D(e) are edges in Ei, j(e), k(e) are conditional nodes, D(e) is the conditioning set
and cj(e),k(e)|D(e) is the copula density; c.f. [14]. The density of example (8) is as follows:

c(F1(x1), F2(x2), F3(x3)) =c1,2(F1(x1), F2(x2))

·c2,3(F2(x2), F3(x3))

·c1,3|2
(
F1|2(x1|x2), F3|2(x3|x2)

)
.

Figure 2: Example vine structure
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4 Data analysis

The data used for the analysis is from one of the systems within Varo. This system stores the prices
of the products and the forward curves. The data range used in this analysis is from 1-1-2013 until
31-12-2018. About 252 values per year which is nearly equal to the pricing days per year (No weekends
and holidays). The daily prices for the products are in dollars per metric ton except for the dated
Brent which is in dollars per barrel.

Forward contracts have a maturity date, this is when the contract ends and a new contract begins.
Since this step from one contract to the other is not a continuous process the data needs to be
transformed such that this step can be assumed to be continuous. By transforming the data it becomes
possible to see all the contracts as one time series. The method used is the perpetual series method,
this method uses a rollover period where each day has a different weight for the old and new contract.
For example, a rollover period will look like this: For day one take 80% of the old contract and 20%
of the new contract, next day take 60% of the old contract and 40% of the new contract etc. The
advantage of this method over other methods is that it is better for statistical purposes; c.f. [22]. The
rollover period used in the thesis is four days. As mentioned in section 3 the prices are transformed in
to log returns. The margin is defined as follows:

Margin =Naphtha/8.9 ∗ 0.13 +Mogas/8.33 ∗ 0.21 + Jet/7.88 ∗ 0.09 + LSGO/7.45 ∗ 0.495

+HSFO/6.35 ∗ 0.075−DatedBrent.

The product prices are first divided by their density such that the price is per barrel and then multiplied
by the hedge ratio which is an average representation of the yield of a barrel of crude oil.

There exists some extreme behaviour in the time series of all the prices between 2016 and 2017.
This extreme behaviour was caused by a hurricane in the USA which flooded some of the refinery’s
causing a shortage.

Table 1 show some general statistics of the log returns. One thing to notice is that the mean
and the standard deviation of the log returns are all within the same range but when looking at the
skewness and kurtosis the log returns differ a lot. A rather simple test to see whether the log returns
follow the same skewness and kurtosis as the normal distribution is the Jarque-Bera test. Under the
null hypothesis that the data is normally distributed the Jarque-Bera test follows χ2; c.f. [1]. The
Jarque-Bera test is calculated as follows:

JB =
T

6

(
Ŝkew

2
+

(K̂urt− 3)2

4

)
.

The test is significant for all the products and the margin indicating that rt does not have normal
skewness and kurtosis.

Product Mean Stdv Min Max Skew Kurt JB JB (p-value)
Mogas -0.0005 0.0204 -0.1481 0.1406 -0.3456 6.9805 3138 (p < 0.01)
HSFO -0.0004 0.0243 -0.1190 0.1497 0.2671 4.9435 1578 (p < 0.01)
Jet -0.0004 0.0165 -0.0678 0.0956 0.2207 2.7950 512 (p < 0.01)
Naphtha -0.0005 0.0209 -0.1140 0.1245 0.0133 3.8638 953 (p < 0.01)
LSGO -0.0004 0.0173 -0.0687 0.1016 0.1901 2.7868 505 (p < 0.01)
Dated Brent -0.0005 0.0203 -0.0827 0.1042 0.1734 3.0244 592 (p < 0.01)
Margin -0.0001 0.0354 -0.1960 0.2782 0.0803 4.7027 1413 (p < 0.01)

Table 1: General statistics of daily log returns

The sections 4 and 5 show only the plots for the product Mogas the other product plots are in the
according appendix.
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Figure 3: The Mogas periodogram

4.1 Seasonality

Seasonality in time series is a concept of patterns which repeat themselves after a certain period. For
example each year there are lower prices in the summer than there are in the winter. Seasonality is
not part of the models described in section 3 this needs to be modelled separately. So the seasonality
has to be extracted from the time series. It is possible to check seasonality with a Fourier analysis. A
Fourier analysis tries to decompose the time series in a sum of sines and cosines; c.f. [15]. A large spike
in any of the periodogams in figure 3 would indicate a seasonal pattern with that specific frequency.
There are no major spikes in the periodograms this indicates that there are most likely no seasonal
patterns in the log returns. The other product and margin periodograms are in Appendix A.

4.2 Pearson correlation

An important feature for the determination of the coherence of the log returns is the correlation
between the log returns. Table 2 shows the Pearson correlations between the log returns and figure 4
shows the log returns plotted against each other. The Pearson correlation is calculated as follows:

rX,Y =

∑T
i=1(xi − x̄)(yi − ȳ)√∑T

i=1(xi − x̄)
√∑T

i=1(yi − ȳ)
.

Table 2 shows high correlations between the log returns. Figure 4 shows that some log returns have
a non linear correlation such as the Mogas and Naphtha. As discussed in paragraph 3.3 copulas are
used to model these interactions such that they can be modelled properly.

4.3 Stylized features

Features such as volatility clustering, fat tails in the distribution and long memory are called stylized
features of a time series; c.f. [27]. These features have an impact on the GARCH model choice. In the
following paragraphs each feature is discussed. These analyses need to be done on a ”clean” time series

10



Figure 4: Log returns plotted against each other
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Mogas HSFO Jet Naphtha LSGO Dated Brent
Mogas 1.0000 0.8107 0.8053 0.8561 0.8142 0.8316
HSFO 0.8107 1.0000 0.9042 0.8995 0.9140 0.9369
Jet 0.8053 0.9042 1.0000 0.8911 0.9921 0.9517
Naphtha 0.8561 0.8995 0.8911 1.0000 0.8976 0.9218
LSGO 0.8142 0.9140 0.9921 0.8976 1.0000 0.9579
Dated Brent 0.8316 0.9369 0.9517 0.9218 0.9579 1.0000

Table 2: Correlations between the log returns

Figure 5: rt and r2
t for Mogas

which means that there should be no trend or seasonal component present. Paragraph 4.1 indicates
that there are no seasonal patterns in the product time series this means that the analysis of the
stylized features can be directly applied on the log returns.

4.3.1 Volatility modeling

Before starting the modelling a few characteristics of the data need to be checked. The first two
characteristics are the autocorrelation of rt and r2

t . Autocorrelation indicates the correlation between
different lags, this means that if there is a correlation between lags that measures in time depend on
each other. Figure 5 shows the plots for the log returns for the Mogas (see appendix B for the other log
return series). The r2

t plot shows that periods of low volatility are followed by low volatility and high
volatility is followed by high volatility. This indicates that there is a serial correlation between the r2

t

lags. This is confirmed by figure 6 where the autocorrelation function (ACF) plot for Mogas is shown
for the rt and r2

t (See appendix C for the other log return series). The plots indicate a slow decay
of the autocorrelations of r2

t which might also indicate long memory this characteristic is discussed in
paragraph 4.3.2. The Margin ACF plots show that there might be an autoregressive term in the mean
process. We will come back to this in section 5 where different lags are tested in ARIMA-GARCH
models.

Table 3 shows the Ljung-Box statistics which is calculated according to (9). Where MQ(p) follows

12



Figure 6: rt and r2
t ACF plot for Mogas

a χ2 if the r2
t are white noise (null hypothesis). A significant p-value indicates that there is time

varying conditional volatility; c.f. [20]. The first two lags statistics are shown in table 3 these p-values
indicate that there is time varying conditional volatility in the product time series. Further lags are
also tested and showed the same results.

MQ(p) = T (T + 2)

p∑
j=1

ρ̂j
T − j

. (9)

The log returns for all the products and the margin experience volatility clustering and have time-
varying conditional volatility.

Product Lag 1 Lag 2
Mogas 24.9592 (p < 0.01) 51.6614 (p < 0.01)
HSFO 123.1432 (p < 0.01) 172.0811 (p < 0.01)
Jet 36.2859 (p < 0.01) 90.8007 (p < 0.01)
Naphtha 74.2597 (p < 0.01) 119.6392 (p < 0.01)
LSGO 41.1645 (p < 0.01) 90.6539 (p < 0.01)
Dated Brent 88.9963 (p < 0.01) 141.6822 (p < 0.01)
Margin 59.1497 (p < 0.01) 97.4017 (p < 0.01)

Table 3: Ljung-Box results per product and lag 1, 2 (r2
t )

4.3.2 Testing long memory

As mentioned in paragraph 4.3.1 the ACF plots in figure 6 indicate that the autocorrelations do not
decay exponentially which should be the case in the standard GARCH model.

Testing for long memory can be done with the modified rescaled range (R/S) statistic. The R/S
statistic is defined as follows:

Qt =
1

sT (q)

(
max

1≤k≤T

k∑
j=1

(xj − x̄)− min
1≤k≤T

k∑
j

(xj − x̄)
)
,

sT (q) =

√√√√ 1

T

T∑
i=1

(xt − x̄)2 +

q∑
j=1

wj(q)ρ̂j ,

where wj = 1− j
q+1 . If rt is iid with finite variance then 1√

T
QT weakly converges to V . V is the range

of a Brownian bridge on the unit interval; c.f. [21]. The critical values for the Brownian brigde can be
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found in table 2.a in [21]. Table 4 shows the results for the modified R/S statistic per product and the
margin. The significance level for 1% is 2.098. All the products are significant which indicates that
the products show long memory properties. The margin is not significant when looking at the r2 this
indicates that the volatility of the margin does not have long memory.

Product r2
t abs(rt)

Mogas 5.0392 5.8821
HSFO 5.9114 8.1702
Jet 5.4872 6.6109
Naphtha 5.1475 6.6366
LSGO 5.5593 6.6918
Dated Brent 5.7470 7.0903
Margin 1.8322 2.4992

Table 4: Modified R/S statistic per product

4.3.3 Testing asymmetry

Asymmetric effects or leverage effects are effects in time series where the volatility has a bigger increase
or decrease with a certain event than with the opposite of that event. For example, bad news tends
to have a larger impact on volatility than good news; c.f. [1].

An indication of asymmetric effects can be found by a negative correlation between r2
t and rt−1.

Which would indicate that when the return of the last day is up then the volatility of the next day is
down. This is exactly what the example of the news indicates. If there is an indication of asymmetric
effects one can test this by testing if β1 is significant in the following regression; c.f. [11].

ε̂2t = β0 + β1ŵt−1 + ξt,

Where εt is the estimated residual from the conditional mean and ŵt is a variable constructed from
εt−1. By setting different values for εt−1 the following test can be executed:

• Sign Bias test: εt−1 = S−t−1,

• Negative Sign Bias test: εt−1 = S−t−1ε̂t−1,

• Positive Sign Bias test: εt−1 = S+
t−1ε̂t−1,

where S−t−1 is one if εt−1 < 0 and S+
t−1 is one if εt−1 > 0. The test results are shown in table 5. The

negative correlations are rather small which is also reflected in the Sign tests. Only the LSGO has a
significant p-value so models with asymmetric effects would not be a good choice for these log returns.

Product Corr(r2
t ,rt) Sign bias Negative Sign Bias Positive Sign Bias

Mogas -0.0350 0.6364 0.4013 0.9229
HSFO 0.0044 0.4665 0.3054 0.5772
Jet 0.0198 0.1528 0.6325 0.5165
Naphtha -0.0547 0.1490 0.4314 0.8921
LSGO 0.0256 0.0311* 0.4752 0.2421
Dated Brent 0.0138 0.0521 0.6065 0.3928
Margin -0.1098 0.9870 0.9747 0.3709

Table 5: Correlation and p-values for the Sign tests
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4.3.4 Error distribution

The standard GARCH model depends on the assumption that the standardized residuals are normally
distributed. The normal distribution might not be the best fit for these log returns. There is no
direct test available to test for the appropriate error distribution, it is possible to fit the models with
different distributions and select the best fit via a model selection criteria such as AIC or BIC. Another
verification is done by making a quantile-quantile plot (QQ-plot) of the standardized residuals and the
error distribution. If the data points in the QQ-plot follow the linear line the error distribution is a
good fit.

The distributions fitted are distributions which have nice property’s (in convergence) when esti-
mating the parameters which are further discussed in paragraph 5.1. The distributions are as follows:

• Normal (norm),

• Generalized Error (ged),

• Student (std),

• Skew Student ,

• Normal inverse Gaussian distribution (nig).

AIC is a selection criterion for general parametric models. The model with the lowest value AIC
value is selected to be the best fit for the time series; c.f. [19]. AIC makes a trade-off between goodness
of fit and number of parameters of the model.

AIC = 2k − 2 log(L̂(θ̂)).

The residuals of the ARMA-GARCH models depend on the lags q, p,m, n. The lags need to be
determined before the error distribution is fitted. Determining the lags is done in a similar fashion as
determining the error distribution the lags q, p,m, n ≤ 2 are all fitted and the model with the lowest
AIC value is used. Based on the test done in the previous paragraphs the GARCH models are selected
and shown in table 6. Table 7 shows the best lags based on the lowest AIC value per GARCH model.

Product Volatility clustering Long memory Asymmetry GARCH model
Mogas Yes Yes No S, IGARCH
HSFO Yes Yes No S, IGARCH
Jet Yes Yes No S, IGARCH
Naphtha Yes Yes No S, IGARCH
LSGO Yes Yes Yes S, I, EGARCH
Dated Brent Yes Yes Yes S, I, EGARCH
Margin Yes No No SGARCH

Table 6: Summary of the stylized features per product and the proposed GARCH models

Based on the lags from table 7 the most appropriate error distribution is chosen. The AIC results
are in table 8. In bold and underlined are the minimal AIC values per product which are the error
distribution used in the models. The QQ-plots for the product Mogas and the error distributions are
shown in figure 7. For all the products the best error distribution is the Normal Inverse Gaussian
distribution. When looking at the QQ-plots of Mogas it is clear that the other distributions do not
capture the tails of the distribution as good as the nig distribution. The other product QQ-plots are
in appendix D.
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Product GARCH model lags(q, p, m, n)
Mogas SGARCH/IGARCH (1, 1, 2, 2)/(1, 1, 0, 0)
HSFO SGARCH/IGARCH (1, 2, 2, 2)/(1, 1, 2, 1)
Jet SGARCH/IGARCH (2, 2, 2, 2)/(2, 1, 2, 2)
Naphtha SGARCH/IGARCH (2, 2, 2, 2)/(1, 1, 2, 2)
LSGO SGARCH/IGARCH/EGARCH (1, 2, 2, 2)/(1, 1, 1, 2)/(2, 1, 2, 2)
Dated Brent SGARCH/IGARCH/EGARCH (1, 2, 2, 1)/(1, 1, 1, 0)/(2, 1, 1, 0)
Margin SGARCH (2, 1, 0, 2)

Table 7: GARCH models and the best lags per product

Product norm ged std sstd nig
Mogas -5.3985 -5.4325 -5.4376 -5.4404 -5.4414
HSFO -5.2446 -5.2920 -5.2941 -5.2948 -5.3044
Jet -5.7180 -5.7534 -5.7564 -5.7574 -5.7618
Naphtha -5.3572 -5.3862 -5.3890 -5.3895 -5.3912
LSGO -5.6397 -5.6753 -5.6805 -5.6807 -5.6812
Dated Brent -5.2519 -5.3042 -5.3068 -5.3095 -5.3104
Margin -3.6486 -3.7308 -3.7433 -3.7433 -3.7399

Table 8: AIC values for the products and the margin per error distributions

Figure 7: QQ-plot per error distribution for the Mogas GARCH(1,1) model
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5 Estimation of the model parameters

This section discusses the estimation methods for the GARCH and continues models.

5.1 Parameter estimation GARCH models

Here we follow [12] to estimate the parameters. An advantage of the GARCH models is that estimating
the parameters is rather simple. Estimation of the parameters can be done via least squares (LS) or
maximum likelihood methods, where the maximum likelihood (ML) methods have a preference over
the least squares since they estimate the parameters more accurately; c.f. [12]. ML estimation is the
method of maximizing the likelihood function which is as follows:

L̂(θ) =
T∏
t=1

1

σt
f(
εt
σt

),

θ̂ = arg max
θ∈Θ

L̂(θ), (10)

where f is the conditional probability distribution function of εt on past ε’s and σ’s. Under certain
conditions, the MLE is strongly consistent meaning:

θ̂ → θ, a.s. as T →∞.

The estimators are consistent, asymptotically normally distributed and asymptotically efficient. Distri-
butions which satisfy these conditions are standard Gaussian distributions and Student distributions;
c.f. [12]. The next paragraph shows and eloborates on the conditions for the nig distribution. The nig
density function is as follows:

fnig(x, υ, ξ, %, η) = υηeηγ+ξ(x−%)K1(υ
√
η2 + (x− %)2)

π
√
η2 + (x− %)2

,

where

K1(w) =
1

2

∫ ∞
0

e−
1
2w(x+ 1

x )dx is the modified Bessel function of the third kind,

γ =
√
υ2 − ξ2.

The parameters need to satisfy 0 ≤ |ξ| < υ and η > 0; c.f. [17]. For the products the following is
assumed to be true ε ∼ nig(υ, ξ, %, η)

5.1.1 Parameter convergence conditions

Here we follow [6] which states that the following conditions need to be met to ensure that the
parameters of the GARCH model converge.

C1 θ ∈ Θ and Θ is compact.

C2 γ(A0) < 0 and ∀θ ∈ Θ,
∑p
j=1 βj < 1.

C3 The polynomials α1x+α2x
2 + ...+αpx

p and. 1−β1x−β2x
2− ...−βqxq are coprimes in the set

of polynomials with real coefficients.

C4 ε2 is a nondegenerate random variable.

C5 lim
t→0

t−µP (ε2 ≤ t) = 0 with some µ > 0.
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C6 E|ε2|κ <∞ with some κ > 0.

C7 E| log[h(εt)]| ≤ C0(tν0 + 1) for all t > 0, with some 0 ≤ ν0 ≤ 2κ,

where 0 < C0 <∞.

g(y, t) = log
(
th(yt)

)
, −∞ < y <∞, t > 0,

g1(y, t) =
∂

∂t
g(y, t), −∞ < y <∞, t > 0.

The following two conditions assume that there is a function C1(y) such that:

C8 |g1(y, t)| ≤ C1(y)(tν1 + 1)/t, for all 0 < t <∞ and y ∈ R, with some 0 ≤ ν1 ≤ 2κ.

C9 E(C1(ε)) <∞.

C10 E
(
g(ε, t)

)
< E

(
g(ε, 1)

)
for all 0 < t <∞, t 6= 1.

5.1.2 Parameter convergence for the Normal Inverse Gaussian distribution

In this paragraph, we analyze the conditions for the Normal Inverse Gaussian distribution from para-
graph 5.1.1.

C1 is a condition which has to be assumed since the true parameters are unknown and so is the
parameter space Θ. In C2 γ(A0) is the Lyapunov exponent of the series A0. Where A0 is as follows:

A0t =


τ
′

t β0p α
′

02:q−1 α0q

Ip−1 0 0 0

ξ
′

t 0 0 0
0 0 Iq−2 0

 ,

with

τt = (β01 + α01ε
2
t , β02, ..., β0p−1)

′
∈ Rp−1,

ξt = (ε2t , 0, ..., 0)
′
∈ Rp−1,

α02:q−1 = (α02, ..., α0q−1)
′
∈ Rq−2,

and

γ(A0) = lim
t→∞

1

t
log ||A0tA0t−1...A01||.

In [7] it is established that the following statements are equivalent in case of a GARCH model:

1. γ(A0) < 0.

2. The model used is irreducible.

3. There is an unique stationary solution.

In paragraph 3.1 it is assumed that the process (εt, t ∈ Z) is strictly stationary, ergodic and nonantici-
pative solution of the SGARCH model. Just like in paragraph 4.3.1 it is possible to test if εt is strictly
stationary, this is done in paragraph 5.1.3.

Condition C3 can be checked if the parameters α and β are estimated, estimating these parameters
and showing if this condition is satisfied is shown in paragraph 5.1.3.

Condition C4 means that the probability distribution of ε2 is not concentrated at one point; c.f.
[3]. This is proved by checking if V ar(ε2) = 0 if this is false condition C4 is satisfied. The central
moments of the nig distribution are given by [17]:
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E(ε) = %+ η
ξ

γ
,

V (ε) = η
υ2

γ3
,

S(ε) = 3
ξ

υ
√
γη
,

K(ε) = 3 + 3
(
1 + 4(

ξ

υ
)2
) 1

γη
.

From the online appendix M page 5 from [18] expressions for E(x4) and E(x3) are given.

E(ε3) = S(ε) + 3V (ε)E(ε) + E(ε)3,

E(ε4) = K(ε) + 4S(ε)E(ε) + 6V (ε)E(ε)2 + E(ε)4.

V (ε) = E(ε2)− E(ε)2,

E(ε2) = V ar(ε)− E(ε)2,

= η
υ2

γ3
− (%+ η

ξ

γ
)2,

= η
υ2

γ3
− η2 ξ

2

γ2
− 2%η

ξ

γ
− %2.

(11)

V (ε2) = E(ε4)− E
(
(ε2)

)2
,

= K(ε) + 4S(ε)E(ε) + 6V (ε)E(ε)2 + E(ε)4 −
(
E(ε2)

)2
,

= 3 + 3
(
1 + 4(

ξ

υ
)2
) 1

γη
+ 12

ξ

υ
√
γη

+ 6V (ε)E(ε)2 + E(ε)4 −
(
E(ε2)

)2
.

(12)

Equation (12) is a complicated equation so it is hard to prove analytically that V (ε2) 6= 0. To
bypass this problem condition C5 is checked with estimated parameters, this is done in paragraph
5.1.3.

Based on the first two moments of the nig distributions E|ε2| is worked out. Condition C6 is
satisfied if γ in (11) does not go to 0. This is satisfied since 0 ≤ |ξ| < υ is one of the conditions of the

nig distribution. This requirement makes sure that γ =
√
υ2 − ξ2 > 0. To be sure this condition is

checked with the estimated parameters.
For conditions C7, C8, C9 and C10 the function h(x) = fnig(x).

log(h(x)) = log(υη) + ηγ + ξ(x− %) + log(K1(υ
√
η2 + (x− %)2))− log(π

√
η2 + (x− %)2),

g(y, t) = log(tυη) + ηγ + ξ(yt− %) + log(K1(υ
√
η2 + (yt− %)2))− log(π

√
η2 + (yt− %)2),

g1(y, t) =
1

t
+ ξy +K1(υ

√
η2 + (yt− %)2)

2υy(yt− %)√
η2 + (yt− %)2

− y(yt− %)

η2 + (yt− %)2
.

(13)

g(ε, t) = log(tυη) + ηγ + ξ(εt− %) + log(K1(υ
√
η2 + (εt− %)2))− log(π

√
η2 + (εt− %)2),

g(ε, 1) = log(υη) + ηγ + ξ(ε− %) + log(K1(υ
√
η2 + (ε− %)2))− log(π

√
η2 + (ε− %)2).

Conditions C7 until C10 are to complicated to prove analytically with the parameters of the nig
distribution unknown. So conditions C7 until C10 are checked by estimating the parameters and
checking whether the conditions hold for the estimated model.
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5.1.3 Parameter convergence conditions with estimated parameters

We were unable to prove conditions C2 until C10 analytically due to the complicated distribution.
Instead, we analyze the conditions with estimated parameters to show that the conditions are not
unreasonable for the values of the parameters. In this paragraph, one example is discussed (Mogas
IGARCH model with lags q = 1, p = 1) the other models can be done in a similar fashion. The
estimated parameters are in table 9.

υ ξ % η
Mogas 49.4065 -2.4304 0.0007 0.01614

Table 9: Nig distribution parameters for the Mogas IGARCH model with p, q = (1, 1)

Now filling in these values for the conditions we get the following results:

C2 The p-values for the Ljung-box test at lag 1 and 2 are 0.6406 and 0.2738 further lags were also
tested and showed have a p > 0.05. So the null-hypothesis can not be rejected (null-hypothesis
is that the data behaves like white noise). Which means that C2 is satisfied.

C3 Two functions are coprime if there exist u(x)d(x) + v(x)e(x) = 1, see [29], with d(x) = α1x +
α2x

2 + ...+ αpx
p and e(x) = 1− β1x− β2x

2 − ...− βqxq. The model parameters are: α = 0.05
β1 = 0.95. So set functions u(x) = 19 and v(x) = 1 and the desired results is achieved. So the
functions are coprime and C3 is satisfied.

C4 V ar(ε2) = 6.8025 which means condition C4 is satisfied.

C5 After t = 0.9000 ∗ 10−11 the term P (ε2 ≤ t) becomes zero which results in the limit being zero
so the condition is satisfied.

C6 E|ε2|κ = 0.0003κ so condition C6 is satisfied.

C7: The expectation of constants are constant so these are all added in to c1 and c2 and what
remains is the following:

E| log[h(εt]| = −c1(c2 + t) + E
(

log(K1(υ
√
η2 + (ε− %)2))

)
− E

(
log(π

√
η2 + (ε− %)2)

)
.

Jensen’s inequality states that if f is a convex function and X a random variable then the following
holds:

E
(
f(X)

)
≤ f

(
E(X)

)
.

This can also be applied to C7. The last term contains a log which is a convex function so Jensen’s
inequality can be applied which then also gives the required inequality needed for the condition.

E| log[h(εt]| = −c1(c2 + t) + E
(

log(K1(υ
√
η2 + (ε− %)2))

)
− E

(
log(π

√
η2 + (ε− %)2)

)
,

≤ −c1(c2 + t) + E
(

log(K1(υ
√
η2 + (ε− %)2))

)
− log

(
(πE

√
η2 + (ε− %)2)

)
,

where constants c2 = log(υη)+ηγ−ξ%
c1

and −c1 = ξE(ε).
C8: If the last term is always negative in equation (13) then the following result will hold:

g1(y, t) =
1

t
+ ξy +K1(υ

√
η2 + (yt− %)2)

2υy(yt− %)√
η2 + (yt− %)2

− y(yt− %)

η2 + (yt− %)2
,

≤ 1

t
+ ξy +K1(υ

√
η2 + (yt− %)2)

2υy(yt− %)√
η2 + (yt− %)2

.

(14)

The last term can, unfortunately, be positive when for example yt − % < 0 and y > 0. Condition C8
is not satisfied for a certain range of y and t.
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C9: In principle one needs to check if E(C1(ε)) <∞. Since it is not possible to construct a function
C1 from condition C8 is not possible to verify condition C9.

C10: In principle one would check E
(
g(ε, t)

)
< E

(
g(ε, 1)

)
for all 0 < t < ∞, t 6= 1. Both

expectations are as follows:

E
(
g(ε, t)

)
= log(t)− c1(c2 + t) + log(K1(υ

√
η2 + (εt− %)2))− log(π

√
η2 + (εt− %)2),

E
(
g(ε, 1)

)
= −c1(c2 + 1) + log(K1(υ

√
η2 + (ε− %)2))− log(π

√
η2 + (ε− %)2).

This condition is still too complicated to verify even for the estimated parameters.
Conditions C1 until C7 are satisfied for the Mogas model but the conditions C8 until C10 can

either not be proved or are not satisfied for a certain range. In the following sections conditions C8,
C9 and C10 are assumed to be satisfied such that the properties of convergences apply to the models
used. The other products and the margin can be proved in a similar fashion but this is not done since
this is not the goal of the thesis. It is assumed that the same conclusions for Mogas also hold for the
other models which means that we assume that the parameters converge to their true values.

5.2 Parameter estimation continuous models

Parameter estimation for the continuous models is done via the same way as the GARCH models, i.e.
ML. The likelihood function of the continuous models is based on the transition density p(Xi|Xi−1, θ).
The likelihood function is as follows:

L̂(θ) =
T∏
i=1

p(Xi|Xi−1, θ).

By rewriting the Heston model from paragraph 3.2 in the form of (15) it is possible to estimate
the parameter via some transition density; c.f. [28].

dσt = κ(α− σt)dt+ v
√
σtdW2t

,

drt =
(
µ− 1

2
σt
)
dt+

√
(1− ρ2)σtdW1t

+ ρ
√
σtdW2t

.
(15)

The transition density of the volatility of the Heston model described in (15) is given by [28]:

√
σt|
√
σt−1 ∼ N

(
mt−1,

v2

4
δ
)
,

where mt−1 =
√
σt−1 + 1

2
√
σt−1

(
κα− κσt−1 − 1

4v
2
)
δ. Filling the transition density into the likelihood

function results in the following equation:

L̂(κ, α, σ) =
T∏
i=1

1
√

2π
√

v2

4

exp

(
−

(
√
σt −mt−1)2

v2

2 δ

)
.

21



The resulting MLE estimators of the parameters κ, α, σ are given and proven by [28].

κ̂ =
2

δ

(
1 +

P̂ δ

2

1

T

T∑
k=1

1

σk−1
− 1

T

T∑
k=1

√
σk
σk−1

)
,

v̂ =

√√√√4

δ

1

T

T∑
k=1

(√
σk −

√
σk−1 −

δ

2
√
σk−1

(P̂ − κ̂σk−1)
)2
,

α̂ =
P̂ + 1

4 v̂
2

κ̂
,

ρ̂ =
1

Tδ

T∑
k=1

∆W1t∆W2t ,

µ̂ =
1

T

T∑
k=1

rk,

where

P̂ =

1
T

∑T
k=1

√
σk−1σk − 1

T 2

∑T
k=1

√
σk

σk−1

∑T
k=1 σk−1

δ
2 −

δ
2

1
T 2

∑T
k=1

1
σk−1

∑T
k=1 σk−1

,

∆W1t =
logXt − logXt−1 − (µ− 1

2σt−1)δ
√
σt−1

,

∆W2t
=
σt − σt−1 − κ(α− σt−1)δ

σ
√
σt−1

,

δ = dt = 1.

5.3 Vine copula selection

As mentioned in paragraph 3.3.1 there are 23,040 different possible regular vine combinations which
can be considered. It takes to much time to estimate every regular vine and conclude which has
the best fit. In [14] three different methods are reviewed, the stepwise frequentist selection, stepwise
Bayesian selection and the fully Bayesian selection. The latter two have intensive computation times
ranging from two to ten hours but perform better when comparing the likelihood. These computation
times are too high considering that the models need to be recalculated many times. So the frequentist
selection is used. The frequentist selection algorithm is described according to [14].

The first tree is determined via a maximum spanning tree algorithm (a maximum spanning tree
is a tree where all nodes can reach all other nodes but there exists no cycle) on a complete graph (a
complete graph is a graph where all nodes are connected to each other via an edge). The weight on
an edge is a measure of dependence between the two products connected via that edge. The measure
used is the Kendall’s τ coefficient:

τ = P
(
(X −X ′)(Y − Y ′) > 0

)
− P

(
(X −X ′)(Y − Y ′) < 0

)
,

where (X,Y ) ∼ F and (X ′, Y ′) ∼ F are independent random variables; c.f. [14]. When the structure
of the tree is determined the tree’s that follow can be determined from the first one. The next step
is to fit copulas between the products connected via the edges in tree one. This is done by fitting
different copulas and selecting the model with the lowest AIC value. Iterate this procedure overall
tree’s. When the copulas are selected the parameters of the copulas have to be estimated. This is also
done with a maximum likelihood method:

L̂(Be, θe) =
T∏
t=1

cBe

(
F (xj(e)|xD(e)), F (xk(e)|xD(e)); θe

)
,
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where θe is the parameter vector of the according copula.
The complete procedure is as follows (for an example of trees see figure 2):

1. Initiate G(N,E) = complete graph with N = products and ei ∈ E = Kendall’s τ coefficient

between the two products connected via ei with i = 1, ..., d(d−1)
2 .

2. Run a maximum spanning tree algorithm on G(N,E) to get Tr1(N,E) which is a spanning tree.
This means that all nodes are connected and there exists no cycle.

3. Construct Trd for d > 1 from Tr1 where d = 1, 2, 3, 4, 5.

4. Estimate and fit copulas to the edges in Trd and select the copula with the lowest AIC.
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6 Model Selection and Evaluation

The model selection is based on the evaluation metric: Mean Squared Error method (MSE). The MSE
is a widely used metric which looks as follows:

MSE =
1

T −N

T∑
i=N+1

(hi − σi)2,

where σi is an proxy for the observed volatility. Two proxy’s are evaluated r2 and |r|. The models are
evaluated using a rolling window approach. The first model is estimated on a sample of the data from
t = 1, ..., N then an g-ahead forecast is calculated from that point on. The model is refitted every day
so the next data set is as follows t = 2, ..., N + 1. The fitting period is three years.

6.1 Fitting GARCH models

The results from section 4 are shown in table 10. For each product different types of models are given
each of these models is appropriate for the features of the time series. The best lags based on the AIC
value are shown in table 7. The GARCH models in table 10 have the following forms:

Product Volatility clustering Long memory Asymmetry Error distribution GARCH model
Mogas Yes Yes No nig S, IGARCH
HSFO Yes Yes No nig S, IGARCH
Jet Yes Yes No nig S, IGARCH
Naphtha Yes Yes No nig S, IGARCH
LSGO Yes Yes Yes nig S, I, EGARCH
Dated Brent Yes Yes Yes nig S, I, EGARCH
Margin Yes No No std SGARCH

Table 10: Summary of the stylized features per product and the proposed GARCH models

SGARCH = ht = α0 +

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiht−i,

IGARCH = ht = α0 +

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiht−i, where 1 =

q∑
j=1

αj +

p∑
i=1

βi,

EGARCH = ht = α0 +

q∑
j=1

αj
|εt−j |+ γjεt−j

σt−j
+

p∑
i=1

βiht−i,

ARMA = yt = µ+

m∑
i=1

airt−i +

n∑
j=1

bjεt−j ,

Return = rt = yt + εt,

Error = εt = zt
√
ht.

(16)

Forecasting hN+1 with a GARCH model is done with with the known ε2N but forecasting hN+g (g > 1) is
different since εN+g−1 are unknown. For g > 1 the following is used E(ε2N+g−1) = E(z2

N+g−1h
2
N+g−1) =

E(h2
N+g−1).
Since volatility cannot be measured a proxy is needed which is assumed to be the volatility. Two

proxies are used r2 and |r|. The MSE results for the return r, volatility proxy r2 and volatility proxy
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|r| are shown in table 11. The best model fit per model is determined by the volatility proxy MSE.
This is because the volatility is an important result from these models. In four out of seven cases the
best MSE score for the volatility goes together with the best MSE score for the mean process. In the
other cases, the mean process does not perform much worse than the best MSE score for the mean
process.

Figure 8 shows the forecasted returns versus the actual returns. The blue line represents the
forecasted mean and the red lines are the 95% confidence interval for the forecasted returns. Figure 9
and 10 show the forecasted volatility versus the proxy volatility r2, |r| and the confidence interval of the
volatility. Since the distribution of ε2 is unknown the confidence interval is obtained by running 10, 000
simulations and taking the 0.05 and 0.95 quantiles of the simulation results. Appendix E contains the
other products and margin plots for the models with the best fit (The best model scores are underlined
and bold in table 11).

Figure 8: Return forecast (r) Mogas (1,1,2,2) SGARCH model with confidence interval
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Figure 9: Return Volatility forecast (r2) Mogas (1,1,2,2) SGARCH model with confidence interval

Figure 10: Return Volatility forecast (|r|) Mogas (1,1,2,2) SGARCH model with confidence interval

6.2 Fitting continues models

One continues model is fitted to the data. The model is the Heston model with time varying volatility
as described in (6). This model uses an Orstein-Uhlenbeck process for volatility this is due to the
mean reverting nature of the volatility. From figure 5 it is clear the volatility returns to a standard
level even after periods of high volatility. The ML estimators for the parameters are given in 5.2.
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These parameters are used to do the g-ahead forecast. The return and the volatility are forecasted
via equation 17. Figure 11 shows the forecasted returns and the confidence interval. Figure 12 and 13
show the volatility proxy plots.

ht = ht−1 + κ̂(α̂− ht−1),

rt = rt−1 + µ̂− 1

2
ht.

(17)

Just like with the discrete case an proxy for the volatility is needed since this can not be measured so
r2 and |r| are used as an proxy. The evaluation metric results are in table 11. Appendix E contains the
other products and margin plots for the models with the best fit (The best model scores are underlined
and bold in table 11).

Figure 11: Return forecast (r2) continues Mogas model with confidence interval
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Figure 12: Return Volatility forecast continues Mogas model with confidence interval

Figure 13: Return Volatility forecast (|r|) continues Mogas model with confidence interval

6.3 Back testing

In table 11 the best performing models are underlined and bold. To check whether these models
perform well with regard to coverage and number of exceedances one can do the conditional coverage
test introduced by [9]. Exceedances are returns which go outside the volatility forecast boundary and
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Product SGARCH IGARCH EGARCH Continues model
Mogas (r) 3.3052 3.5134 - 10.6982

(r2) 0.0056 0.0060 - 0.0063
(|r|) 1.9118 2.0049 - 1.9843

HSFO 5.5403 5.5281 - 18.7382
0.0170 0.0172 - 0.0181
3.0496 3.1291 - 3.8216

Jet 4.90439 2.7929 - 9.6397
0.0600 0.0032 - 0.0033
4.3009 1.5389 - 1.5222

Naphtha 4.2050 4.2357 - 12.7702
0.0108 0.0109 - 0.0109
2.4394 2.5464 - 2.5203

LSGO 3.0766 3.0511 3.3616 10.4573
0.0037 0.0038 0.0037 0.0040
1.6671 1.6933 1.4708 1.7008

Dated Brent 4.3078 4.2921 4.2955 14.2166
.0085 0.0085 0.0074 0.0087
2.4654 2.4851 1.9207 2.4990

Margin 15.3489 - - 36.2044
0.1731 - - 0.1754
10.0917 - - 8.6651

Table 11: MSE per model (values are of the order 10−4)

are defined as follows:

It =

{
1, if rt ∈ [Lt|t−1, Ut|t−1]

0, otherwise.
∼ Bern(p),

where Lt|t−1 and Ut|t−1 are the lower and upper bound respectively.
The testing procedures are given by [9]. The conditional coverage test is a test which checks whether

the exceedances going outside the volatility boundary happen independently and proportionately. The
exceedances need to be independent since patterns might indicate something that the model cannot
model itself such as seasonal patterns which in turn need to be modelled via some other model. The
exceedances need to be proportional otherwise the model is under or over estimating the volatility.

The conditional coverage test is constructed from the unconditional coverage and independence
test. Each of the test can be formulated as a likelihood ratio test. The coverage test is used to test if
E(It) = p given that It is independent. The likelihood under H0 and the alternative are as follows:

L(j; IN , ..., IT ) = (1− j)n0jn1 ,

L(π̂; IN , ..., IT ) = (1− π̂)n0 π̂n1 ,

where j = 0.05 is the test quantile, π̂ = n1

n0+n1
is the estimate of the exceedance probability, n0 is

amount of non exceedances and n1 is the amount of exceedances. Then the coverage likelihood ratio
test is as follows:

LRcoverage = −2 log
(L(j; I1, ..., IN )

L(π̂; I1, ..., IN )

)
∼ χ2

1.

The coverage test does not say anything about dependence of the exceedances this is tested with the
LR test of dependence. The independence is tested via a explicit first order Markov chain. Consider
a Markov chain, It with transition matrix:

Π1 =

[
1− π01 π01

1− π11 π11

]
,
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where πij = P (It = j|It−1 = i). The approximate likelihood is as follows:

L(Π1; IN , ..., IT ) = (1− π01)n00πn01
01 (1− π11)n10πn11

11 ,

where nij is the number of observations with value i followed by j. The approximation of Π1 is as
follows:

Π̂1 =

[ n00

n00+n01

n01

n00+n01
n10

n10+n11

n11

n10+n11

]
,

Then Π2 is an independent Markov chain and the likelihood under H0 becomes as follows:

Π2 =

[
1− π2 π2

1− π2 π2

]
,

L(Π2; IN , ..., IT ) = (1− π2)n00+n10πn01+n11
2 ,

where Π̂2 = π̂2 = n01+n11

n01+n01+n01+n11
. Then the likelihood ratio test is again χ2

2 distributed.

LRindependent = −2 log
(L(Π̂2; I1, ..., IN )

L(Π̂1; I1, ..., IN )

)
∼ χ2

1.

These two test can be used separately to test their H0 but the test can also be combined to form
the joint test of coverage and independence (conditional coverage test) which has a likelihood ratio as
follows:

LRconditional = −2 log
( L(p; I1, ..., IN )

L(Π̂1; I1, ..., IN )

)
∼ χ2

2.

This ratio test follows a χ2
2 distribution under the H0.

Figure 14 shows the exceedances for the Mogas SGARCH model. The results of the coverage test
and conditional coverage test are shown in table 12. The results show that all the models except the
Dated Brent have a p-value larger than 0.05 so the H0, exceedances are independent and the number of
exceedances is within the boundary’s cannot be rejected. These results show that the forecast interval
achieved from the models is a good approximation of the actual returns.

Figure 14: Exceedances for the Return forecast Mogas (1,1,2,2) SGARCH model
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Product Expected ex-
ceedances

Actual ex-
ceedances

Coverage test
(p-value)

Conditional cover-
age test (p-value)

Mogas 37 39 0.8028 0.7497
HSFO 37 47 0.1250 0.3076
Jet 37 39 0.8028 0.7018
Naphtha 37 41 0.5632 0.7268
LSGO 37 37 0.9331 0.7993
Dated Brent 37 54 0.0093* 0.0304*
Margin 37 30 0.1936 0.1483

Table 12: Coverage and conditional coverage test

6.4 Vine Copula fitting

Now that all the MSE scores are calculated the best models are selected to construct a margin portfolio.
This portfolio of six products consists of the separate models and their interaction which is described
by a vine copula. As mentioned in paragraph 3.3 the fitting of the copula is done on the errors of
the best models. The fitting scheme is described in paragraph 5.3. The copula structure for the first
period is shown in figure 15 and the types of copula are shown in figure 16. The number representation
is in table 13.

Product Number
Mogas 1
HSFO 2
Jet 3
Naphtha 4
LSGO 5
Dated Brent 6

Table 13: Products and their corresponding number for the copula plots

The fitting and refitting scheme is the same as with the GARCH and continues models but the
forecasting scheme changes. To get the g-ahead forecast g simulations are done and the quantiles are
taken to get the desired errors. These errors can be filled in (16) and the return can be forecasted.

Table 14 shows the MSE results for the univariate and multivariate models for the margin. Just
like in paragraph 6.3 the interval of the model can be evaluated with the coverage and unconditional
coverage test. Table 15 shows that the vine copula model for the margin is not a good approximation
for the interval of the actual margin returns. Figure 17 and 18 show the exceedance plots for the
univariate and multivariate models. Figure 19 and 20 show the volatility proxy’s forecast and the
confidence interval is missing since this can not be computed for the portfolio.

r r2 |r|
Margin (Univariate) 15.3489 0.1731 10.0917
Margin (Copula model) 15.3159 0.1781 8.4194

Table 14: MSE for the uni- and multivariate models for the margin (values are of the order 10−4)
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Figure 15: Copula tree structure
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Figure 16: Copulas for each edge in the corresponding tree

Figure 17: Exceedances for the Return forecast Margin (2,1,0,2) SGARCH model
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Figure 18: Exceedances for the Return forecast Margin vine copula model

Figure 19: Return Volatility forecast (r2) Margin multivariate model with confidence interval
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Product Expected ex-
ceedances

Actual ex-
ceedances

Coverage test
(p-value)

Conditional cover-
age test (p-value)

Margin (Univariate) 37 30 0.1936 0.1483
Margin (Copula model) 37 123 0 0

Table 15: Coverage and conditional coverage test for the margin models

Figure 20: Return Volatility forecast (|r|) Margin multivariate model with confidence interval
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7 R implementation

The models and test used in this thesis are implemented in RStudio. This section shows the packages
and the important functions used to obtain the results.

• Rugarch package contains functions which estimate ARMA-GARCH parameters. We used the
following functions:

– ugarchspec() is used to set the model specifications such as error distribution and GARCH
model type.

– ugarchfit() is used to find the model parameters and details such as AIC values and test
resutls for asymmetry.

– fitdist() is used to find the parameters for the error distribution.

– qdist() is used to calculate the quantiles of a certain error distribution.

– VaRTest() is used to perform the coverage and unconditional coverage test.

For further information about the package and the functions see [13].

• VineCopula package contains functions which estimate copula parameters and fits vine structures
to the data. We used the following functions:

– RVineStructureSelect() is used to determine the vine structure and estimate the copula
parameters.

For further information about the package and the functions see [26].

• TSA package contains all kinds of time series functions, we only use the periodogram() function
to determine if there is an seasonal component present.

The following functions are normally present in R:

• acf() is used to make the acf plots.

• Box.test() is used to perform the Ljung-Box.

• cor() is used to calculate the Pearson correlations.
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8 Conclusion

We have described how for each product and the margin certain types of models are preferred over
the standard GARCH models. Each model has its own properties which also apply to the products
and the margin. For example, the best model for the Mogas was the standard GARCH model which
indicates that the returns of the Mogas have time-varying volatility, are not likely to be impacted by
the news, show no periodicity and the volatility does not have a long memory. Each of these models
is then fitted to their respective return series and the MSE is calculated for the mean process and the
proxy’s for the volatility. Table 11 shows that the discrete models perform better than the continues
models. A cause is that the continues models have a rather fast convergence rate towards the mean
volatility. In the Mogas case this took three days. The GARCH models can handle a less steep decay
of the volatility which in this case is the better fit.

The best models per product are selected based on the MSE results. The best models are combined
in a portfolio which connects the model errors via some copula. With the univariate and multivariate
model it is possible to answer the problem statement of this thesis:

• Is modelling the margin as a univariate time series better than modelling the underlying products
and their interaction?

The MSE results showed that the multivariate model slightly outperforms the univariate series. This
indicates that when modelling the margin as a univariate series the individual information of the
products is lost which results in a worse performance. The backtest on the models in the portfolio
showed that the individual models for the products are good approximations of the actual return
interval, except for the Dated Brent which showed a significant result. The forecast interval of the
portfolio done with the vine copula model was significant as well which indicates that the portfolio
does not forecast the interval properly. So the slight increase in accuracy of the forecast MSE is not
translated into better coverage which means that the multivariate model is too confident in his forecast.
The univariate model would be a better choice since this model covers the forecast interval at an 0.05
level which results in a better approximation of the margin.

While the univariate model captures the interval better it does limit the number of applications
which can be done with the model. Applications such as optimizing certain aspects of the hedging
process such as the hedging ratios and how many barrels to hedge will not be possible because the
individual models are needed for this application. In section 9 improvements to the estimating process
and fitting process are suggested these improvements might help the multivariate model perform better.
Other possibilities such as option simulations are possible with the univariate model. Option simulation
can be done by running a certain amount of simulations and see what the option price will do versus
what the banks or other institutes offer.
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9 Possible extensions

The current models are based on one type of approach. The following methods could improve the
models and their fit. Small changes such as the length of the fitting period could improve the fit. The
current fitting period was chosen as an estimate of a certain pricing cycle. This cycle estimate might
not be accurate. There are also some more complicated improvements which are mentioned further in
this section.

9.1 Estimation method

The preferred method of parameter estimation is the ML method which is also used in this thesis. The
preference for the ML method is due to its nice properties such as consistency and efficiency. However,
it might be possible that the distribution of the ML estimators is a poor approximation of the sample ;
c.f. [25]. [25] shows that with techniques such as the Jackknife estimation method one can reduce the
bias in the estimation results. The Jackknife method divides the data of T observations into o subsets
with an equal amount of observations and then uses the parameter estimation results of those subsets
to reduce the bias via the following formula:

θ̂Jack =
o

o− 1
θ̂T −

∑o
i=1 θ̂i

o2 − o
.

Estimators θ̂T and θ̂i are estimates of θ obtained by via ML. This method might improve the parameter
estimation of the GARCH and continues models which then might improve the fit of the copula model.

9.2 Extra variables

The current models only use the returns as input for their parameter estimation. The data can be
expended using other variables such as News sentiment, number of trades, the volume traded. These
types of variables can improve the fit of the model for both processes the mean and volatility. Equation
(4) shows how extra variables can be added to the volatility process in a similar fashion this can be
applied to the mean process.
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C Appendix 3: rt and r2
t ACF plots
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D Appendix 4: Error distribution QQ-plots

D.1 Mogas
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D.3 Jet
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D.5 LSGO

D.6 Dated Brent
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D.7 Margin
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E Appendix 5: Mean and volatility result plots
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