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Abstract

Leveraging a novel feature engineering pipeline—including a Large Language Model
(LLM) used with structured function calling to extract over 40 unique creative fields from
ad media—these extracted fields are processed and combined with other metadata to form a
static feature vector enriched to 270 features. This vector is later expanded via one-hot en-
coding (OHE) for compatibility with the sequential deep learning architectures. A rigorous
5-fold GroupKFold cross-validation strategy was used to address the ad campaign life cycle
across three sub-questions (SQ1–SQ3). The key findings establish a clear, actionable
temporal hierarchy of predictive power:

1. Early intervention (SQ1): Pre-launch creative features are weak predictors of ad
success. Incorporating just 1–2 days of cumulative performance data substantially
improves the model’s ability to identify both classes: overall accuracy rises modestly,
while the F1-score for the critical "not chosen" class reaches ≈ 0.79 by Day 2, vali-
dating an early-intervention system to flag and mitigate budget waste.

2. Tactical forecasting (SQ2): For next-day performance, sequential deep learning
models—the Temporal Convolutional Network (TCN) and Gated Recurrent Unit (GRU)
—outperformed traditional models (XGBoost and Seasonal Autoregressive Integrated
Moving Average with Exogenous variables (SARIMAX)) by capturing sequential mo-
mentum and m = 7 seasonality. The TCN with static features achieved the low-
est Mean Absolute Error (MAE) for clicks (a 45.5% reduction over the baseline,
MASE = 0.558), while the GRU without static features was superior for the sparse
leads target (a 24.5% reduction, MASE = 0.421). However, no model, including
the baseline or any with static features, showed statistically significant improvements,
likely due to the limited statistical power of the 5-fold cross-validation.

3. Strategic analysis (SQ3): The primary contribution is the paradox of static
feature importance: while non-predictive for short-term volatility (SQ2), LLM-
extracted creative features show statistically significant correlations with long-term effi-
ciency metrics (e.g., funnel conversion rate and cost per lead). Actionable themes—such
as salary inclusion, motivational tone, and casual presentation—emerge as strategic
levers for maximizing ROI.

The research also confirms a top-of-funnel disconnect (r = 0.34 between clicks and
leads), motivating specialized forecasting models. Overall, this thesis delivers a multi-stage
quantitative framework that moves beyond traditional reactive advertising, integrating tem-
poral performance dynamics with statistically validated creative design principles.
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1 Introduction

Every day, marketing teams are faced with a crucial decision: which new ad creative is worth
the investment? Get it right, and a campaign can deliver exceptional returns. Get it wrong, and
significant portions of a budget can be wasted on assets that fail to connect with an audience.
While digital advertising platforms provide a wealth of data, many of these critical go/no-go
decisions still rely on a blend of creative intuition and reactive A/B testing. This traditional
approach means that by the time an underperforming ad is identified, valuable time and resources
have already been lost.

This thesis explores a more proactive approach. It investigates whether data science can be
used to move from reacting to results to proactively predicting them. The central goal is to build
a quantitative framework that can forecast an ad’s performance at different stages of its life.
This is done, by developing and evaluating machine learning models that learn from two distinct
types of information: the static, pre-launch features of an ad (such as salary, call to action and
creative style), and the dynamic performance data from its (first) days online. By understanding
what these two sources of data can tell us, it can help marketers make data-driven decisions to
optimize their ad spend and save valuable time.

To guide this investigation, the research is centered on one overarching question:

RQ: How can a quantitative framework be developed to accurately forecast and evaluate the
performance of social media recruitment ads by systematically assessing the predictive
power of creative features in comparison to dynamic performance data?

This central question is explored through three sub-questions, aligned with the key stages of
a campaign’s life cycle—from initial design to live performance management:

SQ1 (Classification): To what extent can the potential success (“Good” vs. “Bad”) of a
recruitment ad be predicted using only its creative features before launch (Day 0), how does
this predictive accuracy evolve as early performance data (Days 1-14) becomes available,
and which features are most indicative of this potential?

SQ2 (Forecasting): How accurately do different models (SARIMAX, XGBoost, GRU and
TCN) forecast next-day ad performance (clicks/leads)? Does the inclusion of creative
features significantly improve this accuracy over using historical performance data alone,
and which features are the most important predictors in this forecasting context?

SQ3 (Analysis):Which specific creative features have a statistically significant impact on an
ad’s overall lifetime performance efficiency metrics: Click-Through Rate (CTR), Con-
version Rate (CR), Cost Per Click (CPC), Cost Per Lead (CPL), and Funnel
Conversion Rate (FCR)? Furthermore, what is their relative importance, and do sig-
nificant interaction effects exist between these top features?
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2 Literature review

Click-Through Rate (CTR) prediction is a related and well-researched field [19], but it represents
only one part of the job application funnel. A complete funnel is a combination of both the CTR
and the Conversion Rate (CR). Even more challenging in this context is the prediction of the
final outcome—the Funnel Conversion Rate (FCR) from reach to an application (leads)—which
is the multiplication of these two rates (CTR×CR) and results in target values that are several
magnitudes smaller.

The high frequency of advertising data, combined with the extreme sparsity (zero-inflation)
of low-funnel events like leads, presents a significant modeling challenge. Research has shown
that traditional statistical methods struggle to accurately model data exhibiting this intermit-
tent demand characteristic [14]. Furthermore, predicting the success of newly launched ads or
creatives—a task known as the "cold start" problem [15]—requires leveraging static creative
features effectively before sufficient performance history is accrued.

Therefore, this thesis addresses a gap in the current literature by focusing on models that
can jointly handle the high volatility of ad performance time series and the zero-inflation in-
herent in predicting sparse, low-funnel conversion events (leads). To the best of my knowledge,
Temporal Convolutional Networks (TCNs) have not yet been applied to marketing recruitment
ad performance prediction. Furthermore, the comparative evaluation of TCNs alongside GRU,
XGBoost, and SARIMAX on this type of data constitutes a novel contribution of this work.

2.1 The role of creative features in recruitment

According to Alniacik and Alniacik (2025) [2], CR should be higher when job ads are more
informative. Their research concludes that more informative ads help candidates better judge if
the job is appropriate for them, which makes them more likely to apply. Their recommendation
is that HR professionals should craft jobs that have clear, specific information about roles and
requirements, especially when targeting less experienced candidates. Focusing on clarity and
specificity can significantly increase application rates.

Similarly, Mahjoub and Kruyen (2021) [7] state that efficient recruitment relies largely on the
design and content of advertisements. In a comprehensive literature review spanning over four
decades of research, they identified the most important ad features: informativeness, clarity, at-
tractiveness, credibility, specificity, organizational image, and inclusiveness. They conclude that
effective job ads should be clear, informative, and tailored for their respective target audience.

2.2 Models for performance prediction

CTR prediction models in the literature can be grouped into four categories: (1) multivariate
statistical models, (2) factorization machine (FM)-based models, (3) deep learning models, and
(4) tree-based models (Yang & Zhai, 2022 [8]). However, many existing CTR predicting models
ignore distinct characteristics in multimedia advertising, namely image and video features.

2.2.1 Tree-based models

Tree-based models are commonly used for this type of tabular prediction. For example, Bhulai
et al. (2017) [3] examined application rates for a major Dutch company using features such
as job title, work location, and required education level. Data sources included the company’s
Applicant Tracking System, Google Analytics, and Twitter activity. Among the machine learning
models compared, a random forest (RF) yielded the most accurate results.
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2.2.2 Temporal Convolutional Networks (TCN)

Edizel et al. (2017) [4] introduced the use of temporal convolutions for CTR prediction in
commercial search engines. More recently, Guo et al. (2025) [5] were the first to apply a
temporal convolutional network (TCN) to lifetime sequence modeling (LSM) on TaoBao and
WeChat. Their Context-Aware Interest Network (CAIN) outperformed prior LSM methods
across both datasets.

2.2.3 Challenges in conversion rate (CR) prediction

According to Lu et al. (2017) [6], CR prediction may seem similar to the much researched
topic of CTR prediction. However, a conversion requires significantly more user engagement
and is a much less researched topic. One of the main challenges in predicting CR versus CTR
is conversion rarity. Compared with CTR, CR is generally several magnitudes smaller, which
makes the prediction inherently more challenging.

6



3 Methodology

3.1 Research design

The primary aim of this study is to evaluate and forecast advertisement performance through a
three-pronged approach, addressing the distinct stages of a campaign’s life cycle. As visualized
in Figures 1 and 2, this design is broken down into:

1. A classification task to identify high-potential ads at or near launch (SQ1).

2. A time-series forecasting task to predict daily performance for mature ads (SQ2).

3. An inferential analysis task to determine the statistical impact of creative features on
overall lifetime performance (SQ3).

The first two components, the predictive pipelines for SQ1 and SQ2, are illustrated in
Figure 1.

Figure 1: Research design for the predictive pipelines (SQ1 and SQ2), showing the flow from
in-house data to classification and forecasting models.

The first component (SQ1) is a classification model developed to predict whether an ad
will perform well (good versus bad) based on its static, pre-launch creative features. This model
is then sequentially enhanced by incorporating early-life performance data (e.g., from days 1, 2,
5, etc.) to evaluate the added predictive value of initial performance.

The second component (SQ2) is a comparative forecasting analysis of four different mod-
eling techniques for predicting daily clicks and leads. The chosen models—eXtreme Gradient
Boosting (XGBoost) [9], Temporal Convolutional Network (TCN) [10], Gated Recur-
rent Unit (GRU) [11], and Seasonal AutoRegressive Integrated Moving Average with
eXogenous variables (SARIMAX) [12]—facilitate a comparison between a classical statis-
tical model, an advanced tree-based ensemble, and two deep learning architectures.

The third component (SQ3) is a dedicated analytical pipeline, shown in Figure 2, de-
signed to move beyond prediction and identify why certain ads perform well. This analysis
investigates the statistical relationship between the static creative features and an ad’s final
lifetime performance metrics, assessing feature significance, relative importance, and interaction
effects.

For the forecasting analysis (SQ2), a 14-day starting point was chosen to ensure all mod-
els, particularly SARIMAX, had sufficient data to establish statistical stability and capture ini-
tial weekly patterns. To ensure a fair comparison, the machine learning models (XGBoost, TCN,
and GRU) were trained and validated using the same comprehensive dataset, pre-processing, and
Optuna-based optimization steps. However, due to its different statistical nature, the SARIMAX
model was treated as a specialized baseline: its parameters (orders) were optimized per-series
using pmdarima.auto_arima (minimizing AIC), and it was fit using only a minimal set of three
performance-based regressors and no static creative features.
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Figure 2: Research design for the analytical pipeline (SQ3), showing the three parallel analyses
used to evaluate creative feature impact.

3.2 Data description and cleaning

To investigate the predictability of social media advertisement performance, a dataset was pro-
vided by Dutchwebshark, a data-driven recruitment company. The dataset contains historical
campaign data from 2022 to the present. These campaigns are characterized by a high volume
of short, independent time series. While the mean ad duration is approximately 33 days, the
median is only 17 days, indicating the data is heavily skewed by a long tail of outlier campaigns.

The data for this research was gathered from two sources:

Azure SQL Database: Contains the primary dataset: a structured table of daily ad perfor-
mance logs. The 26 columns can be logically grouped as follows:

• Performance Metrics: Daily aggregated counts for key performance indicators (e.g.,
Clicks (All), Amount Spent, Leads, Reach and Post Engagement).

• Efficiency Metrics: Calculated ratios based on the performance metrics (e.g., CPC
(All), CTR (All) and Frequency).

• Hierarchy & Identifiers: Columns that define the ad’s structure and origin (e.g.,
Campaign ID, Ad Set name, Ad ID) and the client account (e.g., Account Name and Client_
ID).

• Time Column: A daily Date field, which forms the basis of the time series.

• Descriptive & Creative Data: Text fields for identification (Campaign Name, Ad name)
and a Ad Image URL linking to the ad’s visual asset.

Meta Ads Manager: Manual extraction of creative media files and campaign objective infor-
mation.

3.2.1 Azure SQL - Performance data

The raw performance data was extracted from an Azure SQL table, structured by ad_id,
platform, and date. To ensure data quality and consistency, only data meeting the follow-
ing criteria was exported:

• Campaign-level filtering:

– Campaigns must have been inactive for at least 30 days to ensure all performance
data is final and complete.

– Campaigns must have run for a minimum of 7 days.

– Campaigns must have reached a minimum of 1,000 people.
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• Row-level cleaning:

– Individual rows containing illogical data were dropped. This included:

∗ Clicks > Reach

∗ Leads > Clicks

∗ Amount Spent < 0

This row-level cleaning resulted in the removal of 373 (0.6%) records, leaving a final dataset
of 64,489 daily performance rows. These records are aggregated into 1,948 unique time series
(one per ad per platform) originating from 794 distinct ads.

3.2.2 Meta Ads Manager

The Azure SQL database contained expired temporary URLs for the ad media. Automating
media retrieval was explored extensively, as several potential avenues were investigated:

• A custom Python scraper was built to crawl the Meta Ads Library with two primary
objectives:

1. Media Matching: To automatically find and extract the missing media files for
the ads already in the performance database. This was found to be unfeasible, as
the public identifiers in the Ads Library do not correspond to the internal ad_ids
from the Ads Manager, making automated matching impossible.

2. Data Augmentation: To extract new, publicly available ads and their information
to enlarge the dataset for training. This approach was also abandoned for perfor-
mance modeling, as the public library only provides reach estimates and lacks the
essential spend, clicks, and leads data required for the analysis.

• The Facebook Graph API was also found to be insufficient, as it only returned low-
resolution 64x64 thumbnails for older ads and could not reliably retrieve historical cam-
paign objective data.

• Windsor.ai was unable to retrieve the full-sized, original media files or the historical cam-
paign objectives, such as leads or traffic.

Given that all automated avenues for bulk retrieval were exhausted, the only reliable method
remaining was manual retrieval. A total of 643 unique media files were downloaded by manually
navigating the Meta Ads Manager interface, saving each file with its corresponding ad_id as
the filename. During this process, the campaign objective data was also manually extracted for
each campaign. This number of media files is lower than the 794 distinct ads in the database
because the permission to access some old clients’ pages was gone.

3.3 Data visualization and exploration

Exploratory data analysis (EDA) was conducted to identify outliers, understand data properties,
and inform modeling decisions.

Initial visualizations of performance data revealed significant outliers in the leads metric
for certain ads, as seen in Figure 3. Investigation showed these were often caused by improp-
erly configured custom conversions, where link clicks were erroneously registered as leads. The
ad_ids associated with this erroneous data were removed from the dataset. This process also
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Figure 3: Total leads vs. total spend, illustrating performance outliers on the left, cleaned data
on the right.

uncovered missing leads data in the database, which was subsequently backfilled using data from
Windsor.ai.

Analysis of efficiency metrics (CR, CPC, CTR, CPL) in Figure 4 demonstrated rapid con-
vergence. The distributions of these metrics stabilize within the first few days of a campaign.
This finding suggests that an ad’s long-term efficiency is largely determined early in its life cycle,
validating the research design’s focus on using early performance to predict future outcomes.

Figure 4: Convergence of cumulative efficiency metrics (CR, CPC, CTR, CPL) over ad lifetime.

A pairplot (Figure 5) was used to visualize the distributions and relationships between key
daily metrics. The pairplot (left) highlighted the extreme right-skew of the data, particularly
for clicks_all, leads, and amount_spent, indicating that most daily values are low, with rare
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high-performance days.
The corresponding correlation heatmap (right) revealed two critical insights that informed

the research design. First, it showed a strong positive volume cluster among amount_spent,
reach, and clicks_all (correlations 0.67–0.71), indicating that increases in spend are generally
accompanied by higher reach and clicks. Second, it exposed a significant top-of-funnel disconnect :
the correlation between clicks_all and leads was weak (0.34), and the correlation between
ctr_all and leads was even weaker (0.20), suggesting that clicks and CTR are poor proxies
for lead generation. These findings validate the decision to build separate forecasting models for
clicks and leads, as their drivers are distinct.

Figure 5: Pairplot and Correlation Heatmap of key daily performance metrics. The pairplot
(left) shows distributions and scatter plots. The heatmap (right) shows Pearson correlation
coefficients.

3.3.1 Time-series properties

To understand the temporal dependencies in the data, Autocorrelation (ACF) and Partial Au-
tocorrelation (PACF) plots were generated for the primary target variables (Figure 6).

The plots revealed two key properties. First, the ACF plots for both Clicks and Leads
show a very slow, gradual decay from a high initial value. This pattern is a classic indicator of
a non-stationary time series with a strong trend and high persistence (e.g., a strong memory).
It confirms that a day’s performance is highly correlated with its recent past, strongly justifying
the use of lagged features and rolling windows for the forecasting models.

Second, the PACF plots clearly showed significant spikes at Lag 7. This finding confirms
a strong weekly seasonality in the data (e.g., performance on a Monday is highly correlated
with performance on the previous Monday). These insights directly informed two key modeling
decisions:

1. A 14-day lookback period was consistently used across the XGBoost, TCN, and
GRU models for generating input sequences and lagged/rolling features. Using a multiple
of the primary seasonal period (7 days) ensures that these models receive input containing
complete weekly cycles, providing sufficient historical context.

2. For SARIMAX, while the specific (p, d, q)(P,D,Q) orders were optimized per-series (see
Section 3.9.2), the PACF analysis confirmed the appropriateness of setting the seasonal
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Figure 6: ACF and PACF plots for Total Clicks (Top) and Total Leads (Bottom).

period to m = 7 within the pmdarima.auto_arima search and the 14-day window was used
for the rolling refitting process.

3.4 Feature engineering

To enhance the predictive power of the models, a diverse set of features was engineered from
the raw data. The objective was to capture performance trends, temporal patterns, campaign
strategy, and the specific content of each advertisement.

3.4.1 Creative feature extraction via LLM

To convert the 643 unstructured media files (images and videos) into structured, usable data,
Google’s gemini-2.5-pro-latest model was employed. The extraction utilized the model’s
function calling capability (sometimes referred to as “tool use”), which provides more reliable
and structured output than a simple text prompt.

A comprehensive JSON schema was defined, pre-specifying over 40 desired attributes. These
features were grouped into five main categories: creative_format, composition_and_style,
content_and_offer, demographics, and brand_and_emotion.

A batch processing script iterated through the media files, making automated API calls. For
each file, the model was prompted to use the extract_ad_features function, which forced its
response to conform to the predefined JSON schema. The resulting structured JSON output
formed the basis for the Ad Creative and Content features (3.4.4). Additional features
described in Sections 3.4.2, 3.4.3, and 3.4.5 were engineered from the structured Azure SQL
database.

3.4.2 Performance, trend, and temporal features

This category includes features that capture both the when (temporality) and how well (perfor-
mance) of marketing activities, providing insights into the timing and effectiveness of campaigns.
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• Temporal Features:

– day_of_week: A categorical feature (0-6) to capture weekly patterns.

– month: A categorical feature (1-12) to capture broader seasonal trends.

– is_weekend: A binary feature (1 for Saturday/Sunday, 0 otherwise).

• Ratio and Efficiency Metrics:

– cpc_all (Cost Per Click): Calculated as amount_spent/clicks_all.

– cpl (Cost Per Lead): Calculated as amount_spent/leads.

– ctr_all (Click-Through Rate): Calculated as clicks_all/reach.

– frequency: Calculated as impressions/reach (available as a base metric).

• Rolling Window Statistics: To capture recent trends and volatility, rolling (moving)
statistics were calculated using 7-day (short-term) and 14-day (medium-term) windows.
Both the mean and standard deviation were calculated for:

– amount_spent

– leads

– reach

– clicks_all

• Base Metrics: The core, non-lagged metrics (e.g., amount_spent, leads, post_engagement,
reach and frequency) were retained to provide the model with the most direct information
for each observation.

3.4.3 Textual naming features

In practice, campaign, ad set, and ad names often contain structured metadata about targeting
or strategy. To leverage this, features were engineered by parsing these names.

• Keyword Indicators: A set of binary features flagging the presence of specific keywords
in the campaign_name, ad_set_name, and ad_name. Examples include:

– Job terms: ..._has_baan, ..._has_vacature, ..._has_solliciteer

– Sectors: ..._has_finance, ..._has_it, ..._has_techniek

– Seniority/Type: ..._has_junior, ..._has_senior, ..._has_fulltime

• Name Length: The ..._word_count feature was calculated for each naming level.
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3.4.4 Ad creative and content features

This extensive set of features, derived from the LLM extraction (3.4.1), quantifies the visual and
semantic elements of each ad creative. These were processed from a multi-faceted classification:

• Brand & Emotion: Capturing the ad’s affective tone and branding (e.g., brand_name_
visible and emotional_tone_Positive).

• Composition & Style: Describing the visual construction (e.g., setting_Outside,
visual_complexity_Medium and time_of_day).

• Content & Offer: Detailing the core message, including:

– Offer Elements: cta_present, advantages_listed, logo_visible and salary_
mentioned.

– Job Details: job_details_industry_... and job_details_job_function_....

– Salary Details: salary_extraction_currency_EUR and salary_extraction_period_
Month.

– Visual Content: number_of_people and person_activity_Office Work.

• Creative Format: Technical descriptors (e.g., media_type_Video, camera_angle_Eye
level and amount_of_text_Low).

• Demographics: Visual indicators of people shown (e.g., demographics_gender_Mixed
and demographics_age_group_Adult).

• Creative Meta-Features: Summary features aggregating content richness (e.g., num_
advantage_cat (count) and has_any_advantage_cat (binary)).

• Question Analysis: For ads containing a question in their copy, a keyword analysis was
performed (e.g., question_has_jij and question_has_hoe

3.4.5 Campaign configuration features

This final group captures high-level strategic choices from the Azure SQL data.

• Platform Placement: One-hot encoded binary features (platform_facebook and platform_
instagram, etc.).

• Campaign Objective: One-hot encoded feature (extra_veld3_Leads and extra_veld3_
Traffic) derived from the manual extraction (3.2.2).

3.5 Feature selection for classifier model

Following feature engineering, a crucial selection step was performed for the ad-level classifi-
cation model. The model’s objective is to identify which creative elements drive performance,
independent of campaign-level settings. This required isolating the variance between individual
ads within the same campaign.

Therefore, all features representing campaign-level configurations, ad set settings, or post-
launch performance were removed. These features (e.g., campaign objective, platform) are
often constant for all ads in a campaign and provide no contrast for an ad-level model. This
ensures the model focuses exclusively on the ad’s intrinsic creative attributes.

The following feature categories were excluded:
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1. Performance, Temporal, and Contextual Features: To prevent data leakage for the
“0-day” classification, all features related to performance or external context were removed
(e.g., amount_spent, cpl, all ..._roll_mean_... features and day_of_week).

2. Campaign and Ad Set Configuration Features: These were removed as they are campaign-
level constants (e.g., extra_veld3_Leads, platform_facebook, all campaign_name...
and ad_set_name... features).

3. Shared Job-Specific Attributes: Attributes related to the job (industry, function, level)
were also removed, as these are typically properties of the campaign, not the individual ad
creative (e.g., all ..._job_details_industry_... and ..._job_details_function_...
features).

The final selected feature set for the classifier consists exclusively of features describing
the ad’s creative, content, and copy (e.g., brand_and_emotion..., composition_and_style...,
creative_format..., demographics... and num_advantage_cat, etc.). This refined set en-
ables the model to isolate the creative and textual levers that distinguish a successful ad from
an unsuccessful one.

3.6 Data splitting and validation

A robust 5-fold GroupKFold cross-validation strategy was used for all models. The campaign_
id was used as the grouping key. This ensures that all ads from a single campaign exist entirely
within either the training or the test set for a given fold, preventing any data leakage between
campaigns and simulating a real-world scenario of predicting performance for new, unseen cam-
paigns. The split was approximately 80% training and 20% testing for each fold.

Evaluation metrics used for the forecasting models (Section 3.9) were as follows:

• Mean Absolute Error (MAE): Measures the average absolute difference between pre-
dicted and actual values, providing an interpretable measure of prediction accuracy.

• Root Mean Squared Error (RMSE): Emphasizes larger errors through squaring, mak-
ing it sensitive to outliers and useful for evaluating volatility.

• F1-score: Represents the harmonic mean of precision and recall for the classification-
based evaluation of up/down or outperform/underperform prediction tasks.

• Mean Absolute Scaled Error (MASE): A scale-independent measure of forecast accu-
racy that allows comparison across series; values below 1.0 indicate forecasts more accurate
than a naïve benchmark [22].

For the classification model (Section 3.8), standard binary classification metrics were used:
Accuracy, Precision, Recall, F1-score, the Area Under the Precision–Recall Curve (AUC-PR),
and the Confusion Matrix.

3.7 Hyperparameter tuning

To ensure each model (except SARIMAX) performed optimally, hyperparameters were tuned
automatically using the Optuna framework [1]. Optuna employs Bayesian optimization algo-
rithms, such as the default Tree-structured Parzen Estimator (TPE), to efficiently search large
hyperparameter spaces.

A nested cross-validation approach was used. For each of the 5 outer folds:

1. A separate Optuna study was conducted with 15 trials.

2. The training data of that fold was split 80/20 into an internal training and validation set.
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3. For each trial, a temporary model was trained on the internal training set and evaluated
on the internal validation set.

4. The MAE on the internal validation set was used as the objective for Optuna to minimize.
Early stopping was used to prune unpromising trials.

5. After 15 trials, the best hyperparameter set was selected and used to train the final model
for that fold on the full training set. This final model was then evaluated on the unseen
test set.

The hyperparameter optimization strategy differed between model families. For the deep
learning (GRU, TCN) and gradient boosting (XGBoost) models, a global search was performed
using Optuna. This involved testing 15 trial combinations to find the hyperparameters that
minimized the Mean Absolute Error (MAE) on a validation set. The specific hyperparameters
tuned for each model were:

• XGBoost: n_estimators, max_depth, learning_rate, subsample and colsample_bytree

• GRU: hidden_dim, n_rnn_layers and dropout

• TCN: kernel_size, num_filters and dropout

In contrast, the SARIMAX model parameters were selected on a per-series basis. For
each individual ad’s time series, the optimal non-seasonal order (p, d, q) and seasonal order
(P,D,Q,m = 7) were determined using the pmdarima.auto_arima function. This process
automatically searches for the combination of orders that best minimizes the AIC (Akaike
Information Criterion), which balances model fit with parsimony.

3.8 Classifier: Good/bad performance predictor

This classification model was designed to act as a proactive tool, enabling an informed decision
on budget allocation before significant budget is spent. The goal is to identify and filter out
“Bad” performing ads, which waste time and money. As seen in Figure 7, the budget spent on
the underperforming (purple) ad could have been saved.

Figure 7: Example campaign timeline (Clicks and Leads) illustrating a "Bad" (purple) vs.
"Good" (yellow) ad.

An ad’s performance class was defined on a campaign-by-campaign basis. Let:

• Si = total spend of ad i

• Sc
max = maximum total spend of any ad in campaign c

Then, the label for ad i is defined as:

Performance Labeli =

{
"Good" (Chosen), if Si

Sc
max

≥ 0.20

"Bad" (Not Chosen), if Si
Sc

max
< 0.20
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This logic defines "Bad" ads as those likely deactivated either manually by an optimizer
or automatically by Meta’s algorithm due to poor performance, resulting in limited budget
allocation.

An XGBoost classifier (XGBClassifier from the xgboost library) was used for this task.
The model was trained and evaluated sequentially for different amounts of available performance
data:

1. Day 0: Using only the static creative features identified in Section 3.5, extracted from
the first day’s record for each ad.

2. Days N (1, 2, 3, 5, 7, 10, 14): Sequentially augmenting the static creative features
with the cumulative performance features available up to day N (e.g., raw metrics like
clicks_all, amount_spent, and rolling statistics calculated up to that day).

For each day N , a 5-fold group cross-validation (grouping by campaign_id, as described in
Section 3.6) was performed. Within each fold, a preprocessing pipeline was applied:

• Numerical features were imputed with zero (SimpleImputer(strategy=’constant’, fill_
value=0)) and then standardized (StandardScaler).

• Categorical features were passed through.

• A VarianceThreshold was applied to remove zero-variance features within the training
set of that fold.

• The XGBoost classifier was then trained on the preprocessed data.

Hyperparameter Tuning Note: While Optuna was used for hyperparameter tuning in
the forecasting models (Section 3.7), initial experiments with Optuna for this classification task
did not yield significant performance improvements over the default XGBClassifier parameters.
Therefore, for simplicity and given the lack of substantial gain, the results reported in Section
4.1 were generated using the default hyperparameters of the XGBClassifier.

This sequential analysis allows for measuring the precise predictive value added by early
performance data (SQ1). Furthermore, feature importance (based on XGBoost’s internal gain
metric, averaged across folds and days) was extracted to gain insight into which creative and
performance attributes contribute most to a “Good” or “Bad” classification, providing statistical
evidence to inform future creative processes (SQ1). Evaluation focused on standard binary
classification metrics (Accuracy, F1-Score, Precision, Recall) calculated per class, aggregated
confusion matrices, and Precision-Recall curves to account for class imbalance.

3.9 Next-day performance forecasting

This section details the comparison of XGBoost, TCN, GRU, and SARIMAX for forecasting
next-day ad performance. All models were used to predict both clicks and leads as the target
variable. For the leads forecast, only data from campaigns with a ’Leads’ objective was used.
"As the forecasting models are based on regression and do not have an inherent non-negativity
constraint, raw predictions could result in small negative values for count-based metrics like
’clicks’. To correct for this, all final forecasts were post-processed by applying a lower bound
of zero (i.e., Forecast = max(0,Raw_Forecast)), ensuring all predicted values are logically
possible."

Feature Importance Strategy for Sequential Models For the deep learning models (GRU,
TCN), the final SHAP analysis focused exclusively on interpreting the dynamic performance
features (lagged and rolling metrics). This was a deliberate methodological choice due to
the high dimensionality of the combined input space (approximately 850 features, including
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453 static creative features). The objective was to isolate the contribution of dynamic causal-
ity—momentum, volatility, and trend—in day-to-day forecasting. Consequently, while the static
creative features were provided as contextual inputs to the models (as static covariates) to refine
sequential processing, their direct contribution was intentionally excluded from the final SHAP
interpretation plots.

3.9.1 Data preparation

Prior to training, data was prepared to meet the input requirements of each model:

• Scaling: All continuous target and covariate features were scaled to a [0, 1] range using
a MinMaxScaler.

• Formatting (TCN/GRU): Data was formatted into fixed-length sequences. Based on
the 7-day seasonality found in 3.3.1, a 14-day lookback period was used. The models
use a sequence of 14 past time steps to predict the next time step (i.e., day 15).

• Formatting (XGBoost): The time series was “unrolled” into a tabular format using the
14-day lookback period to create a flat feature vector for each time step.

• Formatting (SARIMAX): Data was provided as Pandas Series/DataFrames for endoge-
nous and exogenous variables within the rolling forecast loop. Time series were filtered
to include only those with a minimum length of 15 days (MIN_TRAIN_LENGTH) to ensure
sufficient data for the initial 14-day lookback window used for both order selection and
the first prediction step.

3.9.2 Baseline model

The EDA (3.3) showed that efficiency metrics converge quickly. This implies that after a few
days, performance (clicks/leads) should be strongly correlated with spend alone. Therefore, a
baseline model was engineered using a global efficiency factor calculated from the training set:
global_efficiency_factor = total_target/total_spend. This factor represents the mean 1/CPC
or 1/CPL. The baseline prediction uses only the previous day’s spend, a sequential one-step-
ahead forecast using a lagged predictor.

• For leads: leads(t) = (total_train_leads/total_train_spend)× spend(t− 1)

• For clicks: clicks(t) = (total_train_clicks/total_train_spend)× spend(t− 1)

3.9.3 TCN

The Temporal Convolutional Network (TCN) [10], an architecture using dilated causal convo-
lutions to capture long-range dependencies in sequences, was implemented using the darts.
models.TCNModel.

• Model Specification: The TCN model was configured with an input_chunk_length
equal to the lookback period (14 days) and an output_chunk_length of 1 day, suitable for
one-step-ahead forecasting. It processes sequences of past target values and past covariates
to predict the next target value.

• Feature Sets: Similar to XGBoost, two versions were evaluated:

1. Performance Only: This version used the 14-day history of the target variable
(clicks_all) and the time-varying performance features (lags, rolling stats, tem-
poral features) as past covariates. No static creative features were provided to the
model itself.
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2. Performance + Creative: This version used the same past covariates as "Perfor-
mance Only" but additionally incorporated the static creative features (e.g., features
starting with creative_format_, brand_and_emotion_) as static covariates. These
are provided once per series and allow the model to condition its predictions on the
ad’s specific characteristics.

• Data Preparation:

– TimeSeries Creation: As with XGBoost, data within each fold was converted
into lists of darts.TimeSeries objects, filtered to include only series with at least
15 days (LOOKBACK_PERIOD + 1). Value columns included the target and the past
(performance) covariates. Crucially, the static creative features (plus a unique tag
derived from ad_platform_id) were included during TimeSeries creation using the
static_cols argument.

– Static Covariate Encoding: Since TCNModel can directly handle static covari-
ates but requires them to be numeric, a darts.dataprocessing.transformers.
StaticCovariatesTransformer was used. This transformer applied one-hot encod-
ing (via sklearn.preprocessing.OneHotEncoder) to all categorical static features
(including the ad ID tag). It was fit on the combined train and test series within
the fold to learn the full vocabulary before transforming the train and test lists sep-
arately. The original ad ID tag was effectively encoded but excluded from the list
of static features passed to the model during training/prediction to avoid data leak-
age. Numeric static features (if any, although excluded in the provided script’s final
feature definition) would bypass encoding.

– Scaling: Both the target variable and the past covariates (performance features)
were scaled independently using darts.dataprocessing.transformers.Scaler with
global_fit=True. Static covariates were not scaled. The static covariates (now nu-
merically encoded) were re-attached to the scaled target TimeSeries objects before
model training and prediction.

• Hyperparameter Tuning: Optuna [1] was used within each fold using the nested valida-
tion approach (Section 3.7). The objective function (objective_tcn) minimized MAE on
the internal validation split over 15 trials. Tuned hyperparameters included kernel_size,
num_filters, and dropout. PyTorch Lightning’s EarlyStopping callback (monitoring
validation loss with a patience of 5 epochs) was used within Optuna trials and during the
final model training to prevent overfitting and determine the optimal number of training
epochs (up to a maximum of 100 for Optuna, 200 for the final fit). Training utilized GPU
acceleration where available.

• Training and Forecasting: The best hyperparameters from Optuna were used to config-
ure the final TCN model for the fold. This model was trained on the full (scaled) training
data for that fold, again using early stopping based on a 90/10 split of the training data for
validation during the final fit. Similar to XGBoost, predictions for the test set were gen-
erated using historical_forecasts with start=LOOKBACK_PERIOD and retrain=False,
performing sequential one-step-ahead forecasts using the single trained model. Scaled pre-
dictions were inverse-transformed using the fitted target scaler. As the model’s final linear
output layer is unconstrained and can produce negative values, a post-processing step
was applied to clip all final, unscaled predictions at zero (i.e., max(0, ŷ)) to enforce the
non-negativity constraint.
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3.9.4 GRU

The Gated Recurrent Unit (GRU) [11], a type of Recurrent Neural Network (RNN) known for
its efficiency in capturing temporal dependencies, was implemented using the darts.models.
BlockRNNModel with the model=’GRU’ parameter.

• Model Specification: The BlockRNNModel was configured with an input_chunk_length
of 14 days and an output_chunk_length of 1 day. This architecture processes sequences
of past target values, past covariates, and static covariates to predict the next target value.

• Feature Sets: Like XGBoost and TCN, two versions were evaluated:

1. Performance Only: Utilized the 14-day history of the target variable (clicks_all)
and the time-varying performance features (lags, rolling stats, temporal features) as
past covariates. No static creative features were provided to the model.

2. Performance + Creative: Used the same past covariates but also incorporated
the static creative features (e.g., features starting with creative_format_) as static
covariates, allowing the GRU layers to condition their hidden state based on the ad’s
characteristics.

• Data Preparation: The data preparation steps were identical to those used for the TCN
model (Section 3.9.6):

– TimeSeries Creation: Data was converted to darts.TimeSeries objects, filtered
for minimum length (15 days), and included past covariates (performance features)
in the main value columns and static covariates (creative features + ad ID tag) via
the static_cols argument.

– Static Covariate Encoding: The StaticCovariatesTransformer with OneHotEncoder
was used to numerically encode all categorical static features, fitting on the combined
train/test set vocabulary before transforming. The encoded ad ID tag columns were
excluded from the features passed to the model.

– Scaling: Target and past covariates were scaled using Scaler(global_fit=True).
Encoded static covariates were not scaled but were re-attached to the scaled target
TimeSeries.

• Hyperparameter Tuning: Optuna [1] was used with the nested validation approach
(Section 3.7). The objective function (objective_gru) minimized MAE on the internal
validation split over 15 trials. Tuned hyperparameters included hidden_dim (size of the
GRU hidden state), n_rnn_layers (number of stacked GRU layers), and dropout. Py-
Torch Lightning’s EarlyStopping callback (monitoring validation loss, patience 5) was
used during Optuna trials and final training. GPU acceleration was utilized.

• Training and Forecasting: The best hyperparameters were used to configure the final
BlockRNNModel(model=’GRU’). It was trained on the full fold training data using early
stopping based on a 90/10 validation split. Predictions were generated using historical_
forecasts (start=LOOKBACK_PERIOD, retrain=False), performing sequential one-step-
ahead forecasts. Predictions were inverse-transformed using the target scaler. As the
model’s final linear output layer is unconstrained and can produce negative values, a post-
processing step was applied to clip all final, unscaled predictions at zero (i.e., max(0, ŷ))
to enforce the non-negativity constraint.
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3.9.5 XGBoost

XGBoost (eXtreme Gradient Boosting) [9] , a highly efficient gradient boosting library, was
implemented using the darts.models.SKLearnModel wrapper. This approach frames the time
series forecasting problem as a supervised regression task.

• Model Specification: An XGBRegressor model was used. The SKLearnModel wrapper
automatically creates lagged features from the target variable and past covariates. Based
on the seasonality analysis and consistency with other models, a lookback window of 14
days was used (lags=14, lags_past_covariates=14). This means the model used the
previous 14 days of the target variable and all selected features to predict the next day’s
value.

• Feature Sets: Two distinct versions of the XGBoost model were trained and evaluated
for each fold:

1. Performance Only: This version used only the dynamic performance features.
These included lagged values (up to 14 days) of core metrics (clicks_all and
amount_spent, etc.), rolling window statistics (7 and 14-day mean/std deviation),
and temporal features (day_of_week, month, is_weekend). Crucially, current-day
performance metrics were excluded from the feature set to prevent data leakage,
ensuring only past information was used for prediction.

2. Performance + Creative: This version augmented the "Performance Only" set by
adding all static creative features (derived from the LLM analysis and name parsing,
e.g., features starting with creative_format_, brand_and_emotion_, _has_ and
_word_count, etc.). These static features provide the model with context about the
specific ad being predicted, constant across all its time steps.

• Data Preparation: Input data was sourced from the master feature set CSV. Within each
fold, the training and testing dataframes were converted into lists of darts.TimeSeries
objects, grouped by ad_platform_id. Time series shorter than 15 days (LOOKBACK_PERIOD
+ 1) were filtered out. Both the target variable (clicks_all) and the feature sets were
scaled independently using darts.dataprocessing.transformers.Scaler before being
fed into the model.

• Hyperparameter Tuning: Optuna [1] was used for hyperparameter optimization within
each fold, following a nested validation procedure similar to that described in Section 3.7.
The training data of the fold was split 80/20 for internal training and validation. The
Optuna objective function (objective_xgboost) minimized the MAE on the internal val-
idation set over 15 trials (N_TRIALS_OPTUNA). Tuned hyperparameters included max_depth,
learning_rate, subsample, and colsample_bytree. To leverage XGBoost’s built-in early
stopping mechanism during Optuna trials (preventing overfitting and speeding up trials),
the lagged validation data (eval_set) was manually constructed using a helper function
(create_lagged_data) and passed to the underlying XGBRegressor.fit() method via the
Darts wrapper’s fit_kwargs. A fixed high number of estimators (2000) was set, allowing
early stopping (with a patience of 15 rounds) to determine the optimal number of trees.

• Training and Forecasting: After identifying the best hyperparameters via Optuna for
a given fold, a final XGBoost model instance was created with these parameters. This
final model was trained once on the entire training dataset for that fold (again, potentially
using early stopping with a manually constructed validation set from the last 10% of
the training data). Predictions for all test series in the fold were then generated using
the historical_forecasts method with start=LOOKBACK_PERIOD and retrain=False.
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This means the single, optimized model trained on the fold’s training data was used to
make sequential one-step-ahead predictions across the entire forecast horizon for each test
series without being refit at each step. Predictions were inverse-transformed using the
fitted target scaler before evaluation. As the regressor’s output is unconstrained and could
theoretically produce negative values, a post-processing step was applied to clip all final,
unscaled predictions at zero (i.e., max(0, ŷ)) to enforce the non-negativity constraint of
the target variable.

• Feature Importance: The feature importances (based on gain) were extracted from the
underlying XGBRegressor model after training on the full data for each fold and for each
version (Perf. Only vs. Perf. + Creative). The script included logic to attempt matching
importance scores with the correct lagged feature names generated by the Darts wrapper.
These fold-level importances were later aggregated to provide an overall view.

3.9.6 SARIMAX

The SARIMAX (Seasonal AutoRegressive Integrated Moving Average with Exogenous Variables)
[12] model from the statsmodels library was implemented as a classical time-series benchmark.
Given its univariate nature, a separate SARIMAX model was fit for each individual ad time-
series within each cross-validation fold.

• Model Specification: The model was specified to handle the data’s specific characteristics:

– Exogenous Regressors (X): A limited set of regressors was chosen for parsimony
and direct relevance to short-term dynamics: amount_spent_lag_1 (recent bud-
get), clicks_all_lag_1 or leads_all_lag_1 (recent momentum), and is_weekend
(weekly pattern).

– Target Transformation: Both the clicks_all and leads_all targets represent
non-negative count data (y ≥ 0). Such data often produce non-normally distributed
residuals, violating a key assumption of the standard SARIMAX model. Moreover,
the Gaussian likelihood used in SARIMAX can yield negative forecast values, which
are not meaningful for count outcomes. To resolve this mismatch, stabilize the vari-

Figure 8: Distribution of raw clicks_all data (from the EDA pair plot in subsection 3.3). The
extreme right-skew and non-negativity justifies the use of a stabilizing square root transforma-
tion.

ance, and make the data’s distribution more symmetric, a square root transformation
(√y) was applied. The model was therefore specified to predict the square root of
clicks, not the raw count.
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• Order Selection: To account for the unique characteristics of each ad, the optimal non-
seasonal order (p, d, q) and seasonal order (P,D,Q,m = 7) were determined once per series.
This was achieved using the pmdarima.auto_arima function on the transformed (√y)
initial 14 days of data (LOOKBACK_PERIOD) for that specific ad. The function automatically
searched for the best orders minimizing the AIC (Akaike Information Criterion) within a
constrained search space (e.g., p, q ≤ 2; P,Q ≤ 1). A fallback order of (1, 0, 1)(1, 0, 0, 7)
was used if auto_arima failed.

• Forecasting Method: A rolling forecast approach was employed. Starting from day 15
(MIN_TRAIN_LENGTH), the model was refit for each subsequent day using the square root of
the target data (√y) from the preceding 14 days (LOOKBACK_PERIOD). The predetermined
optimal order and the three exogenous regressors were used in each refitting step. The
refitted model produced a one-step-ahead forecast in the transformed (square root) space.
This forecast was then squared (ŷ2transformed) and corrected for re-transformation
bias by adding the model’s residual variance (σ̂2) to return an unbiased prediction
in the original scale, mathematically guaranteeing a non-negative forecast.

3.10 Creative feature impact analysis (SQ3)

To address SQ3—identifying which creative features significantly impact lifetime performance
and their relative importance—a dedicated analysis pipeline was executed. This analysis focused
exclusively on the relationship between the static, pre-launch creative features and the overall
lifetime efficiency metrics calculated for each ad.

3.10.1 Data preparation for lifetime analysis

The analysis began by loading the pre-generated master feature set, which contained daily data
including both performance and creative features. This daily data was then aggregated to create
a dataset with one row per unique ad (ad_platform_id). During aggregation:

• Core performance metrics (clicks_all, leads, reach and amount_spent) were summed
over the entire lifetime of each ad to get totals.

• Static creative features (derived from the LLM extraction and other sources).

• Five key lifetime efficiency metrics were calculated based on these totals, corresponding to
the metrics mentioned in SQ3:

– Click-Through Rate (CTR): total_clicks
total_reach × 100

– Conversion Rate (CR): total_leads
total_clicks × 100

– Funnel Conversion Rate (FCR): total_leads
total_reach × 100

– Cost Per Click (CPC): total_spend
total_clicks

– Cost Per Lead (CPL): total_spend
total_leads

Crucially, to isolate the impact of creative choices, all dynamic performance features (e.g., daily
metrics, rolling statistics, date-based features like day_of_week, month) were explicitly identified
and dropped from the aggregated dataset before the main analysis. This ensures that the
subsequent steps evaluate only the predictive power of the creative elements themselves on the
final lifetime outcomes.
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3.10.2 Statistical significance testing

For each of the five lifetime efficiency metrics (used as the target variable), the relationship
with each individual creative feature was assessed for statistical significance using a threshold
of p < 0.05:

• Categorical creative features (including binary flags): One-way Analysis of Variance
(ANOVA) was used to test if the mean efficiency metric differed significantly across the
different categories or levels of the feature.

• Post-hoc analysis: For categorical features found significant by ANOVA, the Tukey
Honestly Significant Difference (HSD) test was performed to identify which specific pairs
of categories had statistically significant differences in their mean efficiency metric.

• Continuous creative features (e.g., content_and_offer_number_of_people, counts
like num_advantage_cat): Pearson correlation coefficient was calculated to measure the
linear relationship between the feature and the efficiency metric, along with its associated
p-value.

These tests identify creative features that have a statistically verifiable association with the
overall performance metrics.

3.10.3 Relative importance ranking

To determine the relative importance of the creative features in predicting the lifetime efficiency
metrics, Permutation Importance was calculated. For each efficiency metric:

• An XGBoost regression model was trained using only the identified creative features as
predictors and the lifetime efficiency metric as the target.

• The permutation importance of each creative feature was computed by measuring the
decrease in model performance (R-squared or similar metric) when the values of that
single feature were randomly shuffled.

• Features were ranked based on their mean importance score across multiple shuffling re-
peats.

This method provides a model-based assessment of which creative features are most influential
in predicting the final outcome, complementing the individual statistical tests.

3.10.4 Interaction effects analysis

To investigate potential interaction effects between the most important creative features, Ordi-
nary Least Squares (OLS) regression models were employed.

• The top N (e.g., N = 10) most important categorical creative features (identified via
permutation importance) were selected. This focus on categorical-categorical interactions
was a deliberate choice to prioritize the discovery of the most interpretable and directly
actionable insights, as opposed to the more complex analysis of continuous-variable inter-
actions.

• For pairs of these top features, an OLS model was fitted including main effects for both fea-
tures and their interaction term (e.g., Target ∼ C(Feature1)+C(Feature2)+C(Feature1) :
C(Feature2)).

• An ANOVA was performed on the fitted OLS model to obtain the p-value specifically for
the interaction term.
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• Interaction plots were generated for visual inspection, annotated with the interaction p-
value.

This step helps uncover synergistic or antagonistic effects where the impact of one creative
feature depends on the level of another.

3.10.5 Subset analysis

All analyses (statistical significance, importance ranking, interaction effects) were performed on
all the ads of which the corresponding extracted creative features were present.

This comprehensive analysis pipeline directly addresses SQ3 by systematically evaluating
the significance, importance, and interactions of creative features concerning key lifetime per-
formance indicators, after controlling for dynamic performance influences.
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4 Results

This section presents the results of the classification and forecasting models developed to address
the research questions.

4.1 Classifier Performance (SQ1)

The first sub-question (SQ1) investigated the extent to which the potential success ("Good" vs.
"Bad", defined in Section 3.8) of a recruitment ad could be predicted using only its creative
features (Day 0) and how this prediction evolved with the inclusion of early performance data
(Days 1-14). An XGBoost classifier was trained and evaluated using 5-fold group cross-validation
for each time point.

4.1.1 Overall Performance Evolution

Figure 9 illustrates the mean performance metrics (F1-Score, Accuracy, Recall and Precision)
across the 5 folds as more days of cumulative training data were included. The table below
(summarized from log output) shows the aggregated performance for the "Total" dataset split
by the target class.

Table 1: Mean Classifier Performance Metrics (5-Fold CV - Total Ads)

Class Metric Day 0 Day 2 Day 7 Day 14

Not Chosen F1-Score 0.729 0.793 0.796 0.819
Recall 0.770 0.830 0.822 0.821
Precision 0.693 0.760 0.771 0.819

Chosen F1-Score 0.226 0.446 0.579 0.681
Recall 0.197 0.399 0.543 0.679
Precision 0.267 0.509 0.620 0.690

Overall Accuracy 0.599 0.699 0.725 0.770
Note: "Chosen" refers to the ’Good’ class, "Not Chosen" to the ’Bad’ class.

Several key observations emerge:

• Day 0 Performance: Using only creative features, the model achieved a mean accuracy
of approximately 59.9%. However, performance was significantly imbalanced. The F1-
score for the majority class ("Not Chosen") was reasonable (0.73), but very low for the
minority class ("Chosen", 0.23), indicating difficulty in identifying potentially successful
ads based solely on pre-launch characteristics. Recall for "Chosen" ads was particularly
low (around 20%).

• Impact of Early Data: Incorporating just the first few days of performance data greatly
improved the model’s ability to identify "Chosen" ads. The F1-score for this minority class
jumped from 0.23 to 0.45 by Day 2 and continued to rise steadily, reaching 0.68 by Day
14. Crucially, the model’s already-strong ability to identify the "Not Chosen" class was
also solidified; its F1-score rose from 0.73 to over 0.80 by Day 2. This shows that the main
value of early data is in learning to separate the rare "Good" ads from the "Bad" majority.
Overall accuracy also increased significantly, reaching approximately 71% by Day 2 and
77% by Day 14.
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Figure 9: Model Performance Metrics Evolution (5-Fold Cross-Validation). Shaded areas repre-
sent +/- one standard deviation across folds.

• Metric Convergence: Most performance gains occurred within the first 2-5 days. While
metrics continued to improve slightly up to Day 14, the marginal benefit of additional data
decreased over time. Precision and Recall for both classes generally improved, suggesting
the model became better at both identifying the correct class and avoiding misclassifica-
tions as more data became available.

• Class Imbalance Effect: The performance difference between the "Chosen" (minority)
and "Not Chosen" (majority) classes remained noticeable throughout, although the gap
narrowed significantly with the addition of performance data. This highlights the inherent
challenge of predicting the rarer "Good" outcome.

4.1.2 Confusion Matrices and Class Distinction

Figure 10 shows the aggregated confusion matrices across the 5 folds for Days 0, 2, 7, and 14.

Figure 10: Aggregated Confusion Matrices Across Folds for Different Training Data Durations.

The matrices visually confirm the trend observed in the metrics:

– At Day 0, using only static features, the model correctly identified 42 "Chosen" ads
(True Positives, TP) while misclassifying 181 as "Not Chosen" (False Negatives,
FN). It performed well on the "Not Chosen" class, achieving 417 correct predictions
(True Negatives, TN) against 108 False Positives (FP).
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– By Day 2, the number of correctly identified "Chosen" ads (TP) was 86, with False
Negatives (FN) decreasing to 137. The model’s performance on the "Not Chosen"
class saw True Negatives (TN) rise slightly to 428 and False Positives (FP) drop to
84, validating the use of early performance data.

– At Day 7 and Day 14, the model continued to refine its distinction. True Positives
(TP) were 116 (Day 7) and 118 (Day 14). False Negatives (FN) continued to
decrease to 101 (Day 7) and 60 (Day 14). Concurrently, True Negatives (TN) were
333 and 257, respectively, demonstrating a clear and consistent improvement in the
model’s ability to identify the "Chosen" class.

Overall, the confusion matrices demonstrate the model’s increasing ability to distinguish
between the two performance classes as it gains access to early performance signals.

4.1.3 Precision-Recall Analysis

To better evaluate the model’s performance on the imbalanced classes, Precision-Recall (PR)
curves were generated for key time points, focusing on the "Not Chosen" (majority) class as the
positive target for consistency with the plots generated. Figure 11 shows the PR curves for Day
0, 2, 7, and 14 combined.

Figure 11: Precision-Recall Curves for the "Not Chosen" Class at Different Training Data
Durations (Aggregated Across Folds). The red dashed line indicates the no-skill baseline.

The Area Under the PR Curve (AUC-PR) provides a summary measure of the model’s ability
to achieve high precision and high recall simultaneously.

• At Day 0, the AUC-PR was 0.71, only slightly above the no-skill baseline of 0.70. This
confirms the limited predictive power of creative features alone for this class definition and
dataset.
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• By Day 2, the AUC-PR jumped significantly to 0.83, indicating a much better trade-off
between precision and recall.

• The AUC-PR continued to improve, reaching 0.87 by Day 7 and 0.85 by Day 14 (slight
variations between Day 7 and 14 might be due to fold aggregation). The curves consistently
stay well above the no-skill line, demonstrating the model’s value once performance data
is included.

These curves reinforce that while creative features offer minimal predictive signal at launch (Day
0), incorporating just a few days of performance data allows the model to differentiate between
"Good" and "Bad" ads with significantly higher confidence.

4.1.4 Feature Importance

To understand which features contributed most to the predictions, feature importance was cal-
culated based on the XGBoost model’s internal gain metric, averaged across all folds and days
where the feature was used. Figure 12 shows the top 20 creative features, while Figure 13 shows
the top 20 performance features (relevant for Day 1 onwards).

Figure 12: Top 20 Creative Feature Importances (Averaged Across Folds and Days).

Key insights from feature importance include:

• Top creative features: The most influential creative attributes identified by the model
are depicting leisure activities (num_content_and_offer_person_activity_Leisure),
the season being summer (num_composition_and_style_season_Summer), and the
number of button styles (num_num_button_style). Other highly important factors
include the number of questions (num_num_question), using a photo (num_creative_
format_media_type_Photo), and mentioning a salary range (num_content_and_offer_
salary_extraction_salary_type_Range). Activities like office work and healthcare,
as well as creative formatting choices such as formal style and high text amount, also
ranked highly.

• Top performance features: Once available, recent performance metrics dominate im-
portance. The top three are raw amount spent (num_amount_spent), raw reach
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Figure 13: Top 20 Performance Feature Importances (Averaged Across Folds and Days 1-14).

(num_reach), and raw clicks (num_clicks_all). Short-term rolling means (e.g., num_
amount_spent_roll_mean_7) were more important than longer-term averages or standard
deviations initially. Efficiency metrics like cost per lead (num_cpl) also quickly gained
importance. Notably, text-derived features (word counts, average question length) were
absent from the top 20, indicating the model relies primarily on direct performance
momentum and volatility once early data is available.

These importance rankings help answer the final part of SQ1, highlighting specific creative
elements that associate with the "Good"/"Bad" label at Day 0, and confirming the dominance
of direct performance metrics once they become available.
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4.2 Forecasting Performance (SQ2)

The second sub-question (SQ2) evaluated the accuracy of TCN, XGBoost, GRU, and SARI-
MAX models against a baseline for forecasting next-day clicks_all and leads. This section
summarizes the comparative performance of all models and provides a detailed analysis based
on the 5-fold cross-validation experiments.

4.2.1 Overall Model Comparison (Clicks)

Table 2 presents the aggregated mean performance metrics for all models predicting clicks_all.
The models are sorted by Mean Absolute Error (MAE) from lowest (best) to highest (worst).

The clicks table is already using the correct, consistent baseline values.

Table 2: Overall Mean Forecasting Performance (5-Fold CV - Target: clicks)

Model MAE RMSE F1-Score MASE Runtime (hrs) ∆MAE vs Baseline

TCN (Perf. + Creative) 1.597 5.180 0.782 0.558 27.01 +45.5%
TCN (Perf. Only) 1.970 5.006 0.622 0.692 27.01 +32.8%
GRU (Perf. Only) 2.223 7.122 0.598 0.775 34.59 +24.1%
Realistic Baseline 2.929 9.513 0.777 0.907 – Reference
SARIMAX (Simple) 3.248 13.994 0.810 0.953 1.42 -10.9%
XGBoost (Perf. + Creative) 3.341 12.002 0.660 1.036 4.23 -14.0%
XGBoost (Perf. Only) 3.346 12.000 0.647 1.036 4.23 -14.2%
GRU (Perf. + Creative) 4.489 9.689 0.439 1.567 34.59 -53.2%

The results for predicting clicks show a clear hierarchy:

• TCN models were the top performers, with TCN (Perf. + Creative) achieving the
best MAE (1.597), a 45.5% improvement over the baseline.

• GRU (Perf. Only) also performed well, improving MAE by 24.1% over the baseline.

• SARIMAX and XGBoost models underperformed, failing to surpass the Realistic
Baseline.

• Adding creative features improved TCN performance but worsened GRU performance
(MAE 4.489), highlighting sensitivity to high-dimensional inputs.

4.2.2 Overall Model Comparison (Leads)

Table 3 summarizes results for the sparser leads target, using the averaged baseline metrics
from all experiments.

Table 3: Overall Mean Forecasting Performance (5-Fold CV - Target: leads)

Model MAE RMSE F1-Score MASE Runtime (hrs) ∆MAE vs Baseline

GRU (Perf. Only) 0.165 0.464 0.482 0.421 30.56 +24.5%
TCN (Perf. Only) 0.192 0.558 0.522 0.513 20.51 +12.1%
TCN (Perf. + Creative) 0.200 0.520 0.525 0.535 20.51 +8.5%
GRU (Perf. + Creative) 0.206 0.534 0.401 0.525 30.56 +5.7%
XGBoost (Perf. Only) 0.216 0.621 0.025 0.548 3.13 +1.1%
XGBoost (Perf. + Creative) 0.216 0.623 0.033 0.549 3.13 +1.1%
Realistic Baseline 0.219 0.597 0.432 0.546 – Reference
SARIMAX (Simple) 0.306 1.693 0.518 0.717 1.24 -40.0%

The results confirm the Deep Learning models’ superiority for sparse targets and SARIMAX’s
weakness:
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• GRU (Perf. Only) achieved the best MAE (0.165), a 24.5% improvement over the
baseline.

• TCN models performed moderately well, with improvements of 12.1% (Perf. Only) and
8.5% (Perf. + Creative).

• XGBoost achieved only a marginal improvement (1.1%).

• SARIMAX failed on this task, performing 40.0% worse than baseline.

• Adding creative features to GRU worsened performance (MAE 0.206), suggesting these
features added noise for sparse targets.

The predictive skill for the sparse leads target demonstrated a clear performance hierarchy,
substantially exceeding the capability of the engineered baseline. The inclusion of the Mean
Absolute Scaled Error (MASE) provides definitive validation of model superiority, as all models
achieved MASE < 1.0, indicating performance statistically better than a zero-skill benchmark.
The GRU (Perf. Only) model achieved the lowest Mean Absolute Error (MAE = 0.165) and
the highest skill, with MASE = 0.421. This confirms that the GRU’s forecast error is only 42.1%
of that produced by the Naïve benchmark, making it the most robust architecture for this low-
volume, high-volatility task. The TCN models followed closely (MASE ≈ 0.51–0.53), demon-
strating comparable structural competence. Notably, even the Realistic Baseline achieved a
respectable MASE = 0.546, confirming that both GRU and TCN delivered significant gains
over an already skillful engineered reference.

Runtime and Computational Trade-Offs While the TCN and GRU models delivered su-
perior predictive performance, their 5-fold cross-validation required 20–35 hours of sequential
training on a 4gdn.xlarge Linux PyTorch instance. By contrast, XGBoost and SARIMAX re-
quired only 1–4 hours. This highlights the trade-off between predictive power and computational
cost, especially when handling high-dimensional and sparse targets.

4.2.3 Model-Specific Analysis: TCN (Clicks)

This analysis is based on the TCN clicks prediction run. The TCN models were trained using a
14-day lookback, with 27 time-varying performance features (excluding the target). The
static creative input was derived from a base of 270 categorical and binary features that
were then transformed using One-Hot Encoding (OHE) to create the final 453 static features
required by the TCN/GRU models.

Table 4: TCN performance and hyperparameters (clicks).

Variant MAE RMSE F1-Score MASE Runtime (hrs) Typical Hyperparameters (Range)

TCN (Perf. + Creative) 1.597 5.180 0.782 0.558 27.01 kernel_size=4–5, num_filters=32–48, dropout=0.10–0.34
TCN (Perf. Only) 1.970 5.006 0.622 0.692 27.01 kernel_size=3–4, num_filters=16–48, dropout=0.14–0.40
Realistic Baseline 2.929 9.513 0.777 0.907 – –

Visual Analysis Figure 14 visualizes the distribution of Mean Absolute Error (MAE) across
the 5 cross-validation folds for each model. It clearly shows that TCN (Perf. + Creative) not
only has the lowest median MAE but also a tighter distribution than the baseline, indicating
more consistent performance across the different test sets.

The scatter plots in Figure 15 compare the predicted values (y-axis) against the true values
(x-axis) for all test predictions aggregated from the 5 folds. The Realistic Baseline (left)
shows significant under-prediction, with most points falling below the red ’Perfect Prediction’
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Figure 14: MAE Distribution by Model (Target: clicks_all). Results from 5-fold cross-
validation.

Figure 15: True vs. Predicted Values for clicks_all (Aggregated from all 5 folds).

line. The TCN models (two on the right) are much more tightly clustered around the line,
demonstrating their superior accuracy.

Figures 16a and 16b provide a detailed forecast for a single representative ad. In Figure 16a,
the TCN models (blue and purple) track the volatile actual data (black) far more closely than
the baseline (black-dashed). Figure 16b confirms this: the baseline’s residuals (blue, top) show
a large, consistent positive error (under-prediction), while the TCN models’ residuals (purple
and teal) are centered much closer to zero.
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(a) Example Forecast vs. Actual for a single ad.

(b) Corresponding Residuals (Error) over time for the same ad.

Figure 16: Example TCN Time Series Forecast and Residual Plots for clicks_all.
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Feature Importance Analysis (TCN Clicks) Key insights from the SHAP analysis (Kernel
Explainer on dynamic features) comparing the two TCN models for forecasting clicks_all
include:

• Dominance of Target Volatility (Perf. Only): For the baseline TCN (Perf. Only)
model (Figure 17), the top predictive features are dominated by the volatility of the target
variable, clicks_all. Specifically, clicks_all_roll_std_14_lag_14 and clicks_all_
roll_std_14_lag_12 demonstrate the highest importance, indicating the model prioritizes
autocorrelation and historical volatility patterns of the target series in the absence of
creative context.

• Shift to Upper-Funnel Reach (Perf. + Creative): When the static creative fea-
tures are added (TCN (Perf. + Creative), Figure 18), the model shifts its focus almost
entirely to reach metrics. Features such as reach_roll_std_14_lag_7 and reach_roll_
mean_7_lag_7 become the most important predictors. This highlights that the creative
context enables the model to leverage the direct causal relationship between recent reach
momentum and clicks.

• Silent Static Features and Methodological Rationale: Consistent with the leads
analysis, none of the 453 static creative features appear in the SHAP summary plots. This
outcome is due to the methodological constraint:

1. Computational Tractability: The combined input space (≈ 850 features) is too
large for efficient and interpretable Kernel Explainer analysis.

2. Causality Focus: The SHAP analysis is intentionally restricted to the dynamic in-
puts to interpret how the model uses temporal momentum and short-term trends (the
lagged performance history) in its day-to-day forecasting logic. The static features
serve as a constant contextual baseline that refines the TCN’s sequential processing
capability.
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Figure 17: SHAP Feature Importance for TCN (Perf. Only) - clicks_all (Fold 1)
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Figure 18: SHAP Feature Importance for TCN (Perf. + Creative) - clicks_all (Fold 1)
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4.2.4 Model-Specific Analysis: TCN (Leads)

1. Model Configuration and Overall Performance This analysis is based on the TCN
leads prediction run.

Key Model Parameters The TCN models were trained using the following configuration:

• Lookback Period (Input Chunk Length): 14 days

• Forecast Horizon (Output Chunk Length): 1 day

• Static Feature Count (OHE): 453 (derived from 270 base features)

• Dynamic Covariate Count: 27 time-varying performance features

Quantitative Performance The aggregated metrics highlight the TCN’s strong, con-
sistent performance on the sparse leads target.

Table 5: TCN performance and hyperparameters (leads).

Variant MAE RMSE F1-Score MASE Runtime (hrs) Typical Hyperparameters (Range)

TCN (Perf. Only) 0.192 0.558 0.522 0.513 20.51 kernel_size=4–5, num_filters=32–48, dropout=0.23–0.33
TCN (Perf. + Creative) 0.200 0.520 0.525 0.535 20.51 kernel_size=3–5, num_filters=16–48, dropout=0.13–0.35
Realistic Baseline 0.223 0.604 0.437 0.563 – –

Visual Analysis Figure 19 shows the MAE distribution across the 5 folds. It visually
confirms the findings from Table 3: the two TCN models perform similarly, with both
being significantly more accurate (lower MAE) and more consistent than the Realistic
Baseline.

Figure 19: MAE Distribution by Model (Target: leads).

The scatter plots in Figure 20 reinforce this. The baseline model (left) shows a wide,
scattered pattern. The two TCN models (two on the right) are much more tightly clustered
around the perfect prediction line, especially in the critical 0-5 leads range where most data
points lie.

The example forecast for a representative ad (Figure 21a) and its residuals (Figure 21b)
illustrate the TCN models’ effectiveness. Both TCN models (blue and purple) track the
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Figure 20: True vs. Predicted Values for leads (Aggregated from all 5 folds).

sparse, spiky actuals (black) far better than the flat-lining baseline (black-dashed). The
residuals for the TCN models (middle and bottom panels) are clustered near zero,
oscillating symmetrically around the zero-error line, which indicates low bias. In contrast,
the baseline’s residuals (top panel, blue) are almost entirely positive and consistently
far above zero, confirming that the baseline model significantly and persistently under-
predicts the actual lead volume.
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(a) Example Forecast vs. Actual for a single ad.

(b) Corresponding Residuals (Error) over time for the same ad.

Figure 21: Example TCN Time Series Forecast and Residual Plots for leads.

40



Feature Importance Analysis (TCN Leads) Key insights from the SHAP analysis
(Kernel Explainer on dynamic features) comparing the two TCN models for forecasting
leads include:

– Dominance of Direct Performance History (Perf. Only): For the baseline TCN
(Perf. Only) model (Figure 22), the top predictive features are overwhelmingly
related to the historical target variable, leads. Specifically, recent rolling statistics,
such as leads_roll_std_14_lag_13 and leads_roll_mean_7_lag_1, are the pri-
mary drivers of the forecast. This indicates the model relies heavily on the volatility
and recent trend of the leads series itself.

– Shift in Focus with Creative Features: When the static creative features are
added (TCN (Perf. + Creative), Figure 23), the top features shift their focus to
dynamic metrics from the upper funnel. The most important predictors become the
historical rolling statistics of reach and cpc_all (e.g., reach_roll_std_7_lag_12
and cpc_all_lag_14). This suggests that the inclusion of the static creative context
enables the model to better utilize the momentum and trend of related performance
features.
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Figure 22: SHAP Feature Importance for TCN (Perf. Only) - leads (Fold 1)42



Figure 23: SHAP Feature Importance for TCN (Perf. + Creative) - leads (Fold 1)
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4.2.5 Model-Specific Analysis: GRU (Clicks)

1. Model Configuration and Overall Performance This analysis is based on
the Gated Recurrent Unit (GRU) model for the clicks_all target.

Key Model Parameters The final GRU model configuration used the following
parameters:

∗ Lookback Period (Input Chunk Length): 14 days

∗ Forecast Horizon (Output Chunk Length): 1 day

∗ Static Feature Count (OHE): 453 (for Perf. + Creative model)

∗ Dynamic Covariate Count: 27 performance features + 1 target

Quantitative Performance The aggregated metrics for the GRU models confirm
that the Performance Only model was significantly more stable and accurate than
the model including creative features, which showed an increased error (MAE 4.489).

Table 6: GRU Overall Mean Forecasting Performance (5-Fold CV - Target: clicks)

Variant MAE RMSE F1-Score MASE Runtime (hrs) Typical Hyperparameters (Range)

GRU (Perf. Only) 2.223 7.122 0.598 0.775 34.59 hidden_dim=16–48, n_rnn_layers=2–3, dropout=0.20–0.40
Realistic Baseline 2.929 9.513 0.777 0.907 – –
GRU (Perf. + Creative) 4.489 9.689 0.439 1.567 34.59 hidden_dim=32–64, n_rnn_layers=2–3, dropout=0.10–0.30

2. Visual Analysis Figure 24 visualizes the distribution of Mean Absolute Error
(MAE) across the 5 cross-validation folds. It clearly shows the GRU (Perf. Only)
model achieving a tight, low error distribution, while the creative-inclusive model
demonstrates a much higher median MAE and wider variance.

Figure 24: MAE Distribution by Model (Target: clicks_all). Results from 5-fold cross-
validation.

The scatter plot in Figure 25 shows the GRU predictions (aggregated from all 5
folds) clustered tightly around the diagonal line, confirming strong correlation and
low bias when compared to baseline models.
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Figure 25: True vs. Predicted Values for clicks_all (Aggregated from all 5 folds).

Figures 26a and 26b illustrate the forecast for a single representative ad. The resid-
uals plot (Figure 26b) confirms that the GRU (Perf. Only) errors are tightly cen-
tered around the zero-error line, indicating low overall bias.

(a) Example Forecast vs. Actual for a single ad.

(b) Corresponding Residuals (Error) over time for the same ad.

Figure 26: Example GRU Time Series Forecast and Residual Plots for clicks_all.
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3. Feature Importance Analysis (GRU Clicks)

Key Findings

∗ Target Volatility Dominance: In the Performance Only model (Figure
27), the top predictors are dominated by rolling standard deviation metrics of
the target variable (clicks_all_roll_std). This signifies the model’s reliance
on understanding the historical volatility profile.

∗ Reach Reinforcement: In the Performance + Creative model (Figure
28), the importance of reach metrics increases, suggesting the static creative
context guides the recurrent unit to better interpret upper-funnel momentum.

4.2.6 Model-Specific Analysis: GRU (Leads)

1. Model Configuration and Overall Performance This analysis is based on
the Gated Recurrent Unit (GRU) model for the leads target, which represents the
most sparse and challenging prediction task.

Key Model Parameters The GRU model configuration was consistent with the
following parameters:

∗ Lookback Period (Input Chunk Length): 14 days

∗ Forecast Horizon (Output Chunk Length): 1 day

∗ Static Feature Count (OHE): 453 (for Perf. + Creative model)

∗ Dynamic Covariate Count: 27 performance features + 1 target

Quantitative Performance The aggregated metrics highlight the model’s effi-
ciency on sparse data and confirm the detrimental effect of adding static complexity
to this specific task.

Table 7: GRU Mean Forecasting Performance (5-Fold CV - Target: leads)

Variant MAE RMSE F1-Score MASE Runtime (hrs) Typical Hyperparameters (Range)

GRU (Perf. Only) 0.165 0.464 0.482 0.421 30.56 hidden_dim=16–64, n_rnn_layers=3, dropout=0.10–0.40
GRU (Perf. + Creative) 0.206 0.534 0.401 0.525 30.56 hidden_dim=32–64, n_rnn_layers=2–3, dropout=0.12–0.34
Realistic Baseline 0.215 0.595 0.419 0.520 – –

2. Visual Analysis Figure 29 visually confirms the table, showing the GRU (Perf.
Only) model achieving the lowest median MAE with a very narrow error distribution,
indicating high consistency.

The scatter plot in Figure 30 shows that while the majority of predictions cluster near
zero due to data sparsity, the GRU models successfully capture the rare, non-zero
lead spikes far better than the baseline.

Figures 31a and 31b demonstrate the GRU’s effectiveness on the single example
series. The residuals plot (Figure 31b) shows that the GRU (Perf. Only) errors
(purple line) are balanced and centered around zero, indicating low bias, while the
baseline’s error (top, blue line) is consistently high.

46



Figure 27: SHAP Feature Importance for GRU (Perf. Only) - clicks (Fold 1)
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Figure 28: SHAP Feature Importance for GRU (Perf. + Creative) - clicks (Fold 1)
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Figure 29: MAE Distribution by Model (Target: leads). Results from 5-fold cross-validation.

Figure 30: True vs. Predicted Values for leads (Aggregated from all 5 folds).
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(a) Example Forecast vs. Actual for a single ad.

(b) Corresponding Residuals (Error) over time for the same ad.

Figure 31: Example GRU Time Series Forecast and Residual Plots for leads.
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3. Feature Importance Analysis (GRU Leads)

Key Findings

∗ Shift in Feature Focus: The SHAP plots reveal a critical shift in the
model’s logic. The Performance Only model (which performed best) relies
on a mix of seasonality and auto-regression. Its most important feature is
month_lag_13, followed by historical target metrics like leads_roll_std_14_
lag_13 and leads_roll_mean_7_lag_1.

∗ Creative Features as Noise: When the 453 static creative features are
added, the Performance + Creative model’s focus shifts entirely away from
this mix. It abandons the target’s history and becomes dominated by upper-
funnel reach metrics (e.g., reach_roll_mean_7_lag_12).

∗ This shift, combined with the significant drop in model performance (MAE
0.165 → 0.206), strongly suggests the static features introduced noise, con-
fusing the model and causing it to abandon the primary auto-regressive and
seasonal signals. The static features themselves are not plotted, as the SHAP
analysis was methodologically constrained to focus only on the dynamic inputs
.

4.2.7 Model-Specific Analysis: XGBoost (Clicks)

This analysis is based on the XGBoost Clicks prediction run. The XGBoost model,
being a tree-based ensemble method, uses the 27 time-varying performance fea-
tures and the 270 static creative features directly, without the need for One-Hot
Encoding (OHE) on the categorical creative data.

Table 8: XGBoost performance and hyperparameters (clicks).

Variant MAE RMSE F1-Score MASE Runtime (hrs) Key Optuna Parameters (Range)

Realistic Baseline 2.929 9.513 0.777 0.907 – –
XGBoost (Perf. + Creative) 3.341 12.002 0.660 1.036 4.23 max_depth=3–4, learning_rate=0.034–0.29, subsample=0.71–0.96, colsample_bytree=0.60–0.91
XGBoost (Perf. Only) 3.346 12.000 0.647 1.036 4.23 max_depth=3–4, learning_rate=0.012–0.26, subsample=0.72–0.91, colsample_bytree=0.61–0.76

Visual Analysis The MAE distribution plot in Figure 34 visually confirms the
poor performance reported in Table 2. The error distributions for both XGBoost
models are centered higher than the baseline, and the XGBoost (Perf. Only)
model shows a very wide error variance.

The scatter plots in Figure 35 further illustrate the models’ struggles. Compared
to the baseline (left), the XGBoost models (two on the right) show significantly
more variance and a weaker correlation with the true values, resulting in high RMSE
values.

The example time series forecast in Figure 36 (top) and its corresponding residuals
(bottom) show that the XGBoost models (purple and teal) are consistently fail-
ing to capture the underlying patterns, mostly predicting zero for every
timestep. This indicates a significant inability to learn the dynamic relationship
within the data for this particular ad, resulting in forecasts that do not reflect the
actual fluctuations in clicks.
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Figure 32: SHAP Feature Importance for GRU (Perf. Only) - leads (Fold 1)
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Figure 33: SHAP Feature Importance for GRU (Perf. + Creative) - leads (Fold 1)
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Figure 34: MAE Distribution by Model (Target: clicks_all).

Figure 35: True vs. Predicted Values for clicks_all (Aggregated from all 5 folds).
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(a) Example Forecast vs. Actual for a single ad.

(b) Corresponding Residuals (Error) over time for the same ad.

Figure 36: Example XGBoost Time Series Forecast and Residual Plots for clicks_all.
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Feature Importance Analysis (XGBoost) The feature importance plots for
XGBoost (Figures 37 and 38) reveal a key difference from the TCN models.

∗ Priority of Lag-1 Features: The XGBoost model’s predictions are over-
whelmingly dominated by the most recent raw values: clicks_all_lag1 and
amount_spent_lag1 are the top two features in both models.

∗ Creative Feature Signal: When creative features are added (Figure 38),
num_advantage_cat—the number of advantages listed in the ad—emerges as
a top-tier feature. This confirms that creative features do provide a predictive
signal, with XGBoost identifying this measure of "informativeness" as the most
important for predicting clicks.

Figure 37: Feature Importance for XGBoost (Perf. Only) - clicks_all (Aggregated)
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Figure 38: Feature Importance for XGBoost (Perf. + Creative) - clicks_all (Aggregated)
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4.2.8 Model-Specific Analysis: XGBoost (Leads)

This analysis is based on the XGBoost Leads prediction run. The XGBoost model,
being a tree-based ensemble method, uses the 27 time-varying performance fea-
tures and the 270 static creative features directly, without the need for One-Hot
Encoding (OHE) on the categorical creative data.

1. Model Configuration and Overall Performance

Key Model Parameters The optimal hyperparameters for the final XGBoost
models were determined via Optuna hyperparameter tuning within each fold, leading
to the following range and most frequent parameters:

Table 9: XGBoost performance and hyperparameters (leads).

Variant MAE RMSE F1-Score MASE Runtime (hrs) Key Optuna Parameters (Range)

XGBoost (Perf. Only) 0.216 0.621 0.025 0.548 3.13 max_depth=3–5, learning_rate=0.037–0.30, subsample=0.61–0.91, colsample_bytree=0.74–0.88
XGBoost (Perf. + Creative) 0.216 0.623 0.033 0.549 3.13 max_depth=3–7, learning_rate=0.14–0.30, subsample=0.72–0.99, colsample_bytree=0.77–1.00
Realistic Baseline 0.223 0.604 0.437 0.563 – –

Quantitative Performance The aggregated metrics show that the XGBoost mod-
els achieved only a marginal 3.3% improvement over the baseline, confirming their
struggle with this sparse and intermittent target.

2. Visual Analysis Figure 39 visualizes the Mean Absolute Error (MAE) dis-
tribution across the 5 cross-validation folds. It shows that both XGBoost models
have error distributions clustered slightly above the baseline, confirming their failure
to significantly outperform the simplest prediction method for this sparse, volatile
target.

Figure 39: MAE Distribution by Model (Target: leads). Results from 5-fold cross-validation.

The scatter plots in Figure 40 compare the predicted values (y-axis) against the
true values (x-axis) for all test predictions aggregated from the 5 folds. The models
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Figure 40: True vs. Predicted Values for leads (Aggregated from all 5 folds).

show a very high concentration of predictions clustered around zero, indicating that
XGBoost struggled to detect and forecast the infrequent, non-zero lead spikes.

Figures 41a and 41b illustrate the forecast for a single representative ad. The XG-
Boost forecasts (Figure 41a) appear as flat lines near zero for most timesteps, leading
to high residuals (Figure 41b) that closely track the actual lead spikes. This behavior
is characteristic of models that fail to capture the underlying causal dynamics of a
time series, instead treating the target as near-zero noise.

59



(a) Example Forecast vs. Actual for a single ad.

(b) Corresponding Residuals (Error) over time for the same ad.

Figure 41: Example XGBoost Time Series Forecast and Residual Plots for leads.
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3. Feature Importance Analysis

Key Findings The feature importance analysis confirms that the XGBoost model
for leads prioritizes the most recent values of the target and related high-level metrics.

∗ Target Dominance: In the Performance Only model (Figure 42), the pre-
dictions are dominated by leads_lag_1 (the leads metric from the previous
day), followed by volatility statistics like leads_roll_std_7. The model pri-
marily extrapolates based on the most immediate preceding value.

∗ Creative Signal vs. Dynamic Feature: The Leads target does not show a
dominant creative feature breaking into the top tier. The model relies almost
exclusively on the short-term performance history, suggesting that creative
features provided minimal signal gain for this highly sparse, low-funnel target.

Figure 42: Feature Importance for XGBoost (Perf. Only) - leads (Aggregated)

4.2.9 Model-Specific Analysis: SARIMAX (Clicks)

This analysis is based on the SARIMAX clicks prediction run, where a separate
model was fit for each time series using exogenous features (X).

1. Model Configuration and Overall Performance

Key Model Parameters The SARIMAX model utilized the following setup for
its auto-fitting process across the cross-validation folds:

∗ Transformation: Square Root (Applied to stabilize variance and handle zero
values)
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Figure 43: Feature Importance for XGBoost (Perf. + Creative) - leads (Aggregated)

∗ Exogenous Features (X): 3 (’amount_spent_lag_1’, ’clicks_lag_1, ’is_weekend’)

∗ Dominant Orders: (0,0,0) was the most frequent order, found in ∼ 66% of
the series.

Table 10: SARIMAX performance and parameters (clicks).

Variant MAE RMSE F1-Score MASE Runtime (hrs) Dominant (p,d,q) Orders

Realistic Baseline 2.929 9.513 0.777 0.907 – –
SARIMAX (Simple) 3.248 13.994 0.810 0.953 1.42 (0,0,0) ∼66%, (1,0,0) ∼14%, (0,0,1) ∼9%

Quantitative Performance The aggregated metrics for SARIMAX place it as
a middle-performer, but it failed to beat the Realistic Baseline (MAE 2.929),
performing 10.9% worse (MAE 3.248).

2. Visual Analysis The MAE distribution plot in Figure 44 shows that the
SARIMAX model’s error distribution (right) is more volatile (wider range) than the
Realistic Baseline (left).

The scatter plots in Figure 45 compare the predicted values (y-axis) against the true
values (x-axis). Both the Realistic Baseline (left) and the SARIMAX model (right)
show a heavy cluster of predictions near zero, struggling to capture the high-variance,
high-click days. The SARIMAX plot shows a slightly wider spread but still fails to
align closely with the perfect prediction line, confirming its mediocre performance.

The example forecast (Figure 46a) and its residuals (Figure 46b) illustrate that while
the SARIMAX forecast (blue) tracks the actual data more dynamically than the flat-
lining baseline, its residuals show more frequent over- and under-corrections.
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Figure 44: MAE Distribution by Model (Target: clicks_all). Baseline (left), SARIMAX
(right).

Figure 45: True vs. Predicted Values for clicks_all (Aggregated from all 5 folds). Baseline
(left), SARIMAX (right).
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(a) Example Forecast vs. Actual for a single ad.

(b) Corresponding Residuals (Error) over time for the same ad.

Figure 46: Example SARIMAX Time Series Forecast and Residual Plots for clicks_all.
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4.2.10 Model-Specific Analysis: SARIMAX (Leads)

This analysis is based on the SARIMAX leads prediction run, which was explicitly
filtered for leads objective campaigns. As noted in the overall comparison, this model
failed to outperform its baseline on this sparse target.

1. Model Configuration and Overall Performance

Key Model Parameters The Auto-SARIMAX process optimized model orders
for each time series, resulting in the following structure:

∗ Transformation: Square Root (Applied to stabilize variance)

∗ Exogenous Features (X): 3 (’amount_spent_lag_1’, ’leads_lag_1’, ’is_weekend’)

∗ Most Frequent Order: (0,0,0) (Found in 89% of series), confirming that
for the vast majority of sparse lead series, no meaningful auto-regressive (AR)
or moving-average (MA) signal could be found.

Table 11: SARIMAX performance and parameters (leads).

Variant MAE RMSE F1-Score MASE Runtime (hrs) Dominant (p,d,q) Orders

Realistic Baseline 0.213 0.585 0.435 0.536 – –
SARIMAX (Simple) 0.306 1.693 0.518 0.717 1.24 (0,0,0) ∼89%, (0,0,1) ∼4%, (1,0,0) ∼4%

Quantitative Performance The aggregated metrics confirm the quantitative fail-
ure of SARIMAX on this task, as its MAE was worse than the Realistic Baseline by
43.4%.

2. Visual Analysis The visual analysis confirms the quantitative failure. The
MAE distribution plot (Figure 47) shows the SARIMAX model’s error (right) is
noticeably higher and more volatile than the baseline’s (left).

Figure 47: MAE Distribution by Model (Target: leads). Baseline (left), SARIMAX (right).
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The scatter plot in Figure 48 illustrates the extreme difficulty of this task. For both
the baseline and the SARIMAX model, the vast majority of true and predicted values
are clustered at zero.

Figure 48: True vs. Predicted Values for leads (Aggregated from all 5 folds). Baseline (left),
SARIMAX (right).

The example forecast in Figure 49a (top) shows both the SARIMAX (blue) and
baseline (black) forecasts as a flat line near zero, completely failing to capture any of
the ad’s actual lead spikes. The corresponding residuals plot (Figure 49b, bottom)
shows that the error for both models is nearly identical to the actual data.

4.3 Statistical Analysis of Model Performance

To assess whether differences in predictive performance between models were statisti-
cally significant, a Wilcoxon signed-rank test [20] was conducted using a significance
level of α = 0.05. The test was applied to the mean absolute error (MAE) obtained
per fold during cross-validation.

4.3.1 Summary of Findings

Table 12 summarizes the results for each target variable, comparing all models
against the realistic baseline, evaluating the impact of including creative features
(‘Perf. Only‘ vs. ‘Perf. + Creative‘), and comparing models against the best-
performing variant.
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(a) Example Forecast vs. Actual for a single ad.

(b) Corresponding Residuals (Error) over time for the same ad.

Figure 49: Example SARIMAX Time Series Forecast and Residual Plots for leads.

Table 12: Wilcoxon signed-rank test results (p-values) for model comparisons. NS indicates not
significant at α = 0.05.

Comparison Target: clicks_all Target: leads Significance

A. Model vs. Realistic Baseline
GRU (Perf. Only) vs. Baseline 0.0625 0.1875 NS
GRU (Perf. + Creative) vs. Baseline 0.1875 0.6250 NS
TCN (Perf. Only) vs. Baseline 0.0625 0.3125 NS
TCN (Perf. + Creative) vs. Baseline 0.0625 0.4375 NS
XGBoost (Perf. Only) vs. Baseline 0.4375 0.8125 NS
XGBoost (Perf. + Creative) vs. Baseline 0.3125 0.8125 NS
SARIMAX vs. Baseline 0.6250 0.0625 NS

B. Perf. Only vs. Perf. + Creative (Creative Impact)
XGBoost (P+C) vs. (P) 1.0000 0.6250 NS
TCN (P+C) vs. (P) 0.1250 0.6250 NS
GRU (P+C) vs. (P) 0.0625 0.8125 NS

C. Model vs. Best Model
GRU (P) vs. Best 0.0625 0.8125 NS
GRU (P+C) vs. Best 0.0625 0.8125 NS
TCN (P) vs. Best 0.1250 0.4375 NS
TCN (P+C) vs. Best 0.0625 0.1875 NS
XGBoost (P) vs. Best 0.0625 0.1875 NS
XGBoost (P+C) vs. Best 0.0625 0.3125 NS
SARIMAX vs. Best 0.0625 0.0625 NS
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4.4 Interpretation of Model Performance

The results indicate that, across all model comparisons at the stringent α = 0.05
level, no statistically significant differences were found. This uniform outcome is
strongly indicative of a lack of statistical power due to the small sample size (N = 5
folds) used for the Wilcoxon test.

While the differences were not statistically verifiable, the models consistently demon-
strated strong practical significance over the baseline (Table 2 and 3). For in-
stance, the TCN (Perf. + Creative) model reduced the mean MAE for clicks_all
by 45.5% (1.597 vs. 2.929), and the GRU (Perf. Only) model reduced the mean
MAE for leads by 23.3% (0.165 vs. 0.223).

Despite the high practical gains, the statistical tests confirm:

∗ The median difference in MAE between the best-performing models and the
Realistic Baseline is not significant, preventing a formal declaration of superi-
ority.

∗ Adding creative features (Perf. + Creative) did not lead to a statistically
significant change in performance over Perf. Only models for any architec-
ture (SQ2).

Implications: The strong practical trends suggest that GRU and TCN models offer
substantial performance benefits. However, to confirm these findings and formally
reject the null hypothesis, future work must increase the number of folds or use
repeated cross-validation to augment the statistical power.

4.5 Creative Feature Impact (SQ3)

To address the third sub-question (SQ3), a dedicated analysis was performed to
identify which static creative features significantly impact overall lifetime efficiency
metrics, as detailed in Section 3.10. This analysis combined permutation importance
to rank features, ANOVA to test for statistical significance, and OLS regression to
identify significant interaction effects.

4.5.1 Relative Feature Importance

The analysis began by identifying the most influential features for predicting the
lifetime Funnel Conversion Rate (FCR), using permutation importance on an XG-
Boost model. Figure 50 shows the top 20 most important features for the "Total
Ads" dataset.

The results are striking. Three features are overwhelmingly more important than all
others:

1. platform_audience_network: The strategic choice of ad placement is the
single most important predictor.

2. num_advantage_cat: The number of advantages listed in the ad (a measure
of informativeness).

3. brand_and_emotion_emotional_tone_Motivational: The creative’s emotional
tone.
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After these top three, there is a large drop-off in importance. This suggests that for
converting users from reach-to-lead, where the ad is placed, what it promises, and
its emotional tone are the dominant predictive factors.

Figure 50: Top 20 Feature Importance for Funnel Conversion Rate (Total Ads) using Permuta-
tion Importance.

4.5.2 Interaction Effects

The OLS regression analysis revealed that while the vast majority of feature pairs did
not have a significant interaction, a powerful cluster of highly significant interactions
exists. These findings suggest that exceptional performance is often not driven by
single features but by the synergistic combination of specific strategic, content, and
creative choices.

Synergistic Interactions A clear pattern of synergy was found between strategic
choices and specific content. As shown in Figure 51, a strong synergistic interaction
(p=0.0015) was found between ads for ’Full-Time’ employment and the ’Construc-
tion’ industry. While ’Full-Time’ ads for other industries show a low FCR, their
performance is amplified largely when targeting ’Construction’.

Antagonistic Interactions Conversely, the analysis also uncovered significant an-
tagonistic interactions, where a combination of features leads to worse performance.
As shown in Figure 52, ads with a ’Motivational’ tone (p=0.0038) performed ex-
ceptionally well off Facebook. However, when placed on the platform_facebook,
their performance dropped to near-zero. This strongly suggests that this default
placement is actively detrimental to this specific, high-potential strategy.

4.5.3 Analysis of Key Feature Themes

The following sections provide a "deep dive" into the most prominent and actionable
themes identified from the statistical analysis, highlighting their consistent impact
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Figure 51: Example of a Significant Synergistic Interaction: Employment Type + Industry
(p=0.0015).

Figure 52: Significant Antagonistic Interaction with ’Facebook’ Platform: vs. ’Motivational’
Tone (p=0.0038).

across multiple lifetime performance metrics.

The Impact of Salary Information Across all five lifetime efficiency metrics,
one of the most consistent findings relates to the inclusion of salary information.
This aligns strongly with the literature review (e.g., Alniacik and Alniacik (2025)
[2]), which identified informativeness as a critical driver of application intention.
The analysis confirmed that mentioning salary was associated with a significantly
higher CTR and CR. This powerful combination results in a much better overall
FCR, as shown in Figure 53. Furthermore, these efficiency gains translated directly
into cost savings, as mentioning salary was also associated with a significantly lower
CPL.

The Impact of Trainee & Student Targeting A second key strategic finding
is the high efficiency of ads targeting trainees, interns, or students. Across multiple
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Figure 53: Impact of Salary Information on Funnel Conversion Rate (FCR). Ads mentioning a
minimum salary ("Yes") have a significantly higher average FCR (p < 0.05) and lower CPL.

feature categories, this audience was consistently associated with superior perfor-
mance. Ads for trainee-level positions demonstrated a significantly higher FCR. As
seen in Figure 54, campaigns with "Traineeship" in their name had a much higher
FCR than all other campaigns. This high conversion efficiency directly translated
into significant cost savings, as the analysis also confirmed this same feature was
associated with a significantly lower CPL.

Figure 54: Impact of Traineeship Targeting on Funnel Conversion Rate (FCR). Campaigns for
traineeships ("Yes") have a significantly higher average FCR (p < 0.05) and lower CPL.

The Impact of Depicting ’Office Work’ The analysis of the LLM-extracted
visual features revealed that visually depicting ’Office Work’ is a highly effective
creative strategy for relevant roles. This single feature showed a consistent, positive
impact across the performance funnel. The strategy proved effective at the top,
achieving a significantly higher average CTR. This initial interest was then converted
efficiently, as these ads also had a significantly higher FCR, shown in Figure 55. This
combination of higher clicks and better overall conversion makes ’Person Activity:
Office Work’ a clearly beneficial creative element.

The Impact of a ’Motivational’ Tone Another key finding from the LLM-
extracted features was the powerful effect of an ad’s emotional tone. Specifically,
ads identified as having a ’Motivational’ tone were linked to significantly better
performance. As seen in Figure 56, these ads had a significantly higher average
FCR compared to ads that did not. This suggests that a positive, encouraging,
and aspirational message is highly effective in converting users. This finding was
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Figure 55: Impact of Depicting ’Office Work’ on Funnel Conversion Rate (FCR). Ads showing
office work ("Yes") have a significantly higher average FCR (p < 0.05) and lower CPL.

also linked to the significant interaction effects, where a ’Motivational’ tone showed
strong synergistic effects with specific platforms and job functions.

Figure 56: Impact of ’Motivational’ Tone on Funnel Conversion Rate (FCR). Ads with this tone
("Yes") have a significantly higher average FCR (p < 0.05).

Creative Format (Photo vs. Mixed) The analysis of creative formats revealed
a clear distinction in performance. Simple ’Photo’ ads emerged as a highly efficient
format, while ’Mixed’ media ads presented a costly trade-off.

’Photo’ ads demonstrated strong, positive performance, showing a significantly higher
average CR and, significantly lower CPL. This combination makes ’Photo’ a clear
winner in terms of pure efficiency.

In contrast, ’Mixed’ media (such as carousels) showed a more complex performance
profile. As seen in Figure 57, ’Mixed’ media ads achieved a significantly higher
Funnel Conversion Rate (FCR) (Left), indicating a high volume of leads from reach.
However, this success came at a significant financial cost, as these same ads also had
a significantly higher Cost Per Lead (CPL) (Right).

This finding highlights a key strategic trade-off: while ’Photo’ ads are a reliable
and cost-effective choice, ’Mixed’ media can be a powerful tool for achieving high
conversion volume but comes at a premium price per lead.

The Efficacy of ’Construction’ Industry Ads The analysis of job-specific fea-
tures identified the ’Construction’ industry as a standout performer. This niche
demonstrated high efficiency at both the top of the funnel and in overall lead gen-
eration. Ads targeting ’Construction’ roles achieved a significantly higher average
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Figure 57: Trade-Off for ’Mixed’ Media: FCR (Left) vs. CPL (Right). ’Mixed’ media ads
("Yes") show a significantly higher FCR but also a significantly higher CPL (p < 0.05).

CTR, suggesting strong initial engagement. This translated to superior overall per-
formance, as these ads also had a significantly higher FCR, as shown in Figure 58.

Figure 58: Impact of ’Construction’ Industry on Funnel Conversion Rate (FCR). Ads for this
industry ("Yes") show a significantly higher average FCR (p < 0.05) and lower CPL.

The Value of Casual Presentation The analysis of ad formality and attire re-
vealed another consistent theme: a casual presentation style is highly effective. Fea-
tures extracted by the LLM, such as Formality_Casual and Clothing_Type_Casual,
were both linked to significantly better performance. This visual style was associated
with a significantly higher average CR and a significantly lower average CPL. The
overall impact is best summarized by the FCR, shown in Figure 59, where ’Casual’
ads significantly outperformed their non-casual counterparts.

’Business Development’ as a High-Performing Niche A final noteworthy
finding is the exceptional performance of ads targeting ’Business Development’ roles.
This specific job function was not only a strong performer on its own but was a
key component in the most powerful synergistic interactions. On its own, ’Business
Development’ was associated with a significantly higher CTR and, as shown in Figure
60, a significantly higher FCR. This inherent strength was then largely amplified
when combined with other features, marking it as a key strategic niche.

The ’Audience Network’ Trade-Off A particularly nuanced finding emerged
from analyzing the ’Audience Network’ platform. This placement was associated
with a significantly higher CTR and a significantly higher overall FCR, suggesting it
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Figure 59: Impact of ’Casual Formality’ on Funnel Conversion Rate (FCR). Ads with this
attribute ("Yes") have a significantly higher average FCR (p < 0.05).

Figure 60: Impact of ’Business Development’ Job Function on Funnel Conversion Rate (FCR).
Ads for this role ("Yes") have a significantly higher average FCR (p < 0.05).

is exceptionally good at capturing attention and converting impressions into leads.
However, as shown in Figure 61, it was also linked to a significantly lower CR,
indicating that the clicks themselves are of lower quality. This low-quality click-
through traffic did not negatively impact the final cost; the analysis also confirmed
a significantly lower CPL. This highlights a key strategic insight: the ’Audience
Network’ is a powerful tool for driving a high volume of cheap leads, even if the
users who click are less qualified.

4.5.4 Analysis for Click-Through Rate (CTR)

The analysis was repeated for the lifetime Click-Through Rate (CTR), which mea-
sures the effectiveness of an ad at capturing initial attention (clicks relative to reach).
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Figure 61: Impact of ’Audience Network’ on Conversion Rate (CR). Placement on this platform
("Yes") is associated with a significantly lower average CR (p < 0.05) and lower CPL.

Relative Feature Importance for CTR The permutation importance for pre-
dicting CTR across all ads is shown in Figure 62. The results clearly indicate that
platform choice is the dominant factor in predicting CTR.

∗ platform_audience_network is the most important feature by a significant
margin.

∗ This is followed by platform_unknown (likely a data artifact, but a strong
predictor) and platform_facebook.

∗ Similar to the FCR analysis, num_advantage_cat (a measure of informative-
ness) is also a top-tier predictor.

Naming conventions, such as ad_name_word_count, also rank as important, while
most specific creative and job-level features show comparatively little predictive
power for CTR.

Figure 62: Top 20 Feature Importance for Click-Through Rate (Total Ads) using Permutation
Importance.
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Statistically Significant Features for CTR The statistical analysis (ANOVA)
confirmed that the top-of-funnel performance is highly influenced by platform choice,
informativeness, and specific creative elements, often presenting clear trade-offs be-
tween engagement (CTR) and cost (CPC).

Platform Trade-Offs

∗ Audience Network delivered a significantly higher CTR (around 6.5%) while
simultaneously having a significantly lower average CPC than all other place-
ments, marking it as the most efficient placement for acquiring cheap attention.

∗ Facebook achieved a significantly higher CTR (around 3.3%), with a corre-
sponding decrease in CPC.

∗ Instagram showed the poorest efficiency, achieving a significantly lower CTR
while simultaneously having the highest average CPC.

(a)

(b)

Figure 63: Platform Trade-Offs (1/2): (a) ’Audience Network’ (high CTR, low CPC) and (b)
’Facebook’ (high CTR, low CPC).

Informativeness and Cost Providing salary details proved to be a dual-benefit
strategy for engagement:

∗ Ads that mentioned salary, specified the currency as EUR, used the period
Month, or provided a Salary Range achieved a significantly higher CTR.
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(a)

(b)

Figure 64: Platform Trade-Offs (2/2): (a) ’Instagram’ (low CTR, high CPC) and (b) ’Messenger’
(low CTR).

∗ Crucially, providing a Salary Range or using a Warm color tone also led to a
significantly lower Cost Per Click (CPC). Including a question in the ad copy
also increased the CTR and reduced the CPC significantly.

Engagement Drivers and Creative Costs

∗ The most fundamental element, having a Call-to-Action (CTA) present, led to
a significantly higher CTR.

∗ Ads depicting visual diversity (multiple skin tones) achieved a significantly
higher CTR and a significantly lower CPC, marking a clear win-win creative
strategy.

∗ A question containing the personal pronoun ’Jij’ achieved a significantly higher
CTR, and its use made the click less expensive, leading to a significantly lower
CPC for ads with any question present.

∗ Specific job niches like Healthcare (’Zorg’) and ’Construction’ were linked to a
significantly higher CTR and lower CPC.
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(a)

(b)

Figure 65: Informativeness Drivers: (a) Mentioning salary or EUR increases CTR and a salary
range specified lowers the CPC. (b) A ’Warm’ color tone also increases CTR (p < 0.05).

Interaction Effects for CTR The OLS regression analysis for CTR revealed
several statistically significant interactions, confirming that the effectiveness of a
creative feature heavily depends on the platform or the job level being targeted.
This is crucial because CTR is the key top-of-funnel engagement metric.

Antagonistic Interaction: Platform vs. Tone (p=0.0179) (see Figure 68,
Left)

The Motivational tone and the Facebook platform exhibit a significant antagonistic
relationship for engagement. Ads with a Motivational Tone achieve an exception-
ally high CTR off Facebook (3.65%), but when placed on Facebook, their CTR
plummets (2.8%). This indicates that the Facebook audience engages less with this
specific emotional style compared to other platforms.

Antagonistic Interaction: Job Level vs. Uniform (p=0.0347) (see Figure
68, Right)

A significant interaction was found between the job level being advertised and the
use of a Uniform in the creative. For Medior/Experienced positions, using a uniform
causes the CTR to drop significantly (from 3.4% down to 2.15%). This suggests that
experienced professionals actively disengage when an ad for an experienced
role shows a uniform, potentially associating it with lower-level work or a lack of
professional freedom.
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(a)

(b)

Figure 66: Engagement Drivers (1/2): (a) ’CTA Present’ (higher CTR) and (b) ’Visual Diversity’
(higher CTR, lower CPC).

5 Discussion

The results of this thesis provide a multifaceted view of ad performance, answering
the three sub-questions at different stages of an ad’s life cycle. The key findings sug-
gest that: (1) pre-launch creative features are weak predictors of success, but just 1-2
days of live performance data provides a strong signal; (2) for next-day forecasting,
sequential deep learning models (GRU, TCN) outperform statistical (SARIMAX)
and tree-based (XGBoost) methods, and (3) static creative features have no signifi-
cant impact on next-day forecasts but show clear, statistically significant correlations
with lifetime efficiency metrics.

This section reflects on these findings, places them in the context of the broader
literature, addresses the methodological choices and limitations of the study, and
proposes directions for future research.

5.1 Reflection on Key Findings

The "Top-of-Funnel Disconnect" (Clicks vs. Leads) A foundational insight,
first identified in the EDA heatmap (Figure 5), was the weak correlation between top-
of-funnel engagement and bottom-of-funnel conversions. The analysis showed that
clicks_all was a poor proxy for leads (correlation: 0.34) and ctr_all was even
weaker (0.20). This finding validated the methodological choice to treat clicks and
leads as two distinct forecasting targets rather than using clicks to predict leads. The
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(a)

(b)

Figure 67: Engagement Drivers (2/2): (a) Using ’Jij’/’Question’ (higher CTR lower CPC) and
(b) ’Zorg’ Campaigns (higher CTR lower CPC).

divergent model performance and feature importance for these two targets strongly
supports this "top-of-funnel disconnect": the creative and contextual factors that
attract a user’s attention (a click) are not the same as those that drive a user’s
intent (a lead).

The Paradox of Static Feature Importance (SQ2 vs. SQ3) Perhaps the
most significant finding of this thesis is the apparent paradox of static feature im-
portance. The results for SQ2 showed that adding static creative features provided
no significant improvement for next-day forecasting. Conversely, the analysis for SQ3
demonstrated that these same creative features (e.g., emotional tone and salary in-
formation) have clear, statistically significant correlations with an ad’s total lifetime
efficiency.

This suggests a clear distinction between tactical and strategic variables.

∗ Next-day performance (tactical) is dominated by short-term, high-frequency
patterns. The ACF plots (Figure 6) showed strong persistence and seasonal-
ity. The deep learning models (GRU, TCN) likely outperformed XGBoost by
being superior at learning these complex sequential "memory" and momentum
patterns from the 14-day lookback. In this context, a static feature like "emo-
tional_tone=Motivational" is just noise; it doesn’t help predict tomorrow’s
value, which is almost entirely dependent on today’s value and the day of the
week.
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(a)

(b)

Figure 68: Significant CTR Interaction Effects: (a) Platform vs. Tone (p=0.0179) and (b) Job
Level vs. Uniform (p=0.0347).

∗ Lifetime performance (strategic) is an aggregate measure of an ad’s fun-
damental quality and its fit with the audience. Here, the short-term momentum
patterns are averaged out, and the ad’s core message—the "why" a user con-
verts—becomes the dominant predictor. This is precisely what static creative
features capture.

Interpreting Forecasting Model Performance (SQ2) The superiority of the
GRU and TCN models aligns with the time-series properties discovered in the EDA.
The strong trend (slow-decaying ACF) and seasonality (PACF lag 7) present a
complex sequential problem. The deep learning models, which are purpose-built
for sequence-to-sequence tasks, are inherently better at capturing these long-range
dependencies than XGBoost, which only sees time through manually engineered
lag/rolling features. The SARIMAX model, while explicitly handling seasonality
(m = 7), was ultimately too rigid and failed on the noisy, volatile, and sparse data
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that is characteristic of real-world ad performance.

5.2 Comparison with Related Work

Placing these findings within the context of existing literature reveals both consis-
tencies and novel contributions.

Forecasting Model Hierarchy (SQ2) The superior performance of the sequen-
tial deep learning models (GRU, TCN) over the tree-based (XGBoost) and statistical
(SARIMAX) methods for next-day forecasting aligns with recent trends in time-series
analysis [13]. Studies have similarly demonstrated that deep learning architectures,
which learn feature representations automatically from sequences, often outperform
models like XGBoost that rely on manually-engineered lag features, especially with
noisy or non-stationary data. The poor performance of SARIMAX is also consis-
tent with literature highlighting its limitations in handling the high volatility and
zero-inflation common in digital marketing data, a problem more formally known as
intermittent demand [14].

The "Cold Start" and "Early Signal" (SQ1) The results from SQ1, which
highlight the poor predictive power of pre-launch static features alone, are consis-
tent with the "cold start" problem discussed in online advertising and recommender
system literature [15]. More importantly, the finding that just one to two days of
live performance data greatly increases predictive accuracy supports the "early-life
signal" theory, which has been observed in related fields such as online content viral-
ity modeling [16, 17]. This study empirically confirms that this principle holds true
for creative ad performance.

Temporal Distinction in Feature Importance (SQ2 vs. SQ3) The "paradox
of static feature importance" appears to be a more novel contribution of this thesis.
Most related work tends to focus on either using creative features to predict overall
ad success [18] or on high-frequency time-series forecasting without static features
[19]. The finding that static features had no significant advantage for tactical, next-
day momentum-based forecasting (SQ2) but are critical for strategic, lifetime-value
prediction (SQ3) provides a clear, actionable distinction not widely discussed in the
current literature. This suggests that future research on feature importance should
be more precise about the temporal horizon being predicted.

5.3 Limitations and Methodological Considerations

While this research provides a comprehensive framework, several methodological
choices and limitations must be discussed to contextualize the results.

The "Good" vs. "Bad" Label (SQ1) The binary classification in SQ1 relied
on a proxy for success: whether an ad received more than 20% of the maximum
spend within its campaign. This 20% threshold is, by definition, arbitrary. More
importantly, the resulting "Good" and "Bad" labels are not objective measures of
ad quality. Instead, they are largely a reflection of the specific, subjective decisions
made by the marketing team of Dutchwebshark.
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Another company employs different human optimizers, who will have different heuris-
tics, risk tolerances, and optimization strategies. Faced with the exact same set of
ads, a different team would make different choices about which ads to keep live,
resulting in completely different spending patterns. This means the "Good"/"Bad"
labels themselves are an artifact of a specific team’s behavior. Therefore, the classifi-
cation model from SQ1 is highly specific to this one team and cannot be generalized
to another company. It is less a model of "ad success" and more a model of "which
ads does this specific team choose to keep?" The core finding, however—that early
performance data is the most critical predictor for any such decision—remains ro-
bust.

Forecasting Model Comparison (SQ2) The comparison of forecasting models,
while rigorous, has several caveats.

∗ SARIMAX Architectural & Methodological Limitations: The SARI-
MAX model’s comparison to the ML models is complex, as it suffers from
both fundamental architectural and specific methodological limitations for this
problem.

Architecturally, as a univariate model, it must be trained on each ad’s time
series individually, which has two critical consequences:

1. It cannot learn global, cross-series patterns from the 500+ other ads in
the dataset.

2. Static creative features (e.g., ’emotional tone’) are rendered statistically
useless. For any single ad’s time series, this feature is a constant value,
providing no information about temporal changes, and its entire effect is
simply absorbed into the model’s intercept.

Methodologically, the model was further handicapped by the implementation:

3. The 14-day rolling lookback window is severely restrictive. This short
window is insufficient for auto_arima to reliably detect seasonal patterns
(m = 7, requiring only two cycles) and gives the model "amnesia," pre-
venting it from learning any trends or behaviors that occur over a longer
timeframe.

In contrast, the ML models were trained as global, multi-series models (likely
with a much longer lookback), allowing them to learn from all ads simulta-
neously. Therefore, the SARIMAX model was not just "handicapped" by its
architecture; it was fundamentally blind to cross-sectional data and hamstrung
by a lack of historical context.

– Metric Calculation and Model Failures: The reported performance metrics
(MAE, RMSE) are calculated only on the time series for which a given model suc-
cessfully produced a forecast. The baseline, by contrast, produced a forecast in 100%
of cases. The more complex models, particularly ‘auto_arima‘ within SARIMAX,
could fail on short or highly volatile series. This creates a selection bias: the models
are being evaluated only on the (likely easier) series they could handle, which skews
the performance metrics in their favor relative to the baseline. A more robust ap-
proach, especially given the sparse nature of ‘leads‘ data, might be a hurdle model (a
two-part model that first predicts the probability of a non-zero event, then predicts
the magnitude of that event).
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Scalability and Architectural Trade-Off The deep learning (DL) models (TCN and
GRU) were trained sequentially on a Linux PyTorch AMI 4gdn.xlarge instance, requiring
20 to 35 hours for the complete 5-fold cross-validation. In comparison, the XGBoost (≈
3.68 hours) and SARIMAX (≈ 1.33 hours) models trained much faster for this dataset size,
highlighting the trade-off between predictive power and computational cost.

However, for a real-world production environment, the architectural design dictates scal-
ability:

1. Computational Bottleneck of SARIMAX: The SARIMAX model operates on
a "model-per-series" architecture, requiring a separate, CPU-bound model fit for
every single time series. A system built to handle the full 5,000+ creative inventory
would find the maintenance, deployment, and cumulative CPU cost of thousands of
individual SARIMAX models to be a significant and limiting bottleneck.

2. Architectural Scalability of Global Models (ML/DL): Both the XGBoost and
the DL (TCN, GRU) models are trained as global models. They rely on one single model
capable of forecasting all series, allowing for efficient batch processing. This archi-
tecture is the only one that demonstrates a clear path to high-throughput scalability.
The DL models, being GPU-native, can use GPU parallelism for low-latency infer-
ence, while the XGBoost model provides a highly-scalable, CPU-native alternative
with significantly faster training times.

Therefore, while statistical "model-per-series" approaches like SARIMAX are inefficient and
unviable at scale, the global ML/DL models are the clear solution for high-volume,
production-grade forecasting.

Handling Non-Negative Targets (Clipping vs. Transformation) A key method-
ological challenge was handling the non-negative nature of the clicks and leads targets,
which are forms of count data (y ≥ 0). The regression models used (SARIMAX, XGBoost,
GRU, TCN) are not inherently constrained and can produce negative forecasts.

Two different strategies were employed to address this:

– For SARIMAX, a square root transformation (√y) was used. This is a stan-
dard statistical approach to stabilize variance and make the data’s distribution more
symmetric. While this addresses the model-data mismatch, the back-transformation
method—squaring the final forecast (ŷ = ŷ2transformed)—introduces a significant limi-
tation. This "naive" back-transformation, while mathematically guaranteeing a non-
negative result, creates a downward statistical bias. Due to Jensen’s Inequality,
the square of the model’s mean prediction (E[

√
y])2 is an estimate of the distribu-

tion’s median, not its mean (E[y]), and will therefore systematically under-predict
the true average.

For XGBoost, TCN, and GRU, small estimation errors from the scaled target
(e.g., [0, 1]) could be magnified into negative values (e.g., −5) by the scaler’s inverse-
transform.

This issue could be formally addressed in several ways:

1. Using a target transformation (e.g., log(y + 1)), which would guarantee
non-negative predictions after the inverse-transform.

2. Changing the loss function to one designed for non-negative data (e.g., reg:gamma
in XGBoost or RMSLE).

84



3. Modifying the neural network architecture for TCN and GRU to include
a ReLU activation function on the final output layer, constraining its output
to be non-negative.

While these approaches are statistically more robust, a simpler post-processing step
was chosen. To correct this symptom, all final, unscaled predictions were clipped at
zero (max(0, ŷ)). This is a common and pragmatic solution for ML/DL models [21].

Validation Strategy The validation strategy was built around a 5-fold GroupKFold,
using campaign_id as the grouping key. This was a critical methodological strength, as
it successfully prevents the most common form of data leakage by ensuring that ads from
the same campaign never appear in both the training and testing sets.

However, this ‘GroupKFold‘ strategy is not a strict temporal validation. Within the folds,
it is possible for a model to be trained on data from January and March and tested on data
from February. This potential for temporal leakage could lead to an optimistic estimation
of model performance. A more robust, albeit more complex, validation strategy would
involve a rolling-forecast origin or a ‘TimeSeriesSplit‘ nested within the ‘GroupKFold‘
structure to ensure that all test data is, in all cases, "in the future" relative to its training
data.

LLM Feature Extraction The use of gemini-2.5-pro-latest to extract creative fea-
tures (Section 3.4.1) was a powerful method for converting unstructured media into struc-
tured data. However, this method the following limitation. While guided by a strict JSON
schema, the model’s classifications (e.g., emotional_tone, visual_complexity) are still
a form of "black box" subjective judgment.

5.4 Future Research

The findings and limitations of this study suggest several promising avenues for future
research.

Exploring Model Parameters The forecasting models were built with a fixed 14-day
lookback and a 1-day forecast horizon. This 14-day window was chosen based on the 7-
day seasonality, but it may not be optimal. Future work should experiment with different
lookback periods (e.g., 7 days, 21 days) to determine the optimal history length for ML
models. Furthermore, a more practical application for the business would be multi-step
forecasting (e.g., predicting the next 3 or 7 days). The models, particularly the TCN and
GRU, should be re-evaluated on this more challenging task.

Hyperparameter and Feature Optimization The hyperparameter search using Op-
tuna was limited to 15 trials per fold to manage computational cost. A more extensive
search (e.g., 50-100 trials) could yield more performant model configurations.

Additionally, the SQ2 models were trained on all available features. The analysis in SQ3
demonstrated that many creative features have a low (or even antagonistic) correlation
with performance. A valuable next step would be to re-train the SQ1 and SQ2 models
using only a subset of the top 20 or 30 features identified by the permutation importance
analysis.
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The finding that the addition of creative features did not lead to a statistically significant
improvement across any architecture suggests these features may be too noisy or redundant
for forecasting.

– Pruning and Simplification: Non-informative or low-ranking creative features
should be systematically pruned to create streamlined Perf. + Creative models. This
process ensures that the model complexity only increases due to features that demon-
strably reduce forecasting error.

– Feature Interaction Analysis: Before retraining, a dedicated analysis using tech-
niques like SHAP (SHapley Additive exPlanations) values should be performed to
quantify the true contribution of individual creative features within the top-performing
GRU and TCN models.

– Alternative Encodings: Explore different encoding strategies for categorical or
text-based creative features, such as advanced embeddings, to capture non-linear
relationships that the current approach may have missed.

Enhancing Statistical and Methodological Rigor The statistical analysis estab-
lished that the current experimental framework, using N = 5 cross-validation folds, lacks
the power required to decisively confirm the practical superiority of the deep learning
models. Future work must focus on increasing statistical robustness.

– Increase Statistical Power through Validation: To validate the observed prac-
tical improvements and potentially achieve statistically significant results, the num-
ber of cross-validation observations must be increased. This can be achieved by
expanding the simple K = 5 folds to a minimum of K = 10 folds, or, preferably,
by employing Repeated K-Fold Cross-Validation (RKCV), which repeats the entire
K-fold procedure R times. RKCV provides a more stable estimate of the model’s
true generalization error.

– Alternative Statistical Testing: While the Wilcoxon test is appropriate for com-
paring MAE across folds, the comparison of time series forecast accuracy is often
enhanced by utilizing tests that leverage the full error history. If the full series of
prediction errors (not just the fold-aggregated MAE) is saved, the Diebold-Mariano
(DM) test should be applied. The DM test is specifically designed for evaluating
predictive accuracy in time series and provides a more nuanced measure of signifi-
cance.

Improving the LLM Pipeline The LLM feature extraction pipeline could be signif-
icantly improved. Future work should explore fine-tuning a smaller, open-source vision
model (e.g., LLaVA) on the 643 JSON outputs generated by Gemini. This could create
a faster, cheaper, and more reliable model specialized for this specific ad-extraction task.
Furthermore, the model’s inputs could be enriched by providing it with the ad’s text copy
in addition to the media file, allowing it to correlate the ad’s textual promises with its
visual style.

Closing the Loop: From Analysis to Action This thesis provides several clear,
actionable insights. Future research should focus on operationalizing them.
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– A/B Test Generation: The findings from SQ3 (e.g., "Motivational tone improves
FCR") should be used not as conclusions, but as hypotheses for a new round of
structured A/B tests to confirm a causal link.

– Automated Intervention: The SQ1 classifier (good/bad) could be used to auto-
matically pause and flag ads for human review, saving budget.

– Hurdle Model for Leads: As noted in the limitations, a hurdle model (a classifier
for P (lead > 0) combined with a regressor for E[leads|leads > 0]) should be tested.
This is almost certainly a more accurate approach for sparse, zero-inflated targets
like daily leads.

Exploring Data Granularity (Hourly vs. Daily) This study was conducted on data
aggregated at a daily level. A promising area for future research would be to analyze the
raw hourly performance data. This higher-granularity data could reveal intra-day patterns
(e.g., performance dips in the early morning, peaks during evening commutes) that are
currently invisible. Deep learning models like TCN and GRU, which excel at finding
patterns in long sequences, could potentially leverage this 24-hour cycle to improve next-
day forecasting accuracy. However, this approach would present a significant challenge in
computational cost, as the dataset’s sequence length would increase by a factor of 24. It
would also introduce new, complex seasonalities (e.g., time of day), which would need to
be carefully modeled alongside existing patterns such as day-of-week effects.

Expanding the Dataset The current dataset, while high-quality, is sourced from a
single company. This limits the generalizability of the findings, particularly for the SQ1
classifier, which may be modeling the specific optimization habits of one team (as discussed
in 5.3). A significant step forward would be to enlarge the dataset, either by acquiring
more historical data from the same company or, ideally, by obtaining data from multiple
companies across different industries. A larger, more diverse dataset would allow for the
training of more robust and generalizable models, helping to distinguish between universal
principles of ad performance and company-specific artifacts.

6 Conclusion

This thesis set out to answer the research question: How can a quantitative framework be
developed to accurately forecast and evaluate the performance of social media recruitment
ads by systematically assessing the predictive power of creative features in comparison to
dynamic performance data?

The resulting framework successfully developed, evaluated, and analyzed multiple predic-
tive pipelines, leading to a definitive synthesis of the predictive roles of static creative
features versus dynamic performance data across the ad campaign life cycle.

6.1 Synthesis of Findings

The key findings, structured by the sub-questions, demonstrate a clear hierarchy of pre-
dictive power and model suitability:
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Classification (SQ1): The Power of Early Intervention The XGBoost classifier
demonstrated that pre-launch creative features alone are weak predictors of success
(Day 0 F1-score for "Not Chosen" ≈ 0.73, with low certainty in the minority class).
However, the inclusion of just 1–2 days of cumulative performance data proved effective,
causing the model’s performance on the critical "Not Chosen" class (ads to be filtered) to
improve. The F1-score for this class reached 0.79 by Day 2, validating the feasibility and
value of an early-intervention system designed to automatically flag or pause budget
allocation before significant spend is wasted.

Forecasting (SQ2): Sequential Models are Superior For the next-day forecast-
ing task, the deep learning architectures outperformed both the tree-based (XGBoost)
and statistical (SARIMAX) models, aligning with existing literature on sequential data.
These results confirm that deep learning models are better equipped to capture the data’s
persistence and m = 7 seasonality.

– Clicks): The TCN (Perf. + Creative) model was the strongest, achieving a
45.5% reduction in Mean Absolute Error (MAE) compared to the Realistic Baseline,
with MASE = 0.558.

– Leads (Sparse Target): The GRU (Perf. Only) model was the most accurate,
achieving a 24.5% MAE reduction, with MASE = 0.421. This means the GRU’s
forecast error was only 42.1% of the Naïve benchmark’s error, validating its structural
skill for the sparse leads target.

Analysis (SQ3): The Paradox of Feature Importance The most significant con-
tribution of this work lies in revealing the Paradox of Static Feature Importance.
While the deep learning models in SQ2 confirmed that adding creative features provides no
statistically significant improvement for tactical, next-day forecasting, the dedicated
analysis for SQ3 showed that these same features are critical for strategic, long-term
performance evaluation. Creative attributes such as Salary Inclusion, Casual Pre-
sentation, and Motivational Tone showed clear, statistically significant correlations
with superior lifetime efficiency metrics (e.g., FCR, CPL, CTR), providing actionable cre-
ative hypotheses.

The Top-of-Funnel Disconnect A foundational insight validated across the entire
framework was the top-of-funnel disconnect: clicks are a poor proxy for leads (corre-
lation r = 0.34). The factors that drive attention (CTR) are not the same as those that
drive conversion (CR/FCR). This disconnect justifies the dual-target forecasting approach
and highlights that creative strategy must be designed to optimize the entire funnel, not
just initial engagement.

6.2 Overall Conclusion and Outlook

The quantitative framework developed herein provides a comprehensive, multi-stage strat-
egy for optimizing recruitment ad spend. It moves beyond traditional human intuition
and simple linear forecasting by establishing that effective campaign management requires
a hybrid approach:

1. Early Prediction: Using performance signals from the first two days to quickly
flag and pause poor ads (SQ1).
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2. Tactical Forecasting: Employing sequential deep learning models
(TCN/GRU) for accurate, short-term budget allocation (SQ2).

3. Strategic Design: Leveraging the statistically significant insights from creative
feature analysis to inform creative design that maximizes lifetime value and cost
efficiency (SQ3).

Despite strong practical results, this thesis acknowledges the methodological limitation
of low statistical power (Section 4.3). While the magnitude of the error reduction
strongly supports the superiority of the TCN and GRU models, future work should employ
Repeated K-Fold Cross-Validation and the Diebold–Mariano test to elevate these
promising findings to statistically verifiable conclusions.

Overall, this thesis provides a clear and robust roadmap for future research, cementing the
integration of advanced deep learning and structured creative analysis as a cornerstone of
data-driven recruitment marketing.
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