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Chapter 1

Introduction

Design of complex products, such as aeronautic systems and components,
requires extensive analyses of the product’s behaviour. These analyses can
be done by physical experiments, i.e. wind tunnels, or by computer experi-
ments, i.e. analyses based on computational model simulations. In the past
decades, engineering analysis has relied to an increasing extent on complex
computer models and simulation codes, such as finite element and compu-
tational fluid dynamic analyses, to simulate the performance of the product
under consideration [42]. These computer experiments can be very accu-
rate in their simulation of physical experiments, but in that case go to great
expense in computational costs (time and money).

Design analysis usually takes into account multiple evaluations of a de-
sign in order to find the best performance of the product, which results
in multiplication of the computational costs of the computer experiments.
Therefore, other computationally cheaper methods for efficient representa-
tion of the product behaviour are desired. For this purpose approximation
methods can be used to create so-called metamodels: simplified models that
provide computationally efficient representations of the original design anal-
ysis. These metamodels are intended to efficiently and accurately predict the
characteristics of a product, based on the properties of a design.

Metamodels are created by combining two pieces of information:

1. information about the product behaviour, expressed by a dataset, and

2. interpolation information, expressed by analytical mathematical func-
tions.

The product behaviour information can be evaluated in traditional ways (eg.
physical or computer experiments), the results of which yield datasets of the
product behaviour.
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The interpolation information can be of many different forms. A com-
monly used type of metamodel is the polynomial model, which is based on a
polynomial approximation function in combination with a least-squares error
regression technique [33]. Many other types of metamodels are also available.
The types of metamodels considered in this study are:

• Polynomial models

• Kriging models

• Radial Basis Functions

• Multivariate Adaptive Regression Splines

• Support Vector Regression

• Neural networks

Both the quality and quantity of the dataset as well as the choice for a specific
type of a metamodel have an influence on the quality of the approximation,
i.e. how well the metamodel represents the design analysis.

The quality of the metamodel, i.e. the accuracy of the prediction of the
metamodel, can be assessed by applying the metamodel to an additional
dataset of product behaviour, also called a validation set. With this assess-
ment it is determined how well the metamodel predicts unknown product
behaviour, i.e. the product behaviour covered by the validation set and not
covered by the dataset with which the metamodel was created. The quality
of the metamodel depends on the appropriateness of the type of metamodel
for a certain dataset. Jin et al. [15] provide a good overview of which type
of metamodel to use for which dataset.

However, if an additional dataset of product behaviour is available, it is
desirable to incorporate these data points into the process of creating the
metamodel. Since more information will yield a more accurate metamodel.
This way a real validation set is never really available.

Due to the characteristics of some of the metamodels, assessing the quality
on known data points is also impossible. This is because some metamodels
can predict known data points exactly. Therefore, an alternative method for
assessing the quality of a metamodel is to split up the available data points.
This way of quality assessment of metamodels is also called ‘cross-validation’
[31].

This report presents an investigation of metamodels known in the liter-
ature as described in Chapter 3. First, in Chapter 2 the context in which
the metamodels will be studied is outlined. In Chapter 4 the methods for

9



validating metamodels are described, where special attention will be given
to cross-validation techniques.

Another part of this study is the implementation of some selected meta-
models in a software tool. The implementation and usage of this software
tool are described in Chapter 5. In Chapter 6 it will be made clear which
settings are chosen in the implementation of the software. Verification of the
software by several test problems are done in Chapter 7.

The methods developed and described are also applied to an example
aeronautic design problem as described in Chapter 8. Chapter 9 gives the
general conclusion.
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Chapter 2

Multi-objective optimisation

2.1 Design Optimisation

A product is defined by its properties. These properties affect the function-
ality of a product. In product design the effects of the product properties at
its functionality are evaluated by physical or computer experiments. And so,
these experiments indicate the effectiveness of the variation of the product
properties, and lead to a satisfying product design.

In aeronautic design, many different physical and computer experiments
are in use. Computer experiments, for example based on finite element meth-
ods (FEM) [27] or computational fluid dynamics (CFD) [1], make it possible
to evaluate a design without actually having to build the product. These
computer experiments are very accurate in the simulation of the physical
experiment, but may go in great expense in computational costs. In product
design it is usually desired to evaluate multiple designs to be able to compare
different designs. Computer experiments are not always efficient for this mul-
tiple design analysis, because of their time-consuming character. Therefore,
more efficient models are needed that approximate the design analysis.

The goal in product design is usually to optimize the functionality of the
product by adjusting its properties. For this purpose, the dependency of the
functionality or performance of the product on its properties is expressed as
a mathematical model. For example in aircraft wing design, the dependency
of the weight and drag of the wing on its span (length) and sweep (angle)
can be expressed by mathematical models based on structural mechanics and
aerodynamic theories.

As illustrated with this basic wing design example, see figure 2.1, the
optimisation of the functionality of a product generally involves more than
one characteristic, e.g. for optimum wing functionality, both the wing weight
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Figure 2.1: Multi-objective wing example

and its drag should be minimized. Simultaneously optimizing multiple, and
often contradicting, characteristics requires specific optimisation algorithms,
and in general many design evaluations are needed. Such simultaneous opti-
misation is called multi-objective optimisation (MOO).

2.2 Pareto Optimality

In multi-objective optimisation problems, the decrease of one objective of-
ten causes an increase of another objective. Generally, one single global
optimum, which has an optimum value for all objectives does not exist in
multi-objective optimisation. Instead a collection of optima exists, which
represents the set of optimal points. This is called a Pareto optimal set [35].

Figure 2.2: Optimal points in single-objective optimisation (left) and multi-
objective optimisation (right)

As can be seen in figure 2.2, in contrast with single-objective optimisation,
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where the optimum is simply represented by the minimum (or maximum)
value of the objective function, for multi-objective optimisation a different
definition of optimality is needed, one that respects the integrity of all the
separate objectives. The concepts of Pareto optimality helps defining such
optimal solutions in a rational way.

Considering a minimization problem, a point x∗ is Pareto optimal if there
does not exist another point x such that fi(x) ≤ f(x∗) for all i = 1, . . . , k,
where k is the number of objectives, and fj(x) < f(x∗) for at least one
j = 1, . . . , k.

Figure 2.3: Illustration Pareto optimal points

In words, this definition says that x∗ is Pareto optimal if there exists
no feasible vector x which would decrease some objective without causing a
simultaneous increase in at least one other objective. This concept gives not
a single solution, but rather a set of solutions called the Pareto optimal set
or Pareto front.

This can be illustrated with the following example. In figure 2.3 several
points are plotted against two objectives functions. In this example, points
A and B are Pareto optimal. For both points, there is no other point which
has a smaller or equal value on both objective functions and smaller for at
least one, i.e. no points in subspaces I and II. For all other points, there
exists a point that has a smaller or equal value for each objective function.
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The vectors corresponding to the solutions included in the Pareto optimal
set are so-called non-dominated points.
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Chapter 3

Metamodels

In product design and optimisation studies, metamodels are used to ap-
proximate the design analysis and provide a model of a model [17]. In
this study the metamodels are not considered as a surrogate model, such
as a low-fidelity physics code, but more as a mathematical approximation
of the computer simulation or analysis [31]. The design analysis is con-
sidered as a black-box, so for every design point only the vector of input
variables x (properties/design) and the vector of output variables y (charac-
teristic/performance) are needed.

For simplicity in the following, the output variable is taken as an one-
dimensional, scalar output y. Hence, for models with several output vari-
ables, a separate metamodel is fit to each output variable.

Let the functional relation f : R
n → R between x and y be expressed as:

y = f(x). (3.1)

Also, let there be a dataset (x(i), y(i)) consisting of inputs for experimental
runs of the design analysis and its responses. Each row i = 1, . . . , N spec-
ifies a design x based on input variables x1, . . . , xv. Let y be a vector of
output responses, corresponding with the specified designs, with each row
i = 1, . . . , N containing the performance measures y of the output response.
The metamodel can be written as

ŷ = f̂(x), (3.2)

where ŷ is the response variable predicted by the metamodel and f̂(·) is the
mathematical function used by the metamodel.

In general, the metamodel does not approximate the design analysis pre-
cisely, so an error will be involved. In other words, the predicted response
value ŷ will differ from the observed response variable y. Let an error be
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defined by ε = y − ŷ. This yields the following functional representation of
the metamodel

y = f̂(x) + ε. (3.3)

The design analyses considered in this study are deterministic, i.e. there is
no random error involved in the design analyses. However, some of the meta-
models, for example stepwise regression [57], employ statistical methods to
build the approximation. Therefore it should be noted that for deterministic
analyses “usual measures of uncertainty derived from least-squares residuals
have no obvious statistical meaning” [40]. Of course, least-squares regression
can be viewed as curve fitting and thus used, but statistical measures to
verify model adequacy have no meaning, since they assume a random error
term. The error ε in equation 3.3 represents only the error of approximation.

Roughly speaking, metamodels can be subdivided in two categories, namely
interpolating and approximating metamodels. An interpolating metamodel
’honours’ the data and the prediction of the known datapoints will be ex-
act, i.e. there will be no error. An approximating metamodel, however will
smooth the datapoints and the prediction of the known datapoints are not
necessary exact.

Figure 3.1: One-dimensional illustration of approximating (left) and inter-
polating (right) metamodels

An one-dimensional example of approximating and interpolating meta-
models is given in figure 3.1. The lines represent the metamodels, and the
points the known data points. The approximating metamodel predicts some
of the data points exactly, while the interpolating metamodel predicts every
known data point exactly.
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In metamodelling, many different types of mathematical functions are
used for describing the function f̂ in equation 3.2. The following sections
will describe the different types of metamodels that are considered in this
study.

3.1 Polynomial models

Polynomial models determine the function of the metamodel f̂(x) through
a systematic decomposition of the variability in the observed response val-
ues [11]. The polynomial coefficients are then estimated by minimizing the
aboslute value of the error ε. Note that the dataset is assumed to be deter-
ministic, so the error of approximation is not due to random effects.

Polynomial models can be of any order. The most widely used meta-
models are first and second order polynomials [43]. The general form of a
polynomial model of order n is

ŷ = β0 +
∑

1≤i1≤v

βi1xi1 +
∑

1≤i1≤i2≤v

βi1,i2xi1xi2

+ . . . +
∑

1≤i1≤i2≤...≤in≤v

βi1,...,inxi1 · · ·xin , (3.4)

where β· are the unknown polynomial coefficients to be estimated, and xij

are the explanatory variables, where ij = 1, . . . , v with v the number of
explanatory variables, and ŷ is the predicted response value.

The number of these coefficients β· and thus the number of terms in the
polynomial model are determined by the order n of the polynomial and the
number v of explanatory variables. The number of coefficients is given by

min{n,v}
∑

i=1

(

v

i

)(

n

i

)

. (3.5)

Least-squares regression [33] is typically used to estimate the vector of
regression coefficients β in a polynomial model [42]. The polynomial model
equation 3.4 can be written in matrix notation as

y = Xβ + ε, (3.6)
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where the so-called design matrix X is given by
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


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
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,

(3.7)
where xi for i = 1, . . . , v represents the vector of the corresponding explana-
tory variable found through the experimental runs.

To estimate the unknown coefficients β of the polynomial model the least
squares method is used. The least squares method estimates the vector of
regression coefficients β by minimizing the sum of the squares of the residual
vector ε. This is done by solving the least squares normal equations, which
coincides with:

β̂ = (X ′X)−1X ′y. (3.8)

3.1.1 Collinearity

However, for X ′X to be invertible, the matrix X must be of full rank. A
matrix is of full rank if all its columns are linearly independent. A linear
relationship among the columns of X is called collinearity. If X does not
have full rank, which is called rank deficient, the solution to the least squares
problem is not unique. This means, that there are infinitely many vectors
of regression coefficients β̂ that solve the least squares normal equations,
given in equation 3.8. Note that all regression coefficients yield different
predictions. However, the presence of collinearity does not affect the accuracy
of the prediction, i.e. the sum of squares of each of the infinitely many
residual vectors is equal.

In high-order polynomial models collinearity can occur in the design ma-
trix. This is caused by the existence of a correlation between different powers
of the same or different variable(s). Schacham and Brauner [41] conclude that
a z[−1, 1] transformation minimizes the effects of collinearity. This z[−1, 1]
transforms each explanatory variable xi onto the interval [−1, 1] by the fol-
lowing transformation:

zi =
2xi − xmax − xmin

xmax − xmin
, (3.9)

where xmax and xmin is determined for each explanatory variable.
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Alternatively, Bradley and Srivatava [4] recommend adjusting the origin
of the explanatory variables so that the mean of the values used is zero
(xi−x̄), also called centering. This removes correlation between even and odd
powers. However, these even and odd powers can still be highly correlated
with other like powers.

The explanatory variable which causes the collinearity can also be ne-
glected. This creates a smaller model with less coefficients and terms. How-
ever, this is not advisable, since dropping an explanatory variable also elim-
inates a lot of (probably) valuable information.

Eventually, the recommended way to reduce or even remove collinearity
is by adding more observations to the dataset. Additional data points that
provide independent variation relative to the original data can be useful.
However, there is no guarantee that the additional data points will provide
independent information.

3.2 Kriging

A kriging model is a generalized linear regression model that accounts for
the correlation in the residuals between the regression model and the obser-
vation values [12]. Given the mathematical form of kriging, the process of
using kriging first requires the estimation of the ’best’ parameters, and an
assessment of the resulting kriging model’s accuracy before it can be used as
an approximation to a deterministic computer model.

The mathematical form of a kriging model has two parts:

y = βf(x) + Z(x) (3.10)

The first part, βf(x), is a linear regression of the data modeling the drift
of the process mean, also called the ’trend’ over the domain. The second
part Z(x) is a realization of a stochastic process with mean zero, variance
σ2 and non-zero covariance. Most previous engineering applications utilize
a constant trend model over the domain [42] and rely on the second part
of the model to ’pull’ the regression model through the observed data by
quantifying the correlation of nearby points.

The general form of kriging is defined with a vector of regression functions

f(x) = [f1(x), f2(x), . . . , fk(x)]T . (3.11)

A first-order linear regression model would be given by the following vector
of regression functions

f(x) = [1, x1, . . .xv]
T . (3.12)
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Ordinary kriging, utilizing a constant regression function given by

f(x) = [1, . . . , 1]T , (3.13)

which yields the kriging model

y = β + Z(x), (3.14)

is the most commonly used form of kriging employed to approximate com-
puter models [40], [43], [3], [53], [7], [19].

The response values at known data points are predicted exactly. If an un-
observed point, x, moves away from the observations, the second component
of the kriging model approaches zero, yielding the generalized least-squares
estimate.

The second part Z(x) is a model of a Gaussian and stationary random
process with zero mean and covariance:

V (x(i), x(j)) = σ2R(x(i), x(j)), (3.15)

where x(i) is the i-th observation of the input data.
The variance of the random process is denoted by σ2, which can be deter-

mined from the fact that R(x(i), x(i)) = 1. The process variance also acts as
a scalar of the spatial correlation function (SCF), given by R(x(i), x(j)). The
SCF controls the smoothness of the resulting kriging model, the influence
of nearby point, and the differentiability of the surface by quantifying the
correlation between observations.

Koehler et al. [19] provide an overview of four common SCF’s used for
approximating a deterministic computer model and describe the impact of
the selection of different parameter values for these functions. However, the
correlation function R(x(i), x(j)) can also be specified by the user, and a
variety of correlation functions exists [19], [32], [40].

If x(i) is multi-dimensional, the correlation of each dimension is treated
apart, which is mathematically noted by:

R(x(i), x(j)) =
v

∏

k=1

Rk(x
(i)
k , x

(j)
k ). (3.16)

More specific, the correlation functions in table 3.1 are utilized, which are
taken from [25].

The cubic spline correlation model is defined by

ς(ξ) =











1 − 15ξ2 + 30ξ3 for 0 ≤ ξ ≤ 0.2,

1.25(1 − ξ)3 for 0.2 < ξ < 1,

0 for ξ ≥ 1.

(3.17)
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SCF Name SCF expression Rk(x
(i)
k , x

(j)
k )

Exponential exp
(

−θk

∣

∣

∣
x

(i)
k − x

(j)
k

∣

∣

∣

)

Exponential/Gaussian exp

(

−θk

∣

∣

∣
x

(i)
k − x

(j)
k

∣

∣

∣

d
)

, 0 < d ≤ 2

Gaussian exp

(

−θk

(

x
(i)
k − x

(j)
k

)2
)

Linear max
{

0, 1 − θk

∣

∣

∣
x

(i)
k − x

(j)
k

∣

∣

∣

}

Spherical 1 − 1.5ξk + 0.5ξ3
k, ξk = min

{

1, θk

∣

∣

∣
x

(i)
k − x

(j)
k

∣

∣

∣

}

Cubic 1 − 3ξ2
k + 2ξ3, ξk = min

{

1, θk

∣

∣

∣
x

(i)
k − x

(j)
k

∣

∣

∣

}

Cubic Spline ς(ξk), ξk = θk

∣

∣

∣
x

(i)
k − x

(j)
k

∣

∣

∣

Table 3.1: Available spatial correlation functions

The spatial correlation function range parameter θ has little meaning in a
physical sense. A different θ can be used for each design variable, which yields
the vector θ = [θ1, . . . , θv]. However, in some cases, using a single correlation
parameter for all design variables gives sufficiently good results [40], [34], [2].
This is also described as isotropic, this means that one correlation is identified
in different directions. Consequently, a vector θ is called anisotropic.

The correlation matrix R is composed of spatial correlation functions
evaluated at each possible combination of the known points:

R =











R(x(1), x(1)) R(x(1), x(2)) · · · R(x(1), x(N))
R(x(2), x(1)) R(x(2), x(2)) · · · R(x(2), x(N))

...
...

. . .
...

R(x(N), x(1)) R(x(N), x(2)) · · · R(x(N), x(N))











(3.18)

This matrix R is a positive semi-definite matrix because the SCF defin-
ing each element is positive semi-definite [28]. It is also symmetric because
R(x(i), x(j)) = R(x(j), x(i)), and the diagonal consists of all ones because
R(x(i), x(i)) = 1.

The correlation between an unknown point x∗ and the N known sample
points is given by this vector

r(x∗) =
[

R(x∗, x(1)), R(x∗, x(2)), . . . , R(x∗, x(N))
]T

(3.19)

The best linear unbiased predictor (BLUP) is obtained by minimizing the
mean square error of the predictions. This leads to the following BLUP of
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an unknown point x∗

ŷ∗ = fT (x∗)β̂ + rT (x∗)R−1(y − F β̂
T
), (3.20)

where the column-vector F is constructed by evaluating f(x) at each of the
N known observations.

In the area of design and analysis of computer experiments [40], the
statistics-based method of maximum likelihood estimation (MLE) is primar-
ily used as an objective estimator of the best kriging model parameters (β, θ
and σ) that are most consistent with the observed data [7], [26], [16]. MLE
assumes the residuals have a known probability distribution shape, which
in most cases is the Gaussian probability distribution. Stein [46] argued
that estimation of the parameters through general cross-validation (GCV),
an alternative option for estimation, will employ twice the variance of the
maximum likelihood estimation. But Wahba [51] still advocated GCV, be-
cause supposedly more robustness against departures from the stochastic
model. Martin and Simpson [28] concluded that MLE was the best method
to estimate kriging model parameters even if the modelled observations do
not have a Gaussian distribution. Cross validation has the potential of per-
forming slightly better, especially for a constant trend function, but more
importantly has the potential of performing much worse.

The MLE estimation of β matches its least-squares estimate and is given
by

β̂ = (F T R−1F )−1F T R−1y, (3.21)

and the estimation of σ2 is given by

σ̂2 = (1/n)(y − F β̂
T
)T R−1y − F β̂

T
). (3.22)

3.3 Radial Basis Functions

Radial basis functions (RBF) have been developed for scattered multivariate
data interpolation [14], [8]. The method uses linear combinations of a radially
symmetric function based on Euclidean distance or other such metric to
approximate response functions [8], [37]. Mathematically, the model can be
expressed as

ŷ =
N

∑

i=1

wiφ
(

||x − x(i)||
)

, (3.23)

where φ(·) denotes the radial basis functions, || · || denotes the Euclidean
norm, the given samples x(i) for i = 1, . . . , N are the centres of the radial-
basis functions, and wi for i = 1, . . . , N are unknown coefficients.
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The coefficients wi are found by replacing the left hand side of the equa-
tion with the real responses y and solving the resulting linear system

y = Aw, (3.24)

where w is the vector of the to be estimated weights and the coefficients aij

of the matrix A can be obtained from

aij = φ
(

||x(i) − x(j)||
)

. (3.25)

The most commonly used radial basis functions are linear, thin-plate
spline, Gaussian, and multi-quadratic functions [9]. Recently researchers
have developed new basis functions; representative examples are the com-
pactly supported basis functions developed by Wu [56] and Wendland [54].
In this study only the Gaussian radial basis function will be considered. The
mathematical representation of this Gaussian radial basis function is

φ(||x(i) − x(j)||) = e−c||x(i)−x
(j)||2, (3.26)

where c denotes the width parameter of the Gaussian function. The width
parameter of the Gaussian function determines the width of the bell-shaped
Gaussian function and thereby the influence of nearby points. A large width
means that point further away from an unknown points will have an effect
on the prediction at that point. A small value means that only nearby points
will have an effect.

As can be seen in the figure 3.2, over- and underfitting can occur. If the
value of the width parameter is taken too small, overfitting will occur, i.e.
every point will only have an influence in the very nearby neighbourhood.
On the other hand, if the width parameter is taken too large, generalization
will occur, and all points will be regarded as one point.

RBF can model high-order non-linear responses well, but are inappropri-
ate for linear and quadratic responses [22]. Radial basis function approxi-
mations have been shown to produce good fits to arbitrary contours of both
deterministic and stochastic response function [37]. Tu and Barton [47] found
that RBF approximations provide effective metamodels for electronic circuit
simulation models. Meckesheimer et al. [30] used the method for construct-
ing metamodels for a desk lamp design example, which has both continuous
and discrete response functions.

3.4 Support Vector Regression

Support vector regression (SVR) is a particular implementation of support
vector machines (SVM), what is “a principled and very powerful method that
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Figure 3.2: Over- and underfitting by varying the width parameter of the
Gaussian radial basis function

in the few years since its introduction has already outperformed most other
systems in a wide variety of applications” [6]. The SVM algorithm is a non-
linear generalization of the generalized portrait algorithm developed in Russia
in the 1960’s [49]. In its present form, SVM was developed by Vapnik in the
early 90’s [50]. Smola et al. [44] acknowledge the success of SVM’s since this
time and also add that “in regression and time series prediction applications,
excellent performances were soon obtained.” The resulting support vector
regression is showing promising empirical performance [48], [13].

A SVR can be represented by the typical mathematical function

f̂(x) = w · Φ(x) + b, (3.27)

where Φ denotes a certain transformation of x, and the vectors w and b are
the to be estimated parameters.

The parameters w and b are estimated with the so-called ε-insensitive
loss function [13]. A function f̂(x) is searched so that the dataset (x(i), y(i))
can be approximated with ε precision. This means that the prediction of the
SVR metamodel, ŷi, of each data point may differ at most ε with the real
value yi.

However, slack variables, ξi and ξ∗i , are also incorporated into the opti-
misation problem, because a function with ε precision may not exist.
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Figure 3.3: Slack variables and the ε-insensitive loss function in SVR [55]

The idea is illustrated in figure 3.3 and the optimisation problem is given
by:

min
1

2
||w||2 + C

l
∑

i=1

(ξi + ξ∗i ) (3.28)

subject to










yi − w · Φ(x) − b ≤ ε + ξi

w · Φ(x) + b − yi ≤ ε + ξ∗i
ε, ξi, ξ

∗
i ≥ 0

(3.29)

where the constant C > 0 determines the costs for each deviation that is
larger than ε.

The optimisation function and linear constraints can be written as the
Lagrangian function, which yields the optimisation problem in dual form

max−1

2

l
∑

i,j=1

Qij(αi − α∗
i )(αj − α∗

j ) − ε
l

∑

i=1

(αi + α∗
i ) + yi

l
∑

i=1

(αi − α∗
i )

(3.30)
subject to











l
∑

i=1

(αi − α∗
i ) = 0

(αi − α∗
i ) ∈ [0, C],

(3.31)

where Qij = Φ(x(i))Φ(x(j)) = k(x(i), x(j)) representing the kernel function.
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The input vectors only appear inside the kernel functions. In this way,
the dimensionality of the input vectors is hidden from the remaining compu-
tations, providing means for addressing the curse of dimensionality [13].

The following kernel functions are considered in this study

Linear k(x, x′) = 〈x · x′〉
Polynomial k(x, x′) = 〈x · x′〉d
Gaussian k(x, x′) = exp

(

− ||x−x||2

2σ2

)

Exponential k(x, x′) = exp
(

− ||x−x
′||

2σ2

)

Sigmoid k(x, x′) = tanh(ρ〈x, x′〉 + θ)

Fourier k(x, x′) =
sin(N+ 1

2
)(x−x

′)

sin( 1
2
(x−x

′))

Splines k(x, x′) = 1 + 〈x, x′〉 + 1
2
〈x, x′〉min(x, x′) − 1

6
min(x, x′)3

B-Splines k(x, x′) = B2N+1(x − x′)

Table 3.2: Kernel functions of the SVR metamodel

Finally, the primal form of the optimisation yields the following function
f(x) for the SVR

f(x) =

l
∑

i=1

(αi − α∗
i )k(x(i), x) + b. (3.32)

3.5 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) is a non-parametric regres-
sion that does not take a predetermined form but is constructed according to
information derived from the data. MARS constructs the functional relation
from a set of coefficients and basis functions that are determined from regres-
sion data [10]. The basis functions for approximating the response function
are adaptively selected through a forward and a backward iterative approach
[10].

The MARS metamodel can be described by its basis functions Bi and
coefficients ai for i = 1, . . . , M noted as

ŷ =
M

∑

m=1

amBm(x). (3.33)

The coefficients are here estimated through least-squares regression of the
basis functions Bm(x) to the observed values y.
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First, a forward iterative approach is utilized which selects the model
terms in the MARS metamodel. The maximum number of model terms can
be user-specified and is noted by Mmax. After the forward iterative approach
is done, a backward iterative approach is started. This backward iterative
approach considers subsets of the model terms selected by the forward iter-
ative approach and finds the best subset. The best subset is determined by
its lack-of-fit, which is represented by the least-squared criterion.

The MARS model terms are based on truncated linear functions. These
truncated linear functions are typically noted by

b+(xv − k) = [+(xv − k)]+ , b−(xv − k) = [−(xv − k)]+ , (3.34)

where [q]+ = max{0, q}. These functions are thus truncated to zero at a knot
k. The knots determine where the approximation bends to model curvature.
Basically, both functions are added to the MARS metamodel as model terms.

These truncated functions mentioned before are univariate, but the MARS
metamodel also incorporates interaction basis functions. All basis functions
(univariate and interaction) can be mathematically represented by

Bm(x) =

Lm
∏

l=1

[

sl,m · (xv(l,m) − kl,m)
]

+
. (3.35)

Km denotes here the number of interaction terms of basis function m, and
sl,m the direction in which the knot is pointed (+ or -). Note that also
self-interactions can exist.

The selection of basis functions and knots stops when a certain number,
Mmax, is reached. These number is user-specified and provide a trade-off
between computational time and interpolation character.

The backward stepwise part starts with all Mmax basis functions derived
from the forward stepwise algorithm. It omits one basis function at a time
and finds the best set of basis functions for the MARS approximation.

3.6 Neural Networks

A neural network is composed of neurons which are multiple linear regression
models with a non-linear transformation on y. If the input to each neuron
are denoted by the explanatory variables x and the regression coefficients
are denoted by the weights w, then the output y is given by the hyperbolic
tangent sigmoid transfer function

y =
2

1 + e−2η
− 1, (3.36)
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Figure 3.4: Outline of a single neuron

where η = wT x + β, where β is the bias value of a neuron.
A neural network is then created by assembling the neurons into an archi-

tecture; in this study we consider the multilayer feed-forward architecture.
Feed-forward layered networks have the flexibility to approximate smooth
functions arbitrarily well, provided sufficient nodes and layers. This follows
from the work of Kolmogorov [21], whose results imply that any continuous
function f : R

n → R can be exactly reproduced over a compact subset by a
three-layer feed-forward network, as seen in the following figure.

Figure 3.5: Architecture of a neural network

There are two main issues in building a neural network:

1. specifying the architecture,
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2. training the neural network to perform well with reference to a training
set.

If the architecture is made large enough, a neural network can be a nearly
universal approximator [38]. However, more hidden layers will result in more
connections so that the computational costs increases strongly. Training a
neural network is the determination of the proper values for all weights in
the architecture and is done by back-propagation [38].

Neural networks are best suited for approximating deterministic func-
tions in regression-type applications [43]. “In most applications of neural
networks that generate regression-like output, there is no explicit mention of
randomness. Instead, the aim is function approximation.” [5]
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Chapter 4

Metamodel assessment

Metamodel assessment is considered in this study as the judgement of the
quality or fidelity of a metamodel, where the quality or fidelity must be
evaluated quantitatively [31]. The assessment of metamodels also provides
valuable information for metamodel improvement.

An approximation is a value that is close to the intended value but is
in general not equal. When building metamodels for the purpose of design
optimisation, there are three important aspects to take into account [31]:

1. obviously, building a good approximation,

2. generate measures of performance to assess the goodness of the approx-
imation, and

3. provide an indicator of confidence for the estimated measures of per-
formance.

The first aspect makes studying a (complex or computationally expensive)
underlying function or model more rapidly possible. This involves the choice
of an appropriate metamodel type and form for constructing a simplified
model of the underlying function or model. However, this raises the issue
of defining the meaning of ’good’ when using metamodels for engineering
design.

The second aspect provides measures of performance to assess the loss
of information or accuracy in the metamodel that is traded off against the
increase in speed of analysis. The goodness of a metamodel may not be dic-
tated by a single performance measure but could depend on several different
measures, depending on its intended use [15]. Initially, designers may be
looking for an indication of useful domains of the design variables and the
identification of key variables. During optimisation, designers may be inter-
ested in obtaining measures of performance for assessing the impact of design
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constraints on the optimal objective, refining optimisation formulations, and
determining globally optimal designs. Finally, designers may desire measures
of performance for evaluating trade-offs in the presence of competing objec-
tives to determine the adequacy of their solutions. Therefore, it is important
that these measures of performance be relevant and informative to the user
for judging whether the metamodel is acceptable for its intended purpose.

Finally, the third aspect provides an indicator of confidence for the mea-
sures of performance when they are estimated. The issue of providing an
indicator of confidence for the estimated performance measures is an area
where further research is needed.

Validation is necessary whenever a metamodel is meant to represent a un-
derlying model. Kleijnen and Sargent [18] define validation as the “... verifi-
cation that a model within its domain of applicability possesses a satisfactory
range of accuracy consistent with the intended application of the model.”’
Validation relates to both the metamodel and the underlying model and re-
quires knowledge about the problem and the specified accuracy required of
the metamodel.

Basically, the accuracy of a metamodel can be determined by the residuals
of the metamodel. A metamodel with small residuals can be considered to
represent the dataset more accurately then a metamodel with high residuals.
This way the quality of metamodels can be assessed and several metamodels
can be compared with this criterion.

However, some metamodels have a interpolating character, which means
that no residuals are present. These metamodels give exact prediction of
known data points. It is impossible to base the quality of the metamodel on
the error of predictions with these metamodels.

A generic form of assessing metamodel quality and validation is called
cross-validation. With cross-validation interpolating metamodels can be com-
pared to non-interpolating metamodels. Cross-validation will be discussed
in the next section.

4.1 Cross-validation

Cross-validation is a method for estimating the error of prediction of a meta-
model (e.g. Meckesheimer et al. [29], [31]). Cross-validation is also helpful
in the process of metamodel selection, because the cross-validation errors of
each metamodel can be compared and the metamodel with the smallest error
can be selected. This validation method provides also more insight in the
relevance of input variables to the accuracy of the metamodel. Here, an esti-
mation of a statistical measure of performance, an estimated cross-validation
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error measure, to provide an assessment of the fidelity of a metamodel, is
considered.

Basically, cross-validation uses one dataset for both fitting and validating
a metamodel. The most simple form of cross-validation splits a dataset into
two parts. The first part is used for fitting the metamodel and the second
part is used for computing the cross-validation prediction errors. The two
parts are then switched and the second part of the dataset is used for fitting,
whereas the data points in the first part will now be predicted. This switching
step is the characteristic step for cross-validation.

However, the data need not necessarily be split into two parts, and other
schemes for randomizing and partitioning a data set may be used as discussed
by Laslett [23].

Splitting a dataset into two subsets is also called 2-fold cross-validation.
Generically, this method is called p-fold cross-validation. The dataset is split
into p mutually exclusive and exhaustive subsets. Then, the metamodel is
fit p times, each time omitting one of the subsets from fitting and using the
omitted subset to compute the cross-validation error measure.

With N -fold cross-validation, where N is the number of data points in
the dataset, the dataset is split into N subsets, each subset consisting of
one data point. This is a special variation of p-fold cross-validation, called
leave-one-out cross-validation. Each time one data point is left out of the
fitting set, and this point will be predicted by the metamodel fitted on all
other points. Mitchell and Morris [32] describe how the cross-validation error
measure may be computed inexpensively for leave-one-out cross-validation.

Typically, all possible
(

N

k

)

subsets of size k can be left out, and the meta-
model is fit to each remaining set. Each time, the cross-validation error
measure is computed at the omitted points. This is called leave-k-out cross-
validation. This approach is a computationally more expensive version of
p-fold cross validation.

Based on the observations from the experimental study conducted to as-
sess the leave-k-out strategy [31], a value of k = 1 is suggested for providing a
prediction error estimate for radial basis functions and low-order polynomials
metamodels but not for kriging metamodels. Choosing k as a function of the
fitting design size (that is, k = 0.1 or k =

√
N) was instead recommended

for estimating the prediction error for kriging metamodels.
Lin [24] found through intensive testing that the leave-one-out cross-

validation is an insufficient measurement for metamodel accuracy. The leave-
one-out cross-validation is actually a measurement for degrees of insensitivity
of a metamodel to lost information at its data points, while an insensitive
metamodel is not necessarily accurate. A ”validated” model by leave-one-out
could be far from the actual as the data points may not be able to capture the
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actual. Designers are in danger of accepting an inaccurate metamodel that is
insensitive to lost information at data points, and inaccurate and insensitive
metamodels might be the result of poor distribution of the data points. On
the other hand, with leave-one-out cross-validation there is some danger of
rejecting an accurate metamodel that is also sensitive to lost information at
data points.

It has to be noted that although cross-validation is a limited measure-
ment for metamodel accuracy, it still is favourable. When dealing with inter-
polating metamodels, quality assessments must be made on unknown data
points. At the same time, all available information is desired to incorporate
into the metamodel. Cross-validation has these two characteristics, whereas
other methods don’t. Because assessing metamodel accuracy is essential in
the metamodelling process, leave-one-out cross-validation is often chosen as
validation strategy, because of its ease of use.

4.2 Accuracy metrics

To express the value or importance of the errors (or residuals) in cross-
validation assessments, there are different metrics available in the literature
[15], [52]. An overview is given below.

Root Mean Square Error (RMSE) / Mean Square Error (MSE)

RMSE =

√

∑N

i=1(yi − ŷi)2

N
(4.1)

MSE =

∑N

i=1(yi − ŷi)
2

N
(4.2)

The lower the value of RMSE, the more accurate the metamodel.
RMSE is used to gauge the overall accuracy of the model.

R-Square

R2 = 1 −
∑N

i=1(yi − ŷi)
2

∑N

i=1(yi − ȳ)2
, (4.3)

where ŷi is the corresponding predicted value for the observed value yi,
and ȳ is the mean of the observed values. It also can be seen as the mean
square error (MSE) divided by the variance. While the MSE represent
the departure of the metamodel from the real simulation model, the
variance capture how irregular the problem is. The larger the value of
R-Square, i.e. closer to 1, the more accurate the metamodel.
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Relative Average Absolute Error (RAAE) / Average Absolute Error (AAE)

AAE =

∑N

i=1 |yi − ŷi|
N

, (4.4)

RAAE =

∑N

i=1 |yi − ŷi|
Nσ

, (4.5)

where σ stands for standard deviation. The smaller the value of RAAE,
the more accurate the metamodel.

Relative Maximum Absolute Error (RMAE) / Maximum Absolute Error
(MAE)

RMAE =
max{|y1 − ŷ1|, . . . , |yN − ŷN |}

σ
(4.6)

MAE = max{|y1 − ŷ1|, . . . , |yN − ŷN |} (4.7)

While the RAAE is usually highly correlated with MSE and thus R-
Square, RMAE is not necessarily. Large RMAE indicates large error
in one region of the design space even though the overall accuracy
indicated by R-Square and RAAE can be very good. Therefore, a
small RMAE is preferred.

Mean Absolute Percentage Error (MAPE)

MAPE =

∑N

i=1
|yi−ŷi|

yi

N
× 100% (4.8)

The MAPE correlates with the AAE, but each error is divided by its
true value.

The most commonly used error metric is RMSE. This error metric is
represented in the same dimension as the dataset, i.e. the value of the RMSE
does not have to be scaled. The value of the RMSE represents the mean error,
and due to the squared value large errors are given more weight than small
errors. The unscaled variant of the RMSE is the MSE, which is simply its
square.

The RMSE can be biased, because the errors are not relatively measured.
Errors over large and small values are not weighted, while it can be desirable,
e.g. with a dataset with high and low observation values, that a small error
on a small value is equally accounted as a larger error on a large error. MAPE
takes this aspect into account. It measures the error relatively to the real
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values. This yields a the proportion of the real value that equals the error.
The MAPE therefore represents the mean error in terms of a percentage of
the real values.

R-Square gives also, like MAPE, a percentage representing the accuracy
of the model. This error metric is highly correlated with and a scaled version
of the MSE. The R-Square captures the irregularity of the dataset by dividing
the MSE by the variance of the dataset. The metric is very understandable,
like MAPE, because percentages are very tangible.

The last error metric that is considered is the (R)MAE. Unlike the other
error metrics, that consider the whole dataset, this error metric can identify
locally large errors. This error metric displays the largest error of approxi-
mation. Other error metrics take an average value, whereas this error metric
shows a solely value. Locally inaccurate metamodels can hereby be identified.
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Chapter 5

Implementation

The metamodels discussed before are applied to datasets. At NLR a program
was developed in MATLAB by the NLR that can calculate these metamodels.
This program is called MultiFit and is comparable to the toolboxes provided
together with MATLAB. MultiFit is a tool for fitting metamodels on given
datasets, calculating predictions of unknown data points and providing qual-
itatively accuracy measurements of metamodels. MultiFit consists among
others, of several MATLAB functions, which are run from the command-line
of MATLAB. The main functions of the MultiFit program will be discussed
in the following sections.

5.1 Fitting metamodels

The MATLAB function that is responsible for fitting and calculating the ac-
tual metamodels is called MF_Fit. Given a dataset and a desired metamodel,
MF_Fit fits the metamodel at the dataset. Furthermore, the function calcu-
lates the coefficients of the metamodel and provides a model which can be
evaluated for predicting other data points.

5.1.1 Usage of the function

The syntax of the MF_Fit function can be described as:
models = MF_Fit(Xfit,Yfit,method,param)

MF_Fit takes as arguments the dataset that will be fitted, provide by the
explanatory variables Xfit and the response variables Yfit. The columns
of Xfit represent the different explanatory variables and the rows of Xfit
represent the experiments. Consequently, the columns of Yfit represent the
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different response variables. Note that multiple response variables can be
passed to MF_Fit, which makes it a multi-objective fitting tool. However, a
single metamodel is calculated for each response variable. The rows of the
Xfit and Yfit matrices should correspond with each other.

’poly_n’ ’kriging_all’

’svr_all’ ’rbf’

’mars’ ’ann’

’bary’

Table 5.1: Possible values for the metamodel parameter

The argument method specifies the metamodels that will be fitted. This
can be one or multiple methods, so that MF_Fit can be run once for fitting
multiple metamodels. All the metamodels that are presented earlier can be
fitted. The argument method must be a string, or a cell of strings for multiple
metamodels. An overview of strings that are accepted as a value for method
are given in table 5.1.

’c’ Constant
’l’ Linear
’q’ Quadratic

Table 5.2: Available values for indicating the regression function of the krig-
ing model

As can be seen several wildcards can be used. For example, ’poly_n’
will fit all possible polynomial models. Fitting particular polynomial models
can also be done. This can be done by replacing the ’n’ in ’poly_n’ in
the desired order of the polynomial model. For example, a second order
polynomial model can be fitted by providing ’poly_2’ as an argument.

’E’ Exponential
’EG’ Exponential/Gaussian
’G’ Gaussian
’L’ Linear
’S’ Spherical
’CC’ Cubic
’C’ Cubic Spline

Table 5.3: Available values for indicating the correlation function of the
kriging model
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Also, the string ’kriging_all’ represents all kriging models. However,
particular kriging models can also be fitted. The syntax of a kriging model
is for example ’krigingcE’, where c denotes the regression function and E

denotes the correlation function. Possible options for the regression function
are given in table 5.2.

An overview of possible correlation functions is given in table 5.3, where
the actual corresponding correlation function can be looked up in table 3.1.

If ’svr_all’ is passed on as (one of the) argument(s) all SVR metamodels
will be fitted. The SVR metamodels are distinguished by distincted kernels.
The syntax of a single SVR model is given by for example’svr_linear’,
which implies a linear kernel. The SVR metamodels that are available are
given in table 5.4.

’svr_linear’ Linear
’svr_poly’ Polynomial
’svr_rbf’ Gaussian
’svr_erbf’ Exponential
’svr_sigmoid’ Sigmoid
’svr_fourier’ Fourier
’svr_spline’ Spline
’svr_bspline’ B-Spline
’svr_anovaspline1’ ANOVA: Spline1
’svr_anovaspline2’ ANOVA: Spline2
’svr_anovaspline3’ ANOVA: Spline3
’svr_anovabspline’ ANOVA: B-Spline

Table 5.4: Available kernels for SVR metamodels

A last option for the parameter method is the argument ’all’. Passing
this argument will cause ’MF_Fit’ to fit all possible metamodels.

The argument param can take several parameters which are used for
both the particular metamodels and for the functionality of MF_Fit. The
progress of MF_Fit can be followed, i.e. MF_Fit will give feedback to the
user during the execution of MF_Fit. This can be regulated by the param-
eter param.display, which can be set to true (default) or false. Also,
a waitbar can be showed for following the progress of MF_Fit. This is set
by param.wbar, which also takes the boolean values. Default this is set to
false, so no waitbar will be shown.

Other possible parameters will be explained later in Chapter 5.1.2 and
Appendix A. An overview of the parameters that are discussed here and their
default values is given in table 5.5.
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Parameter name Default value
param.display true

param.wbar false

param.errdialog false

param.normal 1

param.data_x []

param.data_y []

Table 5.5: Overview of parameters

The output of MF_Fit is the variable models. This is a MATLAB struct
containing all fitted metamodels for each response variable. The different
metamodels are on the rows and the columns represent the response variables.

Each model exists of three fields, namely

• models.model, where the actual model and its coefficients are stored,

• models.normalisation, that contains the normalisation coefficients,
and

• models.name, the name of the model is stored here.

The form of models.model depends on the actual metamodel and will be
different for each metamodel.

5.1.2 Normalisation

In MF_Fit the data can also be normalised. Sometimes this is desirable
for getting better and more adequate metamodel fits. Three normalisation
methods are implemented in MF_Fit, which can be set by param.normal.
The three normalisation methods are given by

1. No normalisation. The dataset-values will not be altered.

2. Standard normalisation. The values will be subtracted by the mean (µ)
of each column of the dataset and divided by its standard deviation (σ).
To each column the following formula will be applied

x =
x − µ

σ
(5.1)

3. [−1, 1]-normalisation. The values will be set in the interval [−1, 1], so
that the highest value is 1 and the lowest is -1. Each column will be
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altered by the following formula

x =
2x − xmax − xmin

xmax − xmin
(5.2)

The choice for a normalisation method can be given by setting the pa-
rameter param.normal to 1, 2 or 3, corresponding to the list given above.

An additional dataset for determining the normalisation values can be
given by param.data_x and param.data_y. Calculation of for example the
mean will then be done based on these additional datasets and with these val-
ues the original dataset will be altered. This can be useful for example when
a dataset is split into a training and a validation set, and the normalisation
needs to be done based on the whole dataset.

5.2 Prediction of response values

Another MATLAB function that is part of MultiFit is MF_Evaluate. This
function can predict response values of known and unknown data points. All
metamodels built with MF_Fit can be evaluated with this function. Given
metamodel(s) and a set of input data points, MF_Evaluate will evaluate the
provided metamodels at the data points.

5.2.1 Usage of the function

The syntax of the MF_Evaluate function can be described as:
Yvals = MF_Evaluate(Xval,models,param)

MF_Evaluate will predict the response variable(s) using the metamodel
specified in models. Multiple metamodels can be evaluated due to the cell
structure of models, as mentioned before with MF_Fit. MF_Evaluate will
produce the predictions in a same way as MF_Fit produces the models, i.e. a
cell array with in the rows the different metamodels and in the columns the
dimensions of the explanatory variables.

Not much parameters can be passed to MF_Evaluate. This is because
all the information about the metamodels is stored in the structure models.
However, param.display and param.wbar can still be set to true or false
for providing feedback about the progress of the function.

The output of MF_Evaluate is Yvals. This is a MATLAB struct contain-
ing the predictions of the considered data points. The rows represents the
different metamodels and the columns the response variables.
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5.3 Comparing accuracy of metamodels

MF_Validate is a covering function that makes use of MF_Fit and MF_Evaluate.
It can be seen as the overall validation function. Several validation techniques
can be used, such as leave-one-out and p-fold cross-validation. Local valida-
tions can be done by providing indices, so that the validation will only be
based on the specified points. An optional dataset can also be passed on as
a ’classical’ validation.

5.3.1 Usage of the function

The syntax of the MF_Evaluate function can be described as:
validations = MF_Validate(xTrain, yTrain, fitMethod, valMethod,

indices, xVal, yVal,param)

xTrain and yTrain are similar to Xfit and Yfit and are as described so
in MF_Fit, the actual dataset split up in response variables y and explanatory
variables x. Also the variable fitMethod, which represents the metamodels
to be validated, has the same syntax as variable method as described MF_Fit.

A new variable is valMethod, this variable represents the validation method.
This variable takes a similar form as fitMethod, consisting of (a cell of)
string(s), but the content is different. The variable valMethod represents
which validation methods will be used.

valMethod can exists of one of more strings, each representing a validation
method. The typical form of a string is for example ’loo_rmse. As cazn be
seen the string consists of two parts divided by an underscore. The first part
represents the validation method and the second part the error metric. The
first part can take the values described in table 5.6 and the second part the
values in table 5.7

’overall’ Overall/residual fit
’pfold’ p-fold cross-validation
’loo’ Leave-one-out cross-validation
’val’ Validation based on validation set

Table 5.6: Available validation methods

If p-fold cross validation is desired, the value of p shall be given. This
can be done by actually naming the value of p in the string, like ’5fold’ or
’2fold’. When the value of p is not given, i.e. ’pfold’, by default a 10-fold
and 2-fold cross-validation will be done.
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’rmse’ Root Mean Square Error
’mse’ Mean Square Error
’rsquare’ R-Square
’aae’ Average Absolute Error
’raae’ Relative Average Absolute Error
’mae’ Maximum Absolute Error
’rmae’ Relative Maximum Absolute Error
’mape’ Mean Absolute Percentage Error

Table 5.7: Available error metrics

All possible combination of the two parts are possible. Multiple validation
methods can be given in a cell of strings, as explained for method with MF_Fit.
Also several wildcards are available:

• ’all’, all possible combinations of error metrics and validation meth-
ods below,

• ’overall_all’, all metrics on the overall fit,

• ’loo_all’, all metrics on the leave-one-out cross-validation fit,

• ’pfold_all’, all metrics on the 2-fold and 10-fold cross-validation fit.
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Chapter 6

Verification tests

To further investigate the functionality of the MultiFit toolbox, several test
are done. The goal of the chapter is to verify the implementation of the
metamodels, show additional features of the metamodels and give options
for additional validation techniques.

6.1 Fitting polynomial models on a polyno-

mial function

To test and assess the quality of the implemented poly_n() function, dif-
ferent two-dimensional polynomials of orders 0-12 are evaluated. The coef-
ficients of the polynomial test functions are generated randomly. 100 data
points are then generated randomly on the interval [−10, 10] and the cor-
responding response values are calculated for the test functions. MultiFit
is then used to fit these datasets with polynomial models. The considered
polynomials are plotted in figure 6.1, together with the log of the RMSE’s of
the different fitted polynomial models.

As noted, only the polynomials of order 2-4 are shown. The other plots
illustrate the same idea and are not shown here, but in Appendix C. As
expected the polynomial model of the corresponding order accurately ap-
proximates the real polynomial. The polynomial of higher order than the
considered order are also approximating the real polynomial really well. Poly-
nomial models of higher order make the unnecessary coefficients zero and are
thus equal to the polynomial model of the corresponding order. However, due
to rounding errors, the RMSE will increase slowly with higher polynomial
models. The poly_n() is operating as desired.
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Figure 6.1: Polynomial function and metamodels
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6.2 Estimation of RMSE by Kriging Models

The kriging approximation model considered in the MATLAB Kriging Tool-
box DACE can make predictions of the response values at unknown design
points. At known trial points the kriging model will interpolate and give a
prediction equal to the observed value. This prediction is exact, i.e. there is
no variance in this prediction. However, for unknown trial points the DACE
predictor gives a predicted response value and a estimated mean square er-
ror (MSE). So the function returns a prediction for the response value of the
unknown trial points and it makes an estimation of the distance between the
prediction and the response value.

Consider the MATLAB peaks function, see equation A.11, at the interval
[−3, 3]2 represented by 101 data points. The leave-1-out cross-validation is
done to get 101 predictions and estimated MSE’s at unknown trial points.
The real MSE is then calculated, by comparing the known response value
with the predicted value. Both MSE’s are then rescaled to RMSE, which
better understandable, because it is in the same units as the observed values.
First an overview of the estimated RMSE’s with the real RMSE’s is shown
in figure 6.2.
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Figure 6.2: Real RMSE and the predicted RMSE by the DACE toolbox for
a dataset of the Peaks test function

The stars denote the estimated RMSE, whereas the line denotes the actual
RMSE. It’s difficult to say something about the differences. As can be seen
the estimations lie more or less around the actual values, with some outliers
if prediction starts getting difficult. More can be said about the fact that
the actual response value should lie in the estimated RMSE-interval around
the predicted value. This is the case when the actual RMSE is less or equal
to the estimated RMSE. This experiment is shown in figure 6.3.

The point below the zero-line imply that the actual response value lies
in the estimate RMSE-interval. For the peaks function 76 values are in the
estimated RMSE-interval.
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Figure 6.3: Comparison of the estimated and the real RMSE

Looking at the distribution of both the estimated and the actual RMSE’s
for the two datasets, shown in figure 6.4, it can be said that the estimation
of the RMSE’s of the wing dataset more or less covers the actual RMSE. The
estimation of the RMSE of the peaks function doesn’t cover the actual RMSE
really well. Concluding, the estimation RMSE’s can be a good indication for
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Figure 6.4: Distribution of the estimated and real RMSE’s

the actual RMSE, but there is too much uncertainty to rely on the estimation.
The difference between the actual and estimated value is very variable. The
average of multiple estimated RMSE’s can be a good approximation.

46



6.3 Leave-one-out cross-validation verification

Typically, the quality of a metamodel is measured using leave-one-out cross-
validation. This validation method is used when no additional dataset is
available. To make maximal use of the available dataset, the available dataset
is used both for training and validation.

Therefore for several metamodels, the dataset is fit using leave-one-out
cross validation and the obtained error is compared to the real error. This
real error is calculated by an additional dataset of 1000 datapoints, a large
number to ensure an approximation of the ’real’ error. The dataset used
for fitting the metamodels exists of 100 datapoints and multiple datasets
are used, each representing one of the 14 test functions, see [36]. The error
is here calculated by the RMSE. The polynomial metamodels are not fitted
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Figure 6.5: Comparison between real RMSE and RMSE estimated by leave-
one-out cross-validation for polynomial models
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with the first 5 test functions, because these test functions are too linear. The
polynomial metamodels can approximate these test functions very accurate,
and therefore are not included in this test.

0 0.5 1

krigingcE

kriginglE

krigingqE

krigingcEG

kriginglEG

krigingqEG

krigingcG

kriginglG

krigingqG

krigingcL

kriginglL

krigingqL

krigingcS

kriginglS

krigingqS

krigingqCC

krigingcC

kriginglC

krigingqC

Kr
igi

ng
 co

rre
lat

ion
 fu

nc
tio

n

RMSE

RMSE of test function 1

0 1 2
RMSE

RMSE of test function 2

0 5 10
RMSE

RMSE of test function 4

0 100 200
RMSE

RMSE of test function 5

0 10 20
RMSE

RMSE of test function 6

0 0.05 0.1

krigingcE

kriginglE

krigingqE

krigingcEG

kriginglEG

krigingqEG

krigingcG

kriginglG

krigingqG

krigingcL

kriginglL

krigingqL

krigingcS

kriginglS

krigingqS

krigingqCC

krigingcC

kriginglC

krigingqC

Kri
gin

g c
orr

ela
tion

 fun
ctio

n

RMSE

RMSE of test function 12

0 5

x 104RMSE

RMSE of test function 13

0 2 4
RMSE

RMSE of test function 14

Figure 6.6: Comparison between real RMSE and RMSE estimated by leave-
one-out cross-validation for kriging models

As can be seen in figure 6.5 the leave-one-out cross-validation RMSE
(blue) differs not much from the real validation RMSE (red) for polynomial
models. However, this is not valid for high-order polynomials of orders higher
than 8. With these polynomial metamodels the two mentioned errors have
a great difference. Therefore, for polynomial models of high order (9 and
higher) the leave-one-out cross-validation error is not a good reflection of the
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real error. The error of lower-order polynomial models can be approximated
by a leave-one-out cross-validation error. Also, not much can be said, whether
this is an over- or underestimation.

The leave-one-out cross-validation error seem to overestimate the real
validation error for kriging metamodels, as seen in figure 6.6. Note that
not all test functions are shown. This is only not valid for test function
13 where leave-one-out cross-validation error is an obvious underestimation.
The conclusion can be made that leave-one-out cross-validation error is not
a good reflection of the real error. This is also confirmed by Meckesheimer
[31], where it is concluded that leave-one-out cross-validation is not effictive
for kriging models, leave-0.1N -out cross-validation is advised, where N is the
number of datapoints.

6.4 Local validation based on Pareto ranking

The quality of a metamodel is usually measured on the whole input space.
A prediction error in uninteresting sections of the input space is accounted
for as much as a prediction error in an interesting error. In optimisation,
it is desirable that a metamodel approximates the dataset especially around
the optima well. Validation metrics usually take in account all the residuals,
therefore a metric is desired, which gives more weight to the interesting areas
of the input space.

Interesting sections in multi-objective optimisation can be appointed by
the Pareto ranking. Pareto optimality is already discussed in Section 2.2.
Pareto ranking is the ranking of all datapoints in a dataset according the
theory of Pareto optimality. The Pareto optimal set of a dataset has by
definition a Pareto ranking of 1. This means that these points are the optimal
points in the multi-objective optimisation. The next step in appointing the
Pareto ranking to the other points, is removing this Pareto optimal set from
the dataset and calculating the Pareto optimal set of the reduced dataset.
The points in this second Pareto optimal set get the Pareto rank 2. This
algorithm continues until each point in the dataset has a Pareto ranking. At
the end, each datapoint in the dataset has a Pareto ranking of 1 or higher.

Desirably a metamodel has a good local approximation of the region
around points with a low Pareto ranking. If the metamodel is accurate in
that area, optimisation can be better performed. This is so because optima
usually occurs in the regions around or nearby the points with a low Pareto
ranking. When the metamodel has a high local accuracy in the specified
region, possible optimal points found during optimisation can be better ap-
proximated. A good local approximation can rule out or confirm possible
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optimal points.
However, optima can also occur in other regions than in the already

known region of the Pareto optimal points. So note that a globally good
approximation can also be preferred over a locally good approximation.

An approximation that is accurate in a specific region, but globally in-
accurate, can introduce false optima. Therefore, local validation should not
be the only reference for metamodel quality. Both global and local accuracy
should be taken in account.

Still has to be defined what makes a region interesting. Clearly, data-
points with a low Pareto ranking are an interesting region to approximate
accurate. The question arises to what rank a Pareto ranking is considered
low. Taking only a validation region based on Pareto ranked 1 points can
deliver a limited region and taking too much Pareto rankings can yield too
many validation datapoints, causing a too large validation region to be lo-
cally significant. The number of datapoints that is locally validated must
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Figure 6.7: Scatter plot of the considered dataset, each data point coloured
relating to its Pareto ranking

also be taken in account. A validation based on a couple of datapoints is
not reliable, multiple datapoints are preferred for validation. This number
of validation datapoints coheres with the maximum Pareto ranking taken in
validation. So a maximum number of validation points or a maximum Pareto
ranking must be decided.

Obviously, the maximum number of validation points, that is locally jus-
tified, depends on the number of datapoints in the dataset.
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Two single-objective test functions, test functions number 6 and 7 as
described in [36], are combined into one multi-objective test functions, which
is considered to be a maximization problem. The resulting dataset is shown
in figure 6.7.

Different metamodels are now fitted at this multi-objective test function.
The RMSE is calculated over all datapoints, and over only Pareto ranked 1
datapoints. This set is concatenated with higher Pareto ranked points and
over this set is the RMSE also calculated. In table 6.1, the overall RMSE,
the RMSE over the Pareto rank 1 points, the Pareto rank 1 to 2 points,
consecutively until the Pareto rank 1 to 5 points, are shown of y1 of the most
accurate metamodels of the test functions are shown.

Metamodel Pareto 1 Pareto 1-2 Pareto 1-3 Pareto 1-4 Pareto 1-5 Overall
name RMSE RMSE RMSE RMSE RMSE RMSE
svr rbf 357.95 319.88 297.52 282.69 277.48 257.20
rbf 1291.7 964.42 837.05 1611.2 1542.8 2910.5
mars 337.18 286.67 269.95 276.67 265.27 252.58
krigingcE 141.08 126.91 117.61 136.80 132.45 122.87
kriginglE 197.84 192.42 170.54 177.28 170.53 167.33
krigingqE 211.22 223.57 198.34 201.88 195.00 194.49
poly 1 345.79 299.41 287.46 283.37 271.95 245.8
poly 3 309.02 272.03 261.49 277.2 265.12 248.98
poly 7 289.09 257.17 234.10 277.9 266.62 282.05

Table 6.1: Results of the Pareto-based validations

As can be seen, it differs over which datapoints the metamodel is vali-
dated. Whether all datapoints or a specified set are included in the validation
can make a huge difference. Therefore, there must always be taken into ac-
count whether a local or a global validation is desired. A good metamodel is
accurate in both global and local areas.
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Chapter 7

Case Study: Wing Data

As a case study a real aeronautic design problem is considered. This problem
considers the design of a transonic wing, such that the performance of the
wing is optimized. Several design properties, such as span, sweep and others,
must be decided on to obtain a optimal performance values for range and fuel
efficiency. This is a multi-objective optimisation problem, because both the
range and the fuel efficiency must be optimized. All methods and techniques
discussed herefore will be applied to this case study (where possible) . The
goal is to find an accurate metamodel and optimal values for the design
properties.

Figure 7.1: Wing geometrics and parameters
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7.1 The dataset

The dataset that is used in this case study for wing design, consists of 4 inde-
pendent explanatory variables and 2 observation values. The 4 explanatory
variables stand for wing semi-span in meters, outer-wing-leading-edges sweep
angle in degrees, relative chord change, and maximum takeoff weight in 105

kilograms. The explanatory variables are respectively denoted as x1, x2, x3

and x4. The span, sweep and chord are illustrated in Figure 7.1. The MTOW
represents the maximum total mass of the aircraft at take-off.

The response values that must be optimized are the fuel efficiency in
km/(l/pax) and the Breguet range in nautical miles. These are denoted as
y1 and y2. Note that an ’absolute’ optimal value may not exist, therefore
a Pareto optimal set is searched. Also note that this is considered to be a
maximization problem.

A dataset consisting of 99 datapoints is available for this design problem.
So 99 different design points with corresponding response values are available.
To explore the dataset, both response values are shown in a scatter plot in
Figure 7.2. Each datapoint is coloured corresponding to its Pareto rank
as obtained for the range and fuel-efficiency objectives. Points with a low
Pareto rank are blue coloured, whereas points with a high Pareto rank are
red coloured.
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Figure 7.2: Exploration of dataset

The characteristics of the explanatory variables of the dataset are also
shown conveniently arranged. A scatter plot is made of each possible combi-
nation of explanatory variables, and a histogram is shown of each explanatory
variable.

An outlier is obviously visible in Figure 7.2, the point in the lower left cor-
ner of the scatter plot of the response values, which correlates with the point
with the lowest value of x4. This datapoint is clearly numerically distant from
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the rest of the datapoints. Also, the region of this datapoint is uninteresting,
because the optimisation is a maximization problem. The metamodel to be
build should be accurate in regions interesting for maximization. Including
this datapoint in the dataset, the metamodel will consider the outlier and
the uninteresting region, while it is desirable to have an accurate metamodel
in interesting regions. Therefore, this datapoint is left out of the consid-
ered dataset. This yields a dataset of 98 points, and the scatterplot of the
response values is given in Figure 7.3.
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Figure 7.3: Reduced dataset

In Figure 7.4 multiple scatter plots are made of the explanatory variables
against the response variables. Like the scatter plot of the response values,
each datapoint is coloured corresponding its Pareto rank.

Points with a high value of x3 have predominantly low Pareto rankings,
which is seen by the blue colour of the datapoints. High values of x3 seem
to be correlated with the Pareto optimal set. Optimal points seem also to
be located around a value of 25 for x2. A trend is obviously visible for x4 for
both response values. A positive trend is visible for y1 and a negative trend
for y2.

These observations can also be described in words. A high relative chord
change and a sweep of around 25 degrees seems to be optimal. And, as
expected, an high take-off weight will decrease the range but increase the
fuel efficiency and vice versa for a low take-off weight.
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Figure 7.4: Relation between explanatory and reponse variables

7.1.1 Normalisation

Calculating with very large or small values can cause numerical problems.
These numerical problems can occur when dealing with a dataset with values
around zero and large values. Therefore a normalisation of the dataset can
be desirable in that case. Rank deficiency problems in polynomial models,
as explained in Section 3.1, can also be reduced by normalizing the dataset.

The two normalization methods discussed in that Section are applied to
this dataset. This is done because this dataset contains zero values, which
can cause numerical problems. Two datasets are therefore now obtained.
One dataset is centered to the mean of each explanatory variable and one
dataset is transformed on the interval [−1, 1].

For illustration, a boxplot of the original and the two normalized values
of x3 is shown in Figure 7.5. As can be seen with normalization method
2, the values of x3 are all located in the interval [−1, 1]. The centering of
normalization method 3 is not visible, because the boxplot only displays
the median and not the mean, what would be zero. Notable is that the
distribution of the datapoints is still retained throughout the normalization
methods.

55



The case study will be continued with the normalized datasets. However,
for simplicity reasons only one dataset will be described, namely the centered
dataset. Throughout the test will emerge which normalisation method will
be chosen eventually.
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Figure 7.5: Boxplots of normalization methods

7.2 Metamodel fitting

The dataset is examined and made ready for fitting metamodels. A meta-
model is single-objective, while this problem is multi-objective, so two meta-
models will be build.

Due to the abundance of metamodels which will be difficult to conve-
niently arrange, the metamodels will be considered in methodical order. A
preselection will be made of the methods: polynomial, kriging and svr mod-
els. One metamodel will be chosen from each method to make an empirical
comparison with the other methods. First off are the polynomial models.
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7.2.1 Polynomial models

Polynomial models of all possible orders are now fitted on the normalized
datasets. For this dataset the maximal order of a polynomial model is 4,
polynomial models of higher order give an underdetermined system. The
polynomial metamodels are fitted on the whole dataset and the residuals are
taken from the predictions of the original datapoints.

All considered metrics indicate poly 3 as the most accurate metamodel
for the dataset. This is a polynomial metamodel of order 3. This cubic
polynomial model achieves the lowest value for each metric. Both response
values seem to agree about the favoured metamodel.

Metamodel name RMSE R-Square AAE MAE MAPE
y1

poly 0 885.62 0.00000 724.75 2209.5 0.14565
poly 1 335.6 0.8564 278.96 953.97 0.052705
poly 2 76.312 0.99258 57.643 229.03 0.011001
poly 3 40.024 0.99796 28.597 153.22 0.0052697
poly 4 85.769 0.99062 52.47 438.91 0.0097188
y2

poly 0 2.0245 0.00000 1.6067 6.4476 0.063594
poly 1 0.91983 0.79356 0.77063 2.4264 0.029811
poly 2 0.18015 0.99208 0.14015 0.4432 0.0053603
poly 3 0.075774 0.9986 0.058683 0.28294 0.0022008
poly 4 0.20867 0.98938 0.14259 0.7667 0.0055478

Table 7.1: Error metrics of polynomial models based on error of approxima-
tion

Note that rank deficiency occurs with polynomial models of order 2 and
higher. This causes that small alterations in the explanatory variables can
cause great differences in the predictions. This can be seen by the differences
in the error metrics of the two datasets with the polynomial models of order
2 and higher. Whereas the lower-order polynomial models doesn’t differenti-
ate, the higher-order polynomial models has some variance between the two
datasets.

The predictions given by models where rank deficiency occurred are not
reliable. Therefore, the poly_1 metamodel is selected. The performance of
the second order polynomial model is worse, but rank deficiency will not
occur here.
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7.2.2 Kriging models

Now the kriging models will be fitted to select one or multiple metamodels
for the comparison study. Leave-one-out cross-validation is applied to the
original dataset, because kriging metamodels are interpolating metamodels
and residuals are thus zero. The leave-one-out predictions are then measured
in the error metrics denoted in Table 7.2.

Metamodel name RMSE R-Square AAE MAE MAPE
y1

krigingcE 92.931 0.98899 34.801 510.36 0.005699
kriginglE 86.276 0.99051 31.301 510.86 0.0051875
krigingcEG 88.243 0.99007 35.999 550.4 0.0061304
kriginglEG 81.853 0.99146 32.575 533.53 0.0056309
krigingcG 86.644 0.99043 51.389 442.81 0.009454
kriginglG 67.322 0.99422 37.965 359.53 0.0070063
krigingcL 109.85 0.98461 43.438 517.12 0.0070402
kriginglL 105.25 0.98588 41.32 513.12 0.0067478
krigingcS 92.994 0.98897 38.135 475.88 0.0061841
kriginglS 106.79 0.98546 42.685 511.42 0.0069714
krigingcCC 582.13 0.56794 378.42 2037.4 0.071113
kriginglCC 258.44 0.91484 165.93 1000.6 0.030892
krigingcC 79.773 0.99189 36.787 456.89 0.0062757
kriginglC 77.24 0.99239 38.095 449.65 0.0065491
y2

krigingcE 0.16445 0.9934 0.078917 0.77835 0.0030034
kriginglE 0.15341 0.99426 0.080144 0.75616 0.0030331
krigingcEG 0.18387 0.99175 0.11194 0.90974 0.0042336
kriginglEG 0.17056 0.9929 0.096774 0.8347 0.0036158
krigingcG 0.21954 0.98824 0.13538 0.87085 0.005445
kriginglG 0.26235 0.98321 0.18105 0.94658 0.0070297
krigingcL 0.14069 0.99517 0.062895 0.79035 0.0023567
kriginglL 0.1611 0.99367 0.086156 0.76202 0.0032555
krigingcS 0.21449 0.98878 0.085147 1.2246 0.0032691
kriginglS 0.15175 0.99438 0.076583 0.77042 0.0028707
krigingcCC 1.5488 0.41472 0.9166 6.2374 0.037482
kriginglCC 0.64353 0.89896 0.4604 2.1557 0.018235
krigingcC 0.17571 0.99247 0.099894 0.8427 0.0037588
kriginglC 0.16797 0.99312 0.10356 0.74801 0.0039183

Table 7.2: Error metrics of global validation of anisotropickriging models

Note that kriging models with quadratic regression functions are not fit-
ted. This is due to the rank deficiency of these models for the considered
dataset. The kriging metamodels are then not reliable and thus ignored.

For the first response variable y1, the kriginglG and kriginglC meta-
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models perform good on both the RMSE and the R-Square error metrics.
However, on the error metrics AAE and MAPE, kriginglE and kriginglEG

have the best performance.

The second response variable y2 is obviously represented best by the
krigingcL metamodel. This metamodel scores best on all error metrics,
except the MAE. Second up, is the krigingcL metamodel. Other two meta-
models that score good, are the both metamodels with an exponential cor-
relation function, krigingcE and kriginglE.

However, also kriging models with isotropic parameters are available.
These isotropic metamodels are also fitted and the results are shown in Table
7.3.

Metamodel name RMSE R-Square AAE MAE MAPE
y1

krigingcE 104.31 0.98613 44.71 466.63 0.0072415
kriginglE 96.128 0.98822 41.96 451.09 0.006857
krigingcEG 71.541 0.99347 31.27 437.41 0.0052549
kriginglEG 68.214 0.99407 30.865 402.05 0.005154
krigingcG 159.72 0.96747 80.264 899.35 0.013845
kriginglG 109.83 0.98462 63.156 456.64 0.011372
krigingcL 104.64 0.98604 44.766 472.02 0.0072497
kriginglL 97.178 0.98796 42.112 455.85 0.0068627
krigingcS 105.3 0.98586 44.691 471.9 0.0072303
kriginglS 95.858 0.98828 41.307 452.55 0.0067446
krigingcCC 590.85 0.5549 395.17 2032.9 0.077245
kriginglCC 243.64 0.92432 161.26 935.09 0.029876
krigingcC 74.226 0.99298 34.279 421.2 0.0058105
kriginglC 68.535 0.99401 33.51 392.09 0.0056678
y2

krigingcE 0.19882 0.99036 0.10555 0.76419 0.0040708
kriginglE 0.17646 0.9924 0.098733 0.72922 0.0037873
krigingcEG 0.1717 0.99281 0.1048 0.96142 0.0039968
kriginglEG 0.1442 0.99493 0.091446 0.55184 0.0034924
krigingcG 0.78455 0.84982 0.42493 3.7491 0.017362
kriginglG 0.40951 0.95908 0.27138 1.5004 0.01075
krigingcL 0.19818 0.99042 0.10578 0.7754 0.004076
kriginglL 0.17653 0.9924 0.099346 0.73696 0.0038077
krigingcS 0.20231 0.99001 0.10684 0.77873 0.0041189
kriginglS 0.17734 0.99233 0.10013 0.71854 0.0038381
krigingcCC 1.5741 0.39543 0.94419 6.2691 0.038358
kriginglCC 0.64471 0.89859 0.43963 2.18 0.017464
krigingcC 0.16924 0.99301 0.095155 0.94798 0.0036412
kriginglC 0.14301 0.99501 0.085058 0.57099 0.003251

Table 7.3: Error metrics of global validation of isotropic kriging models
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Isotropic kriging models with the Gaussian and the cubic spline correla-
tion functions perform bad on both response values. These 4 metamodels
achieve the worst values for all error metrics for both response values. The
metamodels that seem to perform the best are the 4 metamodels with the
correlation functions, Exponential/Guassian and Cubic.

The isotropic and anisoptrics kriging models selected before are now mu-
tual compared and shown in Table 7.4.

Metamodel name RMSE R-Square AAE MAE MAPE
y1

kriginglE 86.276 0.99051 31.301 510.86 0.0051875
kriginglEG 81.853 0.99146 32.575 533.53 0.0056309
kriginglG 67.322 0.99422 37.965 359.53 0.0070063
kriginglC 77.24 0.99239 38.095 449.65 0.0065491
krigingcEG (iso) 71.541 0.99347 31.27 437.41 0.0052549
kriginglEG (iso) 68.214 0.99407 30.865 402.05 0.005154
krigingcC (iso) 74.226 0.99298 34.279 421.2 0.0058105
kriginglC (iso) 68.535 0.99401 33.51 392.09 0.0056678
y2

krigingcE 0.16445 0.9934 0.078917 0.77835 0.0030034
kriginglE 0.15341 0.99426 0.080144 0.75616 0.0030331
krigingcL 0.14069 0.99517 0.062895 0.79035 0.0023567
kriginglS 0.15175 0.99438 0.076583 0.77042 0.0028707
krigingcEG (iso) 0.1717 0.99281 0.1048 0.96142 0.0039968
kriginglEG (iso) 0.1442 0.99493 0.091446 0.55184 0.0034924
krigingcC (iso) 0.16924 0.99301 0.095155 0.94798 0.0036412
kriginglC (iso) 0.14301 0.99501 0.085058 0.57099 0.003251

Table 7.4: Error metrics of selected isotropic and anisotropic kriging models

Obviously, the isotropic krigingcL is chosen for the second response vari-
able. This metamodel scores best on all error metric except MAE. However,
this error metric only represents an error in one point, instead of an overview
of all errors. So, that is considered to be an exception.

For the first response variable, the choice for a metamodel is more diffic-
cult. The kriginglG performs best on RMSE, R-Square and MAE, but the
isotropic kriginglEG metmamodel scores best for AAE and MAPE. Because
MAPE and RMSE are not correlated and both represent a different picture,
both metamodels are selected for future study.

7.2.3 SVR models

There are a lot of support vector regression metamodels available. Each one
has an own kernel. All these metamodels are fitted on the dataset and the
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error metrics of the leave-one-out residuals are calculated and shown in Table
7.5. Leave-one-out cross-validation is applied here, because the RBF and the
exponential RBF kernels are interpolating. Also, the kernels spline, sigmoid,
anovaspline1, anovaspline2 and anovaspline3 are not tested here, because
these kernels yield predictions for this dataset, that are unreasonably high.

Metamodel name RMSE R-Square AAE MAE MAPE

y1

svr linear 360.29 0.8345 296.38 1054.0 0.055924
svr poly 361.68 0.83322 167.57 1689.4 0.029488
svr rbf 826.87 0.12827 644.5 2135.8 0.13008
svr erbf 883.51 0.0047719 712.1 2225.2 0.14361
svr fourier 894.75 -0.020725 732.22 2232.3 0.14716
svr bspline 341.98 0.85089 180.74 1593.0 0.032903
svr anovabspline 167.95 0.96403 85.49 873.43 0.01551

y2

svr linear 0.98154 0.76493 0.81653 2.6297 0.031629
svr poly 0.79425 0.84608 0.33381 4.2008 0.012455
svr rbf 1.9139 0.1063 1.412 6.514 0.056418
svr erbf 2.0113 0.012985 1.5674 6.514 0.062202
svr fourier 2.0453 -0.020725 1.6232 6.5141 0.06425
svr bspline 0.99103 0.76037 0.49115 4.7382 0.020609
svr anovabspline 0.59733 0.91294 0.29134 2.9713 0.012134

Table 7.5: Error metrics of selected SVR models

The SVR models seem not be able to represent the dataset adequately.
The only SVR metamodels that somehow approximate the dataset are the
ones with a anova b-spline kernel, svr_anovabspline, which will be selected
in the future study.

7.2.4 Final comparison of metamodels

The preselection of metamodels is done and the selected metamodel for fur-
ther examination are listed here.

• poly_1

• kriginglG (for y1)

• kriginglEG (iso) (for y1)

• krigingcL (iso) (for y2)
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• svr_anovabspline

• rbf

• mars

• ann

To assess the quality of each metamodels, several cross-validations are
used. The validation techniques leave-one-out, 2-fold, and 10-fold cross-
validation are used for determining the residuals. Fitting these metamodels
on the whole dataset and predicting all the points will yield incomparable
results, due to the interpolating character of some of these metamodels.

Three metrics are chosen to be shown, because they each show an other
aspect of the fit. The MAE shows the maximum error, and thus the accuracy
of the metamodel in its worst case. The RMSE shows the overall mean error,
with a negative bias toward large errors, whereas the MAPE accounts for the
overall mean relative error.
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Figure 7.6: Leave-one-out cross-validation
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Figure 7.7: 2-fold cross-validation
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Figure 7.8: 10-fold cross-validation
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These cross-validations show all a different picture. In the 2-fold cross-
validation, shown in Figure 7.7, the mars metamodel has a very good per-
formance. This metamodel seem to be able to make relatively accurate pre-
dictions with a small dataset. In 2-fold cross-validation the dataset is split
in two, and each half is used to predict the other half. The kriginglG

metamodel also has a very good performance on all three error metrics.
The radial basis functions metamodels perform very bad with p-fold cross-

validations, although they perform reasonably good on leave-one-out cross-
validation.

In the 10-fold cross-validation the kriginglEG(iso) metamodel achieves
the lowest value in each error metric. Also, the kriginglG and mars meta-
models scores high values.

The most important cross-validation is the leave-one-out cross-validation,
whereas the p-fold cross-validations can give a good background picture. The
both kriging metamodels don’t differ much from eachother in the RMSE
of the leave-one-out cross-validations. The MAPE and the p-fold cross-
validations seem to be biased towards the kriginglEG(iso). Therefore,
this metamodel is chosen for the first response value.

The results of the second response value are now discussed.
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Figure 7.9: Leave-one-out cross-validation
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Figure 7.10: 2-fold cross-validation
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Figure 7.11: 10-fold cross-validation
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Notable is that the MARS metamodel outperforms the kriging and all
other metamodels on all error metrics in the p-fold cross-validations seen in
Figures 7.11 and 7.10. However, in the leave-one-out cross validation the
kriging metamodel has a significant better performance. The p-fold cross-
validations are validations with smaller datasets, and thus less information
about the dataset. A metamodel is expected to have a good performance on
the whole dataset. Therefore, the krigingcL(iso) is chosen to model the
second response variable.

7.3 Optimisation

It is concluded that the best fit for fuel efficiency is the isotropic kriging model
with a linear regression function and the Exponential/Gaussian correlation
function. The best fit for the range is also a isotropic kriging model, but this
time with a constant regression function and a linear correlation function.
Both metamodels are interpolating models, which means that the models
yield exact predictions, this is also desired.
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Figure 7.12: Pareto optimal set (circles) for maximum range and maximum
fuel efficiency found by optimisation with metamodels

A Pareto front is now searched using these metamodels as the objective
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functions for the multi-objective optimisation. This is done using a genetic
algorithm, based on NSGA-II as described in [20].

In this optimisation a population of 98 individuals is used, where the ini-
tial population is given by the original dataset. In the first run 9 generations
are considered, which again yields 98 individuals. These individuals are then
used in an extensive optimisation run of 100 generations. The upper and
lower bounds for the individuals are given by the minimum and maximum
values of the original dataset.

As can be seen in Figure 7.12 a Pareto front is found. The points in this
front are the optimal set of datapoints found by the optimisation procedure.
The optimized set of points obtain clearly better values for the objective
functions, comparing to the original dataset.

As stated in Section 7.2, the kriging metamodels provide an additional
value for uncertainty, the MSE. The kriging metamodels can indicate an ex-
pected error for each datapoint. Taking the square root of the provided MSE,
an approximation for the expected error of approximation can be found.
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Figure 7.13: Square root of MSE’s of kriging model of fuel efficiency.

The kriging metamodel for the second response variable, the kriging
model with a linear correlation function, gives an equal MSE for each dat-
apoints, due to its linearity. The square root of the MSE of the second
response variable for each of the Pareto optimal points are given in Figure
7.13.
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Chapter 8

Conclusion/General Discussion

Many different metamodels can be fitted on a dataset. Not only are there a
lot of distinctive metamodels, each metamodel also provides different options
for parameters, kernel functions, correlation functions and other settings that
are part of a metamodel. Each dataset needs an individual approach for
choosing a metamodel and its settings. No generic rule can be given, that is
based on characteristics of a dataset. In order to choose a metamodel that
adequately describes the design problem, comparison between the different
metamodels and its settings are needed.

Also, the definition of a metamodel that ’adequately describes a design
problem’ should be considered. If a problem involves an exploration of the
whole design space, the problem needs a metamodel that is globally accurate.
Whereas an optimisation problem, that is known to have an optimum in a
certain area of the design space, should especially be accurate in that area.
The accuracy of a metamodel is linked to the information known about the
design space and thus to the problem.

Not only should be questioned in which area the metamodel should be
accurate, also the significance of an eventual residual should be questioned.
Large residuals can be weighted more in order to find the best metamodel, i.e.
with a lot of small residuals in contrast to less large residuals. However, this
can cause problems with design problems with very large and small response
values, because the residuals at the very large residuals will make the resid-
uals at the small response values insignificant. In this situation, a measure
relative to the response value should be chosen. So, also the representation
of the error of approximation should be chosen, paying importance to the
characteristics of the design problem.

To fully use the available dataset, the dataset should be used both for fit-
ting and for validation, which is called cross-validation. Leave-one-out cross-
validation seems to be utilized mostly in the literature. This cross-validation
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technique is also intuitively prefered. Leave-one-out cross-validation seems
to take maximal information out of the dataset. However, it is questionable,
because leave-one-out cross-validation never considers the full dataset.

The computational time of leave-one-out cross-validation increases sharply
together with the size of the dataset. In combination with leave-one-out
cross-validation computational efficient metamodels should be chosen, such
as kriging or polynomial models. Kriging metamodels seem to be favoured
above all the other metamodels, due to their small computational time and
accuracy.

It is advised that all metamodels should be fitted, together with leave-
one-out cross-validation. However, not always enough time is available. As
said, kriging metamodels are generally preferred, but other metamodels still
can outperform this metamodel depending on the datasets.

The results should still be compared and investigated. All error metrics
and validation techniques should be taken into account and an appropriate
one should be chosen for each dataset and design problem.

The different metamodels can easily be fitted, evaluated and validated
with the implemented functions in MultiFit. A leave-one-out cross-validation
for all metamodels can for example be done in one invocation of the imple-
mented function.

MultiFit should be used by users with some knowledge about metamodels
and validation methods. Because no generic rules are available for choosing
metamodels, the results should all be taken into account together with the
information about the design problem. For users with some knowledge in
the field of metamodelling, the MultiFit provides a transparant, easy envi-
ronment for creating and evaluating metamodels.
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Appendix A

Tests for determining default
settings

The implementation of the metamodels in the MultiFit-environment is de-
scribed in Chapter 5. For verification of the new software implementation,
many tests have to be done in order to verify the possible settings of the
functions. In the following sections, each metamodel will be tested for the
different input settings.

The test functions considered in this chapter are taken from [36], unless
mentioned otherwise.

A.1 Kriging metamodels

The kriging metamodels are implemented in MultiFit through the DACE
Matlab toolbox, which is described in [25]. All regression and correlation
functions mentioned in Section 3.2 are available for fitting metamodels. One
correlation function (exponential/Gaussian in Table 3.1 requires a parameter.
The correlation function is given by

exp

(

−θk

∣

∣

∣
x

(i)
k − x

(j)
k

∣

∣

∣

d
)

, (A.1)

where d denotes the power of the difference and this parameter is set by
param.expg.

To determine what an appropriate value of param.expg would be, datasets
based on 14 different test functions are fit twice, once with 100 samples and
once with 50 samples. The fit is done with kriging metamodels with constant,
linear and quadratic regression functions. The parameter is varied from 1.1
to 1.9, this is done because when the value of param.expg is equal to 1 or 2,

75



1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Parameter value

R
M

S
E

RMSE of constant Kriging model of test function 1

 

 
Small/Constant
Big/Constant
Small/Linear
Big/Linear
Small/Quadratic
Big/Quadratic

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

Parameter value

R
M

S
E

RMSE of constant Kriging model of test function 2

1 1.2 1.4 1.6 1.8 2
3.7

3.8

3.9

4

4.1

4.2

4.3
x 105

Parameter value

R
M

S
E

RMSE of constant Kriging model of test function 3

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

Parameter value

R
M

S
E

RMSE of constant Kriging model of test function 4

1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

Parameter value

R
M

S
E

RMSE of constant Kriging model of test function 5

1 1.2 1.4 1.6 1.8 2
5

6

7

8

9

10

11

12

Parameter value

R
M

S
E

RMSE of constant Kriging model of test function 6

1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

Parameter value

R
M

S
E

RMSE of constant Kriging model of test function 7

1 1.2 1.4 1.6 1.8 2
0.4

0.6

0.8

1

1.2

Parameter value

R
M

S
E

RMSE of constant Kriging model of test function 8

Figure A.1: Testing different values for the parameter of the Exponen-
tial/Gaussian correlation function
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other already implemented correlation functions will result. The performance
is then measured by comparing the predictions of the metamodels in 1000
validation points with their actual values. The RMSE of these predictions
is then calculated to provide a surveyable comparison. The plots of these
RMSE results are shown in figure A.1 and A.2 .
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Figure A.2: Testing different values for the parameter of the Exponen-
tial/Gaussian correlation function (continued)

The legend of the plots is given in the first plot, the plot of test function
1. Most RMSE of the metamodels of the test functions seem to ascend or
oscillate around a certain level. For many of the tests, the RMSE tend to go
up for high values of d. The minimum RMSE of most metamodels is found at
a value of d of 1.8. Therefore a default value of 1.8 is chosen for param.expg.

The next parameter that is tested, is the parameter that decides upon
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Figure A.3: Isotropic and anisotropic kriging models fit on different test
functions
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the isotropic character of the resulting kriging model. This parameter, given
by param.isotropic can be set to true or false. Isotropy is described in
section 3.2 and will not be further explained here. To determine the default
value of param.isotropic, the 14 datasets based on the test functions are
again fitted and the metamodels will be isotropically and anisotropically fit.
All kriging metamodels are fitted, only kriging metamodels with a cubic
spline correlation function are left out. This is done because this correlation
function yields extremely bad results in comparison to the other correlation
functions. The results are shown below.
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Figure A.4: Isotropic and anisotropic kriging models fit on different test
functions (continued)

The red bars correspond with the isotropic kriging metamodels. First
is noted that test function 3 yield indecisive results, so this test function
is ignored. Looking at the plots, the functions 1,2,4,7,8 and 12 seem to
favour isotropic kriging metamodels. However, the test functions 5,6 and
11 reach a lower RMSE when fitting anisotropic Kriging metamodels. Test
function 9,10, 12 and 14 are indecisive and not much can be said about
the difference between anisotropic and isotropic metamodels. An isotropic
metamodel will be faster to compute, because less optimisations have to be
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done. The Kriging metamodels, however, already perform reasonably fast,
so saving computational time is not the priority. Comparing anisotropic and
isotropic kriging metamodels, the performance of the metamodels depends on
the dataset and which correlation and regression function is used for fitting
the Kriging metamodel. Since it is noted in [25] that ”phenomenons are often
anisotropic”, the default value of param.isotropic is set to false.

A.2 RBF

Another metamodel that can be fitted with MF_Fit are radial basis functions
metamodels. These metamodels are explained in Section 3.4. Radial ba-
sis functions are implemented in MF_Fit by the MATLAB-function newrbe,
which is an interpolating radial basis function.

Only Gaussian radial basis functions will be considered here. The form
of the Gaussian radial basis function is determined by its width parameter,
see c in equation 3.26. This parameter is also incorporated in MF_Fit by the
parameter param.spread. This parameter can be set for determining the
Gaussian radial basis function.

To see what influence the parameter param.spread has on the perfor-
mance of the metamodel, metamodels with varying width parameter are fit
on the 14 test functions, as mentioned in Appendix. Two randomly gener-
ated datasets are used here, a big dataset consisting of 100 samples and a
small dataset consisting of 50 samples.

The width parameter coincidences with the spread of the input space.
The width parameter must be larger than the minimum distance between
two adjacent input vectors, but smaller than the distance across the whole
input space. This can be computed with a function called
compute_spreads. Therefore, the width parameter of the RBF metamodels
are varied between the minimum and the maximum width.

Again a validation set of 1000 data points is generated to measure the
performance of the fitted metamodels. This is done by the RMSE, given in
equation 4.2. The results of the 14 test functions are plotted below.

The plots are adjusted, so in some of the figures, the whole plot is not
visible. There can be assumed that the part of the plot that is not shown is
ascending steadily from a high value. As can be seen, the RMSE of radial
basis functions metamodels with a width parameter set to the minimum
value, is very high. This is thus not preferable. Also, with the last 4 test
functions, test functions 11 to 14, the RMSE seems to increase when the
width parameter is approximating the maximum value. At most of the test
functions, the RMSE of the RBF metamodels seem to reach a low value
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Figure A.5: Influence of the width parameter on the accuracy of the meta-
model
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Figure A.6: Influence of the width parameter on the accuracy of the meta-
model (continued)
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somewhere just before the middle of the minimum and maximum value of
the width parameter. This is not true for the metamodels fit on the small
dataset of function 9,11 and 12, which are considered to be exceptions.

The default value for the width parameter of MATLAB is 1. Obviously,
this can be improved by involving the width of the input space. Therefore, the
mean of the minimum and maximum value, as mentioned before, is chosen to
be the default value of param.spread. Note that varying the width parameter
can yield better performances.

A.3 Support Vector Regression

As mentioned in in Section 3.4, SVR metamodels can be build with different
kernels. These kernels have all a different influence at the performance of the
metamodel. Some of these kernels take parameters to determine the form of
the kernel. In this section, each kernel is tested to decide a default value of
these parameters. The following kernels take parameters:

• Polynomial

• Gaussian

• Exponential

• Sigmoid (takes two parameters)

• Fourier

• B-Splines

In the following the optimal value for the parameters of these kernels
are tested by fitting metamodels of two datasets on 14 test functions, and
calculating the RMSE for each metamodel with an additional validation set
of 1000 points.

A.3.1 Polynomial

As mentioned in Section 3.4, the polynomial kernel of the SVR metamodels
has the following form

k(x, x′) = 〈x · x′〉d. (A.2)

The parameter of the polynomial kernel is thus the order d of the dot-product.
This parameter can be set by param.svr_poly_p1. The parameter is varied
from order 2 to 10. The plots of the tests are shown below.
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All orders have the same performance with test functions 3, 7, 8 and
12. Only a second order polynomial kernel seem to make a little difference
in these test functions. Test function 1, 4, 6 and 11 have all an ascending
RMSE along with an ascending polynomial order. Test function 5 and 9
seem to reach their minimal RMSE at a polynomial order of 4, whereas test
functions 13 14 have their minimum at an order of 7. Overall, a polynomial
order of 4 seem to have a good overall performance, due to their minimum
in test functions 5 and 9 and a good result in test functions 13 and 14. So
the default value for param.svr_poly_p1 is set to 4.

A.3.2 Gaussian and Exponential

The Gaussian kernel of the SVR metamodels has the following form

k(x, x′) = exp

(

−||x − x′||2
2σ2

)

, (A.3)
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and the exponential kernel of the SVR metamodels has the following form

k(x, x′) = exp

(

−||x − x′||
2σ2

)

. (A.4)

This parameter σ can be set by param.svr_rbf_p1 for the Gaussian kernel
and by param.svr_erbf_p1. These two kernels are both radial basis func-
tions. Therefore notice is taken from the conclusions made in the section
before. These kernels of the SVR metamodels are a transformation of the
width parameter of the radial basis functions mentioned in the sector before.
Therefore, the same default value is taken here as concluded in that section.
The default value for param.svr_rbf_p1 and param.svr_erbf_p1 is thus
a transformation of the mean of the maximum and minimum width of the
input space.
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Figure A.7: Performance of different value for parameters of the fourier kernel
of the SVR metamodel
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Figure A.8: Performance of different values for parameters of the B-Splines
kernel of the SVR metamodel
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Figure A.9: Performance of different values for parameters of the B-Splines
kernel of the SVR metamodel (continued)

A.3.3 Sigmoid

The Sigmoid kernel of the SVR metamodels has the following form

k(x, x′) = tanh(ρ〈x · x′〉 + θ). (A.5)

It is a special case, because this is the only kernel which takes two parameters.
Due to the form of the function, the parameters will be chosen so that the
function is centred around the mean of the dot products.

A.3.4 Fourier

The Fourier kernel of the SVR metamodels has the following form

k(x, x′) =
sin(N + 1

2
)(x − x′)

sin(1
2
(x − x′))

(A.6)

The parameter of the Fourier kernel can be considered as an expansion in
the 2N +1 dimensional feature space. The parameter N is considered on the
interval [−0.5, 2π − 0.5] and can be set with param.svr_fourier_p1. The
parameter is varied in [−0.5, 2π − 0.5]. The plots of the tests are shown in
figure A.7.
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Note that the RMSE’s are very high. This is because its regularisation
capability is poor, which is evident by consideration of its Fourier transform
[45]. Chosen is for a default value of -0.5 for param.svr_fourier_p1, because
this value has an overall low value.

A.3.5 B-Splines

The B-Splines kernel of the SVR metamodels has the following form

k(x, x′) = B2N+1(x − x′) (A.7)

The parameter of the B-Splines is an integer, which denotes 2N + 1, and
can be set with param.svr_bsplines_p1. The parameter is varied from 0
to 5. The plots of the tests are shown in figure A.8 and A.9 . Note that test
functions 3,7 and 8 are not shown because these tests yield indecisive results.
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Figure A.10: Plots of the test functions considered for comparing kernel
function
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A.3.6 Comparison kernel functions

The kernel functions are tested on three different mathematical problems.
These are all two-dimensional mathematical problems, the first two are taken
from a paper by Jin, Chen and Simpson and the last one is the MATLAB-
peaks function. They are given by

f1(x) = sin(πx1/12) cos(πx2/16) (A.8)

f2(x) = (30 + x1 sin x1)(4 + e−x2
2) (A.9)

f3(x) = 3(1 − x1)
2e−x2

1−(x2+1)2 − 10(x1/5 − x3
1 − x5

2)e
−x2

1−x2
2 (A.10)

− 1/3e−(x1+1)2−x2
2 (A.11)

The test functions are considered on the intervals shown in the plots in
figure A.10.

The Support Vector Regression metamodel is trained with a dataset of
50 points, which are sampled using a Latin hypercube design. 1000 test
points are used then for validation, which is also sampled using Latin hyper-
cube design. Then the RMSE is calculated for each kernel function on these
validation points. This is done for all three test problems.

The following figures shows the accuracy of each kernel functions used in
SVR. The accuracy is measured in RMSE.
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Figure A.11: Performance of the different kernels of the SVR metamodel on
the tree test functions

As can be seen the Gaussian RBF and the Exponential RBF kernel func-
tions seems to perform best in all test problems. Only in the last test problem
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the both b-splines kernel functions perform better. These kernel functions
also perform good in all problems. The fourier, anovaspline1, anovaspline2
and spline seem not to be suitable for regression.

A special case is the sigmoid kernel function. This kernel function takes
two parameters, when these two parameters are (close to) zero, the sigmoid
kernel function approximates the linear kernel function. However, these pa-
rameters of zero or close to zero seems to be optimal. Therefore, the tuning
of these parameters needs to be further investigated.

The linear, poly and anovaspline3 kernel function perform mediocre. They
don’t outperform the other functions but don’t perform that bad.

A.4 MARS

Multivariate adaptive regression splines (MARS) metamodels can also be
fitted with MF_Fit. This metamodel takes several parameters, namely

1. model.maxdepth,

2. model.max_interactions, and

3. model.selfinteraction.

The MARS metamodel is determined by its basis functions. The maxi-
mum number of basis functions Mmax is set by model.maxdepth. More basis
functions will provide a more extensive and (probably) accurate metamodel.
However, this will cause a higher computational time, because more basis
functions need to be calculated. The question if a large model is desirable
over a small model can also arise. Therefore, a good trade-off must be made
between complexity, for good approximation, and usability, by reducing com-
putational time.

The basis set of 14 test functions is used to determine an optimal default
value for
model.maxdepth. Each test function is fitted with multiple MARS meta-
models, with an ascending model.maxdepth from 1 to 20. Two randomly
generated datasets are used here, a big dataset consisting of 100 samples and
a small dataset consisting of 50 samples.

As mentioned earlier the computational time will increase together with
the complexity, i.e. model.maxdepth. To illustrate this, the average compu-
tational time needed to build the metamodels, the average over all the test
functions, is plotted against the maximum number of basis functions Mmax

of the metamodels, model.maxdepth in figure A.12.
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Figure A.12: Time needed for building the MARS metamodel with an in-
creasing depth

As can be seen, for both datasets a more or less linear relation exists be-
tween the maximum number of basis functions and the needed computational
time to build the model. As the maximum number of basis functions increase
the needed computational time to build to model also increases. This is be-
cause more basis functions will be calculated and evaluated, what leads to
more computational time. Obviously, a smaller dataset takes less computa-
tional time as less calculations has to be done. As comparison, polynomial
and kriging models and radial basis functions take less than a second.

A metamodel with high complexity does not necessarily mean an accurate
approximation. Therefore, the metamodels are evaluated with an additional
dataset of 1000 samples. The predictions of the metamodels are compared
with the actual values and the root mean square error is calculated. The
metamodels of test functions 3 and 7 are omitted, because the metamodels
have the same predictions for each model.maxdepth, i.e. each metamodel
has a depth of 1. The results are shown in the plots given in figure A.13 and
A.14.

As expected, the RMSE decreases as the Mmax increases. The RMSE’s
of test functions 1,2 and 4 seem to stabilize after Mmax = 6. Note that these
test functions are linear. All other test functions stabilize around Mmax = 10,
after Mmax = 10 the RMSE oscillates around the same level. Test functions
6 and 7 are not considered, because test function 6 oscillates too much to
make any conclusion and the models of test function 7 are equal, hence the
equal RMSE.
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Figure A.13: Performance of the MARS metamodels on different test func-
tions
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The conclusion can be made that a value of 10 for model.maxdepth is
desirable. This value correspond to an average computational time of circa
4.7 seconds for a dataset of 100 samples and circa 3.7 seconds for 50 samples.
This is significant more than other methods like polynomial models or krig-
ing, but is still acceptable. The default value of model.maxdepth is therefore
set to 10.
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Figure A.14: Performance of the MARS metamodels on different test func-
tions (continued)

Another parameter which influences the performance of the MARS meta-
model is
model.max_interactions. As explained in Sector 3.5, as well as univari-
ate as interaction basis functions exists. Interaction basis function involves
basis function of multiple explanatory variables. When no interactions are
desired model.max_interactions is set to 0. Only univariate basis func-
tions are then considered. A value of 1 signifies an interaction basis function
of 2 explanatory variables (1 interaction between 2 variables). To consider a
full model, the parameter model.max_interactions is set to its maximum
value, i.e. the number of explanatory variables minus 1. If the number of ex-
planatory variables is large, this will cause an increase in the computational
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time, because more basis functions needs to be evaluated. The default value
will be set to its maximum value, because a full model, i.e. with all possible
interactions, is desirable.

The last parameter involved in building the MARS metamodel is the
parameter
model.selfinteraction. This parameter can take logical values, which
means the value can be set to true or false. When this parameter is set
to false, basis functions cannot be split into dimensions that are already
used in that or previous knot(s), meaning that consecutive knots cannot split
the same dimension. No self-interactions causes a smaller model with less
computational time. A full MARS metamodel is desirable, so the default
value is true.
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Appendix B

Metamodelling confidence
intervals

With the use of metamodels predictions can be made of unknown datapoints.
These prediction provide an indication for the actual value, because these
metamodels are merely approximations. So, the predictions given by the
metamodels contain a degree of uncertainty, which results in a residual, an
error of approximation. Unfortunately, most metamodels provide only a
prediction without an indication of uncertainty. An option can be to provide
additional information in form of a confidence interval.

Classical notions of confidence intervals, for example based on least-
squares residuals, are not applicable [39]. So alternative methods must be
searched or invented.
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Figure B.1: Original function and the metamodel, both plotted on the do-
main

Together with the predictions of a leave-one-out cross-validation, an error
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of approximation is obtained. In leave-one-out cross-validation an error of
approximation is always obtained, because an unknown point that is left
out of the original dataset, is predicted. A possible alternative method is
providing a confidence interval based on the errors of approximation.

The error of approximation of an unknown point should be predicted.
This can be done by fitting a metamodel on these errors of approximation.
This residual metamodel is then able to predict an error of approximation of
an unknown point.

In order to prevent interference of negative and positive errors of approxi-
mation, the absolute error of approximation is taken as input for the residual
metamodel. The negative and positive errors of approximation could also be
split, so two sets of errors of approximation obtained. This way a negative
and a positive residual prediction can be given, causing a confidence interval.
This is not preferable, because two metamodels must be fitted, both based
on a part of the dataset. In contrast, when considering absolute errors of
approximation, one metamodel can be build, based on a full dataset. This
way, the dataset is larger and thus the metamodel is more dependable.

Considering a residual metamodel predicting the error of approximation
for an unknown point based on absolute values, the prediction of the error
of approximation acts both as a positive and as a negative range.
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Figure B.2: The residual metamodel plotted on the domain
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This idea will be illustrated by applying the idea to test function 10. A
dataset is generated of 100 datapoints for training and a dataset of 1000
datasets is generated for validating. First off, a metamodel is build, the
metamodel with the lowest MAPE, based on leave-one-out cross-validation,
is chosen. This metamodel is the kriging metamodel with a linear regres-
sion function and a spherical correlation function. The metamodel and the
original function are both shown in figure B.1.

The leave-one-out cross-validation yields predictions of the training dataset
that are not accurate, i.e. has an error of approximation. The absolute dif-
ference between the real values and the prediction are the absolute residuals.
A metamodel is again fitted, but this time on the absolute residuals in com-
bination with the datapoints. Again, the metamodel with the lowest RMSE,
based on leave-one-out cross-validation, is chosen. This metamodel is the
kriging metamodel with a linear regression function and a exponential cor-
relation function.

So, a ’kriginglS’ metamodel is fitted for predicting the response values is
fitted, based on the original dataset, and an additional residual ’kriginglE’
metamodel for predicting the error of approximation is fitted, based on the
error of approximation of the leave-one-out cross-validation predictions of
the ’kriginglS’ metamodel.
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Figure B.3: Boxplots of absolute and procentual differences between the
predicted and real residuals

As can be seen, the residual metamodel reaches a top around (0, 0), mean-
ing the residual metamodel predicts a large residual here. The original meta-

97



model is indeed not accurate in this region as can be seen in Figure B.1, so
the residual metamodel gives a good indication.

However, to validate this residual metamodel, the validation dataset con-
taining 1000 datapoints is predicted by the original metamodel and the resid-
ual metamodels. This yields two predictions, one for the observation value
and one for the error of approximation. The prediction for the observation
value is compared with the real observation value, yielding an error of ap-
proximation.

The absolute difference between the prediction of the residual and the
actual residual is around zero. However, in account must be taken that the
residuals of this test function are small values and are bound to be around
zero. Therefore, a relative procentual difference is calculated, which is based
on the real residual. The difference between the prediction and the actual
value of the residual is divided by the actual value of the residual, which
yields a procentual value.

Obviously, the predictions of residual are not always accurate. Also, not
much can be said over the reliability of the predictions of the residuals. How-
ever, they provide a good indication and can provide additional information.
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Appendix C

Additional figures of
polynomial metamodels of
polynomial functions
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