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PREFACE

The last 6 months I worked as a graduate intern at TNO to finish my master Business Analytics
by writing a thesis. The department I was working at, is the Intelligent Imaging group. They
focus on all sorts of research regarding image processing and computer vision. My research in
particular was focused on tracking soccer players by using computer vision. Or, more precise,
connecting already existing tracks.

I would like to thank my supervisors. Firstly, I would like to thank my supervisor from
TNO, Wyke Pereboom-Huizinga for the opportunity to graduate at TNO’s Intelligent Imaging
team, and for her advice and guidance throughout the process. Secondly, I would like to
thank my supervisor from the VU, Sandjai Bhulai for his feedback during this research. Also,
a warm thank you to all members of the Intelligent Imaging team at TNO for their support,
time and willingness to always help and answer questions.
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SUMMARY

To analyze a soccer match, it is necessary to track the position of each player in the match.
The intelligent imaging group of TNO is already able to detect players and to a certain extent
track them. However, the tracks in the current system contain many track breaks that need to
be repaired in order to know which tracks belong to which player. This will be the focus of this
report. The main aim is to connect the current set of tracks correctly, resulting in fewer and
longer tracks. The problem can be stated as follows: "How can different tracks be connected
such that a player’s position is being tracked throughout the match using the available video
feeds?"

In this research, a fully working pipeline is created to 1) combine different track sets of
soccer players that resulted from different cameras recording a soccer match from different
points of view and 2) to correctly connect the already existing tracks using the video data.

To combine multiple track sets into a single track set and to connect the tracks in this single
track set, multiple steps needed to be taken. Figure 0.1 provides a schematic overview of the
proposed method. All steps in the method are described in detail in sections 4.1 - 4.6.

Figure 0.1: Overview proposed method

First, the two track sets needed to be compared and combined into a single track set. This
is done based on the overlap of two tracks. To make use of the video feeds, snippets are added
to each track. A snippet is the part of a certain frame in which the player is seen.

Then, the tracks that belong to a single player needed to be connected. To find these con-
nections, first potential connections are found by making a potential connection between all
ends of tracks and all beginnings of tracks, where the end of the one track needs to be earlier
in time than the beginning of the other track.

From the potential connections, the impossible connections are eliminated using spatial-
temporal reasoning. Then, using several features based on both track information as well
as video data, different scores are given to each connection indicating how well the tracks
connect based on these features. The features designed for this research based on the track
information are speed, euclidean distance, delta in time. The features based on video data are
a deep re-identification feature vector, a color histogram, the detected and classified player
number and the skin color of the player.
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Those different scoring values are then combined into a single score which is used to
choose the winning connections. Multiple ways of combining these scores are researched
and the results are compared. First, a simple sum of those scores is used. Second, a weighted
sum of those scores is used where the weights are either learned by fitting linear regression
model or they are given manually. Third, more sophisticated methods like a multi-layer per-
ceptron classifier or a random forest classifier are used to determine the score. The predicted
probability that a connection is true is then used as final score.

Having one final score for each connection, the true connections are chosen. This is again
done in different ways. First, a random method is used. Second, a greedy method is used.
Third, the true connections are determined using a max flow min cost graph. Last, a global
clustering method is used.

Experiments are performed on a manually annotated 1-minute video sequence of a soccer
match. After evaluating the different methods to score and choose the winning connections
using different sets of features, it can be concluded that using the features based on time,
distance, speed, a color histogram and a re-identification deep feature vector yields the best
results. It is also found that the greedy and the min-cost-flow approach to choose winning
connections with are best to use. Furthermore, the global clustering approach yields better
results than the random approach. For the scoring methods it is hard to tell which methods
are best since they yield similar result.

It can be concluded that, using a combination of both track-based features as well as video
data-based features, different tracks can be connected such that a player’s position is being
tracked throughout the match.
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1 INTRODUCTION

1.1 PROBLEM STATEMENT AND OBJECTIVE

A lot of money is going on in the soccer world. Players are getting more expensive every year,
e.g. [5] shows an increase of 14.8 bln between 2006 and 2018 for the European market only.
Therefore, it is desirable to obtain knowledge and information about each player and the
way a team plays. This is done by analyzing the match. For this, it is necessary to track the
position of each player in the match. Currently, the players are being tracked manually, for
example, by OPTAsports [1]. During and after a match, an annotator will exactly point out
which player was where and what is going on in the match. This is very time consuming and
therefore the need rises for automating this process. One way to automate tracking is to use
sensors [4]. A limitation of this is that then all players need to have sensors taped on their
bodies which can limit their performance in the match. An other limitation is the price of
such sensors which makes it not a suitable option for amateur matches.

Another approach to automatically track the player’s positions is using computer vision.
The Intelligent Imaging group of TNO is already able to detect players and to a certain extent
track them. However, there are parts in the videos in which that is difficult. For example,
when multiple players are very close together or standing behind each other, it is very
difficult to decide which player went in which direction. The tracks in the current system
contain many track breaks that need to be repaired in order to know which tracks belong to
which player. This will be the focus of this report. The main aim is to connect the current
set of tracks correctly, resulting in fewer and longer tracks. The problem can be stated as
follows: "How can different tracks be connected such that a player’s position is being tracked
throughout the match using the available video feeds?"

1.2 RELEVANT INFORMATION ABOUT THE HOST ORGANIZATION

TNO is the Dutch organization for applied scientific research. It is an independent research
organization that focuses on applied science. TNO fulfills the role of innovator on behalf of
the Ministry of Defence, the Ministry of Social Affairs and Employment and the Geological
Survey of the Netherlands. The work of TNO is focused on nine domains which are in
line with the challenges and goals of the national economic policy, based on so-called Top
Sectors, and with social issues relevant to the Netherlands and Europe.
One of these nine domains is Defence, Safety & Security. In this domain is the expertise group
Intelligent Imaging, where this research was conducted. The Intelligent Imaging research
group consists of 40 professionals working on projects involving image processing, image
enhancement, image analysis, visual pattern recognition and artificial intelligence.
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1.3 STRUCTURE OF THE REPORT

The remainder of this report is structured as follows. First, in Chapter 2, the relevant
literature is discussed, explaining what research has already been done with respect to the
problem and how this relates to the problem. Then, in Chapter 3, the data used in this
research is shortly discussed. In Chapter 4, the framework of this research will be discussed.
This includes an explanation of all models, techniques and theory used throughout this
study. In Chapter 5 the results will be given. The conclusion of this research, together with
its discussion, limitations and recommendations are presented in Chapter 6, followed by the
appendices and references in Chapter 7.
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2 DISCUSSION OF THE LITERATURE

A lot of research is performed on automatically detecting and tracking multiple persons in
videos and it is still one of the main research interests in computer vision. Multi-person track-
ing can be applied to any field where tracking the motion of multiple persons is of interest.
Most papers use a tracking-by-detection approach [24], [13], [3], [8]. These approaches treat
tracking as a repeated detection problem: first a detection algorithm is applied on individ-
ual frames and then these detections are connected across frames. To obtain detections in a
single frame, many detection methods have been developed. In [24], aggregate channel fea-
tures (ACF) are used to train the detectors and a target specific particle filter is used as motion
tracker. In [13], a DPM detector is used after which detections are classified by team. Tracking
is then performed frame by frame by assigning detections to existing tracks. This is done by
using bi-partite matching where the matching cost is the Euclidean distance between cen-
ters of detections and predicted locations of tracks. In [3], a first-order Markov model is im-
plemented, considering only information from the current and the last time step. Different
detectors are used after which high-confidence detections are selected using target-specific
classifiers trained during run-time for each person. Then tracking is performed using particle
filtering.

Besides tracking-by-detection approaches, different approaches have been proposed in lit-
erature. With the advent of deep learning, end-to-end tracking using neural networks have
emerged [16], [18], [25]. In [16] a recurrent neural network is used. This network is capable
of performing all multi-target tracking tasks within a unified network structure. In [18] also a
recurrent neural network is used. They used it for tracking and classifying a robot’s surround-
ings in complex, dynamic and only partially observable real-world environments. In [25] The
Correlation Filter is used, which is an algorithm that trains a linear template to discriminate
between images and their translations. Here, The Correlation Filter learner is interpreted as
a differentiable layer in a deep neural network.

Another paper that uses deep learning is [8]. This paper uses a tracking-by-detection
approach with improved object detection using a deep learning-based Faster region convo-
lutional neural network (Faster R-CNN) algorithm. This is followed by using appearance and
improved motion features to track objects.

The aforementioned papers all use either pre-trained person detectors or other pre-trained
models. The main challenge of using them is that, because of their pre-training on specific
datasets, the detection and tracking is not generalizable to other datasets. Directly applying
these methods may therefore result in false positives or missed detections and / or tracks.
Usage of any of these methods will most certainly result in broken tracks, that need to be
connected before the video can be analyzed.

Connecting a set of broken tracks can be viewed as a flow network problem through which
a certain amount of flow must be sent in the cheapest possible way. These type of problems
are called min-cost flow problems [23], and are solved by minimizing an appropriate cost
function. The min cost flow optimization is used in different problems [9], [15], [6]. In [9],
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they use min cost flow optimization to find optimal cargo transport of N types of containers
with limited ship capacity, while minimizing the transport costs. In [15] the planning prob-
lem related to finding the allocation of vehicles to origin-destination pairs is solved by using
min cost flow optimization. The origin-destination pairs have stochastic demand. In [6] min
cost flow optimization is used for dynamic assignment procedures for networks with storage
devices over time. In [2], [21] and [11] min cost flow optimization is used to connect detec-
tions. This, of course, only works with an appropriate cost function. In [22] the cost function
is based on distance, in which a greedy algorithm is used to sequentially connect detections
to tracks using shortest path computations on a flow network. In [10] the cost-function is
based on learned models, where a learned dictionary of interaction features is used.

Besides a connection problem, connecting tracks of players can also be seen as a re-
identification (ReID) problem, since re-identifying the soccer players using the detections
allows for connecting the tracks correctly. Previously proposed methods have utilized deep
learning to re-identify persons [26], [27], [28]. Re-identification is a commonly used approach
to add detections to tracks. Literature discussed here is limited to the re-identification of per-
sons in video streams. In [26], a spatial-temporal person ReID framework is proposed that
uses both visual semantic information that captures information about the looks of a per-
son and spatial-temporal information that captures information about the time and position
of a person. In [27] a pipeline for learning deep feature representations from multiple do-
mains with Convolutional Neural Networks (CNNs) is presented. They use a Domain Guided
Dropout algorithm which they have shown improves the feature learning procedure. In [28]
a survey is conducted about Deep Learning for Person Re-identification. An overview and
analysis of existing methods is given.
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3 DATA USED

The Intelligent Imaging department cooperates with a small enterprise that makes videos
of soccer matches on various levels of play, of both training and matches. This enterprise
provides the Intelligent Imaging department with the videos on request. For this research,
videos of soccer matches from Ajax were available.

A single match is captured in video feeds from eight cameras. Figure 3.1 shows the
positions of these eight cameras: four are recorded from the long side of the field and four
are recorded from the short side of the field. The four video feeds from the same side are
placed next to each other such that the entire field is visible.

Figure 3.1: Representation of the setting

The delivered video feeds each have a frame rate of 25 frames per second of which, most of
the time, 1/4 is processed. The actual frame rate is then 6.25 frames per second. Each frame
has a resolution of 3840x2160 pixels.

The delivered video feeds are being processed by the already existing tracking software of
the Intelligent Imaging department. This results in tracks of players for all eight video feeds.
For the four videos from the same side, the tracks that exist on the borders of the video feeds,
are being combined where possible. This eventually results in two sets of tracks: one set
resulting from the video feeds recorded at the long side and one resulting from the video
feeds recorded at the short side of the field. These track sets, however, contain many track
breaks where it is not known which track belongs to which player.
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4 RESEARCH METHOD

This chapter elaborates on the used methods, the added features, how they are used to give a
score to the connections and how those scores are used.

Figure 4.1 provides a schematic overview of the proposed method. All steps in the method
are described in detail in sections 4.1 - 4.6.

Figure 4.1: Overview proposed method

4.1 COMBINE TRACKS FROM DIFFERENT CAMERAS

First, the two track sets that result from two sides of the field need to be compared and com-
bined into a single track set. This is done based on the overlap of two tracks.

Tracks that could be the same are found using the spatial distance between the tracks. Only
the points that exists at the same time for both tracks are considered. To compare the tracks
against each other, three matrices are created where the rows represent the tracks from the
first set and the columns represent the tracks from the second set. The first matrix consists
of the mean spatial distance between the overlapping time points of two tracks. The second
matrix consists of the number of times the distance between two points was less than a cer-
tain threshold. These numbers can be seen as the overlap of the two tracks. The third matrix
consists of the values of the second matrix divided by the number of detections that existed
at the same time point for both tracks. These values can be seen as the relative overlap of the
two tracks.

All row-column indices where the mean in the mean-distance-matrix is less than a thresh-
old, the overlap is at least 2 and the relative overlap is at least 50% are considered to be possi-
bly the same.

The number of detections that existed at the same time for both tracks, divided by the
length of the first track can be seen as the percentage of the first track that will be captured
by the second track. If this percentage is higher than a user-defined threshold, the first track
could be removed without losing information. In my method, the coverage threshold is set to
90%. Figure 4.2 shows an example of two tracks for which this percentage is calculated.
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Figure 4.2: Percentage captured

The remaining tracks are clustered in such a way that a cluster consists of all tracks that
possibly belong to a single player. Tracks that exist at the same time and originate from the
same video feed cannot be in the same cluster. If this is the case, it means that the tracks are
clustered incorrectly. This is caused by an incorrect possible merge of two tracks with a track
from the other camera. An example is shown in figure 4.3.

Figure 4.3: Tracks in cluster

To resolve this problem of incorrect clusters, a choice is made which track to keep, based
on overlap and density with the other tracks that result from the same video feed. The den-
sity can be seen as a measure of goodness of the track, since when a track is dense, i.e. it
contains many detections, the tracking algorithm is more reliable and hence, the resulting
track is trustworthy. Consider two tracks: track1 and track2. The overlap of track1 with track2
is defined as the number of detections that existed at the same time point for both tracks,
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divided by the length of track1. This overlap can be seen as the percentage of track1 that will
be captured by track2. A combination of the overlap and the density is used to determine
which track is redundant and will be removed from the cluster. After removal of the redun-
dant tracks, the clustering is repeated. This results in new clusters which will replace the old
cluster. This checking and adapting is done in a recursive way, until all clusters have been
resolved, including the newly made clusters.

Now, all tracks that are in the same cluster belong to a single player and thus they should
all be merged. The tracks are merged in such a way that a single track results. For the time
points having multiple detections, the coordinates of the detections will be merged by taking
the weighted average of the values for all fields. As weight, the confidence of the detection is
used, which is a result from the used detection method. This results in a single set of tracks.
Since tracks that are not considered for merging also exist, these are taken into account as
well to make the set as complete as possible. However, they are only added when they have at
least 10 detections, to only have tracks of certain reliability. It is assumed that these tracks are
different from the already merged ones and the ones that were found by the other camera.

This track set combining method can easily be extended to multiple track sets when more
cameras will be placed.

4.2 ADD SNIPPETS TO TRACKS

In order to use information from the video feeds for combining tracks, so-called snippets are
added to each track for a limited number of detections. Snippets contain pixel information
inside the bounding boxes of the detections, i.e. are visual representations of what was de-
tected in time and space. Snippets of a maximum of 10 detections were added. This number
is limited due to computation limitations.

To capture as much information as possible in the 10 snippets, snippets are desired where
the player is facing different directions. This is done by randomly choosing 30 detections
from the track. From those 30 detections, the 10 best representing are chosen. The represen-
tativeness of a detection is determined by for example using SIFT features as introduced by
Lowe in [12] which are used to recognize parts of images that are the same. This, however,
will only work if the object itself does not change much. The fact that soccer players are mov-
ing their bodies while playing, causing the person to change in appearance, makes this an
inappropriate method. Another method is to use the direction in which the player is moving.
The direction is measured by the atan2(dy, dx) where dy and dx are the differences in meters
between the current time point and the previous time point. The 10 detections that were cho-
sen are the ones whose directions are most spread. Snippets belonging to these detections
are determined.

Because the two outer cameras are also placed in the middle of the line, the players are
not projected straight up while the bounding boxes are. This causes the bounding box to
not always capture the player entirely e.g. sometimes only the feet are captured. To account
for this, the bounding box is rotated by the same angle the player is projected and a bigger
bounding box is fitted around that rotated bounding box such that the player is inside the
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bounding box. This bigger bounding box is then used to create snippets of players. Figure 4.4
shows an example of snippets of a track.

Figure 4.4: Example of snippets of a track

4.3 FIND POTENTIAL CONNECTIONS

After the second step, a single set of tracks is obtained, where each track belongs to a single
player, and relevant video data corresponding with these tracks is added. The next challenge
is to combine the tracks, such that a single player is tracked throughout the entire match with
a single track. The problem can be seen as a connection problem with a set of players on
time point t on the one hand and a set of players on time point t+delta on the other hand. To
connect the tracks, first all potential connections need to be found. This is done by making
a potential connection between all ends of tracks and all beginnings of tracks, where the end
of the one track needs to be earlier in time than the beginning of the other track. Now, from
these potential connections, the true connections need to be found. Figure 4.5 shows an
example of tracks with the found potential connections.

Figure 4.5: Example of tracks with potential connections
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4.4 ELIMINATE CONNECTIONS

From the potential connections, the impossible connections can be eliminated using spatial-
temporal reasoning. If there is, for example, a connection between two tracks where the end
of the first track is at the one side of the field and the beginning of the other track is at the
other side of the field and the difference in time is very small, this connection is not possible.
To eliminate connections, the speed and a combination of the work and power that would
be needed for this connection to exist are considered. Using some thresholds, impossible
connections are eliminated. The threshold used to eliminate the connections based speed is
based on top speeds obtained at the 100m sprint at the Olympics running contests.

At the 100 meter sprint at the Olympics, the top speed reachable for man is 12 m/s and
for woman 10.5 m/s. In this research it is assumed that the soccer players will not exceed
a speed of 10 m/s. Connections where the speed should have been higher than 10 m/s are
eliminated. Since the locations of the players are determined using a detection model on the
video feeds, the coordinates can deviate slightly from the true coordinates. To correct for an
eventual deviance, for the speed the following formula is used: (dr-3)/(dt+0.5), where dr is the
Euclidean distance and dt is the difference in time. Here, -3 in the numerator is to account for
a deviance and +0.5 in the denominator is to account for the fact that the difference in time
can be 0 and dividing by 0 is not allowed. This adaptation, makes sure that only connections
which are really impossible, are eliminated.

The work and power features represent the needed work and power a player has to do to
get from the end of the one track to the beginning of the other track. If these values are higher
than is possible for a human being, the connection is not possible and can thus be eliminated.
To eliminate connections, a combination of the two is used: work/sqrt(power). It has been
empirically shown by TNO that this measure works well for connecting tracks. Since it is hard
to tell at what threshold a connection is not possible anymore, this threshold is set at 200 after
empirically testing different threshold values. The value is chosen to be high to be sure that
only really impossible connections are removed.

4.5 SCORE CONNECTIONS

To find the correct connection using some optimization, a cost function needs to be defined,
that is low for the optimal connection and high for the least optimal connection. This cost
function is based on various features. Each feature assigns a score to a possible connection.
The created features and the belonging scores are explained in this section.

4.5.1 EUCLIDEAN DISTANCE

Tracks where the end of the first track is near the beginning of the other track are more proba-
ble to belong to each other. Therefore, the Euclidean distance is used as a score function. Let
track1 and track2 be two candidates for connecting, where track2 appears later in time than
track1. The Euclidean distance that is used is the Euclidean distance between the detection
at the last time point of track1 and the detection of the first time point of track2.
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4.5.2 DIFFERENCE IN TIME

Since the first true connection is the real true connection, the difference in time is used as
a score function. Let track1, track2 and track3 be three candidates for connecting, where
track1, track2 and track3 appear after each other in time. The difference in time between
track1 and track2 that is used is the difference in time between the detection at the last time
point of track1 and the detection of the first time point of track2. The difference in time be-
tween track1 and track3 that is used is the difference in time between the detection at the last
time point of track1 and the detection of the first time point of track3. The difference in time
between track1 and track2 is smaller than the difference in time between track1 and track3.
The connection between track1 and track2 should thus score higher than the connection be-
tween track1 and track3.

4.5.3 DEEP FEATURE VECTOR RE-ID

For the deep feature vector, a partly pre-trained human RE-ID feature descriptor model is
used. The first layers of this model are the pre-trained layers of the ResNet50-architecture.
The last layers are re-trained using annotated snippets of a soccer match of Ajax. These snip-
pets are annotated by team. For this, the data is divided into four classes: ’team1’, ’team2’,
’keeper’ and ’rest’. These layers are then trained with the batch hard triplet loss as introduced
in [7]. This ideally causes the model to make embeddings of snippets that are close to each
other in the embedding space when the players belong to the same team. The reason for
annotating on team level instead of person level is that the difference between players of the
same team are not descriptive enough to learn re-identification features for classification on
person level.
The Euclidean distance between the deep feature vectors of two tracks is used as score func-
tion.

4.5.4 COLOR HISTOGRAM

Since the two teams must wear different coloring shirts, the color histograms of the snippets
can be very useful to find out to what team a player belongs. For each snippet, a color his-
togram is made using the non-green pixels of the snippet. The pixel values of a snippet can
range from 0 to 255. Computations on the 256 histogram bin color histogram is too expen-
sive, which is why the histogram is reduced to 64 bins. These color histograms can be used in
different ways.

First, they are used to classify the snippet at team level. This is done by manually choos-
ing snippets that represent a class and comparing those histograms to the histograms of the
snippets that need to be classified. The class of the class-snippet that has the most similar
histogram wins. This results in a winning class for each snippet of each track. For each track,
the mean value of the winning classes is used as final team classification. However, the per-
formance is dependent on the chosen snippets. To overcome this limitation, the histograms
are clustered into k clusters. The histograms of the snippets that need to be classified are then
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compared to the cluster means of the k clusters. And again, the class of the cluster mean that
has the most similar histogram wins. As k, 4 is chosen. This because of the fact that 4 clusters
are expected: team1, team2, keeper and the rest. This also results in a winning class for each
snippet of each track. And again, for each track, the mean value of the winning classes is used
as final team classification.
Then, for each connection, the classified teams of the two tracks are compared for both meth-
ods. This results in two Boolean variables indicating whether it is the same team or not ac-
cording to each of the two methods. If for a track more than 4 times no winner was found, it
can be said that the track is not reliable. Instead of using a Boolean variable, the value 0.3 is
given so that it will average out. The sum of the two Boolean variables resulting from the two
methods is used as score function.

Second, the distance between the color histograms of two tracks is used as score function.

4.5.5 DETECTED AND CLASSIFIED PLAYER NUMBER

The most descriptive element of a soccer player is probably the number on his back. This
number is detected and classified in each of the 10 snippets. It can be the case that a number
is not detected or that the detected number is misclassified in some snippets. For each track,
all detected and classified numbers are concatenated into one list. Only a part of this list is
kept based on some decisions explained further. The number of intersecting numbers of the
two tracks is then used as score.

To decide which numbers to keep, four methods have been researched This resulted in four
features. First, all numbers are kept. The problem with this is that numbers that occur a few
times, are not that probable to be correct and will still be in the result. Second, only a percent-
age of the numbers is kept, giving priority to numbers that occur more often. The problem
with this is that equally frequent occurring numbers could not get in the result. Third, only
the numbers that occur most are kept. The problem with this is that numbers that do not
occur frequently can also get in the result if there are not so many different numbers found.
Fourth, only numbers that account for at least a certain percentage of the total length of the
list are kept. The problem with this is that if many different numbers are found, the result
would be an empty list.

To detect and classify numbers, two classifiers are trained on the Street View House Num-
bers (SVHN) dataset introduced by [17]. This is a dataset obtained from house numbers in
Google Street View images. The classifiers are trained according to [20]. The first classifier
is trained to determine whether or not a number is present. This results in two classes: 0 if
no number is present, 1 if a number is present. The second classifier is trained to determine
what number is present. This results in 10 classes: a probability for each possible number
between 0 and 9.

To detect numbers, candidate regions are found using the Maximally Stable Extremal Re-
gions (MSER) algorithm. The MSER algorithm is presented in [14] where it is used to find
correspondences between a pair of images taken from different view points. The first clas-
sifier determines whether or not a number is present in the proposed region. Then, for all
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proposed regions which are classified as numbers, the second classifier determines the num-
ber. The two classifiers have the same network architectural backbone. The only difference
is the number of classes.

Figure 4.6 shows two examples of snippets with their found numbers. The left snippet
shows that one number is detected which is classified as 4 with a confidence of 1.00. The
right snippet shows that two numbers are detected. The first number is detected as 2 with a
confidence of 1.00 and the second number is detected as 1 with a confidence of 0.96.

Figure 4.6: Examples of found numbers
Bouding box coordinates of found numbers and corresponding detected numbers with confidence

levels are shown at the bottom of the snippets.

If a player walks away from the camera, the camera is pointed to his back and the number
should thus be visible. However, if the player walks towards the camera, the camera is pointed
to his front and the number is thus not visible. To filter out some false positive number detec-
tions, the direction in which the player walks is used to determine whether the number can
be visible in a certain snippet. Only the snippets of which the number can be visible based
on the direction, are passed to the method to detect and recognize numbers.

For snippets taken by a camera on the long side, a number can be visible if the direction
is between 0 and 180 degrees. For snippets that are taken by a camera on the short side, a
number can be visible if the direction is between -90 and 90 degrees.

To determine the direction, first the track is smoothened by interpolation. This is nec-
essary because not smoothened tracks can result in incorrect directions since a player can
be moving very active and coordinates of detections can deviate. This makes it safer to use
smoothed tracks. The smoothing degree is based on the length of the track. Then using the
atan2 function, the direction is found. The final direction that is used for a point, is the mean
value of the direction towards that point and the direction from that point.
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First, the two classifiers where trained on the SVHN dataset only. This dataset consists of
snippets of street view house numbers. The numbers of these snippets can look different
from the numbers that are on the back of a player. To improve classification accuracy on the
back number, the final layers of the classification networks are re-trained on snippets from
the used soccer dataset. This caused the test accuracy on the first classifier, the detector, to go
from 0.953 to 0.987 and the test accuracy on the second classifier, the recognizer, to go from
0.277 to 0.504.

4.5.6 SKIN COLOR CLASSIFICATION

To determine the skin color, first the skin pixels are segmented from the snippet by filtering
on a defined threshold. Then, the skin-pixels are clustered into 4 classes based on their RGB
values. The class means then represent the dominant colors of the skin. The class mean,
weighted by the cluster size, is then used to represent the mean dominant skin color. This
is done for all snippets of all tracks. A visualization of the process of determining the mean
dominant skin color can be seen in figure 4.7.

Figure 4.7: Skin color extraction

Those mean values of some snippets are then clustered into 2 classes whose cluster means
represent the final skin colors. All snippets are then classified as skin color 0 or skin color 1
by comparing the mean dominant skin color to the cluster means. The class whose cluster
mean is closest to the mean dominant skin color wins.

A Boolean variable indicating whether the skin colors of two tracks are the same is used as
score function.
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4.5.7 RESULTING FEATURES

The features that result are: dt, which is the difference in time between the end of the one
track and the beginning of the other track, eucl_distance, which is the euclidean distance
between the end of the one track and the beginning of the other track, speed, which is the
speed that would be needed to go from the end of the one track to the beginning of the
other track, wp, which is a combination of the work and power that would be needed to
go from the end of the one track to the beginning of the other track, average_hist_dist,
which is the average distance between the histograms of the one track and the histograms
of the other track, average_feature_vec_dist, which is the average distance between the
feature vectors of the one track and the histograms of the other track, same_team_hist,
which tells whether the players of the two tracks are classified as being of the same team
using the classification model where manually chosen snippets are used to represent a
class, same_team_cluster, which tells whether the players of the two tracks are classified
as being of the same team using the classification model where all color histograms are
clustered first and the cluster means represent a class, same_team_sum, which is the
sum of same_team_hist and same_team_cluster, intersection_numbers_found, inter-
section_numbers_found_x_percent_most, intersection_numbers_found_x_most and
intersection_numbers_found_x_percent, which all four tell the intersection of the found
numbers of the two tracks by using different numbers of the lists (as explained in section
4.5.5) and same_skin_cluster, which tells whether the players of the two tracks are classified
as being of the same color.

4.6 COMBINE FEATURES SCORES INTO ONE SCORE

All connections now have multiple scoring values that can be used to determine what con-
nections may be true. In order to use these scores, the scores need to be combined to a single
score. To enable the combining of the scores, all scores are normalized to a value between 0
and 1.

First, a simple sum of those scores can be used. To take into account that some features are
more important than others, I propose to use a weighted sum. The weights will be learned by
fitting a linear regression model or they will just be given manually.

Also, more sophisticated methods like a multi-layer perceptron classifier and a random
forest classifier are used to determine the score. These models are trained to predict whether
a connection is true or false, using annotated connections and the corresponding scores from
each feature. The predicted probability that a connection is true is then used as final score.

Multiple track breaks can occur, e.g. at time points t, t+1 and t+2. To prevent that a track at
time point t is connected to a track at time point t+2 instead of the track at t+1, a connection
is only seen as true if the two tracks are of the same person AND if the second track is the first
one to occur after the first track.
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4.7 CHOOSE WINNING CONNECTIONS

Having one final score for each connection, the true connections can be chosen. This can be
done in different ways. The used methods are explained in the next sub-sections.

4.7.1 RANDOM

To have a first baseline, the winning connections are chosen randomly. Simply choosing
some connections will lead to an incorrect solution. To prevent that multiple tracks will be
connected to a single track, connections are chosen iteratively in a random way while remov-
ing all connections that are not possible anymore by choosing this connection.

4.7.2 GREEDY

Since connections that have the highest scores are most probable to be true, a greedy ap-
proach can be used. In the greedy approach, the tracks are connected using this score: the
connection having the maximum score of available connections is true. Like with random
connecting, the connections are iteratively chosen while removing all connections that are
not possible anymore by choosing this connection, to prevent connecting multiple tracks to
a single other track.

4.7.3 MAX FLOW WITH MIN COST

The greedy approach will search for the locally optimal choice at each stage. This will not
necessary lead to the global optimum. By following the greedy approach, mistakes made in
the beginning are propagated further. Since we are interested in the global optimum, an op-
timization approach is used to choose the winning connections. Since the problem can be
seen as some sort of connection problem, this can be modeled as a minimum cost maximum
flow problem which can be efficiently solved by the network simplex algorithm, first intro-
duced by [19], in polynomial time. The graph of the original problem consists of a bipartite
graph with nodes that represent idx1 on the one side and nodes that represent idx2 on the
other side as seen in figure 4.8.

Figure 4.8: Graph of original problem
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The edges represent the potential connections. All edges have a cost that is equal to the
score of the connection multiplied by -1. The scores of the connections had to be multiplied
by -1 to be used as costs, because the scores had to be maximized while the minimum cost
maximum flow problem minimizes the costs. And, multiplying the scores of the connections
by -1 and then minimizing the scores, gives the same result as maximizing the original scores
of the connections.

The goal is to find the maximum number of connections with minimum cost. The idea is
to reduce this problem to a network flow problem. This is done by adding a source node s
and a sink node t. The source node is connected to all nodes of idx1 and all nodes of idx2
are connected to the sink node. The capacity of all edges is set to 1. The costs of the already
existing edges stay the same. The costs of the newly added edges are set to 0. This new graph
is depicted in figure 4.9.

Figure 4.9: Graph of network flow problem

4.7.4 GLOBAL CLUSTERING

Connections at different timesteps do not depend on each other. They are equally important.
Therefore, a greedy look-a-head, in which connections made earlier in time could be disre-
garded because another connection is encountered later in time, is not a suitable connection
approach.

With the greedy approach, connections are iteratively chosen by choosing the highest scor-
ing connection and removing the connections that are not possible anymore. This can cause
a combination of connections to not be considered. To take more combinations into account,
a global clustering method is performed.

With the global clustering method, all connections having a score higher than a threshold
are taken as potential winners. Those connections are clustered in such a way that all tracks
that belong to the same player are in the same cluster. For example, if track1 is connected to
both track2 and track3, they are all in the same cluster. But, if track2 and track3 are not of the
same player, one of the two connections should be incorrect. To correct for those mistakes,
all those triplets are found and checked. In the afore mentioned example, if the score of the
connection between track2 and track3 would be less than a threshold, the cluster is incorrect
and thus either the connection between track1 and track2, or the connection between track1
and track3 is incorrect. The connection that has the highest score is taken to be the correct
one. If it is not a triplet but multiple tracks with which one track has a connection, the
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highest scoring connection is taken to be true. All connections between the winning track
and the other tracks of which the score is lower than a threshold, are seen as incorrect and
are removed from the cluster. This thus results in a cluster where all tracks are connected to
each other.

5 RESULTS

To evaluate the chosen connections, a ground truth is needed. This is made manually by
classifying each connection to be true or false. A connection is seen as true if the two tracks
are of the same person AND if the second track is the first one to occur after the first track.

Using a variety of evaluation metrics, results of all combinations of the following scoring
and choosing methods are evaluated: MLP, linear regression and random forest for combin-
ing the scores of each connection and global clustering, greedy, min-cost-flow and random
for choosing the winning connections. The metrics that are used are: accuracy, which is the
ratio of number of correct predictions to the total number of input samples, precision, which
is the number of correct positive results divided by the total number of positive results pre-
dicted, recall, which is the number of correct positive results divided by the number of all real
positive samples, f1, which is the Harmonic Mean between precision and recall:

2 · pr eci si on · r ecal l

pr eci si on + r ecal l

, fbeta 0.5, and fbeta 2 which are the same as the f1 score but now weighted where the beta is
the weight of recall and AUC score which is equal to the probability that a randomly chosen
positive sample will be ranked higher than a randomly chosen negative sample. It is the area
under the curve of a plot of the False Positive Rate vs the True positive Rate.

In order to compare the evaluation metrics with the ground truth, the number of positive
predicted values and the number of true positives are also given.

Models are evaluated on a one-minute video sequence of a soccer match. In this video
sequence, 678 different tracks are found. For those tracks, 78754 potential connections are
found. Ten percent of the potential connections that where left after elimination are used
to train the models and the rest is used to test the models. The test set consists of 70670
connections. In this test set are 561 manually annotated positives and thus 70109 negatives.
Due to a high class imbalance in the dataset, i.e. the number of negative connections is much
higher than the number of positive connections, accuracy is not a suitable metric. Since
99% of the samples are negative, predicting every sample as negative will already give 99%
accuracy while we are actually interested in the positive samples. This gives thus a false sense
of high accuracy.
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5.1 FEATURE SELECTION

Not all features add value to the model. Wrong connections may result from using features
with low predictive value. To find the best combination of features, several combinations are
tested. Evaluation is conducted using 10-fold cross-validation.

The features that can be used are listed and explained in section 4.5.7. Before going into a
model, all values are normalized for each feature such that all values are between 0 and 1.

First, evaluation is conducted using all features. This is set 0. Table 7.15 of Appendix B
shows the average results of the 10 test rounds using all features. The standard deviations
(rounded to 5 decimal points) between the results of those 10 test rounds can be found in
table 7.16 of Appendix B. The standard deviations between tests can be seen as some robust-
ness value of the models.

Then, evaluation is conducted using each feature alone for different models. This is to see
whether some features on their own already add value. Each feature is tested for one test
round. The results of this can be found in Appendix A. It can be seen that when looking at the
overall results, the features dt_normalized, eucl_distance_normalized and speed_normalized
add the most value when used by themselves for the tested models.

As mentioned in section 4.6, among others, a linear regression model and a random forest
model are fitted. By fitting a Linear Regression model, the weights given to each feature can
be seen as some importance value for that feature. Figure 5.1 shows the weights for each fea-
ture sorted by its absolute value. A fitted Random Forest model also gives feature importance
values for all features. These are shown in figure 5.2.

Figure 5.1: Feature importance by Linear Regression model
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Figure 5.2: Feature importance by Random Forest model

Interestingly, the Random Forest model gives comparable results as when each fea-
ture was used alone by giving the features speed_normalized, eucl_distance_normalized
and dt_normalized the most importance. While the Linear Regression model gives the
features intersection_numbers_found_x_percent_normalized, speed_normalized and inter-
section_numbers_found_normalized the most importance.

Correlating features bring the same information and they can reduce the model perfor-
mance. Therefore, it is not desired to have correlating features to train models on. By ana-
lyzing the correlation between features, which can be found in figure ??, it is seen that some
features correlate with each other.
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Figure 5.3: Correlation matrix
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Figure 5.4: Correlations with true value

The features wp, dt, eucl_distance and speed are correlated with each other. This makes
sense since wp is a combination of work and power, which depend on time and distance.
And speed is a combination of time and distance. It is decided to not use wp as a feature
since, besides being correlated with other features, there are a lot of nan/missing values. For
the features dt, eucl_distance and speed is decided to use them all despite being correlated
because they all add value. A solution to diminish correlation could be to combine the fea-
tures into less features by using for example principal component analysis. However, this
causes the loss of variance which causes loss of information. After testing some combina-
tions, it is seen that it either worsen the results or does not improve the results. I conclude
that the model is robust for the correlation between those features and therefore decided that
all three features are used as is.

The features same_team_sum, same_team_hist and same_team_cluster are also correlated
with each other. This also makes sense since same_team_sum is the direct sum of the other
two. It is decided to only use the feature same_team_sum since this feature captures the other
two sufficiently.
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Other features that correlate with each other are the features intersection_numbers_found,
intersection_numbers_found_x_percent_most, intersection_numbers_found_x_most and in-
tersection_numbers_found_x_percent. This also is explainable since they are all created by
using numbers that are found by the number detector and classifier. As explained in section
4.5.5, different numbers of the list are used. Since they are highly correlated, only one should
be used. The correlation between intersection_numbers_found_x_percent and the true value
is the highest as can be seen in figure 5.4. Additionally, both the Linear Regression model
and the Random Forest model chose this feature to be the most important of the four. Also,
rationally thinking this feature should be the most representative for the real number of the
four. Therefore, this feature is chosen to be used.

From the correlation analysis the left-over features are: dt, eucl_distance,
speed, average_hist_dist, average_feature_vec_dist, same_team_sum, intersec-
tion_numbers_found_x_percent and same_skin_cluster. This is set 1. These are the
features that do not correlate too much with each other. The results of using those features
for 10 test rounds can be found in table 7.17 of Appendix B. The standard deviations (rounded
to 5 decimal points) between the results of those 10 test rounds can be found in table 7.18 of
Appendix B. It can be seen that the overall results have been slightly improved. However, the
standard deviations have been slightly increased.

Again, both a Linear Regression model and a Random Forest model are fitted to gain in-
sights into the feature importance but now using only the features that are left thus far. The
weights for each feature sorted by its absolute value of the Linear Regression model can be
found in figure 5.5. The feature importance according to the Random Forest model can be
found in figure 5.6.

Figure 5.5: Feature importance by Linear Regression model
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Figure 5.6: Feature importance by Random Forest model

Interesting is that the Linear Regression model gives the feature intersec-
tion_numbers_found_x_percent, the highest score while the Random Forest model gives
that feature the lowest score. On the other features they mostly agree on the importance
ranking. They for example both assign the features same_team_sum and same_skin_cluster
to be of the less important features.

Removing also the features same_team_sum and same_skin_cluster results in set 2 and
gives the results of table 7.19 of Appendix B after 10 test rounds. The standard deviations
(rounded to 5 decimal points) between the results of those 10 test rounds can be found in
table 7.20 of Appendix B. Here it can be seen that the overall results have again been slightly
improved in comparison with the previous results. But, the standard deviations are slightly
increased.

Also removing the feature intersection_numbers_found_x_percent results in set 3 and gives
the results of table 7.21 of Appendix B. The standard deviations (rounded to 5 decimal points)
between those results can be found in table 7.22. Again, the overall results have been slightly
increased in comparison with the previous results and the standard deviations are slightly
increased.

Since the features average_hist_dist and average_feature_vec_dist also belong to the least
important features, removing each of those features is also tested. These are set 4 and set 5
respectively. Tables 7.23 and 7.25 of Appendix B give results of using those sets of features.
The standard deviations (rounded to 5 decimal points) between those results can be found in
tables 7.24 and 7.26 of Appendix B. It can be seen that for some methods the results improve
and for some methods the results worsen comparing the results of set 4 to the results of set 3.
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The overall results of set 5 are slightly worse than the results of set 3. The standard deviations
between the results of both set 4 and set 5 are slightly increased.

To compare the results of different methods using different sets of features, the mean
f1-scores are shown in Figure 5.7. Other scoring metrics like the fbeta0.5-scores, the fbeta2-
scores and the AUC scores were also used but gave approximately the same results and
showed the same trend. It is therefore chosen to only show the f1-scores. Each scoring
method, that is used to combine the different scores for each connection, has a different
marker and each choosing method, that is used to choose the winning connections, has
a different color. The values on the x-axis stand for the feature-sets that are used. The
different sets with their features can be found in table 7.27 in Appendix C. The verti-
cal lines on each point represent the standard deviation between the values of the results
of the 10 test rounds. In the plot, the standard deviations are divided by 10 to ensure visibility.

Figure 5.7: Mean f1-scores per set of features
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6 CONCLUSIONS, DISCUSSION AND FUTURE WORK

6.1 FEATURES THAT ADD VALUE

As seen in the results section, overall, the mean scores of using the different feature sets are
increasing up and till feature set 3. The mean scores of using feature set 4 and feature set 5
increase for some combination of methods but decrease for others. This makes sense, since
up and till feature set 3, it was chosen to remove some features based on correlation and
feature importance. Feature set 4 and 5 were to see if other changes also influence the results.

It can therefore be concluded that the combination of features of feature set 3 yields
the best results. Set 3 consists of the following features: dt, eucl_distance, speed, aver-
age_hist_dist and average_feature_vec_dist.

This feature set consists of both track-based features as well as image-based features. It
was expected that they are both needed to correctly connect connections. The features from
this feature set are of high quality.

6.2 BEST SCORING AND CHOOSING METHODS

In the results section, it can be seen that the greedy and the min-cost-flow approach to
choose winning connections with yield the best results. Furthermore, the global clustering
approach yields better results than the random approach which was expected since every
improvement should yield better results than a random approach.
It can also be seen that the three scoring methods yield similar results. It is therefore hard to
tell which methods are best.

6.3 CONCLUSION

It can be concluded that, using a combination of both track-based features as well as video
data-based features, different tracks can be connected such that a player’s position is being
tracked throughout the match. However, there is still a lot of room for improvement since
I was not able to connect all tracks to each other to be left with a one-on-one mapping
with tracks and players. The positive thing is, each step of the pipeline can be improved
separately. So, by optimizing a small part of the whole pipeline, the results will already be
improved.
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6.4 DISCUSSION

Evaluation is now conducted on only a one-minute video sequence. The longer the video
sequence used for evaluation, the more tracks are found and thus more potential connections
are found. This will result in more data to train and test models on. This could give better
results.

With more data, also the difference between results could be tested for significance. This
is now not possible due to lack of data. It would be interesting to see whether the drawn
conclusions change when evaluation is conducted using enough data to test for significance.

Since models are only evaluated on a one-minute video sequence of an Ajax match, it is
not known if and how the models generalize to other games between other teams. It would
be best to train and test the models on matches of different teams. However, due to time
constraints, this was not possible for this research.

The tracks used in this research resulted from the tracking software from TNO’s Intelligent
Imaging team. The quality of those tracks depends partly on the detection software they
used. Different detection methods can be compared for this specific problem after which the
best can be chosen. This will result in better and less missing detections which then results
in better tracks. The better the detections and tracks, the better they can be connected. Now,
the players are detected using the ACF detector. Other detectors that can be tested are for
example the mask-RCNN detector and the YOLO detector.

6.5 FUTURE WORK

This research was focused on finding connections between tracks that are of the same per-
son. However, this only tells that two tracks need to be connected. To complete the pipeline,
winning connections need to be connected such that less and longer tracks result.

The results obtained in this research can be further improved by improving each part of the
pipeline. All steps can be optimized separately.

This work could be extended to be working in real-time. The global optimization methods
used to choose connections will not work anymore but the features can still be used.
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7 APPENDICES AND REFERENCES

7.1 APPENDIX A

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,991 0,458 0,460 0,459 0,459 0,460 0,728 563 258
lin_regr, min_cost_flow 0,993 0,575 0,205 0,302 0,422 0,235 0,602 200 115
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.1: Results using only feature dt_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,992 0,494 0,480 0,487 0,491 0,482 0,738 544 269
lin_regr, min_cost_flow 0,993 0,670 0,239 0,352 0,492 0,274 0,619 200 134
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,991 0,332 0,135 0,192 0,257 0,154 0,567 229 76
random_forest, min_cost_flow 0,991 0,355 0,127 0,187 0,261 0,145 0,562 200 71

Table 7.2: Results using only feature eucl_distance_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,993 0,560 0,563 0,562 0,561 0,563 0,780 564 316
lin_regr, min_cost_flow 0,994 0,840 0,299 0,442 0,617 0,344 0,650 200 168
MLP, greedy 0,994 0,857 0,342 0,489 0,659 0,389 0,671 224 192
MLP, min_cost_flow 0,994 0,855 0,305 0,449 0,628 0,350 0,652 200 171
random_forest, greedy 0,993 0,616 0,335 0,434 0,528 0,369 0,667 305 188
random_forest, min_cost_flow 0,994 0,775 0,276 0,407 0,569 0,317 0,638 200 155

Table 7.3: Results using only feature speed_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,987 0,064 0,052 0,057 0,061 0,054 0,523 450 29
lin_regr, min_cost_flow 0,990 0,195 0,070 0,102 0,143 0,080 0,534 200 39
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.4: Results using only feature wp_normalized
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accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,992 0,240 0,011 0,020 0,045 0,013 0,505 25 6
lin_regr, min_cost_flow 0,992 0,385 0,018 0,034 0,075 0,022 0,509 26 10
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,990 0,049 0,014 0,022 0,033 0,017 0,506 164 8
random_forest, min_cost_flow 0,990 0,040 0,012 0,019 0,028 0,014 0,505 176 7

Table 7.5: Results using only feature average_hist_dist_normalized_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,986 0,072 0,064 0,068 0,070 0,066 0,529 503 36
lin_regr, min_cost_flow 0,990 0,065 0,023 0,034 0,048 0,027 0,510 200 13
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,988 0,007 0,004 0,005 0,006 0,004 0,500 275 2
random_forest, min_cost_flow 0,989 0,005 0,002 0,003 0,004 0,002 0,499 200 1

Table 7.6: Results using only feature average_feature_vec_dist_normalized_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,986 0,127 0,125 0,126 0,126 0,125 0,559 553 70
lin_regr, min_cost_flow 0,990 0,100 0,036 0,053 0,073 0,041 0,517 200 20
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.7: Results using only feature same_team_hist_normalized_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,986 0,098 0,094 0,096 0,097 0,095 0,544 542 53
lin_regr, min_cost_flow 0,989 0,040 0,014 0,021 0,029 0,016 0,506 200 8
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.8: Results using only feature same_team_cluster_normalized_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,987 0,126 0,118 0,122 0,124 0,119 0,556 525 66
lin_regr, min_cost_flow 0,991 0,335 0,119 0,176 0,246 0,137 0,559 200 67
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.9: Results using only feature same_team_sum_normalized_normalized
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accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,992 0,067 0,002 0,003 0,008 0,002 0,501 15 1
lin_regr, min_cost_flow 0,992 0,067 0,002 0,003 0,008 0,002 0,501 15 1
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.10: Results using only feature intersection_numbers_found_normalized_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,991 0,065 0,007 0,013 0,025 0,009 0,503 62 4
lin_regr, min_cost_flow 0,991 0,109 0,012 0,022 0,043 0,015 0,506 64 7
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.11: Results using only feature intersection_numbers_found_x_percent_most_normalized_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,992 0,071 0,002 0,003 0,008 0,002 0,501 14 1
lin_regr, min_cost_flow 0,992 0,143 0,004 0,007 0,016 0,004 0,502 14 2
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.12: Results using only feature intersection_numbers_found_x_most_normalized_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,992 0,188 0,011 0,020 0,044 0,013 0,505 32 6
lin_regr, min_cost_flow 0,992 0,188 0,011 0,020 0,044 0,013 0,505 32 6
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.13: Results using only feature intersection_numbers_found_x_percent_normalized_normalized

accuracy precision recall f1 fbeta 0,5 fbeta 2 AUC score positive pred TP
lin_regr, greedy 0,987 0,051 0,039 0,044 0,048 0,041 0,517 430 22
lin_regr, min_cost_flow 0,990 0,140 0,050 0,074 0,103 0,057 0,524 200 28
MLP, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
MLP, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, greedy 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0
random_forest, min_cost_flow 0,992 0,000 0,000 0,000 0,000 0,000 0,500 0 0

Table 7.14: Results using only feature same_skin_cluster_normalized_normalized
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7.2 APPENDIX B

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.992 0.560 0.091 0.150 0.253 0.108 0.545 82.2 50.1
MLP, greedy 0.994 0.766 0.279 0.393 0.527 0.316 0.639 204.6 154
MLP, min_cost_flow 0.993 0.779 0.242 0.359 0.507 0.278 0.621 174.5 133.6
MLP, random 0.985 0.015 0.014 0.014 0.015 0.014 0.503 497.9 7.6
lin_regr, global_cluster 0.992 0.151 0.006 0.012 0.027 0.008 0.503 13.4 3.5
lin_regr, greedy 0.992 0.351 0.296 0.319 0.337 0.304 0.647 328.5 163.1
lin_regr, min_cost_flow 0.993 0.436 0.158 0.232 0.322 0.181 0.579 140 87.1
lin_regr, random 0.985 0.013 0.011 0.012 0.012 0.012 0.502 497.2 6.3
random_forest, global_cluster 0.992 0.750 0.031 0.055 0.107 0.037 0.515 25.8 17.1
random_forest, greedy 0.994 0.810 0.289 0.422 0.587 0.330 0.644 198.8 159.7
random_forest, min_cost_flow 0.994 0.818 0.271 0.404 0.577 0.312 0.635 183.8 149.5
random_forest, random 0.985 0.013 0.012 0.012 0.013 0.012 0.502 495.4 6.5

Table 7.15: Results using all features

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.00049 0.24541 0.07006 0.10273 0.14499 0.08022 0.0349 60.39463 38.73112
MLP, greedy 0.00082 0.07107 0.11491 0.14794 0.17423 0.12633 0.05734 80.55943 62.46243
MLP, min_cost_flow 0.00065 0.0697 0.08769 0.12439 0.16202 0.09951 0.04376 61.53093 47.55395
MLP, random 0.0004 0.00478 0.00441 0.00457 0.00469 0.00447 0.00223 13.32875 2.41293
lin_regr, global_cluster 0.00029 0.16011 0.00744 0.01417 0.03103 0.00918 0.00367 11.35488 4.06202
lin_regr, greedy 0.00087 0.2492 0.21256 0.22591 0.238 0.21719 0.10547 238.94362 118.32296
lin_regr, min_cost_flow 0.00057 0.30985 0.11186 0.16425 0.22863 0.12821 0.0557 96.60918 61.97033
lin_regr, random 0.00044 0.00419 0.00394 0.00404 0.00412 0.00398 0.00202 14.89817 2.00278
random_forest, global_cluster 0.0003 0.2023 0.03959 0.06648 0.11403 0.0472 0.01968 38.38634 22.02751
random_forest, greedy 0.0005 0.05311 0.05976 0.06676 0.05556 0.06343 0.02981 44.61639 32.22163
random_forest, min_cost_flow 0.00047 0.05371 0.0445 0.05303 0.04899 0.04818 0.02222 30.01777 22.55487
random_forest, random 0.00035 0.00342 0.00325 0.00331 0.00337 0.00327 0.00162 13.35997 1.71594

Table 7.16: Standard Deviations of results using all features

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.992 0.432 0.069 0.111 0.187 0.081 0.534 60 38.3
MLP, greedy 0.994 0.706 0.248 0.356 0.494 0.282 0.623 175.9 136.8
MLP, min_cost_flow 0.993 0.707 0.215 0.324 0.472 0.249 0.607 151.9 118.8
MLP, random 0.985 0.014 0.012 0.013 0.013 0.012 0.503 494.9 6.8
lin_regr, global_cluster 0.992 0.439 0.014 0.028 0.062 0.018 0.507 21.6 8
lin_regr, greedy 0.992 0.497 0.427 0.450 0.473 0.435 0.712 482.2 237.7
lin_regr, min_cost_flow 0.993 0.666 0.240 0.353 0.491 0.275 0.620 200 133.2
lin_regr, random 0.985 0.011 0.010 0.010 0.011 0.010 0.501 496.2 5.4
random_forest, global_cluster 0.992 0.846 0.042 0.076 0.148 0.051 0.521 32.8 23.6
random_forest, greedy 0.994 0.806 0.287 0.418 0.583 0.328 0.643 198.3 158.4
random_forest, min_cost_flow 0.994 0.814 0.266 0.399 0.572 0.307 0.633 181.4 146.9
random_forest, random 0.985 0.011 0.010 0.010 0.011 0.010 0.501 497.8 5.5

Table 7.17: Results using non-correlating features left thus far
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accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.00037 0.38511 0.08013 0.11757 0.17773 0.09141 0.03983 79.45229 44.65684
MLP, greedy 0.00084 0.25485 0.13048 0.1699 0.20415 0.14405 0.0651 94.07261 72.15077
MLP, min_cost_flow 0.0007 0.25533 0.10246 0.14465 0.18966 0.11612 0.05113 71.39164 56.1007
MLP, random 0.00032 0.00407 0.00353 0.00378 0.00395 0.00362 0.00176 12.62669 2.04396
lin_regr, global_cluster 0.00028 0.21616 0.00568 0.01078 0.02332 0.00701 0.00281 8.51404 3.23179
lin_regr, greedy 0.00071 0.04396 0.10944 0.07816 0.0501 0.09886 0.0543 132.41333 65.33002
lin_regr, min_cost_flow 0.00046 0.10255 0.03206 0.04891 0.07139 0.03719 0.01617 0 20.50908
lin_regr, random 0.00036 0.00362 0.0031 0.00333 0.00349 0.00319 0.00159 12.78715 1.7127
random_forest, global_cluster 0.00031 0.13934 0.04335 0.07266 0.12405 0.05166 0.02157 39.26208 24.1854
random_forest, greedy 0.00048 0.05411 0.06283 0.06837 0.05464 0.06615 0.03133 48.54791 34.37118
random_forest, min_cost_flow 0.00043 0.04998 0.04249 0.05017 0.045 0.0459 0.0212 30.18167 21.81972
random_forest, random 0.00038 0.00216 0.00224 0.00219 0.00217 0.00222 0.00113 12.44365 1.08012

Table 7.18: Standard Deviations of results using non-correlating features left thus far

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.992 0.573 0.058 0.102 0.189 0.070 0.529 45.1 32.3
MLP, greedy 0.994 0.829 0.273 0.394 0.541 0.311 0.636 185.5 152.2
MLP, min_cost_flow 0.994 0.830 0.247 0.368 0.523 0.285 0.623 167.8 137.7
MLP, random 0.985 0.015 0.013 0.014 0.014 0.013 0.503 495.4 7.3
lin_regr, global_cluster 0.992 0.422 0.013 0.026 0.057 0.017 0.507 21.3 7.4
lin_regr, greedy 0.992 0.517 0.432 0.461 0.488 0.442 0.714 470.5 240.6
lin_regr, min_cost_flow 0.993 0.659 0.238 0.349 0.486 0.272 0.618 200 131.8
lin_regr, random 0.985 0.017 0.015 0.016 0.016 0.015 0.504 496.1 8.2
random_forest, global_cluster 0.993 0.773 0.085 0.139 0.238 0.100 0.542 65.9 47.5
random_forest, greedy 0.994 0.806 0.295 0.428 0.591 0.337 0.647 203.7 163.1
random_forest, min_cost_flow 0.994 0.810 0.272 0.405 0.576 0.313 0.636 185.9 150.1
random_forest, random 0.985 0.015 0.013 0.014 0.015 0.014 0.503 495.6 7.4

Table 7.19: Results using non-correlating and more important features left thus far

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.00035 0.34718 0.05251 0.09063 0.16077 0.06312 0.0262 38.97136 29.66873
MLP, greedy 0.00074 0.08113 0.12306 0.16533 0.20675 0.13712 0.06146 81.05588 70.01397
MLP, min_cost_flow 0.00061 0.0866 0.10109 0.14558 0.19549 0.11524 0.05049 66.29362 57.7024
MLP, random 0.0003 0.00847 0.00735 0.00787 0.00822 0.00755 0.0037 12.58924 4.19126
lin_regr, global_cluster 0.00028 0.22511 0.00459 0.00875 0.01926 0.00567 0.00226 8.3006 2.63312
lin_regr, greedy 0.00076 0.05399 0.11425 0.08243 0.05633 0.10334 0.0567 137.09547 68.15538
lin_regr, min_cost_flow 0.00046 0.10219 0.032 0.04881 0.0712 0.03712 0.01614 0 20.43853
lin_regr, random 0.00039 0.00481 0.00405 0.00439 0.00463 0.00418 0.00207 13.42013 2.29976
random_forest, global_cluster 0.00043 0.12732 0.08711 0.12579 0.17046 0.09935 0.04338 75.27498 48.85409
random_forest, greedy 0.0005 0.04411 0.06217 0.06689 0.05377 0.06517 0.03101 46.76905 33.89346
random_forest, min_cost_flow 0.00037 0.03222 0.03794 0.04435 0.03845 0.04088 0.01893 26.54326 19.68897
random_forest, random 0.00037 0.00855 0.00787 0.00819 0.0084 0.00799 0.00395 11.90891 4.32563

Table 7.20: Standard Deviations of results using non-correlating and more important features
left thus far
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accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.992 0.645 0.058 0.097 0.167 0.069 0.529 44.9 32.5
MLP, greedy 0.994 0.855 0.299 0.423 0.570 0.339 0.649 197.4 165.5
MLP, min_cost_flow 0.994 0.863 0.256 0.382 0.543 0.295 0.628 166.6 141.3
MLP, random 0.985 0.014 0.012 0.013 0.013 0.013 0.503 494.9 6.8
lin_regr, global_cluster 0.992 0.365 0.014 0.026 0.059 0.017 0.507 21.5 7.6
lin_regr, greedy 0.992 0.527 0.459 0.480 0.502 0.466 0.728 491.6 255.6
lin_regr, min_cost_flow 0.993 0.709 0.256 0.376 0.523 0.293 0.627 200 141.7
lin_regr, random 0.985 0.018 0.016 0.017 0.018 0.017 0.505 496.1 9.1
random_forest, global_cluster 0.993 0.767 0.098 0.157 0.263 0.115 0.549 77 54.7
random_forest, greedy 0.994 0.799 0.295 0.427 0.588 0.337 0.647 205.7 163.2
random_forest, min_cost_flow 0.994 0.801 0.270 0.403 0.572 0.311 0.635 187.2 149.5
random_forest, random 0.985 0.014 0.013 0.013 0.014 0.013 0.503 496.1 6.9

Table 7.21: Results 3

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.00049 0.3883 0.07995 0.12272 0.18639 0.09274 0.03984 65.72071 45.07093
MLP, greedy 0.0009 0.05531 0.13182 0.17155 0.20968 0.14532 0.06581 87.53945 73.35038
MLP, min_cost_flow 0.00073 0.05721 0.09983 0.14349 0.1946 0.11368 0.04985 64.13735 54.86559
MLP, random 0.00038 0.00268 0.00243 0.00253 0.00261 0.00247 0.00123 14.69278 1.31656
lin_regr, global_cluster 0.00027 0.09431 0.00274 0.0052 0.01132 0.00338 0.00137 4.67262 1.64655
lin_regr, greedy 0.00065 0.04507 0.11726 0.07881 0.04351 0.1045 0.05817 141.15571 70.21902
lin_regr, min_cost_flow 0.00033 0.07315 0.02168 0.03331 0.04949 0.02518 0.01094 0 14.62912
lin_regr, random 0.00033 0.00326 0.0025 0.00284 0.00308 0.00263 0.00129 12.80148 1.52388
random_forest, global_cluster 0.0004 0.09439 0.09292 0.1312 0.17411 0.10516 0.04625 82.03929 52.11323
random_forest, greedy 0.00048 0.0428 0.05991 0.06396 0.05076 0.06265 0.02988 46.26506 32.74752
random_forest, min_cost_flow 0.00036 0.03802 0.03528 0.04149 0.03709 0.03806 0.0176 25.36314 18.45264
random_forest, random 0.00043 0.00506 0.00488 0.00494 0.00501 0.0049 0.0025 13.287 2.42441

Table 7.22: SD 3

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.992 0.402 0.037 0.066 0.129 0.045 0.518 23.9 20.5
MLP, greedy 0.994 0.685 0.245 0.354 0.490 0.279 0.623 159.9 135.7
MLP, min_cost_flow 0.994 0.693 0.215 0.325 0.472 0.249 0.608 138.1 119
MLP, random 0.985 0.015 0.014 0.015 0.015 0.014 0.503 494.8 7.6
lin_regr, global_cluster 0.971 0.202 0.739 0.308 0.234 0.465 0.856 2297.5 408.9
lin_regr, greedy 0.993 0.550 0.565 0.557 0.553 0.562 0.781 568.5 312.9
lin_regr, min_cost_flow 0.994 0.844 0.305 0.448 0.624 0.350 0.652 200 168.8
lin_regr, random 0.985 0.015 0.013 0.014 0.014 0.013 0.503 495.3 7.3
random_forest, global_cluster 0.993 0.758 0.150 0.230 0.357 0.173 0.575 116.3 83.5
random_forest, greedy 0.994 0.759 0.288 0.413 0.565 0.327 0.643 210 159
random_forest, min_cost_flow 0.994 0.777 0.263 0.392 0.557 0.303 0.631 187 145.5
random_forest, random 0.985 0.016 0.014 0.015 0.015 0.014 0.503 494.4 7.7

Table 7.23: Results 4
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accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.00041 0.44252 0.04787 0.08585 0.16467 0.05816 0.0239 31.42345 26.7426
MLP, greedy 0.00103 0.36227 0.15468 0.20955 0.27031 0.17263 0.07722 103.48747 86.29414
MLP, min_cost_flow 0.0009 0.36605 0.12581 0.18439 0.25716 0.14411 0.06282 81.90435 69.92695
MLP, random 0.00043 0.00563 0.00599 0.00582 0.00571 0.00592 0.00302 11.85842 2.75681
lin_regr, global_cluster 0.01269 0.08 0.03967 0.08088 0.08187 0.06252 0.01529 934.45424 24.55583
lin_regr, greedy 0.00044 0.02553 0.02908 0.0272 0.02617 0.0283 0.01461 24.6813 22.69826
lin_regr, min_cost_flow 0.00038 0.04287 0.02005 0.02632 0.03307 0.02215 0.01007 0 8.57386
lin_regr, random 0.00038 0.00411 0.00351 0.00378 0.00397 0.00361 0.00179 12.78932 2.00278
random_forest, global_cluster 0.00049 0.11041 0.11182 0.14604 0.17303 0.12347 0.05567 97.99099 62.98545
random_forest, greedy 0.0005 0.04808 0.06374 0.06843 0.05859 0.06663 0.03179 48.77613 35.12517
random_forest, min_cost_flow 0.00047 0.04874 0.03923 0.04932 0.05295 0.04302 0.01963 20.6989 20.39744
random_forest, random 0.0004 0.007 0.00618 0.00656 0.00681 0.00632 0.00313 12.85129 3.4657

Table 7.24: SD 4

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.992 0.459 0.046 0.081 0.155 0.055 0.523 31.2 25.3
MLP, greedy 0.994 0.757 0.267 0.389 0.543 0.305 0.633 174.9 147.6
MLP, min_cost_flow 0.994 0.754 0.239 0.361 0.523 0.276 0.619 156.8 132.1
MLP, random 0.985 0.012 0.010 0.011 0.011 0.011 0.502 495.9 5.8
lin_regr, global_cluster 0.992 0.344 0.013 0.025 0.056 0.016 0.506 21.8 7.2
lin_regr, greedy 0.993 0.551 0.419 0.451 0.492 0.429 0.708 436.5 233.9
lin_regr, min_cost_flow 0.993 0.694 0.242 0.357 0.503 0.278 0.620 191.8 134
lin_regr, random 0.985 0.016 0.015 0.015 0.016 0.015 0.504 498.1 8.1
random_forest, global_cluster 0.993 0.725 0.128 0.203 0.329 0.150 0.564 100.6 71.5
random_forest, greedy 0.994 0.766 0.294 0.421 0.573 0.334 0.646 212.6 162.5
random_forest, min_cost_flow 0.994 0.781 0.268 0.397 0.562 0.308 0.633 189.6 147.9
random_forest, random 0.985 0.017 0.015 0.016 0.016 0.015 0.504 496.9 8.3

Table 7.25: Results 5

accuracy precision recall f1 fbeta 0.5 fbeta 2 AUC score positive pred TP
MLP, global_cluster 0.00047 0.42164 0.05523 0.09544 0.17125 0.0664 0.02759 34.53115 30.67047
MLP, greedy 0.00087 0.27008 0.12546 0.16639 0.20918 0.13912 0.06265 81.44862 69.82391
MLP, min_cost_flow 0.00074 0.27285 0.09972 0.14401 0.19779 0.11368 0.04981 62.52786 55.3262
MLP, random 0.00036 0.00368 0.00307 0.00334 0.00354 0.00317 0.00157 11.82699 1.75119
lin_regr, global_cluster 0.00027 0.08948 0.00166 0.00315 0.00695 0.00204 0.00083 4.39191 1.0328
lin_regr, greedy 0.00037 0.04285 0.16112 0.11763 0.05925 0.14768 0.07989 187.79673 93.60372
lin_regr, min_cost_flow 0.00044 0.08695 0.04729 0.0643 0.07895 0.05302 0.02368 25.93068 27.66064
lin_regr, random 0.00034 0.00242 0.00198 0.00217 0.00231 0.00205 0.00101 12.31485 1.19722
random_forest, global_cluster 0.00051 0.1439 0.09564 0.13252 0.1659 0.10778 0.04763 82.76634 53.80675
random_forest, greedy 0.0005 0.05039 0.06358 0.06839 0.0585 0.06651 0.03173 46.81927 35.60041
random_forest, min_cost_flow 0.00048 0.0618 0.03766 0.04777 0.05339 0.04138 0.01885 21.8388 19.92458
random_forest, random 0.00037 0.00469 0.0039 0.00425 0.0045 0.00403 0.00204 12.63549 2.16282

Table 7.26: SD 5
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7.3 APPENDIX C

0 ’dt_normalized’,
’eucl_distance_normalized’,
’speed (m/s)_normalized’,
’wp_normalized’,
’average_hist_dist_normalized’,
’average_feature_vec_dist_normalized’,
’same_team_hist_normalized’,
’same_team_cluster_normalized’,
’same_team_sum_normalized’,
’intersection_numbers_found_normalized’,
’intersection_numbers_found_x_percent_most_normalized’,
’intersection_numbers_found_x_most_normalized’,
’intersection_numbers_found_x_percent_normalized’,
’same_skin_cluster_normalized’

1 ’dt_normalized’,
’eucl_distance_normalized’,
’speed (m/s)_normalized’,
’average_hist_dist_normalized’,
’average_feature_vec_dist_normalized’,
’same_team_sum_normalized’,
’intersection_numbers_found_x_percent_normalized’,
’same_skin_cluster_normalized’

2 ’dt_normalized’,
’eucl_distance_normalized’,
’speed (m/s)_normalized’,
’average_hist_dist_normalized’,
’average_feature_vec_dist_normalized’,
’intersection_numbers_found_x_percent_normalized’

3 ’dt_normalized’,
’eucl_distance_normalized’,
’speed (m/s)_normalized’,
’average_hist_dist_normalized’,
’average_feature_vec_dist_normalized’

4 ’dt_normalized’,
’eucl_distance_normalized’,
’speed (m/s)_normalized’,
’average_feature_vec_dist_normalized’

5 ’dt_normalized’,
’eucl_distance_normalized’,
’speed (m/s)_normalized’,
’average_hist_dist_normalized’

Table 7.27: Feature sets
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