
Master thesis

AN ANALYSES OF THE CURRENT

CAPABILITIES OF NEURAL

NETWORKS TO PRODUCE

MUSIC-RESEMBLING AUDIO

December 20, 2018

Sinit Tafla
VU University Amsterdam

Faculty of Sciences

Abstract

In the past years, there has been a growth in the applications of neural networks
for automatic music (or audio) generation (Briot et al. (2017)). However, most
of the recent research tends to be narrow-focused. In this research, we will pro-
vide a wider-range analyses of the current state of neural networks to produce
music-resembling audio. We will try to reach this objective by implementing
models that can analyze notes and tempo, as well as ones that can analyze raw
audio waveforms. Furthermore, the models will generate music according to
their finding that will be evaluated by listening to them. We will implement the
waveform-based models (SampleRNN (Mehri et al. (2016)) and Wavenet (van
den Oord et al. (2016c))) using two different music genres, namely: classical
and techno. This allows us to examine what the influence of the type of dataset
is. Finally, we will examine if lower losses also guarantee music of better qual-
ity. We found that neural networks are able to find patterns based on notes
and tempo and this results in music of reasonable quality. In addition, from
the two waveform-based models we implemented, SampleRNN analytically per-
forms better and classical music was more suitable for analyses. However, all
samples produced by the waveform-based models are noisy and, therefore, do
not resemble music. Lastly, we could not conclude that models with a lower loss
generally produce music of better quality.

2

Acknowledgement

I would first like to thank the company Xomnia for providing me an opportunity
to do my internship and research. The company arranged a wonderful project
I could work on and facilitated an office, Wi-Fi and external computer power.
Special thanks go to data scientists Bart van de Poel and David Woudenberg
who were my supervisors at Xomnia. They regularly advised me about the
current directions and helped me whenever I was stuck. In addition, I would
like to acknowledge all colleagues at Xomnia who voluntarily gave their opinion
about music samples.

I would also like to thank my university supervisor professor Sandjai Bhulai,
Ph.D of the Faculty of Sciences at the VU University Amsterdam. He regularly
gave me feedback about my process and made sure I prioritized my work. Fur-
thermore, I would like to mention professor Wan Fokkink, Ph.D of the Faculty
of Sciences at the VU University Amsterdam. He acted as second reader and I
am, therefore, thankful for his effort to evaluate my thesis.

In addition, I am profoundly grateful to Dutch DJ Joris Voorn and his team.
They provided me a musical set I could analyze. Without the received files, a
significant part of my research would be missing.

Finally, I want to express my profound gratitude to my family and friends
who supported and encouraged me during my study and research. Without
them, finishing this report would not have been easy.

3

Contents

1 Introduction 6

2 Related work 8
2.1 Wavenet . 8
2.2 SampleRNN . 8
2.3 Sincet . 9
2.4 Music Style Transfer . 9
2.5 A Universal Music Translation Network 10
2.6 NSynth . 10

I Notes and tempo 11

3 Data 11

4 Methods 15
4.1 LSTM models . 15

4.1.1 Design LSTM models . 16
4.1.2 Embedding and concatenate layer 16
4.1.3 Other layers . 18
4.1.4 Preventing overfitting . 19
4.1.5 Adaptive learning . 20
4.1.6 Parameter optimization 20

4.2 CNN . 20
4.2.1 Structure CNN . 21
4.2.2 Training and parameter optimization 21

4.3 Markov chains . 23

5 Experiments 25
5.1 Sampling music . 25
5.2 Listening session I . 26

6 Results & Evaluation 28
6.1 The analytical evaluation set-up 28
6.2 Results LSTM-I . 29

6.2.1 Performance offsetdiffs . 29
6.2.2 Performance notes and chords 30

6.3 Results LSTM-II . 30
6.3.1 Performance offsetdiffs . 32
6.3.2 Performance notes and chords 32

6.4 Results CNN . 34
6.4.1 Performance offsetdiffs . 34
6.4.2 Performance notes and chords 35

4

6.5 Overall results MIDI NNs . 36
6.6 Listening session I . 37

6.6.1 MIDI NNs versus Markov chain 37
6.6.2 LSTM-II versus LSTM-I & CNN 38
6.6.3 Reasons behind ACR scores 40

II Raw audio 42

7 Data 42
7.1 Data preparation Wavenet . 43
7.2 Data preparation SampleRNN . 45

8 Methods 46
8.1 Wavenet . 46

8.1.1 Architecture Wavenet . 48
8.1.2 Input and output . 48
8.1.3 Parameter settings . 49

8.2 SampleRNN . 50
8.2.1 Tier 1 . 51
8.2.2 Input & output . 52
8.2.3 GRU models . 52
8.2.4 Truncated Backpropagation Through Time 53
8.2.5 Parameters set . 54

9 Experiments 56
9.1 Sampling music . 56

9.1.1 Sampling using Wavenet 56
9.1.2 Sampling using SampleRNN 56

9.2 Listening session II . 57

10 Results & Evaluation 59
10.1 Results Wavenet . 59
10.2 Results SampleRNN . 59
10.3 Wavenet versus SampleRNN . 60
10.4 Listening session II . 60

11 Conclusion & Discussion 62

12 Future work 64

5

1 Introduction

The generation of music through artificial intelligence has received growing at-
tention over the last few years. Hiller & Isaacson (1959) already investigated
the production of computer-generated music. Ever since, the field has made sev-
eral advances. An example is the development of computer-music programming
languages (e.g., Dannenberg (1997), McCartney (1996) and Boulanger (2000)),
further boosting the efficiency of music creation through computers. Neverthe-
less, some of the most significant developments were made only recently. This
is primarily caused by the applications and improvements in the use of deep
neural networks (NNs) for automated music (or audio) generation, as shown by
Briot et al. (2017).

Most of the recent research, however, is narrow-focused. Researchers tend to
focus on a new technique (e.g., Engel et al. (2017)), a single artist (e.g., Hadjeres
& Pachet (2016)) or a single type of musical dataset (e.g., Mehri et al. (2016)).
The purpose of our research is to give a wider-range of insights into the usage
of deep neural networks to generate music. We aim to reach this objective by
comparing different models, genres and data formats. Consequently, the main
research question related to this research is: “What is the current state of deep
neural networks in modelling and generating music-resembling audio?”.

This research is split in two parts, corresponding to the formats of data
available, namely: MIDI and WAV. Sections 3 to 6 (Part I) discuss MIDI files
and Sections 7 to 10 (Part II) discuss WAV files. We will use MIDI files to store
information about musical notes and tempo, which can be translated to music.
This allows us to examine temporal relationships based on a representation of
music, instead of raw audio. Moreover, we will generate audio accordingly.
Hence, our first sub-question is: “Are deep neural networks capable of learning
temporal relationships based on notes and tempo and generate music-resembling
audio based on these relationships?”. More specifically, we will focus on classical
music samples composed by Johann Sebastian Bach. A German composer from
the 17th and 18th century. By using this representations of music, we are saving
space and require less computational power. However, we are limited by the
range of sounds MIDI files can store.

On the other hand, WAV files do not suffer from this limitation. They are
able to capture the characteristics of any type of raw audio. However, storing au-
dio using WAV files requires much more data and analyzing them more complex
models. A number of models have been developed to capture patterns in raw au-
dio and generate music. Most notable is Wavenet that was developed by van den
Oord et al. (2016c) (see Sections 2.1 and 8.1). Wavenet proved to successfully
produce human-like music. Another notable model named SampleRNN (see
Sections 2.2 and 8.2) was constructed by Mehri et al. (2016). The authors state
that their own implementation of Wavenet performs worse than SampleRNN
in terms of generating music. To see if this conclusion generally holds, we will
compare the two models as well. The resulting second sub-question, therefore,
is: “Which state-of-the-art model is more capable of learning temporal relation-

6

ships based on waveforms and generate music-resembling audio based on these
relationships?”.

Because WAV files can play a wide range of sounds, we can analyze different
genres of music with each other as well. This provides us the opportunity to
examine the influence of the type of dataset on learning capabilities. For both
WAV related models, we will use two datasets: one related to classical music
and the other to techno music. The classical WAV files are all pieces of Bach
his “The Open Goldberg Variations” and the techno WAV files are provided by
Joris Voorn, who is a Dutch DJ. The related sub-question is: “Does the type
of dataset influence the learning capabilities of models in terms of capturing
patterns in music and producing music-resembling audio accordingly?”.

Intuitively, we would think that models (or instances of models) with lower
loss values produce more music-resembling audio. Nevertheless, can we expect
that a difference in losses can be noticed by a human, especially if this difference
is rather small? Furthermore, if a model finds a pattern that is generalizable, it
will continue training using this pattern, while there is no guarantee of melodical
improvements. In order to investigate the relationship between losses and qual-
ity of music samples, we state our final sub-question as following: ”Do neural
networks with lower loss values also produce more music-resembling audio?”.

Finally, we will discuss the structure of this research. Section 2 provides
academic background related to the production of music using artificial intel-
ligence. After this section, the paper will be split in two parts: Part I relates
to notes and tempo analyses, and Part II relates to raw audio analyses. The
sections within the two parts will have similar structures. Sections 3 and 7 will
highlight the structure and preparation procedures of the MIDI and WAV files,
respectively. Sections 4 and 8 discuss the methods that will be implemented.
The generation, and set up of the evaluation, of the music samples will be dis-
cussed in Sections 5 and 9. The results will be given and highlighted in Sections
6 and 10. The conclusions related to both parts will be given in Section 11.
In this section, we will also discuss some of the shortcomings of our research.
Finally, Section 12 describes possible follow-ups to our research.

7

2 Related work

In this section, we will give an overview of different related studies in the field
of generating music using artificial intelligence. Some of the algorithms in the
studies will be further explained and implemented in Sections 4 and 8, while
others will only provide scientific background.

2.1 Wavenet

Wavenet is an autoregressive probabilistic model constructed by van den Oord et
al. (2016c) and is capable of predicting raw audio waveform (e.g., music) based
on previous waveforms. The joint probability of a waveform x = {x1, ..., xT } is
based on the product of conditional probabilities of preceding samples, which is
summarized in Equation 1. Here, xt represents the amplitude value of a discrete
time point t.

p(x) =
T∏

t=1

p(xt|x1, ..., xt−1) (1)

The probabilities are estimated by convolutional layers. By using a softmax
layer (see Section 4.1.3 for more details), the probability distribution of the
categories for the next values xt, ..., xT are estimated. Furthermore, Wavenet
uses causal convolutions, which ensures that the time order is preserved and
value xt will not depend on any future time steps xt+1, xt+2, ..., xT

Models with causal convolutions are typically faster to train, however, they
require many layers or large filters to increase their receptive field. The re-
searchers solved this issue by using dilated convolutions to increase the receptive
fields, without increasing the computational costs too much. In every layer, the
dilation is doubled until it reaches an output note.

During the course of their research, van den Oord et al. (2016c) performed
several experiments. One of the experiments regarded the generation of novel
and high-quality music. They evaluated the generated music samples subjec-
tively by listening to the quality of the results themselves. They concluded
that enlarging the receptive field was crucial to obtaining music samples that
sounded human-like.

2.2 SampleRNN

Mehri et al. (2016) explore the usage of RNNs for generating waveforms. They
introduce SampleRNN, a model that can perform computations at different
clock-rates. This model, therefore, can allocate computational resources which
results in more memory efficiency during training.

Equivalent to Wavenet, the probability of a waveform sample is calculated
using Equation 1. Moreover, SampleRNN uses softmax (see Section 4.1.3) to
estimate the probabilities of the future values xt+1,..., xT .

8

Audio samples contain structures at different scales, i.e., correlations exist
between neighboring samples but also between samples that are much further
away. SampleRNN tackles this problem by using a hierarchy of modules. All
modules consider a different temporal resolution. The lowest module in the hi-
erarchy considers all individual samples, the higher a module is in the hierarchy,
the lower its temporal resolution. Each module is conditioned by the one below
it, except for the module on the bottom which produces the predictions. This
enables SampleRNN to look for relationships at different time scales.

The resulting SampleRNN models are preferred by independent human raters
over a number of other models, including their own implementation of Wavenet.
They conclude that using a hierarchy of time scales helps overcome the problem
of using RNNs to model high-resolution temporal data.

2.3 Sincet

Sincet is a model that is constructed for speech recognition. The related paper
provides us valuable insights because Sincet is a neural network designed to
learn patterns based on raw audio waveforms. Its purpose and design, there-
fore, has similarities to the waveform-based NNs we will implement (see Section
8). Ravanelli & Bengio (2018) argue that the most crucial part of wave-form
based CNNs for speech recognition is the first convolutional layer. According
to the authors, the importance of this layer lies in the fact it deals with high-
dimensional input and is more affected by vanishing gradients. Furthermore,
the filters are often noisy and take incongruous multi-band shapes that do not
appeal to human intuition nor represent a speech signal well.

To cope with these shortcomings, they introduce Sincet. Unlike traditional
CNNs, where the filter depends on multiple parameters, Sincet convolves the
waveform with a set of parametrized sinc functions. The only parameters Sincet
learns are the low and high cutoff frequencies.

The model has four main advantages over traditional CNNs for speech recog-
nition. Firstly, Sincet mainly focuses on filter parameters that have a significant
impact on the performance of the CNN. It is because of this reason that Sincet
has a significantly faster convergence than other models. Secondly, Sincet dras-
tically reduces the number of parameters in the first convolutional layer of the
network. Furthermore, the number of parameters will increase at a much slower
pace when increasing the number of filters or the filter length, compared to
other CNNs. Finally, Sincet is more computationally efficient and the results
are more human-readable and thus interpretable.

But most importantly, Ravanelli & Bengio (2018) prove that Sincet performs
better in speech recognition than traditional wave-form based CNNs.

2.4 Music Style Transfer

Shuqi et al. (2018) summarize the current position of using machine learning in
order to successfully transfer music. Their goal is to eliminate the underlying
confusions and to highlight the findings of music transfer before the age of deep

9

learning. Moreover, they discuss the current limitations and future directions
of music style transfer.

They argue that models have a hard time making music that is natural,
creative and human-like. In addition, they state that the term “music style” is
ambiguous, caused by the multi-level and multi-model characteristics of music
representation. They, therefore, state a precise definition of music style transfer
based on the uniqueness of music representation.

In order to clarify the aspects of music style transfer, they represent three
music representations, namely: score, performance and sound representations.
The first representation uses discrete features with a mix of measurement scales
(e.g, sheet music notation), while the performance representations represent the
interpretation of the corresponding score into motions. Lastly, sound represen-
tation is the acoustic realization of performances on a certain instrument.

Furthermore, they present 3 definitions of music style transfer: timber style
transfer for score, performance style transfer for performance and composition
style transfer for sound. The first type of transfer would allow us to reproduce
music on different instruments while maintaining the same musical expression.
Performance style transfer can be applied to transfer between interpretations of
the artist of the same score representation. Composition style transfer on the
other hand, refers to the variation, improvisation or re-harmonization of a piece
of music.

During the course of our research, we will focus on composition style transfer.
We will build models that can generate novel music based on historic time steps.
The related processes will be further explained in Sections 5.1 and 9.1.

2.5 A Universal Music Translation Network

Mor et al. (2018) introduce a method for translating music across musical instru-
ments, genres and styles. They discuss their autoencoder which can translate
distorted versions of the input to undistorted versions of the output. The model
learns to project input from one domain to the output from another domain.

They use a Wavenet-like encoder to transform the audio to a latent space.
Next, they use a domain-specific Wavenet-like decoder to translate the audio
back to the corresponding domain. This, for example, allows a musical piece to
be played across different instrument.

2.6 NSynth

Engel et al. (2017) contribute to the state of generative audio modeling in two
ways. First, they introduce an autoencoder that can effectively capture long-
term structures without external conditioning. The resulting model can also
be used for other applications, such as audio interpolation. Secondly, they
introduce a general large-scale dataset called NSynth, which can be used to
explore the possibilities of audio generative modeling.

10

Part I

Notes and tempo

3 Data

This section highlights the data we will use in order to successfully train models
to generate music based on notes and tempo. As stated in Section 1, we will start
by analyzing the music of Johann Sebastian Bach, a musician and composer.
We will discuss the details of the data, including an explanation on how we
converted the music samples to a usable format. The process of converting the
music files to datasets is given in Figure 1.

We collected a total of 200 music pieces in the form of audio files that are
composed by Bach1. The audio files are of the type MIDI (Musical Instrument
Digital Interface). MIDI files differ from regular music file formats because
they actually do not store any digital audio. Instead, they contain a list of
instructions, which a device (e.g., a computer or cell-phone) can translate to
music. MIDI files, therefore, have smaller file sizes than WAV, MP3 and other
digital audio formats. Hence, we expect that training models using MIDI files
will be less computationally expensive. In this research, we will partly focus
on analyzing and generating music scores in the form of musical notes. It is
important to define an adequate representation to capture the complexity of
audio. To reach this objective, we will use three objects to represent the music
of Bach, namely: notes, chords and offsets.

MIDI objects contain information about notes being played at a point in
time, namely: pitch, octave and offset. The pitch describes the frequency of
a note, i.e., how high or low a note is. A pitch is represented by the first 8
letters of the alphabet, where A and G represent the highest and lowest sounds,
respectively. A specific pitch may contain different variations whose frequencies
equal the multiples of the original pitch frequency. Such variations of a pitch
are called octaves. Lastly, the offset is the point in time a note object is being
played, starting from the beginning of the audio file.

However, notes can be played simultaneously. This is where chords objects
play their role. Chord objects are basically lists of notes that are being played
at the same time.

The MIDI objects consist of a note or chord and their corresponding offset.
Before we can analyze these objects, we have to convert them to a format that
our neural networks can understand. The notes will be denoted by the Scientific
Pitch Notation (SPN), which summarizes the note its octave and pitch. An
example is “A3”, where “A” represents a specific pitch and “3” corresponds to
the octave. Chords on the other hand, will be written in the well-known normal
order. The format summarizes the list into a single string where the notes are
represented by integers and are separated by a dot. For example, if we would
apply normal order to a chord containing “B-4”, “D5” and “F5” in its list, the

1The music of Bach is retrieved from “http://www.bachcentral.com/.”

11

Figure 1: Data preparation steps for MIDI files

resulting string would be “10.2.5”. Moreover, the offset is expressed as a float
that represents the location of the note or chord on the piece. By using these
representations for music, we save computational power and thus make it easier
for our NNs to analyze audio. If we would use raw audio to represent a note
or chord, we would need tens, if not hundreds, of thousands of objects. If we
would store a note lasting 2 seconds on CD (where the sample rate equals 44.1
kHz), for example, we would need 44.1 · 1000 · 2 = 88, 100 values. Whereas we
only need the SPN and the offset to reproduce the same note using MIDI files.

Additionally, the audio files may contain several instruments. This adds
extra complexity because we also would have to analyze which sequences of
objects correspond with a specific instrument. Furthermore, the purpose of our
research in this part is to generate new music, by predicting new notes and
chords. We are not interested in the set of instruments they should be played
on (see Section 1). Consequently, we only consider the notes and chords that
belong to a single instrument, namely a piano. This allows us to start off simple
and still be able to analyze music extensively. We build our dataset by starting
with empty lists. For each MIDI file, we eliminate the notes, chords and offsets
belonging to other instruments. The remaining chords and notes objects are
added to one list and the offsets to another. The resulting length of both lists
equals 134,306 (L).

However, we are not interested in the point in time a note or chord is played,
but rather in the difference of time between two succeeding objects. We intro-
duce a new object called offsetdiff (od), representing the time difference between
two succeeding offsets. The related values of the offsetdiffs are stored in a dif-

12

ferent list. The values are determined by Equation 2. Since the offsetdiff of the
last object can not be calculated, it is set to 0. Using offsetdiffs allows us to an-
alyze and produce music of different tempos. Additionally, we allow the models
to find correlations between the notes and tempo. Consequently, we have more
information available which we expect to lead to music of better quality.

odt =

{
ot+1 − ot t < L
0 t = L

(2)

Not all note, chord and offsetdiff values are presented a sufficient number
of times for a model to find key characteristics. Hence, we replace all objects
which occur fewer than 100 times. Notes and chords will be replaced by one
of the notes or chords objects that occur a 100 times or more and the same
logic holds for the offsetdiff values. The sample probability is proportional to
the underlying ratio of the objects that occur a sufficient number of times. This
procedure reduces the number of distinct note and chord values (Kno) from 219
to 65 and the number of distinct offsetdiff values (Kof) from 79 to 12. However,
the note, chord and offsetdiff values are not interpretable for a neural network
yet and need to be converted to values between 0 and 1 ultimately. To reach
this objective, we first convert the values of the notes and chords to integers as
an intermediate step. We assign the distinct values to an integer between 1 and
Kno. All values in the note and chord list are replaced with their corresponding
integer as a result. The notes and chords values will be further manipulated by
embedding layers (see Section 4.1.2). Similarly, we have to transform the values
of the offsetdiffs. We transform the values by using min-max normalization. The
corresponding formula is given in Equation 3, where the values to normalize are
represented as x = {x1, x2, .., xn} and the resulting value of point i as zi.

zi =
xi −min(x)

max(x)−min(x)
(3)

Next, we will combine the two lists in one. As a result, every time step has
two features: a note or chord and an offsetdiff.

The next step is to determine the set of time steps X corresponding to target
values Y. The sequence length S determines the number of preceding elements
our neural networks consider. Every row in the dataset consists of a target value
yj and its S historical time steps. Here x1j represents the value at time point

t−S, x2j the value at time point t− (S − 1), and so on. The number of rows N
in the dataset will equal N = Nm − S, where Nm represents the total number
of time steps. This is because the first S values will not be considered, due to
the fact they lack historical values. Because the objects of all music files are
appended to the same list, the time steps of a number of rows contain overlap
between files. These rows in question are, therefore, deleted.

Next, we convert the target values Y to two arrays of booleans where the
lengths equal Kno and Kof , respectively. For each row yj , exactly one value in
both sets equals “1”. This process is also called one-hot encoding.

13

Furthermore, to judge the performance of the models as objectively as pos-
sible, we split the dataset in a training, test and validation set. We randomly
sample 80% as training and validation set and use the remaining 20% as test
set. Moreover, within the training and validation set, we similarly sample 80%
as training set and assign the remaining 20% to the validation set.

14

4 Methods

This section will highlight the different methods we will implement in order to
analyze the capability of learning and reproducing the music of Bach (based
on notes and tempo). The models that will be used for the MIDI files will
generally be less complex, since they will not cover the same amount of data.
In this section, we will highlight the structure of each model and explain why
we make relevant choices.

4.1 LSTM models

The first type of models we will implement are LSTM (Long Short-Term Mem-
ory) models. They are a type of recurrent neural networks (RNNs) that were
first introduced by Hochreiter & Schmidhuber (1997). The main advantage of
LSTM models is that they can handle long-term dependencies better. Chung
et al. (2014) already concluded that LSTM models work significantly better in
tasks as modeling polyphonic music and speech signal modeling. Normally, the
gradient of the loss functions of RNNs decays exponentially over time, which is
also known as the vanishing gradient problem. LSTM networks solve this prob-
lem by having a memory cell that can contain more information over longer
periods of time.

Each unit has three gates, namely: a forget, input and output gate. Each of
these gates has their own task. Intuitively, input gates control to what extent
new information is passed to the cell and forget gates determine to what extent
values remain in the cell. The output gates determine to what extent the value
in the unit is used to calculate the new activation function. The values of the
input (it), output (ot) and forget gate (ft) at time point t are calculated using
the formulas given in Equations 4, 5 and 6, respectively.

it = σg(Wixt + Uiht−1 + bi) (4)

ot = σg(Woxt + Uoht−1 + bo) (5)

ft = σg(Wfxt + Ufht−1 + bf) (6)

where xt denotes the input at time point t, ht the output vector of the LSTM
unit and bq the bias. Furthermore, Wq and Uq correspond to the weights of the
input and recurrent connections, respectively. It is important to note that q
represents the related gate, or in other words: q ∈ {i, o, f}.

In addition, each unit contains a memory cell ct, which is used to store values
for either long or short periods. The value of ct is determined by Equation 7.
After computing ct, we can determine the new value of the output ht by using
Equation 8. Here ◦ represents the element-wise product.

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (7)

ht = ot ◦ σh(ct) (8)

15

Figure 2: Design LSTM-I

4.1.1 Design LSTM models

To test the ability of finding patterns in MIDI files, we will implement two dif-
ferent LSTM models. We will refer to these models as LSTM-I and LSTM-II.
Their corresponding designs are given in Figure 2 and 3, respectively. Both
models have an LSTM layer with an output dimension of 256. The main differ-
ence between these models is the fact that LSTM-II has an additional LSTM
layer with 512 neurons.

4.1.2 Embedding and concatenate layer

The notes and chords are described as integer values (see Section 3) that are
meaningless in this representation. To transform these integers to values that are
more preferable for NNs, we will use an embedding layer. First, the two features
are split for every time step. The resulting notes and chords and offsetdiffs will
be called input no and input of , respectively. The embedding layer will only
be applied to input no. In their essence, embedding layers transform integers to
dense vectors with chosen size el, eliminating the natural ordering of integers.
Each note and chord will be assigned to exactly one vector. All vectors are
updated while training the NN in question. After training, the integers can be
mapped to points in multi-dimensional space using their corresponding vectors.
This allows us to visualize the relationships the model finds between notes and
chords. A model will consider two points to be more similar if their distance

16

Figure 3: Design LSTM-II

17

is smaller. By analyzing the resulting embedding matrix (the matrix of the
embedding vectors), we are able to see if the model its findings are in line with
music theory (see Section 6). This describes the set of rules that explain the
relationships between the notes we hear in musical pieces.

The results of the embedding layer and input of need to be combined to-
gether so all related values can be considered by an LSTM. This is where a
concatenate layer plays its role. For every time step, it will concatenate both
sets of values. This results in a feature set of length el + 1 for every time step.

4.1.3 Other layers

Two fully connected layers will serve as the second last layers in our RNN
models. They will convert the current dimension of the values to Kno and Kof ,
respectively. This is a necessary step in predicting the probabilities of observing
a note, chord and offsetdiff.

Moreover, softmax layers will follow to determine the estimated probability
of observing a certain category. The corresponding formula is given in Equation
9.

σ(z)j =
ezj/T∑K
k=1 e

zk/T
(9)

where z represents the output vector of the fully connected layer and σ(z)j
the probability of observing j given z. The temperature T (0 ≤ T ≤ 1) controls
to what extent randomness can occur in predictions. A higher temperature re-
sults in more diversity, but also more mistakes during sampling (see Section 5.1).
A low temperature on the other hand, results in more confident and conservative
predictions. However, we do not vary the temperature during the comparisons
of models because we do not know what effect randomness has on the quality of
the resulting music samples. Consequently, we set T = 1 to calculate the errors
in Section 6. Moreover, one of the softmax layers determines the probability of
observing a note or chord, while the other calculates the probability of observing
an offsetdiff.

Furthermore, we will use Adam optimizer (Kingma & Ba, 2014) to update
the weights to minimize the categorical cross entropy loss (given in Equation
10) that estimate the errors in our network. Here C represents the number of
different categories and N the number of observations. ycj equals “1” if the target

value of row j belongs to category c and “0” otherwise. Lastly, ŷcj represents
the estimated probability of the target value of row j belonging to category c.

− 1

N

N∑
j=1

C∑
c=1

ycj · log(ŷcj) (10)

Categorical cross entropy will use both softmax functions to generate two
individual loss values, implying how well the model estimates notes and chords

18

Figure 4: Before regularization Figure 5: After regularization

and offsetdiffs. Different instances will be compared to each other by taking the
mean of the two resulting losses.

4.1.4 Preventing overfitting

To prevent overfitting, we will implement several methods. First, we will insert
a dropout layer after an LSTM layer (see Figures 2 and 3). During training, the
weights of a vector ht will be set to zero with a probability of 1− pdr. At each
training stage, a different set of neurons will be used to calculate the output.
By randomly eliminating neurons during training, we can reduce co-dependence
between neurons, which ultimately leads to less overfitting. Secondly, we will
extend our loss function with L2 regularization to penalize large weights. This
prevents the parameters from becoming excessively large and dominating the
neural network. The formula of L2 regularization is given in Equation 11, where
λl2 controls the degree to which large weights are being penalized.

λl2

n∑
i=1

θ2i (11)

To test the effect of regularization, we will train two instances of LSTM-I
using an identical arbitrary parameter set. One of the models will use regu-
larization while the other will not. Next, we plot the losses of their train and
validation sets against the epochs. The results are given in Figures 4 and 5,
where “loss” and “val loss” represents the error of the training and validation
set, respectively. We can clearly observe that regularization has an effect on
overfitting. In Figure 4, we can see overfitting occurs around 30-35 epochs,
while overfitting does not seem to occur in Figure 5. Furthermore, L2 regular-
ization seems to not negatively affect the training of the model. Both losses are
still decreasing after 70 epochs in Figure 5.

Thirdly, we will implement early stopping, a method that stops training as
soon as the loss of the validation set does not improve for a number of epochs.
This value is also known as the patience.

19

4.1.5 Adaptive learning

In addition to preventing the LSTM models of overfitting, we also want the
optimizer to explore the search space as much as possible in the beginning and
gradually consider points closer as time passes. We can establish this objective
by decreasing the learning rate of the Adam optimizer during training. More
specifically, we start with a learning rate and proportionally decrease the value
over the epochs. Hence, the learning rate lrt at time point t will follow Equation
12, where 1 ≤ t ≤ T .

lrt = lr0 ·
T − (t− 1)

T
(12)

4.1.6 Parameter optimization

Finally, we want to optimize the parameters. Because training a single model is
computationally expensive, techniques as evolutionary algorithms or simulated
annealing are less preferred. Hence, we will use a grid search to optimize the pa-
rameters. We will select a number of parameter values and calculate the losses
for the training and validation set. For each parameter set, we will run LSTM-I
and LSTM-II for 200 epochs, that is if early stopping does not end the process
beforehand. The patience will be set to 10. Moreover, the optimal parame-
ter set will be equivalent to the one that minimizes the loss of the validation
set. The sequence length S will be set to 60 and the output dimension of the
embedding layer el to 3. The parameters we will optimize are: the fraction of
neurons that will pass through the drop out layer pdr ∈ {0.1, 0.3, 0.5, 0.7}, the
regularization term λl2 ∈ {0.005, 0.001, 0.0001} and the initial learning rate of
the Adam optimizer lr0 ∈ {0.007, 0.005, 0.003}.

4.2 CNN

The second type of model we will consider to replicate music using MIDI files
is convolutional neural network (CNN) and was introduced by LeCunn & Yann
(2013). More specifically, we will implement a 1-dimensional CNN. CNNs use
multilayer perceptrons designed to require minimal preprocessing . Hence, we
expect to train CNNs much faster than RNNs (e.g., LSTMs).

CNNs are characterized by their convolutional layers. Such a layer applies
one or more convolutional operators to the input and passes the results on to
the next layer. By using filters with defined weights that slide over the input,
matrix manipulations are performed and the resulting sum is mapped into a
feature map. This process is summarized in Figure 6. The image shows a filter
with the values 1, 3 and 1 for the weights w1, w2 and w3, respectively. The
receptive field of the filter, i.e., the area the filter considers, is 3. We can apply
multiple filters to the same input, resulting in multiple feature maps. The step
size by which a filter moves is called a stride and equals 1 in Figure 6.

Notice that the resulting feature map has fewer values, causing information
to be lost. We will ensure maintaining valuable information by implementing

20

Figure 6: Example of CNN filters

zero padding. On each side of an input vector xj a value of “0” is added. This
ensures that the resulting feature maps have the same number of values.

4.2.1 Structure CNN

The design of our CNN is given in Figure 7. Again, the input is split in input no
and input of , where input no passes through an embedding layer (see Section
4.1.2). The neural network we will implement contains three 1-dimensional
convolutional layers. The input will pass through three subsequent combinations
of a 1-D convolutional layer and a drop out layer. The first, second and third
convolutional layer use 128, 64 and 32 filters, respectively. Note that the output
dimension after the third drop out layer is S × 32. In order to convert the
findings of the model to probabilities, the matrix must be converted to a single
vector. This is where the flatten layer plays its role. The layer converts the
current output dimension to a vector of length S · 32. To add extra complexity
to the model, we add a fully connected layer with 256 neurons. This makes
it possible to learn more intricate patterns. Like explained in Section 4.1.3,
we connect the output to two additional fully connected layers, one with Kno

neurons and the other with Kof neurons. Finally, they are both followed by
their own softmax activation function.

4.2.2 Training and parameter optimization

Similarly to Section 4.1, we will implement early stopping with a patience of
10 and use L2 regularization in order to prevent overfitting. Moreover, we will
use categorical cross entropy to calculate the loss and an Adam optimizer. The
learning rate of the optimizer will again be decreased proportionally over time
to effectively utilize the search space (see Section 4.1.5). Lastly, the stride will
be set to 1.

21

Figure 7: Design CNN

22

Next, we will discuss how we will optimize the parameters. The sequence
length S will again be set to 60 and el to 3. Also, we will optimize four
parameters using a grid search. The first three parameters are equivalent to
ones we optimize for the LSTM networks, namely: pdr ∈ {0.1, 0.3, 0.5, 0.7},
λl2 ∈ {0.005, 0.001, 0.0001} and lr0 ∈ {0.007, 0.005, 0.003}. The last parameter
is the filter length f ∈ {2, 3, 4, 5}. We will not optimize the filter lengths of the
three convolutional layers independently from each other. Instead, we will use
the same value for f in every run for the three convolutional layers. Adding
extra parameters to a grid search increases the number of runs exponentially.
Thus, by optimizing just one value of f for the three convolutional layers, we
are saving a tremendous amount of computational cost.

4.3 Markov chains

The last type of model we will implement for the MIDI files is Markov model. A
Markov model is a model that satisfies the Markov process that was introduced
by Markov (1906). However, we do not expect this model to perform well, nor
to generate qualitative music. Because of the simplicity of this model, it will
primarily serve as baseline, i.e, the other models should at least perform better
than the Markov model. Yanchenko (2017) concluded that Hidden Markov
models (HMMs) are limited in reproducing music-resembling audio. For this
reason and the sake of simplicity, we will implement a Markov chain instead
of an HMM. Models with a higher value for the loss on the test set than the
baseline are said not to learn any significant patterns, not even the most simple
ones. Models with a similar value for the loss, however, only learn the most
straightforward relationships. Or in other words: the ones that are simple
enough for the Markov chain to find as well.

The most important concept of Markov chains is the Markov property. This
property says that the probability of future states solely depends on the current
state. This idea is summarized in Equation 13, where X1, ..., Xn, Xn+1 represent
a sequence of states.

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn) = P (Xn+1 = xn+1|Xn = xn) (13)

Because we have two features in every time step, we will implement two
separate Markov chains. One for the notes and chords and the other for the
offsetdiffs. In both cases the estimated probabilities will be based on both
the previous note or chord and the previous offsetdiff. For both models, we
will only construct a single version. Since, we will not perform any parameter
optimization, making a validation set will be unnecessary. The training set will
contain 80% of the data and the test set 20% of the data. Next, we will construct
the transition matrices for both models. The number of distinct combination of
notes and chords and offsetdiffs in the training set (and thus the number possible
current states) equals 635. On the other hand, the number of future states will
equal Kno and Kof for the Markov chains of the notes and chords and offsetdiffs,

23

respectively. The resulting two matrices will, therefore, be of size 635 × Kno

and 635 × Kof . For every combination of notes or chords and offsetdiffs, we
will count the occurrences of the succeeding objects in the training set. This
result in arrays of integers of sizes Kno and Kof for every current state. Often
in these resulting arrays, counts of 0 are present. However, intuitively we would
expect some probability of a note, chord or offsetdiff to follow after a current
state. We, therefore, will prevent counts of 0 by using Equation 14.

θ̂j = xj + α (14)

where xj is an array of occurrences and α will be set to 1. To convert the
counts to probabilities, we will use equation 15, where 1 ≤ c ≤ C.

ŷcj =
θ̂cj∑C

k=1 θ̂
k
j

(15)

Again, we will use categorical cross entropy to calculate the loss. For every
row in the test set, we will check if the combination of a note or chord and a
offsetdiff is present in the training set. If the combination is present, we can es-
timate the probabilities for both the succeeding notes and chords and offsetdiffs
using Equation 15. If the combination is not present, the estimated probabilities
for the note and chords will be set to 1

Kno
and the estimated probabilities for

the offsetdiffs to 1
Kof

.

24

5 Experiments

Next to having analytically satisfying results (i.e., a low error), we also aim to
produce audio that is sonically of quality. However, the quality of music and
sound in general is typically a subjective measurement. In this section, we will
highlight the different approaches we will take in order to give a judgment that
is as objective as possible.

5.1 Sampling music

Before we conduct our experiments on music quality, we have to sample music
from our models.

We start by randomly selecting an input vector v0 as starting point from
the related test set. A model will then use v0 to estimate the probabilities for
all categories of the notes and chords and offsetdiffs. The output for LSTM-I,
LSTM-II and CNN is given by softmax layers that use Equation 9. The next
step is to select a value for the temperature T . A low value for T results in
conservative predictions. A possible consequence is that only a select number
of notes, chords and offsetdiffs will be be heard. A high value for T creates
more differences in results, which one can perceive as creativity. Although more
variety of notes, chords and offsetdiffs could lead to more randomness and thus
music of less quality. We select the optimal temperature by sampling music
using different values for T and evaluating them ourselves. We conclude that
the best quality arises when we make a balance between the two extremes and
set T = 0.6 during sampling. Note that this is the only time where we vary
T , during parameter optimization and training T is set to 1. The probabilities
of the Markov chain model, however, are estimated using Equation 15. Based
on the resulting probabilities, ŵt,d is determined. This represents the estimated
category value for time point t. Here, d relates to the specific feature. d = nc
when we refer to the notes and chords and d = of when we refer to the offsetdiffs.

For every output file, we start by randomly selecting a vector v0 of length
S from our test set. Where S = 1 for the Markov chain model. Moreover,
we start with an empty output list and an offset of 0.0. Based on v0, we will
estimate the probabilities {ŷct : 1 ≤ c ≤ Kno} and {ẑct : 1 ≤ c ≤ Kof}, for
the notes and chords and the offsetdiffs, respectively. The values for ŵ0,nc and
ŵ0,of are sampled according to the ratio of the estimated probabilities. A note
or chord is constructed by converting its corresponding estimated integer ŵ0,nc.
To determine the related offsetdiff, we first convert ŵ0,of to the correct offsetdiff.
The result is added to the current offset value. Finally, both the estimated note
or chord and the new offset value are appended to the output list. Furthermore,
ŵ0,of is transformed and normalized like we did for all offsetdiffs values (see
Section 3). The integer value of ŵ0,nc stays in its original form. A new input
vector is created, where vl−1t+1 = vlt (for l = 2, ..., S) and vSt+1 equals the resulting
value of ŵ0,nc and the transformation of ŵ0,of . Finally, the list of new objects
is converted to a MIDI file.

25

5.2 Listening session I

In order to answer the research questions stated in Section 1, we need to measure
the quality of the music samples. A group of volunteers will assist us by giving
their judgment about a set of generated audio files. In this section, we will
describe the set-up of two experiments. The first experiment relates the sub-
question: “Are deep neural networks capable of learning temporal relationships
based on notes and tempo and generate music-resembling audio based on these
relationships?”.

We will sample audio files of 10 seconds. I (I = 10) samples will be generated
by randomly picking one of the MIDI NNs (LSTM-I, LSTM-II or CNN) to
produce a specific music file. Each of these samples will be paired with a sample
produced by the Markov chain. The files provided by the MIDI NNs and the
Markov chain will be referred to as set A and B, respectively. First, we will see if
we can make obvious conclusions ourselves. If the samples in set B, for example,
only contain one note, it would be unnecessary to continue. It is important to
be precautions with our judgment and to only cancel the experiments when
conclusions can be drawn extremely easily. Otherwise we will proceed using the
opinions of our volunteers. For every pair, the volunteers will be asked which
file sounds more like music or whether they do not have a preference. This way,
we can see if neural networks can find more complex patterns in music and these
findings are noticeable for a human ear. We introduce a preference score PSW

j ,
representing the preference of a volunteer j (1 ≤ j ≤ J) towards set W . The
higher the score, the more the samples of W are preferred. This value is based
on the comparisons between the counterparts of the individual pairs. The result
of a single comparison i (1 ≤ i ≤ I) of volunteer j is summarized by xAi,j and xBi,j .
The two variables describe the performance of the counterparts from sets A and
B, respectively. Equations 16 and 17 determine their values. The results over
all pairs are used by Equation 18 to calculate PSA

j . The definitions of xAi,j and

xBi,j cause PSA
j to be closer to 0.5 when there is little noticeable difference for a

listener. On the other hand, when there is a significant difference in perceived
quality, the preference score will further away from 0.5.

xAi,j =

 1 Volunteer j prefers sample i from A
0 Volunteer j prefers sample i from B
1 Volunteer j has no preference

(16)

xBi,j =

 0 Volunteer j prefers sample i from A
1 Volunteer j prefers sample i from B
1 Volunteer j has no preference

(17)

PSA
j =

I∑
i=1

xAi,j
xAi,j + xBi,j

(18)

Furthermore, we will ask the listener to rate both sets of audio (the MIDI NN
set and the Markov chain set) using Absolute Category Ranking (ACR). Where
the levels of the scale (sorted by quality in increasing order) are: bad, poor, fair,

26

good, excellent. The ACR score can be evaluated by assigning numbers 1 to 5
to the levels, where 1 means bad, 2 means poor, etc. This allows us to judge
how well the audio sets resemble music. Additionally, we will ask a volunteer
why they give a certain ACR score. By analyzing these answers, we can provide
insights into important characteristics of music-resembling audio. Thus, we can
give a judgment about what deep neural networks should be looking for.

Next, we would like to see if the MIDI NN with the lowest test loss also
performs significantly better in producing music. Thus, we would like to answer
the sub-question: “Do neural networks with lower loss values also produce more
music-resembling audio?”. To reach this objective, we will have a similar set-up
as described above (compose pairs, see if experiment is necessary, ask ACR score,
etc.). The volunteers and the music sample sets, however, will be different. For
the second experiments, 10 samples will be generated using the best performing
MIDI NN. Each of these samples will be paired with an audio file produced by
one of the other two NNs.

27

Figure 8: Distribution of the offsetdiffs in the training set

6 Results & Evaluation

In this section, we will compare the results of the different models. First, we
will compare the analytical performance of the models to each other by looking
at their abilities to categorize objects and the relevant loss values. After judging
their learning capabilities, we will analyze the quality of the produced music.

6.1 The analytical evaluation set-up

For every NN, we will first discuss the chosen parameters and the loss develop-
ment. After the model instance with the lowest loss is determined, the loss of
the test set will be calculated.

Furthermore, we will test how well a model is capable of categorizing offset-
diffs. To test the performance, we will construct confusion matrices. This type
of visualization allows us to summarize the category-level performance. Each
column represents a single possible prediction of our model. The rows represent
the actual value corresponding to that prediction. The values are normalized,
i.e., the sum of each row equals 1. A model with high values on the diagonal is
said to perform adequately. Low values on or high values outside the diagonal
means the model has trouble predicting certain offsetdiffs. Furthermore, we will
compare confusion matrices with Figure 8, that represents the distribution of
the offsetdiffs in the training set. More specifically, we will examine if a model
has trouble learning offsetdiffs with little occurrences.

Moreover, we also want to test a model’s capability of categorizing notes
and chords. In contrary to the offsetdiffs, confusion matrices will not provide us
much insight, because the number of distinct categories (Kno = 65) is too high.
This causes the confusion matrix of becoming too large and unclear. Instead,
we will use a different approach. The objective is to conclude if the model is

28

capable of finding patterns between notes that are in line with music theory2

(the set of rules that explain the relationships between notes). We will reach
this by making 3D plots of the parameters of the embedding layers. In these
plots, every axis represents a parameter value. Notice that el = 3 (see Sections
4.1.6 and 4.2.2), hence, the usage of 3D plots.

In the dataset, we have 12 notes, namely: C, C#, D, E-, E, F, F#, G, G#, A
and B-. It is important to mention that ‘#’ represents a sharp and ‘-’ a flat. By
multiplying the frequency of one note by 1.0595, the frequency value of the next
note will be derived. For example, if we would multiply the frequency of C, we
would get the value 261.6 · 1.0595 = 277.2Hz. This value equals the frequency
of C#. Performing the same multiplication would result in the frequency of
D and so on. An important notion is that 12

√
2 = 1.0595. That means that

if we would complete a round of 12 multiplications starting with C, we would
end up multiplying the original frequency value of C by 2. Or in other words,
with C one octave above, denoted by the last number of a note. For example:
E-4 is one octave above E-3, B4 one octave above B3 etc. Thus, relationships
exist between notes in the same octave (i.e., ending with the same integer) and
between the same notes in different (e.g., F3 and F4). In addition, we will also
examine if there is a clear distinction between notes and chords.

We can determine how similar a model finds two notes or chords by looking
at their distance in the related 3D plot. If the corresponding Euclidean distance
is lower, the points are more similar to each other. The Euclidean distance
can be described as the straight-line distance between two points in Euclidean
space. The corresponding formula is given Equation 19, where p and q represent
2 points in Euclidean n-space.

d(p, q) = d(q, p) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (19)

6.2 Results LSTM-I

We start by discussing the results of LSTM-I. After performing parameter opti-
mization (see Section 4.1.6), we set pdr = 0.7, λl2 = 0.001 and lr0 = 0.003. The
development of the losses of the validation and training set are summarized in
Figure 9. The training is stopped prematurely by early stopping because the
loss of the validation set stops decreasing.

6.2.1 Performance offsetdiffs

The confusion matrix of LSTM-I is given in Figure 12. We can observe that
the model is only capable of predicting a few offsetdiffs well, namely: 0.0, 0.25,
0.3333 and 0.5. However, it seems that this is caused by the fact that LSTM-I is
prone to predict one of the four values, as their corresponding columns contain
high values. From Figure 8, we can observe that these values occur a significant
number of time (except for od = 0.3333). In addition, we see that the model

2Information about music theory retrieved from “http://www.simplifyingtheory.com”

29

Figure 9: Training results
LSTM-I

Figure 10: Training results
LSTM-II

Figure 11: Training results
CNN

almost never predicts offsetdiff values that occur less than 2% of the time in our
training set. These values are: od ∈ {0.4167, 0.6667, 0.75, 1.5, 2.0}.

6.2.2 Performance notes and chords

The weights of LSTM-I’s embedding layer are shown Figure 13. We can observe
that LSTM-I is capable of matching notes with similar frequencies together.
Notes within the same octave are grouped together. For example, notes ending
with ‘3’ are grouped together on the bottom and notes ending with ‘4’ are
grouped at the left side. Moreover, we can observe some individual relationships.
An example is G3 and G#3, where the difference of frequencies is only a factor of
1.0595. However, the model does not seem to group the same notes in different
octaves together. F3 and F4 are pretty far away, for example. Furthermore, all
chords are clustered in a dense area, meaning the model sees a clear distinction
between notes and chords.

6.3 Results LSTM-II

Secondly, we will analyze the results of LSTM-II. The resulting parameters after
optimization are: pdr = 0.7, λl2 = 0.0001 and lr0 = 0.005. The losses of the
validation and training set are plotted against the epochs in Figure 10. We can
observe that the model has trouble learning at first, but starts learning faster
after 10 epochs. Furthermore, we can see that the model overfits fast, as early

30

Figure 12: Confusion matrix of the offsetdiffs of LSTM-I

31

Figure 13: Parameters embedding layer LSTM-I

stopping already stops the process after a little more than 80 epochs.

6.3.1 Performance offsetdiffs

Figure 14 represents the confusion matrix related to the offsetdiffs. We can ob-
serve that LSTM-II is more capable of predicting offsetdiffs than LSTM-I, as the
diagonal of Figure 14 contains higher values. However, the same problems that
were discussed in Section 6.2.1 are still present, only less severe. By comparing
the confusion matrix with Figure 8, we see that the model is biased in predict-
ing offsetdiffs with high occurrences, namely: 0.0, 0.25 and 0.5. Moreover, the
following values are almost never predicted: 0.4167, 1.5 and 2. These values all
occure less than 0.5% of the time.

6.3.2 Performance notes and chords

The weights of the corresponding embedding layer are plotted in Figure 15. The
first thing we notice is that chords are prone the be centered on the bottom of
the figure, while notes are more spread over the figure. This means both LSTM-
I and LSTM-II are capable of distinguishing notes and chords. Furthermore,
the octaves seem to increase as we move up the figure. Notes ending with ‘2’
are more present on the bottom, those ending with ‘3’ more in the middle, while
the notes ending with ‘4’ and ‘5’ are spread on the top. Where LSTM-I is better
capable of recognizing notes of similar frequencies (see Section 6.2), LSTM-II

32

Figure 14: Confusion matrix of the offsetdiffs of LSTM-II

33

Figure 15: Parameters embedding layer LSTM-II

is better capable of determining a relation between the same notes in different
octaves. Examples are: G#3 & G#4, B3 & B4 and C4 & C5.

Thus, LSTM-II better capable of predicting offsetdiffs. However, the pat-
terns concerning notes and chords that are found by LSTM-I are better observ-
able.

6.4 Results CNN

After performing parameter optimization, we select the optimal CNN model
instance with: pdr = 0.5, λl2 = 0.001, lr0 = 0.005 and f = 4. Figure 11 shows
the development of the training and validation losses over time. We can observe
that the loss of the training set decreases fast at the beginning and only has
a slow decrease after 40 epochs. Thus, the most important patterns are found
within the first 40 epochs. After this point, important relationships are still
found, as the validation loss is still decreasing. However, these patterns seem to
be far less significant.

6.4.1 Performance offsetdiffs

We start by analyzing the confusion matrix of the offsetdiffs, shown in Figure
16. The CNN model seems to perform better than LSTM-I but worse than
LSTM-II. The diagonals of the confusion matrix of CNN are generally higher
than diagonals of LSTM-I, but lower than the values of LSTM-II. Again, there
is a bias towards the values 0.0, 0.25 and 0.5 and a number of values are almost

34

Figure 16: Confusion matrix of the offsetdiffs of CNN

never observed. By looking at Figure 8, we can observe that offsetdiffs with
low occurrences are less likely to be predicted. Also, there seems to be more
variation in predictions compared to the RNNs. We can conclude this by the
fact more cells have probabilities larger than 0.0, compared to the other two
confusion matrices (Figure 12 and 14).

6.4.2 Performance notes and chords

Moreover, we will analyze the weights of the embedding layer, (like we did for
LSTM-I and LSTM-II in Sections 6.2 and 6.3) in Figure 17. We can observe less
of a distinction between chords and notes, as both objects seem to be spread
over the figure. Overall, the clusters seem to be less dense. Furthermore, we can
see a distinction between the notes in different octaves. Notes ending with ‘3’
are more present on the right top, wile those ending with ‘5’ on the left bottom.
Notes ending with ‘2’ and ‘4’ are spread between those two clusters. Finally, we
can see that the model occasionally finds a pattern between the same notes in
different octaves, for example between F3 and F4 on the bottom.

Although CNN is reasonable capable of predicting offsetdiffs (compared to
LSTM-I and LSTM-II), it performs worst in categorizing notes and chords.

35

Figure 17: Parameters embedding layer CNN

6.5 Overall results MIDI NNs

Table 1 summarizes the results of the models related to MIDI files. The first
thing we notice is that all NNs perform better than the Markov chain. Thus,
they are able to recognize more complex patterns, next to the most simple ones.
In addition, we can see that LSTM-I and CNN have similar results for the three
datasets, meaning they are almost equally capable of recognizing relationships
based on historical time steps. LSTM-II on the other hand, has the best per-
formance for the training set, but most importantly for the validation and test
set. Lower losses for the validation and test set mean LSTM-II is better at
recognizing relationships that are generalizable.

Table 1: Losses per model for different sets
training validation test

LSTM-I 1.84 1.92 1.92
LSTM-II 1.52 1.74 1.75

CNN 1.87 1.96 1.95
Markov chain 2.20 - 2.33

Lastly, LSTM-II seems to perform best in predicting offsetdiffs, followed by
CNN and LSTM-I (see Figures 12, 14 and 16). Whereas LSTM-I performs best
in categorizing notes and chords, followed by LSTM-II and CNN (see Figures
13, 15 and 17).

36

6.6 Listening session I

Next, we will analyze the music samples of our MIDI NNs. As stated in Section
5.2, we will conduct two experiments. The first experiment compares samples
from the MIDI NNs with samples from the Markov chain. The second one
compares audio files from the best performing MIDI NN with files produced by
the other two NNs. Table 1 shows that LSTM-II has the lowest test loss and,
therefore, analytically performs best. Consequently, the second experiment will
compare the samples of LSTM-II with samples of LSTM-I and CNN. After we
compared the sets of the two experiments ourselves, we could not make ex-
tremely obvious conclusions about difference of quality. We, therefore, proceed
by using volunteers to give their judgment. A total of 50 people will attend the
listening sessions, who are equally divided over the two experiments.

For both experiments, we will first test if a music set is preferred over the
other. There is a preference towards a set if µ 6= 0.5. Where µ represents the
population mean of PSA

1 , PS
A
2 , ..., PS

A
J . In the two following sections, we will

test H0 : µ = 0.5 versus H1 : µ 6= 0.5, where α = 0.05. First, we will see if
the t-test is applicable, because parametric tests have more statistical power
than non-parametric tests (Campbell & Swinscow (2016)). Statistical power
is the likelihood that a experiment will find an effect when there is an effect
to be found. However, the test assumes normality in the underlying distribu-
tion. To test this assumption, we will analyze the corresponding histogram and
quantiles. Furthermore, we will perform Shapiro–Wilk tests (Shapiro & Wilk
(1965)), where we will test H0 : PSA

1 , PS
A
2 , ..., PS

A
J is normally distributed ver-

sus H1 : PSA
1 , PS

A
2 , ..., PS

A
J is not normally distributed (α = 0.05). If we can

not assume normality, we will use the sign test. As stated by Usman (2015),
the sign test is a reasonable alternative for the t-test when there is uncertainty
about the underlying distribution.

Next, we will examine to what extent the different sets sound like actual
music. For every experiment, we will analyze the distribution of the two sets
their ACR scores. By calculating the mean, we can see how well the audio files
of the sets generally resemble music. Moreover, by looking at the underlying
distributions, we can analyze how the opinions of the volunteers are divided.

Lastly, we will analyze the reasons behind the ACR scores. For each of
the possible five scores, we will summarize the explanations behind them. This
allows us to examine the characteristics of good and bad music. Consequently,
we can conclude which patterns are important to find for a model.

6.6.1 MIDI NNs versus Markov chain

In the first experiment, we will analyze the results of the comparison between
the MIDI NN files and the Markov chain files. PSA

j refers to the preference
score of volunteer j towards the MIDI NNs. The opinions of the volunteers
are plotted in Figure 18. The first thing we notice is that there seems to be
a preference towards the MIDI NNs. This is because most preferences scores
are larger than 0.5 and the mean equals 0.62. Furthermore, the data seems to

37

Figure 18: Histogram prefer-
ence scores first experiment

Figure 19: Q-Q plot preference
scores first experiment

be skewed to the right and therefore not symmetrical, indicating non-normality.
This notion is further strengthened by Figure 19. In this figure, the quantiles of
the preference scores are plotted against the quantiles of the normal distribution
(also known as the normal Q-Q plot). In case of normality, the quantiles would
lie on a straight line, which is not the case. Finally, the resulting p-value of
the corresponding Shapiro-Wilk test equals 0.006. Consequently, we can reject
the null hypothesis and conclude the preference scores do not follow a normal
distribution.

As a result, we will use a sign test to conclude if there is a preference towards
a set. The resulting p-value is 0.0. We, therefore, can reject the null hypotheses.
Thus, there is a preference towards one of the two sets. Because the mean
preference score is 0.62, we can conclude the MIDI NNs provide more music-
resembling audio. Hence, NNs can find patterns in music that our baseline can
not, and these patterns can by noticed by the human ear. Furthermore, the
Markov chain having the highest loss values (see Table 1) indicates a negative
relationship between the loss values and produced music quality.

Figures 20 and 21 summarize the resulting ACR scores. If we round the mean
ACR scores and translate the values (see Section 5.2), we derive the absolute
performances. The mean rounded ACR scores are 3 and 2 for the MIDI NNs
and the Markov chain, respectively. Thus, the MIDI NNs perform fairly and the
Markov model poorly. Lastly, we can see that there is more variations in the
ACR scores of the Markov model compared to the MIDI NNs. This indicates
that the opinions about the audio files of the Markov model are more divided.

6.6.2 LSTM-II versus LSTM-I & CNN

The second experiment relates to the comparison between the best performing
MIDI NN (LSTM-II) and the worse performing MIDI NNs (LSTM-I & CNN).
In this section, PSA

j will relate to the preference score of volunteer j towards
LSTM-II. First, we will examine if we can assume that the preference scores
are normally distributed. The histogram of PSA

1 , ..., PS
A
J is given in Figure 22.

There is a clear peak around x = 0.4 and the mean equals 0.42. Although there
seems to be approximately as many points on each side of this peak, it is hard

38

Figure 20: Average ACR scores
first experiment

Figure 21: Distribution ACR
scores first experiment

Figure 22: Histogram prefer-
ence scores second experiment

Figure 23: Q-Q plot preference
scores second experiment

to conclude symmetry. This is because the points are distributed differently on
each side of the peak. The normal Q-Q plot (shown in Figure 23) provides us
more insight. The quantiles seem to lie on a straight line, except for the most
top-right point, which we will view as outlier. This indicates that the preference
scores are normally distributed. Lastly, the resulting p-value of the Shapiro-Wilk
test equals 0.12. This means we can not reject the null hypotheses and conclude
the data is not normally distributed. Thus, it is reasonable to assume normality.

Hence, we will use a t-test to conclude if there is a preference towards a
musical set. The resulting p-value equals 0.006. This means we can reject the
null hypotheses and conclude there is a preference towards one of the two sets.
Because the average preference score equals 0.42, we can say that LSTM-II
produces less music-resembling audio than LSTM-I and CNN. This contradicts
the notion of models with lower losses producing better music.

Finally, we will analyze the ACR scores of the second experiment. Figure
24 shows the average evaluations of the music sets. We can see that LSTM-II is
again being outperformed by LSTM-I and CNN. This further indicates LSTM-II
producing less qualitative music samples. Moreover, LSTM-II’s music samples
are generally between poor and fair and LSTM-II and CNN their samples are
generally received as fair. The distributions of the related ACR scores are given
in Figure 25. We can see that there is not much variation in the ACR scores
of LSTM-II and most people either give its samples a poor or fair rating. If we

39

Figure 24: Average ACR scores
second experiment

Figure 25: Distribution ACR
scores second experiment

look at the ratings of LSTM-I and CNN their audio files, we can see that there is
more spread in the underlying distribution. This indicates that these opinions
are more divided than the opinions about LSTM-II’s samples. Furthermore,
the distribution of LSTM-I CNN their samples seems to be symmetrical around
“fair”. This means that there are approximately as many people who give a
rating above as below “fair”.

6.6.3 Reasons behind ACR scores

The reasons behind the ACR scores of the music sets are divided in two groups.
The ones belonging to a score of 1 or 2 are placed in the “bad evaluated group”.
The corresponding opinions are summarized in Figure 26. We can see that a
musical piece that sounds atonal or contains many dissonant notes is the main
reason for bad evaluations. This indicates that it is more important to predict
the notes and chords correctly than the offsetdiffs. This is because the former
has influence on atonality. Other important reasons for bad evaluations are the
fact a listener could not recognize a melody nor rhythm and random sounding
musical pieces. Furthermore, even if music sets have simple melody or rhythm,
they can still have bad ratings. This means that music needs to have more
complexity for it to be perceived better.

The other group is the “fair/good evaluated group”. These explanations
correspond to the ACR scores of 3, 4 and 5 and are summarized in Figure 27.
The most important characteristic of the “fair/good evaluated group” is variation
in notes and tempo. More diversity in a dataset could make it possible for an NN
to learn more variation, although it also makes it harder to learn generalizable
patterns. Furthermore, the second important charateristic is a recognisable
melody, followed by a good rhythm. The former is generally influenced by the
notes and chords and the later by the offsetdiffs. This further strengthens the
notion that it is more important to predict the notes and chords correctly than
offsetsdiffs.

40

Figure 26: Reasons behind bad evaluated ACR scores

Figure 27: Reasons behind fair/good evaluated ACR scores

41

Part II

Raw audio

7 Data

In this section, we discuss the necessary steps we will take in order to prepare
the techno and classical datasets consisting of WAV files to a usable format. We
will start by discussing the structure and details of the datasets. Next, we will
provide an explanation on how we convert the audio to numbers. The models
we will implement in Section 8 tend to be more complex than the models we
implemented in Section 4. We, therefore, will use open-source implementations
in order to implement two models: Wavenet3 (see Section 8.1) and SampleRNN4

(see Section 8.2). The process of data cleaning will, therefore, partly depend
on the implementations and can differ per model. The first steps, however, will
be similar and are summarized in Figure 28 (songs relate to the techno music
dataset).

Dutch DJ Joris Voorn provided us with a techno music set. Not all songs
are suited to be analyzed. A number of songs contain human vocals. For this
research we want to solely focus on producing beats first, because we do not
know to what extent human vocals have influence on the learning capabilities.
Hence, the songs having vocals are removed. Moreover, a number of songs are
remixes or variations of an original song already present in the Voorn dataset.
These songs can lead to an unrepresentative dataset, because certain sounds are
represented too often. Consequently, remixes are deleted. The final set contains
32 songs, equivalent to approximately two hours of music. Furthermore, we will
analyze a work of Bach called “The Goldberg Variations”5, which consists of
32 files with a total length of 1 hour and 22 minutes. They are all performed
on a harpsichord. Because, only a single instrument is used, we expect to have
less variations of sound to analyze. Hence, we expect our models to have more
trouble learning patterns in the techno dataset (provided by Voorn) compared
to the classical dataset (composed by Bach). The music is delivered in WAV
files, i.e., audio in uncompressed format. All information will be present, unlike
mp3 files, for example, where parts are removed to save space. The resulting
sound might be indistinguishable from WAV files for a human, but for analytical
purposes, WAV files are preferred. By making sure we have as much information
as possible, we can analyze the audio files extensively, helping us to ultimately
generate music of better quality.

After receiving the music samples, the data must be converted to numbers so
that we can start analyzing the audio. To achieve this, we will sample amplitude
values at discrete time points given a sample rate sr of 16,000 (like Mehri et

3https://github.com/basveeling/wavenet
4https://github.com/deepsound-project/samplernn-pytorch
5The files are from “http://freemusicarchive.org/music/Kimiko Ishizaka/The Open Goldberg Variations”.

They were in MP3 format and, consequently, converted to WAV

42

Figure 28: General data preparation steps for WAV files

al.(2016) did). Hence, each audio file will be converted to an array of amplitude
values.

Although, amplitude values are stored as continuous values, we would like to
convert these values to categories for our NNs. However, raw audio is generally
stored using 16-bits. This leads to 65,536 possible values per time step. To
make the output easier to grasp, we will convert the data to 256 possible values.
This is the exact same number of values van den Oord et al.(2016a) and Mehri
et al.(2016) used. We will use two methods to transform the data, namely: µ-
law quantization and linear quantization. Equation 20 summarizes the former
process, where −1 < xt < 1, µ = 255 and 0 ≤ f(xt) ≤ 255. Equation 21
summarizes the latter process, with 0 < xt < 1, 4 = 256, 0 ≤ f(xt) ≤ 255
and ε being an arbitrary small value. For Wavenet, we will implement µ-law
quantization, while we will implement linear quantization for SampleRNN. The
choices of quantization method is based on decisions and results of van den Oord
et al.(2016a) and Mehri et al.(2016).

f(xt) = sign(xt)
ln(1 + µ|xt|)
ln(1 + µ)

(20)

f(xt) = bxt · (4− ε) +
ε

2
c (21)

In the next two sections, we will describe how we prepare the data for the
models separately. This is process depends on the implementations found online
and the requirements of the individual models.

7.1 Data preparation Wavenet

First, we will discuss how we prepare the data for Wavenet. Figure 29 summa-
rizes the process. The values at different time steps are categories represented as
integers. To prevent our NNs to assume ordering between these integers while
still remaining a numerical representation, we will apply one-hot encoding. Each
integer will be replaced by a list of binary variables of size 256. Exactly one
value in the lists equals “1”. The index of this value represents the quantized
value of the amplitude (indices starting with 0).

Note that different songs are represented as arrays of values. To feed data
to models and evaluate the results, we need to convert these values to time

43

Figure 29: Data preparation Wavenet

steps X and target values Y. First, we assign a song to a validation, train or
test set. It is complicated to assign a specific percentage to a subset. There
are only a select number of songs per music genre dataset and the songs have
varying lengths. Instead, we will try to come close. For both datasets, we will
assign songs to the training, test and validation set with a probability of 64%,
20% and 16%, respectively. The resulting techno subsets contain 61%, 25%
and 14% of the data, respectively. The percentages related to the classical files
are: 64%, 18%, 18%, respectively. The rows within these datasets should be
random, i.e., not depend on the songs or the order within songs. For each of the
genre-specific subset, we first give every song an integer i. The array length of
song i is denoted as ni. Next, we define a fragment stride frs. In the following
step, we loop over all songs and make combinations between song i and starting
indices qip (p = 0, 1, .., (P −1) and P = b ni

frs
c). If we would define frs = 128 and

apply the procedure to an array of song i with ni = 10, 000, the resulting values
would be: (i, 0), (i, 128), (i, 256), ..., (i, 9,856). The resulting values for all
songs are appended to the same list and shuffled, eliminating a logical ordering.
Similarly to the datasets we constructed in Section 3, X will be represented by
a sequence of S succeeding time steps. The number of features per time step
will equal 256 (the length of the one-hot encoded vector). Every combination
of i and qip will be used to construct a row in the related subset. For every

combination, we use array i to select time points qip, qip+1, ..., qip+S as a row and

qip+1, qip+2, ..., qip+S+1 as the corresponding target values. Note that X and Y
both contain S columns.

44

Figure 30: Data preparation SampleRNN

7.2 Data preparation SampleRNN

The overall process of preparing the data for SampleRNN is shown in Figure
30. Unlike the preparation for Wavenet, we will only apply one-hot encoding
to the target values Y. For the time steps X on the other hand, we will use
an embedding layer (see Section 4.1.2) to handle the categories adequately (see
Section 8.2.1).

Next, every song is split up in arrays of length 128,000, equivalent to 128.000
sr

=
8 seconds. The chunks will be assigned to a training, test or validation set. We
have a total of 609 classical chunks. Ideally, we would like to have approxi-
mately the same number of techno chunks. We, therefore, only use a subset of
the techno dataset to produce chunks. The total of resulting files equals 623.
Chunks belonging to a single song will be present in the same genre-specific
subset, whereas songs will be randomly assigned to a dataset. After the chunks
are saved, they are randomly shuffled. Ideally, we would like to assign 64%,
20% and 16% to the training, test and validation set, respectively. Again, a
specific percentage per subset is hard to reach for us. Songs are assigned to
relevant subsets based on preferred division. For the techno files, the resulting
percentages are: 60 %, 25% and 15% for the training, test and validation set,
respectively. The resulting percentages of the classical files are 63%, 19% and
18%, respectively.

The following steps consider the construction of X and Y. SampleRNN uses
K modules that all consider their own set of input values (see Section 8.2). Each
module operates on non-overlapping frames of size FSk (1 ≤ k ≤ K). In order

for the model to calculate each value in Y, we add
∏K

i=2 FS
i values of O to the

left side of each chunk. We give O the value of the quantized value of 0, or in
other words: O = 4

2 = 128. The determination of X and Y will be further
discussed in Section 8.2.2, after we explain the set-up of the model.

45

Figure 31: Causal convolutional layers

8 Methods

Next, we will discuss the methods we will implement to analyze WAV files.
The related models will analyze raw audio wave forms, instead of notes, chords
and offsetdiffs. Consequently, they will be more complex and computationally
expensive.

8.1 Wavenet

The first model we will use to analyze WAV files is Wavenet. The model was
already briefly discussed in Section 2.1. The main idea of Wavenet is to predict
an audio sample xt based on preceding samples by using a network of CNNs. xt
is, therefore, conditioned on the samples at previous points in time, as shown in
Equation 1. The network contains no pooling layers and the input and output
have the same time dimensionality throughout.

The subsequent value xt will be estimated by using a softmax layer, as
already discussed in Section 4.1.3. Using a softmax distribution on raw audio
waves might not seem intuitive, but van den Oord et al. (2016a) already showed
that they perform adequately even when the data is implicitly continuous.

The main power of Wavenet lies in the causal convolutions. The causal
convolutions make sure the model can not depend on future points in time
and, thus, ensures that time ordering is preserved. Or in other words, we can
only predict xt using preceding time points x1, x2, ..., xt−1. Figure 31 shows
several causal convolutional layers. In this example, the filter length equals 2,
the stride equals 1 and no padding is used. The receptive field of models using
causal convolutions layer depends on the depth. The higher the depth, the
higher the receptive field.

However, the problem with causal convolutions is that they require many
layers or large filters in order to have a receptive field that is reasonably large.
To solve this problem, van den Oord et al.(2016a) introduce dilated causal
convolutions. In dilated causal convolutions, the filter skips input values by
certain steps, resulting in larger receptive fields, without using to many layers.
The idea is summarized in Figure 32, where the dilations equal 1, 2 and 4 for the
first, second and third layer, respectively. The dilation depth D equals 2 in this
example. Exponentially increasing the dilation factor leads to an exponential

46

Figure 32: Dilated causal convolutions

Figure 33: Wavenet stacks

increase of the receptive field [29], and thus the capacity of the model.
Furthermore, a Wavenet model may contain a number of stacks, denoted as

nbs. After each stack of layers, the dilation rate will be set to one. A specific
stack can also be viewed as an individual Wavenet sub-model. A Wavenet model
with nbs = 3 and D = 2 would, for example, have the following dilations: 1,
2, 4, 1, 2, 4, 1, 2, 4. Figure 33 shows the first five layers of this network. The
bottom four correspond to the first stack and the fifth layer to the second stack.

Moreover, Wavenet uses a gated activation unit, that was first introduced by
van den Oord et al. (2016b). In their corresponding paper, the authors make a
comparison of their CNN based model PixelCNN versus the LSTM counterpart
PixelRNN. They argue that PixelRNN has two main advantages. Firstly, the
layers in the LSTM models have access to the entire neighbourhood of points.
Whereas, the access is limited for PixelCNN. However, this disadvantage can
be alleviated by using many layers. Secondly, PixelRNN can benefit from the
multiplicative units to learn more intricate patterns, because of PixelRNN its
use of LSTMs. In their effort to overcome these shortcomings of CNNs, van
den Oord et al. (2016b) replace the rectified linear units with a gated activation
function, given in Equation 22. Here ∗ denotes the convolutional operator, �
an element-wise multiplication operator and W a learnable convolution filter.
The filter f and the gate g correspond to the set of weights of the two activation
gates: sigmoid (σ) and tanh, respectively.

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (22)

47

Figure 34: Architecture Wavenet

Several papers have already explored the use of gated activation function in
NNs, for example: Kalchbrenner et al. (2015), Kaiser & Sutskever (2015) and
Srivastava et al. (2015). This type of activation function generally performs
better.

8.1.1 Architecture Wavenet

Also, we will highlight the overall architecture of the Wavenet model in depth.
Before the input is passed to the hidden layers, an initial causal convolution is
applied. In every hidden layer two methods, that were first introduced by He
et al. (2018), are used, namely: residual mapping and skip connections. The
main purpose of these techniques is making deeper networks easier to optimize.
In essence, they increase the gradient flow within the network by extending the
capacity of a model. And most importantly, this is all done without increasing
the number of parameters too much.

In every layer, x passes through Wavenet’s activation function (Equation
22) and a 1-D convolution of kernel size 1 (also known as 1 × 1 convolution) to
produce F (x). The original value x is added to the resulting output F (x). The
summation is thereafter passed on to the next convolutional layer. Lastly, F (x)
is added to a list of outputs by skip-connections.

After the last hidden layer, the list of F (x) values is added to the current
output values. Next, two succeeding 1 × 1 convolutions and a softmax layer
are followed. Finally, the softmax layer will return S arrays of probabilities of
length 256. The whole architecture is summarized in Figure 34.

8.1.2 Input and output

Before we start training our Wavenet model, we have to determine the sequence
length S. We determine S by using equation 23.

48

Figure 35: Zero padding in Wavenet

S = 8192 + nbs · 2D+1 − (ns − 1) (23)

Van den Oord et al. (2016c) state that the input and output should have
the same length for all layers, namely S. To ensure this requirement, we will use
zero padding. For every layer, we add Q time steps on the left side of the current
input. The added time steps are represented as arrays of zeros. In addition, Q
equals the dilation rate of the layer. Thus, the first layer will add 1 time step,
the second 2 time steps, the third 4 time steps and so on.

Note that zero padding is at least applied in one layer for the first nbs ·
2D+1− (ns− 1)− 1 nodes. These corresponding outputs will, therefore, provide
less insights, as less information is used to calculate them. Consequently, we
will only consider the last 8192 + 1 = 8193 values of the output to calculate the
loss, although the output will have a length of S.

Figure 35 summarizes the process of padding and selected output nodes.
The padding nodes are given in blue. In this example, D = 2, nbs = 1 and
S = 11. The number of input nodes where padding is applied, is calculated as
following: nbs · 2D+1 − (ns − 1) − 1 = 23 − 0 − 1 = 7. This means the loss
function considers 11− 7 = 4 values for every input.

8.1.3 Parameter settings

Due to the computational expensiveness of Wavenet models, we are not capa-
ble of fully examining parameter settings. Instead, we determine most of the
parameters based on the restriction of our computational capabilities. Other
insights come from Wavenet implementations for music generation found online
6,7 and our own insights. To train our Wavenet models, we will use an Adam
optimizer where lr = 0.001. The errors will be calculated using categorical cross
entropy (see Equation 10). The fragment stride frs controls the number of rows

6https://github.com/basveeling/wavenet
7https://github.com/ibab/tensorflow-wavenet

49

in the datasets. To make sure the classical training set and the techno training
set have approximately the same amount of data, we set frs = 8192 for the
techno sets and frs = 4096 for the classical sets. This eventually results in
12736 rows in the techno training set and 11760 rows in the classical training
set. The number of filters in each convolutional layer will equal 64, except for
the last two 1 × 1 layers. The first of the two layers summarizes the information
received from the skip-connections and uses 1024 filters. The output dimensions
of the second layer must equal the output dimension of the softmax layer, and
is therefore set to 256. The dilation depth D will equal 11 and the number of
stacks nbs 4, leading to a receptive field of 1023.8 milliseconds. Also, we will
reduce overfitting by implementing early stopping (see Section 4.1.4), where the
patience equals 10. Finally, the models will run for 100 epochs (unless early
stopping terminates the training procedure).

8.2 SampleRNN

The final model we use in order to generate music is SampleRNN. Section 2.2 al-
ready provided some background about this model. Like Wavenet, SampleRNN
predicts raw audio waveforms based on historical values. The value of a time
point xt is based on conditional probabilities of preceding time points, as shown
in Equation 1. In contrary to Wavenet, SampleRNN primarily uses RNNs in-
stead of CNNs. Mehri et al. (2016) state that the challenge in modeling wave-
forms lies in the fact they generally contain correlation at different time scales.
SampleRNN’s strength lies in the fact it can capture patterns between sequences
that are far away from each other as well as ones that are close to each other.
The architecture of SampleRNN enables this capability by consisting of a hierar-
chy of modules (also called tiers). Each of them operates at a different temporal
resolution, i.e., each module considers a different number of succeeding time
points. The architecture of SampleRNN is summarized in Figure 36.

The higher a module in the hierarchy, the lower its temporal resolution. The
RNNs in the higher modules consider more time points as input and try to find
relationships between different sets of these inputs. Thus, modules higher in the
hierarchy search for patterns between time points further away. Each module
passes its output to the one below it, where the module on the bottom of the
architecture predicts on a time-point level. The modules above the lowest layer,
however, operate on non-overlapping frames fk of size FSk, where k represents
the level of the module in the hierarchy. The bottom tier corresponds to k = 1
and the top tier to k = K. Because the temporal solution decreases when we
move up the architecture, an RNN in higher tiers requires fewer time units to
process all time points. Thus, a value of t has a different meaning per module.
Whenever we refer to t in an equation, we refer to the value related to tier k in
that same in equation. In Figure 36, for example, a value of t = 1 refers to the
input x1, ..., x4 for tier 2 (FS2 = 4). Whereas, t = 1 corresponds to x1, ..., x16
for tier 3, because FS2 · FS3 = 4 · 4 = 16. The ratio between the temporal
solutions of tier k and k− 1 is denoted as rk. Notice that r3 and r2 both equal
4 in Figure 36.

50

Figure 36: Architecture SampleRNN

A tier can have multiple RNNs (for k ≥ 2). The RNNs output a hidden state
hkt based on hkt−1 and an input inpkt (see Equation 24). The input at the top
module inpKt solely depends on the input frame fKt . Whereas the input for the
intermediate modules (1 < k < K) depends on the corresponding input frame
fkt and the information it receives from the tier above it ck+1

t (see Equation 25).
Furthermore, the modules operating on different time scales means a module
first has to upsample the output before it can pass it downwards. Or in other
words, a module k (k ≥ 2) needs to match the time scale of the module below
it. The relating procedure is summarized in Equation 26.

ht = H(ht−1, inpt) (24)

inpt =

{
Wxf

k
t + ck+1

t 1 < k < K
fKt k = K

(25)

ck(t−1)∗r+j = Wjht, 1 ≤ k < K (26)

8.2.1 Tier 1

The module on the bottom of the architecture (k = 1) predicts the value for
the next time point xt+1. The estimated probabilities are based on the FS1

preceding samples and the vector c2t . Mehri et al. (2016) argue that the sequence
xt−FS1+1, ..., xt is easy to model by a simple memoryless model, because FS1 is
often small and correlations between nearby time points are easier to find. They,
therefore, implement a multilayer perceptron (MLP) in the first tier. Unlike the
subsequent tiers, which all contain RNNs. The architecture of the first tier is
given in Figure 37.

51

Figure 37: Architecture tier 1 SampleRNN

First, the previous FS1 time points pass through an embedding layer (see
Section 4.1.2) and a flatten layer to produce a 1-dimensional vector. After which
the output of tier 2 is added by Equation 25. The output passes through three
fully connected layer. The last of these three layers contains 4 = 256 neurons
to prepare the data for a final softmax layer (T = 1). Finally, the probabilities
{ŷct1+1 : 1 ≤ c ≤ 4} are calculated.

8.2.2 Input & output

Mehri et al. (2016) concluded that using 3 tiers is generally optimal. We, there-

fore, will use three tiers as well. Each chunk contains
∏3

i=2 FS
i + 8 · sr =∏3

i=2 FS
i + 128, 000 time points (see Section 7.2). For each chunk, we con-

sider a value xt+1 as target value if t + 1 >
∏3

i=2 FS
i. Tier 1 takes sequence

{xt−(FS1−1), ..., xt} as corresponding input, while f2t equals {xa, xa+1, ..., xa+(FS2−1)}
and a = (b t+1

r2 c − 1) · r2. Lastly, tier 3 considers {xb, xb+1, ..., xb+(
∏3

i=2 FSi−1)}
as input, where b = (ba+r2

r2r3 c − 1) · r2r3

8.2.3 GRU models

The type of RNNs we will use for SampleRNN are GRUs and were first intro-
duced by Cho et al. (2014). GRUs have similarities to LSTMs (see Section 4.1).
Both models use a unit with different gates and are known to limit the effect

52

Figure 38: Unrolled RNN

of the vanishing gradient problem. Moreover, GRUs are better suited to store
long-term information compared to standard RNNs.

The memory cell contains gates, namely: an update gate and a reset gate.
Intuitively, the update gate determines to what extent information should be
passed on and the reset gate to what extent information should be forgotten.
Their corresponding formulas are given in Equations 27 and 28, respectively.

zt = σ(Wzxt + Uzht−1 + bz) (27)

rt = σ(Wrxt + Urht−1 + bz) (28)

where xt describes the input at time point t, ht the output vector of the GRU
unit and bq the bias. In addition, Wq and Uq correspond to the weights of the
input and recurrent connections, respectively.

Next, the new memory content h
′

t is calculated using Equation 29. h
′

t uses
rt to store relevant information from the past.

h
′

t = tanh(Wxt + rt � ht−1) (29)

Finally, the output vector ht is determined by using the update gate (see
Equation 30).

ht = zt � ht−1 + (1− zt)� h
′

t (30)

Although LSTM and GRU have similar advantages and structure, Mehri et
al. (2016) state that SampleRNN performs slightly better when it uses GRUs.

8.2.4 Truncated Backpropagation Through Time

Backpropagation Through Time (BTT) is the algorithm that is generally used
to train RNNs. During training, an RNN is unrolled, where each time step
can be viewed as an additional layer within the network (see Figure 38). The
inputs are passed through the network to calculate a final output. An error is
computed and the weights are updated according to this error.

Mehri et al. (2016) state that training RNNs on long sequences can be a
computationally expensive task. Furthermore, RNNs can suffer from vanishing
gradients. In spite of this disadvantage, RNNs have proved to be powerful

53

Figure 39: Unrolled subsequences TBTT

models. Mehri et al. (2016) implement truncated backpropagation through time
(TBPTT) to speed up the training and limit the gradient of vanishing. During
this procedure, every sequence is split in N subsequences of length L. Each
subsequence calculates an output and the corresponding error, as shown in
Figure 39, and backpropagation is only applied to a subsequence.

8.2.5 Parameters set

Because of our lack of computational resources, we will not perform any param-
eter optimization for the SampleRNN model. Instead, we base our choices on
the authors (Mehri et al. (2016)) and others8 (who implemented SampleRNN)
their findings. The models will be trained using an Adam optimizer, using a
constant learning rate lr of 0.001. The errors are calculated using categorical
cross entropy (See Equation 10). Tier 2 and 3 will contain 2 GRUs. Addition-
ally, r2 = 16 and r3 = 4. Furthermore, FS2 = FS1 = 16 and FS3 = 4. The

8https://github.com/deepsound-project/samplernn-pytorch

54

output dimension of the embedding layer el in tier 1 will equal 256. All neural
networks in the architectures (the RNNs and the fully connected layers) contain
1024 neurons. Except for the last fully connected layer that prepares the cur-
rent output for the softmax layer and, therefore, uses 256 neurons. Lastly, the
length of the subsequences will be set to L = 1024 time points during TBTT.
This means tier 1, 2, and 3 use L = 1024, L

FS2 = 64 and L
FS2·FS3 = 16 frames

for each round, respectively. Lastly, the SampleRNN models instances will run
for 20 epochs.

55

9 Experiments

Next to the MIDI file models, we will would like to examine the capabilities
of the models related to WAV files in regards to producing music-resembling
audio. Since music taste is rather subjective, it will be a challenge to determine
what type of samples are generally preferred. In this section, we will highlight
the different tasks we will perform in order to provide an objective judgment.

9.1 Sampling music

The first step is the production of music samples. For each model, we will
generate a total of 10 music files of 10 seconds. 5 files are generated using
the techno test set, while the other 5 are generated using the classical test set.
Similar to the data preparation procedures (see Section 7), most of the code
related to sampling music was pre-written. The procedures, therefore, partly
depend on the programmers their preferences. It is for this reason that we
dedicate two different sections to the sampling of music: one for Wavenet and
one for SampleRNN.

9.1.1 Sampling using Wavenet

Comparable to our procedure in Section 5.1, we sample a vector v0 from a test
set as starting point. The constructed Wavenet model will, at this moment,
estimate probabilities using a softmax layer with T = 1.0. This results in
S vectors of length 256. However, we will only consider the last vector of
probabilities, because this is the only vector that gives information about a new
time point. After the vector {ŷct+1 : 1 ≤ c ≤ µ+ 1} is estimated, ŵ0 is sampled
accordingly. Here, ŵ0 stands for the integer representations of the quantized
values at time point t = 0. Hence, we need to transform this value to 16-bits.
µ-law quantization is reversed by using Equations 31 and 32. After which ŵ

′′

0

is saved in an output list.

ŵ
′

t = 2 · ŵt

µ
− 1 (31)

ŵ
′′

t = sign(ŵ
′

t) ·
1

µ
· ((1 + µ)|ŵ

′
t| − 1) (32)

Finally, we determine the values for v1. Every time we create a new input
vector, vl−1t+1 = vlt (for l = 2, ..., S) and vSt+1 equals the probabilities {ŷct+1 :
1 ≤ c ≤ µ + 1}. This process is repeated until we have 10 seconds of sounds,
equivalent to 160,000 iterations.

9.1.2 Sampling using SampleRNN

Unlike the previous sample procedures we discussed, SampleRNN uses 3 vectors
as input, each related to their own time clock. Which we refer to as vt1 , zt2 and

56

gt3 for tier 1, 2 and 3, respectively. t1, t2 and t3 represent the tier-dependent
time points (see Section 8.2). gt3 passes through the RNNs on the top module
to produce the output information c3(t3−1)∗r3+0, ..., c

3
(t3−1)∗r3+r3−1 (See Equa-

tion 26). Tier 2 uses the resulting information and zt2 to produce c2(t2−1)∗r2+0,

..., c2(t2−1)∗r2+r2−1 on its turn. A softmax layer (T = 1) considers vt1 and the

information of module 2 to produce {ŷct1+1 : 1 ≤ c ≤ 4} (see Section 8.2.1).
ŵt1 is sampled accordingly, but is still in its quantized form and needs to be
converted to 16-bits. The process of reversing linear quantization is given in
Equation 33. Finally, the resulting value ŵ

′

t1 is added to the current output list,
where −1 ≤ ŵ′

t1 ≤ 1 .

ŵ
′

t1 =
ŵt1
1
2 · 4

− 1 (33)

vt1 equals the set of previous values {xt1−(FS1−1), ..., xt1}. While zt2 equals
{xa, xa, ..., xa+(FS2−1)} and gt3 exists of {xb, xb+1, ..., xb+(

∏3
i=2 FSi−1)}. At the

end of every iteration, we set vl−1t1+1 = vlt1 (for l = 2, ..., FS1) and vFS1

t1+1 =

ŵ
′

t1 . zt2 is only updated after FS2 iterations of tier 1. The new frame zt2+1

considers the values {xa+FS2 , xa+FS2+1, ..., xa+2·FS2−1}. Similarly, gt3 is up-

dated after
∏3

i=2 FS
i iterations of tier 1, where gt3+1 equals {xb+∏3

i=2 FSi ,

xb+
∏3

i=2 FSi+1, ..., xb+2·
∏3

i=2 FS1−1}

9.2 Listening session II

The generated samples from Section 9.1 will be used to conduct two experiments.
Similar to the set-up described in Section 5.2, we will first see if we can draw
obvious conclusions ourselves. If this is not the case, we will gather a group
of volunteers to give their judgment about the audio files. In addition, we
will make pairs between two sets, where each set provides a counterpart. The
listeners will be asked which of the two files in the pair sounds more like music
or whether they have no preference. Ultimately, we will determine the overall
preferences towards one of the two sets. Comparisons between counterparts of
pairs are given by Equations 16 and 17. The preferences towards music sets are
determined by Equation 18. Finally, the volunteers will provide an overall ACR
score (see Section 5.2) for the two sets and a short explanation for this score.

Notice that we have 4 types of WAV files to our disposal and there are 5
files of each type. Wavenet and SampleRNN were both used to generate 10
sample. Both models used the techno test set to produce 5 samples and the
other 5 samples were produced using the techno test set. The first experiment
we will conduct relates to the sub-question: “Which state-of-the-art model is
more capable of learning temporal relationships based on waveforms and generate
music-resembling audio based on these relationships?”. The two sets consists of
the 10 samples produced by Wavenet and SampleRNN, respectively.

Furthermore, the second experiment we will conduct relates to the sub-
question:“Does the type of dataset influence the learning capabilities of models

57

in terms of capturing patterns in music and producing music-resembling audio
accordingly?”. The sets of music samples that are used consist of all 10 samples
that were generated using the techno and classical test set, respectively.

Finally, the results of both sets help us to answer the following sub-question
as well: “Do neural networks with lower loss values also produce more music-
resembling audio?”.

58

Figure 40: Wavenet’s training
results on classical music

Figure 41: Wavenet’s training
results on techno music

10 Results & Evaluation

This section highlights the results of the models related to the WAV files. First,
we will look at Wavenet and SampleRNN their ability to learn patterns in techno
and classical music. After judging their learning capabilities, we will analyze
the quality of their resulting music samples.

10.1 Results Wavenet

Figures 40 and 41 show the training developments of Wavenet for the classical
and techno dataset, respectively. Moreover, Table 2 summarizes the final losses
for the relevant training, validation and test sets. We can observe that Wavenet
is better capable of analyzing the classical music files. The training and valida-
tion losses of the classical dataset are already lower than the final losses of the
techno datasets after just one epoch. This means the classical music files are
better suitable for learning patterns that are more generalizable. Furthermore,
we can observe that early stopping terminates the training for both genres. The
model instance trained on techno music already stops after 41 epochs, while the
classical instance trains for 77 epochs. This further strengthens our notion of
Wavenet having more trouble learning techno music.

Table 2: Results Wavenet
training validation test

Classic 1.27 1.39 1.16
Techno 2.83 3.02 2.93

10.2 Results SampleRNN

In Figures 42 and 43, we can see the developments of the two SampleRNN
implementations. Figure 42 summarizes the losses of the instance trained on
classical music, while 43 summarizes the losses of techno instance. Furthermore,
the final losses of the related sets of audio files are shown in Table 3. Similarly

59

Figure 42: SampleRNN’s train-
ing results on classical music

Figure 43: SampleRNN’s train-
ing results on techno music

to Wavenet (see Table 2), we can observe that SampleRNN performs better
when analyzing classical music samples. This is because the final losses of the
training, validation and most importantly the test set are significantly lower.
Furthermore, we can see that SampleRNN can find generalizable patterns in
classical music for at least the first ten epochs. As its validation loss is decreasing
during this time. After 10 epochs, however, the classical music instance seems to
slightly overfit, as the validation loss is slowly increasing. The techno instance,
on the other hand, does not find any relevant pattern after the first epoch. We
can observe this by the fact the validation loss stays stable during training. In
addition, there seems to be some periodicity in the training loss, although the
related trend does not seem to increase nor decrease.

Table 3: Results SampleRNN
training validation test

Classic 0.45 0.54 0.60
Techno 1.54 1.88 2.32

10.3 Wavenet versus SampleRNN

By looking at Tables 2 and 3, we can compare the performances of Wavenet and
SampleRNN. For every subset (e.g., classical training set, classical validation set,
techno test set, etc.), SampleRNN has a lower loss. That means our Samplernn
instances are beter capable of finding patterns based on waveforms.

10.4 Listening session II

In this section, we will analyze the quality of the music samples produced by
the waveform-based models. As stated in Section 9.2, we have 4 different types
of WAV files to our disposal. We implemented two models, and two instances of
each model. The first instance was trained on classical music and the other one
techno music. Moreover, we have 5 files of 10 second of each kind. In the first
experiment, the 10 samples produced by Wavenet will be compared with the 10

60

samples produced by SampleRNN. Additionally, in the second experiment, we
compare samples based on the classical music set with the ones based on the
techno music set.

Before we gather volunteers, we first compare the related audio file sets of
both experiments. After listening to the music samples, we conclude that none
of the four sets contain audio that even slightly resembles music. The files
generally sound noisy and random. We, therefore, decide not to proceed with
the two listening experiments, as we do not expect them to provide us valuable
insights.

61

11 Conclusion & Discussion

In order to answer our main research question “What is the current state of
deep neural networks in modelling and generating music-resembling audio?”, we
have stated four sub-questions (see Section 1). In this section, we will answer
the sub-questions one by one and highlight the limitations and shortcomings of
our research.

The first sub-question relates to the analyses of notes and tempo and is
stated as: “Are deep neural networks capable of learning temporal relationships
based on notes and tempo and generate music-resembling audio based on these
relationships?”. If we look at the Figures 9, 10 and 11, we can see that all MIDI
NNs have decreasing validation losses for dozens of epochs. Hence, they are able
to detect generalizable temporal relationships based on notes and tempo. The
strength of the related NNs, however, can vary per model. LSTM-I, for example,
performs worst in predicting offsetdiffs (see Figure 12), but best in categorizing
notes and chords (see Figure 13). Furthermore, by looking at Table 1, we can
see that all MIDI NNs have lower test losses than the Markov model. Thus,
MIDI NNs are able to detect more intricate patterns next to the most simple
ones. This can also be heard in the produced music. Music samples from MIDI
NNs tend to be preferred over samples of the Markov chain. Furthermore, MIDI
NNs have a ACR score of approximately 3 and this is higher than the ACR score
of the Markov chain (see Figure 20). Lastly, after translating the ACR score,
we conclude that the samples of the MIDI NNs are of resonable quality.

In addition, we will discuss SampleRNN and Wavenet their ability to analyze
raw audio waveforms. This will be achieved by answering the following sub-
question: “Which state-of-the-art model is more capable of learning temporal
relationships based on waveforms and generate music-resembling audio based
on these relationships?”. When we compare Tables 2 and 3, we can see that
SampleRNN has a lower loss for every sub-dataset. Thus, SampleRNN is better
capable of learning generalizable temporal relationships based on waveforms.
However, there is no significant difference in the perceived music quality. A
possible cause is SampleRNN’s losses not being low enough.

Both state-of-the-art models were trained on two datasets, namely: a classi-
cal one and a techno one. The third sub-question relates to the comparison of the
use of the two datasets and is, therefore, stated as: “Does the type of dataset
influence the learning capabilities of models in terms of capturing patterns in
music and producing music-resembling audio accordingly?”. If we compare the
losses of the classical and techno datasets per model individually (Tables 2
and 3), we can see that all techno losses are significantly higher. This means
that the models are less capable of finding generalizable patterns in the techno
dataset. Thus, the type of dataset does influence a model’s learning capabilities
significantly. However, there does not seem to be a significant difference in the
perceived quality of the music samples. Again, this is possibly caused by the
classical losses not being low enough.

The last sub-question of our research is “Do neural networks with lower

62

loss values also produce more music-resembling audio?”. This seems the case
when comparing the MIDI NNs with the Markov chain. However, there are a
number of findings that contradict this notion. Firstly, we proved that LSTM-II
produces music samples of less quality compared to LSTM-I and CNN, although
its losses were lower. Secondly, we saw that there is no significant difference
between the quality of the audio files of SampleRNN and Wavenet. Finally,
although the techno dataset is harder to analyze, there is no noticable difference
in the produced music samples compared to produced classical samples.

However, a possible reason of us not finding a relationship between losses
and music quality could lie in the choices we made. During the comparison of
the MIDI NNs, we used a loss function that was the average of the losses of
two features: notes and chords and offsetdiffs. We assumed that minimizing
this function would lead to better music. However, Figures 26 and 27 indicate
that predicting notes and chords is more important than predicting offsetdiffs.
To examine their individual importance more extensively, one can perform ex-
periments where music is produced using different weights for the two losses of
the features. This way, one can be more certain of a relationship between lower
losses and higher musical quality.

Moreover, although we applied deep learning during our research and were
able to successfully constructs models with millions of parameters, we were
limited by our computer power. More efficient models or more computer power
could give us the possibility to examine NNs more extensively. We could, for
example, perform more extensive parameter optimization, implement deeper
models, run models for more epochs, among other things. Hence, this could
have possibly led to more insights or to the production of more qualitative music.
Van den Oord et al. (2016c), for example, concluded that using Wavenet with
a receptive field of several seconds is crucial for producing qualitative music,
which was not possible within our capacities.

In addition, during the listening session, the volunteers knew which sam-
ples belonged to a certain set. Although they did not know what the exact
differences were between samples from different sets, they could still have had
an unconscious biased towards a set. The biases of the volunteers could have
influenced the results of the listening session, although we did not examine this.

Lastly, we did not work with an independent expert on music theory. Some-
one with sufficient knowledge on the matter could have influenced our research
positively. During the listening sessions experiments, for example, we asked the
volunteers if the music sounded well according to them. However, the quality of
music is rather subjective and can, hence, differ per person. A domain expert
could judge to what extent a NN is capable of recognizing patterns that are in
line with music theory. Thus, he or she would be able to give more objective
judgments.

63

12 Future work

In this section, we will discuss possible extensions to our work. In particular,
we will highlight subjects we would have liked to investigate, but frankly did
not have the time or resources for.

Firstly, during the data preparation procedure for the MIDI NNs (see Section
3), we only considered music that was played on a piano. An extension to
our research, could be the analysis and production of MIDI files consisting of
multiple instruments. This could be established by extending the number of
features per time step from two to three by adding information about the type
of instrument.

Secondly, we saw that the type of dataset has influence on models learning
patterns in waveforms (see Tables 2 and 3). However, we have not investigated
what makes datasets more suitable for training. We, for example, do not know if
the classical dataset was easier to analyze because it only concerned one instru-
ment or because of the characteristics of classical music. An extension to our
research would, therefore, be the investigation of the suitability of instruments
and music genres for training. The resulting insights could lead to samples of
reasonable quality that are produced by waveform-based models.

Furthermore, we only used three models to analyze patterns based on notes
and tempo and two models to analyze waveforms. To gain more insight about
the current learning capabilities of NNs, one could implement more models.
This way, more conclusions can be made about what type of models performs
better in capturing relationship in music (e.g., RNNs versus CNNs).

As explained in Section 11, our lack of computational power prevented us
from increasing the complexity of our models. A possible extension to our
research is to use models similar to the ones we implemented, but with more
complexity. For example, by extending the number of convulational layers in
our CNN model (Section 4.2.2), or the depth of our Wavenet implementation
(Section 8.1). More complex or deeper model increase the learning capabilities
of models and could, therefore, lead to music of better quality.

64

References

[1] Boulanger. The Csound book: perspectives in software synthesis, sound
design, signal processing, and programming. 2000.

[2] Briot et al. Deep learning techniques for music generation-a survey. 2017.

[3] Campbell & Swinscow. Statistics at Square One. 2016.

[4] Cho et al. Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. 2014.

[5] Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling”. In: (2014).

[6] Dannenberg. Nyquist, a language for composition ands ound synthesis.
1997.

[7] Engel et al. “Nsyth”. In: (2017).

[8] Hadjeres & Pachet. Deepbach: a steerable model for bach chorales genera-
tion. 2016.

[9] He et al. Deep Residual Learning for Image Recognition. 2018.

[10] Hiller & Isaacson. Experimental music; composition with an electronic
computer. 1959.

[11] Hochreiter & Schmidhuber. “Long short-term memory”. In: (1997).

[12] Kaiser & Sutskever. Neural gpus learn algorithm. 2015.

[13] Kalchbrenner et al. Grid long short-term memory. 2015.

[14] Kingma & Ba. Adam: A method for stochastic optimization. 2014.

[15] LeCunn & Yann. LeNet-5 convolutional neural networks. 2013.

[16] Markov. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie
drug ot druga. 1906.

[17] McCartney. Supercollider: anew real time synthesis language. 1996.

[18] Mehri et al. “SampleRNN: An Unconditional End-to-End Neural Audio
Generation Model”. In: arXiv preprint arXiv:1612.07837 (2016).

[19] Mor et al. “A Universal Music Translation Network”. In: (2018).

[20] Ravanelli & Bengio. SPEAKER RECOGNITION FROM RAW WAVE-
FORM WITH SINCNET. 2018.

[21] Shapiro & Wilk. An analysis of variance test for normality (complete sam-
ples). 1965.

[22] Shuqi et al. “Music Style Transfer: A Position Paper”. In: (2018).

[23] Srivastava et al. Training very deep networks. 2015.

[24] Usman. Power Efficiency of Sign Test and Wilcoxon Signed Rank Test
Relative to T-Test. 2015.

65

[25] van den Oord et al. “Conditional Image Generation with PixelCNN De-
coders”. In: (2016b).

[26] van den Oord et al. “Pixel Recurrent Neural Networks”. In: (2016a).

[27] van den Oord et al. “WAVENET: A GENERATIVE MODEL FOR RAW
AUDIO”. In: (2016c).

[28] Yanchenko. Classical Music Composition Using Hidden Markov Models.
2017.

[29] Yu & Koltun. “Multi-scale context aggregation by dilated convolutions”.
In: (2016).

66

