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Preface

This thesis is written to conclude my master Business Analytics at the Vrije Universiteit Amsterdam.
Business Analytics is a multidisciplinary program, aimed at improving business processes by applying
a combination of methods based on mathematics, computer science, and business management. The
master’s degree is concluded with a six-month internship at a company. During my internship at Van
Amersfoort Racing, I had the opportunity to combine my passions for auto racing and data science in a
challenging graduation project.

One might think that it is surprising to conclude the master Business Analytics at a racing team. How-
ever, given my passion for Formula auto racing and my interest in applying statistics to sports data,
no other internship would be more fitting for me. My enthusiasm for Formula auto racing rapidly grew
after my first actual visit to a Formula 1 race, the 2017 Spanish Grand Prix. I was impressed by the
fast Formula 1 cars driving around the corners of the circuit de Catalunya. Formula 2 and Formula 3
races are often even more interesting to watch since young, talented drivers are competing with each
other to achieve their greatest dream: becoming a Formula 1 driver. Van Amersfoort Racing helps young
drivers build successful careers in auto racing but only for a few this dream will become true one day. My
graduation project was focused on finding ‘these few’, most talented, drivers. Also, I had the opportunity
to get a glimpse of how a Formula auto racing team operates and how dedicated and passionate the team
educates the young drivers.

I would like to thank the Van Amersfoort Racing team for giving me the opportunity to work on this
challenging graduation project. In particular, I would like to thank my VAR supervisors Rik Vernooij
and Peter van Leeuwen and my VU supervisor Sandjai Bhulai for the advice and guidance throughout
the graduation project.



Summary

The goal of this research is to support Van Amersfoort Racing in the driver selection process by providing
an objective method to select talented drivers. This method uses machine learning techniques to predict
the driver performance in the FIA F3 European Championship based on a driver’s career path, i.e.,
his/her performance in other relevant championships of single-seater auto racing and karting. Then,
rankings of potential F3 drivers are produced based on predicted driver performance rather than actual
championship results. Van Amersfoort Racing can use these rankings to decide which drivers are most
talented, and, thus, should be contracted for the next season. Based on this problem statement, we
formulated the following research question:

How accurately can we predict the performance in the FIA F3 European Championship based on a
driver’s career path?

We have used a machine approach to answer the above research question. First, we have collected data
containing race results from the FIA F3 European Championship, other relevant championships of single-
seater auto racing and kart championships (2008-2017). These data are then used to create features that
describe a driver’s career path to the FIA F3 European Championship. The machine learning models try
to learn the relationship between the features, the performance in other championships, and the driver
performance in the FIA F3 European Championship. Challenges of the machine learning task are the
large amount of missing values in the data set and the large number of features. We thus have chosen
machine learning models that can handle missing values and that facilitate the feature selection process.
These models are the regression tree, the random forest model, and the gradient boosting model. We
have split the data set in a training set (80%) and a test set (20%). The training set is used to train
the models and optimize the hyperparameters, while the test set is used to evaluate the performance.
Moreover, we evaluated the performance of the models on different test sets in a bootstrap procedure
to obtain a more reliable measure of the overall performance. The performance was measured using the
root-mean-square error (RMSE), Spearman’s rank correlation coefficient, and the normalized discounted
cumulative gain (nDCG). The results have shown that both the gradient boosting model and the random
forest model outperform the regression tree using any reasonable significance level, which was expected at
beforehand. Boosting and bagging techniques are namely known to improve the predictive performance
by combining a large number of regression trees. Finally, we concluded that the gradient boosting model
performed significantly better than the random forest model using a significance level of 0.1.

The gradient boosting model was chosen as the final model and used to analyze the importance of the
features. The features Team and Nationality are considered important by the gradient boosting model
for predicting the performance in the FIA F3 European Championship. Moreover, the performance dur-
ing previous seasons of the FIA F3 European Championship is important. Other championships that
are important are GP3 Series, British Formula 3 International Series, Eurocup Formula Renault 2.0,
British Formula Tree championship, Formula Renault 2.0 NEC, and CIK FIA European Championship
KF (karting). We also used the final model to rank the drivers of the FIA F3 European Championship
2018. This ranking was compared to the standings of the FIA F3 European Championship to analyze
the quality of the predictions.

We can conclude that this research provides a new approach for finding talented drivers in single-seater
auto racing. The machine learning model can support Van Amersfoort Racing in the driver selection
process by providing them with rankings based on driver performance. These rankings can help Van
Amersfoort Racing to find a new driver for the next season. We used quantitative as well as qualitative
measures to evaluate the performance of the machine learning models and to answer the research question.
The gradient boosting model performs best and seems to produce usable predictions. However, its
performance should be carefully evaluated in the future when it is used to find new drivers. The model
should be used as a supporting rather than a guiding tool and future predictions should be compared
with expert opinions.
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1 Introduction

1.1 About Van Amersfoort Racing

Van Amersfoort Racing is a Dutch racing team that was founded by Frits van Amersfoort in 1975. The
team competes in the FIA Formula 3 (F3) European Championship and the ADAC Formula 4 (F4)
Championship. Van Amersfoort Racing helps young drivers build successful careers in auto racing. The
drivers that join van Amersfoort are supported by a team of professional race engineers and driver coaches,
including Frits van Amersfoort himself. The company’s headquarters are located in Zeewolde and have
three in-house simulators with existing race tracks available. Van Amersfoort Racing educates the young
drivers by letting them practice their driving skills during simulator training as well as on the track during
the race weekends. Under supervision of race engineers, the young drivers not only learn how to drive
fast laps, but, more importantly, to understand the dynamics of the car. Their data is benchmarked to
data of the best racing drivers in order to understand how their driving can be improved. Over the years,
many successful drivers have been part of the van Amersfoort Racing team such as current Formula 1
(F1) drivers Max Verstappen and Charles Leclerc.

1.2 Research question

A challenge that is yearly faced by Van Amersfoort Racing is concerned with which drivers they should
contract for the next season. Contracting talented drivers is the key to success in F3 and F4 since driver
performance is often more important than car performance. However, it is not always straightforward to
decide which driver is most talented. Drivers cannot easily be compared because they compete in differ-
ent championships of single-seater auto racing or within the same championship but in different teams.
Championship results, such as finishing position and championship points scored, are thus influenced by
team effects as well as competition effects. Comparisons that are based on championship results but do
not take the team and competition effects into account are thus unfair comparisons in terms of driver
performance. However, most racing teams contract their drivers based on data about championship re-
sults and experts opinions, rather than on objective measures of driver performance.

The goal of this master thesis is to support Van Amersfoort Racing in the driver selection process by
providing an objective method to select talented drivers. This method uses machine learning techniques
to predict the driver performance in the FIA F3 European Championship based on a driver’s career path,
i.e., his/her performance in other relevant championships of single-seater auto racing and karting. Then,
rankings of potential F3 drivers are produced based on predicted driver performance rather than actual
championship results. Van Amersfoort Racing can use these rankings to decide which drivers are most
talented, and, thus, should be contracted for the next season.

Based on this problem statement, we can formulate the following research question:

How accurately can we predict the performance in the FIA F3 European Championship based on a
driver’s career path?

1.3 Research approach

We use a machine learning approach to answer the above research question. The structure of this thesis
follows the common structure of any other machine learning project, as shown in Figure 1.

The first step is to define and understand the problem from a business perspective. We already defined
the problem statement above and we formulated the research question accordingly. Another important
part of problem understanding is reviewing related problems and relevant literature. Section 2 provides
an overview of relevant literature in the field of ranking athletes based on certain performance measures.
In particular, methods that are used in the literature to rank F1 drivers are discussed. The second step is
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Figure 1: Research approach; common structure of a machine learning project.

to collect data that can be used to train the machine learning models. Since there is no ready-to-use data
set available, we have to collect our own data. Section 3 discusses how the data is collected, transformed,
and cleaned. These data can then be used to create features that describe a driver’s career path up to the
FIA F3 European Championship. These features contain the performance of the drivers in other relevant
championships of single-seater auto racing and karting. The feature engineering process is described in
Section 4. This section also presents the statistical model that is used to distinguish between driver
performance, team performance and competition effects. We use the results of the statistical model to
create features that describe the driver performance in certain championships and to create the response
variable, the driver performance in the FIA F3 European Championship. All features are analyzed on
their expected predictive power in Section 5. Now that we have a data set available for the machine
learning models to learn from, we have to choose models that are able to perform the machine learning
task at hand. These machine learning models will try to learn the relationship between the features, the
performance in other championships, and the driver performance in the FIA F3 European Championship.
The machine learnings task at hand is described in Section 6 as well as the theoretical background and
the implementation of the machine learning models. Each machine learning model relies on a certain
set of hyperparameters that needs to be tuned to improve the performance. The method that is used
for parameter tuning is also described in Section 6. The performance of the machine learning models
is evaluated in Section 7. The model that performs best is chosen as our final model. We use the final
model to analyze the importance of the features. Moreover, we provide predictions for unseen data by
pretending that we have to find 2018 drivers in the winter of 2017. The resulting ranking is compared with
the standings of the FIA F3 European Championship at this moment. Finally, the results are discussed
and conclusions are drawn in Section 8 and Section 9, respectively.
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2 Literature review

This section discusses some relevant literature that is available in the field of ranking athletes. We discuss
three methods that are proposed to rank F1 drivers and compare these. Finally, we will argue why these
methods do not provide an adequate answer to the research question and, thus, how this research will
attribute knowledge to the field of ranking drivers.

Many statistical models have been proposed in the literature to rank athletes in a variety of sports. Berry,
Reese, and Larkey (1999) addressed the problem of comparing abilities of players from different eras in
three professional sports: hockey, golf, and baseball. They compared players whose careers took place in
different eras using that some players in the data set had overlapping careers. Aitken (2004) analyzed
the relevance of outliers in such comparisons and stated that outliers indicate extraordinary athlete per-
formances. Other literature has focused on a particular area of sports such as basketball (P. Kvam &
Sokol, 2006; West, 2006; Brown & Sokol, 2010), football (West & Lamsal, 2008; Mease, 2003), cricket
(Davis, 2000), baseball (P. H. Kvam, 2011), and skiing (Glickman & Hennessy, 2015). All these sports
are organized in such a way that multiple teams or players compete against each other simultaneously in
one event or a series of events. The outcome of such an event is often a ranked order of the competitors.
Therefore, these studies often used similar methods to obtain athlete rankings including maximum like-
lihood ranking, (linear) regression techniques or Markov chains.

However, applying such methods to F1 or to auto racing sports, in general, is more complex. According
to Phillips (2014), this is caused by the unusual structure of the data, which include scoring finishes,
a variety of types of non-scoring finishes and non-finishes. Another complexity that is mentioned by
Phillips is that no straightforward performance metric exists to measure driver performance because the
performance is strongly influenced by team, car, and competition effects. As a result, finishing positions
or championship points scored are considered to be unreliable measures of driver performance.
Nevertheless, methods do exist that rank F1 drivers based on some performance metric. Anderson (2014)
used maximum likelihood ranking to rank drivers from the 2012 F1 season. Eichenberger, Stadelmann,
et al. (2009), Phillips (2014) and Bell, Smith, Sabel, and Jones (2016) tried to reveal the best F1 driver
of all-times by fitting (non-)linear regression models. These methods differ on the structure of the model
(fixed effects vs. random effects), on the performance metric that is used, on how non-finishes are handled
and on the variables that are included in the model. We will now discuss these methods in more detail.

According to Anderson (2014), rankings based on the number of championship points scored in a series
of races, also called point-based rankings, often fail to provide an accurate ranking of driver performance.
One reason is that drivers often compete in a different number of races so that the total number of cham-
pionship points scored by two different drivers cannot be compared. Second, the level of competition
varies per race and, third, the ranking is dependent on the number of championship points assigned to
each finishing position. For the latter, it is unclear which point scale would produce the ranking that most
accurately reflects the relative driver performance. Thus, one might say that point-based rankings are
dependent on a subjective points scale. Rankings based on the average number of championship points
per race can be used as an alternative to solve the problem that drivers compete in a different number
of races but the other two problems remain.
Anderson presents three alternative models that can be used to rank F1 drivers and overcome the short-
comings of point-based rankings. Two methods are based on paired-comparisons among the drivers and
can be estimated using common binary-choice regression methods. These paired-comparison models com-
pare each pair of drivers and quantify which driver outperforms the other based on the race results. The
other method is based on the rank-ordered logit model and computes the likelihood of a certain finishing
order. Drivers that do not finish are handled as if they did not participate in the race. According to
Anderson, it is unlikely that the models can correctly account for mechanical problems or crashes be-
cause of the underlying distributions of driver performance they assume. The models could be adjusted
to account for non-finishes such that the driver performance reflects that fact that a driver is more likely
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to crash or suffer from a mechanical failure. However, it is difficult to draw reliable conclusions about
the non-finishing probability based on the small number of events.
A disadvantage of these maximum likelihood methods is that they cannot quantify the influence of team
performance and the level of the competition on the performance measure. The assumption is made that
valid comparisons can be made between any two drivers based on the results of a race which is for auto
racing sports not true in general. Only considering paired-comparisons or the finishing order is insuf-
ficient to adequately determine the driver performance because the influence of team and competition
effects is neglected. The models of Eichenberg and Stadelmann, Phillips and Bell et al. do not have this
disadvantage because they provide estimates for team and competition effects.

Eichenberger et al. (2009) were the first to propose an objective method to rank all-time F1 drivers
by separating driver performance from car performance. They used a linear model to compute driver
performance estimates for each F1 driver based on a data set from the start of F1 racing in 1950 up
to 2006. The finishing position was chosen as dependent variable in the model and driver performance
was assumed to be constant over a driver’s career. The model includes driver effects and car-year effects
and contains control variables for the number of drivers finishing the race, technical dropouts, weather
conditions and the race distance. The model was thus specified as follows:

yit = αi + γs,i +Xβ + uit (1)

where

αi = dummy variable capturing performance of driver i,
γs,i = dummy variable representing car-year-specific effects,
X = matrix containing the other control variables,
β = coefficient corresponding to the matrix X, and
uit = error term.

Non-finishes are divided into ‘human dropouts’ and ‘technical dropouts’. ‘Human dropouts’ can, for
example, be caused by accidents, collisions or disqualification, while ‘technical dropouts’ are due to tech-
nical failures of the car. Eichenberg and Stadelmann control for technical dropouts in their model and
compute for human dropouts a hypothetical classification that is always worse than achieving a classi-
fication. Finally, they establish a world championship ranking based on the average driver performance
across a driver’s career.

Phillips (2014) used championship points instead of finishing positions as dependent variable in his model.
He argued that points are a more reliable metric than positions because of the following reasons. First,
the model becomes sensitive to bad results when the finishing position is used as dependent variable. For
example, a driver that finishes first several times and then finishes last (e.g., due to a technical failure)
may have a worse performance than a driver that consistently finishes third. Second, drivers that regularly
finish in high positions are penalized more by a non-finish than drivers that often finish on lower positions.
Third, drivers that often finish in high or low positions have less variability in finishing positions than
drivers that finish in the middle of the field. Phillips addresses this problem by accounting for nonlinear
changes in the performance metric (championship points) as a function of driver and team performance. A
disadvantage of using championship points instead of finishing position is that traditional points systems
cannot discriminate between non-scoring positions. This problem was addressed by Phillips by using
an extended points system that also assigns (fractional) points to non-scoring positions. Moreover, he
classified non-finishes as non-driver failures or driver-failures and removed all non-driver failures from the
analysis.
The model that is used by Phillips assumes that the performance variable yijk is a linear function of
driver, team, and competition effects on performance

yijk = αi + βj − δk + εijk, (2)
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where

αi = fixed effect representing driver performance,
βj = fixed effect representing team performance,
δk = fixed effect representing difficulty scoring in season k,

due to competition with other drivers, and
εijk = random effect representing variability in performance.

Using this model, driver and team contributions to performance as well as the effects of competition with
others were estimated and the underlying driver performances were revealed. The performance variable
yijk can be used to compute the average number of championship points scored by a driver. When the
performance variable is adjusted for the team and competition effects, one can compute an adjusted
average number of championship points solely based on driver performance. Finally, F1 drivers from
1950-2013 were ranked based on 1-year, 3-year, and 5-year peak performances.

The most recent attempt to rank F1 drivers was done by Bell et al. (2016). Bell et al. used multilevel
models or random-coefficient models to find rankings of all-time F1 drivers conditional on team per-
formance. Moreover, they tried to answer the question whether teams or drivers are more important
in F1. This is done by quantifying the influence of team and driver effects on the overall performance
and evaluating how these effects vary over time and under different racing conditions. The number of
championships points scored by drivers in a race is used as the response variable in a non-linear model
that partitions variance into team, team-year, and driver levels. The most important difference between
the method of Bell et al. (2016) and the methods of Eichenberger et al. (2009) and Phillips (2014) is
that they used multilevel models or random effects models rather than fixed effects models to represent
drivers and teams. Bell et al. argued that this multilevel structure of their model allows them to treat
non-finishes as non-scoring finishes, regardless of the cause. This is because the multilevel structure will
automatically assign team/car failures to team or team-year levels and driver failures to driver-levels.
Moreover, the multilevel model allows Bell et. al to include team levels as well as team-year levels to
model some relationship between team performance across different years while the other models assume
independent team performances for different years. Finally, another advantage of the multilevel model is
that data from all drivers and teams in history can be used while the other models were restricted to a
subset of the data. Eichenberger and Stadelmann only included F1 drivers with at least one championship
point, while Phillips only included drivers that finished at least 3 races in a year.

The multilevel model that is used by Bell et al. is the following

Rankit(Points)i = β0 + β1Ndriversi + β2CompiuDriver + vTeam + wTeamYear + ei, (3)

uDriver ∼ N(0, σ2
u),

vTeam ∼ N(0, σ2
v),

wTeamYear ∼ N(0, σ2
w),

where σ2
u, σ2

v , and σ2
w summarize the between-driver, between-team, and between-team-year variance re-

spectively, and σ2
e summarizes the within-race variance net of driver, team and team-year characteristics.

As can be seen in (3), the rankits of the championship points scored is used as the response variable.
Rankits of a data set are the expected values of the order statistics of a sample from the standard normal
distribution with the same size as the data. The variable Ndrivers is used to resolve the problem that
drivers that compete against fewer other drivers are assigned a higher performance because the average
points scored will be higher. This variable thus controls for the number of drivers in a given race. The
variable Comp is used to control for the competitiveness of the race. Also, the model is further extended
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to include other variables as year, weather and track type in the variance functions. Finally, the model
of Bell et al. provides a ranking of the best all-time F1 drivers.

The methods proposed by Eichenberger et al. (2009), Phillips (2014), and Bell et al. (2016) can be applied
to race results data from the FIA F3 European Championship and other championships of single-seater
auto racing to estimate driver performance by correcting for team and competition effects. This is due to
the structure of race results data from lower championships of single-seater auto racing being similar to
the structure of race results data from F1. However, any results obtained by these methods insufficiently
answer the research question stated in this research because most of the potential F3 drivers did not yet
compete in the FIA F3 European Championship. As a result, race results data from the FIA F3 Euro-
pean Championship are missing for most of the potential F3 drivers and cannot be used by the model to
estimate driver performance. This research uses machine learning methods to predict the performance
of a potential driver in the FIA F3 European Championship based on the performance in other relevant
championships of single-seater auto racing and karting. Potential F3 drivers are then ranked based on
their predicted performance in the FIA F3 European Championship rather than based on their actual
performance.
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3 Data

This section presents the data that is used in this research. First, we will discuss the data collection
process. The data should contain race results from the FIA F3 European Championship, other relevant
championships of single-seater auto racing and kart championships (2008-2017), such that we can recon-
struct the career path of (previous) F3 drivers. Second, we will discuss how the data are transformed
and cleaned before creating features for the machine learning models.

3.1 Data collection

The data are collected from open-source webpages such as Wikipedia and driverdb.com and consist of
race results from the FIA F3 European Championship, other relevant championships of single-seater auto
racing and kart championships (2008-2017). The championships that are used to collect data from are
chosen in consultation with Van Amersfoort Racing and can be found in the Appendix. Data about
race results in single-seater auto racing championships can be found on Wikipedia, while data about kart
championships are only available on driverdb.com. Figure 3 shows the race results data of the 2017 FIA
F3 European Championship as collected from Wikipedia.

Figure 2: Results that can
occur in auto racing data.

Data are collected from Wikipedia using the R package rvest (Wickham,
2016), which facilitates ‘harvesting’ or scraping the HTML or XML con-
tent from webpages. This package also contains functions for extracting
the content of an HTML table, which can be used to extract the con-
tent of the table shown in Figure 3. The rows of this table represent
the drivers that competed in the 2017 FIA F3 European Championship,
while the columns contain, for each driver, the position in the champi-
onship (Pos.), the results (finishing positions) achieved in each round of
the championship and the total number of championship points scored
(Points). The championship consisted of 10 rounds in 2017, where each
round again consists of 3 different races. The total number of cham-
pionship points is equal to the sum of the championship points that a
driver scored in each race based on his final position. However, as can
be seen in Figure 3, not all drivers participated in all 30 races and some
drivers retired from a race. The legend in Figure 2 shows the diversity of
non-scoring finishes and non-finishes that is characteristic of auto racing
data. The blue results represent non-scoring finishes, while the purple,
red, black and white results represent non-finishes. Non-scoring finishes
occur because only the first ten finishing positions are awarded with cham-
pionship points or because it concerns a (guest) driver that is ineligible
to score championship points. Non-finishes are for example caused by
driver retirements, disqualification, withdrawal or because the driver is
not able to appear at the start of the race due to mechanical problems.
The methods that we use to handle non-scoring finishes and non-finishes
will be discussed in Section 3.2.

Data about the driver-team combinations can also be collected from Wikipedia.com, as can be seen in
Figure 4. This figure shows the driver-team combinations of the 2017 FIA F3 European Championship.
As can be seen in the Rounds column, some drivers did not compete in all races or switched teams during
the season. For the FIA F3 European Championship, the chassis and engine of the car are also known
for each driver. The status indicates whether the driver was a guest driver, meaning that the driver is
ineligible for championships points, or a rookie driver, meaning that this is the driver’s first season in
the championship. Finally, the No. column contains a driver’s racing number, but this is not a driver’s
unique identifier because it can change from season to season.
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The driver-team data are used to extend the race results data with information describing in which team
each driver participated during which rounds of the championship. For example, David Beckmann was
racing for Van Amersfoort Racing during rounds 1-3 and for Motopark during rounds 4-10. Then this
information is added by creating one column for each team and one column for the corresponding rounds.
Four columns are thus added to the race results data because no driver participated in more than two
different teams during the 2017 FIA F3 European Championship.
This method requires that the driver-team data can easily be merged with the race results data based on
the driver’s name. However, this is not always the case in practice. During the merging process, many
inconsistencies in the spellings of driver names were encountered and most of these inconsistencies needed
to be solved manually. This difficulty should be taken into account in the future when additional data
are collected.

Kart championship data are collected from driverdb.com as these data are not available onWikipedia.com.
The data from driverdb.com are less detailed than the data from Wikipedia and contain championship
standings rather than race results. Collecting data from driverdb.com is a complicated process because
the content on this website is dynamically created via javascript and cannot be scraped using the rvest
package. We use another R package, splashr (Rudis, 2018), which can be used to scrape dynamic websites,
to collect the content from the championship standings tables on driverdb.com. These tables consist of
driver names, driver nationalities, the position in the championship, team names, engine, car, and tire
specifications and the number of championship points. However, data about the team names and engine,
car and tire specifications are often missing.

Figure 3: Race results data of the 2017 FIA F3 European Championship.
Source: https://en.wikipedia.org/wiki/2017_FIA_Formula_3_European_Championship
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Figure 4: Driver - team combinations of the 2017 FIA F3 European Championship.
Source: https://en.wikipedia.org/wiki/2017_FIA_Formula_3_European_Championship

3.2 Data preparation

The data as collected from Wikipedia and driverdb.com are transformed into a data set that contains
the race results of all drivers in all championships that we consider. Each row represents a driver’s race
result in a particular championship year. A description of the columns is given in Table 1.

Column Description
Driver The driver’s name.
Position The finishing position in the particular race.
Race An abbreviation of the name of the race. For example, ‘ZAN’ corresponds to a race

at the Zandvoort circuit. When multiple races were held on the same circuit, the
abbreviation also contains a number.

Team The name of the team the driver was racing for.
Championship The name of the championship in which the result was achieved.
Year The year (season) in which the result was achieved.

Table 1: Description of the columns of the race results data set.
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We can determine how many championship points a driver has scored in each race by using the so-called
points system. The points system describes how many championship points are assigned to each finishing
position. However, the points system differs per championship because the number of scoring drivers and,
as a result, the number of championship points assigned to a position differ per championship. Moreover,
some championships award the driver on pole position or the driver that drove the fastest lap with one
point. For example, the All-Japan Formula Three Championship assigns points to the top 6 drivers based
on a 10-7-5-3-2-1 points system and awards the pole position and the fastest lap with one extra point
each, while the Brasil F3 Championship assigns points to the top 8 drivers based on a 15-12-9-7-5-3-2-1
points system with no extra points for the pole position or the fastest lap.
We introduce a generic points system based on the points system that is used in the FIA F3 European
Championship. This system assigns points to the top 10 drivers as 25-18-15-12-10-8-6-4-2-1. Additionally,
we adapt the fractional points system as introduced by Phillips (2014). Finishing positions below 10th
place are awarded with fractional points, computed using the formula

number of points pth position = ap−10. (4)

We choose a =
(

1
25

) 1
9 to reflect the change from 25 points for first place to 1 points for tenth place in the

points calculation. Table 2 contains the adjusted points system.

Position Points
1 25 points
2 18 points
3 15 points
4 12 points
5 10 points
6 8 points
7 6 points
8 4 points
9 2 points
10 1 point

p > 10 ap−10 points, where a =
(

1
25

) 1
9

Table 2: Adjusted points system.

This adjusted points system can only be used for scoring and non-scoring finishes but we also have to
handle the variety of non-finishes that can occur. We do not distinguish between non-finishes caused by a
driver or a car failure because the data set does not contain information about the cause of a retirement.
All non-finishes are treated as if the driver did not compete in that race and assigned zero championship
points. In a certain sense, we thus adopt the way in which Bell et al. (2016) handle non-finishes.

We aggregate the race results to obtain a new data set that summarizes the race results for each driver
- team combination in each season, as illustrated in Figure 5. This data set contains variables that
describe the distribution of championship points and finishing positions for each combination of driver,
team, championship, and year. Table 3 gives an overview of the variables that are included in this
data set. These variables will be used to create the general performance features that describe the
performance during a driver’s career path to F3. For the karting championships, we cannot define variables
that describe the distribution of the championship points or the finishing positions since we only have
championship standings rather than race results data. Table 4 gives an overview of the variables that are
used for kart championships.
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Figure 5: Transformation of the race results data set; all race results of a driver-team combination in a
certain season of a championship are aggregated.
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Variable Description
Driver The driver’s name.
Team The name of the team the driver was racing for.
Championship The name of the championship in which the race results were achieved.
Year The year (season) in which the race results were achieved.
Champ.position Position in the driver championship.
Mean.points Mean of the number of championship points scored by the driver.
Mean.position Mean of the driver’s finishing positions.
Sd.position Standard deviation of the driver’s finishing positions.
Median.points Median of the number of championship points scored by the driver.
Median.position Median of the driver’s finishing positions.
Quantile25.points 25% quantile of the number of championship points scored by the driver.
Quantile75.points 75% quantile of the number of championship points scored by the driver.
Quantile25.position 25% quantile of the driver’s finishing positions.
Quantile75.position 75% quantile of the driver’s finishing positions.
Min.points Minimum of the number of championship points scored by the driver.
Min.position Minimum of the driver’s finishing positions.
Max.points Maximum of the number of championship points scored by the driver.
Max.position Maximum of the driver’s finishing positions.
Perc.races Percentage of races participated by the driver.
Perc.finished Percentage of races finished by the driver.
First.places Percentage of first places.
Podium.places Percentage of podium places.
Toptwentypercent Percentage of finishes in best 20 % positions (rounded above).
Topthirtypercent Percentage of finishes in best 30 % positions (rounded above).
Topfourtypercent Percentage of finishes in best 40 % positions (rounded above).
Frac.points Fraction of the number of points scored by the champion.
Mean.rel.position Mean of the relative position with respect to the best teammate.
Rel.points Difference between the fraction of the championship points achieved by the

driver and his/her best teammate.
Count A driver’s xth season in that championship.

Table 3: Performance variables single-seater auto racing championships.

Variable Description
Driver The driver’s name.
Team The name of the team the driver was racing for.
Championship The name of the championship in which the race results were achieved.
Year The year (season) in which the race results were achieved.
Champ.points Mean of the number of championship points scored by the driver.
Champ.position The driver’s championship position.
Frac.points Fraction of the number of points scored by the champion.
Count A driver’s xth season in that championship.
Rel.points Difference between the fraction of the championship points achieved by the driver

and his/her best teammate.

Table 4: Performance variables kart championships.
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We now discuss how the mean relative position (mean.rel.position) and the relative points (rel.points)
are computed. The other variables are straightforward to compute.

Mean relative position (mean.rel.position)
The mean relative position can be used to describe how good a driver performs relative to his/her team-
mate(s). This can be a good measure of driver performance as all drivers within a team have similar cars.
The relative position per race is computed by dividing the position of the driver by the position of the
best teammate. The best driver of the team receives thus a score of 1, while the other driver receives a
score bigger than 1 for which holds that the closer to 1 the better. When a driver and/or none of drivers
in the team finish the race, the relative position will be set to NA. The relative position is also set to
NA if the driver does not have any teammates because otherwise the driver unfairly receives the score
of 1 while he/she did not beat any teammates. The driver’s mean relative position can be computed by
taking the mean over the relative positions in all races during a season.

Relative points (rel.points)
The relative points is another measure that describes how good a driver performs relative to his/her
teammate based on the difference in championship points scored. The relative points are given by the
difference between the fraction of points (frac.points) scored by the driver and the fraction of points
scored by his/her best teammate. The relative points are set to NA if the driver does not have any
teammates.

3.3 Data cleaning

Finally, the race results data set is cleaned by removing inconsistencies in driver names and team names.
Most of these inconsistencies need to be solved manually, but computing the approximate distance be-
tween pairs of strings can speed up this process. The adist function in R is used to compute the approxi-
mate distance between each pair of driver names in the data set. The computed distance is a generalized
Levenshtein distance, giving the minimal possibly weighted number of insertions, deletions, and substi-
tutions needed to transform one string into another. Then, all pairs of driver names are retrieved that
have a Levenshtein distance no greater than three and inconsistencies are solved manually.
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4 Feature engineering

This section describes the feature engineering process. We create features that describe a driver’s perfor-
mance during his/her career in single-seater auto racing and karting. The race results data set is used to
create three different types of features:

1. General performance features
General performance features describe a driver’s performance during his/her career in single-seater
auto racing and karting but are not corrected for team and competition effects. These features can
be directly derived from the race results data and include statistics that describe the distribution
of finishing positions or championship points within a certain championship. Moreover, some of
the general performance features describe a driver’s performance relative to his teammate(s). All
performance variables from Table 3 are transformed into general performance features. We create
general performance features for each season of each championship that the driver has competed
in.

2. Driver performance features
Driver performance features also describe a driver’s performance during his/her career in single-
seater auto racing and karting. They are considered to be a more reliable measure of driver per-
formance than the general performance features as they are corrected for team and competition
effects. We estimate a non-linear model that can distinguish between driver performance, team
performance, and competition effects. The results of this model can be used to compute an ad-
justed points rate, that is, the mean number of championship points per race corrected for team
performance and competition effects. The adjusted points rate is then added to the data set as
driver performance feature. We create such a feature for each season of each championship that
the driver has competed in, provided that there are a sufficient number of observations available
for that particular championship to estimate the non-linear model. Section 4.3 describes in more
detail how the driver performance features are created.

3. Driver features
Driver features include some driver characteristics that we consider to be important for a driver’s
career in F3, such as age, experience (in single-seater auto racing and karting), nationality and
team.

We remove observations belonging to drivers that competed in less than 20% of the races because we
believe that these observations do not accurately reflect the driver performance in a season. The response
variable should describe the driver performance in the FIA F3 European Championship (2008-2017). We
choose the adjusted points rate in the FIA F3 European Championship (2008-2017) as the response vari-
able since we believe that this is a more reliable measure of driver performance than, for example, the
points rate itself. We will now discuss in more detail how the different types of features are created.

4.1 General performance features

General performance features describe the performance in relevant single-seater auto racing champi-
onships and karting championships, but do not distinguish between driver performance and team/car
performance. As a result, these features can be biased when they are used to measure driver perfor-
mance. For example, a driver that wins all races and has the best car is not necessarily the most talented
driver.

We use all performance variables from Table 3 to create the general performance features. When a driver
competed for multiple seasons in the same championship, we create general performance features for
each of these seasons. For example, Mick Schumacher competed for 2 seasons in the ADAC Formula 4
Championship. He ended 10th in 2015 and 2nd in 2016. Then we create the performance features for
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his first as well as his second season in the ADAC Formula 4 Championship. This is illustrated in Table
5 using the performance variable champ.position, which is Mick Schumacher’s position in the driver
championship. However, in the actual data set the same strategy is used for all general performance
features, which would result in 46 features describing Mick Schumacher’s performance in the ADAC
Formula 4 Championship over 2 seasons.

Driver (other features) ADAC F4 (1) ADAC F4 (2) Performance F3
Mick Schumacher . . . 10 2

Table 5: Mick Schumacher’s career path in the ADAC F4 championship represented in the machine
learning data set.

By doing this, we can distinguish a driver’s rookie season from other seasons in a certain championship.
In general, we can state that a driver performs worse in his rookie year compared to his second or third
year because then he/she is more experienced, which is also the case for Mick Schumacher in the ADAC
F4 Championship.

Most of the single-seater auto racing championships that we consider relevant for predicting the driver
performance in F3 are lower championships than the FIA F3 European Championship. That means
that these championships often occur in a young driver’s career path to F3. However, the GP3 Series
championship is similar to the FIA F3 European Championship and young drivers often choose between
the FIA F3 European Championship and the GP3 Series when they completed the lower championships.
It is even very likely that the FIA F3 European Championship and the GP3 Series are merged in 2019
to create one support series for F2 and F1.
Many drivers even compete in both the FIA F3 European Championship and the GP3 Series during
different seasons. When a driver competes in the GP3 Series after his career in the FIA F3 European
Championship it might be questionable whether these data could be added to a driver’s career path. How-
ever, we decided to add future performance in the GP3 Series to the career path and not to distinguish
between performance in the GP3 Series before and after competing in the FIA F3 European Champi-
onship. The most important argument is that we believe that the performance in the GP3 Series will a
good predictor for the performance in the FIA F3 European Championship. As a result, we expect the
explanatory power obtained by including future performance GP3 Series into the machine learning mod-
els to outweigh any inaccuracy that is caused by including future performance instead of past performance.

When a driver competed for multiple seasons in the FIA F3 European Championship, we can also use
data from previous seasons as features for the machine learning model. For example, Antonio Giovinazzi
competed for three seasons in the FIA F3 European Championship, as can be seen in Table 6.

Year Championship Result
2010 CIK FIA European Championship KF 18
2011 CIK FIA European Championship KF 5
2013 British Formula Three Championship 2
2013 FIA Formula 3 European Championship 17
2014 FIA Formula 3 European Championship 6
2015 FIA Formula 3 European Championship 2

Table 6: Antonio Giovinazzi’s career path up to the FIA F3 European Championship.

Table 7 illustrates how Antonio Giovinazzi’s F3 career is represented in the data set. In this example, we
describe the performance in a championship using the final position in the championship standings, as
opposed to the real data set where a variety of measures is used to describe driver performance. Also, for
simplicity, we use the position in the championship as response variable while we use the adjusted points
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rate in the real data set.
For each season that Antonio Giovinazzi has competed in the FIA F3 European Championship, a new
row is created in the data set. The first row corresponds to his first season in F3 and contains features
describing his performance in other relevant single-seater auto racing championships and karting cham-
pionships. The second row corresponds to his second season in F3 and uses the performance during the
first season as an additional feature. The third and last row corresponds to his most recent season in F3
and uses the performance during the previous two seasons as additional features.

Driver Year (other features) Position 1 Position 2 Position 3 Y
Antonio Giovinazzi 2013 . . . 17
Antonio Giovinazzi 2014 . . . 17 6
Antonio Giovinazzi 2015 . . . 17 6 2

Table 7: Antonio Giovinazzi’s career path in the FIA F3 European Championship represented in the
machine learning data set.

4.2 Driver features

Driver features include some driver characteristics that we consider to be important for a driver’s per-
formance in the FIA F3 European Championship. For example, one might expect that an older driver
will perform better because he/she is more experienced. The driver features include age, nationality, and
experience in single-seater auto racing and karting. Moreover, we include the team in which the driver
participated during a F3 season. Table 8 gives a description of each of these features.

Driver feature Description
team The driver’s team during that F3 season.
age The driver’s age during that F3 season.
nationality The driver’s nationality.
kart.experience Number of years experienced in karting (all relevant categories).
race.experience Number of years experienced in racing (all relevant categories).

Table 8: Driver features.

Note that we do not include the driver’s current age but his/her age at the time of the F3 season. A
driver’s age in a certain season is thus computed as the difference between his/her year of birth and
the year of the season. As a result, the age that we compute might differ one year from the actual age.
Also, we only include nationalities that occur five times or more in the data set, otherwise we set the
nationality to ‘other’. When computing the experience in single-seater auto racing and karting we only
consider the championships that occur in the data set. Other categories are not considered as relevant
experience.

4.3 Driver performance features

As stated before, finishing positions and number of championship points scored are considered as unre-
liable measures of driver performance because they are influenced by team, car and competition effects.
The general performance features are thus insufficient to describe a driver’s performance during his career
path. Therefore, we want to create features that describe the driver performance in a championship and
are not influenced by team, car and competition effects. The statistical model as proposed by (Phillips,
2014) can be used to obtain rankings based on driver performance for the FIA F3 European Champi-
onship and other relevant championships of single-seater auto racing. This method provides us with an
estimate of the driver performance and an adjusted average number of championship points scored solely
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based on driver performance. Both measures can be used as features in the machine learning model
to describe the performance along a driver’s career path. However, Phillip’s method cannot be applied
to the kart championships because results per race and data about the teams are missing for most of
the kart championships. Because of lack of data Phillip’s method can also not be applied to some of the
single-seater auto racing championships. We will now discuss the statistic model as proposed by (Phillips,
2014) in more detail, following Phillips’ discussion closely.

4.3.1 Statistical model

The statistical model describes the influence of driver performance, team performance, and competition
effects on the race results. We estimate the model for each single-seater auto racing championship l
separately to obtain driver performance estimates for each of these championships.

We define the following variables for each driver i in each team j in each season k of championship l:

sijkl = average scoring rate for driver i in team j in season k of championship l

=
total number of championship points

total number of races
yijkl = underlying performance for driver i in team j in season k of championship l

where i = 1, . . . , N with N the total number of drivers, j = 1, . . . , T with T the total number of teams
and k = 1, . . . ,K with K the total number of seasons. Note that a driver may compete for more than
one team in one season, with a different sijkl for each team.

We assume that the performance variable yijkl is predictive of average scoring rate sijkl. In particular,
we assume that sijkl is a sigmoidal function of yijkl

sijkl = S(yijkl) =
25

2

(
1 + erf(yijkl)

)
,

where S is a sigmoidal function and erf(x) = 2√
π

∫ x
0
e−t

2

dt is the standard error function. The sigmoidal
function is chosen to be ranging from 0 to 25 because the minimum number and maximum number of
points that can be scored in a race are equal to 0 and 25, respectively, according to the adjusted points
system.

For each sijkl, the value of yijkl can be computed by applying the inverse function

yijkl = S−1(sijkl) = erf−1

(
sijkl − 25

2
25
2

)
.

We assume that yijkl is a linear function of driver, team, and competition effects on performance

yijkl = αil +

(
1− 1

njl

)
βjl − δkl + εijkl, (5)

where

αil = fixed effect representing performance driver i in championship l,
njl = number of observations in championship l belonging to team j,

βjl = fixed effect representing performance team j in championship l,
δkl = fixed effect representing the difficulty of scoring points in season k of championship l

due to competition with other drivers ,
εijkl = random effect representing variability in performance.
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The model’s random effects, εijkl, are assumed to be independent normally distributed with mean zero
and variance σ2. For each driver i in each season k of championship l, we define a weighted predictor by
averaging across all teams j the driver participated in

yikl =

∑
j wijklyijkl∑
j wijkl

,

where wijkl is the number of races in which the driver has participated for that particular team.

We adjusted Phillip’s model by introducing a weight function 1 − 1
njl

before the coefficient βjl in (5).
Introducing this weight function influences the results in the following way. Teams that have more
observations in a certain championship will be assigned a higher weight than teams that have fewer ob-
servations. This is desirable since we consider a coefficient more reliable when it is estimated using more
data. Also, driver performance is often more important than team performance in championships lower
than F1. While the driver performance and team performance were equally weighted in Phillip’s model,
it is more convenient that team performance is less important than driver performance in our model.
Note that when njl →∞ driver performance and team performance are equally important. However, for
most of the teams, only a limited number of observations is present in the data set resulting in a weight of
the team coefficient smaller than 1 and a team coefficient that is less important than the driver coefficient.

4.3.2 Competition effects

Since there is only a limited number of championship points that can be earned in each race, competition
with other drivers makes it more difficult to score points. The level of competition is expected to vary
from season to season, depending on the number of other drivers and teams and their performance. The
effect of the level of competition is modeled by including the term δkl in (5).

We can estimate the form of δkl by considering the expected scoring rate of N drivers. We assume that
their performances γijl = αil + βjl are normally distributed with mean µ and standard deviation σ.
The expected total scoring rate for N drivers can be computed as

E(stot) = N E(sijkl)

= N

∫ ∞
−∞

S(y)p(y)dy

= N

∫ ∞
−∞

25

2
(1 + erf(y))

1

σ
√

2π
e

(y+δ−µ)2

2σ2 dy

=
25

2
N

[∫ ∞
−∞

1

σ
√

2π
e

(y+δ−µ)2

2σ2 dy +
1

σ
√

2π

∫ ∞
−∞

erf(y − δ − µ)e−
y2

2σ2 dy

]

=
25

2
N

1 + erf

(
(−δ + µ)

√
1

1 + 2σ2

) .
Then we can use the fact that the total scoring rate stot must be equal to the total number of points on
offer per races ptot. ptot can be computed as

ptot = 25 + 18 + 15 + 12 + 10 + 8 + 6 + 4 + 2 + 1 +
N∑

p=11

ap−10, with a =

(
1

25

)(1/9)
.

Rearranging the terms in (13) gives us an expression for the competition effect δ,

δ = µ−
√

1 + 2σ2 erf−1

(
Ptot − 25

2 N
25
2 N

)
.
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The competition function

δkl(µkl, σkl, Nkl) = µkl −
√

1 + 2σ2
kl erf−1

(
Ptot − 25

2 Nkl
25
2 Nkl

)
,

describes the level of competition of season k in championship l. The values of mkl, σkl, and Nkl are
computed by weighting each driver/team computation by wmnkl/Rkl, where wmnkl is the number of races
completed by that driver/team combination in season k of championship l and Rk is the total number of
races in season k of championship l. Thus, the parameters of the competition function can be computed
as

Nkl =
∑
m,n

Wmnkl

Rkl
,

µkl =
∑
m,n

wmnklθmnkl
RklNkl

, and

σ2
kl =

∑
m,n

wmnkl(θmnkl − µkl)2

RklNkl
.

4.3.3 Model fitting

The model’s random effects, εijk, are assumed to be independent and normally distributed with mean
zero and variance σ2. The model’s maximum likelihood is thus achieved by estimating the values of α̂il
and β̂jl that correspond to the least-squares fit for yikl to the data. That is, we want to minimize the
sum of squared errors given by

SSE(θ̂) =
n∑
i=1

(yijkl − ŷijkl)2

with respect to the parameter vector θ, which consists of the αil’s and βil’s. Here n represents the
total number of observations. The parameter vector θ is estimated using the nls.lm function from the
minpack.lm package in R (Elzhov, Mullen, Spiess, & Bolker, 2016). The nls.lm function provides an R
interface to the lmder and lmdif functions from the MINPACK library, for solving nonlinear least-squares
problems by a modification of the Levenberg Marquardt algorithm.

Drivers that score 0 points or 25 points in every race of a season cause potential problems for fitting,
since these scores theoretically correspond to yijkl → ∞ and yijkl → −∞, respectively. We avoid these
potential problems by conservatively estimating the scoring rate, i.e., by assuming that with enough
races, a driver would eventually stop scoring 0 or 25 points, respectively.

• When a driver scores 25 points in every race, we conservatively estimate the scoring rate by sup-
posing the existence of one additional race in which the driver finishes second (scored 18 points),
such that

yijkl =
25wijkl + 18

wijkl + 1
.

This method allows us to differentiate between drivers with perfect records by giving a higher
scoring rate to drivers who achieved perfect records over more races. This approach is justified by
noting that it rewards drivers for more statistically reliable perfect performances, e.g., 10 wins in
10 races is more impressive than one win in one race.

• When a driver scores 0 points in every race, we conservatively estimate the scoring rate by supposing
the existence of one additional race in which the driver finished the lowest position that any driver
finished in that season, such that

yijkl =
25wijkl + min.points

wijkl + 1
,
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where min.points is the number of championship points associated with the lowest finishing position
in that season. Again, we differentiate between ‘bad’ drivers because we give a lower scoring rate
to drivers that score no points over more races.

During the fitting process, it also appeared that the data from championships we consider are not as
suitable to fit this model to as F1 data. This is probably because of the following reasons:

• Phillips fits the model on a large data set using F1 race results data from 1950-2013, while we fit the
model for each championship separately on at most nine years of data. However, it is not desirable
to use more data because we need to reflect the common career path an F3 driver takes in the data.
We believe that data from before 2008 is not representative for this end.

• While teams often compete for a long period of time in F1, this is not necessarily the case for lower
championships. It is easier to step into a lower championship than it is to step into F1. Some teams
also compete in different championships and every year they choose again in which championships
they will compete.

• While drivers often compete for a long period of time in F1, this is definitely not the case for lower
championships. Lower championships are mostly used to educate young drivers, so drivers often
compete only for one or two seasons in the same championship.

These differences between F1 and other championships, such as F3, make it more difficult to estimate
Phillip’s model on our data set. Some team coefficients cannot be estimated in a reliable way because
of lack of observations. Therefore, observations of teams that only occur in combination with three or
fewer drivers are removed from the data set. When a team only occurs in combination with a small
number of unique drivers the model will be unable to distinguish the driver effect from the team effect
and, as a result, the driver and team coefficients will be incorrectly estimated. Also, observations of
teams that only compete in one season are removed from the data set because in that case there is also
not enough information available in the data to obtain reliable estimates of team performance. However,
even without these teams, the team coefficients can highly fluctuate from one to another, which makes
it harder to compute the adjusted points rates. To obtain usable adjusted points rates, we adjust the
weighted team coefficients by removing the ‘outliers’. We define an outlier as a team coefficient that
lies outside the range of 1.5 times the inter-quantile distance. These team coefficients are adjusted to
be equal to 25% quantile or 75% quantile depending on whether they are negative or positive outliers.
Finally, we apply a weighting function that assigns a score closer to the minimum score when there are
fewer observations available. This weighting function is given by minscore + (1 − αn)(score − minscore),
where α ∈ (0, 1). Since n is rather small, we choose a high α (α = 0.99) to reflect the difference in number
of observations in the team performances. Making these adjustments is not ideal because it affects the
estimated team performances but it is needed to obtain usable adjusted points rates.

4.3.4 Adjusted scoring rates

The estimated parameter values can be used to compute the underlying driver performances. The un-
derlying driver performance can be can be computed by correcting for team and competition effects

ỹijkl = yijkl − β̃jl + δ̂kl + β − δ,

where β̃jl represents the adjusted team coefficient. The coefficients β and δ are baselines for the team
and competition effects. Any baseline is arbitrary and will not affect the order of the rankings. Then
we can compute adjusted scoring rates for each driver i in each season k of championship l by taking a
weighted sum across all teams, j, for which they drove in that season,

s̃ikl = S

(∑
j wjl ỹijkl∑
j wjl

)
.
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The adjusted scoring rate represents the average number of championship points that the driver scored
in season k of championship l, purely based on driver performance. This gives us a more reliable measure
of driver performance than the actual scoring rate, because the adjusted scoring rate is adjusted for
team/car performance and competition effects.

4.3.5 Accuracy of the estimators

The accuracy of the estimated driver coefficients αil and estimated team coefficients βjl can be quantified
using a confidence interval. We can only construct confidence intervals for the original team coefficients
βjl and not for the adjusted team coefficients β̃jl, which we obtained by setting the outliers to the 25%
or 75% quantiles and using the smoothing function. Confidence intervals for the competition effects δkl
are not constructed, because the competition effects are a function of the parameters αil and βjl. Let
θ be the vector consisting of all driver coefficients αil and team coefficients βjl, where i = 1, . . . , N and
j = 1, . . . , T . The estimator of the covariance matrix of θ̂ is given by

Ĉov(θ̂) = σ̂2(V̂ T V̂ )−1

where V̂ is the Jacobian matrix evaluated at θ̂ and σ̂ is an estimate for the standard deviation of the
residuals eijkl. The matrix V̂ is computed numerically using the function nl.jacobian of R package nloptr
(Johnson, 2014). Moreover, σ̂2 is computed by

σ̂2 =
RTR

n− p
,

where R is the vector consisting of the residuals êijkl, n is the total number of observations and p is the
number of estimated parameters. Note that here p is equal to the number of drivers N plus the number
of teams T . An approximate (1− α)100 % confidence interval for the θm, m = 1, . . . , p, is defined as

θ̂j ± t(n−p);(1−α/2)σ̂

√
((V̂ T V̂ )−1)mm.

The inverse of the matrix (V̂ T V̂ ) is computed numerically using the function ginv from the R package
MASS (Venables & Ripley, 2002), which computes the Moore-Penrose generalized inverse of a matrix.
The Moore-Penrose generalized inverse of a matrix is a pseudoinverse A+ of a matrix A. We compute
the pseudoinverse of (V̂ T V̂ ) to deal with the problem that this matrix is non-identifiable for most of the
championships.

4.3.6 Results

Confidential

4.3.7 Creating the features

The results of the statistical model are used in the machine learning models in two ways, as feature and
as response variable. We include the adjusted points rate in other relevant championship of single-seater
auto racing as driver performance features in the data set. When a driver competed for multiple seasons
in the same championship, we create driver performance features for each of these seasons separately.
The adjusted points rate in the FIA F3 European Championship is used as response variable in the
machine learning model. When a driver competed for multiple seasons in the FIA F3 European Champi-
onship, we create an observation for each of these seasons along with the corresponding adjusted points
rate, as discussed in Section 4.1. However, the adjusted points rate could not be estimated for all F3
drivers because observations belonging to teams with not enough data were removed from the data set.
For these drivers, we use the mean number of championship points scored by the driver (mean.points)
as response variable. As stated before, we could not estimate the statistical model for all single-seater
auto racing championships because some championships do not have enough observations compared to
the number of parameters.
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5 Feature analysis

This section provides an exploratory data analysis of the data set containing the features for the machine
learning models. Based on this analysis we can select the features that are expected to have the highest
predictive power when included in the machine learning models.

5.1 Data set containing the features

The goal of this research is to predict the driver performance in the FIA F3 European Championship
based on a driver’s career path. The feature engineering process of Section 4 was focused on creating fea-
tures that describe a driver’s performance during his/her career in single-seater auto racing and karting.
This has resulted in a data set containing 268 observations of 982 features in total. Each observation
in the data set represents a driver’s performance during an F3 season and his/her performance in other
relevant championships of single-seater auto racing and karts. Drivers that competed for multiple seasons
in the FIA F3 European Championship have an observation for each of these seasons, as was explained
in Section 4. The data set contains data of 181 (previous) F3 drivers. Since we know the performance of
these drivers in the FIA F3 European Championship, the machine learning models can try to learn the
relationship between the performance in the FIA F3 European Championship and the performance in
the past. Then we can predict the performance of potential F3 drivers, i.e., drivers that already compete
in F3 and drivers of other relevant championships, in the FIA F3 European Championship.

We consider all F3 drivers from 2008-2017 that competed in at least 20% of the races. The number
of competing drivers and teams differ per season, as can be seen in Figure 9. Note that the FIA F3
European Championship was called the Formula 3 Euro Series from 2008-2011.

Championship Year # Drivers # Teams
Formula 3 Euro Series 2008 33 11
Formula 3 Euro Series 2009 33 10
Formula 3 Euro Series 2010 16 6
Formula 3 Euro Series 2011 15 8
FIA Formula 3 European Championship 2012 28 11
FIA Formula 3 European Championship 2013 33 12
FIA Formula 3 European Championship 2014 29 10
FIA Formula 3 European Championship 2015 35 10
FIA Formula 3 European Championship 2016 24 7
FIA Formula 3 European Championship 2017 22 5

Table 9: Number of drivers and teams per season.

5.2 Data analysis

We now provide an exploratory data analysis of the data set containing the features for the machine learn-
ing models. This exploratory data analysis consists of a descriptive analysis and computing correlations
between the features and the response variable.

5.2.1 Descriptive analysis

Drivers can follow very different career paths before they end up in the FIA F3 European Championship.
For example, Max Verstappen stepped into the FIA F3 European Championship right after his career in
karts, while others first competed in other single-seater auto racing championships. As a result, the data
points are unequally distributed over the different championships, as can be seen in Table 10. This table

22



shows the percentage of non-missing observations for each championship per season. From this table
we can conclude that most drivers have competed in GP3 Series, Eurocup Formula Renault 2.0, British
Formula 3 International Series, British Formula Three Championship and Formula Renault 2.0 NEC
before stepping into the FIA F3 European Championship. Moreover, we have a relatively large number
of data points from previous seasons in the FIA F3 European Championship. The CIK FIA European
Championship KF and CIK FIA World Championship KF are the most important kart championships
according to Table 10. Finally, we can conclude that the data set contains a large number of missing
values, which is caused by the fact that not all drivers have competed in all different championships.
The heterogeneous distribution of missing values among the variables as depicted in Table 10 is one of
the biggest challenges of this data set. We choose not to impute the missing values with an imputation
method because then the majority of the data set would consist of imputed data. Instead, we choose
machine learning models that can handle missing values in the training data. These machine learning
models along with the methods that they use to handle missing values will be discussed in Section 6.

Championship Season 1 Season 2 Season 3 Season 4
FIA F3 European Championship 32.46 7.46 1.49 0.75
GP3 Series 27.24 8.58 0.75
Eurocup Formula Renault 2.0 19.78 7.09 1.12
British Formula 3 International Series 18.66 2.99
British Formula Three Championship 17.54 1.49
Formula Renault 2.0 NEC 14.93 6.34
CIK FIA European Championship KF 12.31 3.36 0.37
CIK FIA World Championship KF 7.84 0.37
European F3 Open Championship 5.60 1.12
Italian F4 Championship 5.22 0.37
ADAC Formula 4 4.85 0.75
BRDC Formula 4 Championship 3.73 0.37
Euro Formula Open 3.73 1.12
Formula Renault 2.0 WEC 3.36
All Japan Formula Three Championship 2.61 0.75 0.37
CIK FIA World Championship KZ 1.87
Formula 3 Brasil 1.49 0.75
MSA Formula Championship 1.12
BRDC British Formula 3 Championship 0.75
CIK FIA European Championship KZ 0.75
F4 British Championship 0.75
F4 Japanese Championship 0.75
WSK Euro Series KZ1 0.75
SMP F4 Championship 0.37

Table 10: Percentage of non-missing values per season for each championship.

We now look at the career path of the past F3 champions in our data set, to give the reader some intuition
on how such a career path might look like. Table 11 presents all F3 champions from 2008-2017 along with
the relevant championships from their career path up to the season that they won the FIA F3 European
Championship. This table shows that many past F3 champions already had some experience in the FIA
F3 European Championship before winning this championship. Moreover, most champions competed in
a Formula Renault championship, the British Formula 3 International Series and/or the British Formula
Three Championship. We can thus conclude, based on Tables 10 and 11, that the past performance in
those championships is expected to have high predictive power in the machine learning models.
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Champion Year Career path
Lando Norris 2017 Karting

ADAC Formula 4 (2015)
Italian F4 Championship (2015)
MSA Formula Championship (2015)
BRDC British Formula 3 Championship (2016)
Eurocup Formula Renault 2.0 (2016)
Formula Renault 2.0 NEC (2016)

Lance Stroll 2016 Karting
Italian F4 Championship (2014)
FIA F3 European Championship (2015)

Felix Rosenqvist 2015 FIA F3 European Championship (2011)
British Formula 3 International Series (2012)
FIA F3 European Championship (2012)
FIA F3 European Championship (2013)
FIA F3 European Championship (2014)

Esteban Ocon 2014 Eurocup Formula Renault 2.0 (2012)
Eurocup Formula Renault 2.0 (2013)
Formula Renault 2.0 NEC (2013)
GP3 Series (2015)

Rafaelle Marciello 2013 British Formula 3 International Series (2012)
FIA F3 European Championship (2012)

Daniel Juncadella 2012 FIA F3 European Championship (2010)
GP3 Series (2010)
FIA F3 European Championship (2011)
British Formula 3 International Series (2012)

Roberto Merhi 2011 Formula Renault 2.0 WEC (2008)
FIA F3 European Championship (2009)
FIA F3 European Championship (2010)
GP3 Series (2010)

Edoardo Mortara 2010 FIA F3 European Championship (2008)
Jules Bianchi 2009 FIA F3 European Championship (2008)

British Formula Three Championship (2009)
Nico Hülkenberg 2008 -

Table 11: Career path of past F3 champions.

Besides the performance in relevant championships of single-seater auto racing and karting, the data set
also contains driver features that describe some characteristics of the F3 drivers. These driver features
include age, race experience, kart experience and nationality. Figure 6a shows a barplot of the age dis-
tribution of F3 drivers at the time that they competed in the FIA F3 European Championship. The
youngest driver was only 16 years old, while the oldest driver was 29 years old. Most F3 drivers were
around 20 years old. Figure 6b shows a barplot of the nationality distribution of the drivers in the data
set. From this plot we can conclude the most drivers were British, followed by German and French. We
do not expect nationality to have high predictive power in the machine learning model since we believe
that performance, age and experience are more important. However, some countries may have more
opportunities for a young driver to become experienced in karting and/or auto racing. Finally, Figure 6c
shows the teams the drivers were participating in. Most F3 drivers were participating in the Carlin team,
which is not surprising since Carlin has competed in almost all seasons of the FIA F3 European Champi-
onship from 2008-2017. We will investigate whether the team influences the performance in the FIA F3
European Championship in the remainder of this report. However, this feature cannot be included in the
final machine learning model since it is not known for new F3 drivers. This feature is also not expected
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to have high predictive power since the response variable is corrected for team and competition effects.

(a) Barplot of the age among the F3 drivers. (b) Barplot of the different nationalities among the
F3 drivers.

(c) Barplot of the teams in which the F3 drivers
participated.

5.2.2 Correlation analysis

We compute pairwise correlations between the features and the response variable to investigate which fea-
tures are most likely to have predictive power in the machine learning models. We compute the Pearson
correlation coefficient, which estimates linear correlation, as well as Spearman’s correlation coefficient,
which estimates both linear and non-linear correlation.

The Pearson correlation coefficient is a measure for linear correlation between two variables X and Y
and can be computed as

ρX,Y =
cov(X,Y )

σXσY
∈ [−1, 1].

Here cov(X,Y ) denotes the covariance between the variables X and Y and σX and σY denote the stan-
dard deviation of the variables X and Y , respectively. Its values lies between +1 and -1, where a value
close to 1 means that there exists strong positive linear correlation between X and Y , a value close to
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−1 means that there exists strong negative linear correlation between X and Y and, a value close to 0
means no linear correlation.

We also compute Spearman’s rank correlation coefficient which measures the rank correlation between
two variables X and Y , i.e., the statistical dependence between the ranks of X and Y . Spearman’s
correlation between two variables is equal to the Pearson correlation between the rank values of those
two variables. While Pearson’s correlation measures linear relationship, Spearman’s correlation assesses
monotonic relationships, both linear and non-linear. Let rgXi and rgYi be the ranks of the variable X and
Y , respectively. Spearman’s rank correlation coefficient is then computed as the Pearson rank correlation
coefficient between the rank variables:

rs = ρrgXirgYi =
cov(rgXi , rgYi)

σrgXiσrgYi
∈ [−1, 1].

The interpretation of Spearman’s rank correlation coefficient is similar to the interpretation of the Pear-
son correlation coefficient.

The Pearson and Spearman’s correlation coefficients cannot be computed for missing values. Therefore,
we only compute these coefficients for pairwise complete observations, i.e., observations that have no
missing values in both the feature and the response variable. Also, we only compute the Pearson and
Spearman’s correlation coefficients for features that have at least ten pairwise complete observations with
the response variable.

We expect the performance in previous seasons of the FIA F3 European Championship to be a good
predictor for the performance in the next season. Moreover, we expect the performance in GP3 Series
to be a good predictor for the performance in the FIA F3 European Championship, because these are
similar championships. Table 12 contains the Pearson and Spearman’s correlation coefficients computed
between some features corresponding to the FIA F3 European Championship and GP3 Series and the
response variable, respectively. Note that a strong negative correlation between any position feature
and the response variable is desirable because positions and championship points have an opposite scale,
i.e., the first position is awarded the most championship points. We can conclude that many of these
performance features have indeed a correlation with the response variable higher than 0.5 in absolute
value. However, we measured a relatively low correlation coefficient for the standard deviation of the
position. This feature is thus not expected to have high predictive power when it is included in the
machine learning models. Additional methods to measure the relevance of features of all championships
will be discussed in Section 7.

FIA European F3 GP3 Series
Feature Pearson Spearman Pearson Spearman
Adjusted points rate (season 1) 0.667 0.710 0.552 0.562
Adjusted points rate (season 2) 0.686 0.673 0.771 0.751
Points rate (season 1) 0.652 0.699 0.545 0.555
Points rate (season 2) 0.661 0.603 0.675 0.666
Position championship (season 1) -0.662 -0.720 -0.563 -0.591
Position championship (season 2) -0.581 -0.472 -0.439 -0.495
Mean position (season 1) -0.602 -0.656 -0.574 -0.578
Mean position (season 2) -0.621 -0.618 -0.633 -0.641
Standard deviation position (season 1) 0.217 0.272 0.013 0.056
Standard deviation position (season 2) 0.078 0.109 -0.093 -0.055

Table 12: Pearson and Spearman’s correlation coefficients computed between features corresponding to
the FIA F3 European Championship and GP3 Series and the response variable.
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One might expect that age and experience are good predictors for the performance in the FIA F3 Eu-
ropean Championship. We investigate this by computing the correlation coefficients between age, race
experience and kart experience and the response variable, respectively. The results are shown in Table 13.
From this table we can conclude that correlation coefficients are rather low. The correlation between age
and the response variable is close to 0, while race experience and kart experience show a slightly positive
correlation with the response variable. This can also be concluded from the scatter plots in Figure 7,
which do not show a clear linear relationship between the features age and experience and the response
variable, respectively. Based on these results, the features age and experience are not expected to have
high predictive power. However, it is possible that a more complicated relationship exists between these
features and the response variable that is not reflected in the correlation coefficients. Additional methods
to estimate feature importance are presented in Section 7.

Feature Pearson correlation Spearman correlation
Age -0.001 -0.035
Race experience 0.115 0.123
Kart experience 0.131 0.114

Table 13: Pearson and Spearman correlation coefficients computed between the (numerical) driver
features and the response variable.

Figure 7: Scatter plots of the features age, race experience and kart experience against the response
variable.
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6 Model description

This section describes the machine learning models that will be used to predict the driver performance in
the FIA F3 European Championship. First, we will give a formulation of the machine learning problem
at hand. Second, we will discuss how the hyperparameters of the machine learnings models are tuned.
Then, we will provide some theoretical background of each of the machine learning models as well as the
implementation in R. Finally, we will discuss how the machine learners models will be evaluated.

6.1 The machine learning task

The goal of this research is to predict the driver performance in the FIA F3 European Championship
based on a driver’s career path. The features that are used in this machine learning problem describe a
driver’s performance in other relevant single-seater auto racing championships and karting. As stated in
Section 4, we can distinguish three types of features: general performance features, driver performance
features and driver features. The response variable describes the driver performance in the FIA F3 Eu-
ropean Championship, quantified as the adjusted points rate. This is summarized in Table 14.

Response variable Y A driver’s adjusted points rate during a season in the FIA F3
European Championship.

Features X1, . . . , Xk General performance features
Driver performance features
Driver features

Table 14: Formulation of the machine learning problem at hand.

The machine learning problem can be formulated as a regression problem, since the response variable Y
is continuous. As a result, we consider machine learning models that are suitable to perform regression
tasks. The machine learning models should also be able to handle missing values because of the sparseness
of our data set. As already stated in Section 5, one of the challenges of the data set at hand is the large
amount of missing values. One method to solve the problem of missing values is to impute these missing
values with some imputation method. However, this is not desirable here because then we have to impute
the majority of the data points. We thus select machine learning models that have an intrinsic method
available to handle the missing values. Another challenge is the large number of features relative to the
number of observations. As a result, selecting the features that are expected to have to largest predictive
power can be a complex process. We would like to use machine learning algorithms that facilitate the
feature selection process. Regression trees, random forests, and gradient boosting models can be used
for regression problems, are able to handle missing values and facilitate in the feature selection process.
We will discuss some theoretical background of these models in sections 6.3, 6.4, and 6.5. Section 6.6
discusses how the performance of the machine learning models is evaluated. The best performing model
will be used to predict the performance of potential F3 drivers in the FIA F3 European Championship.
Based on these predictions, we can create a ranking of potential F3 drivers and recommend a talented
driver for next season.

6.2 Hyperparameter tuning

All three machine learnings models rely on a certain set of hyperparameters. These hyperparameters
cannot be learned by the machine learning models but should be specified in advance. The values of the
hyperparameters can affect the performance of the machine learning algorithm significantly, so finding
the ‘right’ values for the hyperparameters is important. This process is called (hyper)parameter tuning.
We use the R package mlrHyperopt (Richter, 2017) to tune the hyperparameters of the machine learning
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models. MlrHyperopt tries to simplify hyperparameter tuning of machine learning models by providing
suitable search spaces. The following is available for the most common machine learning methods:

• the set of hyperparameters that should be tuned,

• the range within these hyperparameters should be tuned (search space),

• the tuning method that should be used,

• the performance measure that should be used during the tuning process, and

• the resampling method that should be used during the tuning process.

The mlrHyperopt package uses the machine learning methods and tuning methods as implemented in
the mlr package. The mlr package (Bischl et al., 2016) provides an interface to the most common
classification and regression techniques used in machine learning. It provides the user with a machine
learning infrastructure that facilitates hyperparameter tuning, the feature selection process, pre- and
post-processing of data, and comparing the performance of different machine learnings models. However,
search spaces are not available in the package mlr, which makes parameter tuning using this package
rather difficult. This problem is solved by the mlrHyperopt package by offering a web service to share,
upload and download improved search spaces. Table 15 gives an overview of the control parameters that
should be specified in order to use the function hyperopt from themlrHyperopt package for hyperparameter
tuning. The value of these control parameters can be requested from the mlrHyperopt package for the
most common machine learning methods.

Control parameters Description
mlr.control Control object for search method. This object selects the optimization al-

gorithm for tuning. The tuning methods available are grid search, random
search and Bayesian optimization.

resampling The resampling method determines how the performance is obtained during
tuning. The resampling methods available are 5 or 10 fold cross-validation,
leave-one-out cross validation, repeated cross-validation, out-of-bag boostrap,
subsampling, holdout data set, growing window cross-validation, and fixed
window cross validation.

measures Performance measure(s) to evaluate. Default is the default measure for the
task.

par.config Defines a parameter configuration that defines the search range for the hy-
perparameter optimization.

Table 15: Hyperparameter tuning control.

We use the same resampling method, namely 5 fold cross validation, for all machine learning models.
The function hyperopt uses a heuristic that decides the tuning method.

• Grid search: 1 parameter, 2 mixed parameters.

• Random search: more than 2 mixed parameters.

• Bayesian Optimization with mlrMBO : all parameters numeric.

Since we have multiple parameters that are all numeric, Bayesian optimization withmlrMBO is used. The
function hyperopt uses the mean-square error as performance measure, which is the default for regression
tasks. The optimal hyperparameters for each machine model as determined by the function hyperopt will
be provided in Section 7.
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6.3 Regression trees

Decision trees are commonly used supervised learning algorithms that use a tree structure to predict the
response variable of observations in a data set. We can distinguish between two types of decision trees:
classification trees and regression trees. Classification trees can be used to predict a discrete response
variable. The nodes of the tree represent the class labels and the branches represent conjunctions of
features that result in those class labels. Predictions for future observations are made by using the most
common class label among the observations in a terminal node. Regression trees also consists of nodes
and branches, but they can be used to predict a continuous response variable. They use the average value
of the response variable of observations in a terminal node to predict future observations. Classification
And Regression Tree (CART) analysis is a term used to refer to both of the above procedures, first
introduced by Breiman, Friedman, Stone, and Olshen (1984).

6.3.1 Theoretical background

We will now focus on how to build a regression tree using the CART method. The regression tree is grown
using recursively binary splitting, which means that the data set is recursively split into two subgroups
based on a certain splitting criterion. The splitting criterion measures the error on the training data and
decides which variable minimizes this error and, thus, gives the best split. The regression tree uses the
sum of squared errors

∑
i(yi−ȳ)2 of the observations in a node as splitting criterion. The splitting process

is repeated until either the number of observations in the subgroups is less than a certain minimum or the
result cannot be further improved. The regression tree then averages the value of the response variable
of the observations in a terminal node in order to make predictions. Figure 8 gives an example of how
such a regression tree would look like when applied to our data set. As can be seen in this figure, the tree
is build by splitting the data set repeatedly in two subgroups. First, the tree splits on the performance
in the FIA F3 European Championship (first season) by looking at the average number of championship
points that a driver has scored. Observations of drivers that scored ten or less points on average are send
to the left branch of the tree, while observations of drivers that score more than ten points are send to the
right. Then the left branch splits on the performance in the Eurocup Formula Renault 2.0 championship,
measured by the number of wins, while the right branch splits on the performance in karts, measured by
the final position in the championship standing, and on the age variable.

Figure 8: Example of a regression tree.

The variables to split on as well as the split points are determined by the algorithm itself. When the
splitting process is completed, the algorithm makes predictions by averaging the value of the response
variable of observations in a terminal node.
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One important consideration when building a regression tree is how large we should grow the tree; a very
large tree might over fit the data, while a small tree might not capture the important structure of the
data. According to Friedman, Hastie, and Tibshirani (2001), the preferred strategy is to grow a large
tree, stopping the splitting process only when some minimum node size is reached, and then pruning
this large tree using cost-complexity pruning, which we will now discuss. This discussion is based on
T. M. Therneau, Atkinson, et al. (1997).

Suppose that we have built a complete tree T . This complete tree is likely to over fit the training data,
so we use cost-complexity pruning to prune the tree and obtain a model that can be generalized. Define
the cost-complexity function of tree T as

Cα(T ) = R(T ) + α|T | (6)

where |T | is the number of nodes in tree T and R(T ) a loss function calculated across these nodes equal
to the sum of squared errors for regression trees. The cost-complexity function incorporates a penalty
term into the loss function, to prevent the tree from growing to large and overfitting on the training data.
The complexity parameter α controls the trade-off between the size of the tree and the goodness of fit to
the training data. Large values of α result in smaller trees Tα, while smaller values of α result in larger
trees. As notation suggest, with α = 0 the solution is the full tree T0 and with α = ∞ the solution is
the tree with no splits. We define a subtree T ⊂ T0 to be any tree that can be obtained by pruning
T0, that is, collapsing any number of its internal nodes. The idea is to find, for each α, the subtree
Tα ⊆ T0 to minimize Cα(T ). For each α one can show that there is a unique smallest subtree Tα that
minimizes Cα(T ). We refer to Breiman et al. (1984) for a discussion on how the optimal value of α and
corresponding subtree Tα can be determined.
The R package rpart that we will use to build the regression tree uses cross-validation to determine the
optimal value of α. A cross validated estimate of the loss function is computed for a nested set of sub
trees; the final model is that sub tree with the lowest estimate of the loss function.

6.3.2 Implementation in R

The R package rpart (T. Therneau, Atkinson, & Ripley, 2015) uses recursive binary splitting to build
classification, regression and survival trees. It contains an implementation of most of the functionality
of the 1984 book by Breiman et al. The trees are built using a two-stage procedure. In the first stage
recursive binary splitting is used to build up the tree, while in the second stage the tree is pruned using
cost-complexity pruning, as discussed in the previous section.

The rpart package uses the ANOVA method for building the regression tree with corresponding splitting
criteria

SST− (SSL + SSR),

where SST =
∑
i(yi − ȳ)2 is the sum of squared errors of observations in a node, and SSR, SSL are the

sum of squared errors for the right and left son, respectively. The variable and split point that maximizes
the value SST − (SSL+ SSR) are chosen in each node.

The rpart package contains its own method to handle missing values in the data set by constructing so-
called surrogate variables. This method allows the algorithm to include any observation in the model with
values for at least one feature. To build up the tree, the algorithm computes the splitting criterion using
only the observations for which a feature is not missing. Then the algorithm chooses the best primary
feature and split point and construct a list of surrogate features and split points. The first surrogate is
the feature and corresponding split point that best imitates the split of the training data achieved by the
primary split. The second surrogate is the feature and corresponding split points that does this second
best, etc. When the primary feature is missing during training or predicting unseen data, the surrogate
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splits are used in order. Surrogate splits use the correlation between features to reduce the effect of
missing values in the data set. The higher the correlation between the feature that is missing and the
other features, the smaller the loss of information due to the missing value.

6.3.3 Hyperparameters

The rpart function allows us to specify several hyperparameters. Table 16 contains an overview of the
hyperparameters that can be optimized as well as the range that is used while tuning these parameters.

Description Range Default Tuned
min.split The minimum number of observations that must exist

in a node in order for a split to be attempted.
5 to 50 20 yes

min.bucket The minimum number of observations in any terminal
node.

5 to 50 7 yes

cp Complexity parameter. -10 to 0 -6.64 yes
maxsurrogate The maximum number of surrogate variables to retain

at each node.
- 5 no

usesurrogate How to use surrogates in the splitting process. - 2 no
xval Number of cross-validations. - 10 no
surrogatestyle Controls the selection of the best surrogate. - 0 no
maxdepth Set the maximum depth of any node of the final tree. 3 to 30 30 yes

Table 16: Parameters used by rpart.

The parameter cp can be used to control the value of the complexity parameter α. This parameter is
based on a scaled version of (6):

Rcp(T ) = R(T ) + cp |T |R(T1)

where T1 is the tree with no splits, |T | is the number of variables (splits) in a tree, and R represents
the loss function. For regression trees, the scaled cp can be interpreted as follows: if any split does not
increase the overall fit of the model by at least cp then that split is considered to be, a priori, not worth
pursuing. The algorithm does not split that branch further, which reduces the computational effort con-
siderably. The optimal value of cp is determined using cross-validation.

The parameters maxsurrogate, usesurrogate and surrogatestyle can be used to control how the algorithm
handles missing values. The parameter usesurrogate controls how to use surrogate variables in the splitting
process. We set this parameter equal to 2 which means that observations are sent in the majority direction
if all surrogates are missing. This is recommended by Breiman et al. (1984). The other options are that
the surrogate variables are not used at all (0) or that the observations are not sent further downwards
if all surrogates are missing (1). Finally, the parameter surrogatestyle controls the selection of the best
surrogate. If set to 0 (default) the algorithm uses the total number of correct classifications for a potential
surrogate variable, if set to 1 it uses the percentage correct, calculated over the non-missing values of the
surrogate. We set surrogatestyle to 0, which more severely penalizes covariates with a large number of
missing values.

6.3.4 Problems of trees

We now discuss some problem of trees that are mentioned in Friedman et al. (2001). The most important
problem of trees is their high variance: a small change in the data can result in very different splits. This
instability is caused by the hierarchical nature of the splitting process: an error in the top of the tree is
propagated down to all splits below. Another disadvantage is the lack of smoothness in the predictions.
This can result in many drivers having the same predicted performance which can make it difficult to
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produce sensible rankings. Finally, trees are known to have relatively low predictive power and generate
inaccurate results when they are used for predictive learning. Boosting and bagging techniques are known
to improve the predictive power by combining the predictions of a large number of regression trees. These
techniques are discussed in Section 6.4 and Section 6.5, respectively.

6.4 Random Forest

Random forests are ensemble learning methods for classification and regression tasks. Ensemble learning
methods combine multiple machine learnings models to obtain better predictive performance than could
be obtained with only one of the models. Two well-known ensemble methods are boosting and bootstrap
aggregating, also known as bagging. Boosting methods incrementally build an ensemble by training
each new model on the residuals of the previous models (regression) or on the misclassified training
examples (classification). Boosting is described in more detail in Section 6.5. Bagging methods weight
the predictions of multiple models equally in order to improve the prediction. Bagging tries to reduce the
variance of an estimated prediction function and seems to work especially well for high-variance, low-bias
procedures, such as decision trees. We will discuss bagging techniques, and, in particular, random forests
in more detail in the next section.

6.4.1 Theoretical background

Random forests are ensemble methods that use bagging techniques by combining a large number of ran-
dom decision trees. These decision trees are fitted on various subsamples of the training data that are
drawn with replacement in a bootstrap setting. For regression problems, the predictions of the different
decision trees are averaged to obtain a final prediction. This is illustrated in Figure 9.

Figure 9: The random forest model illustrated.
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Random forests use two important properties of decision trees, namely that they suffer from high variance
and, on the other hand, that they have low bias. Moreover, the trees in a random forest are identically
distributed, which means that the the expectation of an average of B trees is the same as the expectation
of only one tree. Thus, the bias of bagged trees is the same as that of the individual trees, but the
variance is reduced through random selection of the input variables. Specifically, when growing a tree on
a bootstrapped data set m ≤ p of the features are randomly selected as candidates for splitting. Reduc-
ing the number of features randomly sampled at candidates at each split m will reduce the correlation
between any pair of trees in the ensemble, and hence reduce the variance of the ensemble model.

After B trees are grown on a bootstrapped data set, the random forest predictor for regression is given
by

f̂Brf (x) =
1

B

B∑
b=1

T (x; Θb),

where T (x; Θb) represents a single tree in the random forest with parameter set Θb. This parameter set
consists of the features that the tree has chosen to use in the splitting process, the split points, and the
predictions of the terminal nodes.

6.4.2 Implementation in R

The package randomForestSRC (Ishwaran & Kogalur, 2017) implements Breiman’s random forest algo-
rithm (Breiman, 2001) for survival, classification and regression forests. The function rfsrc can be used
to grow a random forest using training data. The na.impute option of this function rfsrc imputes missing
data, both in the features and the response variable, using a modification of the missing data algorithm of
Ishwaran, Kogalur, Blackstone, Lauer, et al. (2008). The algorithms imputes missing values of a feature
by randomly drawn values from non-missing data of that feature before splitting. Because of the imputed
data, it is possible to assign data points to left and right nodes when the node is split on a feature with
missing data. However, the splitting criterion is only computed using non-missing data, not imputed
data. After a node split, the imputed data is replaced again by missing data and the process is repeated
until the terminal nodes are reached. Missing values in terminal nodes are imputed using non-missing
data from the terminal node. Categorical features are imputed by the mode, while numeric features are
imputed by the mean. Finally, the algorithm removes observations that have only missing features and
a missing response variable. Variables having all missing values are also removed.

6.4.3 Hyperparameters

The rfsrc function allows us to specify several hyperparameters. Table 17 contains an overview of the
hyperparmeters than can be optimized as well as the range that is used while tuning these parameters.

Description Range Default Tuned
ntree Number of trees in the forest. 100, 200, 300, 400, 500 - yes
mtry Number of variables randomly selected as

candidates for splitting a node.
1 to p p/3 yes

nodesize Forest average number of unique cases
(data points) in a terminal node.

1 to 10 - yes

nodedepth Maximum depth to which a tree should be
grown.

1 to 10 - yes

Table 17: Parameters used by rfsrc, where p is equal to the number of features.
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In general, the value of ntree, the number of trees in the forest, should not be set too small to ensure
that every observation is predicted at least a few times. On the other hand, the value of mtry should
not set too large because a small m increases the variance reduction. We have chosen the parameter
configuration ourselves, because mrlHyperopt has no search spaces available for the randomforestSRC
package. If search spaces for the randomforestSRC will be available in the future, the parameter tuning
may be improved.

6.5 Gradient boosting

Gradient boosting is a machine learning technique for regression and classification problems, which pro-
duces a prediction model in the form of an ensemble of weak learners, typically decision trees. A weak
learner is a learning algorithm whose predictive performance is only slightly better than random guessing.
As stated before, boosting methods for regression incrementally build an ensemble by training each new
model on the residuals of the previous models. This is illustrated in Figure 10. Next, predictions are
made by computing a weighted average of the regression trees, where observations that are more difficult
to predict are assigned more weight.
We will now discuss Friedman’s gradient boosting machine as the R package that we will use, gbm, closely
follows this implementation.

Figure 10: The gradient boosting model illustrated.
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6.5.1 Theoretical background

This section discusses some theoretical background of Friedman’s gradient boosting machine. We closely
follow the book of Friedman et al. (2001).

Consider a regression problem where we want to find a regression function f(x) that minimizes some loss
function L(f) on the training data

L(f) =
N∑
i=1

L(yi, f(xi)), (7)

where xi is the feature vector of observation i, yi is the value of the response variable of observation i,
and N is the number of observations. In a regression context, the loss function is generally given by the
squared error or the absolute error.

Boosting techniques fit an additive expansion in a set of elementary ‘basis’ functions to the training data.
Basis function expansions take the form

f(x) =
M∑
m=1

βmb(x; γm) (8)

where βm, m = 1, . . . ,M are the expansion coefficient, and b(x; γ) ∈ R are usually simple functions
characterized by a set of parameters γ. These simple functions are the individual prediction models, for
example the decision trees. For decision trees, γ parametrizes the features to split on and split points
at the internal nodes, and the predictions at the terminal nodes. These individual models are fit by
minimizing the loss function of (7) on the training data,

min
{βm,γm}M1

N∑
i=1

L

yi, M∑
m=1

βmb(xi; γm)

 . (9)

In case of the boosted tree model, we can write the function f(x) as the sum of M regression trees

fM (x) =

M∑
m=1

T (x,Θm)

where T (x,Θm) represents a regression tree with parameter set Θm consisting of the splitting features
and points. The idea of gradient boosting is to find the tree that maximally reduces

Θ̂m = arg min
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)),

given the current model fm−1 and its fit fm−1(xi). The tree T (xi; Θm) will be trained to minimize the
difference between the target function f(x) and the current prediction of the model by reconstructing
the residual. At each iteration the algorithm determines the direction, the gradient, in which it needs to
improve the fit to the data. Then a regression tree is fit to the components of the negative gradient, which
are referred to as generalized or pseudo residuals. Finally, the boosted model found so far is updated.

6.5.2 Implementation in R

The R package gbm (Ridgeway, 2017) implements Friedman’s Gradient Boosting Machine (Friedman,
2001), as discussed in the previous section. This package includes a variety of regression methods such
as regression methods for least squares, absolute loss, t-distribution loss, quantile regression, logistic,
multinomial logistic, and Poisson. We choose the distribution equal to ’Gaussian‘’ in order to use least
squares regression.
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6.5.3 Hyperparameters

The gbm function allows us to specify certain hyperparameters. Table 18 contains an overview of the
hyperparameters than can be optimized as well as the range that is used while tuning these parameters.
An important consideration when using the gbm package is which values the parameters n.trees and
shrinkage should have. The parameter n.trees represents the number of boosting iterations or the number
of trees to fit. Each iteration usually reduces the loss function on the training set, such that for n.trees
large enough this loss will be arbitrarily small. However, this can lead to overfitting which has a negative
influence on the out-of-sample predictive performance of the model. The shrinkage parameter is used
to scale the contribution of each tree by a certain factor when it is added to the current model. This
parameter can be used to control the learning rate of the boosting procedure. There exists a trade-off
between the parameters n.trees and shrinkage: smaller shrinkage values lead to larger n.trees values for
the same loss value on the training data. Empirically it has been shown that smaller shrinkage values
result in smaller test set errors. However, smaller shrinkage values will also result in higher computational
costs in both storage and CPU time.

Description Range Default Tuned
n.trees1 The total number of trees to fit. This is equiva-

lent to the number of iterations and the num-
ber of basis functions in the additive expan-
sion.

0 to 6.64 5.64 yes

interaction depth The maximum depth of variable interactions. 1 to 10 1 yes
n.minobsinnode Minimum number of observations in the trees

terminal nodes.
5 to 25 10 yes

shrinkage A shrinkage parameter applied to each tree in
the expansion, also known as the learning rate
or step size reduction.

0.001 to 0.6 0.001 yes

bag.fraction The fraction of the training set observations
randomly selected to propose the next tree in
the expansion.

- 0.5 no

cv.folds Number of cross-validation folds to perform. - 0 no

Table 18: Parameters used by gbm.

6.6 Model evaluation

We randomly split the data set into two parts: a training set (80%) and a test set (20%). The training
set is used to train the machine learning models and to tune the hyperparameters. We use the R package
mlrHyperopt to facilitate the hyperparameter tuning, as discussed in Section 6.2. The test set is used
to evaluate the performance of the machine learnings models. We use three evaluation metrics for this
purpose: the root-mean-square error (RMSE), Spearman’s correlation coefficient, and the normalized dis-
counted cumulative gain (nDCG). These evaluation metrics are discussed in Section 6.6.1, 6.6.2, and 6.6.3.

However, testing the performance on only one test set can result in an estimate of the performance that
is too optimistic or too pessimistic depending on the structure of that specific test set. We thus prefer
to evaluate the performance of the models on different test sets rather than only one test set. This is
achieved by splitting the data set repeatedly, say B times, in a training- and a test set using a bootstrap
procedure. Each time, the model is trained on the training set using the optimal hyperparameters, and the
performance is evaluated on the test set. This produces a sample of B values for each performance measure

1We assume the range and the default value of the n.trees parameter to be wrongly documented by the mlrHyperopt
package. The number of trees should be considerably large and the optimal values that were obtained by the tuning method
were out of the reported range.
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that can be used to construct bootstrap confidence intervals. Figure 11 summarizes the evaluation method
that is used in this research.

Figure 11: Evaluation method: the optimal hyperparameters as found by the mlrHyperopt package are
used to evaluate the machine learnings models in a bootstrap procedure.

6.6.1 Root-mean-square error

We evaluate the performance of the machine learning models by computing the root-mean-square error
(RMSE), which is a statistic that measures the difference between the predictions and the actual values
of the response variable. The root-mean-square error can be computed as

RMSE =

√√√√√ N∑
i=1

(ŷi − yi)

N
,

where ŷi is the prediction of the response variable of observation i, yi is the actual value of the response
variable of observation i, and N is the total number of observations.
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6.6.2 Spearman’s correlation coefficient

Spearman’s correlation coefficient computes the rank correlation between the predictions and the actual
values of the response variable. Let rgyi and rgŷi be the ranks of the values of the response variable and
the predictions, respectively. Then Spearman’s rank correlation coefficient is computed as the Pearson
correlation coefficient between the rank variables:

rs = ρrgyirgŷi =
cov(rgyi , rgŷi)

σrgyiσrgŷi
∈ [−1, 1].

6.6.3 Normalized discounted cumulative gain (nDCG)

The normalized discounted cumulative gain (nDCG) is a commonly used evaluation metric in the context
of information retrieval. It measures the effectiveness of web search engine algorithms or related applica-
tions. Web search engine algorithms are given a set of queries and are supposed to produce a ranking of
documents per query in order of relevance. In this context, the nDCG metric is computed by normalizing
the discounted cumulative gain (DCG) by the ideal discounted cumulative gain (IDCG) and averaging
this value over all queries. Thus, nDCGk can be computed by

nDCGk =
DCGk
IDCGk

,

where k is the maximum number of entities that can be recommended.
The discounted cumulative gain (DCG) is a measure of ranking quality. This metric uses a graded
relevance scale, which indicates how relevant a document is to the query. The DCG then measures the
usefulness or gain of a document based on its position in the result list. The gain is then accumulated
from the top of the result list to the bottom, with the gain of each result discounted at lower ranks.
Summarizing, the value of DCGk is computed as

DCGk =
k∑
i=1

2reli − 1

log2(i+ 1)
,

where reli represents the relevance grade assigned to the document on position i.
The IDCG is the maximum possible (ideal) DCG for a given set of queries, documents, and relevance
grades.

We can use the nDCG to measure the quality of the ranking that is produced by the machine learning
model. Note that the ranking of F3 drivers can be considered as one query, so averaging the nDCG over
all queries is not needed. First, we need to assign relevance grades to all observations. These relevance
grades are based on expert rules that are created in consultation with Van Amersfoort Racing. These
rules distinguish between ‘rookie’ drivers and ‘no rookie’ drivers. A driver is a ‘rookie’ driver when he/she
competes for the first season in the FIA F3 European Championship. A win is for example more impres-
sive in a driver’s rookie year than in this second or third year. The expert rules are based on the results
that a driver achieves in a certain season, as can be seen in Table Table 19. Note that a driver can be
assigned multiple relevance grades because a driver can correspond to multiple observations in the data
set if he competes for multiple season in the FIA F3 European Championship.

Rookie No rookie Reli
No more than 10% in highest 30% positions. No more than 20% in highest 30% positions. 1
More than 10% in highest 30% positions. More than 10% in highest 30% positions. 2
More than 10% podium places. More than one win. 3
One or more wins. More than three wins. 4

Table 19: Relevance grades according to the expert rules.
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After we assigned the relevance grades to the drivers based on these expert rules, an expert of Van
Amersfoort Racing has adjusted the grades that do not agree with his opinion. The resulting list of
relevance grades is used to compute the nDCG.

6.6.4 Bootstrap procedure

The performance of the machine learning models is evaluated using a bootstrap procedure. We split the
data 100 times in a training set (80%) and a test set (20%). Each time the machine learning models are
trained and the performance is evaluated on the test set. This procedure gives us a sample containing 100
values for each performance measure and for each machine learning model. The value of the performance
measures is then estimated by the sample mean.

Denote the true value of the performance measure by θ and the sample mean by T . We can use bootstrap
methods to express the accuracy of T . Consider the following bootstrap scheme

1. Simulate B = 1000 independent bootstrap samples X∗1 , ..., X∗n from the sample of the performance
measure.

2. Compute for each of the B bootstrap samples the sample mean, T ∗n = 1
n

∑n
i=1X

∗
i ; call the resulting

values T ∗n,1, ..., T ∗n,B .

The empirical distribution T ∗n,1, ..., T ∗n,B can be used to express the accuracy of T in two ways:

1. Use the empirical distribution T ∗n,1, ..., T ∗n,B to estimate the variance of T by computing the sample
variance.

2. Use the empirical distribution T ∗n,1, ..., T
∗
n,B to compute a bootstrap confidence interval. A basic

bootstrap interval can be computed using the formula

2T − θ̂∗([B(1−α)]), 2T − θ̂∗[Bα]

We use the R package boot to perform the bootstrap sampling and to calculate bootstrap confidence
intervals.
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7 Results

This section presents the results of this research. First, we provide the optimal hyperparameters of each
machine learning model as found using the package mlrHyperopt. Then, we evaluate the performance
of each model on a held-out test set. We also evaluate the performance of the models on different test
sets in a bootstrap fashion and express the accuracy of the estimators using a bootstrap estimator of the
standard deviation and by constructing bootstrap confidence intervals.

7.1 Hyperparameters

Table 20 contains the optimal hyperparameters of each machine learning model as determined by the
function hyperopt of themlrHyperopt package. We also provide the mean RMSE for each machine learning
model obtained during cross-validation. The optimal hyperparameters will be used to obtain the results
in Section 7.2.

Regression tree Random forest Gradient boosting
cp 0.0019 ntree 100 ntrees 202
maxdepth 8 mtry 192 shrinkage 0.0429
minbucket 8 nodesize 1 interaction.depth 1
minsplit 23 nodedepth 10 n.minobsinnode 9

nsplit 72
nimpute 1

mean RMSE 3.832 mean RMSE 3.710 mean RMSE 3.469

Table 20: Optimal hyperparameters determined using the MLHyperOpt package.

7.2 Model results

We will now evaluate the performance of the machine learning models using the performance measures
described in Section 6.6.1, 6.6.2, and 6.6.3.

Table 21 shows the performance of the machine learning models on a held-out test set. These results
show that the random forest model performs best on the held-out test set in terms of the RMSE and
Spearman’s correlation coefficient. However, the value of the nDCG is similar to that of the gradient
boosting model. Moreover, the gradient boosting model does not really outperform the regression tree on
this particular test set. This result is not expected, as theoretically the gradient boosting model should
outperform a single regression tree.

Model RMSE Spearman correlation nDCG
Regression tree 4.311 0.506 0.859
Random forest 3.034 0.620 0.883
Gradient boosting 4.267 0.508 0.885

Table 21: Performance of the machine learning models on a held-out test set (randomly drawn).

The results of the bootstrap procedure are more informative because they reflect the performance of the
machine learning models on different test sets. Tables 22, 23, and 24 present the mean values of the
RMSE, Spearman’s correlation coefficient, and the nDCG, respectively, for all three machine learnings
models. These tables also contains a bootstrap estimator of the standard deviation and a 95% bootstrap
confidence interval. These can be used to quantify the accuracy of the sample mean as an estimator for
the mean performance.
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Based on these results, we can conclude that the gradient boosting model performs best on average in
terms of the RMSE and Spearman’s correlation coefficient. However, we obtained a higher mean nDCG
using the random forest model.

The estimated bootstrap standard error and the 95% bootstrap confidence interval can be used to quantify
the accuracy of the sample mean as estimator of the underlying performance. These results show that
the estimated bootstrap standard errors are similar for all three machine learning models. We can
observe some differences between the performance measures implying that there is higher variation in
the estimator of the RMSE than in the estimator of Spearman’s correlation coefficient and the nDCG.
This is expected since Spearman’s correlation coefficient and the nDCG are bounded, while the RMSE
is not. It is difficult to draw any other conclusions on the accuracy of the sample mean as estimator
for the underlying performance because we cannot compare the estimates of the standard error and the
95% bootstrap confidence interval to related research. We included these results mainly for the sake of
completeness and for comparison with future research.

Mean Bootstrap standard error 95% bootstrap confidence interval
Regression tree 3.977 0.039 (3.903, 4.057)
Random forest 3.606 0.037 (3.531, 3.676)
Gradient boosting 3.530 0.037 (3.452, 3.600)

Table 22: Performance of the machine learning models estimated on the bootstrap sample as the
sample mean of the RMSE.

Mean Bootstrap standard error 95% bootstrap confidence interval
Regression tree 0.496 0.010 (0.4751, 0.5171)
Random forest 0.574 0.009 (0.5567, 0.5913)
Gradient boosting 0.592 0.009 (0.5756, 0.6100)

Table 23: Performance of the machine learning models estimated on the bootstrap sample as the sample
mean of Spearman’s correlation coefficient.

Mean Bootstrap standard error 95% bootstrap confidence interval
Regression tree 0.837 0.005 (0.8285, 0.8466)
Random forest 0.864 0.006 (0.8528, 0.8750)
Gradient boosting 0.849 0.005 (0.8389, 0.8588)

Table 24: Performance of the machine learning models estimated on the bootstrap sample as the
sample mean of the nDCG.

We now perform statistical tests to investigate whether there exists a significant difference in the per-
formance of the models. The Shapiro-Wilk test is used to test the samples of the performance measures
for normality. This test does not reject the null hypothesis of normality for the RMSE samples, from
which we can conclude that there is no reason to assume that those samples are not normally distributed.
However, the null hypothesis is rejected for the samples containing Spearman’s correlation coefficient and
the nDCG. Based on these results, we use a t-test to test for a significant difference in the mean RMSE
and a Wilcoxon signed rank test to test for a significant difference in the mean of the other performance
measures. Both tests are performed for paired-samples since the performance of each model is evaluated
on the same test sets. The results can be found in Table 25 and show that the random forest model and
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gradient boosting model outperform the regression tree significantly based on the RMSE and Spearman’s
correlation coefficient for any reasonable significance level. However, the conclusions of the other tests
depend on the significance level that is used. We can conclude that both the random forest model and
the gradient boosting model outperform the regression tree based on the nDCG using a significance level
of 0.1. However, using a significance level 0.05 would not have resulted in the same conclusion. This
also holds if we test for a significant difference in the performance of the random forest model and the
gradient boosting model. We find a statistical difference in the performance of the random forest model
and gradient boosting model based on the RMSE and Spearman’s correlation coefficient using a signifi-
cance level of 0.1. Based on this result, we can conclude that the gradient boosting model significantly
outperforms the random forest model based on the RMSE and Spearman’s correlation coefficient. Using
the lower significance level of 0.05, however, would not have resulted in the same conclusion. Based on
the nDCG, we can conclude that the random forest model performs better than the gradient boosting
model because the null hypothesis is rejected for any reasonable significance level.

Performance measure Machine learning models Alternative p-value

RMSE
Random forest Regression tree less 1.060× 10−9*
Gradient boosting Regression tree less 6.450× 10−14*
Gradient boosting Random forest less 0.060

Spearman’s cor. coef.
Random forest Regression tree greater 1.311× 10−8∗
Gradient boosting Regression tree greater 3.197× 10−10∗
Gradient boosting Random forest greater 0.080

nDCG
Random forest Regression tree greater 6.009× 10−5∗
Gradient boosting Regression tree greater 0.062
Random forest Gradient boosting greater 0.005∗

Table 25: Results of the t-test and the Wilcoxon signed rank test. Testing for a difference in
performance of the machine learning models. * denotes rejection at 0.05 significance level.

We choose the gradient boosting model as our final model based on the results presented in this section.
The gradient boosting model does significantly outperform the random forest model on the RMSE and
Spearman’s correlation coefficient using a reasonable significance level of 0.1. However, we obtained a
significantly higher nDCG using the random forest model. These conclusions seem contradictory, but
we prefer to measure the performance of the models using the RMSE and the Spearman’s correlation
coefficient rather than using the nDCG. We use the nDCG to measure the quality of only one query (the
ranking of F3 drivers) instead of multiple queries, and, as a result, we believe that the nDCG is not able
to reflect the difference in performances of the models. Finally, we have to mention that the gradient
boosting model is known to usually outperform the random forest model. This is because the gradient
boosting model tries to reduce the bias and the variance, while the random forest model only tries to
reduce the variance of the predictions. Therefore, the gradient boosting model will generally produce
more accurate predictions, but this depends on the data set that is used.

7.3 Final model

We choose the gradient boosting model as our final model, based on the results and the motivation of the
previous section. This model consists of 202 regression trees. In total there are 982 predictors of which
52 has non-zero influence. The RMSE computed on the training set is equal to 2.713. We use the final
model to investigate the importance of the features and to produce predictions for unseen data.
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7.3.1 Feature importance

Confidential

7.3.2 Prediction in the winter of 2017

Confidential
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8 Discussion

The goal of this master thesis was to provide an objective method to select talented drivers that can
support Van Amersfoort Racing in the driver selection process. We used a typical machine learning
approach. First, we collected race results data of the FIA F3 European Championship and other relevant
championships in single-seater auto racing and karting. These data were used to create features for the
machine learnings models that describe a driver’s career path. The machine learnings models were trained
to predict the driver performance in the FIA F3 European Championship based on a driver’s career path.
Finally, we evaluated the performance of the machine learnings models in order to find a answer to the
research question:

How accurately can we predict the performance in the FIA F3 European Championship based on a
driver’s career path?

The performance of the machine learnings models was evaluated using three performance measures: the
RMSE, Spearman’s correlation coefficient and the nDCG. Moreover, we used a bootstrap procedure to
evaluate the performance of the models on different test sets. The results show that the gradient boosting
model performs best on average with a mean RMSE of 3.530, a mean Spearman’s correlation coefficient
of 0.592, and a mean nDCG of 0.849. We obtained a lower nDCG with the random forest model but
we considered the RMSE and Spearman’s correlation coefficient to be more important for comparing
the performance of the models. Statistical tests have shown that both the random forest model and
gradient boosting model perform significantly better than the regression tree using any reasonable sig-
nificance level. This result was expected because bagging techniques are known to reduce the variance,
while boosting techniques are know to both reduce the variance and the bias. Both techniques combine
a large number of regression trees to obtain a better predictive performance than could be obtained from
any of the regression trees alone. We have also find a significant difference in the performance of the
random forest and the gradient boosting model using a significance level of 0.1. Based on these results,
we choose the gradient boosting model as our final model. The final model was used to investigate the
feature importance. This analysis showed that the most important features are Team, Nationality and
the performance during a driver’s rookie year in the FIA F3 European Championship. The feature Team
was expected to have zero importance because the driver performance in the FIA F3 European Cham-
pionship is obtained by correcting for team performance. The fact that Team has non-zero importance
can imply that the statistical model has not fully captured the influence of the team performance on the
total performance. Also, performance in the Eurocup Formula Renault 2.0, GP3 Series, and British F3
International Series are considered as important predictors for the performance in the FIA F3 European
Championship. Finally, we assumed that it was the winter of 2017 and used the gradient boosting model
to produce a ranking of the 2018 F3 drivers. This ranking was compared to the current 2018 championship
standings, to assess whether the model produces usable rankings. Note that the championship stand-
ings are influenced by team performance and competition effects while the predicted driver performance
is not. Thus, one should not use this comparison to draw strong conclusions about the performance of
the machine learning models but to get some intuition for the kind of predictions that the model produces.

This research provides a new approach for finding talented drivers because, to our knowledge, using a
machine learning approach to predict the driver performance in a certain championship is new in this
area of sports. Most racing teams contract their drivers based on race results data and expert opinions,
rather than on objective measures of driver performance. Some motor sport new websites provide rank-
ings of junior drivers but these rankings are rather subjective and mainly used to speculate about rising
F1 stars. The studies that are most closely related to this research provide rankings of F1 drivers based
on some measure of driver performance. However, these rankings are based on actual performance in
the F1 championship rather than on predicted performance. A driver that has never competed in a F1
race cannot be ranked by these method. Thus, it is not possible to compare our findings with findings of
similar studies because these are not available to our knowledge.
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We will now discuss challenges of this research and limitations of the methods that are used. One chal-
lenge of this research is the data availability. Open-source data sets that contain the race results data of
lower championships than F1 are not available to our knowledge. As a result, collecting the data for this
research was a time consuming process because we had to use different sources and fix inconsistencies
manually. Adding new data to the machine learning model is for these reasons rather difficult. However,
new data is generated during each race weekend and it is essential to add these data to the machine
learning model in order to produce up-to-date predictions.

We can distinguish between limitations of the driver performance model and the machine learning models.
The driver performance model does not perform as well on our data as on F1 data. This is caused by
the fact that drivers and teams often compete for a long period in F1, while this is not the case for lower
championships. Moreover, Phillips fitted his model on a large data set containing F1 results from 1950-
2013, while we use relatively small data sets. This made it in particular difficult to estimate the team
coefficient in a reliable way. We had to correct the team coefficients by the number of observations to
compute suitable adjusted points rates. Nevertheless, we have concluded, based on a qualitative analysis,
that the driver performance model produced decent results because most of the drivers that were ranked
high by the driver performance model were (previous) F1 drivers. The results of the driver performance
model were then used in the machine learning model as features and as response variable. Any unreliable
adjusted points rates features are not expected to strongly influence the results of the model because
if that feature is indeed unreliable then it will probably not be used by the machine learning model.
Instead, the non-adjusted points rate will be used. On the other hand, unreliable adjusted point rates
in the response variable can influence the final ranking of the drivers. Improving the driver performance
model can thus result in more reliable rankings. However, based on the qualitative analysis, we have
no indications that the model ranks certain teams or drivers consistently too low or too high. We thus
believe that the adjusted points rate is a more reliable measure of driver performance than, for example,
the non-adjusted points rate.

Limitations of the machine learning approach include the large amount of missing values in the data set
and the limited number of observations relative to the number of features. The fact that the data set
contains so many missing values makes the machine learning task at hand rather difficult. We are limited
to machine learning models that can handle missing values because imputing the majority of the data
set is not desirable. But even for models that can handle missing values the predictive power can be
increased when more data is available. The missing values are also a disadvantage because they result in
unbalanced features. Some features contain considerably more missing values than others. As a result,
features that contain relatively many observations might be considered more important by the machine
learnings models. Those features will then in particular be used to make predictions, while other features
might contain more predictive power if the number of missing values is reduced. An example of a feature
that contains no missing values and is considered important by the model is Nationality. A disadvantage
of this feature is that the factors are unbalanced. For example, the nationalities ‘British’ and ‘German’
occur relatively often in the data set, which can give drivers of these nationalities a higher ranking than
they would be given only based on performance. It is important to investigate the influence of Nationality
on the produced rankings, because the rankings should reflect the driver performance rather than the
frequency of the nationalities in the data set. The ranking of the 2018 drivers in the winter of 2017 is
therefore produced without the Nationality feature. Finally, we have a limited number of observations
to train the machine learnings model on because we only consider the FIA F3 European Championship
from 2008-2017. Including more data is, however, not desirable because race results data from before
2008 might not be representative to predict the driver performance in F3 during the next season. The
number of observations will increase when Van Amersfoort Racing decides to compete in 2019 in a new
championship that combines the FIA F3 European Championship and the GP3 Series. In that case, we
have to retrain the model on data of F3 drivers and GP3 drivers, which will results in approximately
twice as many observations.
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9 Conclusion

We can conclude that this research provides a new approach for finding talented drivers in single-seater
auto racing. The machine learning model can support Van Amersfoort Racing in the driver selection
process by providing them with rankings based on driver performance. These rankings can help Van
Amersfoort Racing to find a new driver for next season. We used quantitative as well as a qualitative
measures to evaluate the performance of the machine learning models and to answer the research ques-
tion. The gradient boosting model seems to produce usable predictions but its performance should be
carefully evaluated in the future when it is used to find new drivers. The model should be used as a
supporting rather than a guiding tool and future predictions should be compared with expert opinions.

Suggestions for future research include improving the driver performance model to obtain more reliable
rankings. Moreover, reducing the number of missing values in the data set can improve the predictive
power of the machine learning models. The number of missing values can be reduced by adjusting
the feature engineering process and, for example, by combining features of similar championships or
combining features of different seasons in the same championship. Other features that can be included
in the machine learning model are data about sponsorships or talent programs that a driver is associated
with, qualifying results, lap time data, telemetry data (data from sensors on the car) or data about
overtaking actions. These data also describe the performance of driver in a certain championship, but
cannot as easy be collected as race results data. Another suggestion, which might be too ambitious for
the current level of technology in lower championships of single-seater auto racing, is the use of image
recognition to analyze images or video footage of the driving. Finally, applying the methods of this
research to other championships than F3 will provide us with comparable results and can help to improve
the performance of the model in the future.
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Appendix

Table 26 contains an overview of the championships that are used in this research to collect race results
data from.

Single-seater championships
ADAC Formula 4 2015, 2016, 2017
All-Japan Formula Three Championship 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017
Australian Formula 4 Championship 2015, 2016, 2017
BRDC British Formula 3 Championship 2016, 2017
BRDC Formula 4 Championship 2013, 2014, 2015
British Formula 3 International Series 2011, 2012
British Formula Three Championship 2013, 2014
British Formula Three Championship 2008, 2009, 2010
China Formula 4 Championship 2015, 2016, 2017
Euro Formula Open 2014, 2015, 2016, 2017
Eurocup Formula Renault 2.0 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017
European F3 Open Championship 2009, 2010, 2011, 2012, 2013
F4 British Championship 2016, 2017
F4 Danish Championship 2017
F4 Japanese Championship 2015, 2016, 2017
F4 Spanish Championship 2016, 2017
FIA Formula 3 European Championship 2012, 2013, 2014, 2015, 2016, 2017
Formula 3 Brasil 2014, 2015, 2016, 2017
Formula 3 Euro Series 2008, 2009, 2010, 2011
Formula 4 South East Asia Championship 2017
Formula 4 UAE Championship 2016, 2017
Formula 4 United States Championship 2016, 2017
Formula Renault 2.0 NEC 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017
GP3 Series 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017
Italian F4 Championship 2014, 2015, 2016, 2017
MSA Formula Championship 2015
NACAM Formula 4 Championship 2016, 2017
SMP F4 Championship 2015, 2016, 2017

Kart championships
CIK-FIA European Championship KF 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015
CIK-FIA European Championship KZ 2013, 2014, 2015, 2016, 2017
CIK-FIA World Championship KF 2012, 2013, 2014, 2015
CIK-FIA World Championship KZ 2013, 2014, 2015, 2016, 2017
WSK Euro Series KZ1 2010, 2011, 2012, 2013

Table 26: Championships that are used to collect data from.
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