
EEG Data Classification
Classifying Motor Imagery EEG data to Create a Brain

Computer Interface For Gaming

Author: A. van Suijdam BSc

Supervisor: Dr. M. Hoogendoorn

Second Reader: Dr. R. Bekker

External Supervisor: W. de Nie MA MSc

Submission Date: May 2022

EEG Data Classification

Classifying Motor Imagery EEG data to Create

a Brain Computer Interface For Gaming

Arnoud van Suijdam

Vrije Universiteit Amsterdam

Faculty of Science

Business Analytics

De Boelelaan 1081a

1081 HV Amsterdam

Sogeti

Lange Dreef 17

4131 NJ Vianen

April 2022

Preface

The thesis is written as a graduation project of the Master Business Analytics of the

Vrije Universiteit of Amsterdam. The project is intended as a deepening of the study

in which it is in line with the learning material of the courses. In addition, it should be

of scientific value and useful to the host company. It describes a problem of the

company Sogeti in the department of Cloud, Development & Data. I am grateful that

I was allowed to do an internship at Sogeti and for their cooperation.

Furthermore, I would like to thank all my colleagues at Sogeti for their interest and

enthusiasm. This thesis would not have been possible without the support and

feedback from my supervisors. Therefore, I would like to thank Mark Hoogendoorn

from the VU and Wouter de Nie from Sogeti. I would also like to thank my second

reader René Bekker for the time spent on the thesis. Finally, I would like to thank my

family for the emotional support during the writing of my thesis.

I

Abstract

The thesis conducts research as a first step of the project at Sogeti. This project has

the practical goal of classifying thoughts for the purpose of moving the bar in the

Breakout game. The research involves examining different motor imagery (MI) tasks

measured with electroencephalography (EEG), different preprocessors and

classifiers to achieve the highest accuracy to maximize the gameplay.

Common preprocessing techniques that have been tested in the literature are

included in this study as preprocessing methods. These include Fast Fourier

Transforms (FFT), Common Spatial Patterns (CSP), Discrete Wavelet Transforms

(DWT), and statistical numbers of the data. Among all the tested features, the

combination of CSP−→ DWT−→ statistical features turns out to contain the most

predictive values to classify the data. Subsequently, different classifiers are tested as

well. These are the Logistic Regression (LR), Support Vector Machines (SVM), and

the Temporal Convolutional Network (TCN). These classifiers are compared to a

state of the art Long Short-Term Memory (LSTM) neural network based on the

description of Wang et al. (2018). This last model resulted in the highest accuracy,

with a prediction score of 54.60%. This is 11.37% higher than the SVM, which was

the second-best model. This model is presumably better because the changes over

time is a more important feature for the classification than the statistical features. For

further improvement, future research involving combinatorial models and adaptive

learning may lead to better results to control the breakout game even better with a

BCI.

Contents

Acronyms III

1 Introduction 1

2 Background 3

2.1 Brain-Computer Interface . 3

2.2 Brain Activity . 5

2.3 EEG Headsets . 7

3 Literature 8

3.1 Experimental setting . 8

3.2 Preprocessing . 10

3.3 Classification . 11

4 Data Acquisition 14

4.1 Subjects . 14

4.2 Environmental Setting . 15

4.3 Interface . 17

4.4 Experiments . 18

4.5 Data . 19

4.6 Data Analysis . 20

5 Preprocessing 23

5.1 Creating Usable Raw Data . 23

5.2 Standard Preprocessing Transformations 24

5.3 Fast Fourier Transforms . 25

5.4 Discrete Wavelet Transforms . 27

5.5 Common Spatial Patterns . 29

5.6 Statistical Numbers . 31

6 Machine learning 32

6.1 Logistic Regression . 32

I

6.2 Support Vector Machines . 33

6.3 Temporal Convolutional Network . 34

6.4 Long Short-Term Memory . 36

7 Experimental Setup 39

7.1 Sensor set . 39

7.2 Dataset selection . 40

7.3 Model Tuning . 42

7.4 Model Comparison . 43

7.5 Error Analysis . 44

8 Results 45

8.1 Sensor set . 45

8.2 Dataset selection . 46

8.3 Model Tuning . 48

8.4 Model Comparison . 50

8.5 Error Analysis . 51

9 Discussion 54

9.1 Best model . 54

9.2 Features . 54

9.3 Assumptions . 55

9.4 Recording setup . 56

9.5 Subjects . 57

10 Conclusion 58

Bibliography 59

A Appendix 64

A.1 Initial hyperparameters . 64

A.2 CSP settings . 66

A.3 Hyperparameters of classifiers . 67

II

Acronyms

BCI Brain-computer interface.

CSP Common spatial patterns.

DWT Discrete wavelet transforms.

EEG electroencephalography.

FFT Fast Fourier Transforms.

FIR Finite impulse response.

k-NN K-nearest neighbor.

LDA Linear discriminant analysis.

LR Logistic regression.

LSTM Long short-term memory.

MI Motor imagery.

NN Neural network.

RNN Recurrent neural network.

SVM Support vector machine.

TCN Temporal convolutional networks.

III

1. Introduction

Communication between people and computers have evolved significantly in the past

decades. Currently, computers are most often used with a keyboard and mouse or a

touchscreen. This research is focused on brain-activated controls also known as a

Brain Computer Interface (BCI) (Vidal, 1973). The company Sogeti is entering this

field with the BCI research project. The research in this thesis is a part of the whole

BCI project. To make brain-activated controls possible, this research uses

Electroencephalography (EEG) as main technology. This chapter introduces the

EEG technology, describes the objective of this research and the structure of the

report.

Electroencephalography

The BCI relies on EEG. This technology measures the electrical activity of the brain.

With an EEG measurement, multiple sensors are placed on the head to measures the

activity of a local area of each sensor (Britton JW, 2016c). Currently, this technology is

used in research for applications in the medical sector as a replacement, rehabilitation

(Padfield et al., 2019a) or diagnostic devices (Husain et al., 2003) and applications in

the gaming industry (Portillo-Lara et al., 2021). Because the accuracies for controlling

applications are not comparable to devices as a computer mouse, it still is an area

of development (Padfield et al., 2019a). The reason that the accuracies are lower

and the challenging part of the use of this technology is that the data always has a

low signal-to-noise ratio. This can be improved by using more sensitive sensor types

(Farnsworth, 2019), choosing the right brain areas (Garcia-Moreno et al., 2020a), the

right frequency for the application (Britton JW, 2016b), and using a good machine

learning algorithm. These points are dependent and limited by the objective of this

study.

Objective

Most literature found, either tests one model or reviews multiple other papers which

are compared while they work with different datasets. The uniqueness in this

research is that it executes the whole process, using the same data to test multiple

1

algorithms. Therefore, the research will include the collecting of EEG data and the

classification of the thoughts with different kinds of machine learning techniques.

The research aim is to make the first steps in a BCI as a proof of concept. The goal

is to classify human thoughts in order to play a game with your mind. To do this, the

thoughts measured with electroencephalography (EEG) are converted to move a bar

in the game “Break-out”. The problem in this project is that the best setup for EEG

measurements is unknown for this particular goal, as well as the machine learning

techniques that will result in the highest accuracies for the best gameplay

experience. For the research setup, there are requirements that apply for the future

gaming application. One is that the EEG headset has to be consumer priced

technology, which limits the quality of the data. Also, the quick changes in the game

requires a quick reaction of the game. This requires the data window of the EEG on

which a game action is based, to be of a shorter duration compared to the

experiments found in the literature. The things that can be explored are the

preprocessing and classifier of the machine learning. Therefore the main research

question is:

”What machine learning techniques will result in the highest accuracies for

classifying the EEG data collected in this research?”

Structure

Subsequent chapters provide background, describe the literature, and the study itself

with the models and results. In the next chapter, the background of an EEG is

described to get a better understanding of what exactly is measured and an

understanding of the value of this technology with its possible applications. In the

succeeding chapter Literature, studies are described with the types of headsets,

current practices of recording and machine learning techniques. Based on this

information, the research question is specified. In the following four chapters the

methods are described with the data acquisition, the machine learning algorithms

and the experimental setup. This is followed by the results of this research. At last,

the research questions about obtaining the highest accuracy are answered in the

Discussion.

2

2. Background

The previous chapter introduced the project. This section will provide a global

understanding of the EEG technology. There is described for what purposes EEG is

used, how it works and the different kinds of headsets are reviewed.

2.1 Brain-Computer Interface

A graphical user interface (GUI) is a screen that shows what it does to establish

interaction between a person and a machine. The person can control the computer

with a computer mouse and keyboard. Another way is by directly reading the brain

activity to create a BCI. This has a multitude of prospective applications as this gives

an additional way of directing machines. The current prospects of practical

applications in the medical sector are as a replacement, rehabilitation or diagnostic

devices and applications in the gaming industry. This section gives the examples and

basic information of the applications of EEG technology.

Conventional BCI’s are mostly used for prostatic limbs. Normally, the nerves always

activate the muscles of the limbs. This is problematic for people who are missing a

limb or cannot activate the nerves. Currently, the electrical signal of the nerves in

muscles are used to make prosthetics move. This is called myoelectric and it

assumes that the nerves are largely functional, while the technology is expensive

(Padfield et al., 2019a). However, EEG can also be used for people who have

damaged nerves or are completely paralyzed. This benefit of EEG makes it usable

for wheelchair control, which is examined in Craig and Nguyen (2007). The study

reached an accuracy of 82% with 3 classes. It can be imagined that head movement

control might be preferable for most people that are only mostly paralyzed to have a

more accurate control over the wheelchair.

Another application is for rehabilitation. This technology can be used by letting the

patient imagine movements and give feedback by showing the movement being

made by a robot or by walking in a virtual world (Padfield et al., 2019a). In

diagnostics, an EEG can be used to find the abnormalities of brain functions to come

3

Figure 2.1: The international 10-20 sensor placement standard. Source: (Rojas et
al., 2018)

to a medical diagnosis as is used in Husain et al. (2003) for epileptic patients. The

EEG can also be used to detect emotions and that can be used for marketing or

political agendas (Padfield et al., 2019a). The last application for this technology is

the gaming industry as an addition or replacement of control. The current advances

however report that it is “a poor replacement for traditional methods of controlling

games“ (Padfield et al., 2019a).

There are different methods to read brain signals to make a BCI.

Electroencephalography (EEG) is typically used because it is cost-effective

compared to functional magnetic resonance imaging (fMRI) and

magnetoencephalography (MEG). EEG is a technique that measures the electrical

activity of the brain. Due to the high sensitivity of an EEG, the signal can be different

depending on external noise, and mood (Padfield et al., 2019a).

With an EEG measurement, multiple electrodes are placed on the head. For the

correct placement there exists an international standard. A common EEG standard is

the 10-20-system shown in Figure 2.1. The letters are used to refer to the names of

the brain area. In this system Fp stands for fronto-polar, F for frontal, C for central,

T for temporal, P for parietal, and O for occipital lobe (Alda & Torreblanca, 2020).

In Figure 2.2 a the brain functions are shown to give an initial indication of the most

important areas.

4

Figure 2.2: In this figure, there is an illustrative top view of a head with electrode
placement shown. The top is the front of the head and the dotted line is on the sides,
while the rest of the sensors are placed on top of the head. Based on (Garcia-Moreno
et al., 2020a)

2.2 Brain Activity

For further comprehension of the EEG technology, the electrical activity that is

actually measured will be described. For this, it is needed to understand the concept

of how the nerves work. The shortest explanation is that the brain consists of

neurons that send an action potential to release a synaptic response to activate

other neurons.

The complete understanding requires an explanation of the activation cycle of a

neuron. Starting at rest, the neuron has an electrical charge of around -70mV. This is

charged by a Sodium-potassium pump that pumps Sodium (Na+) out of the neuron

and potassium (K+) inside, as shown in Figure 2.3. Then potassium can reenter the

cell because of the concentration difference. The negative charge comes from

proteins and chloride (Cl−) inside the neuron. At the end of a neuron are synapses

that can give an electrical signal towards the next neuron, as shown in Figure 2.4

with synapses E1, E2, E3 and I1. If the neuron gets a sufficiently strong signal and

reaches -50mV, the potassium channels open. This is causing a rapid depolarization,

continuing till a positive charge goes throughout the neuron and results in its own

synaptic activation. Then it closes the Sodium channels, opens the potassium

channels and restarts the Sodium-potassium pump to get back to the rest state. This

is called the action potential (Kalat, 2004). The electric charge in this process

changes as shown in the purple and again in green part of the graph of Figure 2.4.

5

Figure 2.3: The resting potential of a nerve. Source: (Mandira, 2016)

Figure 2.4: On the left the outside of a neuron with exhibitory and inhibitory synapses
and on the right the electric potentials in the membrane of the exhibitory and inhibitory
post synaptic potentials (EPSP & IPSP). Source: (BioNinja, 2016)

If the signal of the synapses is insufficient, we get a temporal charge that makes

reaching the action potential easier or harder. This is called excitatory and inhibitory

postsynaptic potentials (EPSPs and IPSPs) respectively, as shown in Figure 2.4.

These are the electrical charges that we actually measure. The action potential

happens too quickly to measure (Britton JW, 2016d). The recording cannot record a

single neuronic charge, but the measurement requires at least a range of 6 cm² of

synchronized cortical activity to produce a discharge that is measurable with an EEG

sensor (Ramantani et al., 2016). What the EEG then measures are EPSPs and

IPSPs of the neurons near the scalp (Britton JW, 2016a). This means that a sensor

measures a multitude of neural activities. The outcome of the measurements is a

summary of the activity of a local area of each sensor.

6

2.3 EEG Headsets

A benefit of the EEG compared to other BCI’s is that the sensors are electrodes that

can be tiny. This makes it possible to have EEG headsets that are portable and

connected to wifi or Bluetooth. This increases the mobility of the wearer, increasing

the possible applications. In addition to this, the electrodes can be different. They are

mainly divided into wet or dry electrodes. The wet electrodes need electrogel and

are considered the traditional method (Casson, 2019). Dry electrodes are more

practical as it does not need electrogel to be applied (Padfield et al., 2019a). For

electrogel there are multiple options available ranging from liquid to paste-like gels.

The disadvantage of liquid gel is that it dries out quickly and is unusable for long

sessions. The disadvantage of a more paste-like gel is that it is less user-friendly

and takes more preparation time. The preparation time can take longer than 30

minutes as in Craig and Nguyen (2007), where they do not even take the cleanup

time into account. Wet electrodes however are less prone to noise, as liquid

penetrates well through hair and reaches the scalp easier (Shad et al., 2020) &

(Padfield et al., 2019a). For conduction, the wet electrode itself is a solid metal

electrode, where the dry electrode uses metal pins that can be uncomfortable

depending on the design (Chi et al., 2010).

There are many EEG headsets in different price ranges. Of the different headsets,

there is a variety in the amount of sensors and in the recording quality (Farnsworth,

2019). The choice for appropriate EEG headsets is a trade-off between the quality of

the resulting data of the device and the price, which should be as low as possible to

make it more affordable for consumers.

7

3. Literature

This section will review literature about EEG data. This will determine the scope of the

research setup and machine learning techniques with the techniques that are shown

to be promising in other research. After the experimental setting for the recording, the

preprocessing and the classifiers are discussed.

3.1 Experimental setting

In the many pieces of research that are done with EEG headsets, all have a slightly

different setting. There are a few groups in which these can be divided depending on

the main differences. The main differences are the recording time, the mental task

and executed movement of the test subject. Since the brainwaves react differently for

each person while executing similar tasks, individual models have a higher accuracy

compared to global models that use different test subjects for training and testing the

prediction model. This is visible in multiple papers for example in Craig and Nguyen

(2007), where the accuracy for an individual person was 82% and went down to

52.5% in a global model. This also suggests that each individual has different brain

activity while having the same task and similar thoughts.

When we have a subject, there are different tasks that can be done and observed. It

is commonly separated in control and monitor applications (Nijholt, 2016). The

monitor applications can try to differentiate emotional state or mental state such as

concentration. The test setup can be divided into four categories that are commonly

used. These categories are: Visually Evoked Potentials, Slow Cortical Potentials,

Sensori-Motor rhythms, and the Event-Related Potentials. The first occurs when the

mind is activated by showing certain images to get brain activity known as Visually

Evoked Potentials. The test setup can also be to continuously monitor the test

subject. For example during sleep, to get Slow Cortical Potentials (Sreeja et al.,

2017). This research is in the category of control applications. This is an application

to control an environment, such as controlling a computer mouse without hands. The

first test setup possibility to do this is by building on Sensori-Motor rhythms (Sreeja

et al., 2017). These are the recorded waves measured from the sensorimotor cortex

8

of the brain (Kübler & Mattia, 2016) that responsible for movements. To activate that

part of the brain, motor imagery (MI) tasks are often executed by the test subject,

where the subject imagines the movements instead of making real movements

(Amarasinghe et al., 2016). Here MI movement of the legs are often taken as one

class as it is hard to distinguish between left or right moving legs. Similarly, the

movement of fingers cannot be seen. It is however possible to distinguish the

movement between the right and left arm as is done in Amarasinghe et al. (2016)

and take that as the recognition signal for the reaction of an application (Padfield

et al., 2019a). The fourth and last research setup is to get Event-Related Potentials

that are caused by other stimuli. In this category, P300 tasks are commonly given.

These are mental tasks such as making calculations or imagining objects turning

around (Amarasinghe et al., 2016). For all control applications research “it is

recommended to instruct familiar mental tasks” as it leads to better results (Roc

et al., 2021).

The last big difference in the research setup is the duration of each recording of each

task. The shortest task recording found came from Padfield et al. (2019a). They

state that each task took four seconds and they made different sized windows. It

appeared that the windows from the first two seconds were better predictable

compared to the windows containing data from the last two seconds. They point to

concentration loss as the most likely cause. Most papers take longer task recordings

and more data. Amarasinghe et al. (2016) took 20 seconds for each task and made

50700 records and Craig and Nguyen (2007) let the subject do each task 10 times

10 seconds long, with 10 seconds of rest in between for concentration restoration.

This is also the forementioned paper that took more than 30 minutes to prepare the

headset. One particular paper of Kostov and Polak (2000) had no time restriction

and used an online research setting in which the test subject had to move the cursor

on the screen towards a goal. Due to the extensive effort, costs of the headset, time

to make their own data and assuring the quality of the data, multiple papers did not

make their own recordings and referred to online available datasets (Sreeja et al.,

2017) & (Lu et al., 2019).

There are a few takeaways from the research setting. These are as follows:

• An individual model is more accurate than a global model.

• For this research with a control application, the test subject can use P300 and

MI movements to produce the right brain waves for the EEG, which can be

classified. With MI movements there is proven that movements with legs, left

and right arm, and tongue can be predicted to a certain degree.

9

• Most data windows used in research often lasts for several seconds. This can

be taken into account since a game requires a relatively fast reaction to control

the game and therefore long recordings are not possible. This can have an

effect on the results.

3.2 Preprocessing

After the recording, the first transformations on the data can be performed. A big part

of machine learning is the preprocessing where the data is prepared. Data

preparation includes the selection of timeframes that contain the tasks and sorting

the time frames that belong to each task class. Then the data is preprocessed by

removing uninformative data, splitting the data, and transforming the data into

features. Each of these last named points can be treated differently. The research

describing the preprocessing strategies are reviewed in this section.

The removal of the recorded time in the tasks is explained in Craig and Nguyen

(2007) that recorded each task 10 seconds. They removed the first and last two

seconds. The first two seconds were to take the reaction time into account and the

last two were removed because it was expected that the participant had already

reached his goal or the participant lost concentration. After this, the data of each 10

second task was divided into 60 data windows to generate more data. It is

noteworthy that most found offline research did not remove or split the data. In other

research the reaction time was determined with MI motions and visual stimuli. The

reaction time of the upper limbs is between 375-450 milliseconds while reaction time

of the lower limbs was 450-600 milliseconds (Sirico et al., 2020). This speed can be

used as reference for the minimum amount of time that should be removed at the

beginning of each task.

When the data of each task of each class is determined, it can be transformed into

more meaningful features. The raw data is recorded in the time domain. This means

that each next data point is the next point in time. The features after transformation

are mostly over the time- or frequency domain and sometimes a combination of the

two. In the frequency domain only a small part of the frequency band is useful. The

useful part consists of the frequencies that are related to the researched activated

parts of the brain. What is known about the frequencies is that the delta (1-3 Hz) and

theta (4-7 Hz) are normal occurring waves that become more obvious when a

subject shows symptoms of drowsiness. In adults that are in an alert and wakeful

state, measurements of many bursts in amplitude of these frequencies can be a

characteristic of partial dysfunction of the brain and might be reason for further

10

medical research. The alpha waves (8-12 Hz) are related to the somatosensory

cortex that is responsible for the senses. In this frequency in 20-40 % of the adults a

mu rhythm occurs. This is an arch shaped burst that is a reaction to movement, the

thought of movement or the sense organs. The beta related frequencies (13-24 Hz)

are related to the sensorimotor cortex that is responsible for movements.

Frequencies bigger than 25 Hz are gamma related frequencies that are not

commonly measured outside the scalp but can be seen with sensors that are planted

behind the bone of the skull (Britton JW, 2016b). The frequency bands that are

actually used for MI tasks in different papers are 7-30 Hz (Sreeja et al., 2017), 7-40

Hz (Lu et al., 2019) and comparable frequency ranges. The frequency filtering is

done in the frequency domain. To get the data on frequency domain techniques as

Fourier transforms, Wavelet Transforms and Finite Impulse Response (FIR) can be

used. Here, Fourier transforms changes the raw data into frequencies that occur

over the whole data, while Wavelet Transforms and Finite impulse response use a

wave of a certain frequency and shifts that over the data to measure the overlap of

the data points and de wave, to measure the occurrence of that frequency at each

time point in the data. For the combination of the time-frequency domain the Short

Fourier Transforms is also often used. This uses multiple small parts of raw data in

the time domain and use Fourier Transforms on those parts. On the time domain the

raw data, autoregressive methods and Common Spatial Patterns (CSP) are often

used. These try to find a certain pattern in the data. The used techniques in this

research will be explained in detail in section 5 Preprocessing.

In summary, the following points of preprocessing are important:

• Of the recorded task, the first two seconds are seemingly the most important.

However, at the beginning there is about 500 milliseconds of unimportant

reaction time, which does not provide useful data.

• Each frequency band is related to a different brain function. The most important

is the MI measurable frequency band between 7-40 Hz.

• The following preprocessing methods are used in related research:

(Short) Fourier Transforms, Wavelet Transforms, FIR, Autoregressive methods

and CSP.

3.3 Classification

The classification is done with machine learning algorithms such that the label of

unlabeled data can be predicted on a trained model. The results of machine learning

11

are highly dependent on the combination with the input. The input is dependent on

the quality of the recordings and the preprocessing as previously discussed. Below

the most important algorithms and results of other research is shown.

Methods that are often used in literature are: support-vector machines (SVM), logistic

regression (LR), k-nearest neighbor (k-NN), linear discriminant analysis (LDA) and

neural networks (NN) (Padfield et al., 2019a). Of the NN variants, there are two

modern variations that seem to work well with time dependent data. That is the long

short-term memory (LSTM) as seen in table 3.1 and a temporal convolutional network

(TCN) with an accuracy of 97% in the research of Lu et al. (2019). To get a complete

overview, some studies of MI data are shown in Table 3.1, that comes from Garcia-

Moreno et al. (2020b). In the table, the LSTM, SVM and the LR reach accuracies

above 90%. The best scoring classifier from this, is the LSTM, with results that have

multiple classes and still reaching accuracies above 90%.

There are a few takeaways from the classification:

• Commonly used classifiers are: SVM, LR, k-NN, LDA and NN variants.

• The highest accuracies in other research are reached with the LSTM and the

TCN.

• The non-NN that have the highest accuracies are the SVM and LR.

Based on these accuracies and common use in other papers, the LSTM, TCN, SVM

and LR are chosen to use for this research, which will be explained in depth in section

Methods.

12

Table 3.1: Table with machine learning algorithms that are used in other papers. Table
comes from Garcia-Moreno et al. (2020b).

13

4. Data Acquisition

This chapter describes how the data acquisition is carried out. It includes a description

about the subjects, environmental settings, the used interface, experimental setting,

a description of the data and an initial data analysis.

4.1 Subjects

Part of the project is to collect the data. This ensures that the right consumer priced

headset is used to create data and includes the measurement setup in the research.

According to the literature in the previous chapter, individual models tend to lead to

better accuracies (Craig & Nguyen, 2007) and the experiments in practice must be

as close as possible to the real goal of the end task, which is playing the game

breakout that is shown in Figure 4.1. For the individual models a lot of data is

required. On top of that, multiple recordings should be made where the test subject

executes different tasks. In order to ascertain that the tasks are executed in the right

way, data was recorded by two test subjects that are familiar with the research. The

subjects are 25 and 26 years of age.

14

Figure 4.1: This figure illustrates the game Breakout. The player can only determine
the movement of the bar and aims to break the colored bricks.

4.2 Environmental Setting

During the recordings it is important to keep the environmental factors constant. This

is because changes in the environment might influence the recorded data or the

calculations that are executed by the processing computer. For example, a faster

computer might play the frames a bit slower or faster compared to the speed of the

EEG recording signal. This might result in different data. Also, sounds that are

coming from outside of the recording area or other distractions can influence the

participant thought pattern, resulting in associated differences in the recorded EEG

data. To keep data as consistent as possible, we used the same physical table in the

same room during all our recording sessions. It is assumed that the interference

signals are always the same when measuring at the same location. This would mean

that by conducting all the recordings at the same place, the same disturbances

would occur in each recording session. Hence, it would not influence the data

differently in each recording.

The location is a lab environment at Sogeti Vianen in The Netherlands. The

circumstances of the lab were as follows: There are no noticeable sounds, only two

15

(a) Rear View (b) Top View

Figure 4.2: The Ultracortex Mark IV headset that is used for the EEG recordings.
Source: (“Open BCI - All-in-One Biosensing R&D Bundle”, n.d.)

people were at the lab at the same time, where the test subject could not see the

second person. The laptop had a Windows operating system, on which the code was

played in Visual Studio Code. The hardware of the laptop consisted of an intel i5

processor and 16 GB of RAM, which both determine the computation speed. The

EEG data is recorded with the Ultracortex Mark IV from OpenBCI as seen in Figure

4.2, with an additional Cyton and Daisy Biosensing Board (two silicon chips). These

chips are needed for extra sensors and to get a higher sampling frequency that

sends the signal over Wifi to the computer. This headset has 16 dry EEG sensors,

with a sampling frequency with each sensor of 1000 Hz (“Open BCI - All-in-One

Biosensing R&D Bundle”, n.d.). The headset is in the cheaper price range as shown

in Table 4.1, that shows a short overview of EEG headsets. Therefore, the

recordings are expected to have a lower signal-to-noise ratio compared to most

literature research. Lastly, there is an interface which provides signals that tell the

subject what action needs to be taken.

16

Company Price range

NeuroSky

Muse $99-$1000

Emotiv

OpenBCI

Wearable Sensing

ANT Neuro - eego rt

Neuroelectrics

G.tec Nautilus (PRO) wireless $1000-$25000

ABM B-Alert

BioSemi

Cognionics

mBrainTrain

Brain Products LiveAmp

ANT Neuro - eego rt 64 channels

ANT Neuro -eego mylab > $25000

Brain Product ActiCHamp

BioSemi

Table 4.1: EEG headset prices from IMotions Farnsworth (2019)

4.3 Interface

The interface should have three different stimuli videos to indicate which task should

be executed by the subject. This number of tasks represents the three moves that

are used to play the breakout game. These three moves are the following: moving

the bar to the left, moving the bar to the right, and keeping the bar in place. The

corresponding tasks will be called the left, right and neither tasks in the rest of this

report. The intention of the interface is to look similar to the real Breakout game. The

real game itself would be unusable because it is often unclear in which direction the

bar should move to catch the ball as it often changes direction. In theory, the real

game will make it hard to let the participant make the right choices at every moment.

This makes it difficult to determine the desired action as the game is interactive. The

required action of the left, right and neither task will also be referred to as the y-

label. To simplify the interface of the recordings, a video that is based on the game

is used instead of the Breakout game itself. The interface clearly shows which task

the participant should execute. There are three different videos used as stimuli for

the different tasks where a ball falls vertically from the top left, right, or middle of the

screen. It should be clear that the test subject needs to take the matching action to

17

move the bar to the left, right or neither side. The ball falls down in 4 seconds in the

original video and the bar is moving in the horizontal direction towards the ball. There

are multiple interface videos that show the tasks in a different order. Every recording

session uses one interface video that shows 36 tasks that consists of 12 stimuli videos

of each task. There are different interface videos to decrease possible anticipations

of the test subject. This is avoided because this might influence the data. In the initial

trails it appeared that a direct transition of tasks is very stressing. Therefore, a one-

second break between each stimuli video is played to restore concentration and to

give the subject time for the transition to the next task. Figure 4.3 shows an example

of a stimuli video. These videos should make it clear which task should be executed

and serve as an interface.

Figure 4.3: This figure illustrates the interface with the ’Left’ task.

4.4 Experiments

To start the experiment a subject has to disconnect all wires of the sensors of the

headset, before putting on the headset. The sensors have to be tightened by turning

them until all sensors touch the head with some pressure. The pressure comes from

the springs in the sensors. Then the wires must be connected again. The WiFi shield

of the headset must then connect with the laptop. As a last step, the Python notebook

that plays the video and starts the recording can run after filling in the right variables.

The variables that come back in the name of the document with the data are the

following: the code that stands for a specific test-subject that executes the experiment,

one of the 3 videos of which each has a different order of the tasks, and how the tasks

are executed. These variables are important to keep track of. The code of the subject

is important because the aim is to make individual models as everyone’s brain waves

are different (Craig & Nguyen, 2007) as is discussed in the literature chapter. The

video version is registered because it refers to the sequence of tasks in that version,

so the right y-labels can be matched with the pieces of data that belong to those tasks.

18

The executed task is registered so they can be distinguished. The different kinds of

tasks for each experiment are described in Table 4.2. In the experiments, the main

executed tasks are the MI tasks that are proven to be distinguishable in Amarasinghe

et al. (2016). The movement of lifting the left and right arms are used for the ”left”

and ”right” tasks, and for the ”neither” tasks lifting the legs, moving the tong and not

moving have been used. During these tasks the suggested movement is imagined by

the subject. For thoughts to imagine this there is decided that the participant should

depict the movement and think about the physical feeling of the activation of muscles.

Both of these should be thought of simultaneously and repeatedly. With all registered

recording variables and a specified research setting, the resulting datasets should be

ready for the machine learning.

4.5 Data

During the recording all relevant data is stored on the computer. The data that is

constant for each video is marked in the document name as mentioned in the

previous paragraph. The relevant data that is made during the recording are the

sensor measurements of the brain activity in microvolt and the placed markers for the

tasks. The microvolt is the actual data that will be used to predict the executed tasks.

The markers are placed in the data to keep track of when the data of each task starts

and ends. This is used later to split the data in tasks in the preprocessing step. The

markers are based on the video frames and exclude the frames during the resting

moment that is between tasks. Simultaneously with the markers, the time points are

tracked to determine the duration of each task. This is used in the data preparation to

remove the reaction times in proportion to the duration. This is needed because the

frames are not played at a constant rate. During the recording sessions, it appeared

that some tasks had a deviation of a second in the duration, as the markers had a

different amount of data points for some tasks. This means that the recording spreed

was inconsistent. This problem could be in the speed of the frame rate or the EEG

recording. To ensure the right amount of reaction time and time at the end is

removed, there was an additional need to keep track of the time points at the

beginning and end of each task. The resulting data was saved for the preprocessing.

19

Task name Meaning

Thinking Motion 1 The test subject sits up straight and is making the MI of

lifting the left or right hand, when the bar should move

to the left or right respectively. Nothing is done for the

neither-task.

Thinking Motion 2 In addition to “Thinking Motion”, the MI movement of

lifting the knees should be done for the neither-task. The

test subject assumes the posture of sitting slumped to

imagine this movement.

Thinking Motion 3 In addition to “Thinking Motion”, the MI movement of

pressing the tongue to the upper side of the mouth should

be done for the neither-task.

Physical Motion 1/2/3 The test subject executes the physical motions instead

of imagining the motions that are described in the

corresponding Thinking Motions.

Table 4.2: The executed motions or tasks of the experiments.

4.6 Data Analysis

A data analysis was performed to get an initial understanding of the data. This was

done with the raw data after it was divided into the three classes. After this division of

the tasks, it was detected that the number of data points or length of each task that is

measured with the time points, matched the distance of the markers in the data and

the given sampling rate of 1000 Hz. From this can be deduced that the sampling rate

is constant and that there are no missing values.

For the analysis, a plot of the data in the frequency domain can be seen in Figure

4.4. In this figure, there is mainly activity below 18 Hz and around 50 Hz. The activity

around 50 Hz is possibly external noise coming from the electricity grid of the

building as that also has a frequency of 50 Hz. This shows that there probably is a lot

of external noise measured. Although lower frequencies are used in the data, there

could also be interference at these bands.

In an additional analysis, one dataset of one person of measurements that are taken

on the same day is examined. This is to examine the differences between the tasks as

an initial indication of how well the classes can be distinguished with this data. A few

statistics were determined for each sensor, of which three are shown in Figure 4.5.

The statistics shown are the mean, standard deviation, minimum, and maximum. Only

20

three sensors are shown as an example, as other sensors show similar similarities

and differences. Most sensors only have small or no visible differences between the

different tasks in the plots. An example of this is sensor P7 in the figure. However,

larger differences do appear, as shown by the other sensors in the figure. For the final

analysis, percentile plots of all sensors were made which also distinguished between

tasks. The percentile plot of sensor T8 is demonstrated in Figure 4.6. It can be

observed that there is a small difference in the classes. The percentile at which the

largest difference occurs was noticeable differed from sensor to sensor. For outliers, it

was observed that none of the percentile plots contained excessive high or low values.

From this is derived that there are no outliers. By having visualized the differences in

these statistics, the first insights were obtained. This is that the classes are mostly

similar with small differences. The presence of the differences increases the likelihood

of good classification. Therefore, this analysis indicates a positive expectation for the

results of this study.

Figure 4.4: This figure shows the data in the frequency domain of a single task.

Figure 4.6: This figure shows a percentile plot of the data from sensor T8.

21

Figure 4.5: This figure shows box plots of the statistics, where each data point is a
statistical value of a window. The classes ’Left’, ’Neither’ and ’Right’ are serparated.

22

5. Preprocessing

After the data is collected, it has to be preprocessed. The method of preprocessing

in this chapter is split into “creating usable raw data” and the preprocessing methods

that are based on the reviewed literature. These techniques are “Fast Fourier

Transforms” (FFT), “Discrete Wavelet Transforms” (DWT) and “Common Spatial

Patterns” (CSP). The first part is about how all data is loaded and prepared before

use, and the latter methods are follow-up steps to transform the data in a form that

contains more meaningful information than the raw data. These preprocessing

methods are used in different combinations with the classifying machine learning

algorithms. However, the first step is creating usable raw data and will be discussed

next.

5.1 Creating Usable Raw Data

The data that is loaded is specified in task, person and day, so multiple recordings are

combined. When the recordings are loaded, they are split based on the markers in

the data that indicate the beginning or end of a task and the tasks are given the label

of the action that is executed. The 800 milliseconds in the beginning of each task are

removed, in order to get rid of the reaction time and the time that is needed for the ball

to become visible on the screen as in the interface video the ball starts outside the

screen. Of each task, 200 milliseconds of the end is removed to get rid of the last few

milliseconds where the ball is caught on the bar and already reached its target. To

decrease the total amount of data only eight sensors are used. The specific sensors

that will be used is determined by the first part of the research. To create balanced

datasets, all tasks are separated in the group with the corresponding labels of: “Left”,

“Right” and “Neither”. Then the three task groups with different labels are divided into

a 60%/20%/20% split, for the training, validation and test set respectively. The tasks

are not randomized in the same group so that it conserves the order in which it was

recorded, such that the first 60% of the recorded tasks are in training set, and the last

20% of the recorded tasks in the test set. Then the groups with different labels that

are meant for the same set are combined, so each set has an equal amount of tasks

in each set. The datasets are separated before the rest of the preprocessing, so the

23

datasets can get the same transformations as the first fitted training set. For example,

the standard scalar uses the mean of the training set on all three datasets. In the

last preparation step, the tasks are split in overlapping windows of 512 milliseconds.

Each adjacent window has 50 uncommon and 462 overlapping data points for each

sensor. The separation of tasks before the window split prevents that windows of the

same task end up in different datasets. At this point, all relevant data is selected and

the standard transformations that are relevant for all preprocessing techniques can be

made.

5.2 Standard Preprocessing Transformations

The transformations that are used are a FIR filter and a standard scalar. The FIR

filter is a band pass that lowers all values outside a given frequency range. The band

pass is a combination of a low pass filter that passes all low frequencies and filters

the high frequencies and a high pass that does the opposite of a low pass. As stated

in the literature chapter, the useful range of EEG data is around 8-40 Hz (Lu et al.,

2019). Therefore, this is the chosen range for the FIR filter. The other frequencies are

considered as noise, which can make the prediction less accurate. An example of the

result after the use of the filter is shown in Figure 5.1. The basic idea behind the filter

is that the data is transformed into the frequency domain, the desired frequencies

are kept, and the data is transformed back into the time domain. This is done in one

transformation with the FIR filter. An example of how the domain can be changed to

the frequency domain is done with FFT that is described in the next paragraph. The

FIR filter works by calculating overlapping filtered data windows h(n) with the nth data

point from a certain window with length M with Formula 5.1.

h(n) =
sin(wc(n− M−1

2
))

π(n− M−1
2

)
(5.1)

Each h(n) uses the Hamming window which is defined with the Hamming Formula

5.2 (Mynuddin, 2015).

wc(n) = 0.54− 0.46 cos(
2nπ

M − 1
) (5.2)

This gives the desired outcome for one window in the FIR filter. The new output data

is made by using this with overlapping windows of size M of the original data.

The second transformation is a standard scalar as in Formula 5.3.

zn =
xn − µ

s
(5.3)

24

This scalar subtracts the mean µ of the nth data point xn and divides by the standard

deviation s. This is done with all data points with the mean and standard deviation

that belong to the training set for each individual sensor. Scaling the data is

commonly recognized to improve almost all machine learning models as it gives the

data of all the sensors the same scale (Géron, 2017). Because the model is trained

on the training data, the mean and standard deviation of the standard scalar are

determined by the training data. The measured values are reused for the standard

scalar on the validation and test data. The result is the same transformation over the

datasets. These transformations are used in all models. For the preprocessing to get

the features only one or a combination of either FFT, CSP or DWT are used.

Figure 5.1: This figure shows the result after the FIR filter in the frequency domain of
the same data as plotted in Figure 4.4

5.3 Fast Fourier Transforms

The recorded data contains a multitude of combined frequency waves, as is

illustrated on the left side of Figure 5.2. The FFT dissects these frequencies into the

individual frequency waves and measures of each frequency how much it occurs in

the data in proportion to other frequencies. That is how the FFT transforms the data

that is recorded from the time domain into the frequency domain. The disadvantage

of this technique is that it loses all information on the time domain and it loses short

occurrences of individual frequencies. The basis of FFT is a Discrete Fourier

Transform (DFT) that is displayed in Formula 5.4.

Xk =
N−1∑
n=0

xn ∗ e−
j2knπ

N (5.4)

Here the resulting value Xk is the amplitude of the proportional occurrence of the kth

frequency that is measured over N data points. The kth frequency is an integer that is

not equal to the measured frequency in Hz. The main measurement of the frequency

25

is the sinus and cosine of the radial frequency that is rewritten as a power of e as

shown in Formula 5.5 (Burros et al., 2012).

e−
j2nkπ

N = cos(
2nkπ

N
) + j sin(

2nkπ

N
) (5.5)

The frequency in Hz is related to the kth frequency in the formula. How it is related

dependents on the sample rate T and the given amount of data points N . In this

research the T = 0.001 as the headset that is used takes 1000 samples each second.

The frequency f in Hz in terms of input variable k can be determined with Formula

5.6, that is derived from Erickson (2021).

f =
k

NT
(5.6)

This means that if the input window contains 500 data points N = 500 then the first

amplitude Xk with k = 1 is the amplitude of frequency f = k/NT = 1/(500∗0.001) =
2Hz. Since not all output frequencies are of importance, only the relevant frequency

terms are used, which are around 8-40Hz. The calculations are decreased using the

fast Fourier transforms. The FFT is derived by making the calculations of the DFT

more efficient with the use of the symmetry and matrix calculations as demonstrated

in Brigham (1988). The output of the FFT are the values with the frequencies from

each sensor. These are used as input for the machine learning models.

26

Figure 5.2: The concept of the FFT is displayed. The input in the time domain is
transformed into the frequency domain. Source: (“Fast Fourier Transformation FFT -
Basics”, n.d.)

5.4 Discrete Wavelet Transforms

The DWT is a different technique that uses the frequency domain in combination with

the time domain. It tries to split the data into multiple frequency bands. It does this in

the time domain, so the result is data in the time domain of a certain frequency band.

The different frequency ranges, called levels, are maintaining short occurring waves

that would be lost in the FFT (Taspinar, 2018). The DWT splits the data into multiple

frequency bands by splitting the data with a low pass (LP) and a high pass (HP) filter

in each level, as shown in Figure 5.3. For example, data with a sample frequency of

1000 Hz contains information in the frequency range 0-1000 Hz. The first level of the

data after the LP is half the amount of data points and can contain information of

0-500 Hz. The HP in the first level contains the information of 500-1000 Hz

(Taspinar, 2018).

27

Figure 5.3: The concept of the different levels in wavelet transforms is displayed.
Source: (Taspinar, 2018)

This is calculated with the discrete wavelet coefficient Tm,l that is shown in Formula

5.7 with scale m and location l.

Tm,l =

∫ ∞

−∞
xnψm,l(n) dt (5.7)

Here ψm,l(n) is the function that stands for the wavelet that is used (Addison, 2005).

The wavelet is a standard wave that is used to analyze the data and can be seen as

the filter. For each level the wave is scaled. In the scaling the wavelet is stretched

to measure another frequency range. Each wavelet decomposes the signal in two

subsignals with half the length of the original. A simple example is the Haar wavelet.

This wavelet decomposes the signal into the trend or detail coefficients as HP, with

Formula 5.8 with input signal f .

am =
f2m− 1 + f2m√

2
(5.8)

Simultaneously, it obtains approximation coefficients by measuring the difference as

LP in Formula 5.9, with the mth data point from the signal.

bm =
f2m− 1− f2m√

2
(5.9)

Using this one time on the original signal gets the result of level 1 (Walker, 2019).

28

Half of the data points remain in the trend which also halves the measured

frequencies.

The trend has a frequency range that starts at 0 and has an upper bound frequency

f as in Formula 5.10.

f =
sample rate

2level
(5.10)

The frequency range of the approximation coefficients are between the upper

frequency of the trend according to the formula and the upper frequency of the input.

In this research only the approximation coefficients of level 6 and 7 are used with the

ranges of 15,63-31,25 Hz and 7,81-15,63 Hz because those are the earlier

discussed important frequency ranges (Lu et al., 2019). There are other wavelets

such as the Gaussian and the Mexican hat wavelet as shown in Figure 5.4. These

waves measure different forms instead of taking the mean and difference as in the

Haar wavelet (Addison, 2005). It depends on the data which wavelet is more

informative (Taspinar, 2018).

Figure 5.4: In this figure the Gaussian wavelet (a) and the Mexican Hat wavelet (b)
are shown. Source: (Addison, 2005).

In this research, the Daubechies 4 (db4) wavelet is used as it was the best wavelet

in the EEG research of Shukla and Kumar Chaurasiya (2018) and it is used in Verma

et al. (2014).

5.5 Common Spatial Patterns

The CSP is another preprocessing method that is used to transform the data in such

a way that it maximizes the variance of one class and minimizes that of another

class, as seen in Figure 5.5. In the figure, the intuitive process is shown that CSP

29

scales the data, and squeezes the data diagonally to get the data points of one class

on the vertical axis and the data points of the other class on the horizontal axis to

maximize the variance difference between the classes. By changing the differences

in variance of the classes, the variance feature becomes more evident. The

theoretical information of this technique is described by Blankertz et al. (2008). This

technique is usually used to differentiate between two classes. In multiclass

problems this is often solved by dividing it in multiple one versus the rest binary

problems. In this research, an Approximate Joint Diagonalization is used to solve the

multiclass problems (Trachel et al., 2021). The technique is based on the paper of

Pham (2001), which describes Pham’s algorithm. For the calculation of a two class

CSP, the first step is to get the covariance matrixes
∑(c) of each class. The

covariances are calculated over the sensors with the c class. With an example of the

+ and − classes, we can find the scaler w by solving the eigenvalue problem in

Formula 5.11 (Blankertz et al., 2008).

Σ(+)w = λΣ(−)w

s.t. λ = λ
(+)
j /λ

(−)
j , j = 1, . . . , J

λ
(+)
j + λ

(−)
j = 1, j = 1, . . . , J

(5.11)

The λ(c)j is defined as in Formula 5.12 with column vector j.

λ
(c)
j = wT

j Σ
(c)wj (5.12)

Then the transformation of the data is a simple multiplication of the scaler wT and all

data points x as in Formula 5.13.

XCSP (t) = wT ∗ x (5.13)

In the output, the class variances are sorted such that in the first column the “+”

class has the highest variance and the last column the lowest variance. The CSP

preprocessing is then used for the DWT and as individual preprocessor for the

classifiers.

30

(a) Before CSP (b) After CSP

Figure 5.5: The effect of CSP. The data is transformed to increase the variance of
one class and to minimize that of another class. In this figure, the blue circles and red
crosses stand for two different classes. The axis of figure (a) are sensors values and
on the axis of figure (b) are the transformed sensors values. Source: (Blankertz et al.,
2008)

5.6 Statistical Numbers

From the output of the DWT and SVM there are statistical features calculated that

replicate the feature extraction of Taspinar (2018). These are the variance, standard

deviation, mean, median, the 5th, 25th, 75th and 95th percentile, the entropy and root

mean square. An addition to these features are the skewness and area under the

curve, as these proved to be good predictors in Zhang et al. (2020). For the DWT,

the features are done over both subbands resulting in 36 features for each sensor as

input for the machine learning models.

31

6. Machine learning

When the data is preprocessed, it can serve as input to the classifier algorithms. This

chapter will explain the intuitive idea behind the algorithms of LR, SVM, TCN and

LSTM.

6.1 Logistic Regression

The LR is one of the simplest models that is still used with success in classifying

EEG data (Padfield et al., 2019b). LR has a comparable part with linear regression

as shown in Formulas 6.1 and 6.2,

y = a+ Xtb (6.1)

p(X) =
1

1 + exp(−(w · Xt − d))
(6.2)

with feature vector Xt belonging to window t, and a and d as constants and weight

vectors b and w (Flach, 2012a). The difference is that the LR has a sigmoid function

over the linear regression, which makes it an s shaped function as shown in Figure

6.1. This difference causes linear regression to be used to fit numerical data while

logical regression attempts to classify the data into two categories. To train the

logistic model, the optimization problem in Formula 6.3 needs to be solved with the

log-conditional likelihood (LCL), which is worked out in Flach (2012a).

w∗, t∗ = argmax(LCL) (6.3)

Since this is a convex problem with only one solution there can be multiple iterations

where the update rule in Formula 6.4 can be used with learning rate η and window t.

wnew = w + η(yt − pt)Xt (6.4)

This method is applied to distinguish between 2 classes. To make this a multiclass

problem, this model is usually trained 3 times with a one class versus the rest scheme.

32

The output will be based on three calculated probabilities from the three models,

where the class that has the highest probability is the output.

Figure 6.1: This figure shows the difference between a linear model and an LR.
Source: (Sayad, 2022)

6.2 Support Vector Machines

The SVM is used as a classifier. To divide classes, the SVM attempts to find

hyperplanes that maximize the difference between the two classes. The theoretical

framework is from the book of Flach (2012b). There is a minimum of two support

vectors as that is needed for the decision boundaries with the separating hyperplane

in between. The SVM tries to make the margins between the vectors as big as

possible. In Figure 6.2 a two-dimensional example with the classes “+” and “-” is

shown. In this figure the data points are separated by the linear hyperplane and the

support vectors are the data points on the decision boundary. The separating

hyperplane should meet the conditions of Formula 6.5,

w · Xt − d = 0 (6.5)

with weight vector w, vector Xt with window t, and constant d, with · as the inner

product. So the distance of data point Xt to the hyperplane would be w · Xt − d. SVM

tries to maximize the margins which are expressed as 1
||w|| . To maximize this, the

problem in Formula 6.6 must be solved.

w∗ = argmin
1

2
||w||2

s.t. yt(w · Xt − d) ≥ 1, t = 1, . . . ,M
(6.6)

Here yi is equal to 1 or -1 depending on the class. A way to solve this is to transform

this problem into the dual of the Lagrange multiplier and solve it with dedicated

quadratic optimization solvers (Flach, 2012b). If the boundary cannot separate all

33

points of the classes correctly, there is a need for an additional slack variable, which

results in new formulas and optimization problems. These are further explained in

detail by Flach (2012b). In addition to a linear SVM the kernel trick can be used.

With this trick, the inner product “Xi · Xj” can be replaced by a different kernel, such

as a polynomial or a radial base kernel, which creates a non-linear hyperplane

(Eaton, 2017). The kernels that are used are limited with the use of the Python

package that is used for SVM. The used kernels in this research are described in the

section 7 Experimental Setup.

Figure 6.2: This figure shows the separating hyperplane of two dimensions of an
SVM with the support vectors on the marginal distance of the plane. Source:
(“Mathworks:Support Vector Machine (SVM)”, n.d.)

6.3 Temporal Convolutional Network

A TCN is a variant of a neural network (NN). Therefore, it is needed to understand

how a NN works. A NN is a machine learning algorithm that replicates how a human

brain works with the nerves, as explained in 2.2 Brain Activity. The NN has an input

layer, hidden layers and output layer as shown in Figure 6.3. Each layer has multiple

notes. Each note calculates the sum of the feature input Xti from window t and input

i that is multiplied with weight wi, as shown in Formula 6.7.

at =
N∑
i=1

wiXti (6.7)

34

Then the sum at goes through an activation function, which is usually a sigmoid

function as shown in Formula 6.8, resulting in a value close to 0 or 1 (Gurney, 1997).

σ(at) =
1

1 + eat
(6.8)

This is comparable with the biological brain synapses that try to get an action

potential of the next neuron. The number of notes that are connected to a note in the

next layer is the kernel size. These calculations continue in each layer and is a

trainable machine learning model, which has many variations. One variation is a

recurrent neural network (RNN) in which outputs refer back to previous layers.

Figure 6.3: This figure shows the structure of a basic NN with a kernel size of 5.
Source: (Dilmegani, 2021)

A TCN is a NN variant that can handle data in the time domain well, while it is not an

RNN. It achieves similar and often better results compared to the Long Short-Term

Memory (LSTM) network in the review of Bai et al. (2018). The TCN is based on

a one-dimensional convolution or filter, as shown in Figure 6.4. This is similar to a

normal NN but with a decreasing amount of notes in each layer to dilate the network

and a smaller kernel size. With data in the time domain, the inputs of the current, past

and future time points are used. In the figure, the blue node in the middle represents

the input node with the current time. The TCN adjusts this by removing the future

data points in the model, such that the current output only depends on the past and

present data points, as shown in Figure 6.5. This is also called a causal convolution.

To include dependencies from the distant past, nodes are skipped in the hidden layers.

This is a dilation of the network. In each layer the dilation factor is doubled and half of

the nodes remain (Romero, 2020). The total size of the receptive field R or input that

is included can be computed with Formula 6.9, with vector di of dilation layers, kernel

35

size k and Nstack is the number of TCN’s on top of each other (Remy, 2020).

R = 1 + 2(k − 1) ∗Nstack

∑
di (6.9)

The model has the advantage that it can be trained in parallel, therefore

backpropagation is faster and does not suffer from vanishing gradients, in contrast to

an RNN that does have these disadvantages (Bai et al., 2018).

The TCN model that is used in this research has an input layer, a TCN and a softmax

output layer with three output notes corresponding to the three classes. The TCN code

part is from Bai et al. (2018), and various hyperparameters determining the receptive

field and training methods are tested. Since this model is made for sequential data,

it is expected that the model performs better with the input of data points in the time

domain in comparison with other models.

Figure 6.4: This figure shows a dense layer of a NN. Source: (Remy, 2020)

Figure 6.5: This figure shows the TCN with three different dilations. Source: (Bai
et al., 2018)

6.4 Long Short-Term Memory

A LSTM model is an RNN that uses LSTM nodes. These are recurrent nodes that

pass data from another time point to the next node. This allows the model to deal

well with data in the time domain (Zhang et al., 2020). The LSTM node depicted in

Figure 6.6 determines whether the current data should be forgotten or updated from

36

the current input vector Xt at time t and the output of the previous LSTM node Ct−1

with hidden layer ht−1. This is calculated with multiple gates that have their individual

function. The information state is Ct, the forget gate ft, input gate it and output gate

Ot. Each of these are calculated with Formulas 6.10 until 6.14, with weights Wc, Wf ,

Wi, Wo, and biases bc, bf , bi, bo from Zhang et al. (2020).

it = σ(Wi · [ht−1,Xt] + bi) (6.10)

ft = σ(Wf · [ht−1,Xt] + bf) (6.11)

ot = σ(Wo · [ht−1,Xt] + bo) (6.12)

Ct = ft ∗ Ct−1 + it ∗ tanh(Wc · [ht−1,Xt] + bc) (6.13)

ht = ot ∗ tanh(Ct) (6.14)

The formulas use the sigmoid function as shown in Formula 6.8. The weights and

biases are trainable with normal back propagation to train the model (Zhang et al.,

2020).

The LSTM model that is used is from the paper of Wang et al. (2018). Besides that,

the preprocessing method described in the paper has been used as well. It is

replicated from the paper to have a comparison of a realistic accuracy measure

applied on the data made in this research. This is because the results of all studies

from the literature chapter have very high accuracies that were not expected. For the

preprocessing of the model, the window of each sensor is split into eight parts and a

linear regression is made. The means and slopes are used as input for Input A and

Input B, as shown in Figure 6.7. Then each input goes through a dense layer, where

all notes are connected with the notes of the next layer. This layer theoretically finds

the most important sensors (Wang et al., 2018). Then the data is normalized before

it goes through an LSTM layer. After these nodes, the output is merged, and the

prediction is extracted from the dense softmax layer with three outputs that stand for

the three classes.

37

Figure 6.6: This figure shows an LSTM node of a NN. Source: (Zhang et al., 2020)

Figure 6.7: This figure shows the LSTM model that is used for this study.

38

7. Experimental Setup

All of the preprocessing and machine learning techniques described above are used

in various combinations to find the best model to categorize the data. However, there

are multiple unknowns which also needs to be tested. All experiments are divided

into five main categories which are given in Figure 7.1. The most useful sensor set is

determined because using the data of all sensors would take too long to train the

model. The data selection is used to determine a good training set to train on, as

there is a low signal-to-noise ratio. In the extreme case some datasets might have

the same predictability as random data, which is not usable to train on. Then the

hyperparameters are optimized in the model tuning. The hyperparameters are

optimized stepwise. This means that only a few hyperparameters have multiple

options to test, while the other hyperparameters will stay constant. In these first

experiments, the best are determined by the highest accuracies on the validation set.

The model comparison then compares the optimized models with the test set

accuracies. Lastly, there is an error analysis made of the best model on multiple

datasets. These experiments are described in more detail in this chapter.

Sensors Set → Data Selection →
Model
Tuning

→
Model
Comparison

→ Error Analysis

Figure 7.1: The flow diagram of the experiments.

7.1 Sensor set

The first experiment is to find the best sensor combination, because there are

multiple setups used in the literature. The locations of the sensors on the helmet are

both around the sensorimotor cortex, which is the most important area for MI tasks

(Kübler & Mattia, 2016). The first group also has sensors distributed around the

frontal lobe as has been done in Kübler and Mattia (2016). The second composition

has the sensors around the parietal lobe as is done in Bousseta et al. (2018) and

Garcia-Moreno et al. (2020b). In Figure 2.2, details of the sensor placement and

brain functions are shown. From this is derived that the parietal lobe can be used to

detect activation of the senses, and the frontal lobe can be used to detect movement

39

control.

To examen the best sensor composition, the data is preprocessed by the CSP

followed by the DWT and the statistical feature abstraction. For the data windows it

was decided to use 512 data points, as 512 milliseconds was considered a sufficient

reaction speed for playing the game. This is also a multitude of 27, that is needed as

the seventh level of the DWT is used, and because of this the data needed to be

separated seven times. The preprocessing sequence was chosen as it appeared to

result in good accuracies during the initial trails. The sensor compositions are tested

over three datasets with differently performed tasks, because the different tasks may

produce different brain waves and influence the results. The tasks are

”ThinkingMotion2b” with lifting the knees, ”PhysicalMotion” with physical movements

instead of MI tasks, and ”Thinkingmotion3” with pushing the tong to the roof of the

mouth as stated in the tasks description of Table 4.2. Each dataset consists of

multiple recordings in order to test over sufficient data and avoid high scores due to

chance. To investigate this, the machine learning algorithms SVM and LR are used,

as they are faster to train compared to the TCN and LSTM. The learning rates have

been varied on a logarithmic scale from 1.0 to 0.001 as that is commonly used

(Goodfellow et al., 2016) and the maximum iterations have been varied over 100,

500, and 1000 iterations. The maximum of 1000 iterations is decided upon because

it appeared in the initial trails that the models did not improve with more iterations.

This is varied to prevent possible under- or overfitting of the data. It is assumed that

the classifying algorithm should have no influence on the differences between the

two tested sensor groups. This is based on the trash in trash out principle, where a

wrongly placed sensor provides no information and will result in bed predictions

independent of which algorithm is used. Therefore, it is not needed to use all

algorithms, as the goal of this experiment is to find which sensors contain the most

useful information for an initial setup for the rest of the experiments. The best will be

determined by comparing the validation accuracies of all datasets with the two

different compositions.

7.2 Dataset selection

The second search is to find the best dataset to test the models on. The datasets

have a different quality because the predictability can be different for each

measurement and task (Zhang et al., 2020). It is assumed that the best dataset with

a high accuracy gives a clearer view for comparing models, because the tasks are

more likely to have a high predictability. The highest accuracies indicate the dataset

with the best predictable windows of the tasks. The logic behind this is that less

40

predictable datasets have more random data or suffer more from the low

signal-to-noise ratio, that results in lower accuracies. Therefore, selecting a dataset

prevents training on random data that has low predictability. This would result in a

validation accuracy around the random probability of success, which is 33%. In this

search for the best dataset, it is assumed that the eventual optimal hyperparameters

are transferable to other datasets for the highest accuracies. Selecting a dataset

instead of using all datasets also reduces the duration of the subsequent

experiments. The measurements were performed with only the LR and the SVM,

because the models have a shorter training duration. The models used the initial

hyperparameters as shown in Table A2. A disadvantage of this is that the

subsequent experiments will be optimized for only this dataset and that might be a

local optimum or the assumption could be incorrect and the same hyperparameters

not be transferable. This would however not be logical as it is still the same kind of

data.

41

Classifier Parameter Constant Value

LR

Penalty l2

Solver lbfgs, saga

Learning Rate 1, 0.1, 0.01, 0.001

Maximum Iterations 100, 500, 1000

SVM

Kernel rbf

Learning Rate 1, 0.1, 0.01, 0.001

Maximum Iterations 100, 500, 1000

TCN

Epochs 50

Learning Rate 1, 0.1, 0.01, 0.001

Batch Size 100

Optimizer Adam

Dilations 6

Kernel Size 4

Stacks 1

Normalization Layer

Dropout Rate 0.001

Filter 3

LSTM

Epochs 100

Learning Rate 0.001

Batch Size 64

Optimizer Adam

Normalization Batch

LSTM-cell Dropout Rate 0.4

Loss Function Crossentropy

Table 7.1: The initial hyperparameters used for the first sub-study are shown. In the
case of multiple values, they were all considered individually with only the model with
the highest validation accuracy being included in the results tables.

7.3 Model Tuning

In the next experiment, the models are optimized. For this, the best preprocessing is

first selected, followed by the selection of the best hyperparameters of every model

based on the highest validation accuracy. Because the learning rate and the

maximum iterations can influence the model, the same hyperparameter values for

the SVM and the LR as before are varied in these measurements. For the TCN, the

same learning rates are maintained and the model is initialized several times with

different random weights. With this setup all possible preprocessing methods are

42

measured with the three models. The preprocessing methods are CSP, DWT,

CSP−→DWT, FFT and all these features are tried with and without statistical features

as described in section 5.6 Statistical Numbers. The preprocessor CSP is the only

technique that has multiple settings. The CSP can use different regularizations and

can return a different amount of components. Therefore, these hyperparameters are

investigated as well in two steps with all possible hyperparameters. The

hyperparameters of the classifiers to test the preprocessing are shown in Table A2.

For the hyperparameter optimization of the classifiers, the SVM varied over all Kernel

and Gamma options in a single step. The LR varies over all solver and penalty

combinations in the first step as those hyperparameters influence each other. The

second step is the investigation of the learning speed related hyperparameters:

Learning rate and iterations, of the SVM and the LR. If the best values are either the

highest or the lowest, a value was added to make sure the optimal value is obtained.

The first optimization for the TCN is the receptive field for which values are taken

such that all inputs can be taken into consideration with the biggest receptive field.

This is followed by the normalization hyperparameter individually. The last step is the

optimization of the learning related parameters: batch size, optimizer and learning

rate. Because the TCN in heavily dependent on the initialization of the weights, each

hyperparameter combination is tested multiple times. The exact hyperparameter

settings of each model for determining the best hyperparameters initiated according

to Table A.1 and the hyperparameters which were varied over stepwise are shown

together with the results in table 8.4.

7.4 Model Comparison

In the last experiment, the final models are compared. The only variables left in the

creation of the models are the randomly initialized weights of the TCN and LSTM.

For this, the models are trained 20 times and the model with the highest validation

accuracy is used as the final model. Then the models are compared with four

datasets. The accuracy of the test set is used to determine the best model. This

accuracy is considered the real accuracy of the model since the test set is

completely independent of the model as it was not yet used in previous experiments.

The predictions that are made by the models are tested with a binary statistical test

to determine or the models statistically differ. It was made binary by considering a

prediction either correct or wrong, and the test is done considering all predictions of

the test sets of the four datasets. The test that is used is the binary prop test in R.

43

7.5 Error Analysis

A short error analysis is made with the best model and the previously used four

datasets to acquire additional insights. There are confusion matrixes plotted to

detect in which tasks the most occurring errors are. The average test accuracy over

the tasks is plotted over time to acquire information about the predictability over time.

44

8. Results

The findings of the study are presented in this chapter. The study is divided into

several experiments. In each experiment, the information obtained is used in the

subsequent experiment. The values that are varied in each experiment are listed with

the results to maintain an overview. The sensors and dataset were determined first.

This is followed by multiple searches to find the best hyperparameters of the LR, SVM

and TCN. Then all the models are compared in the final experiment.

8.1 Sensor set

The first experiment is to determine the best sensor set. The main results can be

seen in Table 8.1. It shows that the sensor set with the sensors placed around the

Parietal lobe achieves higher accuracies on the validation in five of the six sensor

comparisons. It appears that this set of sensors therefore provides more or better

information, and this set of sensors will therefore be used in the subsequent

experiments. The eight sensors are then around the (post-)central lobe, that is

responsible for the senses on top of the headset, the sensors around the parietal

lobe for attention and perception of the senses, and the temporal lobe for the

memory and processing on the sides of the headset.

Furthermore, the validation accuracies where the frontal lobe sensors are used, are

often almost equal to the accuracy that would be acquired by the random chance

that a class is correctly predicted, which is 33%. This can mean that the data from

these sensors mostly consists of noise. It is also remarkable that the dataset with task

ThinkingMotion2b and the parietal lobe has the highest validation accuracy of 45.54%

with LR, but the lowest training accuracy with SVM. This can be explained by that the

models do have a significant influence and the trend is not always detected by the

algorithm.

45

SVM

Dataset Frontal lobe sensor composition Parietal lobe sensor composition

Sensors: ”C3”, ”C4”, ”T7”, ”T8”, ”F3”, ”F4”, ”F7” and ”F8” Sensors: ”C3”, ”C4”, ”T7”, ”T8”, ”P3”, ”P4”, ”P7” and ”P8”

A 2022-01-11 ThinkingMotion2b
Train acc Val acc Avg Parameters Train acc Val acc Avg Parameters

1 35.30 33.26 34.28 1.0, rbf, 1000 1 38.24 35.02 36.63 0.001, rbf, 1000

A 2021-11-02 PhysicalMotion

Train acc Val acc Avg Parameters Train acc Val acc Avg Parameters

1 59.57 33.28 46.43 1.0, rbf, 1000 1 56.63 37.04 46.84 1.0, rbf, 1000

2 45.91 33.36 39.64 0.1, rbf, 1000

H 2021-12-08 ThinkingMotion3

Train acc Val acc Avg Parameters Train acc Val acc Avg Parameters

1 59.12 35.95 47.54 1.0, rbf, 1000 1 59.93 29.67 44.80 1.0, rbf, 1000

3 42.22 38.04 40.13 0.01, rbf, 1000

LR

Dataset Frontal lobe sensor composition Parietal lobe sensor composition

Sensors: ”C3”, ”C4”, ”T7”, ”T8”, ”F3”, ”F4”, ”F7” and ”F8” Sensors: ”C3”, ”C4”, ”T7”, ”T8”, ”P3”, ”P4”, ”P7” and ”P8”

A 2022-01-11 ThinkingMotion2b

Train acc Val acc Avg Parameters Train acc Val acc Avg Parameters

1 51.32 33.37 42.34 1.0, 1000, l2, lbfgs 1 55.38 45.54 50.46 1.0, 500, l2, lbfgs

19 45.98 33.42 39.70 0.001, 500, l2, saga

A 2021-11-02 PhysicalMotion

Train acc Val acc Avg Parameters Train acc Val acc Avg Parameters

1 62.02 31.73 46.87 1.0, 1000, l2, lbfgs 1 55.41 38.68 47.04 0.1, 1000, l2, lbfgs

11 57.00 33.20 45.10 0.01, 100, l2, lbfgs

H 2021-12-08 ThinkingMotion3

Train acc Val acc Avg Parameters Train acc Val acc Avg Parameters

1 58.99 35.03 47.01 0.1, 500, l2, lbfgs 1 62.43 33.59 48.01 1.0, 1000, l2, lbfgs

10 56.57 36.34 46.46 1.0, 100, l2, saga 3 60.73 34.38 47.56 1.0, 100, l2, lbfgs

Table 8.1: A summary of the results from the two sensor sets are shown across two
classifiers and three data sets. The results consist of the train accuracy, validation
accuracy,and the average of the two. In addition, the parameters learning rate,
maximum iterations and kernel or penalty and solver are given from the associated
models. The model with the highest average and highest validation accuracy are
listed in the table. Only one model result is shown if th model was had the highest
accuracy on both. The number in the first column of the results is the ranking of the
model with a differen parameter combination, that is ranked on the average accuracy.

8.2 Dataset selection

In the second experiment, it has been examined which dataset is most useful for the

rest of the experiments. The results are shown in Table 8.2. The datasets with a

validation accuracy above 40 on both classification models are highlighted. Of the

five datasets where all accuracies score over 40, ThinkingMotion2b has the highest

accuracies with 48.93% with the SVM and 47.29% with LR. Another advantage of this

dataset is that the final goal should also be an MI motion for the applications. For

this reason, this dataset was chosen. Furthermore, the datasets with tasks without

number, that did not have a task for the ”Neither” label do not have any accuracy

above 40%. The datasets with other tasks have good and poor results among them.

46

Recording data Support Vector Machines Logistic Regression

Person Date Task Files
Train

Accuracy

Validation

Accuracy

Test

Accuracy

Train

Accuracy

Validation

Accuracy

Test

Accuracy

ThinkingMotion2b 2 38.24 35.02 34.40 55.40 45.23 37.85
2022-01-11

ThinkingMotion3 2 57.34 30.59 38.05 61.41 30.72 39.92

2021-11-26 ThinkingMotion 18 34.12 33.02 33.38 37.34 33.01 33.17

ThinkingMotion 3 51.96 29.03 34.78 52.53 33.33 37.77
2021-11-02

PhysicalMotion 3 56.63 37.04 41.18 55.41 38.68 39.84

PhysicalMotion2 2 71.38 50.26 43.08 74.03 45.82 45.54
2021-12-08

ThinkingMotion2 3 CSP error CSP error

PhysicalMotion2 4 48.17 39.9 38.39 58.98 44.7 41.56

A

2022-01-18
ThinkingMotion2b 1 60.80 38.75 38.14 61.81 38.40 35.70

ThinkingMotion2b 2 34.90 38.32 30.05 51.47 40.64 29.22

ThinkingMotion3b 1 64.38 43.86 45.88 65.18 40.09 44.972022-01-11

ThinkingMotion2 2 58.68 43.99 35.46 59.22 42.30 36.51

PhysicalMotion 2 58.86 37.67 37.12 59.48 37.67 37.25
2021-11-10

ThinkingMotion 2 54.59 35.92 29.71 56.93 37.37 27.43

2021-12-08 ThinkingMotion3 2 59.93 29.67 40.05 62.43 33.59 40.57

2021-12-08 PhysicalMotion3 2 61.85 43.27 37.24 65.38 43.79 34.79

PhysicalMotion2 3 64.90 42.75 48.56 71.64 36.19 37.75

H

2022-01-18
ThinkingMotion2b 1 64.78 48.93 54.79 65.36 47.29 52.72

Table 8.2: This shows all the accuracies of the data sets from the SVM and the LR
classifiers. In case both the accuracy of the validation and the test set are above 40,
the score is highlighted green. If both classifiers are highlighted green, the task is
also highlighted. The tasks in bold are the datasets used in the previous experiment.
Lastly, the CSP error is a convergence error, caused by zero values.

47

8.3 Model Tuning

Classifier Preprocessing
Train

Accuracy

Validation

Accuracy

SVM

CSP 90.12 45.14

CSP → features 66.86 38.64

DWT 79.84 35.68

DWT → features 47.12 31.9

CSP → DWT 85.49 38.18

CSP → DWT → features 64.78 48.93

FFT 65.69 35.25

LR

CSP 56.06 39.72

CSP → features 68.52 36.81

DWT 42.42 43.08

DWT → features 54.43 33.62

CSP → DWT 45.75 36.54

CSP → DWT → features 57.33 47.29

FFT 42.85 35.08

TCN

CSP 50.16 35.34

CSP → features 43.90 34.39

DWT 43.43 34.31

DWT → features 32.28 35.51

CSP → DWT 50.38 37.49

CSP → DWT → features 56.39 47.12

FFT 40.08 36.11

Table 8.3: The different possible preprocessing techniques have been applied to the
classifiers. The preprocessing technique with the highest validation accuracy of each
classifier is highlighted in green.

The results of the preprocessing are shown in Table 8.3. For all the models, the

sequential preprocessing of the CSP, DWT followed by the features appears to

generate the most informative data for the classifiers to achieve the highest

validation accuracy. For SVM the bigger variance of the CSP seems to be especially

benefitting, while summarizing it with features already loses its value. The rest of the

preprocessing techniques for the SVM seems to be closer to random chance. The

LR shows similar results with the exception of a better result on the DWT, which is

probably a lucky guess results as it has a higher training accuracy which is not

realistic. The TCN only has the CSP, DWT followed by the features as a good result

48

with almost 10% higher accuracy than the second best preprocessing method. After

this measurement, there are several regularizations and number of components

investigated for the CSP. The results are elaborated in Appendix A.2 and show that

empirical regularization with four components leads to the highest validation

accuracy as more do not result in a higher accuracy and would be redundant.

The hyperparameter tuning of all models is done step by step, as described in Table

8.4. In this table, the final hyperparameters that are decided upon are shown in bold.

The improvement of the validation accuracy exists, but is very minimalistic, with the

biggest improvement of 3.27% from the receptive field experiment of the TCN. The

results of the individual steps are described in Appendix A.3. Most results with LR

only show marginal differences that are smaller than 2%. The TCN has similar

differences, except for the normalization layer. Not having this layer results in a

validation accuracy that is around 6% lower. The SVM only shows big differences in

the experiment of the learning rate and iterations. These values show in Table that

the two lowest tested values should not be used. Because these hyperparameters

can cause a big difference in the predictability of the models, they are more

important hyperparameters.

As a final result, the first three final models have the same preprocessing and have

the following hyperparameter settings: The TCN has a receptive field of 61, a layer

optimization, the SGD optimizer, a batch size of 100 and 100 iterations. The LR has

a learning rate of 1 with 500 iterations, and uses the saga solver without penalty. As

the last tuned model, the SVM uses the radial basis function as kernel with scaling as

gamma value and learning rate 1 with 1250 iterations.

The final LSTM model used for the comparison of the models has the same settings

as described in the paper of Wang et al. (2018).

49

Model Step Tested Parameter Tested Values Table Validation Accuracy

SVM

0 Preprocessing FFT, CSP, DWT, feature combinations 8.3 48.93

1
Kernel

Gamma

linear, poly, rbf, sigmoid

scale, auto
A6 49.01

2
Learning Rate

Iterations

2, 1, 0.1, 0.01, 0.001

250, 500, 750, 1000, 1250, 1500
A7 49.01

LR

0 Preprocessing FFT, CSP, DWT, feature combinations 8.3 47.29

1
Solver

Penalty

lbfgs, newton-cg, sag, saga

none, l1, l2, elasticnet
A5 47.55

2
Learning Rate

Iterations

2, 1, 0.1, 0.01, 0.001

250, 500, 750, 1000, 1250, 1500
A7 47.55

TCN

0
Preprocessing

Learning Rate

FFT, CSP, DWT, feature combinations

1, 0.1, 0.01, 0.001

8.3

A4
47.12

1
Dilations

Kernel Size

Stacks

4, 5, 6

2, 3, 4

1, 2

A9

A10
50.39

2 Normalization none, batch, weight, layer Figure A3

3
Batch Size

Optimizer

Learning Rate

10, 50, 100, 200, 300

Adam, sgd

1, 0.1, 0.01, 0.001

A11 50.82

Table 8.4: The different possible hyperparameters were tested for the classifiers. The
hyperparameters with the highest validation accuracy of each step are shown in bold.
The more detailed results of each step can be found in the indicated tables.

8.4 Model Comparison

In the last experiment, the final models were compared. The models are tested over

the four datasets that have the best data, as shown in section 8.2 Data selection.

The results are shown in Figure 8.1. Only the test accuracy was used to determine

which classifier has the highest accuracy on the same training data, as the validation

was already used to determine part of the models. The results show that the LSTM

classifier is the best model of the tested models. In Table 8.5 the results of a statistical

test are shown that compares the consecutive scoring models. Only the accuracy of

the LSTM scores significant different, while the other models show similar prediction

accuracies.

50

Figure 8.1: This figure shows the test accuracies of the models on four datasets.

P-value LR SVM TCN

LSTM >2.2e-16 >2.2e-16 >2.2e-16

TCN 0.1842 0.1571 -

SVM 0.5865 - -

Table 8.5: The statistical differences of the models are displayed with the P-value from
the prop-test from Rstudio.

8.5 Error Analysis

To get an insight in the model, a short error analysis is performed. Confusion matrices

are shown in Figure 8.2. On each of the previously used datasets, the most common

prediction error is different. There is especially confusion with the neither tasks, that

are either predicted too often or few times. The third dataset, on the other hand, has

the most difficulty predicting the ”Left” task, as shown in confusion matrix (c). The

successful part of this result is that the model split the ”Neither” tasks from the others

almost perfectly. The most occurring error differs, because the models are probably

trained to find other aspects. This difference between models could have been caused

by the use of datasets that are too small or the data collection tasks and person give

totally different brain activity.

51

(a) H ThinkingMotion2b 2022-01-18 (b) A PhysicalMotion 2021-11-02

(c) H ThinkingMotion3b 2022-01-11 (d) H PhysicalMotion2 2022-01-18

Figure 8.2: The Confusion matrix with the same four datasets. The number represents
the number of windows that is predicted.

The accuracy over time of the tasks has been plotted with the LSTM as shown in

Figure 8.3. The plots are made without the removal of the beginning and end of the

data. Plot (c) is the only unstable one that shows an accuracy that is equal to the

random chance at the first 3 seconds. The other models show a more consistent

variability. Plot (a) and (d) also show that the predictions are poor at the first few

windows. This is logical as there is a certain reaction time needed.

52

(a) H ThinkingMotion2b 2022-01-18 (b) A PhysicalMotion 2021-11-02

(c) H ThinkingMotion3b 2022-01-11 (d) H PhysicalMotion2 2022-01-18

Figure 8.3: The accuracy over time with the same four datasets. The x-axis shows
the start time of the windows that are predicted. Each window has a length of 0.512
seconds.

53

9. Discussion

From the results, the LSTM appears to produce the most accurate predictions. In

this chapter, the underlying aspects are discussed. This means that the models and

limitations are discussed and some suggestions are made for future research.

9.1 Best model

To answer the main research question: ”What machine learning techniques will result

in the highest accuracies for classifying the EEG data collected in this research?”, it

appeared that splitting up the windows and fit the slope and mean of each part, in

combination with an LSTM as described in Wang et al. (2018) is the best machine

learning technique to acquire the highest accuracies. There are several aspects that

can explain this result. A unique point with this model is that the preprocessing is

reproduced from the paper and is therefore different from the other models. The

preprocessing is to change the data, which has no intuitive or direct prediction value,

into features with greater informative value where the classifier can make a better

prediction. It may be the applied preprocessing of the LSTM that takes 8 times the

slope and average of a portion of the window has more informative value than the

other applied preprocessing with CSP−→ DWT−→ features. Furthermore, the LSTM is

made for sequential data and has this as input at the preprocessing. The TCN was

also made for sequential data. However, the non-sequential data features appeared to

work better as the current preprocessor is the only one that was far from the gambling

chance with 47% and scored at least 9% better than other preprocessors with the

TCN. It may be that the time changes of the data windows are more important for

classification and therefore the LSTM classifier worked better.

9.2 Features

To further elaborate on the effects of the features, it can be seen in Table A9 that the

average of the best TCN models shows that a larger receptive field on average

results in a higher accuracy. However, in the top 10 TCN models in Table A10 it

54

shows that it mainly has smaller receptive fields. This may be because there are only

a few key features, which lead to better results if those are included, but the use of all

features results in overfitting. This theory can also explain that the CSP and DWT

individually give better results compared to the same with features in the

preprocessing experiment with Table 8.3. Future research can investigate what the

most important features are, which can prevent overfitting by too many irrelevant

features. New models can also be created by combining the preprocessing of the

LSTM and the features. Since these both result in similar high accuracies, it is

possible that these combined may lead to better results.

9.3 Assumptions

There are several assumptions made during this research that have not been

specifically verified. One assumption is that the optimal untrained model in which the

hyperparameters are determined for a specific dataset is also the optimal model for

other datasets. However, it may be that only a local optimum is found due to limited

and specific data. For example, other sensors may be better because the headset is

positioned differently on the specific person, or the brainwaves are different. As a

solution the data can be expanded to include multiple datasets. However, Table 8.2

shows that dataset ’A 2021-11-26 ThinkingMotion’ performed poorly with 18 data

files. It may be that this is due to poor data, which also causes a lot of training on

noise. This theory is made knowing that there are good and poorly predictable tasks

among them (Zhang et al., 2020). That there is a lot of noise is also visible in the

comparison of the datasets, because a lot of results had a test accuracy around the

random chance of 33%. This means that the individual windows are hard to predict.

For future research, it is possible to try to extract well predictable tasks from each

dataset and train on them instead to increase the accuracies.

The evaluation method used for the choices of the best dataset and parameters was

the validation accuracy and for the best model the test set. Using the accuracy is

also common in EEG data classification. However, this does not take the chance into

account that a class is predicted correctly by coincidence. This is not a problem within

this research since the probability is the same for all experiments within the research

as they all needed to predict three classes. In this particular research the evaluation

could also have been based on playability of the game. It can be considered to search

how well two of the three classes can be differentiated, since the game can be played

with two moves if the move of letting the bar stay in place (the Neither task) would

be replaced by switching between left and right. For example, confusion matrix (c) of

Figure 8.2 would then get a high score as it almost perfectly differentiate the neither

55

tasks from the others. Therefore, these result would be different and that might be

more appropriate for playing the game if switching left and right to stay in place works.

Further assumptions of the data are: that the correct start and end of the data is

removed, so that the well predictable data is preserved and that the correct window

size is selected. The removal of data could have been smaller and around 300

milliseconds as that appeared out of the error analysis. However, the assumption is

correct as the important data part is preserved. The window size is decided by the

practical use, as a larger window size leads to more data per window and therefore

theoretically leads to better predictions, but in practice this means that the delay time

during playing becomes larger. Also, the number of samples (or windows) is

reduced. Both used values are estimates that could possibly be investigated further.

9.4 Recording setup

A subject of discussion that could be improved for better results is the recording

setup. It was known that the headset is in the cheaper price range which can indicate

poorer quality material. It also uses dry sensors which both causes poorer quality

data. This can be improved by using EEG headsets that has proven the quality of the

generated data. For example, A medical grade EEG headset would be considered to

generate high quality data. However, using consumer grade equipment was also a

part of this study.

In the data analysis, it was noticed that there was very likely external noise

measured at 50 Hz. This gives reason to think that there is also external noise on

other frequencies that is measured and causes lower accuracies of the classifiers. In

the ideal case, this could be avoided by using a Faraday cage that blocks some

external signals.

Lastly, it was mentioned in the literature that the mood could influence the brain activity

(Padfield et al., 2019a). This information was not used during the data collection. It

could be that the test subject had different moods during each recording, causing

different brain activity for the same dataset, as there can be multiple recordings in

the same dataset. In the best case scenario, the same data is obtained for the same

tasks. For future research, the mood of the subject should be stabilized by using the

same surroundings and music before the start of the measurements.

56

9.5 Subjects

As a final point, the test subjects are not experienced EEG users and do not know

which form of thinking is most effective. Therefore, in future research, an online setting

with adaptive learning could work to get a better model, and could serve to teach the

users which way of thinking provides EEG data that has good predictability (Portillo-

Lara et al., 2021). In the ultimate case, an experienced user that knows how he should

think to generate the most useful brain activity for the EEG data is used as subject.

This could result in higher accuracies for a better gaming experience.

57

10. Conclusion

In conclusion, the LSTM model is the best studied model. In accordance with the

literature, this study also shows that there is a low signal-to-noise ratio and that the

data quality can vary from task to task. For further developments, several

combinations are possible in data collection, the models, and features to obtain even

higher accuracies in the future.

58

Bibliography

Addison, P. (2005). Wavelet transforms and the ecg: A review. Physiological

measurement, 26, R155–99. https://doi.org/10.1088/0967-3334/26/5/R01

Alda, A., & Torreblanca, N. (2020). Eeg electrode placement: Fixed vs. variable. https:

//www.bitbrain.com/blog/eeg-electrode-placement

Amarasinghe, K., Sivils, P., & Manic, M. (2016). Eeg feature selection for thought

driven robots using evolutionary algorithms. 2016 9th International Conference

on Human System Interactions (HSI), 355–361.

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. CoRR,

abs/1803.01271. http://arxiv.org/abs/1803.01271

BioNinja. (2016). E4 neurotransmitters and synapses. Retrieved December 21, 2021,

from http://www.old- ib.bioninja.com.au/options/option-e-neurobiology-and-

2/e4-neurotransmitters-and.html

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Muller, K.-r. (2008).

Optimizing spatial filters for robust eeg single-trial analysis. IEEE Signal

Processing Magazine, 25(1), 41–56.

https://doi.org/10.1109/MSP.2008.4408441

Bousseta, R., El Ouakouak, I., Gharbi, M., & Regragui, F. (2018). Eeg based brain

computer interface for controlling a robot arm movement through thought.

Irbm, 39(2), 129–135.

Brigham, E. O. (1988). The fast fourier transform (fft). The fast fourier transform and

its applications (pp. 131–164). Prentice-Hall, Inc.

Britton JW, H. J., Frey LC. (2016a). Appendix 1. the scientific basis of eeg:

Neurophysiology of eeg generation in the brain. Electroencephalography

(eeg): An introductory text and atlas of normal and abnormal findings in

adults, children, and infants (p. 81). American Epilepsy Society.

Britton JW, H. J., Frey LC. (2016b). The background. Electroencephalography (eeg):

An introductory text and atlas of normal and abnormal findings in adults,

children, and infants (pp. 9–12). American Epilepsy Society.

59

Britton JW, H. J., Frey LC. (2016c). Electroencephalography (eeg): An introductory

text and atlas of normal and abnormal findings in adults, children, and infants.

American Epilepsy Society.

Britton JW, H. J., Frey LC. (2016d). Introduction. Electroencephalography (eeg): An

introductory text and atlas of normal and abnormal findings in adults, children,

and infants (pp. 1–6). American Epilepsy Society.

Burros, C. S., Frigo, M., Johnson, S. G., Pueschel, M., & Selesnick, I. (2012). Fast

fourier transforms. Connexions.

Casson, A. J. (2019). Wearable eeg and beyond. Biomedical engineering letters, 9(1),

53–71.

Chi, Y. M., Jung, T.-P., & Cauwenberghs, G. (2010). Dry-contact and noncontact

biopotential electrodes: Methodological review. IEEE reviews in biomedical

engineering, 3, 106–119.

Craig, D. A., & Nguyen, H. (2007). Adaptive eeg thought pattern classifier for

advanced wheelchair control. 2007 29th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society, 2544–2547.

Dilmegani, C. (2021). Dark side of neural networks explained. Retrieved January 1,

2021, from https://research.aimultiple.com/how-neural-networks-work/

Eaton, E. (2017). Introduction to machine learning. Retrieved October 2, 2017, from

https://www.seas.upenn.edu/∼cis519/fall2017/ (accessed: 17-02-2022)

Erickson, J. (2021). Math methods - discrete fourier transform: Intro theory. https :

//erickson.academic.wlu.edu/teaching/mathmethods w2021/ (accessed: 10-

02-2022)

Farnsworth, B. (2019). Eeg headset prices – an overview of 15+ eeg devices.

Retrieved July 17, 2019, from https://imotions.com/blog/eeg-headset-prices/

Fast fourier transformation fft - basics. (n.d.). https://www.nti-audio.com/en/support/

know-how/fast-fourier-transform-fft (accessed: 10-01-2022)

Flach, P. (2012a). Discriminative learning by optimising conditional likelihood.

Machine learning: The art and science of algorithms that make sense of data

(pp. 282–286). Cambridge University Press.

Flach, P. (2012b). Support vector machines. Machine learning: The art and science of

algorithms that make sense of data (pp. 211–). Cambridge University Press.

Garcia-Moreno, F. M., Bermudez-Edo, M., Garrido, J. L., & Rodrıguez-Fórtiz, M. J.

(2020a). Reducing response time in motor imagery using a headband and

deep learning. Sensors, 20(23), 6730.

Garcia-Moreno, F. M., Bermudez-Edo, M., Garrido, J. L., & Rodrıguez-Fórtiz, M. J.

(2020b). Reducing response time in motor imagery using a headband and

deep learning. Sensors, 20(23), 6730.

60

Géron, A. (2017). Hands-on machine learning with scikit-learn and tensorflow :

Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. https :

//books.google.co.in/books?id=Np9SDQAAQBAJ

Gurney, K. (1997). An introduction to neural networks. UCL Press.

Husain, A., Horn, G., & Jacobson, M. (2003). Non-convulsive status epilepticus:

Usefulness of clinical features in selecting patients for urgent eeg. Journal of

Neurology, Neurosurgery & Psychiatry, 74(2), 189–191.

Kalat, J. W. (2004). The nerve impulse. Biological psychology (pp. 39–44). Thomson

Wadsworth.

Kostov, A., & Polak, M. (2000). Parallel man-machine training in development of eeg-

based cursor control. IEEE Transactions on Rehabilitation Engineering, 8(2),

203–205.

Kübler, A., & Mattia, D. (2016). Brain–computer interface based solutions for end-

users with severe communication disorders. The neurology of conciousness

(pp. 217–240). Elsevier.

Lu, N., Yin, T., & Jing, X. (2019). A temporal convolution network solution for eeg

motor imagery classification. 2019 IEEE 19th International Conference on

Bioinformatics and Bioengineering (BIBE), 796–799.

Mandira, P. (2016). Socratic qa logo: What is the resting potential for a neuron?

Retrieved September 18, 2016, from

https://socratic.org/questions/what-is-the-resting-potential-for-a-neuron

Mathworks:support vector machine (svm). (n.d.). https://nl.mathworks.com/discovery/

support-vector-machine.html (accessed: 17-02-2022)

Mynuddin, M. (2015). Designing a low- pass fir digital filter by using hamming window

and blackman window technique. Science Journal of Circuits, Systems and

Signal Processing, 4, 9. https://doi.org/10.11648/j.cssp.20150402.11

Nijholt, A. (2016). The future of brain-computer interfacing (keynote paper). 2016 5th

International Conference on Informatics, Electronics and Vision (ICIEV),

156–161.

Open bci - all-in-one biosensing r&d bundle. (n.d.).

https : / / shop . openbci . com / collections / frontpage / products / all - in - one -

biosensing-r-d-bundle?variant=13043151994952 (accessed: 10-01-2022)

Padfield, N., Zabalza, J., Zhao, H., Masero, V., & Ren, J. (2019a). Eeg-based

brain-computer interfaces using motor-imagery: Techniques and challenges.

Sensors, 19(6), 1423.

Padfield, N., Zabalza, J., Zhao, H., Masero, V., & Ren, J. (2019b). Eeg-based

brain-computer interfaces using motor-imagery: Techniques and challenges.

Sensors, 19(6), 1423.

61

Pham, D. T. (2001). Joint approximate diagonalization of positive definite hermitian

matrices. SIAM Journal on Matrix Analysis and Applications, 22(4),

1136–1152.

Portillo-Lara, R., Tahirbegi, B., Chapman, C. A. R., Goding, J. A., & Green, R. A.

(2021). Mind the gap: State-of-the-art technologies and applications for eeg-

based brain–computer interfaces. APL Bioengineering, 5(3), 031507. https :

//doi.org/10.1063/5.0047237

Ramantani, G., Maillard, L., & Koessler, L. (2016). Correlation of invasive eeg and

scalp eeg. Seizure, 41, 196–200. https://doi.org/https://doi.org/10.1016/j .

seizure.2016.05.018

Remy, P. (2020). Temporal convolutional networks for keras.

Roc, A., Pillette, L., Mladenovic, J., Benaroch, C., N’Kaoua, B., Jeunet, C., & Lotte, F.

(2021). A review of user training methods in brain computer interfaces based

on mental tasks. Journal of Neural Engineering, 18(1), 011002.

Rojas, G., Alvarez, C., Montoya Moya, C., de la Iglesia Vaya, M., Cisternas, J., &

Gálvez, M. (2018). Study of resting-state functional connectivity networks

using eeg electrodes position as seed. Frontiers in Neuroscience, 12.

https://doi.org/10.3389/fnins.2018.00235

Romero, D. (2020). Lecture 5.4 - cnns for sequential data.

Sayad, S. (2022). Logistic regression.

https://www.saedsayad.com/logistic regression.htm (accessed: 12-02-2022)

Shad, E. H. T., Molinas, M., & Ytterdal, T. (2020). Impedance and noise of passive

and active dry eeg electrodes: A review. IEEE Sensors Journal, 20(24),

14565–14577.

Shukla, P. K., & Kumar Chaurasiya, R. (2018). An experimental analysis of motor

imagery eeg signals using feature extraction and classification

methodologies. 2018 International Conference on Computing, Power and

Communication Technologies (GUCON), 796–799.

https://doi.org/10.1109/GUCON.2018.8675032

Sirico, F., Romano, V., Sacco, A. M., Belviso, I., Didonna, V., Nurzynska, D.,

Castaldo, C., Palermi, S., Sannino, G., Della Valle, E., et al. (2020). Effect of

video observation and motor imagery on simple reaction time in cadet pilots.

Journal of functional morphology and kinesiology, 5(4), 89.

Sreeja, S., Rabha, J., Nagarjuna, K., Samanta, D., Mitra, P., & Sarma, M. (2017).

Motor imagery eeg signal processing and classification using machine

learning approach. 2017 International Conference on New Trends in

Computing Sciences (ICTCS), 61–66.

62

Taspinar, A. (2018). A guide for using the wavelet transform in machine learning. https:

/ /ataspinar.com/2018/12/21/a- guide- for- using- the- wavelet- transform- in-

machine-learning/ (accessed: 8-02-2022)

Trachel, R., Gramfort, A., Barachant, A., Brunner, C., & King, J.-R. (2021). Mne

decoding csp. https:/ /mne.tools/stable/generated/mne.decoding.CSP.html

(accessed: 10-02-2022)

Verma, N. K., Rao, L. S. V. S., & Sharma, S. K. (2014). Motor imagery eeg signal

classification on dwt and crosscorrelated signal features. 2014 9th

International Conference on Industrial and Information Systems (ICIIS), 1–6.

https://doi.org/10.1109/ICIINFS.2014.7036473

Vidal, J. J. (1973). Toward direct brain-computer communication [PMID: 4583653].

Annual Review of Biophysics and Bioengineering, 2(1), 157–180. https://doi.

org/10.1146/annurev.bb.02.060173.001105

Walker, J. (2019). Haar wavelets. A primer on wavelets and their scientific applications

(pp. 1–28). CRC Press. https://books.google.nl/books?id=F-9VGmsdbdYC

Wang, P., Jiang, A., Liu, X., Shang, J., & Zhang, L. (2018). Lstm-based eeg

classification in motor imagery tasks. IEEE Transactions on Neural Systems

and Rehabilitation Engineering, 26(11), 2086–2095.

https://doi.org/10.1109/TNSRE.2018.2876129

Zhang, G., Davoodnia, V., Sepas-Moghaddam, A., Zhang, Y., & Etemad, A. (2020).

Classification of hand movements from eeg using a deep attention-based lstm

network. IEEE Sensors Journal, 20(6), 3113–3122. https://doi.org/10.1109/

JSEN.2019.2956998

63

A. Appendix

A.1 Initial hyperparameters

Variables Constant Values

Window size 512 ms

Skiptime start 800 ms

Skiptime end 200 ms

Preprocessing CSP + DWT + features

Table A1: The initial default values that are used for the first subtest are shown. The
constant values in the table are defined in milliseconds worth of data.

64

Classifier Parameter Constant Value

LR

Penalty l2

Solver lbfgs, saga

Learning Rate 1, 0.1, 0.01, 0.001

Maximum Iterations 100, 500, 1000

SVM

Kernel rbf

Learning Rate 1, 0.1, 0.01, 0.001

Maximum Iterations 100, 500, 1000

TCN

Epochs 50

Learning Rate 1, 0.1, 0.01, 0.001

Batch Size 100

Optimizer Adam

Dilations 6

Kernel Size 4

Stacks 1

Normalization Layer

Dropout Rate 0.001

Filter 3

LSTM

Epochs 100

Learning Rate 0.001

Batch Size 64

Optimizer Adam

Normalization Batch

LSTM-cell Dropout Rate 0.4

Loss Function Crossentropy

Table A2: The initial hyperparameters used for the first sub-study are shown. In the
case of multiple values, they were all considered individually with only the model with
the highest validation accuracy being included in the results tables.

65

A.2 CSP settings

Classifier Regularization
Train

Accuracy

Validation

Accuracy

Test

Accuracy

None 59.83 49.70 54.27

Empirical 55.59 51.50 55.96

Diagonal Fixed 45.67 41.36 36.53

Ledoit Wolf 55.05 50.30 54.79

SVM

PCA 51.00 45.14 51.30

None 61.53 49.53 54.53

Empirical 61.53 49.53 54.53

Diagonal Fixed 58.41 38.87 50.78

Ledoit wolf 64.24 48.58 53.37

LR

PCA 58.96 43.59 53.24

Table A3: The regularization of CSP is tested with two classifiers. Since the LR
gives the same result for two regularizations, there is decided to take the empirical
regularization, as that is also the best regularization with the SVM. The logic behind
this decision is that the preprocessing changes the data in a form that contains
more informative data for the classifiers, and there should be some overlap in what
is useful for the classifiers. This can also be seen in the results of the different
preprocessing techniques in Table 8.3, where the same preprocessing resulted in
the highest validation accuracy for all classifiers.

Figure A1: The accuracies of LR are shown to examine the effects of the amount
of CSP components. It can be seen that the validation accuracy is optimal with four
components.

66

Figure A2: The accuracies of SVM are shown to examine the effects of the amount
of CSP components. It can be seen that the validation accuracy is optimal with
five components. However, the difference with four components is very small and
therefore there is decided to use the simplest model, that also reached the highest
accuracy with LR.

A.3 Hyperparameters of classifiers

Learning

Rate

Train

Accuracy

Validation

Accuracy

0.01 56.39 47.12

0.01 56.53 46.52

0.01 56.79 46.26

0.01 49.55 46.00

0.01 56.71 44.97

0.01 53.53 44.63

0.01 55.63 44.54

0.01 55.59 44.45

0.01 52.01 43.77

0.01 54.72 43.68

Table A4: Here you can see the top 10 models of the TCN from the earlier
preprocessor tuning. This is step 0 in Table 8.4 with the corresponding results from
Table 8.3. It can be noticed that all learning rates are the same, while there were four
different learning rates tested. Therefore, this learning rate is also used as a constant
in the subsequent experiments.

67

Solver Penalty
Learning

Rate

Maximum

Iterations

Train

Accuracy

Validation

Accuracy

Test

Accuracy

none 0.01 500 58.31 46.78 54.27
lbfgs

l2 1 1000 58.31 46.69 54.79

none 0.001 500 57.80 46.35 54.40
newton-cg

l2 1 500 58.27 46.69 54.66

none 0.001 500 57.40 46.69 53.89
sag

l2 0.1 1000 57.33 47.12 54.40

none 0.1 500 56.89 47.55 54.66

l2 1 500 56.82 47.55 54.53

l1 1 1000 57.29 47.29 54.66
saga

elasticnet 1 1000 57.40 47.21 54.53

Table A5: The results for determining the best solver and penalty for the LR classifier
are shown. There are two models that have the highest validation accuracy. The
highlighted line without penalty is preferred, as it has a higher accuracy on the training
set.

Kernel Gamma
Learning

Rate

Maximum

Iterations

Train

Accuracy

Validation

Accuracy

Test

Accuracy

scale 0.01 1000 55.70 48.75 53.24
linear

auto 0.01 1000 55.70 48.75 53.24

scale 1 1000 59.65 48.50 56.09
poly

auto 0.1 1000 65.47 46.00 51.81

scale 1 1000 58.89 49.01 56.09
rbf

auto 1 1000 70.50 47.55 55.96

scale 0.1 1000 48.72 45.57 56.35
sigmoid

auto 1 1000 39.16 40.93 34.84

Table A6: The results of the SVM classifier are shown with different values for the
kernel and gamma. The model with the highest validation accuracy is highlighted.

68

Learning Rate Iterations
Train

Accuracy

Validation

Accuracy

Test

Accuracy

250 55.95 47.29 55.18

500 56.89 47.55 54.66

750 57.37 47.21 54.40

1000 57.37 46.60 53.89

1250 57.73 46.52 54.15

2

1500 57.84 46.09 53.89

250 55.95 47.29 55.18

500 56.89 47.55 54.66

750 57.33 47.21 54.40

1000 57.37 46.60 53.89

1250 57.73 46.52 54.15

1

1500 57.84 46.09 53.89

250 55.95 47.21 55.18

500 56.89 47.55 54.66

750 57.33 47.21 54.40

1000 57.37 46.69 53.89

1250 57.73 46.52 54.15

0.1

1500 57.84 46.00 53.89

250 55.92 47.21 55.18

500 56.89 47.55 54.66

750 57.33 47.21 54.40

1000 57.37 46.60 54.02

1250 57.73 46.52 54.15

0.01

1500 57.84 46.00 53.89

250 55.95 47.29 55.18

500 56.89 47.55 54.66

750 57.33 47.21 54.40

1000 57.37 46.69 54.02

1250 57.73 46.52 54.15

0.001

1500 57.84 46.00 53.89

Table A7: The results of the LR can be viewed with the different learning rates and
iterations. This shows that 500 iterations gives the highest and same results for each
learning rate. To determine the learning rate, successive learning rates with the same
number of iterations are compared. Light green indicates a higher accuracy and light
red indicates a lower accuracy compared to any of the successive learning rates with
the same number of iterations. With these small differences, a learning rate of ”1” is
selected because it has two light green boxes and the accuracy decreases slightly
after this point.

69

Learning Rate Iterations
Train

Accuracy

Validation

Accuracy

Test

Accuracy

250 32.9 33.36 33.42

500 32.94 33.19 33.42

750 61.13 48.07 54.4

1000 61.24 48.93 55.31

1250 61.38 49.10 55.31

2

1500 61.35 49.10 55.57

250 32.9 27.17 37.31

500 32.94 32.42 39.51

750 61.13 48.93 56.09

1000 61.24 49.01 56.09

1250 61.38 49.01 56.22

1

1500 61.35 49.01 56.22

250 35.47 27.34 39.38

500 35.61 31.38 39.77

750 50.85 45.66 50.65

1000 52.12 48.24 58.68

1250 52.12 48.24 58.68

0.1

1500 52.12 48.24 58.68

250 35.5 28.89 38.21

500 36.95 33.02 40.54

750 38.00 34.74 37.05

1000 34.46 33.28 33.16

1250 34.46 33.28 33.16

0.01

1500 34.46 33.28 33.16

250 35.03 28.29 37.95

500 36.66 32.76 39.51

750 37.42 34.57 36.79

1000 34.46 33.28 33.16

1250 34.46 33.28 33.16

0.001

1500 34.46 33.28 33.16

Table A8: The results of the SVM are shown with the different learning rates and
iterations. This shows that a learning rate of 2 with 1250 iterations results in the
highest validation and training accuracy.

70

Kernel Size Dilations Stacks Receptive Field
Validation

Accuracy

3 6 2 253 48.50

4 5 1 94 47.82

3 4 2 61 46.95

4 4 1 46 46.84

Table A9: Four models are shown with a varied receptive field of the TCN. There is
varied between 4, 5 or 6 dilations, 2, 3 or 4 kernels and 1 or 2 stacks. By grouping
in a different order with the kernel size, dilations and stacks, the optimal models
appear to have a different combination of hyperparameters. Those different models
are shown. The validation accuracy here is the average of all TCN models with the
hyperparameters described. It is notable that a larger receptive field, that takes more
features into consideration, results in a higher average validation accuracy.

Dilations Kernel Size Stacks Receptive Field Train Accuracy Validation Accuracy

4 3 2 61 52,70 50,39

5 2 2 63 53,24 50,13

5 3 2 125 52,08 49,44

6 3 2 253 53,75 49,36

4 3 2 61 49,19 49,27

5 4 1 94 55,05 49,18

5 3 2 125 53,09 49,18

5 2 2 63 52,15 49,10

5 2 1 32 52,44 49,10

5 2 2 63 51,97 49,10

Table A10: The top 10 models of the TCN receptive field experiment are shown. It can
be noticed that most of the models do not consider all 144 features. The explanation
for the contradiction with the results from Table A9 is that only a part of the features
proves to be useful, which causes the average accuracy to be lower when not all
features are considered. Furthermore, a possible explanation is that there is an overfit
when all the features are considered. This explains that most of the models in the top
10 do not include all features. Therefore, it was decided to adopt the hyperparameters
of the best model. It has been remembered for this decision that the training of the
TCN must eventually run several times because of the initialization of the random
weights.

71

Figure A3: The results of the different normalizers of the TCN are shown. It was
decided to use layer normalization as best normalizer, because it shows a greater
improvement at the end and therefore has a higher potential for a better model if more
training epochs are used.

Batch-size Learning Rate Optimizer
Train

Accuracy

Validation

Accuracy

10 0.01 sgd 51,32 50,82

10 0.01 sgd 50,34 50,04

300 0.1 sgd 51,14 49,87

10 0.01 sgd 51,07 49,79

100 0.1 sgd 45,02 49,61

50 0.01 sgd 51,32 49,27

50 0.1 sgd 49,37 49,10

10 0.001 sgd 51,39 49,01

50 0.01 Adam 50,63 49,01

100 0.1 sgd 51,25 48,93

Table A11: The top 10 models of the results of the TCN learning related setting
are shown. It can be concluded that optimizer ’sgd’, with learning rate 0.01 and
batch size 10 are the most frequent models in the top 10 and are therefore the best
hyperparameters.

72

