
Master Project Business Analytics

Optimizing the consultant-to-project
assignment problem using

Hybrid-Evolutionary Algorithms

Written by:
Sander Steur
Studentnr. 2675178

Supervisors: Karine Miras & Guszti Eiben
Second reader: Alessandro Zocca
Daily supervisor 1: Joost van der Ploeg (BearingPoint)
Daily supervisor 2: Bram Zentveld (BearingPoint)

A thesis submitted in fulfillment of the requirements for Master
of Science degree in Business Analytics - Optimization of Business Processes

November 28, 2024

Abstract

This research addresses the Consultant-to-Project Assignment (C2Pa) prob-

lem at BearingPoint Netherlands, a challenge in the consultancy industry that

focuses on optimizing consultant assignments to various projects to enhance

operational efficiency. The traditional approach relies heavily on the intuition

and experience of the Operational Team Lead (OTL) Team, making it a time-

consuming and potentially biased process. This study investigates the imple-

mentation of meta-heuristic techniques to solve the C2Pa problem, specifically

examining the efficiency and efficacy of local search.

Key Performance Indicators including Consultant Satisfaction, Skill Match,

Hourly Cost, Utilization Rate, and the number of declined projects were used

to evaluate assignment effectiveness. A meta-heuristic framework for simulta-

neous scheduling and staffing problems was developed, building upon random

key representation that incorporates project selection, consultant assignment,

skill division, and project scheduling. Two meta-heuristic algorithms were im-

plemented: a Biased Random Key Genetic Algorithm (BRKGA) and a Scatter

Search Algorithm (SS).

Experimental results demonstrate that the Scatter Search models outperform

the BRKGA models in their current implementation. The implementation of

local search techniques did not yield statistically significant improvements and

significantly reduced efficiency. The model has proven its scalability by ef-

fectively handling large problem instances. The study recommends utilizing a

fixed 2-week start time window for project scheduling to enhance consultant sat-

isfaction and skill matching while maintaining cost-effectiveness. Additionally,

implementing business rules that restrict the allowed service line and introduce

minor flexibility in job positions of a team member role led to a robust model

that aligns with the recommendations of the OTL team.

Contents

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Problem Description . 1

1.2 Relevance of the problem . 5

1.3 Research Questions . 6

1.4 Research Outline . 6

2 Problem Context 8

3 Literature Review 11

3.1 Problem base . 11

3.2 Application of Meta-heuristics . 13

3.2.1 RCPSP . 13

3.2.2 RCMPSP . 15

3.2.3 MSRCPSP . 16

3.2.4 MSRCMPSP . 18

3.3 Conclusion . 19

4 Data 21

4.1 Consultant Capability Data . 21

4.2 Consultant Availability Data . 22

4.3 Project Data . 23

5 Existing MILP model 27

i

CONTENTS

6 Methodology 30

6.1 Encoding . 30

6.1.1 Search Space Reduction . 31

6.1.2 Project Selection . 31

6.1.3 Consultant Selection . 32

6.1.4 Skill Division . 33

6.1.5 Time Windows . 33

6.2 Decoding . 34

6.3 Objective Function . 37

6.3.1 Satisfaction KPI . 37

6.3.2 Skill Match KPI . 38

6.3.3 Hourly Cost KPI . 40

6.3.4 Utilization Rate KPI . 40

6.3.5 Weighting the KPIs . 41

6.3.6 Fitness Function . 43

6.4 Local Search . 44

6.4.1 Consultant Swap . 45

6.4.2 Skill Swap . 46

6.5 BRKGA . 49

6.5.1 Methodology . 49

6.5.2 Hyperparameter Tuning . 53

6.6 Scatter Search . 56

6.6.1 Methodology . 56

6.6.2 Hyperparameter Tuning . 60

7 Evaluation of Results 62

7.1 Verification of Models . 63

7.1.1 Skill Match KPI . 63

7.1.2 Satisfaction KPI . 64

7.1.3 Hourly Cost KPI . 65

7.1.4 Utilization KPI . 66

7.2 Validation of Models . 68

7.3 Comparison to MILP . 69

7.4 Experiment Instance Size . 70

7.4.1 Instance size 3 . 72

ii

CONTENTS

7.4.2 Instance size 6 . 75

7.4.3 Instance size 12 . 78

7.4.4 Instance size 24 . 81

7.4.5 Conclusion Instance Size Experiment 84

7.4.6 Analysis Convergence Speed . 84

7.5 Experiment Flexible Time Windows . 85

7.6 Experiment Business Rules . 88

7.6.1 STRICT Rules . 89

7.6.2 SL+POS Rules . 89

7.6.3 SL Rules . 90

7.6.4 POS Rules . 91

7.6.5 No Rules . 91

7.6.6 Conclusion Business Rules . 92

8 Conclusion 93

9 Discussion 96

References 99

10 Appendix 104

10.1 MILP model . 104

10.2 Unsuccessful Models . 111

10.2.1 Gradient-Based Optimization . 111

10.2.2 Symbiotic Organisms Search . 112

10.3 Flexible time window results SS+LS . 114

iii

List of Figures

1.1 Overview of manual C2Pa procedure . 2

1.2 Overview of criteria and C2Pa stakeholders 4

4.1 Distribution of consultants over the job positions 22

4.2 Distribution of consultants over the service lines 22

4.3 Distribution of team members per project 24

4.4 Distribution of total skills per project . 24

4.5 Relation between team members per project and skills per project 24

4.6 Distribution of team member role utilization 25

4.7 Distribution of project durations . 26

6.1 Project priority decoding . 35

6.2 Start time decoding . 35

6.3 Consultant decoding . 36

6.4 Skills decoding . 36

6.5 Two-point crossover . 50

6.6 Reproduction BRKGA . 50

6.7 Schematic overview BRKGA . 53

6.8 Boxplots of objective values of hyperparameter sets BRKGA 56

6.9 Illustrative overview Scatter Search . 59

6.10 Boxplots of objective values of hyperparameter sets SS 61

7.1 Convergence curve BRKGA vs BRKGA+LS of instance size 3 73

7.2 Convergence curve SS vs SS+LS of instance size 3 73

7.3 Boxplots of objective values of the models of instance size 3 74

7.4 Convergence curve BRKGA vs BRKGA+LS of instance size 6 76

7.5 Convergence curve SS vs SS+LS of instance size 6 76

iv

LIST OF FIGURES

7.6 Boxplots of objective values of the models of instance size 6 77

7.7 Convergence curve BRKGA vs BRKGA+LS of instance size 12 79

7.8 Convergence curve SS vs SS+LS of instance size 12 79

7.9 Boxplots of objective values of the models of instance size 12 80

7.10 Convergence curve BRKGA vs BRKGA+LS of instance size 24 82

7.11 Convergence curve SS vs SS+LS of instance size 24 82

7.12 Boxplots of objective values of the models of instance size 24 83

7.13 Polynomial Regression Fit on Convergence Time SS 85

7.14 Convergence curves business rules experiment 92

10.1 Fitness curve GBO Best vs Average . 112

v

List of Tables

3.1 Comparison of RCPSP approaches based on features 15

3.2 Comparison of RCMPSP approaches based on features 16

3.3 Comparison of MSRCPSP approaches based on features 17

3.4 Comparison of MSRCMPSP approaches based on features 18

4.1 Cost per hour per job position . 22

6.1 BRKGA parameter grid . 54

6.2 BRKGA tuning top 5 results . 55

6.3 Scatter Search parameter grid . 60

6.4 Scatter Search tuning top 5 results . 61

7.1 Skill match verification results . 64

7.2 Skill match C66 and C69 . 64

7.3 Required skill level and consultant skill level 64

7.4 Satisfaction verification results . 65

7.5 Satisfaction scores of consultants 66 and 69 65

7.6 Hourly cost verification results . 65

7.7 Verification client projects over internal projects 66

7.8 Verification full-time projects over part-time projects 67

7.9 Verification long-term projects over short-term projects 67

7.10 Results of MILP . 70

7.11 Results of BRKGA . 70

7.12 Results of Scatter Search . 70

7.13 Results experiment instance size 3 . 73

7.14 Results experiment instance size 6 . 76

7.15 Results additional experiments instance size 6 78

vi

LIST OF TABLES

7.16 Results experiment instance size 12 . 80

7.17 Results additional experiment instance size 12 81

7.18 Results experiment instance size 24 . 83

7.19 SS results experiment flexible time windows 87

7.20 Data description of business rules experiment 89

7.21 Results experiment business rules . 89

10.1 SS+LS results experiment flexible time windows 114

vii

1

Introduction

1.1 Problem Description

Bearingpoint is an independent management and technology consultancy company that

offers services in three business units: Consultancy, Products and Capital. The company

has a global consulting network and supports clients in over 70 countries. The Amsterdam

office is organized into four departments: Customer & Growth, People & Strategy, Data &

Analytics, and Technology. Each of these departments represents a crucial facet of Bear-

ingPoint’s service offerings, allowing the company to address a wide array of client needs

with specialized expertise. This research, conducted within the Data & Analytics depart-

ment but applied to all departments of BearingPoint Netherlands (BE NL), sheds light on

a challenge that affects not just this department, but the entire consultancy industry: the

Consultant-to-Project assignment (C2Pa) problem.

The C2Pa problem originates from the fundamental nature of consultancy work and the

interaction between client demands and the availability of skilled consultants. It entails

assigning the appropriate personnel to specific projects. Currently, at BearingPoint, a

dedicated team known as the OTL (Operational Team Lead) Team manages these staff

allocations. This team relies heavily on accumulated experience and intuition to make in-

formed decisions about consultant assignments on a recurring basis. Their work is crucial,

as it directly impacts both client satisfaction and the company’s operational efficiency.

However, while functional, this approach has significant limitations that become increas-

ingly apparent as the company grows and takes on more projects. The manual labor

involved in this process is its primary drawback, as it is excessively time-consuming and

lacks the capacity for reasonable long-term planning. The manual assignment process is

visualized in Figure 1.1 (created by (1)). The procedure can be summarized as follows:

1

1.1 Problem Description

The procedure is initiated with a valid incoming resource request that is connected to one

or more service lines. Depending on whether the needed service lines are clear, the OTL

team selects the appropriate consultants based on common sense, consultant availability,

and business rules. This can be done by a service-line-specific OTL member or by a team

during the weekly OTL meeting. If an OTL member fails to find a suitable consultant,

the selection process moves to the weekly OTL meetings. There, potential matches are

discussed. If a match is found, the consultant is contacted for confirmation. Should no

appropriate match be identified, even after these discussions, the incoming project is ulti-

mately rejected. This process ensures thorough consideration of all options before rejecting

any project. Addressing this complicated problem, while juggling multiple projects and

diverse interests, is a complex balancing act. It requires significant time and intuition but

often results in sub-optimal decisions.

Figure 1.1: Overview of manual C2Pa procedure

The C2Pa process at BearingPoint can be triggered by various factors, with incoming

project requests from clients being a primary driver. In addition, internal projects and

initiatives also require careful allocation of resources. Regardless of the trigger, the ob-

jective remains consistent: to optimize resource allocation while balancing multiple, often

competing, objectives and requirements.

The objective of this study, while seemingly straightforward, is more complex upon closer

examination. It comprises five components, which we will refer to as Key Performance

Indicators (KPIs). These KPIs help measure the success and efficiency of consultant al-

location in project management. The first KPI, Consultant Satisfaction KPI, focuses on

the satisfaction of the consultant, specifically the willingness to work on and enjoyment

2

1.1 Problem Description

that is obtained by being assigned to the skills within projects. This KPI should measure

the average satisfaction of all consultants assigned to projects based on the characteristics

of the project and the wishes of the consultant. The second KPI in our framework is the

Skill Match KPI. This indicator measures the alignment between consultants’ proficiencies

and the skill requirements of their assigned projects. The goal is to achieve a value as

close to zero as possible for this KPI. This approach serves two main purposes: it ensures

consultants have sufficient expertise for their projects while preventing the assignment of

overqualified consultants. By targeting a near-zero Skill Match KPI, the allocation pro-

cess aims to create an optimal balance where consultants are neither under-challenged nor

overqualified. This balance is expected to improve project results, resource efficiency, but

also in some sense consultant satisfaction.

The third KPI, Hourly Cost KPI, tracks the weighted average hourly cost of consultants

assigned to accepted projects. This is related to the fact that more expensive consul-

tants are more experienced and have more skills. This should balance the assignment of

experienced and less-experienced consultants. The fourth KPI, Utilization Rate KPI, is

self-explanatory; however, it is focused on the utilization of consultants in client projects,

as these drive revenue for BearingPoint. As a result, external projects will have priority

over internal projects. Lastly, the number of declined projects acts as a penalty mecha-

nism. This penalty is designed in such way that the priority is to accept as many projects

as possible. Figure 1.2 (created by (1)) gives a clear overview of the C2Pa stakeholders

and their needs, and presents how different KPIs relate to the business setting.

Optimizing the aforementioned KPIs must be done within the constraints of the consul-

tants’ available net working hours. This optimization process is further complicated by the

fact that accepting projects reduces the remaining availability of consultants, potentially

leading to declining a portion of incoming project requests. Therefore, it requires care-

ful consideration of resource allocation, project prioritization, and long-term consultant

availability.

The Data & Analytics department of BearingPoint has done a considerable amount of

research on the C2Pa problem already. The goal of previous research was to make the

C2Pa problem structured and unambiguous. As part of the research, a tool was made that

could solve the C2Pa process to optimality, to be more precise an exact algorithm in the

form of a Mixed-Integer Linear Program. The research of Zentveld (1) concluded that it

is possible to make the C2Pa procedure structured, ambiguous, objective, balanced for all

3

1.1 Problem Description

Figure 1.2: Overview of criteria and C2Pa stakeholders

involved stakeholders, transparent, and enables long-term planning. The performance of

the model is quite impressive, as small instances, e.g. instances of 15 to 23 consultants and

9 to 14 projects, can be solved to optimality within reasonable time. However, Zentveld

(1) also indicates that the relationship between instance size and computational effort has

an exponential trend. This will cause serious feasibility problems when anticipating on

expanding the team or in most ideal scenario running the model over the whole Dutch

practice, consisting of approximately 100 consultants. This scalability issue is a critical

concern for practical implementation. As the number of consultants, projects, and vari-

ables grow, the computational complexity of the problem increases. Consequently, finding

optimal solutions becomes increasingly time consuming, potentially causing the algorithm

to be impractical for real-time decision-making in larger instances, as the computational

time increases exponentially with increasing problem size.

This problem opens up the opportunity to explore the field of non-exact optimization algo-

rithms, called meta-heuristics. This field includes techniques that aim to find good, but not

necessarily optimal, solutions to complex optimization problems where exact methods face

significant challenges. Since these algorithms are very computationally efficient compared

to exact methods, this research will be centered on the implementation of meta-heuristics

4

1.2 Relevance of the problem

combined with local search variants on the C2Pa problem. Meta-heuristics contain hy-

perparameters that significantly influence their performance and efficiency. The tuning of

these hyperparameters is a critical aspect, as it directly impacts the algorithm’s ability to

find optimal or near-optimal solutions. A thorough tuning procedure will be conducted, fol-

lowing a systematic approach informed by existing research, to optimize parameter values.

The meta-heuristics will be compared to the MILP model of Zentveld (1) where possible,

and additionally, they will be exposed to multiple experiments. These experiments will

be based on a data instance that contains the information of the entire BearingPoint NL

practice. This implies that the base data instance is already significantly larger in terms

of consultants and number of different skills compared to the research of Zentveld (1), but

initially smaller in terms of projects.

1.2 Relevance of the problem

The consultant-to-project assignment (C2Pa) problem is a crucial business process for

BearingPoint. As a consulting company, efficiently assigning consultants to client projects

is essential for BearingPoint’s operations and financial performance.

The C2Pa process involves strategically matching the needs of BearingPoint with the needs

of its clients. From the company’s perspective, efficient resource allocation and low consul-

tant assignment costs are vital for profitability and cost-effectiveness. In addition, ensuring

consultant satisfaction and providing opportunities for employees are crucial to maintaining

a motivated and skilled workforce.

On the other hand, clients expect high-quality project delivery, which requires assigning

consultants with the appropriate skills and expertise to their projects. Failure to do so can

result in dissatisfied clients, damaged reputation, and the possible loss of future business

opportunities.

Currently, BearingPoint relies on a dedicated team to manage project staff assignments

manually, using accumulated experience and intuition. However, this manual process is

time-consuming, lacks the ability to plan reasonably far ahead, and becomes increasingly

challenging as the company expands and takes on more projects. By developing an efficient

C2Pa model, BearingPoint aims to streamline the consultant-to-project assignment pro-

cess, reduce the manual effort involved, and enable more proactive planning. The primary

objective of this research thesis is to investigate the feasibility of implementing efficient

5

1.3 Research Questions

meta-heuristic techniques for the practice-wide C2Pa problem that could be utilized as a

decision support tool by the OTL team.

The proposed meta-heuristic models of this research could help BearingPoint in multiple

ways. First, the models should be adaptive to the needs of the company, that is, changing

preference in strategic objectives should be reflected in the resulting solutions. Second, the

models could give strategic insights to the C2Pa procedure by, for example, demonstrating

what the effect is of having a more flexible starting date are in terms of strategic objectives.

Third, it should give the OTL team the opportunity to adress the assignment of consultants

on multi-service-line projects, as cooperation between different service-lines is common

within the consultancy industry.

1.3 Research Questions

Based on the description of the problem and the relevance of the problem, the following

main research question can be stated:

Does the implementation of local search boost the performance of meta-heuristics in solving

the Consultant-to-Project Assignment (C2Pa) problem at BearingPoint NL, specifically

focusing on efficiency and efficacy?

Other questions that will be investigated in this research are:

• What are the effects on the generated solutions when increasing the instance size of

the problem and what are the limits of the models?

• What are the effects on the generated solutions when varying the starting time win-

dows of incoming projects?

• What are the effects on the generated solutions in terms of convergence speed and

solution quality when implementing business rules that restrict the availability of con-

sultants?

1.4 Research Outline

The remainder of the research is outlined as follows: in Chapter 2, the limitations and

requirements related to the C2Pa procedure will be explained. In the next chapter, Chap-

ter 3, the C2Pa problem is compared to existing research and its place within the current

6

1.4 Research Outline

literature is established. In addition, the foundational problem base will be established, suc-

ceeded by a comprehensive review of existing meta-heuristic models. The insights derived

from this analysis will inform the selection of models to be employed in the subsequent

implementation phase. Chapter 4 presents an explanation and an analysis of the data.

This will be followed by Chapter 5, which will describe the existing Mixed-Integer Linear

Program of Zentveld (1), covering its variables, objective function, and constraints.

Chapter 6 presents the methodology, including a comparison of different algorithmic ap-

proaches. This chapter will detail the solution representation, the decoding procedure, the

objective function, the local search approaches, and two meta-heuristic methods: BRKGA

with Shaking (and Local Search), and Scatter Search (with Local Search). The hyperpa-

rameter tuning process for each method will also be discussed. Chapter 7 will focus on the

evaluation of the results. This chapter will cover the verification and validation of models,

a comparison to OTL and MILP, experiments on instance size, flexible time windows, and

business rules. The evaluation will provide a comprehensive analysis of the methodologies

presented in Chapter 6. In these experiments, the impact of local search will be closely

examined by testing two versions of the models: one with local search implemented and

one without local search.

Chapters 8 and 9 present the conclusion and discussion of the research. These chapters

will critically analyze the results in relation to the research questions, discuss the study’s

limitations, and explore its implications. The conclusion will summarize key findings,

assess the achievement of research objectives, highlight contributions to the field, and

suggest directions for future research. Lastly, the research is finalized with an Appendix,

which can be found in Chapter 10. Here, additional results and two unsuccessful models

along with their corresponding problems are discussed.

7

2

Problem Context

The C2Pa procedure has to be executed while respecting some limitations. The limitations

or constraints listed below must be respected in the models to match reality as much as

possible.

• Non-preemptiveness: BE NL enforces a business rule that a project has to be executed

without any interruptions. A consultant should therefore be assigned to a project

from start to finish. This rule enables continuity for consultants and clients and

reduces the scheduling complexity.

• Team member constraints: The assignments are restricted by multiple rules: It is not

allowed to assign more than one consultant to a single team member role. Similarly,

all team member slots of an accepted project have to be filled. It is not allowed to

assign more than one consultant to a single skill, every skill within a project can only

be performed by one consultant. Lastly, it is not allowed to switch skills within a

project, a skill has to be executed by the same consultant from start to end.

• Time windows: Every request is obliged to submit a earliest and latest project start-

ing time, which can be identical. The starting date of a project has to be planned

within the interval. The strictness of this interval determines the availability of the

consultants and by that influences the performance of the C2Pa procedure.

• Consultants availability: To preserve realism and respect the working conditions of

the consultants, the OTL is only allowed to assign a consultant to a project if and

only if the whole project fits within the working hours of a consultant.

8

Besides constraints, the characteristics of the C2Pa problem connected to the complexity

also require an explanation. This will be referred to as the requirements, as the proposed

models should incorporate these items in order to meet the objectives of the C2Pa problem.

• Declining a project: According to BE NL, a project can only be declined if assigning

consultants would lead to violations of any kind.

• Scheduling: In the context of the C2Pa problem, scheduling is defined as determining

the starting time of an accepted project.

• Assignment: In the context of the C2Pa problem, assignment is referred to as match-

ing consultants to projects. The assignments are many-to-many as multiple projects

have to be filled with consultants, where consultants can be assigned to multiple

projects in case of part-time projects.

• Simultaneous scheduling and assignment: Combining scheduling and assignment

makes it so that C2Pa is a simultaneous scheduling and assignment problem. This

is a natural conclusion as the scheduling of projects directly influences the avail-

ability of the consultants and with that the possible assignments that can be made.

Consequently, scheduling and assigning are dependent on each other.

• Utilization: BE NL prioritizes project-based learning for management analysts and

consultants, aiming to maximize their project involvement. To meet annual utiliza-

tion targets, the OTL team strives to allocate 100% of these employees’ time to

projects. This approach helps mitigate potential utilization losses that could oc-

cur when there is a gap between project assignments. By consistently aiming for

full project allocation, the OTL team compensates for factors outside their control,

ensuring optimal utilization rates.

• Project Priority: In the C2Pa process, BE NL prioritizes projects based on several

key factors to optimize consultant utilization and maintain financial stability. The

priority order is as follows:

– Signed projects take priority over unsigned, non-chargeable work, or future

reservations. This ensures commitment to existing contracts.

– Existing client engagements and extensions are prioritized over new client projects,

fostering ongoing client relationships.

9

– Full-time assignments are favored over part-time projects. This simplifies the

C2Pa procedure and makes it easier to meet utilization targets.

– Long-term projects are preferred over short-term ones, as they provide more

financial stability for BE NL.

– Client projects are prioritized over internal projects to generate revenue, which

is crucial for the company’s financial health.

By incorporating these constraints and priorities, the C2Pa problem becomes more reflec-

tive of real-world scenarios and aligns closely with BE NL’s objectives. In addition to this,

the literature search becomes more targeted.

10

3

Literature Review

In this chapter, the existing literature will be consulted to discuss the problem base of

the consultant-to-project problem (C2Pa). The discussion conducted in Section 3.1 will

cover the considerations that led to the existing MILP model (1). In that section, different

variants of the main problem will be discussed, and the gaps between C2Pa and these

variants will be highlighted. The limitations and requirements mentioned in Chapter 2 will

be used to make judgements about each extension. Once the problem base has been set,

the emphasis will shift to the research field of meta-heuristics, which will start in Section

3.2. There, the application of meta-heuristics on the different variants of the problem base

will be discussed, the differences between the C2Pa problem base and the problem base

of the proposed papers, the applicability of the proposed models, the performance of the

proposed models, and relevant and/or unique elements of the proposed models will be

discussed.

3.1 Problem base

The constraints and requirements described in Chapter 2 will be used as the basis of

the literature search. As described in Chapter 2, the problem is two-fold, consisting of

a scheduling and a staffing phase. For C2Pa, the scheduling phase corresponds to deter-

mining the starting time of the projects. Each project has its own requirements, while

competing with each other for the availability of the consultants, which can be seen as lim-

ited resources. In 1964, Dike (2) standardized this problem as the Resource-Constrained

Project Scheduling Problem, abbreviated RCPSP. Rinnooy Kan et al. (3) have shown that

RCPSP belongs to the class of NP-hard problems. Briskorn and Hartmann (4) summarize

RCPSP as follows: A project consists of J activities, labeled from 1 to J. Each activity

11

3.1 Problem base

j has a duration dj and, once started, cannot be interrupted. Activities have precedence

relationships, defined by sets of immediate predecessors Pj . An activity j can only begin

after all its predecessors i ∈ Pj are completed. Resources, labeled k = 1 to K, are required

for activities. Each resource k has a per-period availability Rk. Activity j requires rjk units

of resource k during its execution. Two additional dummy activities, 0 and J+1, represent

the project’s start and completion respectively. These have zero duration and no resource

requirements. The model assumes all information is deterministic and known in advance,

allowing for precise planning and scheduling of activities within resource constraints and

precedence relationships.

The RCPSP model is not enough to fully comply with all the specifications of C2Pa. Firstly,

the RCPSP only considers a single project, whereas C2Pa needs to schedule a project

portfolio. An extension of RCPSP, the Resource-Constrained Multi-Project Scheduling

Problem (RCMPSP)(5), considers this scenario. Secondly, in the C2Pa problem, there

are multi-skilled consultants, which RCPSP does not have. The Multi-Skill Resource-

Constrained Project Scheduling Problem (MSRCPSP)(6) is capable of representing the

multi-skill workforce and at the same time scheduling the corresponding activities. An

extensive review of the literature of this extension can be found in the paper of Afshar-

Nadjafi (7). Combining these two extensions gives the final extension: the Multi-Skill

Resource-Constrained Multi-Project Scheduling Problem (MSRCMPSP). The purpose of

MSRCMPSP models comply with the goal of C2Pa, as a model is needed that is able to

simultaneously schedule the projects and assign the multi-skilled workforce to the project

activities.

However, some fundamental aspects inherited in MSRCMPSP should not be present in

C2Pa, and some fundamental aspects of C2Pa are not present in MSRCMPSP models.

An MSRCMPSP model considers the concept of tasks, the scheduling of tasks, and the

precedence relation between tasks within a project. This is different compared to C2Pa,

where the projects need to be scheduled and the consultants need to be assigned to skills

based on their availability, skill level and satisfaction score. The proposed model of Heimerl

and Kolisch (8) considers a simultaneous multi-project scheduling and multi-skilled staff

assignment model which solves the following problems and introduces the following con-

cepts: removes the concept of tasks, introduces internal and external projects, and is built

on the assumption that a consultant is assignable to multiple projects at the same period.

Although valuable, the model proposed by Heimerl and Kolisch (8) required further mod-

ifications to more accurately reflect the C2Pa process. Drawing inspiration from Zhu et

12

3.2 Application of Meta-heuristics

al. (9), an adaptation that imposes limits on project team sizes was implemented. This

enhancement was achieved by introducing a new parameter, Njk, which specifies the pre-

scribed number of consultants to be assigned to task j of project k. Other extensions are

connected to the KPIs of the problem, which will be discussed in more detail in Section 5

and 6.

3.2 Application of Meta-heuristics

The exploration for effective models starts from insights gained in the RCPSP research

area. By building upon the findings regarding RCPSP and extending the search to the

other variants, we aim to identify models that can be adapted or enhanced to better suit

the unique requirements of the C2Pa process. After each subsection, a table is presented

that compares the features of the approaches. In this table, the abbrevations MO, MS WF

and MP represent multi-objective, multi-skill workforce, and multi-project. Note that the

emphasis will primarily be on the algorithmic features of the models and their performance

compared to competitors, rather than the strength of resemblance to C2Pa. This decision

has been made since the representation of the problems are quite similar and the emphasis

is more on the capability of finding (close to) optimal solutions in a complex search space.

3.2.1 RCPSP

The Resource-Constrained Project Scheduling Problem is the standard problem and can be

extended to the other variants. Consequently, a lot of research has been done on this prob-

lem. To give an overview of the latest techniques, Pellerin et al. (10) conducted a survey of

hybrid meta-heuristics applied to RCPSP. These algorithms combine meta-heuristics with

a type of schedule improvement procedure. In total, 36 methods are compared on the stan-

dard test sets of the library PSPLIB (11). Debels and Vanhoucke (12) and Paraskevopoulos

et al. (13) propose two promising models.

Debels and Vanhoucke (12) deployed a Bi-population Genetic Algorithm (BPGA) to mini-

mize the makespan of a project. With this approach, they managed to achieve the highest

performance in multiple instances. The problem has been translated into the Activity List

representation. They used 2-point crossover based on a 2-tournament parent selection pro-

cedure on parents of one population, and fed the children to the other population. In the

context of genetic algorithms, parents are referred to as individuals whose genetic material

is combined in the recombination step, while children are the offspring that follow from

13

3.2 Application of Meta-heuristics

the combination of parents. The characteristics of the populations are distinct, since one

is left-justified and the other right-justified. A conditional diversification method was used

to avoid a homogeneous population. Additionally, forward/backward scheduling was used

as a local search procedure. The survey suggests that BPGA has superior performance

combined with excellent schedule computation speed.

Paraskevopoulos et al. (13) deployed a Scatter Search algorithm with Adaptive Iterated

Local Search, shortened to SS-AILS. In the same survey, this model was ranked among

the top performers. The Event-List representation has been used in the evolution process.

The algorithm uses reference sets that operate on the event-list representation, and consists

of an initial phase, in which diverse solutions are built, and a scatter search phase. The

fact that it uses reference sets indicates that the algorithm is population-based. SS-AILS

has two components, an adaptive perturbation strategy that modifies the current solution,

and a local search procedure that consists of compound moves and neighborhood structures

which are based on memory. The performance of this algorithm is excellent, however, it

struggles speed-wise when the instances become significantly larger.

The algorithm proposed by Almeida et al. (14), while not covered in Pellerin’s review, of-

fers a flexible implementation that is advantageous for addressing the potentially complex

extensions of C2Pa. This approach employs a Biased Random Key Genetic Algorithm with

a Random-Key representation, encoding the chromosome as a vector of uniform random

numbers between 0 and 1. A chromosome is a representation vector that’s specifically

tailored to the genetic algorithm’s problem domain. This representation translates the

problem into a priority-based permutation, enabling manipulation by evolutionary oper-

ators. The algorithm incorporates an elitist selection procedure and a uniform crossover

strategy that always pairs an elite parent with a non-elite one. Crossover is simply the pro-

cess of exchanging genetic material between two parent chromosomes to create offspring.

Additionally, it replaces a percentage of the worst-performing individuals with randomly

generated mutant vectors. Despite the challenges of direct performance comparisons due

to differing test instances, the algorithm demonstrates notable ability to find near-optimal

solutions, suggesting its potential effectiveness for C2Pa applications.

Table 3.1 provides a comprehensive overview of the approaches discussed above. It should

be noted that RCPSP models do not align with the specifications of C2Pa in any of the

categories. However, the model specifications reveal that implementation allows for various

problem-solving strategies. Some representations are more tailored to specific problems,

14

3.2 Application of Meta-heuristics

Algorithm Representation MO MS WF MP Precedence Project selection Skill division Population
Debels & Vanhoucke BPGA Activity-List × × × ✓ × × ✓

Paraskevopoulos et al. SS-AILS Event-List × × × ✓ × × ✓

Almeida et al. BRKGA Random Key × × × ✓ × × ✓

C2Pa - - ✓ ✓ ✓ × ✓ ✓ -

Table 3.1: Comparison of RCPSP approaches based on features

while others, such as Random-Key, demonstrate versatility across a wide range of problems.

The analysis suggests that a population-based algorithm, complemented by intensification

and diversification procedures, appears to be the most promising approach to address the

RCPSP. To bridge the gap between RCPSP models and C2Pa requirements, the subsequent

sections will explore extensions that should offer additional specifications in their models.

These extensions aim to address missing model specifications, potentially leading to a more

suitable solution for the C2Pa problem.

3.2.2 RCMPSP

The first paper by Goncalves et al. (15) introduces a Biased Random Key Genetic Algo-

rithm designed to address the RCMPSP. The problem is encoded using a random key-based

chromosome representation that includes priorities, delay times, and release dates. The

values in the random key vector correspond to the priority of the activities. A heuristic

approach that uses the priority values of the chromosome generates the so-called active

schedules. Identical to the approach of (14), a biased reproduction procedure is imple-

mented combined with an elitist survival strategy and a mutant replacement strategy used

as mutation. The parameterized uniform crossover was implemented opposed to the fre-

quently used 1 or 2-point crossover.

Bredael and Vanhoucke (16) follow a similar algorithmic design by creating a Genetic

Algorithm. The GA is driven by the random key chromosome representation. Several

schedule generators are implemented that are based on either the random key vector,

priority rules, measurements, or scheduling techniques. After extensive experiments, they

concluded that the best configuration consists of 2-point crossover, a high mutation rate

and a tournament-fitness parent selection operator. In their performance analysis, the

proposed GA achieved superior performance over ten other meta-heuristics in a fifth of the

instances.

Table 3.2 presents an overview of the comparison between C2Pa and the two discussed

papers. Adding the multi-project aspect to the problem gives no indication on how project

15

3.2 Application of Meta-heuristics

Algorithm Representation MO MS WF MP Precedence Project selection Skill division Population
Goncalves et al. BRKGA Random Key × × ✓ ✓ × × ✓

Bredael & Vanhoucke GA Random Key × × ✓ ✓ × × ✓

C2Pa - - ✓ ✓ ✓ × ✓ ✓ -

Table 3.2: Comparison of RCMPSP approaches based on features

selection should be handled, since the papers only address the scheduling of the activities

within the projects. Moreover, the presence of precedence conflicts with the requirements

of C2Pa. The papers indicate that any kind of GA combined with the random key repre-

sentation should be best suited for the problem. Goncalves et al. (15) and Bredael and

Vanhoucke (16) explain that the choice for the RK-representation was made because it

showed convergence capability, has an effective solution structure, it is adaptable to vari-

ous problem constraints, it allows flexibility in schedule generation, and it suits the genetic

algorithm framework perfectly. Despite the absence of most of the requirements of C2Pa,

like multi-skilled workforce, skill division and project selection, this section has given great

insights on a promising representation and evolutionary framework.

3.2.3 MSRCPSP

The Multi-skill/mode Resource-Constrained Project Scheduling Problem extends the base

problem by introducing either a multi-skilled workforce or multiple execution modes. It has

been decided to merge these two variants in one section as the notions share similarities.

The multi-mode extension is an active research field. For example, the instance test dataset

PSPLIB by Kolisch and Sprecher (11) is often utilized to benchmark promising algorithms.

Another benchmark is the MMLIB instance set by Van Peteghem and Vanhoucke (17).

In the same paper, an investigation is executed that compares meta-heuristics on these

instances.

Maghsoudlou et al. (18) explored multiple algorithms to solve the multi-skilled RCPSP.

A bi-objective problem was solved using multiple random key vectors where the solutions

were ranked using the non-dominated ranking method. In their problem, each activity

needed one worker and at least one skill, indicating that skill division is included. The

proposed random key representation ensured feasibility. An analysis concluded that the

Fuzzy Sorting Cuckoo Search algorithm, which employed an invasive weeds algorithm, was

the best algorithm overall.

16

3.2 Application of Meta-heuristics

Machado et al. (19) proposes a Genetic Algorithm + Variable Neighborhood Search algo-

rithm that solves the multi-mode RCPSP. The initial population is generated by randomly

selecting priority rules. The variable neighborhood search consists of two neighborhood

moves that act on the activity-list representation. Moreover, a uniform crossover and swap

mutation operator were implemented. In terms of performance, this algorithm does not

show significant statistical differences in percentage deviation compared to the top four

meta-heuristics in the PSPLIB benchmark. Additionally, it outperforms state-of-the-art

algorithms in small- and medium instances.

In the experimental investigation of Van Peteghem and Vanhoucke (17), the Scatter Search

algorithm of Van Peteghem and Vanhoucke (20) noted the most impressive performance in

large instances. The scatter search algorithm makes use of a random key solution vector,

which determines the sequence of activities, and a mode list. After initialization, the

population is split into two smaller reference sets, where one set contain good solutions

and the other diverse solutions. These sets are submitted to a subset generation method in

which pairs of solutions are made for the recombination procedure. The 2-point crossover

procedure was found to be the most successful. Last, a cycle of improvement methods and

two local search methods is applied to the solutions, after which the reference sets need to

be updated. The algorithm not only exhibits outstanding performance, but also proves to

be highly efficient.

Algorithm Representation MO MS WF MP Precedence Project selection Skill division Population
Maghsoudlou et al. FSCS Random Key ✓ ✓ × ✓ × ✓ ✓

Machado et al. GA-VNS Activity-List × ✓ × ✓ × × ✓

Peteghem and Vanhoucke SS RK+ML × ✓ × ✓ × × ✓

C2Pa - - ✓ ✓ ✓ × ✓ ✓ -

Table 3.3: Comparison of MSRCPSP approaches based on features

Table 3.3 presents an overview of the described algorithms of MSRCPSP. The algorithm

proposed by Maghsoudlou et al. (18) showed the most similarities with C2Pa until now.

The key finding of their algorithm is the usage of random key vectors. This representation

allowed for the flexibility to encode the skill division aspect in combination with the multi-

skilled workforce. In line with previous findings, the other models combine methods to

include intensification and diversification. The scatter search algorithm has both aspects

built into the algorithm, as the diversification is implied by reference set 2 and intensifica-

tion by the combination of two solutions from reference set 1. This algorithm partly uses

the random key representation, which makes it feasible to implement the missing C2Pa

17

3.2 Application of Meta-heuristics

specifications. The algorithm of Machado reiterates the importance of having a local search

procedure. Despite none of the algorithms covering the multi-project and project selection

specifications of C2Pa, the findings in this section provide significant insights on how to

solve these problems.

3.2.4 MSRCMPSP

The Multi-Skill Resource-Constrained Multi-Project Scheduling Problem is an extension

that offers the addition of consecutively scheduling multiple projects while dealing with

multi-skilled workforce. The research regarding this extension is very limited. Nevertheless,

it resembles C2Pa the most.

Chen et al. (21) propose a Non-dominated Sorting Genetic Algorithm to solve a multi-

objective model for the MSRCMPSP implemented for IT project development while con-

sidering evolution of competency of workforce. Their goal was to generate a weighted ideal

point of the approximate optimal Pareto solution set. The activity-list representation of

the chromosome was used and single-point crossover and single-point mutation operators

were applied to the encoding. Individuals are ranked based on Pareto dominance, where

solutions dominating others receive lower ranks, forming non-dominated fronts. In addi-

tion to the crossover and mutation operators, no other intensification or diversification

methods were implemented.

Lastly, the algorithm proposed by Torba et al. (22) will be discussed. They proposed a

memetic algorithm that combine a hybrid Simulated Genetic Algorithm with a conditional

simulated annealing as a local search procedure. It is a single-objective population-based

model that uses both crossover and mutation operators. The initial solutions are con-

structed by a randomized priority rule procedure that is in the form of an activity-list. In

their experiments, excellent performance is achieved both in small and large instances. In

addition to that, the additional value of the conditional simulated annealing approach has

been demonstrated.

Algorithm Representation MO MS WF MP Precedence Project selection Skill division Population
Chen et al. NSGA-II Activity-List ✓ ✓ ✓ ✓ × × ✓

Torba et al. hSGA + SA Activity-List × ✓ ✓ ✓ × × ✓

C2Pa - - ✓ ✓ ✓ × ✓ ✓ -

Table 3.4: Comparison of MSRCMPSP approaches based on features

18

3.3 Conclusion

Table 3.4 provides a comprehensive overview of the approaches discussed above. Although

MSRCMPSP is most consistent with C2Pa, all the models discussed still lack the compo-

nents project selection and skill division among the workforce, which are prominent parts

of the C2Pa procedure. As in the other sections, precedence is included in every model.

Moreover, a multi-objective algorithm was proposed that made use of a non-dominated

selection procedure. The model provided by Torba et al. (22) seems the most promising,

as it includes intensification and diversification components that have been proven to add

value to the main problem. Although covering many specifications of C2Pa, the activity

list representation appears to be infeasible to encode the skill division aspect of the C2Pa

problem.

3.3 Conclusion

The discussions in Sections 3.2.1-3.2.4 indicate that significant research has been done on

RCPSP and the extensions. However, none of the discussed algorithms match the specifi-

cations of the C2Pa problem. The RCPSP models lack the presence of multi-objectiveness,

multi-skilled workforce, multi-project, project selection, and skill division. The RCMPSP

models lack the presence of multi-objectiveness, multi-skilled workforce, project selection,

and skill division. For MSRCPSP, the models lack multi-project and project selection.

Lastly, the MSRCMPSP models lack the presence of project selection and skill division.

In summary, the existing RCPSP extensions cannot match all the specifications of the

C2Pa problem, which results in needed solutions for the following gaps.

• Propose a method that implements project selection

• Propose a method that is not built on precedence relations

• Propose a multi-objective method that is not related to the starting or finishing times

of projects

Another problem is the fact that the solutions to the specifications do not all originate

from the same algorithm. Consequently, a mismatch in the implementation strategy will

occur when trying to fit all solutions into one algorithm. This requires choosing a represen-

tation that is flexible and capable of including all specifications, including the additional

specifications that could be added in the experimental phase of the research.

19

3.3 Conclusion

From the research, it can be concluded that the random key vector representation is a

promising candidate, as it is proposed in multiple high-performing models because of its

flexibility and capabilities. Moreover, Maghsoudlou et al. (18) managed to incorporate skill

division by using this representation. It is evident that population-based algorithms are the

most suitable for addressing the C2Pa problem. These algorithms have shown promising

results in the literature, they are robust, are capable of exploring different parts of the

search space, and can be combined with other optimization techniques. Specifically, we

will focus on two variants of genetic algorithms: the scatter search and the biased random

key genetic algorithm (BRKGA). These algorithms incorporate both intensification and

diversification procedures. Intensification is achieved through methods such as local search

and crossover, while diversification is implemented through mutation or other disruptive

techniques. Combining a flexible random key vector with effective algorithmic methods

while taking the efficiency into account should result in a high performing meta-heuristic

that solves the C2Pa problem.

Moving forward, the role of local search will be a central point of the research. While local

search methods have demonstrated their effectiveness in improving solutions, their poten-

tial to negatively impact computational efficiency requires careful consideration. Given

their ability to explore the solution space more thoroughly and potentially find higher-

quality solutions, incorporating local search techniques could be beneficial. However, it is

essential to balance these advantages with the potential computational overhead that are

associated with it. The aim is to investigate the extent to which local search is crucial in

solving the C2Pa problem, evaluating its efficiency, effectiveness, and potential limitations.

This will be done by enabling and disabling the local search procedure within each algo-

rithm for each experiment. The performance metrics resulting from the experiments will

be analyzed in order to draw conclusions.

20

4

Data

The data needed as input for the algorithms is stored in three locations within the data

storage of BE NL. The data can be categorized in three categories, Consultant Capability

Data, Consultant Availability Data, and Project Data. In this chapter, the data that falls

under each category is allocated a section in which the data will be explained and analyzed.

4.1 Consultant Capability Data

Under consultant capability data, all the attributes of the consultants regarding consultant

skills are stored. This data has been internally collected by means of surveys. In the survey,

a consultant is asked to provide a ranking of their satisfaction score and skill level on a

specific skill. The list of skills is multi-department and contains skills about hard skills, soft

skills, and general skills. Because consultant work can be multidisciplinary, it is allowed

to rank skills that are not within the main department of a consultant. The satisfaction

score, stored in the variable css, ranges from 1 to 10. A skill gets a satisfaction of 1 if

the consultant does not rank a skill. The skill level, stored in the variable csl, ranges

from 0 to 3, where 0 corresponds to not having knowledge of the skill. In total, 127

unique skills have been identified by BearingPoint. Analysis of the surveys indicates that

each consultant possesses 21 skills on average. This number is heavily distorted by the

difference in job level, as consultants with a senior job position usually have developed

more skills than a newly acquired management analyst.

Other variables that are stored are the names of the consultants, the job position of con-

sultants, and the service line of consultants. Figure 4.1 shows the distribution of the

consultants over the job positions. This shows that within BE NL six different job posi-

tions are possible, ranging from management analyst to senior manager. It can be said

21

4.2 Consultant Availability Data

that the higher job position, the more consultants, aside from the senior manager position.

Figure 4.2 shows the distribution of consultants across the service lines. The service lines

D&A and TECH are clearly underpresented compared to the larger service lines C&G and

P&S.

Figure 4.1: Distribution of consul-
tants over the job positions

Figure 4.2: Distribution of consul-
tants over the service lines

Table 4.1 presents the hourly cost, stored in the variable c, of each job position. The cost

of a senior manager has been inflated, as this position is rarely assigned to a project as

a team member. Because of that, the algorithms will possibly refrain from assigning this

position to a project.

Job position Cost per hour (€)
Management Analyst 115
Senior Management Analyst 120
Consultant 127
Senior consultant 140
Manager 165
Senior Manager 220

Table 4.1: Cost per hour per job position

4.2 Consultant Availability Data

Consultant availability is related to the weekly contractual working hours and the weekly

net available working hours. Generally, the contractual weekly working hours (WH) are

40 hours. For simplicity, it is assumed that every consultant works 40 hours a week.

22

4.3 Project Data

The weekly net available hours (NH) of consultants is calculated from a file provided by

a BearingPoint planning tool. This tool stores the events that deduct utilization from

working hours, such as project assignments or holidays. In such an event, the time interval

and the utilization percentage are stored. The file contains the events from the start of

January 2024 until the end of 2025. In this research, a subset of this dataset will be

used that contains events from Oktober 2024 to Oktober 2025. The first week of Oktober

will thus be used as t=0. This implies that the availability of the first two months is

relatively low, since most consultants are still working on ongoing projects in this time-

interval. When their current projects are finished, almost every consultant should have

full availability. The following procedure is done to calculate the weekly net available

hours. First, the daily net available hours are calculated for each consultant. This is done

by grouping the events of a specific consultant and subtracting the utilization from the

corresponding days given the utilization period. This daily data is then transformed into

weekly data to obtain the weekly net available hours.

Despite the transformations of the data, the quality of the data is still lacking. The names

of the consultants in the capabilities data and availability data have different formatting.

Moreover, the sets of names are also not identical. This originates from the fact that

not all consultants have completed the survey. Alternatively, the planning tool does not

include information on newly hired BE NL consultants. To fix this, first the formatting

of the names has been fixed, and second the intersection of both consultant name sets

has been determined. The intersection is then used to create a subset of the data. This

transformation resulted in having a total of 74 consultants. The processed consultant data

is now suitable for input into the algorithms.

4.3 Project Data

Project data contains information about the duration, team members, start date interval,

required hours, and included skills with their required level of skills of projects. OTL

members from the four service lines D&A, TECH, C&G, and P&S were asked to submit

information about recent or past projects in a tool. In total, 24 projects were submitted,

where each OTL member submitted a similar number of projects to ensure a balanced

portfolio. The characteristics of the projects are quite different. Figure 4.3 shows the

distribution of team members per project. In this figure, it can be seen that 50% of

the projects require only one consultant. Beyond this, there is a clear trend where the

frequency of projects decreases by roughly half for each additional team member required.

23

4.3 Project Data

Figure 4.3: Distribution of team mem-
bers per project

Figure 4.4: Distribution of total skills
per project

Figure 4.4 shows the distribution of the number of skills involved in the projects. The

majority of the projects require between 5 to 15 skills. However, there are projects that

require between 35 and 50 skills. These are long-term projects that cover multiple service

lines. Figure 4.5 shows the relation between the size of a project team and the number of

involved skills per project. An overall increasing trend can be observed between team size

and the number of skills required. However, this relationship is not consistent across all

cases. Although larger teams often involve more skills, there are instances where increasing

the number of team members does not necessarily lead to a corresponding increase in the

skill set needed for the project.

Figure 4.5: Relation between team members per project and skills per project

The skill level of the skills required for the projects have two levels, either basic knowledge

24

4.3 Project Data

is required, which requires a skill level of 1, or expert level knowledge is required, which

requires a skill level of 3. This is done to make the process less complex for the OTL

members. In practice, the possible skill levels can be extended to also incorporate skill

level 2. The aspect that complicates the skill division is that the skills are not assigned

to a specific team member of a project. This implies that the skills must be divided

among the assigned consultants. The number of skills that a team member gets assigned

is proportional to the scheduled utilization of a role. A consultant can only be assigned

complete skills, fractional skills are not allowed to be assigned. To prevent fractional skills,

a method has been implemented that adds a skill to the team member with the highest

fraction. This will be done until the required number of skills has been divided. In addition

to this, a minimal number of skills of 1 has been implemented.

Figure 4.6 shows the distribution of the scheduled utilization of the team member roles.

It can be seen that utilization consists primarily of 100% and 80%, which means that

consultants are invested primarily in only one project. The remaining project have varying

utilization with small peaks at 10% and 40-50%, which enables consultants to work on

multiple projects at the same time.

Figure 4.6: Distribution of team member role utilization

Figure 4.7 presents the distribution of the duration of the projects. The distribution is

balanced, as all projects but one are evenly divided between 1 and 24 weeks. One project

has a significantly longer duration of 36 weeks. The average project duration is 11.7

weeks, where the shortest project has a duration of 1 week. Lastly, the project portfolio

is dominated by client projects. Of the 24 projects, only 4 projects are internal beach

projects compared to the 20 external client projects. The average duration of the internal

projects is 2 weeks, this indicates that internal projects are generally small assignments.

25

4.3 Project Data

Figure 4.7: Distribution of project durations

The project data is derived from historical projects, with some projects dating from 2024

and others from 2023. In a realistic OTL scheduling setting, projects typically need to be

scheduled in the near future following the project request. To simulate this scenario, the

original starting times of the projects have been disregarded and replaced with randomly

sampled starting dates ranging from 1 week to 12 weeks from October 1, 2024. This

adjustment aligns project timelines more closely with a hypothetical current scheduling

date. Furthermore, projects that originally had a flexible time window have been assigned

a randomly sampled latest starting date, set within 1 to 2 weeks from their new earliest

starting date. This modification preserves the concept of flexibility while constraining it

to a more realistic short-term scheduling horizon.

26

5

Existing MILP model

In this chapter, the mathematical model of Zentveld (1) will be linked to the problem

context described in Chapter 2. The complete mathematical model and the variable list

can be found in Appendix 10.1. For each element present in the problem context, the

corresponding part of the model will be referenced and explained. In addition, the most

relevant aspects of this model will be covered. See (1) for a detailed explanation of each

constraint of the model, the corresponding constraints will be referred to using square

brackets.

Mixed Integer Linear Programming (MILP) models are optimization tools that combine

continuous and integer variables to find the best solution within a set of constraints. By

integrating linear programming with integer constraints, MILP can represent complex real-

world problems involving discrete decisions. These models are widely used in fields such as

supply chain management, production planning, resource allocation, and scheduling. Key

components include an objective function, linear constraints, and decision variables, some

of which must be integers.

Non-preemptiveness and Time windows Constraints [4.41], [4.46], [4.47], [4.49], [4.50],

and [4.51] are implemented to enforce the critical business rule that a project must be exe-

cuted without interruptions. These constraints can be categorized based on their functions

in handling declined and accepted projects, as well as enforcing time windows.

For declined projects, three constraints play crucial roles. Constraint [4.41]restricts as-

signments when a project p is declined (app = 0). Furthermore, constraint [4.46] uses the

variable up,t to ensure that a declined project p has not started at time t. The variable

pdp,t, which indicates whether a project p is executed at time t, is employed in constraint

27

[4.51] to confirm that there is no execution time allocated for a declined project.

For accepted projects, two constraints are essential. Constraint [4.49] ensures that an as-

signed consultant possesses precisely the number of skills specified by the variable stp,m

when project p is executed at time t. Constraint [4.50] is implemented to guarantee unin-

terrupted project execution. It achieves this by equating the decision variable pdp,t to up,t

when the project starts (up,t = 1) and maintains pdp,t = 1 until the project is completed

(t = t+ ptp).

To ensure that projects are executed within the correct time interval, constraint [4.47] is

incorporated. This constraint restricts the variable xi,p,t,m,s to only hold a value when time

t falls within the range defined by the earliest starting date and the latest finishing date

of the project.

Team member and skills constraints Constraints [4.42], [4.43], [4.44], [4.45], [4.48],

[4.52], and [4.53] are responsible for enforcing the rules regarding team members and skills.

These constraints can be categorized into two main groups: those managing team member

roles and those managing skill assignments. Constraints [4.42], [4.43], and [4.44] enforce the

rule that only one consultant is allowed per team member role. An auxiliary variable zi,p,m

is introduced to indicate when consultant i is assigned to team member role m of project

p. Constraint [4.42] ensures that only one consultant can be assigned per project and team

member role. Constraint [4.43] guarantees that a consultant is assigned to only one team

member role within a project. Constraint [4.44] ensures that assignments in xi,p,t,m,s are

made only when zi,p,m = 1, linking the assignment variable to the role allocation.

The remaining constraints manage skill assignments. Constraint [4.45] implements the

rule that a specific skill of a project can only be assigned to one consultant. Constraint

[4.48] enables the model to recognize the required skills (rss,p = 1), ensuring that only the

skills required in project p can be assigned to a consultant. Constraints [4.52] and [4.53]

implement the rule that skills must be assigned to the same consultant for the duration

of the project. This is achieved by introducing the variable vi,p,m,s, which equals 1 if

consultant i is assigned to team member role m and skill s of project p. Constraint [4.53]

forces the same behavior on variable x, thereby ensuring that the model assigns a skill of

a project to a single consultant throughout the project’s duration.

Consultants availability The availability of consultants is managed by a single, crucial

constraint. Constraint [4.40] ensures that a consultant i does not exceed their available

28

time in any given time period t (represented by NHi,t). It is important to note that this

constraint allows for flexible allocation of the remaining consultant time. Specifically, it

enables consultants to work simultaneously on multiple projects, provided their total time

commitment does not exceed their availability. This flexibility is achieved by summing all

chargeable (CHt,p,s) and non-chargeable hours (NCHt,p,s) across all projects, roles, and

skills to which the consultant is assigned (xi,p,t,m,s = 1) for each time period t. In practice,

the hours concerning engagement manager are included in the constraint, however, these

are not implemented in the model.

KPIs and Deviations An extensive explanation of the calculations can be found in

Chapter 6. In here, the differences in implementation between MILP and meta-heuristics

is shortly addressed. The formulation of the cost KPI, the utilization KPI, the satisfaction

KPI, and the skill match KPI can be found in constraints [4.36], [4.37], [4.38], and [4.39],

respectively. The formulations contain two kinds of added variables. First of all, the

constraints contain aspiration level variables in the form of a variable y. Constraints [4.66],

[4.67], and [4.68] indicate what values the variables y can take. In addition to this, two

kinds of deviation variables are introduced, d+, d− and e+, e−. These variables capture the

positive and negative deviations between KPIs and continuous variables, and the positive

and negative deviations between continuous variables and desired minimum or maximum

aspiration levels of KPIs. For more information, see Appendix 10.1 and (1).

Objective function The objective function is stated in [4.35]. The objective function

consists of the calculations of the KPIs, the deviations from the aspiration levels of the

KPIs, and the total penalty for the declined projects. The contributions of the KPIs are

stored in the parts that combine the KPI weights w+ and w− and the deviation variables d+

and d−. The penalties for deviations from the aspiration levels are stored in the variables

e+ and e− with the weights α+ and α−. Lastly, the average project decline penalties is

added. This part uses the penalty decline weight wdecline and project priority value pvp

to determine the penalty of a single project. In practice, every weight and priority value

is set to 1 so no KPI was given priority. Lastly, each variable connected to the KPIs is

normalized by its own constant. The variable list in Appendix 10.1 elaborates on how

these are calculated.

29

6

Methodology

In this chapter, the methodology of the proposed models will be explained. Initially, the

modelling design will be covered, which includes the encoding and decoding procedure of

the C2Pa problem. Afterwards, the definition and calculation of the KPIs of the objective

function will be explained. Next, the procedure of two local search approaches is explained.

This chapter will close with an in-depth outline of both the Biased Random Key Genetic

Algorithm (BRKGA) and the Scatter Search (SS) models, in which the methodology and

the hyperparameter tuning procedure will be explained.

6.1 Encoding

In this section, the C2Pa problem is formulated into a solution representation vector that

serves as a framework for both models. To enhance efficiency, a method for reducing the

solution search space has been developed. Translating the problem into a solution vector

requires addressing the research gaps identified in the literature review. Section 6.1.1

will detail the search space reduction method. Section 6.1.2 will focus on addressing the

research gap related to project selection and its corresponding encoding. The encoding

process for consultant selection will be covered in Section 6.1.3. Section 6.1.4 will explain

the encoding related to skill division. Lastly, Section 6.1.5 elaborates how the time windows

are encoded into the chromosome. Collectively, this section will demonstrate how these

elements are integrated into a cohesive solution representation vector.

Due to the requirements of the problem and the flexibility of the solution representation, it

has been decided to use the random-key vector (RK-vector) as the solution representation.

In the random-key representation, proposed by Bean (23), a vector consists of randomly

generated real numbers in the interval [0,1), also called a chromosome, where each element

30

6.1 Encoding

represents the priority or rank of a decision variable. The order of the elements in the

vector determines the relative importance or priority of the corresponding variables. This

representation makes the method independent of the problem it tries to solve. Therefore,

the random key presentation has been used in a range of optimization problems. In addi-

tion, this representation is suitable for evolutionary algorithms. The goal of the encoder

is to translate the input data to a vector of real numbers, i.e., input data → [0,1)Z , where

Z is the length of the random key vector.

6.1.1 Search Space Reduction

The search space for an algorithm that implements the random key method needs to be

as small as possible to ensure efficiency and feasibility. A large search space exponentially

increases the number of possible solutions, making it computationally expensive and time-

consuming to find (close to) optimal solutions.

In order to reduce the number of possible solutions, an initial feasibility filter is applied to

the input data that eliminates the projects that do not have sufficient available consultants

to fill the activities of the projects. The availability of consultants is stored in the NH

variable. Combining that with number of skills of an activity and the number of hours per

skill of the project enables to check whether the cumulative time of the activity can fit in

the available net hours of the consultant. This will be checked for every possible starting

time in case of an interval of starting times. A consultant will be added to the availability

list if it is available in any of the intervals from the start time to the finish time.

This procedure excludes projects from the project list when they are determined to be

infeasible. Consequently, the information from this project regarding consultants and skills

is also not included in the chromosome, therefore, shortening the size of the chromosome.

6.1.2 Project Selection

The project selection procedure is addressed through a collaborative effort between the

encoder and the decoder. The encoding method for project selection is adapted from

the approach used to translate activity priorities into the chromosome, as described by

Goncalves and Resende (24). This concept of priority can also be effectively applied to

projects. In the context of project selection, a higher priority indicates greater project

importance. For a set of P projects, the encoding of the project priorities is represented by

31

6.1 Encoding

a vector of p random keys. In this vector, a lower value corresponds to a higher priority.

Consequently, the project with the lowest priority value is considered first in the decoder.

This encoding strategy allows for a flexible and efficient representation of project priorities.

Other advantages are: It inherently promotes diversity in the population, as chromosomes

with identical random keys but different project priority orders can potentially generate

distinct solutions. This diversity arises because the availability of consultants depends on

the sequence in which projects are considered. The priority method effectively resolves

conflicts between internal and external projects. In cases where a clash occurs, external

projects should have a lower random value, ensuring they receive earlier consideration in

the decoding process.

6.1.3 Consultant Selection

The procedure for selecting consultants follows a priority system, similar to the one pre-

viously employed for project selection. The feasibility filter is used to retrieve a list of

available consultants of each project. The next step involves identifying and counting the

available consultants from the projects that qualify for assignment. This count then deter-

mines the length of the consultant selection random-key vector. To be more specific, for a

set of n eligible projects, where the consultants are gathered into a list denoted as N, the

consultant selection process is encoded through a vector composed of |N | random keys.

The priority system operates as follows: Each consultant’s priority value within a project

is listed in a specific location within the random vector. For any given project and task, a

specific subset of this vector is extracted. The position of a consultant in the availability

list directly corresponds to the same position in this priority subset. The priority of

each consultant is represented by their respective random value; a lower value signifies

a higher priority, thereby increasing the likelihood that the consultant will be assigned

to that specific task within the project. However, the assignment can only proceed if

the consultant’s available hours can accommodate the task’s requirements. If the initially

prioritized consultant cannot meet these hours, the system moves on to evaluate the next

consultant in line based on the priority values. This process continues until either a suitable

consultant is assigned or all options in the list are exhausted. If no assignment can be made,

the project must be declined.

32

6.1 Encoding

6.1.4 Skill Division

Skill division is a crucial aspect of this problem. When a project request is submitted,

the pool of required skills must be strategically allocated among the needed consultants.

This division process is essential for optimal resource utilization. However, it is important

to note that for projects requiring only a single consultant (mp = 1), the concept of skill

division becomes irrelevant, as all required skills are inherently assigned to that single team

member. The encoding of skill division is similar to the previous encodings, however, the

random keys are now not used for priority but for ordering. The first step is to extract a

list of eligible projects from the feasibility filter. Only the skills of eligible projects that

need at least two team members (mp ≥ 2) should be taken into account. By not including

the skills of mp = 1 projects, the unnecessary information is not stored in the chromosome,

therefore the search space is reduced and the convergence ability is improved. For a set of

n eligible projects where for each project p, where the skills of the projects are gathered

into a list denoted as S, the skill division process is encoded through a vector of |S | random

keys. The ordering system on these random keys only has to be considered when confronted

with a project that requires at least two consultants, since in a project that requires one

consultant all skills are allocated to a single consultant. A more in-depth explanation of

the mechanics behind this process is detailed in Section 6.2.

6.1.5 Time Windows

In the context of C2Pa, a project could have a flexible start time window. The size of the

interval determines the length of the encoding. In other words, the number of possible start

times represent the contribution to the chromosome. To keep the size of the chromosome

as small as possible, only the possible start times of the eligible projects are included. To

be more concise, for a set of n eligible projects, each having the number of possible start

times Ti, the time windows aspect of the C2Pa problem is encoded through a vector of

|T | random keys. The ordering system is used to translate the random keys to a project

start time. For a project, the index of the lowest random value within that project time

window vector determines the time offset to the earliest starting time, e.g., if the second

index of the list represents the lowest random value the start time of the project should

be extended with one week.

33

6.2 Decoding

6.2 Decoding

The chromosome resulting from the encoding is made up of the concatenation of the four

procedures explained in Sections 6.1.2-6.1.5, thus having a length of Z = P+|N |+|S |+|T |.

Equation 6.1 gives a visualization of the chromosome. Each chromosome, or solution, in

the population will have the same length. Within a generation loop of the algorithms,

each solution is submitted to the decoder, which returns the schedule, the objective values,

and other variables. In addition to the chromosome as an input variable for the decoder,

the decoder has more input variables, the most important variables are: the variables

connected to the consultants; net available hours, satisfaction and skill levels, and the

variables connected to the project side of the problem; project durations, project start

dates, project hours, required skill levels.

g1, .., gP︸ ︷︷ ︸

Projects

, gP+1, .., gP+|N |︸ ︷︷ ︸
Consultants

, gP+|N |+1, .., gP+|N |+|S|︸ ︷︷ ︸
Skills

, gP+|N |+|S|+1, .., gP+|N |+|S|+|T |︸ ︷︷ ︸
Time Windows

 (6.1)

The schedule generation scheme incrementally adds a project to the schedule based on

the priority value of the projects. If we were to name this procedure, the serial schedule

generation scheme (S-SGS) of Kolisch and Hartmann (25) comes closest to this approach.

The priority system determines the order in which the projects p should be filled. In Figure

6.1, an example can be found that illustrates the priority decoding of five projects. Project

E is initially declined, as there are not enough consultants to assign to the project given

the requirements. Therefore, the order in which the projects will be filled is:

B→ D→ A→ C.

Prior to assigning the consultants to projects, the start dates of the projects have to be

decoded from the chromosome. This information is stored in the last |T | random keys of

the chromosome. For every project, the corresponding possible offsets from the start time

are extracted from the chromosome and the offset with the lowest random key is chosen.

Figure 6.2 shows how this approach works. The figure describes the situation where, for

example project B, has a flexible time window of 4 weeks, thus having 5 different start

times. The next step is to sort the random keys and from there selecting the lowest value.

This results in Offset 1 having the lowest value, therefore the start time of project B is

extended with one week.

34

6.2 Decoding

Figure 6.1: Project priority decoding Figure 6.2: Start time decoding

The next step is to assign the consultants to the projects, as the order has been determined.

For each project and task, the corresponding subset of the random key vector has to

be extracted from the chromosome. These priority values are then sorted to determine

which consultant should be assigned to the project. Figure 6.3 illustrates the assignment

procedure for two scenarios. The first scenario describes the situation where two projects,

for example B and D, with identical start time and utilization of 100% must be scheduled.

Project B is indicated with the color blue and project D with color green. From the

priority sorting, it can be concluded that consultant 4 is assigned to project B. However,

this assignment causes consultant 4 to be unavailable for the other project; therefore, there

is no other option to assign consultant 2 to project D. This is, of course, all within the

bounds of their working hours. In the second scenario, project C that needs 2 consultants

must be scheduled. As earlier, consultant 4 is assigned to task 1. Despite the high priority

of consultant 4 for task 2, it is prohibited to assign consultant 4 to task 2 as it is not

allowed to be assigned to two tasks within the same project. Consequently, consultant 2 is

assigned to task 2 of project C. If consultant 2 is not available for task 2, due to assignment

in previous projects, and the availability list for this task is exhausted, the only logical

consequence is to decline the project.

35

6.2 Decoding

Figure 6.3: Consultant decoding Figure 6.4: Skills decoding

The final step is to assign the required skills to consultants. The decoding procedure of this

step is illustrated in Figure 6.4. As explained in Section 6.1.4, this procedure has relevance

only when faced with a project that has at least two tasks. The skills of projects that need

one consultant are not encoded in the chromosome, these can directly be assigned to the

chosen consultant. The skill division decoding for the eligible projects can begin once the

right subset of the chromosome has been extracted that corresponds to the required skills

of project p. This involves sorting the random keys and splitting the resulting vector in

the places that cause each task to have the prescribed number of skills.

The procedure for determining the prescribed number of skills has been described in Section

4.3. Translating this to Figure 6.4, a project that requires five skills to be divided over

three consultants in a split of [2, 2, 1] skills results in task 1 having skills 3 and 1, task 2

having skills 2 and 5 and task 3 having skill 4.

Once these steps are complete and the information is stored in the five-dimensional binary

variable x, the KPIs can be calculated using this variable. In Algorithm 1, the simplified

pseudocode of the decoding procedure can be found. The algorithm includes the four

decoding steps in the right order, the feasibility checks, and the condition to update the

decision variable x. After all projects have been completed, the KPIs and the number of

declined projects are calculated and returned. These are directly used to determine the

fitness of an individual.

36

6.3 Objective Function

Algorithm 1 Decoder function
1: initialize x

2: initialize ap

3: translate start date from chromosome
4: translate project order from chromosome
5: for project p in project order do
6: project_feasbility = True
7: for each activity m in project p do
8: retrieve activity hours php,m

9: nh, assigned, assigned_cons = assign_consultant_activity()
10: if assigned == ∅ then
11: project_feasbility = False
12: ap[p] = 0
13: end if
14: end for
15: if project_feasibility == True then
16: assigned_skills = assign_skills_to_consultant()
17: update x based on assigned consultants and assigned_skills
18: end if
19: end for
20: calculate KPIs from x

21: calculate number of declined projects from ap

22: return KPIs, number declined projects

6.3 Objective Function

As described in Chapter 5, the objective function or fitness function consists of five com-

ponents; the satisfaction KPI, the skill match KPI, the hourly cost KPI, the utilization

rate KPI, and the number of declined projects. In Sections 6.3.1-6.3.4, an explanation will

be given on how these KPIs are calculated in our non-exact algorithm. Section 6.3.5 will

explain how the KPIs are weighted and in Section 6.3.6 will present the complete objective

or fitness function.

6.3.1 Satisfaction KPI

Satisfied consultants are important for many reasons, for example, satisfied consulants are

more likely to remain with the organization, be motivated and engaged in their work, and

provide quality service to clients. This can ultimately contribute to a positive work en-

37

6.3 Objective Function

vironment and increase team morale. The satisfaction KPI is calculated as the average

satisfaction of the consultants assigned to projects given the required skills. This calcu-

lation is done over the entire duration of accepted projects over all required skills and all

team members. This sum is then divided by the sum of the product of the total required

skills and the total duration of the accepted projects. The calculation can be found in

Equation 6.2. The variable x is the binary decision matrix that stores information about

the assignments, this variable equates to xi,p,t,m,s = 1 when consultant i is assigned to skill

s of project p at time t. The variable css stores the consultant satisfaction scores, and

variable rs is a indicator matrix that is 1 if skill s is included in project p.

Satisfaction KPI =

∑I
i=1

∑P
p=1

∑LFp

t=ESp

∑mp

m=1

∑S
s=1 xi,p,t,m,s · csss,i

∑S
s=1

∑P
p=1 rss,p · ptp · app

(6.2)

This equation returns a value within the interval of 1 and 10. The design of the objective

function requires that each KPI is scaled to a value that is within the limits of [0, 1]. To

achieve that, the resulting average satisfaction score is divided by 10.

6.3.2 Skill Match KPI

The quality of an assignment of a consultant to a project is evaluated by comparing con-

sultants’ skills to the project requirements. The skill match score is calculated as the

consultant’s skill level minus the project’s required level. Higher scores suggest better

potential quality, but consistently overassigning skilled consultants risks resource misallo-

cation, potentially leaving more complex projects understaffed.

The skill match KPI is calculated as the average skill match per time unit across all

required skills for a project. Since consultants can’t swap skills during a project, this

calculation could be done for any single time unit within the project’s duration. The

specific time unit chosen doesn’t affect the result. Equation 6.3 calculates the skill match

KPI. The equation for skill match is divided into two parts. The upper part calculates

the negative deviation from the required skill level, which represents underqualification,

where the lower part calculates the positive deviation from the required skill level, which

represents the overqualification. The deviation is calculated by subtracting the required

skill level (psls,p) from the skill level of the assigned consultant on that same skill (csls,i).

Underqualification occurs when the skill level of the assigned consultant is lower than

the required skill level (csls,i < psls,p). A perfect match occurs when the skill level of a

38

6.3 Objective Function

consultant is identical to the required skill level of the skill of a project, in that case the

consultant is qualified. Lastly, a consultant could be overqualified for a skill in a project,

or in other words, csls,i > psls,p. The variables q and w function as indicator variables that

enable one to make a distinction between underqualification and overqualification. Thus,

the variable qp,s,i is 1 when a consultant is underqualified for a skill of a project, for wp,s,i

the inverse is true.

Skill Match KPI =

∑I
i=1

∑P
p=1

∑mp

m=1

∑S
s=1

(
csl2s,i − psl2s,p

)
· qp,s,i · xi,p,t,m,s

∑P
p=1 app

+
∑I

i=1

∑P
p=1

∑mp

m=1

∑S
s=1 (csls,i − psls,p) · wp,s,i · xi,p,t,m,s
∑P

p=1 app

(6.3)

In the C2Pa problem, the aim is to differentiate between consultants who are perfectly

qualified and those who are mismatched in their skills. Initially, a consultant with equal

overqualification and underqualification across different skills would yield the same skill

match score as a perfectly qualified consultant, which is undesirable. To address this, it

has been decided to penalize underqualification more heavily by squaring the skill levels

before comparison. This approach has two benefits: it more severely penalizes larger

skill gaps, which could indicate significant mismatches, and it prevents overqualification in

one area from fully compensating for underqualification in another. The result is a more

balanced evaluation that better reflects the preference for consultants whose skills align

closely with the project requirements.

The following approach is used to reduce the average skill match per project to a value

within the interval of [-1, 1]. For each project, the maximum required skill level is extracted,

then squared, and lastly multiplied by the number of skills of the project. These values

are summed and act as the normalizing constant for the skill match KPI. In this way, the

yielded KPI value that will be used in the objective function represents the relative skill

match performance compared to the scenario where each skill is mismatched. In addition

to this, the constant dynamically adjusts itself when faced with different instance sizes.

Lastly, to make the resulting skill match value more intuitive in the evaluation section,

we have decided to use a different notation of skill match in the model and in the results.

The model will utilize the described skill match above, whereas the skill match returned

to the user will have the following modifications: first, the skill match will be multiplied

39

6.3 Objective Function

by its normalizing constant. The resulting skill match will be divided by 9 if it is negative,

whereas it will be divided by 2 in case it is positive. Division by 9 corresponds to having

a complete underqualification mismatch (as the worst scenario is 32 − 02 = 9), where

division by 2 corresponds to having a complete overqualification (as the worst scenario

is 3 − 1 = 2). The definition of skill match that the user will be confronted with is the

average mismatched skills per project, where a negative value implies underqualification

and a positive value overqualification.

6.3.3 Hourly Cost KPI

The KPI for hourly cost of assigned consultants calculates the average cost per hour of

assignment. The calculation of this KPI can be found in Equation 6.4. It considers a

consultant’s hourly rate (ci) when they’re assigned to project skills (xi,p,t,m,s = 1). The

KPI is computed by summing the costs of all assignments and dividing by the total hours

of the skills of accepted projects. This results in a weighted average hourly cost for the

consultants assigned to projects. The normalizing constant is set to the maximum hourly

rate of a consultant, which is set to 220.

Hourly Cost KPI =

∑I
i=1

∑P
p=1

∑LFp

t=ESp

∑mp

m=1

∑S
s=1 ci · xi,p,t,m,s

∑S
s=1

∑P
p=1 rss,p · ptp · app

(6.4)

Incorporating this KPI into the objective function enables us to introduce a bias for con-

sultants of lower job positions, as lower job positions are usually favoured more to gain

more experience. However, the impact of this bias should be limited as it would negatively

affect the other KPIs.

6.3.4 Utilization Rate KPI

The KPI consultant-to-project utilization rate has undergone an overhaul in terms of cal-

culation compared to (1). Originally, the KPI is calculated as the average utilization per

consultant, which is the sum over all chargeable project hours of the consultant divided by

the product of the sum over all working hours of the consultant (WHi,t) and time horizon

(T). This method may be effective for small departments, but it becomes problematic when

applied to an entire practice. The larger scale introduces flaws that the approach does not

address. The primary flaw arises from the mismatch between project scale and consultant

numbers when considering an entire practice rather than a single department. With a

large consultant pool and relatively few projects, accepting a small number of projects

has minimal impact on the average consultant-to-project utilization rate. This rate should

40

6.3 Objective Function

also account for both client and internal projects. Consequently, other KPIs have a more

significant influence on the objective value, effectively diminishing the utilization rate’s

contribution to the objective value.

To address this flaw, a modification to the calculation is proposed, which can be seen in

Equation 6.5. In pursuit to make the KPI more impactful, it has been decided to only

use the information about the projects that are subject to be scheduled. Secondly, the

information regarding individual working hours is redundant as the combination of a client

project variable (1− beachp) and the accepted projects variable (app) also indicate which

projects contributed to the client project hours. The source of the hours, whether from

specific consultants or skills, is irrelevant. The crucial factor is the total number of hours

dedicated to client projects. Consequently, the KPI is calculated as the sum of the total

hours over all accepted client projects divided by the total hours of client, internal and

rejected projects. No normalization constant is needed for this KPI, as it is already scaled

to fit in the interval of [0, 1]. This formulation allows for noticeable fluctuations in KPI

value when faced with decisions about which projects to decline. Practice utilization is a

key performance metric for the company, and as such, it will be displayed to the end-user.

However, in the optimization process, the model uses the modified utilization in its fitness

function defined by Equation 6.5.

Utilization Rate KPI =

∑P
p=1

∑mp

m=1(1− beachp) · app · ptp · php,m
∑P

p=1

∑mp

m=1 ptp · php,m
(6.5)

6.3.5 Weighting the KPIs

In multi-objective optimization, the assignment of weights to different KPIs is a crucial

step that significantly influences the outcome. This analysis focuses on two prominent

methods for criteria weighting: the Rank Order Centroid (ROC) method and the Point

Allocation method.

The Rank Order Centroid method, introduced in (26), is a technique that converts ordinal

rank information into numerical weights. It is based on the centroid of the weight space

consistent with the provided rank order. For n criteria, the ROC weights are given by:

weights =

[∑n
i=k

1
i

n
| k ∈ {1, 2, . . . , n}

]
(6.6)

41

6.3 Objective Function

The advantages of ROC can be summarized as follows, the method is simple in implemen-

tation and use, it only requires ordinal ranking of criteria, it provides consistent results for

a given ranking, and it minimizes cognitive load on decision-makers. On the other hand,

there are also challenges associated with ROC, it assumes a specific pattern of decreasing

importance, it may overemphasize top-ranked criteria, it has limited flexibility in capturing

nuanced preferences, and it is unable to incorporate preference information.

The Point Allocation method involves the direct assignment of numerical values to criteria

based on their perceived importance (27). These numerical values are weighted to produce

the individual weights. For n criteria with assigned points pi, the weight of the ith criterion

wi is calculated by:

wi =
pi∑n
j=1 pj

(6.7)

The pros of Point Allocation include that it is intuitive and straightforward for stake-

holders to understand, it allows for nuanced expression of preferences, it is flexible and

easily adjustable based on context, it can capture non-linear differences in importance,

and it is a direct representation of preferences. While the benefits are clear, it is also

important to consider the potential drawbacks, it is more subjective, potentially leading

to inconsistencies. Moreover, it requires careful consideration in point assignment.

Although both methods aim to derive numerical weights from preference information, they

differ significantly in their approach and outcomes. ROC requires only a ranking, making it

simpler to implement. Point Allocation demands more cognitive effort in assigning numer-

ical values. Point Allocation offers greater flexibility, allowing for fine-tuning of weights.

ROC weights are fixed once the ranking is determined. Point Allocation can capture more

nuanced differences in importance. ROC assumes a specific pattern of decreasing impor-

tance that may not always reflect reality.

In order to align the weights of the KPIs, and therefore the behavior of the models, with

the prioritization and strategic objectives of the OTL team, an interview with the OTL

team was conducted. The OTL team emphasized that the primary focus should be on

skill match, as this is crucial for ensuring the quality and success of the project. By

aligning the consultant’s expertise with the project requirements, the team can secure

optimal outcomes. Following this, utilization is the next priority. Consultant satisfaction

was identified as the third key KPI, recognizing that a motivated and content consultant

contributes positively to project performance. The hourly cost should be considered at

last, but only as a tiebreaker when consultants’ skills and/or satisfaction are comparable.

42

6.3 Objective Function

In such cases, preference would go to lower-level consultants to maximize the utilization

rate of newly joined consultants.

For the C2Pa problem, the Point Allocation method appears to be more suitable for several

reasons, it allows for precise expression of the relative importance of skill match compared

to other factors, it can easily accommodate the use of cost as a tiebreaker by assigning it a

low but nonzero weight, it provides the flexibility to adjust weights based on specific project

requirements or changing strategic objectives, and it can capture nonlinear importance dif-

ferences between criteria, which may be more reflective of real-world priorities in consultant

assignment. Although ROC offers simplicity and consistency, the additional flexibility and

nuance provided by the Point Allocation method align better with the complex nature of

the C2Pa problem.

The information gathered from the interview on the prioritization of KPIs has been trans-

lated into numerical values ranging from 1 to 10 as follows: Since skill match is by far

the most significant KPI, it is assigned a value of 10. To ensure that client projects are

prioritized over internal projects, utilization is assigned a value of 7. The satisfaction KPI,

while less important, is still relevant and is assigned a value of 4. Although this value does

not significantly impact the model’s solution characteristics, it moderately incorporates

the consultants’ preferences. Finally, to encourage the selection of lower-level consultants

over more experienced ones when qualifications are similar, and to moderately favor lower

levels in the assignment process, hourly cost is assigned a value of 2. Incorporating the

assignment of [10, 7, 4, 2] to the weights of skill match, utilization, satisfaction, and hourly

cost in the Point Allocation method results in weights of [0.4348, 0.3043, 0.1739, 0.0869].

6.3.6 Fitness Function

The fitness function is a critical component of evolutionary algorithms, guiding the selection

and evolution of candidates over successive generations. It quantifies how well a given

candidate solution scores compared to the population, effectively steering the evolution

process towards optimal solutions. One of the most frequently used techniques to convert

multiple objectives into a single objective is the weighted sum method. Given the wishes of

the OTL team, as indicated in Section 6.3.5, scalarization of the KPIs is a natural result.

The relative importance of the KPIs has already been established. Utilizing these weights

in the weighted sum method combines the four KPIs and turns it into a singular value.

This value can be used in the evolution process.

43

6.4 Local Search

As mentioned earlier, the fitness function of C2Pa consists of five components; number of

declined projects, skill match KPI, utilization rate KPI, satisfaction KPI, and hourly cost

KPI. Equation 6.8 presents the fitness function. The equation incorporates the weights,

the normalizing constants and the KPI values. The minimization optimization objective

resulted in the following behavior of the KPIs: The ambition is to have perfect skill match,

any deviation from 0 needs to be punished, therefore, the absolute value of this KPI needs

to be added. The utilization on client projects needs to be as high as possible, thus the

utilization needs to be subtracted. For satisfaction, the same holds. Consultants of lower

position need to be assigned in favor of higher-positioned consultants, therefore, this KPI

needs to be added. Moreover, declining a project yields a penalty of 2. Consequently, a

solution that declines a project has no chance to compete with non-declining solutions.

Fitness =2 ·#declined+

∣∣∣∣
0.4348 · Skill_Match

norm_skill_match

∣∣∣∣− 0.3043 · utilization

− 0.1739 · satisfaction
10

+
0.0869 · cost

220

(6.8)

An important aspect of evolutionary algorithms is the computational efficiency of the

fitness function. In one evaluation of the fitness function, four separate heavy calculations

are required. Computing these with plain Python is ridiculously slow. These problems

have been significantly reduced in four ways: [1] only use relevant subsets of the variables

[2] use vectorization of computations [3] extensive use of NumPy [4] transforming the

computations into Numba (28) compatible code.

6.4 Local Search

As concluded in Chapter 3, intensification methods can be crucial to achieve high perfor-

mance in complex optimization problems. Local search is an intensification method that

focuses on exploring the immediate neighborhood of a current solution to find improve-

ments. When combined with an evolutionary algorithm, this approach creates a hybrid

method that leverages the global exploration capabilities of EAs with the local exploitation

strength of local search techniques. Although local search can improve solution quality, it

often comes at the cost of computational efficiency. This intensification method typically

examines all options in the immediate neighborhood of a solution, also called neighborhood

moves, which can be time-consuming, especially for problems with large solution spaces.

Given that computing the fitness value is the main bottleneck for the efficiency of the

44

6.4 Local Search

algorithms, the number of individuals on and frequency of executing local search should

be carefully determined.

In this research, two types of local search have been developed, Consultant Swap and Skill

Swap. These will be discussed in Section 6.4.1 and Section 6.4.2, respectively.

6.4.1 Consultant Swap

Consultant Swap local search entails the neighborhood move of replacing an assigned con-

sultant of a project with a consultant that has not been assigned to that project. Swapping

a consultant impacts three KPIs: the satisfaction KPI, the skill match KPI, and the hourly

cost KPI. Whenever a consultant is subject to a swap, these KPIs need to be reevaluated

to judge whether an improvement has been made.

The consultant swap procedure is presented in Algorithm 2. A predefined duration of three

iterations has been allocated to this procedure. The first step in an iteration is to shuffle

the project ordering. After that, the following iterative process will be executed. For every

activity of an accepted project, the assigned consultant will be retrieved together with

the consultants assigned to the other activities. From there, the unassigned but available

consultants will be retrieved. In order to assess whether these unassigned consultants

are a better match for the activity of a project, the indices of both the assigned and

unassigned consultant in the chromosome must be retrieved. After retrieving the indices,

the random keys of these consultants are swapped in the chromosome. This swap now

causes the unassigned consultant to be assigned. The modified chromosome is fed to the

decoder, which returns the fitness. If the resulting fitness is lower than the original fitness,

then it will be stored in an improvement list. After the available consultants have been

exhausted, the highest improvement will be selected to be implemented in the chromosome.

This greedy approach is chosen because the number of consultants available can be quite

large. That, combined with the fact that local search will only be applied to solutions

of the elite, thus the solution quality is high, justifies the decision to implement a greedy

approach.

45

6.4 Local Search

Algorithm 2 Consultant Swap local search
1: Input: x, chromosome, net_hours
2: Output: x, chromosome, fitness
3: best_fitness ← -satisfaction + |skill match| + cost
4: for i in range(iterations) do
5: shuffle project order
6: for project p in projects do
7: for activity m in roles[p] do
8: best_improvement ← ∅
9: retrieve available consultants acp,m of activity m of project p

10: retrieve assigned consultant c1 of activity m of project p

11: for consultant c2 in acp,m do
12: swap consultants c1 and c2 in chromosome
13: submit chromosome to decoder → retrieve temp_fitness
14: if temp_fitness < best_fitness then
15: best_fitness ← temp_fitness
16: update best_improvement to this swap
17: end if
18: end for
19: if best_improvement ̸= ∅ then
20: implement best improvement in chromosome
21: end if
22: end for
23: end for
24: end for
25: x, fitness ← decoder(chromosome)
26: return x, chromosome, fitness

6.4.2 Skill Swap

Skill Swap local search entails the neighborhood move of swapping one skill between two

team members of a project. The number of skills that each consultant needs to fill remains

the same, however, one skill of each consultant is interchanged with a skill that was earlier

assigned to the other consultant. Consequently, such a swap impacts only two KPIs: the

satisfaction KPI and the skill match KPI. Therefore, only these KPIs will be taken into

account when performing swaps.

The skill swap procedure is presented in Algorithm 3. Initially, the fitness of the individual

46

6.4 Local Search

has to be calculated, as this will be used to check for improvements. Next, a subset is

created that only contains the projects that need multiple consultants. Each project will

then enter a closed loop in which swaps will be executed. Within a project, every possible

inter-consultant skill swap will be evaluated. A swap is executed by swapping the random

keys of two consultants. In order to do this correctly, the index of these skills in the

chromosome needs to be extracted. After a swap, the altered chromosome is submitted to

the decoder, which returns the KPIs that are needed for the calculation. The information

of the swap will be stored if it leads to an improvement. When all swaps in a project

have been executed, an improvement will be chosen by means of probability. Probabilities

are calculated using positive improvement as a weighting factor. The improvement list

will be updated to no longer include the involved swapped skills. From there, only the

unknown swaps that are created by the earlier swap have to be evaluated. For every

multi-consultant project, this procedure will be carried out until the improvement list

is exhausted. Choosing an improvement based on probabilities made this approach less

greedy compared to choosing the biggest improvement. This is favourable since the search

space of dividing skills over multiple consultants is more complex compared to assigning

consultants to an activity.

47

6.4 Local Search

Algorithm 3 Skill Swap Local Search
1: Input: x, chromosome
2: Output: x, chromosome, fitness
3: best_fitness ← -satisfaction + |skill match|
4: for project in multi consultant projects do
5: improvements ← []
6: for activity m1 in roles[project] do
7: for activity m2 in roles[project], m2 ̸= m1 do
8: for skill s1 in m1 do
9: for skill s2 in m2 do

10: swap skills s1 and s2 in chromosome
11: submit chromosome to decoder → retrieve temp_fitness
12: if temp_fitness < best_fitness then
13: append information swap to improvements
14: end if
15: end for
16: end for
17: end for
18: end for
19: if improvements ̸= ∅ then
20: sample and implement improvement in chromosome
21: delete improvements that involve chosen skills from list
22: update best_fitness
23: if improvements ̸= ∅ then
24: while improvements ̸= ∅ do
25: repeat lines [6:22], where s1 is replaced with both swapped skills
26: lines 6 & 8 are neglected, line 7 is modified
27: end while
28: end if
29: end if
30: end for
31: x, fitness ← decoder(chromosome)
32: return x, chromosome, fitness

48

6.5 BRKGA

6.5 BRKGA

This section details the methodology of the developed BRKGA. We begin by describing

the core components of the algorithm, including the variation and selection operators.

Following this, the hyperparameter tuning approach will be explained.

6.5.1 Methodology

The Biased Random-Key Genetic Algorithm (BRKGA) is a metaheuristic optimization

method within the broader family of genetic algorithms. This approach was first introduced

by Gonçalves and Resende (24), building upon and enhancing the foundations laid by

Bean’s Random-Key Genetic Algorithm (23). Genetic Algorithms are search heuristics

that mimic the process of natural evolution. They operate on a population of potential

solutions, applying the principles of selection, crossover, and mutation. In these systems,

survival of the fittest is the core principle, which means that solutions with higher fitness

are more likely to survive and reproduce. Over time, this process can lead to the evolution

of increasingly better solutions.

BRKGA starts with the generation of an initial population. As mentioned in Section

6.2, a chromosome consists of random keys of size Z. Once the population of size λ has

been randomly generated, the population has to go through the decoding function. This

function returns the values of the KPIs, the information on the acceptance of projects, and

the decision variable x. The values of the KPIs and the number of declined projects are

then used to calculate the fitness value, as indicated in Equation 6.8.

The evolutionary strategy is where the name biased is introduced. Reproduction and

crossover operators select which individuals will produce offspring and dictate how genetic

information is shared between parents to generate new individuals. These processes typ-

ically improve the overall quality of populations and promote convergence. In contrast,

mutation counteracts this trend by allowing random changes in genetic material, thus in-

troducing diversity into the population. In the reproduction procedure, some of the best

individuals of the current generation are directly copied to next generation. This approach

is also called elitist and its advantage is that it promotes improving quality solutions,

moreover, it can also lead to fast convergence. The percentage of the best population that

is directly copied to the next generation is called elite rate pe. This splits the population

into two groups, the elite and the non-elite.

49

6.5 BRKGA

Regarding the crossover operator, two-point crossover is used. Two-point crossover is

chosen because it is able to preserve blocks of successful assignments better than one-

point crossover, and is less disruptive compared to uniform crossover. It is favorable

to keep blocks of the chromosomes intact, as the reproduction procedure is biased. In

crossover, two solutions are randomly chosen to act as parents. One parent is from the

elite individuals, the other is from the non-elite individuals. With that, BRKGA applies

a selection process that shows a preference for elite solutions. This bias accelerates the

convergence toward high-quality solutions by ensuring that genetic material from the best

performing individuals is more likely to be passed on to subsequent generations. In a two-

point crossover function, two random points, p1 and p2, are selected along the length of the

parent chromosomes, where p1 < p2. The blocks of genes between these points are swapped

between two parent chromosomes to create two new offspring children. Figure 6.5 shows

how two-point crossover generates the offspring. Subsequently, mutation operators are

applied to the offspring where each gene has a mutation probability of pm. This introduces

diversification into the population. In addition to this, the new offspring consisting of the

elite and the generated children is supplemented with randomly generated individuals, who

are responsible for pr of the population. This means that in total λ− pe − pr children are

generated by the crossover procedure. A visual summary of the reproduction procedure is

illustrated in Figure 6.6 (adapted from (15)).

Figure 6.5: Two-point crossover Figure 6.6: Reproduction BRKGA

Additional measures are implemented to prevent early convergence and to direct the evo-

lutionary process. Firstly, the idea proposed by Chaves et al. (29) is implemented, which

makes the parameters pe and pr adaptive. The values of the parameters will range within a

50

6.5 BRKGA

predefined interval in which pe increases and pr decreases over the generations. By increas-

ing elitism and reducing random replacement, the algorithm can dynamically shift focus.

Early generations emphasize diversity and discovery of promising solutions. Later gener-

ations focus on refining those solutions, maximizing their quality. Secondly, the shaking

operator of Andrade et al. (30) is implemented. The shaking operator is used to maintain

diversity in the non-elite set and preserve the convergence structure in the elite set of the

population. It helps in introducing random modifications to elite individuals while reset-

ting non-elite individuals. The shaking process ensures that the population does not get

stuck in local optima and explores different solutions effectively.

The shaking operator can be activated in three ways:

• the fitness of the entire elite is identical

• the best fitness score has not been improved for R generations

• the fitness score has not been improved for R∗ generations.

During the shaking process, elite individuals undergo perturbations based on the shaking

intensity parameter Ψ, which is proportional to the length of the chromosome. Perturba-

tions include swapping of random keys and replacing keys with random numbers. For each

shaking scenario, the shaking intensity Ψ is uniformly sampled from a scenario dependent

interval. When the fitness of the elite is identical, Ψ is sampled from the interval [0.05,

0.30], when the best solution has not improved for R generations, Ψ is sampled from [0.20,

1.0], and lastly, when the best solution has not improved for R∗ generations, Ψ is sampled

from [0.40, 1.0]. Thus, different scenarios result in a more disruptive shaking sequence.

Local search will be executed a total of 10 times in one run, which is the base frequency for

the base instance of three projects. Executing local search too frequently will significantly

decrease the efficiency of the models, while infrequent usage of local search will not have

much impact. It will be called right after the reproduction procedure as the new popula-

tion is generated. The method used to select the individuals that will undergo local search

is called Tournament Selection. Tournament selection is widely recognized as an efficient

method for selecting individuals for local search in evolutionary algorithms, particularly

due to its adjustable selection pressure and computational efficiency (Ishibuchi et al.(31)).

The method works by randomly selecting k individuals from the population and choosing

the fittest among them, which helps maintain a balance between diversification and intensi-

fication. Unlike random selection, tournament selection ensures higher quality individuals

51

6.5 BRKGA

have a better chance of being selected while still maintaining population diversity, as even

less fit individuals have a chance of winning smaller tournaments. For BRKGA, the best

75% of the population is available to be selected. To maintain diversity and ensure good

selection pressure the tournament size has been set to k = 3.

Initially, Consultant Swap Local Search will be performed on five individuals chosen by five

iterations of Tournament Selection. Duplicate tournament winners are not allowed. The

decision to apply it more frequently but only on a select number of individuals results in

faster improvements in early generations, while the diversity of the population is preserved.

Afterwards, Skill Swap Local Search will be executed on these same individuals. Following

completion of each BRKGA iteration, a final local search phase is implemented. During this

concluding stage, the algorithm selects five individuals at random from the top-performing

20% of the population for local search optimization. Post-generation local search can

significantly improve the quality of final solutions by fine-tuning the best individuals.

In Figure 6.7, a schematic overview of BRKGA is presented. It includes the elements

discussed above. The model stops when a predefined number of generations have been

reached. In Chapter 7, the difference in performance and efficiency of a BRKGA model

with and without local search will be investigated.

52

6.5 BRKGA

Start: Initialize Population

Decode Chromosomes

Evaluate Fitness

Reproduction (Crossover & Mutation)

Shaking? Apply Shaking Operator

Local Search? Apply Local Search

Stop?

Stop: Return Best Solution

Yes

Yes

No

No

Yes

No → next generation

Figure 6.7: Schematic overview BRKGA

6.5.2 Hyperparameter Tuning

Hyperparameter tuning is crucial in optimizing the performance of evolutionary algorithms.

Hyperparameters are the configurable settings that control an algorithm’s behavior, such

as population size, mutation rate, or elite rate, which are not learned from the data but set

prior to the learning process. Its importance lies in improving convergence speed, solution

quality, robustness, and computational efficiency. As Eiben and Smit (32) emphasize, an

53

6.5 BRKGA

evolutionary algorithm with good parameter values can be orders of magnitude better than

one with poorly chosen parameter values, and finding optimal values is time-consuming

but essential. In this research, the Taguchi method (33) is used to setup the configuration

of the experiments.

For BRKGA, the set of hyperparameters that needs tuning is listed in the first column of

Table 6.1. The parameters related to the shaking procedure, R and R*, are not included in

the list, these have been fixed to values of 0.25×generations and R×1.5 respectively. The

values of these variables are determined based on values used in (30). Table 6.1 presents

the set of possible values for population size, mutation rate, elite rate, and respawn rate.

These values are based on commonly used settings in the literature. The experimental

setup for the Taguchi tuning procedure consists of 9 hyperparameter configurations. Each

configuration is executed for 10 independent runs, with each run lasting 170 generations.

This shortened duration, compared to a complete model run, allows for investigating the

algorithm’s early convergence ability and overall performance. Furthermore, local search

has not been enabled while tuning since this allows us to establish a baseline performance

for the algorithm using just the evolutionary components. This baseline helps to isolate the

specific impact of adding local search later. In this way, local search does not overshadow

poor baseline parameter choices.

parameter values
pop_size λ [80, 100, 120]

mutation rate pm [0.02, 0.035, 0.05]
elite rate pe [[0.10, 0.25], [0.15, 0.30], [0.20, 0.35]]

respawn rate pr [[0.05, 0.20], [0.075, 0.225], [0.10,0.25]]

Table 6.1: BRKGA parameter grid

The data used in this experiment is described as follows: the instance consists of four

projects with a duration of 10 weeks, 10 weeks, 17 weeks and 16 weeks. These projects are

handpicked from the provided data set. This is done to ensure that the test instance is

sufficiently complex. Each project requires 1, 2, 2, and 4 consultants. For these projects,

the number of skills involved is distributed as 12 skills, 10 skills, 16 skills, and 47 skills.

After each run, the metrics covering the KPIs and the objective are stored for further

analysis.

The experimental results are summarized in Table 6.2, where an aggregated analysis of the

54

6.5 BRKGA

data is presented. This table presents the five best performing configurations sorted by

average objective value. The table contains several metrics: average mismatched skills, av-

erage hourly cost, and average satisfaction. In particular, utilization has been omitted due

to the absence of declined projects, which would have resulted in identical values. Among

these metrics, two stand out: the average objective and the average mismatched skills. The

average objective serves as a valuable indicator of the model’s optimization capabilities,

providing insights into its overall performance. Meanwhile, the average mismatched skills

is the most important KPI, directly reflecting the quality of assignments.

parameter set obj mismatched skills cost satisfaction
λ: 100, pm: 0.035, pe: [0.2, 0.35], pr: [0.05, 0.2] -0.3307 -1.5667 142.1620 6.2035
λ: 120, pm: 0.02, pe: [0.2, 0.35], pr: [0.1, 0.25] -0.3305 -1.7111 141.6662 6.3508
λ: 100, pm: 0.02, pe: [0.15, 0.3], pr:[0.15, 0.3] -0.3257 -1.8139 140.4259 6.1734
λ: 120, pm: 0.035, pe: [0.1, 0.25], pr: [0.15, 0.3] -0.3248 -1.7500 142.3367 6.0841
λ: 120, pm: 0.05, pe: [0.15, 0.3], pr: [0.05, 0.2] -0.3247 -1.7500 142.3994 6.0799

Table 6.2: BRKGA tuning top 5 results

From Table 6.2 can be concluded that the hyperparameter set:{ λ: 100, pm: 0.035, pe:

[0.2, 0.35], pr: [0.05, 0.2]} produced the best results. In the upcoming experiments in

Chapter 7, the BRKGA will use this set of hyperparameters. For each metric, the best

result is highlighted in bold. It shows that this configuration outperformed every other

configuration on three of the four metrics.

Figure 6.8 presents a detailed overview of the objective value distributions for each hyper-

parameter set. The boxplot indicates that the selected set achieved the best score out of

all sets and the best median score of the sets. Besides that, the boxplot of this selected

set does not contain an outlier. It can be concluded that the scores of the best set and the

second best set are very close, both in terms of average objective value and the spread of

the objective values. However, the best set achieved the scores with a smaller population

size, such as λ = 100 < 120, therefore, the best set will be used as the hyperparameter

configuration in the BRKGA.

55

6.6 Scatter Search

Figure 6.8: Boxplots of objective values of hyperparameter sets BRKGA

6.6 Scatter Search

This section details the methodology of the developed Scatter Search algorithm. The core

components of the algorithm will be explained. In addition, the hyperparameter tuning

procedure will be summarized.

6.6.1 Methodology

Scatter Search is a population-based metaheuristic, first proposed by Glover (34) in 1977.

It can be placed in the category of evolutionary algorithms. However, in contrast to other

evolutionary algorithms, such as a genetic algorithm, scatter search is based on the idea

that carefully structured techniques for generating new solutions can offer major advantages

over methods that rely primarily on randomization. It utilizes strategies for diversification

and intensification that have proven to be effective.

The algorithm is compatible with the random key vector representation. The core compo-

nents of the algorithm are extracted from Marti et al. (35) and Van Peteghem and Van-

houcke (20). (35) outlines the principles of scatter search for both the basic and advanced

design. They state that scatter search consists of five methods; a diversification genera-

tion method to generate a collection of diverse trial solutions, an improvement method to

56

6.6 Scatter Search

transform a trial solution into a better solution, a reference set update method to generate

and adjust a reference set, a subset generation method that acts on the reference set to

produce pairs of solutions that will act as input for the reproduction procedure, and a so-

lution combination method that uses the subset of solutions to produce new trial solutions.

In the following sections, these methods and their implementation will be discussed.

The diversification generation method is the first stage of the algorithm. This encompasses

the generation of a good and diverse initial population. This method can be performed

in sophisticated ways; however, since advanced methods are not applicable to the problem

at hand, it has been decided to implement it as follows: initially, a random population of

size 4 ·λ will be randomly generated, where population size λ is calculated as: b · (b1+ b2).

Here, b is a constant and b1 and b2 are the sizes of the reference sets. The population

will be evaluated and sorted on fitness value. Individuals with duplicate fitness will be

removed from the population. Lastly, the λ individuals with the lowest values for the

fitness are selected for entrance in the initial population P . Elimination of duplicates

ensures diversity.

The improvement method, as it is described in the papers, is not implemented in this

algorithm. This is because it is partly used as a repair mechanism, which is unnecessary as

every solution is feasible in the decoder and because it is very costly to apply the developed

local search to every individual.

After evaluating the population of size λ, two diverse populations are constructed from

solution set P , also called reference sets.

• RefSet B1: Contains the b1 highest-quality solutions from P . To ensure diversity,

a minimum distance threshold t1 is enforced between all the solutions in B1. If the

instance can not provide b1 solutions for set B1, the set B1 is supplemented with

randomly chosen solutions from the upper half of set P that are not already included

in B1.

• RefSet B2: Contains b2 solutions chosen for their diversity. These are selected from

the remaining solutions (P \ B1) based on their distance to all solutions in B1. A

larger threshold t2 (where t2 > t1) is used to measure this distance, further promoting

diversity. The distance comparisons will use solutions in descending fitness order.

The best b2 solutions that are at least at t2 distance from all solutions in B1 are

57

6.6 Scatter Search

allowed to enter B2. If the number of solutions in B2 is less than b2, the set B2 is

supplemented with randomly generated solutions.

The distance between solutions is a measure for diversity, the calculation of the distance

between solution s1 and s2 can be formulated as follows:

ds1,s2 =

P∑

p=1

{
0 if aps1p = aps2p
1 otherwise

+

P∑

p=1

mp∑

m=1

{
0 if acs1p,m = acs2p,m
1 otherwise

+

∑P
p=1

{
0 if os1p = os2p
1 otherwise

5
+

∑P
p=1

{
0 if ts1p = ts2p
1 otherwise

4

(6.9)

The calculation consists of four parts, difference in accepted projects covered by the variable

ap, difference in accepted consultants covered by variable ac, difference in project ordering

covered by variable o, and difference in decoded start date of projects covered by variable

t. These will be summed up into one value, which represents the distance between two

solutions.

The next phase is to utilize the built reference sets and combine the solutions in a controlled

way. This procedure of determining which pairs of solutions are to be combined is called

the subset generation method and it functions as follows: First all pairs in B1 containing

at least one new solution compared to the previous generation are combined, leading to

two children. The idea of combining two solutions from reference set B1 stimulates inten-

sification. Next, all pairs of one solution from B1 and one solution of B2 are considered.

These will also produce two children. This combination is categorized as diversification.

The solution combination method specifies how the pairs are processed to generate the

children. It has been decided to implement two-point crossover as solution combination

method, as (20) concluded that it was superior to other variants in their problem. The

combination method is therefore in line with the method used in Section 6.5. In addi-

tion, the offspring generated will be exposed to minor mutations at a fixed rate of 3.5%,

which ensures that mutations act as small adjustments to explore new possibilities without

disrupting the structure of the solution.

Once the offspring has been evaluated, the cycle discussed above repeats itself. Thus,

first the reference sets need to be updated. From now on, the solution set P contains

the set B1, set B2 and the produced offspring. These will first be sorted by fitness, and

then the reference sets will be rebuilt. This step is referred to as the reference set update

method. In the experimental phase of the research, the algorithm will have a variant in

58

6.6 Scatter Search

which both Consultant Swap Local Search and Skill Swap Local Search will be applied.

On a chosen individual, consultant swap will be executed first. Afterwards, skill swap will

be executed on the resulting chromosome of consultant swap. This means that either the

chromosome has not changed if no improvements were found, or the altered chromosome

from consultant swap will be subjected to skill swap. Since local search is computationally

heavy, it will be applied a total of 10 times to 5 individuals of the offspring from the solution

combination method. These individuals are selected by means of Tournament Selection

with tournament size k = 4. The number of iterations of local search is significantly less

than what is stated in the literature, where local search is applied to every individual.

Following completion of each SS iteration, a local search phase is implemented. For this

algorithm, the five individuals are randomly chosen from the combined group of individuals

from reference sets B1 and B2.

Figure 6.9: Illustrative overview Scatter Search

In Figure 6.9 (adapted from (20)), an overview of the Scatter Search algorithm is presented.

The figure includes the loop of the methods that will be executed as long as the stop

criterion, which is a predefined number of generations, has not been reached.

59

6.6 Scatter Search

6.6.2 Hyperparameter Tuning

The hyperparameter tuning procedure for Scatter Search will be identical to the earlier

procedure. That is, generating the experiments with the Taguchi method and storing the

results of independent runs for analytical purposes. The hyperparameters of Scatter Search

can be found in Table 6.3, where b1 and b2 correspond to the size of the reference sets, and

the thresholds t1 and t2 for the minimal distance between the solutions of reference sets 1

and 2. The thresholds are calculated as: t1 · ΣP
p=1mp and t2 · ΣP

p=1mp, which boils down

to the threshold times sum of all involved consultants in the projects. Previous tuning

experiments indicated that the initial population multiplier b should be equal to 6, as the

5 best performing parameter sets all had b = 6.

parameter values
b1 [6, 8, 10]
b2 [4, 6, 8]
t1 [0.2, 0.3, 0.4]
t2 [0.5, 0.6, 0.7]

Table 6.3: Scatter Search parameter grid

The experimental setup is identical to the previous procedure; thus, the same data instance

and performance metrics are used. However, the number of generations has been set to 80,

as SS generates more solutions per generation compared to BRKGA. In total, 9 different

experiments were conducted.

Table 6.4 presents the results of the five best performing hyperparameter configurations,

sorted by average objective value. From the table can be concluded that {b1: 10, b2: 8, th1:

0.3, th2: 0.5} is the best performing hyperparameter set. It achieves the highest average

score on three of the four performance metrics. Furthermore, if we inspect the boxplots of

the objective values of the hyperparameter sets, listed in Figure 6.10, it can be seen that

{b1: 10, b2: 8, th1: 0.3, th2: 0.5} achieved the best objective value, it has the lowest 1st,

2nd, and 3rd quantile in terms of objective value. In the upcoming experiments in Chapter

7, the Scatter Search algorithm will use this set of hyperparameters.

60

6.6 Scatter Search

parameter set obj mismatched skills cost satisfaction
{b1: 10, b2: 8, th1: 0.3, th2: 0.5} -0.3336 -1.5333 145.0671 6.3901
{b1: 10, b2: 6, th1: 0.2, th2: 0.7} -0.3293 -1.6167 144.2681 6.2219
{b1: 8, b2: 8, th1: 0.2, th2: 0.6} -0.3289 -1.6250 144.4826 6.2170
{b1: 10, b2: 4, th1: 0.4, th2: 0.6} -0.3264 -1.8194 138.9689 6.1926
{b1: 8, b2: 6, th1: 0.4, th2: 0.5} -0.3256 -1.7500 141.4854 6.1128

Table 6.4: Scatter Search tuning top 5 results

Figure 6.10: Boxplots of objective values of hyperparameter sets SS

61

7

Evaluation of Results

This chapter discusses the experimental phase of the research. The experiments are exe-

cuted using a Python 3.12.3 engine in Visual Studio Code, on a computer with an Intel(R)

Core(TM) i5-1145G7 CPU of 2.60Ghz and 16.0GB of RAM. Section 7.1 discusses the

verification of the models. The models will be validated in Section 7.2. Section 7.3 com-

pares and discusses the best solutions found by MILP, BRKGA, and SS. Subsequently,

a series of experiments will be conducted to address the main research question and its

sub-components. The experimental structure is as follows:

• Section 7.4 will present and analyze the results from experiments investigating the

impact of increasing instance size.

• Section 7.5 will assess the effects of varying the starting time windows.

• Section 7.6 will assess the effects of business rules on both the convergence speed and

the solution quality.

In each experiment, four distinct model configurations will be employed to solve the prob-

lem instances:

• BRKGA without local search

• BRKGA-LS with local search

• SS without local search

• SS-LS with local search

62

7.1 Verification of Models

The results of these experiments will be analyzed to provide a well-founded answer to the

main research question:

Does the implementation of local search boost the performance of meta-heuristics in solving

the Consultant-to-Project Assignment (C2Pa) problem at BearingPoint NL, specifically

focusing on efficiency and efficacy?

7.1 Verification of Models

Before the experiments can be executed, it should first be proven that the C2Pa models

work as intended. In the process of proving the correctness, we will generate an easy

test instance, solve it with the BRKGA model, and compare the returned KPI values

with manually calculated ones. These values should be identical if the model behaves as

expected. The problem will be simplified to only take one KPI into account, which is done

by setting the targeted KPI with a value of 1 and the others with 0. This simplifies the

optimization problem and allows us to closely monitor the behavior of the model. For each

KPI an experiment will be conducted. The instance contains one project from the D&A

service line. It involves nine skills, has a duration of five weeks and requires one consultant.

Moreover, the project should start in week 36 and has no flexible time window.

7.1.1 Skill Match KPI

Table 7.1 shows the results of solving the instance when only using the skill match KPI.

This result implies that on average, one skill is negatively mismatched, thus indicating

underqualification. Given the availability of the practice, only consultants 66 and 69 are

available to be assigned to this project. To determine whether the actions of the model are

in line with the expectations, the skill match between the project and these consultants

must be calculated. The required skill level of the nine skills of the project and the

consultant skill levels on these skills are shown in Table 7.3. By using Equation 6.3 for the

calculation of the skill match, we obtain the unnormalized skill match, as can be seen in

Table 7.2. The algorithm uses the normalized skill match in the evaluation of the fitness.

The normalizing constant is calculated as the maximum skill level times the number of

skills, and this value divided by the number of projects. Executing this calculation results

in a normalizing constant of 81. Dividing the skill match by this constant results in the

skill match that is used in the fitness calculation. For consultant 66 this is -0.111 and for

consultant 69 this is -0.234. From Equation 6.8 can be concluded that the algorithm will

63

7.1 Verification of Models

choose the skill match that is closest to 0, meaning that consultant 66 will be assigned to

the project. Dividing the unnormalized skill match of consultant 66 by 9 (since the skill

match is negative) gives us the average project skill mismatch of -1. This value is identical

to the skill match presented in Table 7.1, which shows that the skill match KPI works

correctly.

KPI value
Skill Match -1
Utilization 1.0
Satisfaction 6.444
Hourly cost 127.0

Table 7.1: Skill match verification
results

C66 C69
Unnormalized Skill match -9 -19
Normalized Skill match -0.111 -0.234

Average mismatched skills -1 -2.111
Assigned consultant ✓ ×

Table 7.2: Skill match C66 and C69

Skill 1 Skill 8 Skill 19 Skill 104 Skill 105 Skill 108 Skill 115 Skill 123 Skill 125
PSL 3 1 1 3 1 1 3 1 3
C66 3 2 2 2 3 2 2 2 2
C69 3 2 1 2 1 0 2 1 0

Table 7.3: Required skill level and consultant skill level

7.1.2 Satisfaction KPI

The same instance will be employed to confirm the models’ behavior concerning the sat-

isfaction KPI. As the instance remains unchanged, consultants 66 and 69 continue to be

the only available options. Table 7.4 displays the outcomes of solving the instance while

solely focusing on the satisfaction KPI. The goal is to verify if manual computations will

also yield a satisfaction score of 7.889. Calculating the satisfaction KPI for a single project

simply involves determining the mean satisfaction score of the relevant skills. Table 7.5

illustrates the satisfaction scores of the involved skills for both consultants. The average

satisfaction scores for consultants 66 and 69 are 6.444 and 7.889, respectively. Since the

objective is to maximize this value, consultant 69 will be assigned to the project. This

justifies the model’s behavior regarding the satisfaction KPI.

64

7.1 Verification of Models

KPI value
Skill Match -2.111
Utilization 1.0
Satisfaction 7.889
Hourly cost 120.0

Table 7.4: Satisfaction verification results

Skill 1 Skill 8 Skill 19 Skill 104 Skill 105 Skill 108 Skill 115 Skill 123 Skill 125
C66 10 6 4 7 9 1 6 8 7
C69 10 7 5 8 9 7 9 9 9

Table 7.5: Satisfaction scores of consultants 66 and 69

7.1.3 Hourly Cost KPI

Verifying the behavior of the hourly cost KPI is straightforward, check whether the con-

sultant with the lowest hourly cost is assigned to the project. The KPIs returned by the

model can be found in Table 7.6. The hourly cost of 120 indicates that the assigned con-

sultant has the job position of a senior management analyst. By solving the same instance

as before, the pool of available consultants is still restricted to only consultants 66 and

69. The job positions of these consultants are consultant and senior management analyst,

respectively. A consultant has a hourly cost of 127, whereas a senior management analyst

has a hourly cost of 120. Given the positive sign of this KPI in the fitness function stated

in Equation 6.8, the goal is to minimize this value. This results in assigning consultant 69

with the job position of senior management analyst and an hourly cost of 120, which is in

line with the model result. Therefore, the hourly cost KPI is working as expected.

KPI value
Skill Match -2.111
Utilization 1.0
Satisfaction 7.889
Hourly cost 120.0

Table 7.6: Hourly cost verification results

65

7.1 Verification of Models

7.1.4 Utilization KPI

The utilization KPI has been introduced to give prioritization to client projects over in-

ternal projects. Furthermore, BE NL has also indicated that full-time projects are favored

over part-time projects and that long-term projects are preferred over short-term projects.

Each scenario will be examined with a unique test instance to verify the behavior of the

model. In each scenario, although the utilization KPI value is positive, it is subtracted

in the overall objective function. Therefore, the optimization goal for this specific KPI is

maximization, which contributes to minimization of the fitness function. The objective is

calculated as the total hours of the accepted client projects divided by the total hours of

all the projects (client, beach, and declined projects).

Client projects over internal projects Accepting client projects over internal projects

is an essential rule that is the underlying assumption of the two other rules. To verify that

this rule is enforced, a test instance is generated where two identical projects need to be

scheduled. One project is a client project, whereas the other is an internal project. The

availability of consultants has been modified so that only consultant 66 is available. The

required utilization of the projects only allows the acceptance of one of the two projects.

Table 7.7 shows the results of solving this instance. If we were to accept the beach project

and decline the client project, the contribution of client projects hours would result in 0. If

we were to accept the client project, pt1 × ph1,0 client hours are accepted. Recall that the

duration and utilization of the projects are identical. This means that the accepted client

hours are responsible for half of the total hours, which is 0.5. Since this KPI needs to be

maximized, the model should choose the second scenario with a utilization of 0.5. This is

indeed the case, as can be seen in Table 7.7, which verifies the behavior of the model.

KPI value
Skill Match -1
Utilization 0.5
Satisfaction 6.444
Hourly cost 127.0

Table 7.7: Verification client projects over internal projects

Full-time over part-time To verify that full-time projects are chosen over part-time

projects, a test instance of two projects is generated where consultant 66 only has the

availability to be assigned to one of the two. The requirements of the projects are identical,

66

7.1 Verification of Models

however, the utilization of the consultant on project 1 is 100% whereas project 2 only

requires 50% utilization of a consultant. Utilization of 100% corresponds to 40 working

hours. The ratio of total projects hours between the two projects is 2:1. If project 1 is

accepted, the utilization KPI has a value of 40/(40+ 20) = 0.667. If project 2 is accepted,

this value is 20/(40 + 20) = 0.334. As the objective of this KPI is maximization, the first

project should be accepted, resulting in an utilization KPI of 0.667. This is in line with the

best result of the model presented in Table 7.8. With that, the model’s behavior regarding

full-time vs part-time has been verified.

KPI value
Skill Match -1
Utilization 0.667
Satisfaction 6.444
Hourly cost 127.0

Table 7.8: Verification full-time projects over part-time projects

Long-term over short-term Lastly, it has to be verified to the model chooses long-

term projects over short-term projects. Again, a test instance of two identical projects is

generated where only consultant 66 has the availability to be assigned to one of the two.

The lengths of the projects are as follows, project 1 has a length of 15 weeks, whereas

project 2 has a length of 5 weeks. The utilization of roles of the projects are the same, so

these do not have to be taken into account in the objective. If project 1 accepted, the KPI

has a value of 15/(15 + 5) = 0.75. If project 2 is accepted, this value is 5/(15 + 5) = 0.25.

The model should accept project 1, as this KPI value is the highest. Table 7.9 shows that

the model solved the test instance with a resulting utilization KPI of 0.75. Since these

solutions are identical, the model’s behavior concerning long-term vs short-term has been

verified.

KPI value
Skill Match -1
Utilization 0.75
Satisfaction 6.444
Hourly cost 127.0

Table 7.9: Verification long-term projects over short-term projects

67

7.2 Validation of Models

7.2 Validation of Models

Besides verifying that the model makes the right decisions, it is also essential to assert that

the solutions of the model are compliant with the rules and constraints of the problem.

The model is validated by utilizing the existing MILP model. Since the MILP model of

(1) is validated for correctness and compared to the OTL, if an approach is found that

validates our model with the MILP, it is proven that the model is compliant with the rules

and constraints of the C2Pa problem.

The MILP model has been restructured to function as a feasibility check for solutions

generated by the metaheuristic models. The feasibility of a solution depends solely on the

decoder, as solutions are constructed within this component. Consequently, the specific

model used to submit the solution to the restructured MILP is irrelevant for the feasibility

assessment. The solution requiring validation originates from the BRKGA model. Im-

portantly, if this BRKGA-derived solution is considered feasible, it logically follows that

solutions produced by Scatter Search must also be feasible.

In this validation approach, all decision variables in the MILP model are fixed to the values

obtained from the BRKGA solution. In doing so, the MILP model is transformed from an

optimization problem into a constraint satisfaction problem. This modified MILP model

acts as a feasibility checker. When we input the BRKGA solution into this fixed-variable

MILP model, it allows us to verify whether the solution satisfies all constraints and rules

of the C2Pa problem. If the MILP solver can find a feasible solution with these fixed

variables, it confirms that the BRKGA solution is indeed valid and compliant with all

problem constraints.

The test instance generated for this experiment contains a single project that requires

three consultants, has a duration of 12 weeks, and involves 21 skills. This instance has

sufficient complexity, as it includes assigning multiple consultants and division of skills

over these consultants. The numerical results are not of importance in this situation;

the point of interest is whether the MILP model will classify the solution as feasible or

infeasible. After solving the instance using the BRKGA model and submitting the solution

to the restructured MILP model, the Gurobi solver confirmed the feasibility of the solution.

Moreover, the resulting recalculated values of the KPIs are identical. This result validates

both the models and, more specifically, the decoder algorithm used within them.

68

7.3 Comparison to MILP

7.3 Comparison to MILP

This section compares the optimal solution obtained by the MILP model with the best

solution found by the BRKGA and Scatter Search models. It also examines the total

computation time required for each model, from initialization to completion. The compar-

ison of computation times demonstrates the relative efficiency of the BRKGA and Scatter

Search models compared to the MILP model. In particular, this analysis includes the

time required for model construction, which is found to be significant for MILP. The per-

formance comparison reveals whether both models arrive at similar solutions or if there

are discrepancies in their problem-solving dynamics, potentially due to differences in their

respective objective functions.

The test instance that will be used is made up of two projects. The first project must start

at week 20 and has no flexible starting window. It has a duration of 13 weeks, requires

one consultant on a 16-hour basis per week, and involves four skills. The second project

should start between week 34 and week 36. It has a duration of 10 weeks, requires two

consultants on a 20-hour and 36-hour basis per week, and involves 10 skills where the first

consultant needs to fill 4 skills and the second consultant 6 skills. All three models are

configured to use the weights determined in Section 6.3.5, thus following the preferences of

the OTL. BRKGA and Scatter Search are executed for 50 generations each with their best

hyperparameters as found in Section 6.5.2 and 6.6.2. Local search was omitted from this

experiment due to two primary factors. Firstly, the problem instance is relatively small in

scale. Secondly, preliminary analyses indicated rapid convergence of the solution.

The results of the three models can be found in Table 7.10, 7.11 and 7.12. It can be seen

that BRKGA and Scatter Search produced the same optimal solution. Despite showing

similarities, there are significant differences. First of all, the total time that the MILP

model needs to initialize and solve the problem is almost 8 times greater than that of the

BRKGA model. The computation time of Scatter Search should be slightly reduced to

make the comparison fair, as one generation of SS produces more solutions per generation

compared to BRKGA. Secondly, the values of the KPIs are not identical between MILP

and the meta-heuristics. This difference is probably due to the objective functions. The

meta-heuristics calculate the fitness value directed from the KPIs, whereas the MILP model

uses the deviation variables in combination with aspiration-level variables. The aspiration-

level variables act as penalties when the desired variables deviate from their desired level.

69

7.4 Experiment Instance Size

These penalties could influence the behavior of the model. Moreover, no request from the

OTL was done to include these penalties in the models of the meta-heuristics.

KPI value
Skill Match -0.944
Utilization 1.0
Satisfaction 4.539
Hourly cost 139.737

Time 351.66 s

Table 7.10: Results of
MILP

KPI value
Skill Match -0.222
Utilization 1.0
Satisfaction 4.447
Hourly cost 143.026

Time 44.95 s

Table 7.11: Results of
BRKGA

KPI value
Skill Match -0.222
Utilization 1.0
Satisfaction 4.447
Hourly cost 143.026

Time 48.49 s

Table 7.12: Results of
Scatter Search

Given the preferences and rules provided by the OTL, the solutions of BRKGA and Scatter

Search are more in line with the instructions by favouring the skill match KPI. The skill

match KPI of the metaheuristics is closer to 0 with the -0.222 average mismatched skills

per project, compared to the -0.944 of MILP. This is achieved by slightly compromising

the satisfaction and the hourly cost KPI compared to MILP. To be able to compare the

quality of the solutions based on one value, the MILP solution has been transformed to the

decision variable of the BRKGA and Scatter Search model. Calculating the fitness value

of MILP using this approach resulted in -0.2760, whereas the solution of BRKGA yielded

-0.3186. This comparison is not completely fair, as MILP introduces deviation penalties on

the hourly cost, utilization, and satisfaction variables. This concludes that the inclusion

of aspiration intervals in the objective function significantly influences the problem-solving

dynamics of the optimization model.

7.4 Experiment Instance Size

This section will evaluate the effectiveness of the proposed models as problem instance

size increases. The analysis aims to identify the limits of these models. Additionally, it

will assess the impact of incorporating local search techniques into the models. To address

this research question, problem instances will be solved using both versions of the models:

one with local search enabled and another with it disabled. For each model configuration,

15 independent runs will be conducted, with results recorded for both performance and

computational speed. These experimental outcomes will contribute significantly to answer-

ing the main research question, providing insights into the scalability and efficiency of the

proposed approaches.

70

7.4 Experiment Instance Size

The problem instances under examination include portfolio sizes of 3, 6, 12, and 24 projects.

Each instance has been designed to include sufficient complexity, i.e., each instance will

contain projects that require multiple team members and a significant amount of skills.

Note that not every project has this level of complexity. To ensure fair comparisons between

the models, several measures have been implemented. Firstly, the number of generations

in the base models has been calibrated to produce a similar number of offspring. Analysis

revealed that on the base instance of 3 projects, the SS algorithm generates 204 children

per generation, while BRKGA produces an average of 60. To maintain fairness, the ratio

of generations between BRKGA and SS should be set at approximately 3.4:1. Secondly,

a standardised approach has been implemented to equalize the total number of solutions

subjected to local search between the two models.

The frequency of local search will be adjusted as the instance size increases. Local search

frequency adaptation is crucial when scaling genetic algorithms to larger problem instances,

as it helps maintain an effective balance between diversification and intensification. Follow-

ing Eiben and Smith (36), we adapt the local search frequency using a non-linear scaling

equation that prevents excessive computational overhead as the instance size grows:

fls = ⌊fbase ×
√

p

pbase
⌋ (7.1)

As stated earlier, the base frequency fbase is set to 10 and the base instance size pbase to 3.

These adjustments aim to create equal conditions for comparing the performance of the SS

and BRKGA models across different problem sizes, ensuring that any observed differences

can be attributed to the algorithms’ fundamental capabilities rather than differences in

their parameters.

The research process begins with a benchmark experiment to evaluate how quickly the local

search variant reaches convergence. By analyzing the convergence curves, we will identify

the specific number of generations needed for this process. This same generation count will

then serve as a parameter for running the base models, allowing for direct comparison. The

next phase involves statistical analysis of the objective values obtained from both models.

When statistical tests reveal significant differences between a local search variant and its

base counterpart, we move to an additional experiment. This additional experiment is

necessary because local search variants typically require more evaluations of the fitness

function.

To ensure a fair comparison, we will adjust the number of generations to achieve matching

CPU times between models. The adjustment will be calculated using the time percentage

71

7.4 Experiment Instance Size

increase between variants. This methodology, which follows Lobo et al.’s (37) research

framework, provides a fair basis for comparing algorithms with different computational

demands per generation. The final statistical analysis of these results will definitively

demonstrate whether local search offers meaningful benefits in each specific instance.

7.4.1 Instance size 3

The first experiment consists of an instance of three projects, chosen to represent three

service lines in the instance. The projects require 1, 1, and 3 consultants, and the involved

skills total 4, 13, and 24. Together, they are responsible for a chromosome length of

206, indicating an overload of consultants available for the projects. Prior analysis on the

convergence curves of both models indicated that the BRKGA models should run for 275

generations and the SS models for 80 generations. The curves are presented in Figures 7.1

and 7.2. The random number seed is fixed for every problem to ensure identical starting

points. In Figure 7.1, the progression of the best fitness and the average fitness of the elite

of the BRKGA models over generations is shown. The peaks in the average fitness curves

of both models represent the shaking events. These could be caused by an identical elite

or by not improving the best solution for R generations. The figure suggests that local

search is not inherent in faster convergence, as BRKGA and BRKGA+LS go head-to-head

for almost the entirety of the run. In Figure 7.2, the progression of the best fitness and

the average fitness of the reference set B1 of the SS models over generations is shown. The

behavior of the best and average fitness appears almost identical, although SS+LS having

a minor advantage throughout the run. In both figures, the best fitness lines are closely

followed by the average fitness lines, indicating that improvements are successfully being

transferred within the population. The convergence curves of BRKGA and SS show that

the models converged well before the maximum number of generations. However, the best

fitness of the BRKGA models do not align, whereas they do align at the SS models.

72

7.4 Experiment Instance Size

Figure 7.1: Convergence curve BRKGA
vs BRKGA+LS of instance size 3

Figure 7.2: Convergence curve SS vs
SS+LS of instance size 3

Table 7.13 presents the performance metrics of the benchmark experiment of 15 indepen-

dent runs. The models that include local search are indicated by the added ’+LS’. The

table shows that there is no clear difference among the results of the models. The addition

of local search to the models did slightly improve the overall solution quality of the models

of this instance. For both models, local search decreased the average objective value and

managed to get the average mismatched skills closer to 0. Three out of the four models

achieved the same highest score. The BRKGA model seems to be lacking in terms of per-

formance compared to the other models. More on the effects of introducing local search,

the computational time needed to solve the instance increased by 68.00% for BRKGA and

100.22% for SS. Based on the results in this table, local search seems to deliver minor

improvements while significantly sacrificing the speed of the algorithm compared to the

base models.

BRKGA SS BRKGA+LS SS+LS

best objective -0.2776 -0.2796 -0.2796 -0.2796
average objective -0.2724 -0.2741 -0.2740 -0.2759
time (sec) 38.50 27.48 64.68 55.02
time increase (%) - - 68.00% 100.22%
average mismatched -2.9037 -2.8716 -2.8098 -2.7827
average satisfaction 6.592 6.614 6.529 6.581
average cost 137.06 136.35 137.98 137.54

Table 7.13: Results experiment instance size 3

Figure 7.3 presents the distribution of the objective values for each model in the form of

boxplots. For both BRKGA and SS algorithms, the local search variants tend to achieve

73

7.4 Experiment Instance Size

slightly lower median objective values, suggesting that local search generally improves

solution quality. Furthermore, the first three models show variability in their distribution.

SS shows comparable variability to BRKGA, whereas BRKGA+LS demonstrates slightly

more variability. SS+LS shows the smallest interquartile range, indicating more consistent

performance, although it does have outliers.

Figure 7.3: Boxplots of objective values of the models of instance size 3

In this and future experiments, statistical tests will be performed to provide evidence that

one model outperforms the other. These tests help ensure that observed differences between

models are not due to random variation. First, the distribution of the data must be checked

to determine whether it follows a normal distribution, which influences the choice between

using a t-test or a Wilcoxon Signed-Rank test. The Shapiro-Wilk test used to determine

whether the data is normally distributed. If the data is normally distributed (p-value ≥
0.05) , a t-test will be used, while the Wilcoxon Signed-Rank test will be applied if the data

is not normally distributed (p-value < 0.05). Both tests assess the null hypothesis (H0),

which assumes that there is no significant difference in the mean performance between

the two models. The null hypothesis suggests that adding Local Search has no effect on

the models’ mean performance. The tests will evaluate whether the null hypothesis can

be rejected based on the p-value. If the p-value is less than 0.05, the null hypothesis is

rejected, indicating that the model with Local Search significantly outperforms the other

in terms of mean performance. If the p-value is greater than or equal to 0.05, the null

hypothesis cannot be rejected, implying insufficient evidence to claim a difference in the

mean performance of the models.

The Shapiro-Wilk test concluded that the objective values of SS are not normally dis-

74

7.4 Experiment Instance Size

tributed. Consequently, the BRKGA models will perform the t-test while the SS models

will be exposed to the Wilcoxon Signed-Rank test to determine whether local search vari-

ants outperform their base variants. The statistical test between BRKGA and BRKGA+LS

resulted in a p-value of 0.3524, where the test between SS and SS+LS resulted in a p-value

of 0.1728. Since both p-values are greater than 0.05, the null hypothesis cannot be rejected,

implying insufficient evidence to claim a difference in the mean performance of the models.

This result is in line with the discoveries found in Table 7.13 and Figure 7.3. Because

no statistically significant differences have been found, no additional experiments will be

performed. Although not significantly different, the p-value of 0.1728 of SS+LS is not far

away from the threshold of 0.05. In addition to that, Figure 7.3 indicates that the SS+LS

model produces the most reliable results while maintaining high-quality solutions.

7.4.2 Instance size 6

The second experiment consists of an instance of six projects, chosen to represent all four

service lines in the instance. The projects require 1, 2, 1, 1, 4 and 4 consultants, and the

involved skills total 3, 10, 9, 17, 47 and 35. Together, they are responsible for a chromosome

length of 447, which is more than double compared to the previous experiment. The local

search frequency of this experiment is determined using Equation 7.1, which produced a

frequency fls of 14.

Figures 7.4 and 7.5 present the convergence curves of the models when starting with iden-

tical solutions. Figure 7.4 suggests that the curves have plateaued. Figure 7.5 shows that

there could be room for minor improvements for SS as we approach the maximum number of

generations. The curves have sufficiently plateaued to justify the choice of 550 generations

for the BRKGA models and 250 generations for the SS models. Another conclusion from

the curves is that not all local search improvements contribute to a permanent advantage

over the base variant. In Figure 7.4 it can be seen that in generation 55 a great improve-

ment was made; however, BRKGA managed to almost close the gap to BRKGA+LS after

200 generations in terms of the best fitness value. It can be seen that the curves of both

models have converged around the same level. The curve of BRKGA+LS converged much

sooner than the maximum number of generations, which triggered a shaking event. Figure

7.5 clearly presents the events of local search improvements. These improvements in gen-

eration 50 and 75 resulted in an advantage for SS+LS over SS, however, this advantage is

slowly getting smaller as SS+LS has converged around generation 125 and was stuck in a

local optima.

75

7.4 Experiment Instance Size

Figure 7.4: Convergence curve BRKGA
vs BRKGA+LS of instance size 6

Figure 7.5: Convergence curve SS vs
SS+LS of instance size 6

The results of this experiment are presented in Table 7.14. This time, clear differences can

be found between the models. First, the base BRKGA model is not on par with the other

models in terms of solution quality. It achieved the worst average objective value and the

worst best objective value. The SS+LS algorithm achieved the highest best objective value

and highest average objective value. For both models, the local search variants obtained

a considerably higher average objective value, however, this is accompanied by an average

time increase of 169.29% and 181.69% for BRKGA+LS and SS+LS.

BRKGA SS BRKGA+LS SS+LS

best objective -0.2871 -0.2917 -0.2915 -0.2980
average objective -0.2760 -0.2795 -0.2828 -0.2862
time (sec) 168.48 193.55 453.72 545.41
time increase (%) - - 169.29% 181.69%
average mismatched -3.3456 -3.1950 -3.1679 -3.1012
average satisfaction 5.774 5.756 5.909 6.017
average cost 142.60 141.91 141.63 141.40

Table 7.14: Results experiment instance size 6

Figure 7.6 shows the distribution of the objective values of this experiment. It confirms

the claim that the base BRKGA model is lacking. The spread of BRKGA+LS is most

consistent over the runs. The BRKGA models are the only models that produced no

outliers. The performance of SS+LS is suppressed by huge outliers. Without the outliers,

the performance of SS+LS would be even more superior compared to the other models.

76

7.4 Experiment Instance Size

Figure 7.6: Boxplots of objective values of the models of instance size 6

The normality test concluded that all models but SS+LS produced normally distributed

objective values since the p-values of the first three models are greater than 0.05, whereas

the p-value of SS+LS is 0.0017 < 0.05. This allows the t-test to be used for the BRKGA

models and Wilcoxon Signed-Rank test for the SS models to test whether or not local search

variants have a different mean objective score than base models. The t-test of BRKGA

vs BRKGA+LS resulted in a p-value of 0.0137, which is smaller than 0.05. This provides

enough evidence to reject the null hypothesis that the means are the same, thus indicating

that the objective values from BRKGA and BRKGA+LS are significantly different. The

Wilcoxon Signed-Rank test of SS vs SS+LS resulted in a p-value of 0.0301. The null

hypothesis is rejected, as 0.0301 < 0.05. The differences in objective values are statistically

significant, hence SS+LS outperforms SS.

Additional experiments are required to assess the difference in performance between the

BRKGA models and the SS models, this time BRKGA and SS receive as much CPU time as

BRKGA+LS and SS+LS. Using the percentage time increase as multiplier, BRKGA should

run for 550+550×1.6929 ≈ 1480 generations and SS should run for 250+250×1.8169 ≈ 705

generations. Table 7.15 presents the results of the fair experiments.

Unlike earlier, the quality of the solutions of BRKGA and has now surpassed BRKGA+LS.

The Shapiro-Wilk test concluded that the distribution of BRKGA is normally distributed.

The subsequent t-test between BRKGA and BRKGA+LS produced a p-value of 0.7730, in-

dicating that the distributions are not statically significantly different. Thus, for a problem

of six projects with equal conditions, incorporating local search in BRKGA does not result

in statistically significant improvements. Moreover, under the same conditions, BRKGA

77

7.4 Experiment Instance Size

has a slight advantage over BRKGA+LS. Table 7.15 reveals that SS is by far the best per-

forming model. Statistical tests are now used to assess whether SS is superior to SS+LS.

Since SS+LS was not normally distributed, the Wilcoxon Signed Rank test is used. This

test yielded a p-value of 0.4210, indicating that there is insufficient evidence to claim a

difference in the mean performance of the SS models. However, SS has shown to have

a substantial advantage over SS+LS. So, it shows that using far more generations than

intended should give more benefits than using local search.

BRKGA BRKGA+LS SS SS+LS

best objective -0.2952 -0.2915 -0.2979 -0.2980
average objective -0.2835 -0.2828 -0.2905 -0.2862
time (sec) 404.92 453.72 457.34 545.41
average mismatched -3.0728 -3.1679 -2.8901 -3.1012
average satisfaction 5.868 5.909 6.028 6.017
average cost 143.32 141.63 142.73 141.40

Table 7.15: Results additional experiments instance size 6

7.4.3 Instance size 12

The third experiment consists of an instance of 12 projects. The portfolio of projects

consists of six projects that require one consultant, three projects that require two con-

sultants, two projects that require three consultants, and a single project that requires

four consultants. In terms of involved skills, the portfolio consists of projects of mixed

complexity as the skills total 3, 10, 9, 17, 47 and 35. Together, they are responsible for a

chromosome length of 869, which doubles the length of the chromosome compared to the

previous experiment. The local search frequency of this experiment is determined using

Equation 7.1, which produced a frequency fls of 20.

Figures 7.7 and 7.8 show the final convergence curve after investigating the behavior of this

instance. From the figures can be concluded that the curve of BRKGA+LS has flattened

around 1100 generations, whereas the curve of SS+LS converged around 500 generations.

Besides that conclusion, it can be seen that for this run the best and average fitness of the

SS+LS model is marginally better than the SS model throughout its run. This cannot be

said about BRKGA+LS, as the inverse is true. While starting with the same solutions,

BRKGA managed to dominate over BRKGA+LS. Whether these results are caused by

variance will be determined in a second.

78

7.4 Experiment Instance Size

Figure 7.7: Convergence curve BRKGA
vs BRKGA+LS of instance size 12

Figure 7.8: Convergence curve SS vs
SS+LS of instance size 12

Table 7.16 displays the results of the experiment. As in the previous experiment, there

is a gap in solution quality between BRKGA and BRKGA+LS. Moreover, the BRKGA

model lacks performance in all metrics except for hourly cost compared to BRKGA+LS.

The aggregated results show that SS has a slight advantage over SS+LS in terms of av-

erage objective, average mismatched skills, and average cost. Remarkably, SS managed

to dominate both local search models despite needing to solve a quite complex instance.

Despite that, the best objective has been achieved by BRKGA+LS. Compared to SS+LS,

BRKGA+LS starts to show signs that it is less effective in terms of average objective value.

Introducing local search increased the average time 109.01% and 107.76%, which is rela-

tively significantly lower than in the previous experiment despite having a larger instance.

Moreover, local search is not inherent to superior solutions. A separate experiment with

the BRKGA model has been performed to demonstrate the difference in computational

requirements of the decoder and the evaluation of KPIs. After disabling the calculation

of the KPIs, the model finished the experiment in 293.80 seconds. This revealed that the

main method plus the decoding process contributes to 54.51% of the total computational

time, while the evaluation of the KPIs uses the remaining 45.49% of the computational

time.

79

7.4 Experiment Instance Size

BRKGA SS BRKGA+LS SS+LS

best objective -0.2686 -0.2734 -0.2767 -0.2737
average objective -0.2560 -0.2663 -0.2636 -0.2661
time (sec) 539.00 556.62 1126.57 1156.42
time increase (%) - - 109.01% 107.76%
average mismatched -2.8444 -2.5284 -2.5784 -2.4722
average satisfaction 5.578 5.734 5.667 5.665
average cost 138.49 140.91 141.36 142.26

Table 7.16: Results experiment instance size 12

The boxplots in Figure 7.9 further elaborate on the spread of the objective values of the

models. It is clearly visible that BRKGA is not on par with the other models. The figure

demonstrates the claims made above, despite SS not achieving the best score, the values

are more clustered compared to the local search models, and by that, a better average score

is achieved. So although it is not the best model in terms of best objective, it produces

more reliable results than the other models. The boxplots also show that the produced

objective values of BRKGA+LS are wildly inconsistent, producing values ranging from the

worst objective to the best objective.

Figure 7.9: Boxplots of objective values of the models of instance size 12

Statistical tests should reveal whether the differences in the models are statistically sig-

nificant. First, the Shapiro-Wilk test indicated that the objective values of all models are

normally distributed. Therefore, both models will perform the t-test. The subsequent

t-test of the BRKGA models resulted in a p-value of 0.0126, this value rejects the null

hypothesis and thus indicates that the mean objective value of the BRKGA+LS model is

80

7.4 Experiment Instance Size

different from the mean objective value of BRKGA, i.e. the BRKGA+LS model outper-

forms the BRKGA model when using the same amount of generations. The t-test of the

Scatter Search models yielded a p-value of 0.9183. The p-value is greater than 0.05, so the

null hypothesis cannot be rejected, implying that there is not enough evidence to claim

that the mean objective values of SS and SS+LS are different. These conclusions are in

line with the claims made based on Table 7.16 and Figure 7.9. However, it is still quite

noteworthy that SS seems to be the overall best-performing model despite not utilizing

any solution improvement method and having a significantly smaller number of fitness

evaluations compared to SS+LS.

An additional experiment is required to reveal whether the BRKGA model is also capable

of approaching the solution quality of its local search variant. In this experiment, BRKGA

receives equal CPU time as the BRKGA+LS model. Using the percentage time increase

as multiplier, the BRKGA should run for 1100+ 1100× 1.0901 ≈ 2300 generations. Table

7.17 shows the results of the fair comparison between BRKGA and BRKGA+LS. As in the

previous experiment, the base variant surpasses the local search variant in average objective

value when given the same computational time. Given the results, a statistical test would

not add much value. This is confirmed as the Wilcoxon Signed-Rank test produced a p-

value of 0.5995, demonstrating that there is no significant difference in means between the

two models.

BRKGA BRKGA+LS

best objective -0.2746 -0.2767
average objective -0.2644 0.2636
time (sec) 1091.38 1126.57
average mismatched -2.6099 -2.5784
average satisfaction 5.745 5.667
average cost 140.58 141.36

Table 7.17: Results additional experiment instance size 12

7.4.4 Instance size 24

The last experiment consists of the complete project portfolio, i.e., 24 projects. Chapter 4

provides an extensive description of the projects. After encoding the portfolio, the length

of the chromosome is 1551. In previous experiments, the convergence speed slowed down

by more than half when the chromosome length doubled. Since the chromosome length has

81

7.4 Experiment Instance Size

now doubled compared to the previous experiment, the number of generations has been set

to 2500 for BRKGA and 1100 for SS. The convergence curves in Figures 7.10 and 7.11 show

that in terms of computational budget, BRKGA+LS had sufficient generations as its best

fitness was found 1000 generations before reaching the maximum number of generations. A

shaking event has event occurred because of the inability to improve its best fitness score.

Analysis of Figure 7.11 reveals an alternating pattern between SS and SS+LS throughout

their execution. While both models achieve comparable final fitness values, the convergence

curves indicate that neither has reached a definitive plateau. This suggests that additional

improvements might be possible with an extended computational budget. However, to

maintain consistency and fairness in comparison with the other models, the decision was

made to maintain the current computational limitations. The local search frequency of

this experiment is determined using Equation 7.1, which produced a frequency fls of 28.

Figure 7.10: Convergence curve BRKGA
vs BRKGA+LS of instance size 24

Figure 7.11: Convergence curve SS vs
SS+LS of instance size 24

The experimental results, presented in Table 7.18, demonstrate patterns consistent with

previous findings. The Scatter Search models significantly outperform both BRKGA vari-

ants, with BRKGA showing notably inferior results. For the BRKGA models, the intro-

duction of local search resulted in better results in every metric. In addition to this, the

best objective found by BRKGA+LS is at a distance from the best objective found by

BRKGA. For Scatter Search, the implementation of local search shows moderate impact,

with aggregated results revealing minor improvements in every metric. The computational

overhead introduced by local search is now showing increases of 108.38% for BRKGA

and 102.85% for SS. Therefore, the improvements come with a huge sacrifice in terms of

required computational time.

82

7.4 Experiment Instance Size

BRKGA SS BRKGA+LS SS+LS

best objective -0.2022 -0.2172 -0.2220 -0.2227
average objective -0.1962 -0.2064 -0.2007 -0.2090
time (sec) 2251.87 2329.96 4692.53 4726.32
time % increase - - 108.38% 102.85%
average mismatched -4.3617 -4.135 -4.2775 -4.0549
average satisfaction 4.721 4.907 4.813 4.922
average cost 137.73 136.79 136.65 136.71

Table 7.18: Results experiment instance size 24

The distributions of the objective values of the models are presented in Figure 7.12. These

plots are consistent with the aggregated results of Table 7.18. A clear distinction between

the BRKGA models and the Scatter Search models can be noted. BRKGA+LS produced

a superior interquartile range compared to BRKGA, however, the negative outliers of

BRKGA+LS are the worst solutions of the entire experiment. The boxplots of SS and

SS+LS reveal the same characteristics of Table 7.18, the performance of both models is

similar but slightly in favor of SS+LS.

Figure 7.12: Boxplots of objective values of the models of instance size 24

Based on the results in Table 7.18 and Figure 7.12 it is expected that the statistical tests

will result in no statistically significant differences in mean objective value between the

base models and the local search variants. To verify this, the first step is to perform

Shapiro-Wilk tests. These tests concluded that all models produced normal distributed

objective values. The subsequent t-tests produced a p-value of 0.0971 for BRKGA and

0.2959 for SS. Both p-values exceed the significance threshold of 0.05, though it was close

83

7.4 Experiment Instance Size

for BRKGA, which translates to insufficient evidence to claim a difference in mean objective

value between the base models and their local search variant.

7.4.5 Conclusion Instance Size Experiment

In summary, the statistical analysis reveals that implementing local search does not pro-

duce statistically significant improvements over the base models. Scatter search models

consistently outperformed BRKGA models across all instance sizes, suggesting that SS is

the more suitable approach to solving the C2Pa problem. Although local search did not

show statistical significance, it is worth noting that SS+LS achieved minor improvements

in average objective values for instance size 3. SS+LS demonstrated notably lower vari-

ability in objective values compared to SS. However, this advantage diminishes as the size

of the instance increases. The effectiveness of SS is most apparent in the additional ex-

periment of instance size 6, where SS revealed superior solution quality when using equal

computational limits. For instance size 12, when the problem has become more complex,

the base SS model emerges as the superior model. For instance size 24, the advantage

has flipped to SS+LS. The minimal difference in the average objective values between SS

and SS+LS indicates consistently high-quality solutions. As the instance size increases,

several patterns emerge in the generated solutions: the objective value deteriorates with

more projects, mismatched skills remain relatively stable until instance 24, satisfaction

scores steadily decline, and hourly costs remain stable. These patterns, especially in SS,

suggest that the model prioritizes skill matching at the expense of satisfaction scores. It

is important to note that these results are influenced by the specific projects included in

each experiment. For an instance of size 24, the SS model starts showing signs of lower

quality assignments. By expanding the portfolio size, the model is instructed to schedule

more projects while the workforce remains the same. This results in more restrictive as-

signments as the projects are assigned, which in the end forces the model to compromise

on assignment quality.

7.4.6 Analysis Convergence Speed

The convergence speed of the SS algorithm was analyzed to understand the relationship

between the computation time and the number of projects in the portfolio. Polynomial

regression was applied to determine this relationship, with the results shown in Figure 7.13.

The analysis revealed a relationship of T = 3.4159 · P 2.0741, where T is the convergence

time in seconds and P is the number of projects. With an R2 value of 0.9911, this model

84

7.5 Experiment Flexible Time Windows

provides an excellent fit to the data. The exponent of approximately 2.07 indicates that

the computational time to convergence grows marginally faster than quadratic time as the

portfolio size increases.

Figure 7.13: Polynomial Regression Fit on Convergence Time SS

7.5 Experiment Flexible Time Windows

This section examines how expanding the flexibility of project start time windows influences

the overall solution. The results of this experiment will provide the answer to the second

additional research question and will be of added value for answering the main research

question. The experiment analyzes various scenarios by implementing time window sizes of

0, 1, 2, 4, and 8 weeks, replacing the original start time windows. Through this experiment,

BE NL can better understand the potential advantages of implementing flexible start time

windows for their clients.

The experiment utilizes a problem instance of instance size 3. The projects have been

chosen in such a way as to represent three service lines where multiple consultants are

needed per project. The earliest start times of the projects are week 6, week 9, and week

2. The hypothesis is that broader start time windows should yield better solutions, as

the increased flexibility in project start time potentially allows access to a larger pool of

available consultants. We anticipate that expanding the time window will result in reduced

objective values, skill matches approaching zero more closely, enhanced satisfaction scores,

and lower hourly costs.

85

7.5 Experiment Flexible Time Windows

Although Section 7.4.1 revealed that local search integration did not yield statistically sig-

nificant improvements for instances of size 3, the local search models, particularly SS+LS,

demonstrated more concentrated and on average superior solutions. Furthermore, the ex-

tension of start time windows creates a larger solution space, driven by increases in both

consultant availability and potential project start times. Given these considerations, the

decision was made to include local search variants in this experiment but limit the used

models to SS and SS+LS. To address the increased complexity introduced by extending

time windows and ensure proper convergence, the number of generations have been modi-

fied. The SS models will initially perform 200 generations, however, from TW=2 onward,

the number of generations will stepwise increase by 50 to account for the increased complex-

ity. To maintain result reliability and validity, each experimental scenario will be repeated

across 15 independent runs.

The results of the experiment showed that SS+LS produced minimal differences compared

to SS, which led to the relocation of these results to Appendix 10.3. The aggregated results

of the flexible time window experiment using SS can be found in Table 7.19. It mostly

confirms the expectation that increasing window size results in increased skill match and

satisfaction and decreasing objective value. However, the hourly cost KPI remains around

the same level. This could be explained in two ways: either the consultants of lower job

positions are fully booked well into the future or the required skill level of the projects is

substantially high so that the benefit that skillful consultants of higher job positions bring

to the projects outweighs the increased cost. It is also worth noting that the standard

deviation of the objective keeps increasing as the window size increases. This is directly

related to the length of the chromosome. In the experiments, the length of the chro-

mosome increased as follows: 169→180→215→325→443. The extended flexibility causes

added consultant availability; this makes the problem more complex, which decreases the

convergence speed.

86

7.5 Experiment Flexible Time Windows

Exp. Objective Skill match Satisfaction Hourly cost
mean ± std dev mean ± std dev mean ± std dev mean ± std dev

TW = 0 -0.2021 ± 0.0009 -1.5901 ± 0.0568 6.121 ± 0.100 152.84 ± 1.31
TW = 1 -0.2005 ± 0.0028 -1.6370 ± 0.0689 6.087 ± 0.123 151.08 ± 3.50
TW = 2 -0.2404 ± 0.0037 -0.9704 ± 0.1429 7.070 ± 0.135 152.90 ± 3.69
TW = 4 -0.2403 ± 0.0044 -0.9580 ± 0.0752 7.030 ± 0.201 152.50 ± 2.40
TW = 8 -0.2506 ± 0.0084 -0.8000 ± 0.2056 7.264 ± 0.186 150.77 ± 3.91

Table 7.19: SS results experiment flexible time windows

The table reveals three distinct time window groups based on objective value: 0 and 1

weeks, 2 and 4 weeks, and 8 weeks. Adding a single week on top of the starting date pro-

vided no improvements and actually complicated the problem by introducing additional

consultants that were not suitable for the projects. Expanding the time window to 2 or 4

weeks results in superior solutions. The extended flexibility not only leads to more avail-

able consultants, but also leads to more availability of consultants that better reflects the

requirements of the projects. Compared to the 0 and 1-week group, this approach yields

notable improvements: the objective decreases by 0.04 on average, mismatched skills per

project reduce by 0.6, and satisfaction increases by a full point. Within this group, ex-

tending the time window from 2 to 4 weeks does not produce clear differences, despite the

chromosome length increasing by more than half. The increased complexity is not reflected

in the standard deviation of the two experiments. The standard deviation of the objec-

tive and satisfaction show minor variability increases, whereas the skill match and hourly

cost variability actually decrease. Doubling the time window to 8 weeks further improves

solution quality across all metrics. However, from a practical standpoint, requesting two

months of flexible start-time from a client is unrealistic and, therefore, considered unfavor-

able.

The experiment strongly supports the implementation of a two-week flexible start time

window as a standard business policy for project staffing. Expanding the time window

from 0 or 1 week to 2 weeks yields notable improvements in solution quality, including re-

duced objective values, fewer skill mismatches, and increased overall satisfaction. Although

the 4-week window also shows performance enhancements, it becomes less practical when

considering business dynamics. Clients typically seek consulting services to solve urgent

problems, a month-long waiting period could risk losing their client and driving them to

87

7.6 Experiment Business Rules

competitors. By adopting a standardized two-week flexible start time, BE NL can system-

atically improve skill matching and provide quality projects to clients.

7.6 Experiment Business Rules

This section explores how adding business rules to the model affects the solutions that are

generated, which answers the final research question. In total, five business rule experi-

ments will be performed. The business rules applied in these experiments are formulated

as: strictly following the recommended project specifications, restricting the service lines

and introducing little flexibility in the job positions, only restricting the service lines, only

introducing little flexibility in the job positions, and having no restrictions. Currently, the

company allows any consultant to be assigned to any project, regardless of whether their

skills match or if they work in the right service line. The only factor used to determine if a

consultant is suitable for a project is their skill match score. From a modeling perspective,

these loose rules create problems. The solution space becomes filled with consultants who

are not suitable for specific team roles because their service line and job position do not

match. Having these unsuitable consultants in the mix adds unnecessary complexity and

slows down the convergence speed of the algorithms. Additionally, each team member role

in a project usually comes with specific requirements about the job position needed. These

requirements exist to make sure projects get team members with the right level of expertise

and experience. The current system’s approach of ignoring these important specifications

makes it harder to find the best possible team combinations.

A problem instance of 3 projects has been put together to investigate the impact of the

rules. Table 7.20 outlines the service lines and job positions needed for each project. These

projects are handpicked because they include varying service lines and job positions while

requiring multiple consultants per project. The investigation will follow several steps.

First, a benchmark experiment will be executed that solves the problem the way we did

in earlier experiments. Following this, the service line rule and job position rule will be

tested both independently and in combination. The effectiveness of each approach will be

measured through average scores and standard deviations across all 10 independent runs.

Previous research revealed that a flexible time window of 2 weeks offers the most advanta-

geous outcomes within the business context. The Scatter Search (SS) models consistently

outperformed the BRKGA models, and local search did not produce statistically signif-

icant improvements over the base variants. As a result, the SS model has been selected

88

7.6 Experiment Business Rules

to generate results for this experiment. Analysis of convergence curves will reveal how

quickly each version achieves quality solutions. Finally, a comparison between the bench-

mark experiment assignments and the actual project requirements listed in Table 7.20 will

determine if the assignments align with project specifications.

Project 1: SL & role 2: SL & role 3: SL & role 4: SL & role
0 P&S: SC P&S: SMA - -
1 C&G: SM C&G: M TEC: M D&A: SMA
2 C&G: SC C&G: SMA - -

Table 7.20: Data description of business rules experiment

7.6.1 STRICT Rules

Table 7.21 shows the results of the experiment in order of less restrictive business rules.

Analysis of the STRICT experiment, where project specifications from Table 7.20 must be

precisely followed, reveals significant limitations. The resulting chromosome length of 28

indicates severely restricted consultant availability. This strict adherence to service lines

and roles leads to poor performance outcomes: two-thirds of projects are declined due

to the absence of consultants meeting the exact service line and position requirements.

Even for the single accepted project, the skill match falls considerably below the standards

achieved in previous experiments. These findings demonstrate that strictly following OTL

recommendations proves counterproductive, resulting in declined projects and suboptimal

consultant assignments.

Exp. Objective Skill match Satisfaction Hourly cost Time (sec)
mean ± std dev mean ± std dev mean ± std dev mean ± std dev mean ± std dev

STRICT 4.0534 ± 0.0000 -10.000 ± 0.0000 6.000 ± 0.000 127.78 ± 0.00 27.84 ± 1.62
SL+POS -0.3450 ± 0.0022 -1.3000 ± 0.1741 6.785 ± 0.099 138.61 ± 4.58 71.16 ± 6.06
SL -0.3594 ± 0.0041 -0.4037 ± 0.1455 6.834 ± 0.104 143.63 ± 4.53 68.41 ± 4.05
POS -0.3433 ± 0.0048 -1.4852 ± 0.2259 6.884 ± 0.183 139.07 ± 5.02 71.61 ± 3.59
BASE -0.3518 ± 0.0073 -0.7481 ± 0.4240 6.751 ± 0.132 144.03 ± 5.14 78.28 ± 3.19

Table 7.21: Results experiment business rules

7.6.2 SL+POS Rules

The second experiment (SL+POS) aims to introduce flexibility to the project specifica-

tions of Table 7.20. The research introduces a more flexible approach to job position

requirements, allowing consultants one rank above or below the recommended position to

89

7.6 Experiment Business Rules

be considered for team member roles, while maintaining service line specifications. For in-

stance, a role initially requiring a senior consultant (SC) can now be filled by a consultant

(C), senior consultant (SC), or manager (M). This flexibility acknowledges that consultants

in adjacent job positions often possess comparable experience and expertise levels, devel-

oped through similar project engagements and professional development. The resulting

chromosome length of 121 indicates that the problem of unavailability has been resolved.

The added availability results in the acceptance of all three projects. This experiment con-

figuration will be used as the benchmark for the remainder of the experiment. Therefore,

the other experiments will be compared to the skill match of -1.3000 mismatched skills,

the satisfaction score of 6.785, and the hourly cost of 138.61.

7.6.3 SL Rules

The third experiment (SL) does not restrict the job positions of consultants when assign-

ing consultants. Consequently, a team member role can be assigned to every available

consultant of the associated service line. Implementing this rule resulted in a chromo-

some of length 147. By not restricting the allowed job positions to a subset, the average

objective value is increased from -0.3450 to -0.3594 and the average mismatched skills is

improved by almost 70%. In addition to this, the average satisfaction score increases from

6.785 to 6.834. These benefits are achieved by assigning consultants of higher job position

since these possess more skills, as the hourly cost increases from 138.61 to 143.63. The

spread of the solutions is comparable to SL+POS. To demonstrate the trade-off that is

made, the best solutions of SL+POS and SL have been compared. The only difference

occurred in project 2, where a senior consultant (SC) and a senior management analyst

(SMA) are recommended by the OTL. The SL+POS experiment appointed a manager

(M) and a senior management analyst (SMA), while SL replaced the SMA position with

another manager, resulting in increased hourly costs. This assignment should be violated

for the SL+POS experiment, as team member role 2 strictly allows only MA, SMA, or C

positions. Furthermore, a manager ranks three positions higher than the recommended se-

nior management analyst position. Permitting assignments that deviate significantly from

OTL recommendations is not advisable, as these recommendations are carefully formulated

based on project requirements and intuition. Such deviations from the intended position

levels likely conflict with established business policies and could compromise future project

quality when these higher positions levels are needed, while unnecessarily inflating project

costs now.

90

7.6 Experiment Business Rules

7.6.4 POS Rules

The fourth experiment (POS) does not take the recommended service lines into account

when assigning consultants. Consequently, a team member role can be assigned to ev-

ery available consultant that meets the job position interval as proposed in the second

experiment. Implementing this rule results in a chromosome of length 190. The absence

of service line restrictions fails to yield any improvements in solution quality. While POS

generates solutions with similar average values to SL+POS, it demonstrates twice the vari-

ability in results. This increased spread can be attributed to the additional complexity

introduced by including consultants from all service lines in the solution space. Adding

consultants from non-matching service lines essentially adds noise to the problem, making

it more challenging for the algorithm to consistently find quality solutions. Note that a

perfect alignment of the required service line and required skills is essential for this to

occur. If the OTL fails to deliver perfectly aligned project specifications, this experiment

would prove its worth and signal errors in the project data.

7.6.5 No Rules

The fifth and final experiment (BASE) removes all aforementioned restrictions and solves

the problem as was done in the previous sections. Having no restrictions in place resulted

in a chromosome of length 291, which is significantly larger than the other experiments. In

terms of average performance, the quality of the solutions can be placed between SL+POS

and SL. However, the objective and skill match metrics show notably higher variability

compared to other experiments. Similar to the previous findings, this increased spread

in results originates from the larger pool of available consultants included in the solution

space.

Figure 7.14 shows the convergence curves of the first iteration of the last four experiments.

It can be seen that the experiments where rules are implemented show signs that the

problem has converged before the maximum number of generations have been reached. The

BASE experiment has not yet converged, since the (close to) optimal solutions should be

around -0.36, as demonstrated by the results of SL. So, in addition to generating solutions

that are more reliable compared to BASE, the business rule experiments also prove to have

converged when the BASE experiment has not converged, indicating that the business rule

experiments have an advantage in terms of convergence speed.

91

7.6 Experiment Business Rules

Figure 7.14: Convergence curves business rules experiment

7.6.6 Conclusion Business Rules

In summary, restricting the service lines and the job positions as proposed in SL+POS

seems to be most applicable to the C2Pa procedure. This is because it utilizes the thought-

ful recommendations from the OTL and adds some flexibility to the job positions to pro-

duce solutions that are still in line with the ideas of the OTL. SL takes advantage of the

importance of the skill match KPI to assign consultants that are ranked much higher than

prescribed, where POS reduces to being a copy of SL+POS with added noise. Having no

rules implemented (BASE) does not seem to yield any benefits over SL, whereas strictly

following the project specifications forces BE NL to decline projects.

The experimental results show that restricting only service lines (SL) produced the highest

quality solutions. This configuration demonstrated robust performance with relatively low

standard deviations across all metrics, and showed superior solution quality and conver-

gence speed compared to the BASE configuration. Nevertheless, the SL+POS experiment

stands out as the most practical approach, despite not achieving the absolute best numer-

ical results. This implementation, which combines service line restrictions with flexible

job position requirements, achieves an effective balance between optimization and busi-

ness reality. The approach maintains appropriate expertise levels and skill alignment while

preserving a reasonable pool of available consultants. By adopting this balanced policy,

BE NL can better align its staffing practices with business objectives, acknowledging that

optimal solutions may not always translate to the best practical outcomes. The experiment

demonstrates that the model can be adjusted to match BE NL’s desired business policies,

offering a flexible framework that delivers consistent, high-quality staffing solutions while

respecting operational constraints.

92

8

Conclusion

This research aimed to determine the effectiveness of (hybrid-)meta-heuristics on the C2Pa

problem. The primary objective was to develop a meta-heuristic model integrated with

local search capable of generating high-quality solutions while also prioritizing efficiency.

The main research question connected to this objective is: "Does the implementation of

local search boost the performance of meta-heuristics in solving the Consultant-to-Project

Assignment (C2Pa) problem at BearingPoint NL, specifically focusing on efficiency and

efficacy?" To answer this, the developed models were used to perform experiments on

instance size, flexible time windows, and business rules. Throughout these experiments, a

comparison was made between versions of the models with and without local search.

The experiments yielded several key findings: The Scatter Search (SS) models demon-

strated superior solution quality compared to the BRKGA models in their current imple-

mentation. The experiments in Section 7.4 showed a clear advantage of SS over BRKGA.

Notably, while local search did not produce statistically significant improvements in so-

lution quality over the base models, SS+LS generated marginally better solutions for the

smallest instance. However, this advantage of local search disappeared in the instances of

sizes 6 and 12. The generated solutions showed the following pattern as the instance size

increased: the objective value deteriorated with more projects, mismatched skills remained

relatively stable, satisfaction scores steadily declined, hourly costs remained stable, while

the client project utilization rate remained insignificant since no projects were declined.

Section 7.5 determined that an 8-week flexible start time window produced optimal so-

lutions. The addition of local search did not generate notably improved solution quality

compared to those produced by SS alone. Taking both the business context and numerical

results into account, a 2-week flexible start time window emerges as the most practical

93

recommendation. This proposed time window is expected to enhance both average mis-

matched skills and average satisfaction, while maintaining stable average hourly costs. Fi-

nally, Section 7.6 indicated that configurations restricting only service lines generated the

best solutions. However, this approach significantly deviates from the recommendations

of the OTL. Therefore, the recommended configuration involves restricting the service line

while maintaining little flexibility in allowed job positions, as this approach aligns closely

with OTL recommendations while consistently producing robust, high-quality solutions.

Based on the findings, the main research question can be addressed as follows: The research

did not find evidence supporting the conclusion that the implementation of local search

boosts the efficacy of meta-heuristics in solving the C2Pa problem. The introduction of lo-

cal search techniques not only failed to produce statistically significant improvements but

also substantially impacted the models’ efficiency. Specifically, the experiments demon-

strated that the implementation of local search led to a decrease in efficiency ranging from

68.00% to 181.69%. Consequently, the base variant of Scatter Search should be used over

its local search counterpart as it achieves similar solution quality while not having the

disadvantages that come with local search.

The contributions of this research reach beyond the implementation of a meta-heuristic

with local search on the C2Pa problem. Firstly, an encoder was developed that translated

the entire problem into a chromosome using the Random Key representation that includes

project ordering, available consultants, involved skills, and time windows. The developed

decoder translates the chromosome into a guaranteed feasible solution. The research gap

regarding project selection was solved using the priority system based on the real number

ordering of the projects. In addition to that, a scheduling and staffing model is developed

that does not rely on precedence relations between the projects and team member roles.

Lastly, the proposed simultaneous scheduling and staffing models were driven by a multi-

objective fitness function that was not related to the starting or finishing times of projects.

With that, all the research gaps are solved.

This research provides a meta-heuristic framework that can be used to solve similar simul-

taneous scheduling and staffing problems. An extensive comparison between two solution

approaches has been executed, demonstrating that the Scatter Search methodology is a

promising option to use as a meta-heuristic for these kind of problems. Experiments re-

vealed that the framework can easily be adjusted to changing requirements. Furthermore,

the demonstrated scalability of the model suggests its applicability extends beyond the

94

scale of BearingPoint NL’s operations to larger practices. This research provided Bearing-

Point NL with a promising model that can be utilized as a decision support tool within

the OTL team. In addition to that, evidence-based recommendations are generated that

could improve the business policy of the OTL. Further research could be directed towards

additional algorithmic features that increase the exploration capability of Scatter Search or

algorithmic features that increase the exploitation capability of BRKGA. Lastly, more re-

search could be done to investigate the potential benefits of local search after implementing

the recommendations.

95

9

Discussion

This chapter discusses the limitations of the research and hints at possible improvements

that can be made in future research and implementation. This includes data requirements,

modeling details, and the underlying rules.

The practical applicability of the proposed solution approach heavily depends on data

completeness and quality. During this research, two significant data-related challenges

emerged: consultants with incomplete skillset data (resulting in skill levels of 0 and sat-

isfaction scores of 1) and consultants with entirely missing data. Both scenarios led to

the model excluding these consultants from the assignment process. For the model to be

effectively implemented in practice, BE NL must ensure that consultant skill data is not

only complete but also maintained through regular updates. Moreover, regular checks for

validity should be performed by consultants of high job position as the answers to the

survey can be manipulated.

The current feasibility check of the model may be overly restrictive, as it blocks the avail-

ability of a consultant for an entire project if there is insufficient time in just one week

of the project duration. A more nuanced approach could be implemented by introducing

a small margin of flexibility in the feasibility check. This would better reflect real-world

practices, where consultants are occasionally permitted to work slightly beyond their con-

tractual hours or could take a few days of during a project. Such flexibility could expand

the solution space and potentially lead to better overall assignments.

The scope of this research was to implement two promising meta-heuristics and demon-

strate the effectiveness of the base variants and the local search variants by means of the

experiments. More research could be done on testing other promising approaches and

96

improving the proposed models. For instance, the BRKGA model could be enhanced by

incorporating methods that increase selection pressure in the recombination step, such as

tournament selection for choosing the second parent. Implementation of such methods

could potentially improve the model’s exploitation capabilities. Furthermore, additional

advanced methods could be integrated into the Scatter Search model, e.g. as shown in the

paper of Marti et al. (35). These methods could enhance the model’s ability to escape

local optima, thereby improving its exploration capabilities.

The fact that skills are not strictly bound to specific team member roles allows for exploits.

The set of skills in this problem can be categorized into two groups: generic consultant

skills and service line-specific skills. By not restricting the involved project skills to certain

team members, a consultant who lacks the service line-specific skills (since they are from a

different service line) could still be assigned to the project, as they can be responsible for the

generic consultant skills. However, the OTL team would likely avoid such an assignment, as

every consultant should be partially responsible for the generic consultant skills. This issue

can be addressed by linking certain skills to predetermined project team member roles. In

addition, the number of skills assigned to each consultant is determined by the required

work hours, making the assumption that each skill requires an equal amount of time.

However, in reality, the time demands of different skills can vary significantly. A complete

linking of required skills to team member roles could potentially resolve this issue. Such an

approach would eliminate the skill division problem, thus reducing the overall complexity.

Alternatively, the model could allow certain skills to remain unrestricted or restrict them

to be assigned to consultants from specific service lines, which would preserve the skill

division problem. It is clear that the skill division aspect of the problem requires further

refinement to better align with real-world conditions.

The limited effectiveness of especially local search consultant swap and the overall low

convergence ability stem from the complex solution space. For consultant swap to generate

an improvement, the skills should be perfectly aligned for the trial consultant to result in

an improvement. Whenever a solution enters local search, the quality of the solution

is already adequate. Considering that projects can require multiple consultants that all

include multiple skills, the requirements needed for a trial consultant to be a better fit

on average compared to the assigned consultant are quite steep. In addition to that,

applying small perturbations to a solution could yield substantial changes in terms of

fitness. The complex interaction between consultant assignments and skill division in

multi-consultant projects limits the convergence ability of the algorithms. Any refinement

97

to the skill division aspect of the problem should increase the overall convergence ability

of the algorithms and the effectiveness of local search.

The computational demands of calculating the KPIs of the fitness function significantly

limited the frequency and scope of local search. With the implementation of business

rules on consultant availability, which effectively reduces the problem size, further research

should investigate whether the use of local search could lead to improvements in solution

quality. This consideration also applies to the recommended adjustments in the skill divi-

sion aspect of the problem. Additionally, since the entire problem was coded from scratch

in Python, optimizing code efficiency could potentially allow for more frequent application

of local search techniques.

Further research could explore alternative approaches to KPI weighting. The current

method, using point allocation, is primarily based on intuitive judgments. Future research

could investigate more theoretically grounded weighting methodologies. Such method-

ologies could provide a more robust foundation for balancing the various performance

indicators in the optimization process.

98

References

[1] B. N. Zentveld. Improving BearingPoint Netherlands’ consultant-to-project KPIs

by introducing a consultant-to-project assignment model. Master’s thesis, University

of Twente, 2024. 1, 3, 4, 5, 7, 11, 27, 29, 40, 68, 104

[2] S. H. Dike. Project scheduling with resource constraints. IEEE Transactions

on Engineering Management, (4):155–157, 1964. 11

[3] J. K. Lenstra J. Blazewicz and A. R. Kan. Scheduling subject to re-

source constraints: Classification and complexity. Discrete Applied Mathemat-

ics, 5(1):11–24, 1983. 11

[4] S. Hartman and D. Briskorn. A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of Opera-

tional Research, 207(1):1–14, 2010. 11

[5] E. W. Davis. An exact algorithm for the multiple constrained-resource project schedul-

ing problem. Yale University, 1968. 12

[6] C. Zhuang H. Ding and J. Liu. Extensions of the resource-constrained

project scheduling problem. Automation in Construction, 153:104958, 2023. 12

[7] B. Afshar-Nadjafi. Multi-skilling in scheduling problems: A review

on models, methods and applications. Computers Industrial Engineering,

151:107004, 2021. 12

[8] C. Heimerl and R. Kolisch. Scheduling and staffing multiple projects with

a multi-skilled workforce. OR Spectrum, 32:343–368, 2010. 12

[9] J. L. Zhu J. J. Chen and D. N. Zhang. Multi-project scheduling problem

with human resources based on dynamic programming and staff time coef-

ficient. In 2014 International Conference on Management Science Engineering 21th

Annual Conference Proceedings, pages 1012–1018. IEEE, 2014. 13

99

REFERENCES

[10] N. Perrier R. Pellerin and F. Berthaut. A survey of hybrid metaheuris-

tics for the resource-constrained project scheduling problem. European Jour-

nal of Operational Research, 280(2):395–416, 2020. 13

[11] R. Kolisch and A. Sprecher. PSPLIB-a project scheduling problem li-

brary: OR software-ORSEP operations research software exchange pro-

gram. European Journal of Operational Research, 96(1):205–216, 1997. 13, 16

[12] D. Debels and M. Vanhoucke. A bi-population based genetic algorithm

for the resource-constrained project scheduling problem. In International

Conference on Computational Science and Its Applications, pages 378–387. Springer

Berlin Heidelberg, 2005. 13

[13] C.D. Tarantilis D.C. Paraskevopoulos and G. Ioannou. Solving project

scheduling problems with resource constraints via an event list-based evo-

lutionary algorithm. Expert Systems with Applications, 39(4):3983–3994, 2012. 13,

14

[14] I. Correia B. F. Almeida and F. Saldanha da Gama. A biased random-

key genetic algorithm for the project scheduling problem with flexible re-

sources. Top, 26(2):283–308, 2018. 14, 15

[15] J.J. Mendes J.F. Gonçalves and M.G. Resende. A genetic algorithm for

the resource constrained multi-project scheduling problem. European Journal

of Operational Research, 189(3):1171–1190, 2008. 15, 16, 50

[16] D. Bredael and M. Vanhoucke. A genetic algorithm with resource buffers

for the resource-constrained multi-project scheduling problem. European

Journal of Operational Research, 315(1):19–34, 2024. 15, 16

[17] V. Van Peteghem and M. Vanhoucke. An experimental investigation of

metaheuristics for the multi-mode resource-constrained project scheduling

problem on new dataset instances. European Journal of Operational Research,

235(1):62–72, 2014. 16, 17

[18] H. Maghsoudlou, B. Afshar-Nadjafi, and S. T. A. Niaki. Multi-skilled

project scheduling with level-dependent rework risk; three multi-objective

mechanisms based on cuckoo search. Applied Soft Computing, 54:46–61, 2017.

16, 17, 20

100

REFERENCES

[19] L. F. Machado-Domínguez, C. D. Paternina-Arboleda, J. I. Vélez, and

A. Barrios-Sarmiento. A memetic algorithm to address the multi-node

resource-constrained project scheduling problem. Journal of Scheduling,

24:413–429, 2021. 17

[20] V. Van Peteghem and M. Vanhoucke. Using resource scarceness charac-

teristics to solve the multi-mode resource-constrained project scheduling

problem. Journal of Heuristics, 17:705–728, 2011. 17, 56, 58, 59

[21] D. Gu R. Chen, C. Liang and J.Y. Leung. A multi-objective model for

multi-project scheduling and multi-skilled staff assignment for IT prod-

uct development considering competency evolution. International Journal of

Production Research, 55(21):6207–6234, 2017. 18

[22] C. Yugma C. Gallais R. Torba, S. Dauzère-Pérès and J. Pouzet. Solving a

real-life multi-skill resource-constrained multi-project scheduling problem.

Annals of Operations Research, pages 1–46, 2024. 18, 19

[23] J. C. Bean. Genetic algorithms and random keys for sequencing and opti-

mization. ORSA Journal on Computing, 6(2):154–160, 1994. 30, 49

[24] J. F. Gonçalves and M. G. Resende. Biased random-key genetic algorithms

for combinatorial optimization. Journal of Heuristics, 17(5):487–525, 2011. 31,

49

[25] R. Kolisch and S. Hartmann. Heuristic Algorithms for the Resource-Constrained

Project Scheduling Problem: Classification and Computational Analysis. Springer US,

1999. 34

[26] F. H. Barron and B. E. Barrett. Decision quality using ranked attribute

weights. Management Science, 42(11):1515–1523, 1996. 41

[27] P. A. Bottomley and J. R. Doyle. A comparison of three weight elicitation

methods: good, better, and best. Omega, 29(6):553–560, 2001. 42

[28] S.K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based Python

JIT Compiler. In Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC, pages 1–6, 2015. 44

101

REFERENCES

[29] A.A. Chaves, J.F. Gonçalves, and L.A.N. Lorena. Adaptive Biased

Random-Key Genetic Algorithm with Local Search for the Capacitated

Centered Clustering Problem. Computers & Industrial Engineering, 124:331–

346, 2018. 50

[30] C.E. Andrade, T. Silva, and L.S. Pessoa. Minimizing Flowtime in a Flow-

shop Scheduling Problem with a Biased Random-Key Genetic Algorithm.

Expert Systems with Applications, 128:67–80, 2019. 51, 54

[31] H. Ishibuchi, T. Yoshida, and T. Murata. Balance between genetic search

and local search in memetic algorithms for multiobjective permutation

flowshop scheduling. IEEE Transactions on Evolutionary Computation, 7(2):204–

223, 2003. 51

[32] A. E. Eiben and S. K. Smit. Parameter tuning for configuring and analyzing

evolutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011.

53

[33] S. K. Karna and R. Sahai. An overview on Taguchi method. International

Journal of Engineering and Mathematical Sciences, 1(1):1–7, 2012. 54

[34] F. Glover. Heuristics for Integer Programming Using Surrogate Con-

straints. Decision Sciences, 8(1):156–166, 1977. 56

[35] R. Martí, M. Laguna, and F. Glover. Principles of Scatter Search. European

Journal of Operational Research, 169(2):359–372, 2006. 56, 97

[36] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer-

Verlag Berlin Heidelberg, 2015. 71

[37] F. J. Lobo, C. F. Lima, and Z. Michalewicz. Parameter Setting in Evolutionary

Algorithms, 54. Springer Science & Business Media, 2007. 72

[38] A. Alorf. A survey of recently developed metaheuristics and their com-

parative analysis. Engineering Applications of Artificial Intelligence, 117:105622,

2023. 111

[39] O. Bozorg-Haddad I. Ahmadianfar and X. Chu. Gradient-based optimizer:

A new metaheuristic optimization algorithm. Information Sciences, 540:131–

159, 2020. 111

102

REFERENCES

[40] M. Y. Cheng and D. Prayogo. Symbiotic organisms search: a new meta-

heuristic optimization algorithm. Computers & Structures, 139:98–112, 2014.

112

[41] V. A. Hodianto and I. Yang. Multi-Mode Resource Constrained Multi-

Project Scheduling Problem Optimization with Symbiotic Organisms

Search. Dimensi Utama Teknik Sipil, 9(1):77–96, 2022. 112, 113

103

10

Appendix

10.1 MILP model

Below, the mathematical model and the list of parameters and variables of the MILP model

of (1) can be found.

104

app ∈ {0, 1} (4.28)

pdp,t ∈ {0, 1} (4.29)

vi,p,m,s ∈ {0, 1} (4.30)

zi,p,m ∈ {0, 1} (4.31)

TPT ≥ 0 (4.32)

TS ≥ 0 (4.33)

d+k , d
−
k , e

+
k , e

−
k ≥ 0 (4.34)

4.2 Model description

We can now model the following mixed integer linear programming (MILP) model:

Indices Description
i Consultant index i with i = 1,…, I
m Team member index m with m = 1,…,mp

p Project index p with p = 1,…, P
s Skill index s with s = 1,…, S
t Time index t with t = 1,…, T

Parameters Description
α+
cost and α−

cost Positive and negative weight attached to the normalized sum of
deviations of e+cost and e−cost

α+
util and α−

util Positive and negative weight attached to the normalized sum of
deviations of e+util and e−util

α+
satis and α−

satis Positive and negative weight attached to the normalized sum of
deviations of e+satis and e−satis

ci Hourly cost parameter for assigning consulant i to a project based
on the consultant’s job position (see Table 2.1)

CHt,p,s Chargeable hours parameter for required skill s of project p at pe-
riod t

csls,i Consultant i’s skill level parameter for skill s (according to the skill
level range as specified in Table B.1)

csss,i Consultant i’s skill satisfaction parameter for skill s (according to
the satisfaction scale as specified in Table B.2)

emi,p Binary parameter that equals 1 in case consultant i is working as
EM on project p and 0 otherwise.

emh Parameter that represents the hours an EM is working as EM per
project per week.

ESp Project p’s earliest start time parameter
I Number of consultants parameter

40

Parameters Description
LFp Project p’s latest finish time where LFp = LSp + ptp − 1
LSp Project p’s latest start time parameter
mp Number of team members in project p parameter
NCHt,p,s Non-chargeable hours parameter for required skill s of project p at

period t
NHi,t Net hours parameter of consultant i in period t
P Number of projects parameter
PHp,m Number of project hours for team member m of project p for every

t during the project. PHp,m remains constant during the project
(does not change).

psls,p Project p’s skill requirement level parameter for skill s (according to
the skill levels range as specified in Table B.1)

ptp Project p’s processing time parameter
pvp Priority value parameter for project p according to (Subsection

2.4.3)
qp,s,i Binary parameter underqualification for skill s for consultant i on

project p. qp,s,i =
{

1 if psls,p ≥ csls,i
0 otherwise

rsp,s Binary parameter if skill s is required for project p. rsp,s ={
1 if psls,p ≥ 1
0 otherwise

S Number of skills parameter
stp,m Number of required skills of project p that are assigned to team

member m parameter.
T Number of time in planning horizon parameter
TotMaxAbsCost The total maximum absolute hourly cost is a parameter that repre-

sents the maximum absolute value of the hourly cost of assigned
consultants KPI. The maximum absolute cost value is 165.

TotMaxAbsMatch The total maximum absolute skill match is a parameter that rep-
resents the maximum absolute value of the C2Pa skill match KPI.
The maximum absolute C2Pa skill match value is reached when a
project requires a skill at expert level (3) while the consultant does
not have this skill (0). The skill match for the required project skill
would then become 02 − 32 = 9. Since in the absolute worst case
this could be required for all project skills and all projects we multi-
ply this value by the number of projects P and the number of skills
S. Therefore TotMaxAbsMatch = (max(PSLs,p))

2 · P · S.
TotMaxAbsSatis The total maximum absolute satisfaction is a parameter that rep-

resents the maximum absolute value of the consultant satisfaction
KPI. The maximum satisfaction that a consultant can give a certain
skill is 10. Therefore TotMaxAbsSatis = 10.

TotMaxAbsUtil The total maximum absolute consultant-to-project utilization is
a parameter that represents the maximum absolute value of
the consultant-to-project utilization KPI. The maximum utiliza-
tion that a consultant can achieve is 100 percent. Therefore
TotMaxAbsSatis = 100.

TPTmax Parameter that represents the total project hours for all projects in
the planning horizon.

TSmax Sum of the number of required skills parameter for all projects in
the planning horizon.

41

Parameters Description
wp,s,i Binary parameter overqualification for skill s for consultant i on

project p. wp,s,i =
{

1 if csls,i ≥ psls,p
0 otherwise

wdecline Weight attached to the normalized penalty factor for declining a
project

w+
cost and w−

cost Positive and negative weight attached to normalized deviations of
the hourly cost of assigned consultants goal (d+cost and d−cost)

w+
util and w−

util Positive and negative weight attached to normalized deviations of
the total consultant-to-project utilization rates goal (d+util and d−util)

w+
satis and w−

satis Positive and negative weight attached to normalized deviations of
the consultant satisfaction rates goal (d+satis and d−satis)

w+
match and w−

match Positive and negative weight attached to normalzied deviations of
the C2Pa skill match goal (d+match and d−match)

WHi,t Parameter that represents the working hours of consultant i at time
t

Decision
variables

Description

up,t Binary decision variable that equals 1 if project p starts at time t
and 0 otherwise.

xi,p,t,m,s Binary decision variable that equals 1 in case consultant i is as-
signed to team member slotm and skill s of project p at time t, and
0 otherwise.

app Binary decision variable that equals 1 in case project p is accepted
(all team member slots are assigned to consultants), and 0 other-
wise.

Auxiliary
variables

Description

d+cost and d−cost Positive and negative deviation variable between the hourly cost of
assigned consultants KPI and the continuous variable that repre-
sents a value in the aspiration level interval range

d+i,util and d−i,util Positive and negative deviation variable between the consultant-
to-project utilization rates KPI and the continuous variable that rep-
resents a value in the aspiration level interval range for consultant
i

d+i,p,match and
d−i,p,match

Positive and negative deviation variable between the C2Pa skill
match KPI and the continuous variable that represents a value in
the aspiration level interval range for consultant i and project p

d+satis and d−satis Positive and negative deviation variable between the consultant
satisfaction rates KPI and the continuous variable that represents
a value in the aspiration level interval range

e+cost and e−cost Positive and negative deviation variable between the continuous
variable that represents a value in the aspiration level interval range
and the desired minimum or maximum aspiration level of the hourly
cost of assigned consultants KPI

42

Auxiliary
variables

Description

e+i,util and e−i,util Positive and negative deviation variable between the continuous
variable that represents a value in the aspiration level interval
range and the desired minimum or maximum aspiration level of
the consultant-to-project utilization rates KPI for consultant i

e+satis and e−satis Positive and negative deviation variable between the continuous
variable that represents a value in the aspiration level interval range
and the desired minimum or maximum aspiration level of the con-
sultant satisfaction rates KPI

pdp,t Binary auxiliary variable that equals 1 in case project p is in execu-
tion at time t and 0 otherwise

TPT Auxiliary variable that represents the total project hours for all ac-
cepted projects in the planning horizon.

TS Auxiliary variable that represents the number of required skills pa-
rameter for all accepted projects in the planning horizon.

vi,p,m,s Binary auxiliary variable that equals 1 in case consultant i is as-
signed to team member role m and skill s of project p and 0 other-
wise

ycost Continuous variable that represents a value in the aspiration level
interval range of the hourly cost of assigned consultants KPI

yi,util Continuous variable that represents a value in the aspiration level
interval range of the consultant-to-project utilization rates KPI for
consultant i

ysatis Continuous variable that represents a value in the aspiration level
interval range of the consultant satisfaction rates KPI

zi,p,m Binary auxiliary variable that equals 1 in case consultant i is work-
ing as team member m on project p

Minimize

w+
cost ·

d+cost
TotMaxAbsCost

+ w−
cost ·

d−cost
TotMaxAbsCost

+ α+
cost ·

e+cost
TotMaxAbsCost

+ α−
cost ·

e−cost
TotMaxAbsCost

+
1

I
·

I∑

i=1

(
w+

util ·
d+i,util

TotMaxAbsUtil
+ w−

util ·
d−i,util

TotMaxAbsUtil
+ α+

util ·
e+i,util

TotMaxAbsUtil
+ α−

util ·
e−i,util

TotMaxAbsUtil

)

+w+
satis ·

d+satis
TotMaxAbsSatis

+ w−
satis ·

d−satis
TotMaxAbsSatis

+ α+
satis ·

e+satis
TotMaxAbsSatis

+ α−
satis ·

e−satis
TotMaxAbsSatis

+
1

P
· 1
I
·

P∑

p=1

I∑

i=1

(
w+

match ·
d+i,p,match

TotMaxAbsMatch · ptp
+ w−

match ·
d−i,p,match

TotMaxAbsMatch · ptp

)

+
1

P
·

P∑

p=1

wdecline · pvp · (1− app)

(4.35)
Subject to:

∑I
i=1

∑P
p=1

∑LFp

t=ESp

∑mp

m=1

∑S
s=1 ci · xi,p,t,m,s

TPT
− d+cost + d−cost = ycost

(4.36)

∑P
p=1

∑T
t=0(

∑mp

m=1

∑S
s=1CHt,p,s · xi,p,t,m,s) +WHi,t −NHi,t + emh · emi,p · pdp,t

(
∑T

t=1WHi,t) · T
· 100

−d+i,util + d−i,util = yi,util ∀i
(4.37)

43

∑I
i=1

∑P
p=1

∑LFp

t=ESp

∑mp

m=1

∑S
s=1 xi,p,t,m,s · csss,i

TS
− d+satis + d−satis = ysatis

(4.38)

LFp∑

t=ESp

mp∑

m=1

(
S∑

s=1

(csl2s,i − psl2s,p) · qp,s,i + (csls,i − psls,p) · wp,s,i)

·pvp · xi,p,t,m,s − d+i,p,match + d−i,p,match = 0 ∀i, p
(4.39)

P∑

p=1

mp∑

m=1

S∑

s=1

(
CHt,p,s · xi,p,t,m,s +

emh · emi,p · pdp,t
mp · S

+NCHt,p,s · xi,p,t,m,s

)

≤ NHi,t ∀i, t
(4.40)

xi,p,t,m,s ≤ app ∀i, p, t,m, s (4.41)

I∑

i=1

zi,p,m ≤ 1 ∀p,m (4.42)

mp∑

m=1

zi,p,m ≤ 1 ∀p, i (4.43)

xi,p,t,m,s ≤ zi,p,m ∀i, p, t,m, s (4.44)

I∑

i=1

mp∑

m=1

xi,p,t,m,s ≤ 1 ∀p, t, s (4.45)

LSp∑

t=ESp

up,t = app ∀p (4.46)

xi,p,t,m,s ≤ 0 t /∈ {ESp, ..., LFp} and ∀i, p,m, s (4.47)

xi,p,t,m,s ≤ rss,p ∀i, p, t,m, s (4.48)

I∑

i=1

S∑

s=1

xi,p,t,m,s = stp,m · pdp,t ∀p, t,m (4.49)

ptp · up,t ≤
min(t+ptp,T)∑

t=t

pdp,t t ∈ {ESp, ..., LSp} and ∀i, p,m, s (4.50)

T∑

t=1

pdp,t ≤ ptp · app ∀p (4.51)

I∑

i=1

mp∑

m=1

vi,p,m,s = app ∀p, s (4.52)

xi,p,t,m,s = vi,p,m,s ∀i, p, t,m, s (4.53)

ycost − e+cost + e−cost = 0 (4.54)

44

yi,util − e+i,util + e−i,util = 100 ∀i (4.55)

ysatis − e+satis + e−satis = 10 (4.56)

xi,p,t,m ∈ {0, 1} (4.57)

up,t ∈ {0, 1} (4.58)

app ∈ {0, 1} (4.59)

pdp,t ∈ {0, 1} (4.60)

vi,p,m,s ∈ {0, 1} (4.61)

zi,p,m ∈ {0, 1} (4.62)

TPT ≥ 0 (4.63)

TS ≥ 0 (4.64)

d+k , d
−
k , e

+
k , e

−
k ≥ 0 (4.65)

115 ≤ ycost ≤ 127 (4.66)

90 ≤ yi,util ≤ 100 (in case consultant i isMA)

80 ≤ yi,util ≤ 100 (in case consultant i is C)

75 ≤ yi,util ≤ 100 (in case consultant i is SC)

65 ≤ yi,util ≤ 100 (in case consultant i isM)

(4.67)

6 ≤ ysatis ≤ 10 (4.68)

4.3 Conclusion

This chapter started with describing the model requirements of the C2Pa problem. The C2Pa
model requires 3 decision variables: an assignment decision variable, a scheduling decision
variable, and a decline project decision variable. Furthermore, the C2Pa model has 4 objec-
tives: consultant satisfaction, consultant-to-project utilization, hourly assignment cost, and skill
match. We deal with the multiple objectives by implementing the revised MCGP of Chang
(2008). In the revised MCGP the objective function is to minimize the deviations to the target
level and the aspiration interval level. Target levels are the predetermined goals for each KPI
(minimum desired performance). The aspiration interval level range is the range between the
target level and the optimal desired performance. Furthermore, Subsection 4.1.3 elaborates on
the constraints in the C2Pa problem. Combining all these elements leads to the mathematical
model described in Section 4.2. We use this model in Chapter 5 to perform the experiments
with.

45

10.2 Unsuccessful Models

10.2 Unsuccessful Models

This section focuses on models that are highly regarded in the literature for their promis-

ing performance in general numerical optimization problems or C2Pa-related optimization

problems. However, their performance on C2Pa was not sufficiently convincing to warrant

further investigation or implementation. These experiments were carried out in the early

stages of the research, some of the definitions could differ from the main research.

10.2.1 Gradient-Based Optimization

The gradient-based optimization algorithm (GBO) was implemented and modified for the

C2Pa problem. Alorf (38) investigated the optimization capability of 26 recently pub-

lished novel meta-heuristics. The performance of these meta-heuristics is assessed by eval-

uating 79 benchmarks covering unimodal, multimodal, CEC-BC-2017 benchmarks and

constrained engineering problems. These benchmarks mostly cover complex mathematical

functions or constrained practical problems. GBO was found to be among the top five

best performs for multimodal functions. The impressive results in the benchmarks were

convincing enough to consider this algorithm. This algorithm also allows for a comparison

between general optimization algorithms and domain specific algorithms.

Ahmadianfar (39) proposed GBO in his study. The Gradient-Based Optimizer (GBO)

draws inspiration from Newton’s gradient-based method and relies on two primary mech-

anisms: the Gradient Search Rule (GSR) and the Local Escaping Operator (LEO). It

also utilizes a group of vectors to investigate the solution space. The GSR implements

a gradient-based approach to improve exploratory capabilities and speed up convergence,

leading to more optimal positions within the search area. Meanwhile, the LEO is designed

to help the GBO avoid getting trapped in local optima, allowing it to continue searching

for better solutions. The MATLAB source code of GBO is made publicly available by

Ahmadianfar (39), consequently, this code is succesfully converted into Python code. The

functions are adapted to the C2Pa problem. The algorithm makes use of the random key

representation, the same representation as the proposed models. Consequently, the same

decoding procedure has been applied.

A validation session of iterative simulations on the small instance of 15 consultants and

9 projects conclusively demonstrated that further investment of resources into improving

this meta-heuristic would be unproductive. The algorithm’s capability to find reasonable

solutions proved markedly insufficient, as evidenced by the fitness curves of the best fitness

111

10.2 Unsuccessful Models

and average population fitness depicted in Figure 10.1. GBO shows significant deficiencies

in both exploitation and exploration aspects: Exploitation: The best fitness curve shows

only minimal improvement over generations, with a few small step changes. This suggests

that the algorithm struggles to refine solutions effectively. Besides that, the best-found

solution of around 7.343 is quite some distance from the best-found solution of 7.326 of a

other model, which suggests that the local search mechanisms are ineffective. Exploration:

The average fitness persists to be at a distance from the best-found solution. In an ideal

scenario, the average fitness would initially have a larger gap from the best fitness, repre-

senting diverse solutions. While, over time, the average fitness would converge closer to

the best fitness, indicating that the population is clustering around good solutions. This

is clearly not the case.

Figure 10.1: Fitness curve GBO Best vs Average

10.2.2 Symbiotic Organisms Search

The Symbiotic Organisms Search (SOS) algorithm is another model that has been imple-

mented and modified to fit the C2Pa problem. The meta-heuristic has been developed by

(40), which tested the performance of SOS on several unconstrained mathematical prob-

lems and structural engineering design problems. Two years later, (41) implemented SOS

for the multi-mode resource constrained multi-project scheduling problem, which variant

of RCPSP is close to C2Pa. Their algorithm showed excellent performance compared to

start-of-the-art models like PSO and GA.

112

10.2 Unsuccessful Models

The core concept of the algorithm is symbiosis, a biological phenomenon observed in nature

that describes the interaction between two biological organisms. This biological inspiration

classifies the algorithm as a bio-inspired algorithm. The implementation of (41) made use

of the random key chromosome encoding, which made the implementation straightforward.

Given that the algorithm draws inspiration from interactions between organisms in nature,

it employs a population-based search strategy. Our implementation used the serial schedule

generation scheme, which is different compared to the proposed parallel schedule generation

scheme. After decoding, the evolution strategy is executed. This strategy consists of three

phases in SOS, namely mutualism, commensalism, and parasitism.

In short, mutualism is an interaction between two organisms which benefits both organ-

isms. Every i -th member of the population is matched with a random member j, this

with an beneficial mutualistic relationship in mind. A mutualistic vector which combines

the chromosome of both individuals and two benefit factors are constructed. For every

member, the orginal chromosome is combined with a random number, the chromosome of

the best member of the population, the mutualistic vector, and the benefit factor. The

modified organisms are accepted if the fitness is better than the previous. Second, there is

commensalism, which is similar to mutualism; however, here, one organism receives benefit

where the other is unaffected. Again, the i-th member is matched with a random member

j. The candidate solution of i combines the original chromosome, a random number, the

chromosome of the best member of the population, and the chromosome of member j. Fi-

nally, the parasitism phase is executed. In this phase, the parasite thrives where the host

suffers from the parasite or even dies. The i-th member is chosen to act as the parasite

vector, which is then modified by mutations. If the mutated member scores better than a

randomly selected member j, it replaces member j in the population.

The problems associated with SOS are twofold. The primary issue arises from the compu-

tational demands of its evolutionary strategy. For each population member, the algorithm

executes a three-phase evolution process. An analysis of these phases reveals that mutu-

alism requires two additional fitness evaluations, while commensalism and parasitism each

require one fitness evaluation. This totals four fitness calculations per population member.

Considering that fitness evaluation is a computationally expensive operation, these four ad-

ditional calculations represent a significant inefficiency. The second concern relates to the

algorithm’s performance. When compared to existing models, SOS fails to demonstrate

substantial improvements or advantages. The combination of high computational costs

113

10.3 Flexible time window results SS+LS

and underwhelming performance suggests that SOS may not be a promising algorithm for

further research.

10.3 Flexible time window results SS+LS

Exp. Objective Skill match Satisfaction Hourly cost
mean ± std dev mean ± std dev mean ± std dev mean ± std dev

TW = 0 -0.2010 ± 0.0053 -1.6272 ± 0.0985 6.099 ± 0.201 151.22 ± 3.25
TW = 1 -0.1993 ± 0.0065 -1.6420 ± 0.1234 6.018 ± 0.241 150.56 ± 3.81
TW = 2 -0.2421 ± 0.0009 -0.9235 ± 0.0760 7.098 ± 0.120 153.96 ± 1.24
TW = 4 -0.2406 ± 0.0030 -0.9704 ± 0.1307 7.083 ± 0.160 152.86 ± 2.64
TW = 8 -0.2542 ± 0.0059 -0.7086 ± 0.1731 7.303 ± 0.151 151.58 ± 4.16

Table 10.1: SS+LS results experiment flexible time windows

114

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Relevance of the problem
	1.3 Research Questions
	1.4 Research Outline

	2 Problem Context
	3 Literature Review
	3.1 Problem base
	3.2 Application of Meta-heuristics
	3.2.1 RCPSP
	3.2.2 RCMPSP
	3.2.3 MSRCPSP
	3.2.4 MSRCMPSP

	3.3 Conclusion

	4 Data
	4.1 Consultant Capability Data
	4.2 Consultant Availability Data
	4.3 Project Data

	5 Existing MILP model
	6 Methodology
	6.1 Encoding
	6.1.1 Search Space Reduction
	6.1.2 Project Selection
	6.1.3 Consultant Selection
	6.1.4 Skill Division
	6.1.5 Time Windows

	6.2 Decoding
	6.3 Objective Function
	6.3.1 Satisfaction KPI
	6.3.2 Skill Match KPI
	6.3.3 Hourly Cost KPI
	6.3.4 Utilization Rate KPI
	6.3.5 Weighting the KPIs
	6.3.6 Fitness Function

	6.4 Local Search
	6.4.1 Consultant Swap
	6.4.2 Skill Swap

	6.5 BRKGA
	6.5.1 Methodology
	6.5.2 Hyperparameter Tuning

	6.6 Scatter Search
	6.6.1 Methodology
	6.6.2 Hyperparameter Tuning

	7 Evaluation of Results
	7.1 Verification of Models
	7.1.1 Skill Match KPI
	7.1.2 Satisfaction KPI
	7.1.3 Hourly Cost KPI
	7.1.4 Utilization KPI

	7.2 Validation of Models
	7.3 Comparison to MILP
	7.4 Experiment Instance Size
	7.4.1 Instance size 3
	7.4.2 Instance size 6
	7.4.3 Instance size 12
	7.4.4 Instance size 24
	7.4.5 Conclusion Instance Size Experiment
	7.4.6 Analysis Convergence Speed

	7.5 Experiment Flexible Time Windows
	7.6 Experiment Business Rules
	7.6.1 STRICT Rules
	7.6.2 SL+POS Rules
	7.6.3 SL Rules
	7.6.4 POS Rules
	7.6.5 No Rules
	7.6.6 Conclusion Business Rules

	8 Conclusion
	9 Discussion
	References
	10 Appendix
	10.1 MILP model
	10.2 Unsuccessful Models
	10.2.1 Gradient-Based Optimization
	10.2.2 Symbiotic Organisms Search

	10.3 Flexible time window results SS+LS

