
Jericho Project

Secure communications:

‘End-to-end encryption’ in Jericho networks

Alina Stan

Supervisor Capgemini : Drs. Marco Plas

Supervisor VU: Dr. Evert Wattel

Second reader VU: Dr. ir. Rene Swarttouw

2007

Jericho Project

Secure communications:

 ‘End-to-end encryption’ in Jericho networks

Alina Stan

Supervisor Capgemini : Drs. Marco Plas

Supervisor VU: Dr. Evert Wattel

Second reader VU: Dr. ir. Rene Swarttouw

 2007

Capgemini Nederland B.V., Utrecht

VU University Amsterdam

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

3

Preface

The students of the Master of Business Mathematics and Informatics at VU

University Amsterdam are required to do an internship in a company as final part of their
studies. This master thesis is the result of the research I conducted during my internship
at Capgemini Nederland B.V. on the topic “end-to-end encryption” in the context of
Jericho Project.

My real experience in the field of information security began with my internship
at Capgemini Nederland B.V. For this, I firstly, want to thank my thesis supervisor at
Capgemini Nederland B.V., Marco Plas for offering me the opportunity to work in his
research team and for introducing me into the exploration of this interesting subject. I am
grateful for the support, objective comments, motivation and encouragements that he
provided me during the internship period.

Further, I would like to thank my academic supervisors, Evert Wattel and Rene
Swarttouw for their guidance, support, comments, advice and encouragements they
offered me in the process of writing this thesis.

Moreover, I express my gratitude to Annemieke van Goor, for her support and
assistance throughout all the internship period.

At Capgemini Nederland B.V., I worked in the research group for Jericho Project
of 5 persons, including me. I want to thank also to my colleagues from the research
group, Evgeny Barannikov, Adriaan Bruning, Remco van Marle, Leon Teheux, for their
contribution to the overall project, and for the support and insight they offered me in
writing my thesis.

Special thanks go to Erik Genseen for the motivation and optimism that he always
conveyed during our discussions about my work at Capgemini Nederland B.V.

Moreover, I express my gratitude to all the other colleagues from Practice F55 at
Capgemini Nederland B.V. for the nice atmosphere they create at their workplace and for
the insightful discussions I had with them regarding my research within Jericho Project.

Besides them, I am grateful to Paula Blauw, Ellen Blijenberg, and Deborah Chedi
for the support and assistance they constantly offered me during my internship.

 Utrecht, June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

4

Contents

Preface...3
Chapter 1 Introduction..8

1.1 Introduction... 8
1.2 Jericho Forum. Jericho Project ... 9
1.3 End-to-end encryption .. 10
1.4 Research objective and research questions ... 11
1.5 Research methods ... 11
1.6 Scope... 12
1.7 Thesis outline .. 12

Chapter 2 Scenario: Jericho Project ..14
2.1 Introduction... 14
2.2 Jericho Forum ... 14
2.3 Jericho Project... 16

2.3.1 AAA Framework ... 19
2.3.2 Trust Broker ... 21
2.3.3 Endpoint security ... 23
2.3.4 Data classification and Information Leakage .. 24
2.3.5 End-to-end encryption ... 25

2.4 Discussion – overview of roadmap for Jericho Project .. 27
Chapter 3 Secure Communications in the context of Jericho Project29

3.1 Introduction... 29
3.2 Requirements for secure communications for Jericho Project 30
3.3 Overview of Open Systems Interconnection (OSI) Model..................................... 41
3.4 Security protocols ... 46
3.5 Secure Socket Layer and Transport Layer Security (SSL/TLS)............................. 48

3.5.1 Introduction.. 48
3.5.2 Presentation.. 49
3.5.3 Conclusions.. 76

3.6 IPsec.. 79
3.6.1 Introduction.. 79
3.6.2 Presentation.. 79
3.6.3 Conclusions.. 94

3.7 Comparison of IPsec and SSL/TLS security protocols... 97
3.8 XML Encryption... 101

Chapter 4 Cryptography...107
4.1 Introduction... 107
4.2 Overview of cryptography .. 108

4.2.1 Cryptographic Attacks ... 113

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

5

4.3 Public-key cryptography... 116
4.3.1 RSA.. 118
4.3.2 Diffie-Hellman... 121
4.3.3 Elliptic curve cryptography.. 123

4.4 Symmetric-key cryptography.. 125
4.4.1 Data Encryption Standard (DES)... 127
4.4.2 3DES... 136
4.4.3 International Data Encryption Algorithm (IDEA)... 138
4.4.4 Advanced Encryption Standard (AES) .. 139
4.4.5 Camellia ... 146
4.4.6 RC4 .. 147
4.4.7 Block Cipher Modes of Operation... 149

4.5 Hash functions .. 156
4.5.1 MD5 ... 158
4.5.2 SHA-1 .. 159

4.6 Message authentication codes... 160
4.7 Public Key Infrastructure (PKI).. 162
4.8 Comparison of cryptographic primitives .. 163

Chapter 5 Conclusions and Future Directions for Research170
5.1 Conclusions... 170
5.2 Future Directions for Research ... 171

References...173

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

6

List of figures

Figure 2.1: Process Schema for the research modules in Jericho Forum Project

Figure 3.1: Computing history and business rationale for de-perimeterization

Figure 3.2: The OSI Reference Model

Figure 3.3: The OSI and TCP/IP networking models

Figure 3.4: Options of protection at different layers

Figure 3.5: Relative Location of Security Facilities in the TCP/IP Protocol Stack

Figure 3.6: Simplified SSL/TLS

Figure 3.7: SSL/TLS Protocol Stack

Figure 3.8: SSL Record Protocol Operations

Figure 3.9: SSL Handshake Protocol

Figure 3.10: Security Alert for untrusted certificates

Figure 3.11: Transport Mode Encapsulation

Figure 3.12 : Tunnel Mode Encapsulation

Figure 4.1: Cryptographic Systems

Figure 4.2: Simplified model for symmetric-key cryptography

Figure 4.3: Feistel Encryption and Decryption

Figure 4.4: Basic Structure of DES

Figure 4.5: DES Round

Figure 4.6: Expansion of Ri to 48-bit value

Figure 4.7: Basic Structure of AES encryption and decryption

Figure 4.8: k-bit CFB

Figure 4.9: k-bit OFB

Figure 4.10: Counter Mode

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

7

List of tables

Table 3.1: The relationship between security services and mechanisms

Table 3.2: Message Protection Decision Matrix

Table 3.3: The 7 layers of the OSI Reference Model

Table 3.4: Port Numbers Used by Standard and SSL/TLS-Encrypted Protocols

Table 3.5: SSL/TLS Session State Information Elements

Table 3.6: SSL/TLS Connection State Information Elements

Table 3.7: Encryption algorithms permitted for SSL 3.0

Table 3.8: Market share for certificates issuers

Table 3.9: Site Seals of different certificates providers

Table 3.10: IPsec services

Table 3.11: Tunnel Mode and Transport Mode Functionality

Table 3.12: Encryption algorithms recommended in RFC 4305

Table 3.13: Authentication algorithms recommended in RFC 4305

Table 3.14: Comparison of IPsec and SSL/TLS

Table 3.15: Cryptographic algorithms and their identifiers for XML Security

Table 4.1: Applications for Public-key cryptosystems

Table 4.2: Progress in Factorization

Table 4.3: NIST Evaluation for AES

Table 4.4: The three official versions of AES

Table 4.5: The necessary rounds for different key and block lengths for AES

Table 4.6: The best known short-cut attacks on each of the three official AES
versions

Table 4.7: Comparison of SHA Parameters

Table 4.8: Comparable Key Sizes in Terms of Computational Effort for
Cryptanalysis

Table 4.9: NIST Recommended Key Sizes

Table 4.10: Relative Computation Costs of Diffie-Hellman and Elliptic Curves

Table 4.11: Recommended algorithms and minimum key sizes by NIST

Table 4.12: Recommended algorithms and minimum key sizes by ECRYPT 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

8

Chapter 1 Introduction

1.1 Introduction

Nowadays, there are new ways of doing and conducting businesses, different
from the traditional business models. Simply defined, a business model is the method of
doing business by which a company generates revenue1. The online collaboration and
electronic commerce among multiple business actors are increasing and this involves
sharing of sensitive data over Internet. Sensitive data might include credentials used for
authentication, or data such as credit card numbers, or bank transaction details, patient
healthcare information. Defining what sensitive data is depends on the security policy of
each organization and on the security levels attached to data (e.g. confidential, secret, top
secret).

The Computer Security Act 2 of 1987 provided a broad information definition for
the term sensitive information: “or modification of which could adversely affect the
national interest or the conduct of federal programs, or the privacy to which individuals
are entitled under section 552a of title 5, United States Code (the Privacy Act), but which
has not been specifically authorized under criteria established by an Executive Order or
an Act of Congress to be kept secret in the interest of national defense or foreign
policy.”

 Consequently, protecting sensitive information means providing at least the
following security services: confidentiality, integrity and availability of information.

The Internet business models continue to evolve and, given the rapid advances
and expansive growth of information and communication technology, new and
interesting variations will arise in the future3, 4 (Turban et al., 2006).

The new business models (B2B, B2C, B2E, G2G, electronic markets, e-shops,
auctions etc.) that appeared demand for new approaches of providing security. These are
based on electronic, mobile transactions and users. Therefore, a new security architecture
where each device is capable to protect itself is needed.5

In the Internet age, the mission of securing network communications effectively is
vital for organizations and individuals as well (Mar-Elie et al., 2005; Ramachandran,
2002; Dam et al., 1996).

Jericho Forum suggests that the perimeter approach for providing security is not
suitable anymore and does not meet the increasing demands for security and user
mobility that are inherent of the e-business models. The old ways for providing protection

1 Michael Rappa http://digitalenterprise.org/models/models.html accessed March 2007
2 http://csrc.nist.gov/publications/nistbul/csl92-11.txt accessed June 2007
3 Idem 1
4 Jericho Forum http://www.opengroup.org/projects/jericho/index.tpl White Paper
Business Case for De-perimeterization (January 2007)
5 Jericho Forum http://www.opengroup.org/projects/jericho/index.tpl

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

9

with an organizational security boundary are not adequate anymore and become obsolete.
The traditional security mechanisms do not meet anymore the demands of businesses
over an open, flexible and Internet-driven enterprise environment.

This new security approach that sustains collaboration and commerce over open
networks, within and between organizations, is based on security architecture and design
approach entitled ‘de-perimeterization’. The new security model, its principles
(commandments) and a series of white papers are proposed and promoted by Jericho
Forum.

In this master thesis, we will focus on proposing and describing end-to-end
encryption solutions for secure communications within the context of Jericho Project. For
providing end-to-end encryption, cryptography algorithms and security protocols are
considered. Cryptography enables two or more parties to communicate and exchange
information securely over insecure channels.

 According to Ramachandran (2002) “the success of the Internet as a marketplace
for services and information depends on the strength of our cryptographic protocols and
algorithms.”

1.2 Jericho Forum. Jericho Project

Jericho Forum1 is an international community, composed mainly of IT

organizations, dedicated to the development of open standards to enable secure and de-
perimeterised information flows across networks.

The members of Jericho Forum recognize that the current security mechanisms
that protect business information will not scale in the near future to meet the requirements
for protecting the increasing volumes of transactions and data in a continuously extending
collaborative business environment.

Jericho Forum envisions a shift in the security world from the traditional network
perimeter down to the individual networked computers and devices – and ultimately to
the level of the data itself. Thus, the security perimeters will disappear step by step. This
process has been described as ‘re-perimeterization’, followed by ultimate ‘de-
perimeterization’.

 This forum explores the potential to develop security architectures that support
de-perimeterized business-to-business networking. The need for such standards has been
growing over the past years as organizations are conducting more and more businesses
over the Internet. So, the challenge to remove or to move away from the security
perimeter has to be tackled. This does not necessarily mean that the firewalls that provide
basic network protection will be removed, but apart from these, the individual systems
and the data need to have the capability of protecting themselves.

1 Jericho Forum http://www.opengroup.org/projects/jericho/index.tpl

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

10

De-perimeterization refers to redesigning the security perimeters in order to foster
collaboration between and within organisations over open networks. Jericho Forum
sustains this principle and offers standards, design principles, named commandments1,
and guidance in order to help the creation and the broad adoption of such security
technology.

According to Jericho Forum2, a solution for a de-perimeterized network requires
that every component is independently secure, demanding systems and data protection on
multiple levels. In order to design and build a de-perimeterized solution, it will be needed
a combination of at least the following elements: encryption, inherently-secure computer
protocols, inherently-secure computer systems, data-level authentication.

Jericho Forum aims to stimulate a market that provides solutions for de-
perimeterized networks. These solutions should use open standards, improve
interoperability and integration, both within the IT systems and among the different
businesses.

Jericho Project has started in December 2006 at Capgemini Nederland B.V. under
the initiative of Drs. Marco Plas, in the department Telecom, Travel and Utilities.
Initially, the project team comprised five students that conduct research for defining a
solution for Jericho networks.

The Jericho Project aims at providing a solution based on the commandments
proposed by Jericho Forum. The solution is defined by a combination of the following
research subjects: authentication, authorization, accounting, trust broker, endpoint
security, data classification and end-to-end encryption. More details about each research
topic and about their importance within Jericho Project will be provided in Chapter 2 of
the thesis.

1.3 End-to-end encryption

The need for information security is fostered by the broad use of Internet and
emerging collaborative business models. Sensitive information is found nowadays in
three states: in storage, in transit and in the process of transformation from storage to
transit. All kinds of information are classified as sensitive: business communication, e-
mails, electronic transfers and other financial transactions, technology and trade secrets,
personal records containing personal information etc. Basically, sensitive information
refers to electronic information or data records that, if used improperly, can harm the
information subjects, information owners or information users or may contravene other
public-policy interests.3

1 Jericho Forum Commandments http://www.opengroup.org/jericho/commandments_v1.1.pdf accessed
April 2007
2 Jericho Forum http://www.opengroup.org/jericho/ accessed April 2007
3 http://dig.csail.mit.edu/2006/tami-portia-accountability-ws/summary#Overview accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

11

The data itself can be found in three states: in storage, in process of
transformation (e.g. data at rest from storage is being encrypted), and in transit. Data has
to be protected in all these three states.

In the context provided by Jericho Project we focus in this thesis on exploring and
proposing valid solutions for protecting data in transit, namely for end-to-end encryption.
The aim is to ensure the integrity and confidentiality of the data. In order to do this, the
entities need to communicate securely, and for this the transferred data has to be
encrypted.

1.4 Research objective and research questions

The aim of this thesis is to investigate and make recommendations regarding the
most adequate use of cryptography for security protocols that can be used for providing
end-to-end encryption in Jericho networks.

The possibilities offered by cryptography for implementing and deploying
suitable security protocols within Jericho networks are further researched within this
thesis.

The following questions will be dealt with and their responses will be analyzed
further in this thesis:

- What are the requirements for secure communications in Jericho networks?

- What is the range of solutions that can be used for end-to-end encryption?

- Which is/are the recommended end-to-end encryption solution(s) in the context
of Jericho Project?

- Which are the most adequate cryptographic algorithms, in terms of security
offered and performance, to be used for security protocols that offer end-to-end
encryption?

1.5 Research methods

In order to come with valid recommendations for the research questions
mentioned above, we will perform a thorough research of the cryptographic algorithms
and their use and influence on the performance of security protocols for secure
communications in Jericho networks.

In the pursuit of this research, firstly, we will define the conceptual model for
Jericho networks. Secondly, a theoretical foundation of cryptography and security
protocols offers the basis for performing a comparison of the different algorithms and

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

12

protocols in terms of security, performance, key size. Based on the results of the
comparisons, different case scenarios of security protocols that can be used for obtaining
end-to-end encryption in Jericho networks will be analyzed.

Further aspects regarding the implementation and deployment of the security
protocols will be researched on the vendor market.

1.6 Scope

The purpose of this thesis is to investigate different solutions for end-to-end
encryption and to propose the most suitable solutions that meet the requirements of
protecting data in transit in Jericho networks. The thesis aims to provide new approaches
and recommendations for securing the sensitive data that is transferred across Internet.

Within the scope of this research, firstly, the theoretical foundation of the security
protocols and cryptographic algorithms will be discussed. Then, their implications and
applications in the context of Jericho networks will be investigated.

Moreover, we will conduct research in detail regarding the security provided at
different levels in OSI model (e.g. network, transport, application level) and perform a
thorough description and an objective comparison of open standards available such as
IPsec, SSL/TLS. However, the focus of the thesis will be to study end-to-end encryption.

For the general purpose of this thesis we need to explore also the security features
offered by means of cryptography. In this respect, we will investigate, describe and
compare the most relevant cryptographic algorithms. The cryptographic algorithms will
be compared in terms of complexity, performance and key size. Besides this, their impact
on the performance and security features of the solutions for end-to-end encryption will
be analyzed.

Furthermore, we will give recommendations about which are the most adequate
cryptographic algorithms to be used for the analyzed security protocols.

Finally, it is worth mentioning here that the end goal of Jericho Project is to offer
possible solutions for Jericho networks, and to implement and test a prototype at the Labs
of Capgemini Nederland B.V.

So, we conclude that initially, the general purpose of Jericho Project is to provide
a roadmap for further implementing and testing a prototype based on the commandments
proposed by Jericho Forum.

1.7 Thesis outline

Including this introductory chapter, the thesis is structured in 5 chapters
presenting our research and findings about different aspects of cryptography and its use
for designing security protocols that provide adequate security services within Jericho
Project. Further on, we briefly review the contents of these chapters.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

13

Chapter 2 introduces the business case for Jericho Project within Capgemini
Nederland B.V. Chapter 1 and 2 provide mainly the research and business context for the
purpose of this thesis.

Chapter 3 covers the topic of security protocols that provide end-to-end
encryption.

Firstly, we will investigate the security features offered by Secure Sockets Layer /
Transport Layer Security (SSL/TLS). SSL/TLS is used for securing electronic commerce
and communications on Internet, and is considered by professionals an elegant and
efficient protocol (Stamp, 2006, p.5).

Then, we will explore Internet Protocol Security (IPsec), a security protocol that
is more complex than SSL, but offers some similar security services.

Chapter 4 presents a suite of cryptographic algorithms and is intended to be a
guide to cryptography. In this chapter, the following topics are presented: asymmetric key
cryptography, symmetric key cryptography, block ciphers and their operation modes,
stream ciphers, message authentication codes, hash functions, cryptography in the real
world. Also, in this chapter we will provide a comparison of the cryptographic primitives
in terms of security offered and performance in order to establish which are the most
adequate to be used for providing end-to-end encryption in Jericho project.

Chapter 5 summarizes the conclusions of the thesis and provides possible
directions for future research in the context of Jericho Project.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

14

Chapter 2 Scenario: Jericho Project

 2.1 Introduction

 In this chapter we provide an overview of Jericho Forum. Following, we present
the research topics within Jericho Project initiated at Capgemini Nederland B.V.

2.2 Jericho Forum

Jericho Forum1 is an international IT security thought-leadership group dedicated
to defining ways to deliver effective IT security solutions that will match the increasing
business demands for secure IT operations over Internet.

Consequently, Jericho Forum aims to drive and influence development of security
standards that will meet future business needs. These standards are intended to facilitate
the secure interoperation, collaboration and commerce over Internet, and to facilitate the
implementation and deployment of a new security architecture and design approach
based on the principle of “de-perimeterization”.

The members of Jericho Forum recognize that the current security mechanisms
that protect business information will not scale in the near future to meet the requirements
for protecting the increasing volumes of transactions and data in a continuously extending
collaborative business environment. The Forum introduces the concept of “de-
perimeterization” and encourages organizations to look at securing the data itself rather
than the infrastructure that supports it.

Jericho Forum envisions a shift in the security world from the traditional network
perimeter down to the individual networked computers and devices – and ultimately to
the level of the data itself. This process has been described as “re-perimeterization”, or
“de-perimeterization”.

This Forum explores the possibility to develop common security architectures to
support de-perimeterized business-to-business networking. The need for such standards
has been growing over the past years as organizations are conducting more and more
businesses over the Internet. So, the challenge to remove or to move away from the
security perimeter has to be tackled. This does not necessarily mean that the boundary
firewalls that provide basic network protection will be removed, but apart from these, the
individual systems and the data need to have the capability of protecting themselves.

Stamp et al. (2005) suggested in a Forrester Analyst Report, a roadmap that
Jericho Forum envisions and aims to materialize in the coming years. The authors
proposed a four stage roadmap for achieving the goals of Jericho Forum:

1 http://www.opengroup.org/jericho/

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

15

- Make services available across the perimeter: Organizations are already

making their services available across the Internet using technologies like Web
Services, and security protocol such as SSL/TLS, XML encryption.

- Next, remove the perimeter altogether: The next stage is to reduce the
importance of the network boundary (firewalls and intrusion prevention systems)
as a security control. Traditionally, the perimeter firewall becomes one of a series
of devices to block malicious traffic. But in a de-perimeterized network, the focus
is on authenticating entities and giving them the adequate access level.

- Develop a standards-based approach to data access: Once the perimeter fades
away, an open, standardized way for entities’ authentication and authorization has
to be decided upon. Open and inherently secure standards should be made
designed and used in Jericho networks.

Jericho Forum aims to stimulate a market that provides solutions for the de-
perimeterization challenge. These solutions should use open standards, improve
interoperability and integration, both within the IT systems and among the
different businesses.

- Then, control access to the data, not the underlying infrastructure: Finally,
organizations will implement a security model that guarantees data confidentiality
and integrity independent of the status of the data (in storage, in processing, in
transit). Organizations will only transfer data between authenticated and
authorized parties, and the information regarding the encryption capabilities are
sent along with the data itself.

Consequently, Jericho Forum explores the potential to develop security
architectures to support de-perimeterized business-to-business networking.

De-perimeterization refers to redesigning the security perimeters in order to foster
collaboration between and within the organisations over open networks. Jericho Forum
sustains this principle and offers standards and guidance in order to help the creation and,
at the same time, adoption of such security technology.

Actually, de-perimeterization is a concept that describes how to meet the business
needs for the businesses without a hardened perimeter. Moreover, this business-driven
security solution provides defence in depth.

The members of Jericho Forum have written and published a series of general
white papers and position papers1 about topics of interest for designing, implementing
and deploying a network architecture based on the principle of de-perimeterization.

1 http://www.opengroup.org/jericho/publications.htm

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

16

Based on the papers published by Jericho Forum, and especially on the paper
presenting the Jericho Forum Commandments, the following requirements and features
are deducted for Jericho networks:

- Security mechanisms must be pervasive and scalable

- All devices must be capable of maintaining their security policy on untrusted
networks

- All people, processes and technologies must have been authenticated and
transparent levels of trust are necessary for any transaction to take place

- Mutual trust assurance levels must be determinable; in fact, de-perimeterization
requires a universal trust infrastructure

- Authentication, authorization and accounting must interoperate with other
implementations outside an organization’s area of control

- Access to data should be controlled by security attributes of the data itself

Further, these requirements will be investigated in the research topics formulated

within Jericho Project at Capgemini Nederland B.V.

2.3 Jericho Project

For Jericho Project, the security strategy is built on defining and implementing
new approaches for authentication, authorization, accounting, endpoint security, data
classification & information leakage, and secure communications in order to provide
security services such as privacy, authentication of the entities, non-repudiation, integrity
in de-perimeterized networks. These topics will be addressed in detail in the research
conducted for Jericho Project.

Capgemini, by being one of the members of Jericho Forum, is actively involved
in providing and designing a new security architecture based on the principles and
commandments emitted by Jericho Forum. There is a direct interest within the company
to provide a sound solution for a new security architecture based on Jericho Forum
Commandments1.

Within Capgemini, drs. Marco Plas initiated this project and formed a research
group, in order to come with a tangible solution for Jericho networks. .

The goal of Jericho Project is to develop a new security architecture and design
approach that will enable business to grow safely and securely in an open, Internet-
driven, networked world.

In this new security architecture, each device is capable of protecting itself and
each asset of the network is individually protected. De-perimeterization requires security
to be at the heart of the organisation’s distributed technology architecture. Security has

1 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

17

to be implemented in end-user devices, application services, and it has to efficiently and
effectively protect organisations’ critical information assets themselves.

The aim of Jericho Project is to define a roadmap for the implementation of this
new defined security architecture.

The research group for Jericho Project is composed of five students under the
direct supervision of Drs. Marco Plas. The work within the research group is directed
towards a comparative research of possible methods, models, technologies, cryptographic
algorithms, security protocols from the network security area. The goal of the research
within Jericho Project is to provide possible solutions for the new security architecture in
de-perimeterized networks.

The research conducted for Jericho Project is divided into five distinct parts that
focus on the following inter-connected topics of research:

- AAA Framework
 Authentication
 Authorization
 Accounting

- Trust Broker
- Endpoint security
- Data classification
- End-to end encryption

The interconnections between these topics of research are illustrated in Figure 2.1:

Accounting
Input Output

- Accounting data
from authentication,
authorization, data
classification,
encryption, trust
broking processes

- Acess level
- User requests

- Authentication
token

- Access information
- Authentication
level requirements

- Authentication
method

- Authorization
response/
Rejection response
- Accounting data

- Answer to the user:
available services
& rights

- Authentication
method

Output

- Authentication
level /
 Rejection response

- Authentication
token

Authorization
Input Output

Authentication
Input

- Authentication data
- Biometrics

- Encryption

- Security status

- Encryption type
- Authentication
subsystem

- Authentication
mechanism

- User requests

- Accounting data- Input/Output (I/O)
Interface type

- Multi-level
security policy

Data classification
Input Output

- Unclassified data

- Authentication
level rights

- Unprotected data
- Classified data
- Level of security
attached to the data

- Multi-level
security policy
- Mandatory access
control model

- Assured
confidentiality and
integrity of the
data
- Accounting data

End-to-end encryption
Input Output

- Request for secure
communication

- Logs

- Required levels of
security
- Encryption related
data (e.g. algorithms,
keys)

- Chosen method for
encryption
- Secure session
- Authenticated
encryption of
the data
- Accounting data

Endpoint Security
Input Output

- Verification
request

- Endpoint status

Trust Broking Services
Output

- Logs request for
trust

- Trust contracts
Input

- Encryption related
data
- Endpoint security
related data

- Authorization
response/
Rejection response
- Accounting data

- Encryption related
data

- Requests for trust
broking services

- Checking
credentials
- Monitoring
- Managing trust

Figure 2.1: Process Schema for the research modules in Jericho Forum Project

2.3.1 AAA Framework

 Authentication1

According to 8th Commandment of Jericho Forum2 “Authentication, authorization

and accountability must interoperate /exchange outside of your locus / area of control”,
identity data must be not usable only within one domain, but also be inter-exchangeable
among multiple parties.

Authentication is the process which establishes a subject’s identity. It plays a very
important role in Jericho Project. Data transaction between entities is allowed to happen
only after the subject’s successful authentication. Authentication can use a single or
multiple factors. The more factors are present the more assurance one receives of the
person’s identity.

The aim of the research is to identify the methods and technologies with which a
user can be authenticated in federated and user-centric identity systems. The scope of the
research is limited to the user – trust broker interaction. Some topics of trust and identity
systems will be covered by the research in order to determine which data may be needed
by the trust broker.

Authentication is interconnected with other parts of the research. Authentication is
an essential part of the AAA framework. Authentication delivers identity data, which finds
its further usage in the authorisation process. Accounting keeps logs of all the
authentication process for the further auditing or investigation. Some identity data may
also be used by the encryption process to encrypt either authentication or data transaction.

 The deliverables of the Authentication research within Jericho Forum Project will
be:

- The logical requirements for authentication in Jericho Forum network
- Comparison of the identity systems
- Comparison of the identity models
- Determine which technical solutions may be used in implementation of the Jericho

forum network
- A practical recommendation concerning the suitable solution

Authorization

As described within the Federated Identity Position Paper3 (2004), after

establishing identities, it should be determined what rights are applicable to entities’
requests. Within the AAA framework, this process is known as authorization.

At the moment, authorization is dependent on the authentication process. Only
after an entity has established its credentials, the authorization process determines what
rights are associated with the resource it attempts to access and, acting upon this, allows or
denies the request.

1 Evgeny Barannikov, Authentication & Accounting in Jericho Project, Capgemini, 2007
2 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007
3 https://www.opengroup.org/jericho/publications.htm accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

20

As such, Authorization research topic is an essential part of the Jericho Project.
Without authorization, no controlled network interactions can exist.

A new architecture that can add flexibility and inter-area operability to this concept
is needed. The claims-based architecture is a promising example. The claims-based
architecture is a promising example. Whereas until now users had to provide proof of
identity before the authorization process could commence, authentication and
authorization can be combined to provide a flexible and more effective solution.

In the context of Jericho Project, the research about authorization has several
interactions with other research topics. The Authentication process needs to authenticate
entities before authorization can take place, whilst the accounting process needs to gather
data and process it. In addition, the Endpoint security process may need to deliver
information that can be used to determine authorization rights.

The scope of the research is limited by the trust broker and authentication process.
The goal of this research is the establishment of a functional model.

In order to do this, the following steps have to be researched:
- Determine the role of Authorization within the Jericho Forum network
- Determine logical requirements for Authorization process
- Determine interaction requirements with other processes within this model
- Determine technical requirements of the Authorization process
- Compare the established requirements with currently available solutions
- Recommend currently available solutions

Possible results of this research on Authorization process include the creation of a

new, universal standard which can be applied to Authorization, the establishment of a
communication channel with Authorization solution companies in order to Jericho-enable
future versions of their products and the description or actual implementation of an
available Authorization solution in a prototype environment.

Accounting1

 “Authentication, authorisation and accountability must interoperate /exchange

outside of your locus / area of control” is stated in Jericho Forum Commandment number
82. Auditing is a process that collects and processes the log data which is delivered by
other processes. Separate IT systems in the enterprise architecture provide log data, which
is processed independently from each other. In case of security breach or performance
analyses multiple logs must be accessed and analysed.

Auditing policy must comply with the legislation of the country, where the
company is established. Also log retention period is dictated by the security policy of the
corporation and the laws of the country.

Auditing process may deliver data to other processes that can determine through
certain algorithms the trustworthiness of the authenticated party. This data may also be

1 Evgeny Barannikov, Authentication & Accounting in Jericho Project, Capgemini, 2007
2 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

21

accessed by the third party that objectively and independently establishes the entity’s
reputation. Anonymity is a very important factor here. Not all data may be disclosed to
other parties.

The goal of this sub-project is to research and define technology which could
consolidate the logs from the multiple systems and provide certain log data to other
processes.

The scope of the research is limited by the trust broker and network services.
Accounting research topic is connected to every single process within the Jericho

Forum networks. Auditing policy is dictated by the accounting process and flows to other
processes.

Information from other modules is collected and processed in the single log
repository.

The following deliverables of the Accounting research within Jericho Forum

Project will be produced:
- The logical requirements for the Jericho Forum network
- Research and analysis of the existing log consolidation software
- Comparison chart of the software
- A practical recommendation concerning the suitable solution

2.3.2 Trust Broker1

Below it is described how the Trust Broker research topic is tackled within Jericho
Project.

The main purpose of the Trust Broker is that it will act in trust. In our vision it can
do this as a neutral third party that will facilitate certain services from which it can not
take any advantages, except some compensation from the two or the several other parties
involved. These services can take place on all kinds of areas because the service, or data
which originate from the service, is frequently carried out at one of the acting parties.

The only thing what the Trust Broker will supervise is that if these parties can trust
each other, if these services are carried out effectively, if it is even possible to carry out
these services, and further if they are performed adequately. This means that a Trust
Broker will act between two or several parties who want to able to do business with each
other, but need an extra factor of faith to do this. For this, the Trust Broker must determine
if every party can be trusted and if it is still the same party when the agreement was
concluded. Therefore, in principle, the Trust Broker creates a Circle of trust between these
two or several parties.

Worldwide computer crime has increased enormous. And the crime that occurs the
most has always something to do with unauthorized people accessing certain sensitive data
by which they can perform several illegal activities, such as transferring money, hold

1 Adriaan Bruning, Trust Broker in Jericho Project, Capgemini, 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

22

people for ransom, sell corporate secrets or sell peoples (digital) identities. To resolve or at
least to reduce these problems users have to get control back over their identities and must
be able decide independently what is right and wrong on Internet. In order to accomplish
this, it is necessary that all people can perform some kind of simple check if they are
communicating with the right party. In order to do this there must come some kind of
simple and unambiguous trust system.

In short, to reduce the crimes in the digital realm it is necessary to have a system
that can measure or define someone’s trust level, and this will be the main goal of this
research topic within Jericho Project.

The main goal of this research part of Jericho Project is to define the actions of a
Trust Broker within the context of a Jericho network.

As the meaning of the concept “Trust Broker” suggests, its main function will be to
act in trust. The purpose of the trust Broker research is to find out how a Trust Broker
would function within a federated and a user-centric network. We will focus on federated
network because of its higher acceptance level.

For this research topic within Jericho Project, there will be used the following

Jericho Forum commandments:
- Jericho Forum Commandment (JFC) 2: Security mechanisms must be pervasive,

simple, scalable & easy to manage.
- JFC 4: Devices and applications must communicate using open, secure protocols.
- JFC 5: All devices must be capable of maintaining their security policy on an

untrusted network.

And particularly:

- JFC 6: All people, processes, technology must have declared and transparent level
of trust for any transaction to take place.

- JFC 7: Mutual trust assurance levels must be determinable.
- JFC 8: Authentication, authorization and accountability must interoperate /

exchange outside of your locus / area of control.

 With these Jericho Forum commandments, trust Broker research topic is connected
with the AAA-framework (C8), encryption (C4), endpoint security (C5,C4) and in order to
facilitate services there must be a connection with data classification (C9,C10,C11).

Likely the outcome of the research about Trust Broker will be largely influenced
by the manner of authentication and how to check someone’s reputation, thus the two
main subjects for building trust. Further will be investigated if there are some good
initiatives on the market to tackle these problems, such as ws-security, ws-privacy, ws-
trust, liberty, openid, jyte, etc.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

23

2.3.3 Endpoint security

The Endpoint security process is responsible for providing the means to establish
inherent trust levels between endpoints, with the intention to create a situation where all
the devices involved in a transaction meet the criteria of trust for that transaction.

At the moment, many Endpoint security or Network Access Control solutions
exist. However, most of these solutions were not designed to interoperate with other
solutions and they lack the ability to verify all network devices. Most solutions provide
only Endpoint Security for PCs running certain Operating Systems.

Several Jericho Forum Commandments1 refer to the Endpoint Security process.

- The second Jericho Forum Commandment states that “Security mechanisms must
be pervasive, simple, scalable & easy to manage”;

- The fifth commandment states that “All devices must be capable of maintaining
their security policy on an un-trusted network”;

- The seventh commandment states that “Mutual trust assurance levels must be
determinable”.

These commandments require a solution where every device connected to a

network should be able to participate in the Endpoint security process. This means that a
universal standard should exist that governs agent behaviour and interactions.

For enabling secure devices to function in a possibly insecure network, these must
be able to maintain their security policies. Consequently, this implies the existence of a
solution that can monitor devices’ status, can act upon it, essentially requiring agents
installed on devices.

Endpoint security research topic is interconnected with several other research
topics within Jericho Project. The Authorization process within Jericho network will be
dependent on the Endpoint security process for providing authorization information. In
addition, in Jericho networks, the Accounting process will be used to handle information
gathered by the Endpoint Security process.

The scope of the research is limited by the trust broker and other network services.
The goal of this research is the establishment of a functional model for Jericho

Project. In order to do this, the following steps have to be researched:

- Determine the role of Endpoint Security within the Jericho network
- Determine logical requirements for Endpoint security process
- Determine interaction requirements with research topics within Jericho Project
- Determine technical requirements of Endpoint security process
- Compare the established requirements with currently available solutions
- Recommend currently available solutions

1 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

24

Possible results of this research include the creation of a new, universal standard

which can be applied to Endpoint Security, the establishment of a communication channel
with Endpoint solution companies in order to Jericho-enable future versions of their
products and the description or actual implementation of an available Endpoint security
solution in a prototype environment.

2.3.4 Data classification and Information Leakage1

According to the 9th Jericho Forum Commandment, access to data must be
controlled, in order to establish who may and who may not access the data. Firstly, the
data should be encrypted for providing protection against entities that do not have yet the
corresponding access level.

Looking at Jericho Forum Commandments you can clearly see that there is a need
to find an ideal way to classify data in order to prevent information leakage. The
commandments that make clear there is a need to classify are:

9. Access to data should be controlled by security attributes of the data itself
10. Data privacy (and security of any asset of sufficiently high value) requires a

segregation of duties/privileges
11. By default, data must be appropriately secured when stored, in transit and in use

Access to data: according to the 9th Jericho forum commandment, access to data must

be controlled, in order to establish which entities may and which may not access the data.
Firstly, the data should be encrypted in order to keep entities, that do not have yet at least the
corresponding access level or that are not authorized, outside. Then the entities which may
access the data have to be authorized. This can be done by the author but the problem is that it
is way to much time consuming. It is a lot easier for the author to attach a group-status to data
e.g. public, non-confidential or confidential. Per group-status are agreements like who may
access the data and what the level of encryption must be. When the author uses group-status it
is still time consuming.

Data privacy (the 10th commandment of the Jericho Forum): To maintain the privacy
of data, data will have an authentication level. Then the data can only be accessed by an entity
when it is authorized and has at least the authentication level that is needed. Entities that are
logged in get an authentication level, when an entity is logged in using only Name + Password
its authentication level will be low, the more keys and/or certificates are used the higher its
level is. A person that uses biometrics to log in will get the highest authentication level; this is
because this the strongest type of authentication and can hardly be forged nowadays.

Appropriate secured data: According to the last commandment of the Jericho forum

data should always be appropriately secured when stored, transmitted and used. In order to

1 Remco van Marle, Data classification & Information Leakage in Jericho Project, Capgemini, 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

25

secure data appropriately it’s again necessary to classify it first. After that the right level of
security can be applied.

The aim of this research is to find a way to automatically classify data in such a way
that it can secure itself. This means that the data much is incapable of automatically authorize
entities and attach the right level of authentication and security.

Data classification & information leakage integrate with other parts of the Jericho
Project research topics. It is interconnected with End-to-end encryption, Authentication and
the Trust Broker research topics.

- When data is automatically attached with a level of security End-to-end encryption will
decide how it must be encrypted
- In cooperation with the Authentication process, the levels of authentication are
determined.
- When an entity wants to access data, the data will request to the Trust Broker to verify
that the entity is who it claims to be.

2.3.5 End-to-end encryption

 In the context provided by Jericho Project, in this thesis we focus on exploring and
proposing valid solutions for protecting data in transit, namely on investigating end-to-end
encryption. The aim is to ensure the integrity and confidentiality of the data. In order to do
this, the entities need to communicate securely and the transferred data has to be
encrypted.

Apart from privacy and integrity, for achieving secure communications other
requirements have to be fulfilled as well: establishing a secure channel, the entities need to
be authenticated, the source of the messages have to be authenticated as well, non-
repudiation, accountability.

Within the scope of Jericho Project, the goal of end-to-end encryption research is to
investigate the possibilities offered by cryptography for designing and implementing
suitable security protocols within Jericho networks for achieving secure communications.
The starting point for this research is based on Jericho Forum Commandment1 number 4
that states the following: “Devices and applications must communicate using open, secure
protocols”.

As stated in Jericho Forum Position Paper “Enterprise Information Protection &
Control” (Digital Rights Management)2, in a de-perimeterised world it is generally easier
to provide granular levels of data protection, the closer the protection mechanism is to the
data. Moreover, the security of the data must reside with that data if it is to be adequately
protected.

Jericho Forum Commandment number nine states that “Access to data should be

controlled by security attributes of the data itself” while commandment number eleven

1 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007
2 www.opengroup.org/jericho/EIPC_v1.0.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

26

states “By default, data must be appropriately secured when stored, in transit and in use”.
The focus of this thesis is to offer protection of data in transit.

For achieving these objectives, cryptographic mechanisms will be investigated and

thoroughly analyzed in this thesis with the scope of selecting the adequate for protecting
data in transit.

However, members of Jericho Forum acknowledged that there is a need for open and

interoperable standards for specifying these principles in order to achieve adequate data
protection in all its states. Open standards ensure that the security principles can be
thoroughly reviewed. Moreover, an open, inherently secure protocol is needed for
communications that involve transferred data between the enterprises’ servers and other
entities in the system.

Scope of end-to-end encryption within Jericho Project

The research on end-to-end encryption for secure communications aims to offer
recommendations for Jericho networks regarding the following aspects:

- establishing the requirements for secure communications within Jericho networks
- investigating a range of security protocols that can be used for end-to-end

encryption for Jericho Project
- choosing the most adequate cryptographic algorithms and primitives, in terms of

security offered and performance, that should be used for security protocols that
offer end-to-end encryption in Jericho networks

- defining a roadmap for the implementation of the proposed solutions for Jericho
networks.

Steps to be followed for secure communications

 In order to provide end-to-end encryption for the data in transit, in the context of
Jericho Project, a number of steps have to be followed.
 Firstly, the entities involved in the communication have to be authenticated in a
handshake protocol.
 Secondly, there will be established a secure connection between the entities, and a
secure session will be set up for transmitting the content securely. This step is being
performed or not, according to the output of authentication, authorization processes.
 Then, the adequate cryptographic primitives are chosen for achieving, further in
the communication process, certain security services (e.g. confidentiality, integrity,
authentication of the source of messages, non-repudiation). Also, the most suitable ways
of distributing the keys are chosen and an agreement is reached. Typically, the public-key
algorithms are used for secure key exchange, while the symmetric-key algorithms are used
for encrypting the data in transit.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

27

Moreover, for the research on end-to-end encryption in the context of Jericho
Project, the sources of the transmitted messages are authenticated, so the aim is to achieve
authenticated encryption for data in transit.

In order to achieve authenticated encryption for the data in transit we will
investigate the security services provided by different security protocols, such as
SSL/TLS, IPsec, XML encryption, and we will recommend the most suitable
cryptographic primitives that can be used in the design of these protocols in the research
context of Jericho Project.

In Jericho Project, the end-to-end encryption research topic is inter-connected with
the following modules that are part of Jericho Project research also: data classification,
trust broker, accounting and authentication modules. The data is previously classified
before encryption occurs. So, certain security protocols and/or cryptographic primitives
may be given preference for implementing end-to-end encryption depending on the type of
data (e.g. highly sensitive, confidential, public etc.). In addition, entities have to
authenticate before transferring data. Moreover, logs of the authentication process, of the
encryption process will be kept for further checking. The trust broker deals with the
establishment and distribution of the encryption keys, the secure storage of the encryption
keys.

 The end-to-end encryption research aims to provide the following results within
Jericho Project:

- The logical requirements for secure communications in Jericho network
- Investigation and comparison of different secure protocols of interest for secure
communications
- Overview and comparison of different cryptographic primitives that can be used
for designing security protocols for secure communications
- Explore which possible solutions may be used for implementing secure
communications, respectively end-to-end encryption, for Jericho network
- A practical recommendation concerning the possible solution(s)

2.4 Discussion – overview of roadmap for Jericho Project

For providing a new security architecture, it is of interest for Jericho Project to take

the following things into consideration as well:

- Existing threats on networks
- Choosing appropriate security services to protect network applications, data in

transit, stored or in use, devices, and also correctly incorporating these services
into the network

- Selecting cryptographic algorithms to implement certain security services (e.g.
confidentiality, authentication of the sources of messages)

- Employing existing security protocols—such as SSL/TLS or IPsec—when
appropriate, or developing new protocols when necessary

- Implementing security within the appropriate network layer

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

28

- Balancing security and performance when choosing between different
technologies, security protocols

- Finding ways to classify data automatically
- Addressing issues regarding identity management, trust brokers, digital rights

management, network quality of service, business partner risk management

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

29

Chapter 3 Secure Communications in the context of Jericho Project

3.1 Introduction

More and more businesses and individuals use Internet for sharing sensitive
information and for conducting online transactions that should stay private among them.

In the literature (Ramachandran, 2002; Stamp, 2006) it is asserted that the purpose
of security is to enable valid communication, preferably in a transparent manner for the
users.

So, in the context of Jericho Project, all invalid communication – whether
unauthorized, unauthenticated, forged or unwanted – should be blocked and prevented
from occurring in Jericho networks. In order to achieve these security goals, certain steps
should be implied: all the principles should be authenticated before initiating the
communication in Jericho networks, further, they should be adequately authorized, and all
the communication should be encrypted, verified for integrity and monitored.

For accomplishing these objectives within the scope of Jericho Project, sound
security policy should be defined and enforced in Jericho networks. Further, robust and
thorough security protocols should be used for designing security solutions for secure
communications in Jericho networks.

In this chapter, we present the rationale for secure communications and end-to-end
encryption in Jericho Project. Moreover, the security services and security mechanisms for
achieving secure communications within Jericho networks are explored. Besides this, the
security protocols intended to implement the security mechanisms within the scope of this
thesis are analysed in detail. Finally, there will be made suggestions regarding new ways
of implementing security services and achieving protection against attacks.

Next, the focus will be on exploring security protocols that are intended to offer
these security services for secure communications – end-to-end encryption – in the context
of Jericho Project.

For achieving these security services, we will use the means offered by
cryptography. Typically, cryptographic algorithms or primitives provide certain security
services. Mao (2003) acknowledged that a challenging task in applied research on
cryptography and cryptographic protocols is to build high quality security services from
practical and available cryptographic algorithms and primitives.

In our exploration of cryptographic (secure) protocols for secure communication in
the context of Jericho Project, we will specify in detail the services that are intended to be
deployed by the protocols and the mechanisms to achieve these security services. The aim
of this investigation is to choose the most adequate cryptographic primitives and
algorithms to be used within the security protocols for accomplishing the goal of secure
communication in Jericho Project.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

30

Hartman et al. (2003) specified that two approaches can be employed for
protecting the transferred data: connection-oriented or message-oriented. Connection-
oriented mechanisms protect the messages while they are being transmitted between
systems. For the data in storage, application or operating system mechanisms are used for
protection. Message-oriented approaches protect messages in transit or in storage.

Connection-oriented solutions include SSL and IPsec. Message-oriented solutions
include XML Encryption and S/MIME.

In context of Jericho Project, we will investigate the real-time protocols SSL/TLS
and IPsec, in which the communicating parties negotiate and interact for mutual
authentication and for establishing session keys for cryptographic protection of the
communications. Both protocols, SSL and IPsec are used to securely transmit data from
endpoint to endpoint. A connection is established between two communicating parties.
The transferred data is encrypted, in this way being protected in transit. So, while the data
is being transported, it is protected from eavesdropping and modification. But, at the
endpoint, the data is exposed. Consequently, in some cases connection-oriented protection
may need to be augmented with other security services for offering the desired level of
protection in Jericho networks.

Finally, we investigate also XML Encryption for protecting data in transit in the
context of Jericho Project. An advantage of XML Encryption is that it allows to encrypt
also certain parts of a message, and not necessarily the whole message. For instance, only
the sensitive information in a message can be encrypted, while the public information can
remain in clear. However, the entire message can be signed by the sender for integrity
checking. In this research we will explore also the possibilities offered by XML
encryption for achieving secure communications in Jericho networks.

3.2 Requirements for secure communications for Jericho Project

According to members of Jericho Forum, businesses require wider collaboration
between companies outside the enterprises’ perimeters due to the explosion of pervasive,
fast, reliable, and cheap Internet connectivity. In the White Paper – Business rationale for
de-perimeterization1, Jericho Forum members mentioned the reasons for a new security
architecture based on de-perimeterization.

Nowadays there is an increasing trend of business collaboration that involves the

alignment of business activities and processes with other businesses to create mutual
benefit.

 There are certain aspects that indicate that companies are going toward a de-
perimeterized security environment2:

1 http://www.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf accessed May 2007
2 http://www.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

31

- Businesses become more integrated and the collaboration relationships extend over
the organizational perimeter

- Business demands to interconnect systems directly where B2B relationships exist

- There is a need to have a very good network connectivity and access to all
organisations with whom an organization has business relationships

- Distributed / shared applications across business relationships

- Increasing use of Web services

- Increasing inability of traditional firewall and other network perimeter controls to
protect the sensitive data against threats

The drivers for the new security approach are derived from the business needs, as

well from the technical needs. Further, we enumerate shortly the business and technical
drivers that underpin the research of Jericho Project.

Business Drivers

- collaborative business environment for electronic commerce

- demand for low cost collaboration and commerce over open networks and
interfaces

- the connectivity requirements increase and demand for flexibility and adaptability

- new business models based on electronic transactions and mobile users

- relationships and partnerships within and among organizations

- increasing number of online collaboration and transactions among business
entities; new work patterns;

Technical Drivers

- protection needed closer to the application and the data

- need for protecting the information itself (not to the storing/transmitting medium)

- need for security of devices and data; the protection of the network is not the main
focus anymore

- more sophisticated and faster online threats and new kinds of attacks.

In Figure 3.1 there are illustrated the stages of computing history that lead towards
a full Internet-based collaboration model among organizations, and finally to a full de-
perimeterized network architecture.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

32

Figure 3.1: Computing history and business rationale for de-perimeterization (adopted
from Jericho Forum White Paper Business rationale for de-perimeterization1)

Undoubtedly, companies need access to the “network”, namely to the Internet, and
need to share information, to establish secure communications over Internet. But
transferring data over Internet is vulnerable to a series of attacks. The number of possible
users, the type of authentication (sometimes anonymous), locations, and the opportunity
for error introduced by the global complexity of the Internet, all contribute to this
vulnerability.

Security of communications protects information that is transmitted over insecure
networks, specifically the Internet.

Following, we aim to provide a systematic overview of security requirements of
secure communications in the context of Jericho Project. Prior to identifying the properties
of secure communications across Internet, we enumerate some potential threats. Next, we
explore the security mechanisms intended to defend against attacks that attempt to violate
desired properties of secure communications.

Consequently, we discuss means to implement these security mechanisms in open,
secure protocols that accomplish the requirements for secure communications in Jericho
network. We will investigate the existent solutions that could be implemented in Jericho
network for achieving end-to-end encryption. The most widely used means to secure data
against tampering and eavesdropping, the Secure Sockets Layer (SSL) and its successor,

1 www.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

33

the Transport Layer Security (TLS) protocol are discussed, as well as Internet Protocol
Security (IPsec).

The importance of security has increased after the incidence and gravity of attacks

have boosted on Internet. Stallings (2005) presented the following attacks that can be
identified in the context of communications across a network1 :

- Disclosure: Release of message contents to any person or process not possessing the
appropriate cryptographic key.

- Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-
oriented application, the frequency and duration of connections could be determined. In
either a connection-oriented or connectionless environment, the number and length of
messages between parties could be determined.

- Masquerade: Insertion of messages into the network from a fraudulent source. This
includes the creation of messages by an attacker that are purported to come from an
authorized entity. Also included are fraudulent acknowledgments of message receipt or
non-receipt by someone other than the message recipient.

- Content modification: Changes to the contents of a message, including insertion,
deletion, transposition, and alteration.

- Sequence modification: Any modification to a sequence of messages between
parties, including insertion, deletion, and reordering.

- Timing modification: Delay or replay of messages. In a connection-oriented
application, an entire session or sequence of messages could be a replay of some previous
valid session, or individual messages in the sequence could be delayed or replayed. In a
connectionless application, an individual message (e.g., datagram) could be delayed or
replayed.

- Source repudiation: Denial of transmission of message by source.

- Destination repudiation: Denial of receipt of message by destination.

The first two types of attacks can be dealt with by applying measures that achieve
message confidentiality. Against the attacks that modify the transferred messages,
mechanisms for message authentication are implied. In Chapter 4 we describe in detail the
mechanisms for achieving confidentiality and message authentication.

These kinds of attacks, along with increasing cyber-crime, have encouraged the
Jericho Forum’s members to find new means and methods for protecting the networks.
Based on the Jericho Forum’s principles, in Jericho network every component will be
independently secure, requiring systems and data protection on multiple levels, using a
mixture of: encryption, inherently-secure computer protocols, inherently-secure computer
systems, data-level authentication.

1 We consider in this thesis that the network is Internet

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

34

Furthermore, we aim to establish a framework for the consequent exploration of
both the security protocols and cryptographic mechanisms that can be used for achieving
the security services for secure communications in Jericho Project.

Based on Jericho Forum Commandments and the Position Papers proposed by

Jericho Forum1, a suite of security services should be accomplished for deploying and
securing a Jericho network solution.

Stallings (2005) explains based on standard definitions what a security service is.

A security services can be defined as a service provided by a protocol layer of
communicating open systems that ensures adequate security of the systems or of data
transfers2. Another definition is provided in RFC 28283, in which a security service is
defined as a processing or communication service that is provided by a system to give a
specific kind of protection to system resources; security services implement security
policies and are implemented by security mechanisms.

Within the scope of this thesis, we propose for Jericho networks, the attainment

and enforcement of the following security features (services) in order to design and
implement secure communications:

- Confidentiality

Confidentiality refers to the protection of transferred data against attacks
conducted by unauthorized entities. Transferred data should remain private and should be
read only by the intended recipients. So, the communications should be kept private from
all parties except the ones entitled to receive them. Basically, confidentiality prevents
unauthorized disclosure of sensitive information.

Raina (2003) specified that good security practice demands that all communication
is encrypted and kept private, so no information can be revealed to intruders who conduct
attacks on the network.

The standard mechanism for enabling confidentiality is encryption. In the context
of Jericho Project, we will focus in this thesis on the protection of transferred data over
Internet.

According to Lai (2002), confidentiality services based on encryption provide
limited protection against traffic flow analysis. Traffic flow analysis represents a process
by which an attacker tries to deduce valuable information by monitoring the frequency and
amount of network traffic flowing between two communicating parties. While some
security protocols mask the contents of a message, and conceal also its source and
destination, other protocols just mask the content of the transmitted message without
concealing the header information. But there are other techniques, such as traffic padding

1 http://www.opengroup.org/jericho/publications.htm
2 http://fag.grm.hia.no/IKT7000/litteratur/paper/x800.pdf accessed May 2007
3 www.ietf.org/rfc/rfc2828.txt

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

35

and routing control that can be used to conceal message length and frequency of network
traffic.

Traffic padding represents the injection of spurious traffic into a network to hide
actual usage patterns. Routing control involves directing traffic along a particular path
between sender and recipient in order to reduce exposure to eavesdropping.

- Authentication

Authentication can be subdivided into entity authentication and data origin
authentication.

Entity authentication refers to the ability to verify the identities of all entities
involved in a message transmission. It ensures that the participating entities in a
communication process are the ones who they claim to be. Typically, it is provided for use
at the establishment of (sometimes at different times during the data transfer) a
connection. This security services is intended to offer protection against attackers who can
impersonate authenticated entities and perform either a masquerade or an unauthorized
replay of a previous connection.

Data origin authentication refers to the corroboration that the source of data
received is the one claimed. This service must assure that the connection is not interfered
so that a third party can masquerade as one of the two legitimate parties for the purposes
of unauthorized transmission or reception. A system implementing the authentication
property assures the recipient that the data is from the source that it claims to be. Assuring
this service involves binding a set of credentials to a message; these are verified by the
receiver upon the receipt of the message (Lail, 2002). Mechanisms that provide data origin
authentication are keyed message digests and digital signatures, which offer also integrity
protection.

- Non-repudiation

Non-repudiation service refers to the prevention of denial by an entity (the sender
or recipient of a message) that has taken a particular action, such as sending or receiving a
message. With this service, the receiver can prove that the alleged sender in fact sent the
message and vice versa. For instance, in the case of transactions between a service
provider that offers an online service and the customers, non-repudiation hinders both the
customer and the service provider from credibly denying that a transaction occurred at a
particular date and time.

When a message has been transferred, the sender can prove that it has been
received. Similarly, the receiver can prove that the message has actually been sent.

The primary mechanisms for achieving non-repudiation are digital signatures in

combination with timestamps (Lail, 2002; Stallings, 2005). Timestamps bind a transaction
with the time and date when it occurred.

In fact, non-repudiation has more legal implications than technical ones. Lail

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

36

(2002) pointed out that non-repudiation encompasses an entire set of policies and
procedures for establishing and enforcing trusted communication between different
entities.

- Integrity

Integrity assures that transferred messages are received as they are sent, with no
duplication, insertion, modification, reordering, or replays. Also deletion or destruction of
data is included in this service, so all the transferred data should arrive to the receiver
(Stallings, 2005). So, this service prevents the unauthorized alteration or destruction of
transmitted data by unauthorized entities. Typically, this security service is obtained
through the use of hash functions (message digests).

- Access control

In the context of network security, access control is the ability to limit and control
the access to host systems and applications via communications links. In order to achieve
this goal, each entity trying to gain access must first be identified, or authenticated, so that
access rights can be issued adequately to the individual.

- Availability:

Availability characterizes a system whose resources are always ready to be used. In
the context of communications over Internet, this means that whenever information needs
to be transmitted, the communication channel is available and the receiver can cope with
the incoming data. This property makes sure that attacks cannot prevent resources from
being used for their intended purpose.

All these security services or properties that we described are required in order to

ensure secure communications in Jericho network.

Following, we mention a series of important objectives that can be accomplished

by the means of security services (Lail, 2002), and that apply perfectly for secure
communications in Jericho network as well:

- Ensure that confidential information is not viewed by unauthorized entities

- Guarantee that a message cannot be altered without detection on its way from
sender to recipient; the data is not modified in transit

- Verify that the data was not modified

- Authenticating the identity of the entities that are communicating and of the source

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

37

of a message

- Preventing the sender of a message from being able to deny his/her actions
- Determining whether a user has rights to certain resources, and ensuring that only

authenticated users gain access

- Making data and network applications and services available to users who request
access to them

In order to achieve these security services for secure communications in Jericho

network, there are used certain tools named security mechanisms. Typically, there are
multiple mechanisms for implementing each security service. Thus, one of the challenges
in designing a secure system is selecting the most appropriate mechanisms. This is also
our purpose in this research, to choose the most appropriate mechanisms for implementing
secure communications services for end-to-end encryption in the context of Jericho
Project.

In the following sub-chapters and, especially, in Chapter 4, we will investigate a

series of security mechanisms provided by cryptography that can be used for
implementing security services for end-to-end encryption in Jericho network.

Such mechanisms include: encipherment mechanism, digital signature
mechanisms, data integrity mechanisms, authentication mechanism etc.

In this thesis we will deal further with the selection of the appropriate

cryptographic mechanisms for end-to-end encryption in Jericho network. The selection of
certain cryptographic mechanisms for achieving a security services is based on several
factors. Such factors include: compatibility with legacy applications, complexity of
computation, and intellectual property issues.

Typically, different security mechanisms can be used to enforce the security
properties defined in a given security policy. Depending on the anticipated attacks,
different means have to be applied to satisfy the desired properties. The different measures
against attacks can be divided into three classes of security mechanisms: mechanisms for
attack prevention, for attack avoidance and for attack detection (Kruegel, 2005).

Attack prevention mechanisms are a class of security mechanisms that contain

ways of preventing or defending against certain attacks before they can actually reach and
affect the target. With respect to secure communications, an essential mechanism in this
category is access control, an instrument that can be applied at different levels such as the
operating system, the network or the application layer.

Basically, access control mechanism limits and regulates the access to critical
resources. This is done by identifying or authenticating the party that requests a resource
and checking its permissions against the rights specified for the demanded object.

Within Jericho Project, this mechanism is investigated in separate research topics
that deal with identity management - AAA framework. So, this signifies that secure

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

38

communications, more specifically end-to-end encryption, in Jericho networks interact and
depend on the specification and implementation of access control mechanism.

Consequently, before implementing secure communications as desired in Jericho
Project, firstly the entities have to be adequately authenticated and authorized before
having access to the data they want to access.

Another relevant element in the set of attack prevention mechanisms is system

hardening. System hardening is used to describe all steps that are taken to make a
computer system more secure. In the context of Jericho Project this mechanism is dealt
with in the research topic focused on endpoint security.

Attack avoidance mechanisms assume that an intruder may access the desired

resource but the information is modified in a way that makes it unusable and invaluable as
well, for the attacker.

Based on the principles of these mechanisms, the information is pre-processed at
the sender before it is transmitted over the communication channel and post-processed at
the receiver. While the information is transported over the communication channel, it
resists attacks by being almost useless for an intruder. Nevertheless, attacker can still
conduct attacks against the availability of the information, as they could still interrupt the
message transmission.

Moreover, during the processing step at the receiver, modifications or errors that
might have previously occurred can be detected by means of integrity checks.

The most important mechanism in this category is cryptography which is defined

by Schneier (1996) as the science of keeping messages secure.

Within the scope of this thesis in Jericho Project, we will deal with the security

mechanisms in Chapter 4, and, besides this, we will discuss the implementation of security
protocols based on these security mechanisms further in Chapter 3.

Attack avoidance and intrusion detection mechanisms aim to offer protection

against the situations in which an attacker might have obtained access to the desired target
and succeeded to violate the corresponding security policy.

Within the context of secure communications, mechanisms in this category are

based on the unrealistic assumption that most of the time the information is transferred
without interference. Attack detection mechanisms have the task to report possible
intrusions or attacks that were conducted with the scope of hindering secure
communications. It would be also desirable to identify the exact type of attack. The most
important mechanism of the attack detection category is represented by intrusion detection
systems. Anyway, it is out of the scope of this thesis to investigate in more detail the
protection means offered by these mechanisms for achieving secure communications.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

39

Stallings (2005) summarized in a table the relationship between security services

and mechanisms:

Mechanisms
Service Encipherment Digital

Signature
Access
Control

Data
Integrity

Authentication
Exchange

Entity
Authentication

Y

Y

 Y

Data origin
Authentication

Y

Y

Access control

 Y

Confidentiality

Y

Traffic flow
Confidentiality

Y

Data integrity

Y Y Y

Non-repudiation

 Y Y

Availability Y Y

Table 3.1: The relationship between security services and mechanisms (adapted after
Stallings, 2005)

 In the documentation “Web Service Security: Scenarios, Patterns, and
Implementation Guidance for Web Services Enhancements (WSE) 3.0” there is described
a decision matrix for choosing the adequate security mechanisms for assuring message
protection for transmitted data over the Internet.

In Table 3.2 we illustrate a modified version of this message protection decision
matrix. The decision matrix lists the security considerations related to message protection
and specifies how they are supported by the proposed security mechanisms.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

40

Security

Consideration
Data Integrity Data Origin

Authentication
Data

Confidentiality
Verification if the
contents of a message
were not altered in
transit.

Allows verification that
a message has not
changed in transit.

Supports the ability to
verify that a message
has not changed in
transit and verify the
origin of a message.

Encryption does not
prevent the contents
of a message from
being altered.

Verification of the
data source
authentication and
integrity of the
message (has not been
altered in traffic)

Allows verification that
a message has not been
changed, but this does
not necessarily imply
that the receiver can
verify the source of the
data.

Supports the ability to
verify that a message
has not changed in
transit and verify the
origin of a message.

Encryption does not
prevent the contents
of a message from
being altered.

Restriction of the
access to the contents
of a message to
authorized users only.

 Does not provide the
ability to protect
message contents from
unauthorized users.

Does not provide the
ability to protect
message contents from
unauthorized users.

Confidentiality can
be used to encrypt
the contents of a
message so that
only authorized
users can view the
message contents.

Authentication is
implemented based on
shared secret between
the entities
participating in the
communication.
Prevention is required
against attackers who
want to recover the
shared secret

Generating signatures
based on shared secrets
that may have low
entropy leaves the
message vulnerable to
offline cryptographic
guessing attacks;
instead, direct
authentications
mechanism can be used

Generating signatures
based on shared secrets
that may have low
entropy leaves the
message vulnerable to
offline cryptographic
guessing attacks;
instead, direct
authentications
mechanism can be used

Encryption combined
with data integrity
and data origin
authentication can
be used to protect
the shared secret.

Implementation of
message replay
protection for
preventing an attacker
from maliciously
replaying messages. .

Replay detection
depends on the
ability to uniquely
identify messages.

This option is often
implemented using a
hashing function that
provides a unique
identifier that can be
used to determine if the
same message is
received multiple times.

This option is often
implemented using a
hashing function or
digital signature that
provides a unique
identifier that can be
used to determine if the
same message is
received multiple times.

Not applicable.

Table 3.2: Message Protection Decision Matrix

So, we summarize that in order to protect the data in transit in Jericho networks, at
least three security services should be provided: integrity, confidentiality and data origin

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

41

authentication. The content of the transmitted messages remains private, is not altered and
can be verified against tampering upon receiving. For acquiring these security services,
typically, cryptographic mechanisms (used in security protocols) are employed.

In order to establish secure communications, apart from using cryptography,
several steps must be performed in a specific order.

For building secure communications is essential to establish a secure session. By
secure session we imply that it uses cryptography and other monitoring and mitigation
processes in order not to allow the leakage of any information and to protect both the
server and client from any exposure. Moreover, identification, authentication, and all other
access-level decisions on the information that exist at the application level must be
performed. Besides all these, all of the protocol level information should be logged for
auditing purposes.

 For creating a secure communication between two entities, each entity is required
to perform the following:

- Send a connection request. One party initiates the contact, and the other must
respond

- Negotiate communication and cryptographic terms of engagement
- Authenticate the peer entity
- Manage and exchange of the session keys
- Renegotiate keys on request
- Establish data transfer properties such as encryption or protection
- Manage errors by enabling the use of exceptions, communicating alerts, or sending

error messages
- Create audit logs
- Close connections on successful completion or on fatal errors
- Re-establish closed connections based on bilateral agreement from the entities

3.3 Overview of Open Systems Interconnection (OSI) Model

The International Standards Organization (ISO) introduced the seven-layer Open

Systems Interconnection (OSI) network protocol stack as a model for network
communications.

The OSI reference model segments the networking tasks, protocols, and services
into different layers. Each layer in the stack has its own responsibilities and functionalities
regarding how two computers communicate over a network. OSI reference model is a
layered model for understanding and implementing computer communications and
computer network protocols.

Further on, we will present which the vulnerabilities of each layer are and what
protocols can be used for providing secure communications.

Each layer in OSI model has a special interface (connection point) that allows it to
interact with three other layers. A layer can receive communications from the interface of

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

42

the layer above it, can transmit communications to the interface of the layer below it, and
can establish communications with the same layer in the interface of the target packet
address.

The control functions, added by the protocols at each layer, are in the form of
headers and trailers of the packet.

Figure 3.2: The OSI Reference Model

The Transmission Control Protocol/Internet Protocol (TCP/IP) is a suite of
protocols that governs the way that data travels from one device to another. Figure 1.2
shows the differences between the OSI and TCP/IP networking models.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

43

Figure 3.3: The OSI and TCP/IP networking models

Each OSI layer has a set of functions to perform for enabling the data to travel

from a source to a destination on the network.

OSI LAYER Name Description Vulnerabilities
Application Network processes to

applications
Telnet, FTP, rlogin, Windows,
Mac OS, UNIX, HTTP,
SNMP, RMON1, DNS, whois,
finger

Examples include: e-mail bombs
and spam; Trojan horses; viruses;
unauthorized access to key
devices; brute force attacks;
browser holes; malicious Java,
active-X, or CGI exploits;
reconnaissance and mapping;
control daemons; holes;
keyloggers;

Presentation Data representation ASCII, EBCDIC2, HTML,
Pict, wav

Unencrypted data formats can be
viewed; compressed Trojan and
virus files can bypass security;
weak encrypted data;

Session Interhost
communication

NFS, SQL3, RPC4,
Xwindows, Bind, SMB5

Traffic monitoring; root access;

Transport End-to-end
connections and
reliability

TCP, UDP, SPX6 Exploitations using SYN
flooding and TCP hijacking;
spoofing; port scans;
fragmentations

Network Address and best path IP, IPX7, ICMP Ping scans and packet sniffing;
ARP poisoning and spoofing;
DDos Smurf; IP spoofing; Tribe
Flood Network; nuking

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

44

Data Link Media access MAC8, LLC9 Reconnaissance and sniffing
Frame manipulation; spoofing
broadcast storms; ARP cache
poisoning; misconfigured and
failing NICs Stored attack robots
(bots)

Physical Binary transmission Media, connectors, devices Wire tap and sniffing; full
network access and recon in a
nonswitched LAN; natural
disasters; power failure; theft etc.

Table 3.3: The 7 layers of the OSI Reference Model (adapted after de Laet & Schauwers,
2004)

1. RMON = Remote Monitoring
2. EBCDIC = Extended Binary Coded Decimal Interchange Code
3. SQL = Structured Query Language
4. RPC = Remote-procedure call
5. SMB = Server Message Block
6. SPX = Sequenced Packet Exchange
7. IPX = Internetwork Packet Exchange
8. MAC = Media Access Control
9. LLC = Logical Link Control

Each layer of the OSI model has certain vulnerabilities. Understanding the

vulnerabilities of each layer and how different types of attacks can occur helps in
assessing the risk and search for adequate security solutions.

There are mechanisms for building reliable and secure communications at all

layers of the OSI / TCP/IP model. Each of these mechanisms has its advantages and
disadvantages.
 Protection provided at the application layer (Layer 7) is application specific. Thus,
the protection methods need to be reimplemented in every application on the host.
 By adding protection at the transport layer, application independence is gained.
The implemented security mechanism might require running over a specific transport-
level protocol. Secure Sockets Layer (SSL) runs over TCP because it is session-oriented
and it requires reliable communication.
 Contact with the application is lost when protection is added at the network level.
In order to capture the user context, the network layer security mechanism must depend on
a higher-layer interaction. This captures the user context called security association, and
transfers it down to the network layer.
 Protection at the data link layer provides protocol-independent protection. Data
link layer protection is expensive to deploy on a large scale because there is a need to
protect every single link separately.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

45

 In order to provide protection at the lower levels of the OSI model (Data Link and
Physical), hardware protection units or dedicated private lines can be used for protecting a
communication link.

The Secure Sockets Layer protocol provides application and transport-layer
security, and IPsec provides network-layer security. IPsec represents a framework of
security protocols and algorithms used to secure data at the network layer.

Essentially, the Transport layer is intended to provide reliable communications
between two endpoints. Gregg (2006) acknowledged that both SSL and TLS protocols
build upon the traditional functionality of TCP to provide confidentiality (by encryption)
and integrity (via hashing and digital signatures).

If encryption is implemented on one layer, this means that the respective layer and

all the layers above are protected. Protection implemented at the network layer it offers
one of the most flexible solutions because it is media independent and at the same time,
also, application independent. But nowadays, SSL becomes more popular because of its
advantages over IPsec.

If encryption takes place at the lower layers of the OSI model, for instance at
physical and data layer, this is called link-to-link encryption1. If the encryption takes place
at higher layers, it is called end-to-end encryption.

An example of encryption on different layers can be viewed in the figure below:

1 In the literature the link-to-link encryption is also named link-by-link encryption or link encryption.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

46

Figure 3.4: Options of protection at different layers (adapted after de Laet & Schauwers,
2004)

3.4 Security protocols

In the context of Jericho Project, for achieving secure communications there will
be investigated security protocols and cryptographic primitives that provide different
security services. In the current chapter we will explore security protocols that are of
interest for Jericho networks and that can be used for different security purposes, such as
entities authentication, privacy, integrity, authentication of the source of messages.

We will focus our research on SSL/TLS and IPsec security protocols within the
scope of this thesis. These protocols are also named cryptographic protocols because they
perform security-related functions for which cryptographic primitives are used and
applied. A cryptographic protocol can be defined as a sequence of steps that uses
encryption and decryption to secure the communication between two or more computers
on the network.

Internet Protocol Security (IPsec is an extension of the Internet Protocol (IP) and
provides a transport level secure communication solution. It provides security at the IP-
enabled communications between two or more computers on a network. IPsec provides

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

47

end-to-end security in network configurations such as client-to-server, client-to-client, and
server-to-server.

In the course of our future research for Jericho project we will investigate also

other technologies and protocols for providing secure communications over the network
(basically the network will be the Internet). In the position paper “The Need for Inherently
Secure Protocols”1 on Jericho Forum, they recommend also the use of: SMTP (Simple
Mail Transfer Protocol), AS2 (Applicability Statement 2).

 Further, in this chapter, we will present in detail two of the most used security
protocols used in the real world for securing the communications. Firstly, we will present
Secure Sockets Layer/Transport Layer Security (SSL/TLS) protocol that is used nowadays
intensively for securing Internet transactions between web browsers and web servers.
Secondly, Internet Protocol Security (IPsec) protocol will be described in detail.
Moreover, we analyse the security flaws existent in these protocols and the possible
solutions for fixing these security problems. Then we will make a comparison between
these two protocols in order to see which could provide a better solution for Jericho
Project, and in which cases.

 In Figure 3.5 below there are presented different security facilities in the TCP/IP
protocol stack.

HTTP FTP SMTP

TCP

IP/IPSec

HTTP FTP SMTP

TCP

IP

SSL/TLS

PGPS/MIME SET

TCP

IP

Kerberos SMTP HTTP

UDP

Network Level Transport Level Application Level

Figure 3.5: Relative Location of Security Facilities in the TCP/IP Protocol Stack (after
Stallings, 2005)

IPsec protocol is transparent to end users and applications, and provides a general-
purpose solution. Further, IPsec includes a filtering capability so that only selected traffic
need incur the overhead of IPsec processing.

 Another option to provide a general-purpose security solution is to implement
security above TCP (above the Transport Layer) by using, for instance, SSL or TLS
protocol. Stallings (2005) specified that there are two implementation choices for this
protocol: SSL/TLS can be part of the underlying protocol for providing full generality or

1 www.opengroup.org/jericho/Protocols_v1.0.pdf accessed March 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

48

SSL/TLS can be embedded in specific packages (e.g. Netscape and Microsoft Explorer
browsers have options for this protocol, as well the Web servers).
 In the third picture in Figure 3.5 there are illustrated application-specific security
services that are embedded within particular applications. These services can be tailored to
the specific needs of a given application.

 Next, we discuss the security protocols of interest for providing secure
communications in the context of Jericho Project.

3.5 Secure Socket Layer and Transport Layer Security (SSL/TLS)

3.5.1 Introduction

Nowadays, all businesses, most government agencies, and many individuals have
Web sites and there are many facilities created on the Web for electronic commerce. But,
Internet and the World Wide Web are vulnerable to all sorts of security attacks.
Consequently, the demand for secure Web services is growing (Stallings, 2005).

Plaintext messages are sent and received by Web services over standard Internet
protocols (e.g. Hypertext Transfer Protocol (HTTP)). By default, HTTP does not employ
data encryption for transfers between the Web server and the Web client (Komar et al.,
2004). The transmitted messages can be intercepted by attackers, potentially viewed and
even modified for malicious purposes, replayed or the communications between the
entities can be even interrupted (Microsoft Corporation, 2005).

Web services are offering the possibility for fast and flexible information sharing
across Internet. Hartman et al. (2003) mentioned in their book that Web services enable
access to data that previously could be found only on corporate networks and was
accessible only by using specialized software. Besides this, the authors pointed out the
risks of exposing sensitive and private data to security attacks such as interceptions,
unauthorized reading and modification of the data, replay of messages, reflection attacks
etc.

Hartman et al. (2003) made some observations regarding the security of Web
services that are in accordance with the de-perimeterization principles proposed by Jericho
Forum. Thus, the authors acknowledged that in the world of electronic commerce, where
all the players (e.g. customers, suppliers, remote employees, partners, competitors) are
collaborating over the Internet, end-to-end security solutions should be designed and
deployed for protecting the sensitive data. With reference to secure communications, end-
to-end means that sensitive data is encrypted all the way on the communication channel
between the user and the data.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

49

Jericho Forum’s members presented in one of their position papers1 the principles
for managing data privacy. In this paper it is specified that there are privacy problems
related to all kinds of existing data (confidential corporation data, personal information
etc.) and refers mainly to the Personally Identifiable Information (PII). It is recommended
in the paper that the privacy information associated with data must be bound to (or reside)
with that data. These goals can be achieved by developing and using open and
interoperable standards, open and inherently secure protocols for protecting the
communications, and by creating and deploying a trusted framework for collecting,
exchanging and using data2.

Actually, organizations must focus on building more secure applications from the
ground up while protecting the data at all times an in all forms (in storage, in process and
in transit).

Further, we present in detail one of the most used security protocols deployed in
the real world for securing the communications, and that can be used also in Jericho
Project for providing certain security services that are of interest within the scope of this
research.

Secure Socket Layer/Transport Layer Security (SSL/TLS) protocol is used
nowadays intensively for securing Internet transactions between Web browsers and Web
servers for securely transferring data over insecure channels (Internet), as well for other
applications (e.g. mail or news applications, Telnet, FTP etc.). Consequently, we explore
the security services and the security mechanisms included in this protocol, and analyse its
applicability in the case of Jericho Project.

The primary goal of the SSL/TLS protocol is to provide privacy and data integrity
for transferred data between entities. Because the security services provided by the
protocol match some of the requirements for secure communication in Jericho network,
we explore further the possibilities offered by this current protocol in the context of
Jericho Research Project.

In this sub-chapter we present SSL 3.0, TLS 1.1 and TLS 1.2 (proposed standard)
protocols and analyse their implications in providing secure communications and end-to-
end encryption in the context Jericho network.

3.5.2 Presentation

 Secure Sockets Layer (SSL) protocol version 2 (version 1 was never deployed)
was invented by Netscape and it provides reliable end-to-end communications over the
Internet between two hosts. According to Kaufman et al. (2002), Microsoft improved SSL
2.0 by fixing certain security problems, and introduced a similar protocol known as Private
Communications Technology (PCT).

1 http://www.opengroup.org/jericho/Privacy_v1.0.pdf accessed May 2007
2 Idem 1

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

50

SSL 2.0 (second version of SSL protocol) provides authentication of the client and
the server, while SSL 3.0 (third version of SSL protocol) provides all the features of SSL
2.0 along with increased security and efficiency. SSL 3.01 has extra functionalities for data
compression; it uses ciphers for communications and also certificate chains.

It is acknowledged in the literature (Thomas, 2000; Kaufman et al., 2002) that
Netscape Communications developed the first three versions of SSL protocol with
significant assistance from the web community and with public review.

Transport Layer Security (TLS) protocol, developed by Internet Engineering Task

Force (IETF) is based on the specifications of SSL 3.0 protocol with a few modifications
(Rhee, 2003; Johnston & Piscitello, 2006). It provides confidentiality and integrity for
sensitive data sent over the Internet. Hassler (2001) pointed out that even if TLS is
somehow similar, but yet there are some difference (e.g. in the cipher suites that they use
for achieving different security services) that make them not interoperable. TLS has three
versions. Till March 2007 the most recent version of TLS was 1.1, and is described in
RFC 43462. TLS 1.1 incorporates some minor security fixes and clarifications. The current
version of TLS is 1.2, and is described in an Internet working draft3 that expires in
September 2007.

Typically, SSL/TLS is most commonly used to secure the channel between a

browser and Web server, namely for Web communications and web-based transactions.
Due to its successful application for securing Web communications, SSL/TLS is used with
other applications as well apart from HTTP, such as mail or news applications, Telnet,
FTP etc. (Thomas, 2000; Lail, 2002; Oppliger, 2002; Ramachandran, 2002; Komar et al.,
2004; Gregg, 2006). In fact, any upper-layer protocol or application that relies on TCP can
employ the security services provided by SSL/TLS.

Lail (2002) specified that SSL/TLS protocol, in addition to securing web-based

traffic, can secure the following as well:

- Vendor-proprietary communication protocols
- Connections between back-end servers within enterprise and B2B environments
- Connections between network devices, such as provisioning equipment and

routers, and the remote management consoles used to administer these devices

SSL/TLS forms an extra layer between the transport (TCP) and the application

layer and this represents an advantage, because no modifications are needed in the
software (Oppliger, 2002; Aoufi, 2006).

With SSL/TLS protocol, secure connections between clients and server

applications can be generated, mutual authentication or server authentication can be

1 http://wp.netscape.com/eng/ssl3/draft302.txt accessed April 2007
2 http://www.ietf.org/rfc/rfc4346.txt accessed April 2007
3 http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4346-bis-03.txt accessed April 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

51

achieved in one established communication session. SSL/TLS also provides privacy and
integrity of the data that client and server exchange.

Typically, only the server is authenticated (its identity is ensured), while the client

remains unauthenticated. Based on the requirements of Jericho Project, both entities
should authenticate, so there is established a mutual authentication.

Both the SSL and TLS protocols allow client/server applications to communicate

in such a way that they prevent eavesdropping, tampering or message forgery.

Shortly, SSL/TLS protocol consists of a set of messages and rules about when to

send (and not to send) each one (Thomas, 2000).

Snader (2005) summarized the steps of an SSL/TLS session. Basically, an

SSL/TLS session has three stages: connection setup, data transfer, and connection
teardown. Firstly, the encryption, authentication, and compression algorithms are
negotiated; the identity of the server and, optionally, the identity of client is verified also,
and a key exchange takes place.

Secondly, the client and the server exchange application data. These exchanges are
encrypted and authenticated to ensure that the data cannot be read by third parties
(encryption) and that third parties cannot alter the data without detection (authentication).

After ending the transmission of the data, one entity or both of them send a closure
notification as an EOF. The closure notification is authenticated, so it cannot be forged by
third parties.

Also, Snader (2005) noted that the SSL 3.0 and TLS 1.0 specifications require that
both sides send closure notifications, but in practice, this is often ignored, and only one
side sends it.

SSL/TLS Properties

SSL has the following security features (Ramachandran, 2002; Cole et al., 2005):

- SSL/TLS works between the application and transport layers of the network
protocol stack to ensure security of applications on the transport layer

- SSL/TLS provides private, reliable, and non-forgeable conversation between two
communicating processes

- Basically, SSL/TLS provides client-side and server-side authentication,
confidentiality (encryption of the messages) and message integrity

- While frequently associated with web-based transactions, SSL is not limited to
securing the Hypertext Transfer Protocol (HTTP). Any upper-layer protocol or
application that relies on TCP can employ the security services provided by SSL
(e.g. news, email, FTP, Telent, NNTP1, IMAP1, IRC2, and POP33).

1 Network News Transfer Protocol

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

52

They can all be secured by layering them on top of SSL (the appended letter “S” in
the corresponding protocol acronyms indicates the use of SSL). But Oppliger (2002)
also mentioned that SSL has a strong client-server orientation and does not really meet
the requirements of peer application protocols.

- The communications can travel over non-secure networks

Due to the use of encryption in securing communications, the risk of man-in-the-
middle attack can be considerably reduced because the attacker cannot decrypt the
transmitted message in a reasonable timeframe. The authors pointed out that this
benefit assumes that SSL/TLS is properly configured and used at both ends of
communication.

Applications can use a unique port number for SSL/TLS-protected

communications. So, when the SSL/TLS is used in Jericho networks for protecting the
transfer of data, the firewall configuration should be changed in order to allow the
encrypted traffic. Although this will allow SSL/TLS sessions to be established through the
firewall, the firewall will not be able to analyze the contents of the SSL/TLS-encrypted
packets. As a result, the firewall will be able to use only the origin and destination of the
packet to determine whether to let packets through.

The typical ports that various applications use for SSL/TLS are listed in Table 3.4

below:

Protocol Standard Port SSL/TLS Port
Hypertext Transfer Protocol (HTTP)

80 443

Simple Mail Transfer Protocol (SMTP)

25 465

Post Office Protocol version 3 (POP3)

110 995

Internet Message Access Protocol (IMAP)

143 993

Network News Transfer Protocol (NNTP)

119 563

Lightweight Directory Access Protocol (LDAP)

389 636

Global catalogue queries

3268 3269

Table 3.4: Port Numbers Used by Standard and SSL/TLS-Encrypted Protocols

1 Internet Message Access Protocol
2 Internet Relay Chat
3 Post Office Protocol

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

53

As we have already specified, roughly, SSL/TLS involves three stages:

- Peer negotiation for algorithm support
- Public key encryption-based key exchange and certificate-based authentication
- Symmetric cipher -based traffic encryption

SSL/TLS protocol makes use of cryptographic algorithms and primitives for

implementing the security services that supports. Firstly, the two entities need to exchange
“keying material” with each other (Snader, 2005). Typically, in this process of key
exchange, the server is also authenticated (optionally the client as well).

Secondly, the application data and other messages have to be encrypted by means
of symmetric-key cryptography in the protocol. Several ciphers, both stream and block,
are supported for this service. Finally, each transmitted record must be authenticated. A
message authentication code is added to each record.

In this chapter we mention the possible combinations of cryptographic primitives
and algorithms supported in SSL 3.0/TLS 1.1/TLS 1.2, while in Chapter 4 will we
examine them in detail and attempt to make recommendations regarding the most
adequate to be used in designing effective and efficient security protocols.

SSL/TLS Session

SSL/TLS session is assumed to be relatively long, so that many connections can be
derived from a session (Kaufman et al., 2002; Oppliger, 2002; Stallings, 2005). If an SSL
session exists, then two entities share a symmetric key K that can be used further to
establish new connections.

Rhee (2003) defined an SSL session as being an association between a client and a
server. The author described in detail the role of an SSL/TLS session.

Sessions are created by the Handshake Protocol. In a session, a set of
cryptographic security parameters are defined and they can be shared among multiple
connections.

Sessions are used in order to avoid the expensive negotiation of new security
parameters for each connection. An SSL session coordinates the states of the client and
server. The state is represented twice as the current operating state and pending state.
When the client or server receives a change cipher spec message, it copies the pending
read state into the current read state. When the client or server sends a change cipher spec
message, it copies the pending write state into the current write state. When the handshake
negotiation is completed, the client and server exchange change cipher spec messages, and
they then communicate using the newly agreed-upon cipher spec.

As described above, Oppliger (2002), Rhee (2003) noted that an SSL session is

stateful and that the SSL protocol must initialize and maintain the state information on
either side of the session. In Table 3.5 there are summarized the corresponding session
state information elements:

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

54

Session State Information Element Description
Session ID Identifier chosen by the server to identify an active or

resumable session state
Peer certificate X.509 version 3 certificate of the peer entity. This

element of the state may be null.
Compression method Algorithm used to compress data prior to encryption
Cipher Spec Specification of the data encryption and MAC

algorithms. It also defines cryptographic attributes
such as the hash size.

Master Secret 48-byte secret shared between client and server. It
represents secure secret data used for generating
encryption keys, MAC secrets and IVs.

Is resumable This is flag that indicates whether the session can
be used to initiate new connections.

Table 3.5: SSL/TLS Session State Information Elements (after Oppliger, 2002; Rhee,
2003; Stallings, 2005)

As we already mentioned, an SSL/TLS session can be used for several

connections.
A connection is a transport (in the OSI layering model definition) that provides a

suitable type of service. Rhee (2003) noted also that for SSL/TLS every connection is
associated with one session.

The corresponding connection state information elements are summarized in Table
3.6.

Connection State Information
Element

Description

Server and client random

Byte sequences that are chosen by the server and
client for each connection.

Server write MAC secret
 Secret key used for MAC operations on data

sent (written) by the server.
Client write MAC secret
 Secret key used for MAC operations on data sent

(written) by the client.
Server write key

Conventional cipher key used for data encryption
by the server and decryption by the client.

Client write key

Conventional cipher key used for data encryption
by the client and decryption by the server.

Initialization vector

Initialization state for a block cipher in CBC
mode. This field is first initialized by the SSL
Handshake Protocol. Thereafter, the final
ciphertext block from each record is preserved for
use with the following record.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

55

Sequence number

Each party maintains separate sequence numbers
for transmitted and received messages for each
connection.

Table 3.6 : SSL/TLS Connection State Information Elements (after Oppliger, 2002; Rhee,
2003; Stallings, 2005)

Oppliger (2002) noted that communicating parties may use multiple simultaneous

SSL sessions and sessions with multiple simultaneous connections.

The establishment of an SSL/TLS session is illustrated in Figure 3.6.

Figure 3.6: Simplified SSL/TLS

We will explain shortly the steps in establishing a secure session between a client

and a server in SSL/TLS protocol (Kaufman et al., 2002; Stamp 2006):

- The client C initiates contact with the server S, sends also a list containing the
cryptographic algorithms that supports, along with a random number Rc

- The server sends its certificate to C, a random number Rs, and the cipher that was
chosen for implementing security services

- C verifies the certificate, extracts servers’ public key

- C chooses a random number S (pre-master secret) from which the keys are going
to be further computed, encrypts it with S’ public key, and sends it along with the
encryption of the keyed hash of the handshake messages

This encryption of the keyed hash of the handshake messages can be formulated
like follows (using the notation introduced in Chapter 4):

E(h(msgs, CLNT/client finished, K)), where

 K is the master secret generated from the pre-master secret S and the random
numbers Rc and Rs. The client C sends a hash of the master key K and the

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

56

handshake messages in order to prove that knows the key and to ensure that the
tampering of the handshake messages would be detected.

 Kaufman et al. (2002) mentioned that although not necessary, the message digest is
encrypted and integrity protected. The keys used for encrypting the keyed hash that is
derived from hashing K, Rc and Rs.

 The keys used for transmission are named write keys, while the keys used for
reception are called read keys.

- For ensuring that the previous messages were not tampered in traffic and for
proving that it knows the session keys, the server sends a keyed hash of all the
handshake messages, encrypted with the write-encryption key and protected with
the integrity-protection key (Kaufman et al., 2002)

 E(h(msgs, SRVR/server finished, K))

For ensuring that the keyed hash sent by the client is different from the one sent by
the server, the parties include a constant ASCII string value in the hash. In SSL 3.0 the
initiator constant is CLNT and in TLS is client finished; the reply value is SRVR in SSL
3.0, respectively, server finished in TLS.

In this basic presentation of SSL/TLS protocol, just the server is authenticated,

although authentication can be mutual if the client has also a certificate. Kaufman et al.
(2002) made the observation that if the server wants to authenticate the client, it usually
happens with a weak authentication mechanism (e.g. name and password encrypted with
the session keys).

SSL Architecture

Stallings (2005) underlined that SSL is designed to make use of TCP to provide a
reliable end-to-end secure service. SSL is not a single protocol, but rather is composed of
two layers of protocols. The protocols within SSL/TLS are illustrated below in Figure 3.7.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

57

TCP

IP

SSL Record Protocol

SSL
Handschake

Protocol

SSL Change
 Cipher Spec

Protocol

SSL
Alert

Protocol

Applications
e.g. HTTP

Figure 3.7: SSL/TLS Protocol Stack

The SSL Record Protocol provides basic security services to various higher-layer
protocols. In particular, the Hypertext Transfer Protocol (HTTP) that provides the transfer
service for Web client/server interaction can operate on top of SSL.

Three other higher-layer protocols are defined as part of SSL: the Handshake
Protocol, The Change Cipher Spec Protocol, and the Alert Protocol. These SSL-specific
protocols are used in the management of SSL exchanges.

SSL Record Protocol

Basically, the SSL Record Protocol applies the following operations on a
transmitted message: fragments the data into manageable blocks, optionally the data is
compressed, applies then a MAC, encrypts, adds a header, and transmits the result in a
TCP segment. Received data are decrypted, verified, decompressed, and reassembled and
then delivered to higher-level users.

These operations are illustrated in Figure 3.8.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

58

Figure 3.8: SSL Record Protocol Operations

Firstly, the SSL Record Protocol fragments the information blocks into

SSLPlaintext records of 214 bytes or less.
A MAC is appended to each SSL record. It provides message origin authentication

and data integrity services. Secure hash functions, such as MD5 or SHA-1, are used for
MAC computations. The MAC is applied before encryption. In both SSL and TLS
protocols, the MAC of the record also includes a sequence number, in order to detect
missing, extra, or repeated messages, as well as replay attacks.

Next, the compressed message plus the MAC are encrypted using symmetric
encryption.

Afterwards, if a block cipher is used for encryption, padding might be added after
the MAC prior to encryption. The total size of the data (plaintext, MAC and padding) has
to be a multiple of the block’s length. Padding is added in the case the plaintext plus the
MAC are not a multiple of block’s length.

The encryption algorithms supported by SSL 3.0 are specified in Table 3.7.

Block Cipher Stream Cipher
Algorithm Key Size Algorithm Key Size

AES 128, 256 RC4-40 40
IDEA 128 RC4-128 128

RC2-40 40

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

59

DES-40 40
DES 56

3DES 168
Fortezza 80

Table 3.7: Encryption algorithms permitted for SSL 3.0

To summarize, the Record Protocol provides connection security that has two

properties:

- The connection is private: Symmetric cryptography is used for data encryption.
The keys for the symmetric encryption are generated uniquely for each
connection and are based on a master secret negotiated by another protocol
(SSL/TLS Handshake Protocol). It should be mentioned that the Record
Protocol can also be used without encryption, but in the context of Jericho Project
is highly advisable to encrypt the communications.

- The connection is reliable: Message transport includes a message integrity check

using a keyed MAC. Secure hash functions (e.g. SHA, MD5, etc.) are used for
MAC computations. Although the Record Protocol can operate without a MAC,
generally, when used as transport for negotiating security parameters, it is
recommendable to use it with message integrity checks for transferring data in
Jericho network.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the three SSL-specific protocols and it

is the simplest (Rhee, 2003; Stallings, 2005). This protocol signals transitions in
ciphering strategies. It consists of a single message that is in fact a single byte with the
value 1. The only purpose of this message is to cause the pending state to be copied into
the current state, which updates the cipher suite to be used on this connection.

Alert Protocol

The Alert Protocol is being used to transmit SSL-related alerts to the peer entity
via the SSL Record Protocol. An alert message consists of two parts, an alert level and an
alert description. Also, alert messages are compressed and encrypted, as specified by the
current state.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

60

Handshake Protocol

The Handshake Protocol is considered to be the most complex part of SSL/TLS
protocol. This protocol consists of a series of messages exchanged by the client and the
server. Oppliger (2003) noted that the main aim of the Handshake Protocol is to have a
client and server establish and maintain state information that is used to secure
communications.

The following operations occur in this protocol: the client and server agree on a
common SSL protocol version, allows the server and client to authenticate each other,
select the compression method and cipher spec, create a master secret from which the
various session keys for message authentication and encryption may be derived.

Next, we summarize an execution of the SSL Handshake Protocol between a client
and a server in Figure 3.9.

Client

ServerHello

Application Data

Phase 1

Server Key Exchange *
Certificate *

Certificate Request *

SeverHello Done

Phase 2

Server

Hello messages for establishing a
logical connection

Sever Authentication and Key
Exchange

Client Certificate *

Certificate Verify *

Client Key Exchange

ClientHello

Client Authentication and Key
Exchange

Phase 3

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Change Cipher suite and finish
handshake protocol

Phase 4

Figure 3.9: SSL Handshake Protocol
Asterisks (*) are optional or situation-dependent and messages that are not always sent

Phase 1

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

61

 The aim of this phase in the Handshake Protocol is to initiate a logical connection
ad to establish the security capabilities associated with it. The Client initiates the message
exchange with a ClientHello message containing the following parameters:

Version: The highest SSL version understood by the client.

Random: A client-generated random structure, consisting of a 32-bit timestamp and 28
bytes generated by a secure random number generator. These values serve as nonces and
are used during key exchange to prevent replay attacks.

Session ID: A variable-length session identifier. A nonzero value indicates that the client
wishes to update the parameters of an existing connection or create a new connection on
this session. A zero value indicates that the client wishes to establish a new connection on
a new session.

CipherSuite: This is a list that contains the combinations of cryptographic algorithms
supported by the client, in decreasing order of preference. Each element of the list (each
cipher suite) defines both a key exchange algorithm and a CipherSpec.

Compression Method: This is a list of the compression methods the client supports.

Afterwards, the server sends the ServerHello message in response to the
ClientHello message. This contains the same parameters mentioned above. In this case, the
parameters have different values according to the selections made by the server. The
Version field contains the lower of the version suggested by the client and the highest
supported by the server. The Random field is generated by the server and is independent
of the client's Random field. If the SessionID field of the client was nonzero, the same
value is used by the server; otherwise the server's SessionID field contains the value for a
new session. The CipherSuite field contains the single cipher suite selected by the server
from those proposed by the client. The Compression field contains the compression
method selected by the server from those proposed by the client.

The first element of the Cipher Suite parameter is the key exchange method that

represents essentially the means by which the cryptographic keys for conventional
encryption and MAC are exchanged.

The following key exchange methods are supported as specified in Internet

Draft1for SSL 3.0:

- RSA: The secret key is encrypted with the receiver’s RSA public key. A public-key
certificate for the receiver’s key must be made available.

1 http://wp.netscape.com/eng/ssl3/draft302.txt

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

62

- Fixed Diffie-Hellman: This is a Diffie-Hellman key exchange in which the server’s
certificate contains the Diffie-Hellman public parameters signed by the certificate
authority (CA). That is, the public-key certificate contains the Diffie-Hellman
public-key parameters. The client provides its Diffie-Hellman public key
parameters either in a certificate, if client authentication is required, or in a key
exchange message. This method results in a fixed secret key between two peers,
based on the Diffie-Hellman calculation using the fixed public keys.

- Ephemeral Diffie-Hellman: This technique is used to create ephemeral (temporary,
one-time) secret keys. In this case, the Diffie-Hellman public keys are exchanged,
signed using the sender’s private RSA or DSS key. The receiver can use the
corresponding public key to verify the signature. Certificates are used to
authenticate the public keys. This would appear to be the most secure of the three
Diffie-Hellman options because it results in a temporary, authenticated key.

- Anonymous Diffie-Hellman: The base Diffie-Hellman algorithm is used, with no

authentication. That is, each side sends its public Diffie-Hellman parameters to the
other, with no authentication. This approach is vulnerable to man-in-the-middle
attacks, in which the attacker conducts anonymous Diffie-Hellman with both
parties.

- Fortezza: The technique defined for the Fortezza scheme. Stallings (2005)
specified that Fortezza can be used in smart card encryption scheme.

After defining the key exchange method, CipherSpec follows and it includes the

following fields:

- CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES,
3DES, DES40, IDEA, Fortezza

- MACAlgorithm: MD5 or SHA-1

- CipherType: Stream or Block

- IsExportable: True or False

- HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes

- Key Material: A sequence of bytes that contain data used in generating the write
keys

- IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC)
encryption

Phase 2

If the server uses a certificate-based authentication, then it sends its certificate to

the client in a corresponding certificate message. The certificate must be appropriate for
the selected cipher suite’s key exchange algorithm, and is, generally, an X.509 certificate

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

63

or a chain of certificates. Stallings (2005) noted that the certificate message is required for
any agreed-on key exchange method except anonymous Diffie-Hellman.

The client may send the same type of message for the server’s certificate request
message. The server’s certificate request message includes two parameters: certificate type
and certificate authority. The certificate type indicates the public key algorithm and its use
(signature, authentication). The second parameter represents a list of the distinguished
names of acceptable certificate authorities.

It should be mentioned here that if fixed Diffie-Hellman is used, this certificate

message functions as the server’s key exchange message because it contains the server’s
public Diffie-Hellman parameters.

Next, if it is needed, a server key exchange message may be sent. There are two

situations when the server key exchange message is not required: when the server has sent
a certificate with fixed Diffie-Hellman parameters, or when it has been agreed that RSA
key exchange will be used.

The server key exchange message is being sent in the following cases:

- Anonymous Diffie-Hellman : The message content consists of the two global
Diffie-Hellman values (a prime number and a primitive root of that number) plus
the server's public Diffie-Hellman key

- Ephemeral Diffie-Hellman: The message content includes the three Diffie-Hellman
parameters provided for anonymous Diffie-Hellman, plus a signature of those
parameters.

- RSA key exchange, in which the server is using RSA but has a signature-only RSA
key: The client cannot simply send a secret key encrypted with the server's public
key. Thus, the server must create a temporary RSA public/private key pair and use
the server key exchange message to send the public key. The message content
includes the two parameters of the temporary RSA public key (exponent and
modulus) plus a signature of those parameters.

- Fortezza: The parameters of Fortezza are sent

Thus, a server key exchange message is sent in the case when the server has no
certificate, or when the certificate is used for signature only (DSS or signing-only RSA
certificates).

Stallings (2005) described in detail how digital signatures are used in SSL 3.0. The
authored underlined that hash functions and digital signatures are used not only for the
parameters of the cryptographic algorithms used for encryption (RSA or Diffie-Hellman),
but also for the random nonces from the initial hello messages. This ensures protection
against replay attacks and misrepresentation.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

64

Moreover, details about the computation of the digital signatures are provided. In
the case of a DSS signature, the hash is performed using the SHA-1 algorithm. In the case
of an RSA signature, both an MD5 and an SHA-1 hash are calculated, and the
concatenation of the two hashes is encrypted with the server’s private key.

The final message in Phase 2 is the server done message. This is sent by the server

to indicate the end of the server hello and associated messages. After sending this
message, the server will wait for a client response. This message has no parameters.

Phase 3

 Further, upon receipt of the server done message, the client should verify that the
server provided a valid certificate and check also that the server hello parameters are
acceptable. After validation, if all is satisfactory, the client sends one or more messages
back to the server (Stallings, 2005).
 In the case that the server required a client certificate, the client will send a
certificate message. If the client has no suitable certificate available, it will send a no
certificate alert. However, if the client authentication is needed and required, the server
will answer with a handshake failure in the case of a no certificate alert.

 In the Internet Draft1 for SSL 3.0 it is mentioned client Diffie-Hellman
certificates must match the server specified Diffie-Hellman parameters.

 Next, the client will send a client key exchange message. The content of the
message depends on the type of key exchange, as follows (Stallings, 2005; El Aoufi,
2006):

- RSA: The client generates a 48-byte pre-master secret and encrypts with the public
key from the server’s certificate or temporary RSA key from a server key exchange
message.

- Ephemeral or Anonymous Diffie-Hellman: The client’s public Diffie-Hellman
parameters are conveyed if they were not already included in the client certificate.

- Fixed Diffie-Hellman: The client’s public Diffie-Hellman parameters were sent in
a certificate message, so the content of this message is null.

- Fortezza: The client’s Fortezza parameters are sent.

Moreover, the client will send a certificate verify message in order to provide
explicit verification and protection of a client message. Stallings (2005) explained that this
message is only sent following any client certificate that has signing capability (e.g. all
certificates except those containing fixed Diffie-Hellman parameters).

1 http://wp.netscape.com/eng/ssl3/draft302.txt

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

65

This message signs a hash code based on the preceding messages. Firstly, a hash

will be computed on all Handshake Protocol messages, the master secret and also two pad
messages that are used in the hash. Stallings (2005) specified that if the user’s private key
is DSS, then it is used to encrypt the SHA-1 hash. If the user’s private key is RSA, it is
used to encrypt the concatenation of the MD5 and SHA-1 hashes.

Anyway, the purpose of this certificate verify message is to verify the client’s
ownership of the private key for the client certificate. In the case that an attacker would
misuse the client’s certificate, this would be unable to send this message.

Phase 4

This phase completes the setting up of a secure connection.
Firstly, a change cipher spec message is sent by the client, and the client copies the

pending CipherSpec into the current CipherSpec. Further, the client sends then
immediately the finished message under the new algorithms, keys and secrets. On the
other hand, the server sends in response its own change cipher spec message, transfers the
pending CipherSpec to the current one, and then sends its finished message under the new
CipherSpec.

The finished message is always sent immediately by the client, and then by the

server, after a corresponding change cipher spec message in order to verify that the key
exchange and authentication processes were successful. The finished message represents a
concatenation of two hash values over the shared master secret, all the handshake
messages up to this message, and a code that identifies the sender (either the client or the
server).

Finally, after the verification of the received finished messages by each entity, the

handshake is complete and the client and server may begin to exchange application layer
data.

Further, application data is carried by the Record Layer and is fragmented,
compressed and encrypted based on the current connection state.

To summarize, the Handshake Protocol provides connection security that has three

basic properties:

- Authentication: The peer’s identity can be authenticated using the means offered
by public-key cryptography. Although, the authentication is optional, is generally
required at least for one of the peers and it is advisable to make it bidirectional, as
a requirement for secure communications in Jericho Project.

- The negotiation of a shared secret is secure: the negotiated secret is unavailable to
eavesdroppers, and for any authenticated connection the secret cannot be obtained,
even by an attacker who can place himself in the middle of the connection.

- The negotiation is reliable: no attacker can modify the negotiation communication

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

66

without being detected by the parties to the communication.

All these properties are required and desirable for secure communications in
Jericho networks.

Cryptographic computations

 In the design of this protocol, public-key algorithms are used in the handshake
protocol to authenticate parties and to generate shared keys and secrets.

For all the accepted public-key algorithms (RSA, Diffie-Hellman, Fortezza)
included in the specification of the protocol for key exchange methods, the same algorithm
is used to convert the pre-master secret into the master secret. In order to create the
master secret, a pre-master secret is first exchanged between two parties and then the
master secret is calculated from it.

The shared master secret is a value of 48 bytes (384 bits) and is generated for a

session by means of secure key exchange. The length of the pre-master secret depends on
the key exchange method. There are two ways for the exchange of the pre-master secret:

- RSA: A 48-byte pre-master secret is generated by the client, encrypted with the
server’s public RSA key, and sent to the server. The server decrypts the ciphertext
using its private key to recover the pre-master secret.

- Diffie–Hellman: The client and the server generate a Diffie–Hellman common key.
This private key is used as the pre-master secret and is converted into the master
secret.

 The pre-master secret should be deleted from memory once the master secret
has been computed. This prevents attackers or malicious software to steal it from the
memory (Kaufman et al., 2002).

Both sides now compute the master secret as follows:

 master_secret =
 MD5(pre_master_secret + SHA('A' + pre_master_secret +
 ClientHello.random + ServerHello.random)) +
 MD5(pre_master_secret + SHA('BB' + pre_master_secret +
 ClientHello.random + ServerHello.random)) +
 MD5(pre_master_secret + SHA('CCC' + pre_master_secret +
 ClientHello.random + ServerHello.random));

 From the master secret there will be generated six keys that will be used in data
transmission process by each side (for encryption, integrity and for the initial vectors
(IV)). For each connection, the master secret is shuffled with the random nonces produced
by the client and server in order to produce the six keys used further in the
communication.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

67

 Basically, the master secret is used to generate keys and secrets for encryption
and MAC computations for secure data transfer.

TLS Protocol

 In this section we underline the differences between TLS 1.1, TLS 1.2 and SSL 3.0
that are of interest in the context of this research for Jericho Project.

Although there are slightly differences between SSL 3.0 and TLS 1.0, the protocol
remains substantially the same and the goal is to produce an Internet standard version of
SSL. Anyway, as mentioned in RFC 22461 the differences are significant enough that TLS
1.0 and SSL 3.0 do not interoperate (although TLS 1.0 does incorporate a mechanism by
which a TLS implementation can turn back to SSL 3.0).

One of the differences between SSL 3.0 and TLS 1.0 is that in TLS there is user

another algorithm for the computations of MACs used for integrity checking of the
transferred messages. TLS makes use of the HMAC algorithm defined in RFC 21042.

Moreover, TLS 1.0 utilizes a pseudo-random function (PRF) to expand secrets into

blocks of data for the purposes of key generation or validation.

TLS supports all of the alert codes defined in SSL 3.0 with the exception of

no_certificate option. A number of additional codes are defined in TLS 1.0

There are several small differences between the Cipher Suites available under SSL

3.0 and under TLS 1.0. For the key exchange, TLS supports all of the key exchange
techniques of SSL 3.0 with the exception of Fortezza. With regard to the symmetric
encryption algorithms, TLS includes all of the symmetric encryption algorithms found in
SSL 3.0, with the exception of Fortezza.

TLS 1.0 defines the following certificate types to be requested in a

certificate_request message: RSA_sign, DSS_sign, RSA_fixed_DH, and DSS_fixed_DH.
These are all defined in SSL 3.0 as well. In addition, SSL 3.0 includes
RSA_ephemeral_DH, DSS_ephemeral_DH, and Fortezza_kea. TLS does not include the
Fortezza scheme.

In TLS 1.0 certificate_verify message, the MD5 and SHA-1 hashes are calculated

only over handshake_messages. In SSL 3.0 the hash calculations also included the master
secret and pads. But because it was considered that these extra fields add no additional
security, in TLS 1.0 it has been changed the calculation mode of the certificate_verify
message.

1 http://www.ietf.org/rfc/rfc2246.txt
2 www.ietf.org/rfc/rfc2104.txt

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

68

 Moreover, in TLS 1.0 the calculation of the master secret and of the keying

material used further in securely transmitting the data are calculated also based on the pre-
master secret and the random numbers of the entities, but the generating algorithms are
slightly changed.

Another difference refers to padding added prior to encryption of user data. In SSL

3.0 the padding added is the minimum amount required so that the total size of the data to
be encrypted is a multiple of the cipher’s block length. However, in TLS 1.0, the padding
can be any amount that results in a total that is a multiple of the cipher’s block length, up
to a maximum of 255 bytes. Stallings (2005) pointed out that a variable padding length
may be used to frustrate attacks based on an analysis of the lengths of exchanged
messages.

TLS 1.11 is intended to offer some minor security improvements in comparison

with TLS 1.0.
TLS 1.22 is a newer version of TLS 1.1 protocol that was released in an Internet

Draft in March 2007. TLS 1.2 is intended to solve expected problems with digest
algorithms from previous versions, has improved flexibility, especially for negotiation of
cryptographic algorithms. The major changes in TLS 1.2 are related to the use of hash
functions within the different operations in the protocol.
 Moreover, this new version of TLS protocol has an extra feature, namely support
for authenticated encryption with additional data modes (AEAD). This is a symmetric
encryption algorithm that simultaneously provides confidentiality and message integrity
 In AEAD encryption, the plaintext is simultaneously encrypted and integrity
protected. The input may be of any length and the output is generally larger than the input
in order to accommodate the integrity check value.

Challenges of SSL/TLS

In theory is stated that SSL/TLS implementations (in particular servers) will be
able to work with implementations of newer protocol versions.
 In reality, many SSL/TLS server implementations are broken with respect to
forward compatibility: e.g. severs using different versions of the protocol are not able to
establish communication or have implementation problems regarding the correct
negotiation for the protocol versions to be used for secure communications.

 With regard to the transition from TLS 1.0 TLS 1.1 TLS 1.2, many servers
do not accept ClientHello messages from TLS 1.1 clients.

1 http://www.ietf.org/rfc/rfc4346.txt

2 http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4346-bis-03.txt

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

69

 In such cases, various situations occur:

- No response from the server
- Connection closed immediately, with or without error
- Some refused to accept TLS 1.1
- Falls back to SSL v3, even if TLS 1.0 is supported.

However, it is not known whether or not this is caused by server implementation

errors, or firewall rules.

 So, there are a series of problems with the compatibility between the different
versions of the protocol, with the incorrect negotiation of the protocol version used by
entities, and it seems that these problems would continue with the transition to TLS 1.2.

 Consequently, the TLS Working Groups should design specifications and security
policies intended to solve the problems caused by non-compliant implementations of the
protocol.

Security of SSL/TLS

- SSL does not offer protection against traffic analysis attacks

Oppliger (2002) pointed out that by examining the unencrypted source and
destination IP addresses and TCP port numbers, or examining the volume of
transmitted data, a traffic analyst can still determine what parties are interacting, what
types of services are being used, and sometimes even recover information about
business or personal relationships.

- SSL does not protect against attacks directed against the TCP implementation,

such as TCP SYN flooding or session hijacking attacks

- Phishing attacks
- Man-in-the-middle attacks

Northrup & Thomas (2004) pointed out that the SSL certificates help reduce the
risk of attacks against Domain Name System (DNS). We add in this case, that the
correct use and validation of the SSL certificates can reduce the occurrence of these
risks. If attackers conduct a phishing attack for misleading the users to conduct
transactions via a fake website, then they can collect any sensitive information about
the users and their credentials with the man-in-the-middle attack.

 However, the Web sites have a certificate that is checked by the user. The fake
(rogue) site could have a certificate containing the name of the impersonated
organization but issued by an untrusted authority. Generally, the trusted certification
authorities check thoroughly via the Registration Authorities the credentials of the

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

70

entities to whom they issue certificates.

In this case the fake Web site has a certificate issued by an untrusted CA, the user
will be prompted with an alert message being informed that the CA is untrusted. If
users ignore these kind of alert messages and accept anyway the provided certificate,
then they are exposed to a man-in-the-middle attack.

Certificate Requirements for SSL/TLS

One of the requirements of Jericho Project for secure communications refers to the
authentication of entities involved in the data transfer.

In Jericho Project, the ideal scenario regarding secure communications is to
encrypt almost all the transmitted, choosing the encrypting ciphers according to the
sensitive level assigned to data. This solution should hinder even the internal
administrators from interception and/or reading the data.

SSL/TLS seems a valuable tool for achieving the goals of secure communications
in Jericho networks. At the moment, the adequate solution for end-to-end encryption with
SSL/TLS would be the use of digital certificates. Digital certificates not only authenticate
the entities, but also allow the use of encryption as a result of the public keys contained in
the certificates.

Thus, in order to conduct secure communications across Internet as required in
Jericho Project, a mechanism is needed in order to validate and verify the identity of the
entities that want to communicate. Moreover, this security mechanism would ideally allow
you to encrypt and sign content also – these are other security services desired for secure
communications in Jericho networks.

Raina (2003) proposed an interesting model for the general use of the certificates.
So, SSL/TLS certificates can be used for authentication and for end-to-end encryption as
well. Moreover, an organization could be identified and authenticated with a valid
“organizational” certificate. So, this could enable any entity that is being part of the
organization to use that certificate for authentication. In this way, it would become easier
to authenticate both the client and the server in an SSL/TLS session, and this would allow
the deployment of SSL/TLS protocol at a larges scale for any kind of transactions and data
transfers.

In SSL/TLS protocol a public key infrastructure (PKI) is the mechanism that
provides the services and components to validate the identity of entities and exchange the
keying material used further in the protocol.

In order to be able to use SSL/TLS protocol, the server must have a suitable
public-key certificate. Moreover, in the context of Jericho Project we recommend that also
the clients should have and use public-key certificates.

In essence, the client is configured with public keys of various “trusted

organizations” (Certification Authorities (CAs)). The user operating at the client machine

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

71

can modify the list, by adding or deleting keys. If the certificate sent by the server is
signed by one of the CAs on client’s list, after validating the certificate (e.g. expiration
date, revocation), the client accepts the certificate. If the sent certificate is signed by
another organization that is not on the client’s list, the user will be prompted a pop-up
window informing (see Figure 3.10 Security Alert) about this and will be asked if he/she
wants to look at the certificate and/or import the signing authority into the trusted list. In
this case, the user should definitely look at the certificate and check if possible the signing
authority, and not add automatically this authority to the trusted list of authority that the
client supports.

Figure 3.10 : Security Alert for untrusted certificates

However, this warning does not prevent the user from establishing an SSL/TLS-

encrypted session with the server for transferring data. But, the warning might cause the
user to cancel the connection. Although establishing a connection to a server with an
untrusted CA still provides encryption and message integrity. Using an SSL/TLS
certificate issued by an untrusted CA defeats the purpose of the authentication provided by
SSL/TLS protocol. In fact, these situations make the protocol vulnerable to man-in-the-
middle attacks and phishing attacks.

This is why, the users in Jericho networks should be aware by the risks posed by

certificates signed by untrusted CAs. These certificates should be rejected and the
SSL/TLS connection cancelled, until a solid verification of the issuing CA can be
performed.

The entities should perform certificate validation for the certificates sent by the

parties with whom they communicate. The following tests should be performed for

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

72

certificate validation:

- Ensure that the certificate chains to a trusted root certification authority (CA)
- Ensure that the certificate is time-valid
- Ensure that the certificate has not been revoked
- Ensures that the Domain Name System (DNS) name in the certificate’s subject

matches the DNS name in the HTTPS URL.

If the server’ certificate passes all the validation tests, the browser extracts the
certificate’s associated public key used to transmit further the pre-master secret to the
server. Depending on the cryptographic service provider (CSP) installed at the server, a
Diffie-Hellman or a RSA negotiation allows the server and client to use the pre-master key
to generate a symmetric session key using the same symmetric encryption algorithm.

 When the server wants to authenticate the client, it will send a request
authentication to the client as well. SSL certificates can only be trusted if the root
Certification Authority (CA) is trusted.

Certificates play an essential role in SSL/TLS protocol:

- An SSL Certificate enables encryption of sensitive information during online
transactions

- Each SSL Certificate contains unique, authenticated information about the
certificate owner

- Every SSL Certificate is issued by a Certificate Authority that verifies the identity
of the certificate owner

Every SSL Certificate is created for a particular server in a specific domain for a

verified business entity. The certificates are issued by a trusted authority, the Certificate
Authority (CA). When the SSL handshake occurs, the browser requires authentication
from the server.

As we have already mentioned, in Jericho Project we recommend that the
authentication of the client should be also mandatory, in order to enforce an adequate
protection of the transferred data. Certificate-based authentication of the client is not
required for SSL/TLS connections, but it definitely increases the security of the user’s
credentials.

For an efficient and secure utilization of SSL/TLS protocol, the entities have to
check each others certificates. If the information does not match or the certificates are
expired, error messages or warnings are displayed.

In the model of Jericho Project, there is another entity, the Trust Broker that should
manage the certificates issued to the entities, establish trust relationships with Certification
Authorities.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

73

A possible scenario in the context of Jericho Project would be that the Trust
Brokers issue certificates to clients and servers, like in the model of PGP in which there
are created webs of trust. Trust Broker is intended to define and to manage rules for trust
relationships between different organizations, and also to deal with cross-certifying
hierarchies among companies (hierarchies of trust among companies). Another scenario
would be that in which the organizations issue self-signed certificates.

However, the way the Trust Broker manages or creates the certificates for the
entities in Jericho networks is out of the scope of this thesis. The research topic of the
Trust Broker in Jericho networks is dealt with by another member of Jericho Project
research team.

Choosing a certificate provider

 A recent market share report regarding the certificate providers was issued by
Security Space1 in June 2007. This report focuses on issuers of SSL enabling certificates
found on web servers in April and May 2007.

Issuer Market Share
VeriSign 23.6%

Equifax (Geotrust) 21.68%

Thawte 13.44%

Comodo Limited 8.5%

Starfield Technologies, Inc. 4.42%

DigiCert 2.38%

GoDaddy 1.4%

Entrust 1.18%

Network Solutions 1.17%

Table 3.8: Market share for certificates issuers

 Nowadays, trust and privacy when transferring sensitive data over the Internet are
of interest for every organization that conducts business online or establishes
collaborations over the Internet. As we mentioned in the introductory part of this chapter,
there are a series of requirements in Jericho networks for protecting the information
against alterations, fraud, identity theft, eavesdropping etc.

1 http://www.securityspace.com/s_survey/data/man.200705/casurvey.html?ca=VmVyaXNpZ24= accessed
June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

74

 Basically, these problems can be addressed at this moment with an existing
solution, namely the digital certificates issued by Certification Authorities. But next, there
comes another question regarding how to choose a CA to provide certificates for
authenticating the entities in an organizational and collaborative environment over the
Internet.

 Essentially, all the CAs that issue certificates use the same technologies for
producing and managing their certificates. The CAs offer also “site seals” (see Table 3.9)
that are clickable images that can be placed for instance on web pages in order to create
trust.

Table 3.9: Site Seals of different certificates providers

The CAs differ generally in the ways they authenticate and verify the identity of
entities that require digital certificates. The certificates providers should authenticate and
verify strictly the information provided by entities requesting certificates, in order to be
able to embed that information within the digital certificate, which in turn can be viewed,
verified and confirmed by other entities.

 When an organization chooses to use SSL/TLS for securing the communications
for different applications (HTTP, email, etc.), it has to determine from which certificate
provider will obtain certificates for the clients and for the servers. This decision should be
considered by the organizations in Jericho networks as well.

 In the context of Jericho networks, the Trust Broker plays an essential role. One of
the roles of the Trust Broker can be to act as a Certification Authority, and, consequently,
issue, manage, revoke certificates for entities. The Trust Broker can issue certificates for
the clients and servers of the organization that implements and manages this entity (the
Trust Broker), as well for partners organizations between which the Trust Broker has
established trust relationships.

There can be issued certificates for Web servers, for Web sites, for clients and for

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

75

users. For instance, a Trust Broker can issue one-to-one certificates for authenticating
users from other organizations (maps distinct certificates for each user/user account), or it
can issue a many-to-one certificate for users that trust, but from other partner
organizations. In the latter case, the individual users cannot be differentiated when
connecting to a Web site or to a Web server, apart from the user accounts defined in the
many-to-one mapping.

 Additionally, the Trust Broker would define also the capabilities of a certificate:
for digital signatures, authentication, and encryption.

 Another scenario in Jericho networks would be that the Trust Broker could act as a
Registration Authority that validates the credentials of the entities that submit
requirements for certificates. In this way, the Trust Broker can manage directly the issuing
of the certificates to entities. However, this research topic is out of the scope of this thesis
and should constitute a separate research topic within Jericho Project.

By using one of the models where the certificates are issued by the Trust Broker,
or the Trust Broker plays the role of a Registration Authority, or the Trust Broker designs
and manages a Circle of Trust1 (CoT) for the issuers of the accepted certificates, an
organization can enforce its security policies and certificate policies, and complies also
with the guidelines and policies defined by the Trust Broker.

There are different functional models for the Trust Broker2 (collaborative model,
consortium model, centralized model).

In these models for the Trust Broker, there could be created CoT also for accepting
the authentication of the entities with certificates issued only by the Trust Broker that
manages the respective CoT or issued by another trusted Trust Broker of CA. This Circle
of Trust would design in fact a Certificate Trust List (CTR), a concept already existing and
being implemented by the organizations that use certificates.

However, an organization can still purchase certificates for its servers from a CA
until the framework of Trust Broker will be at a global scale implemented. A server can
have also more certificates, so it can provide a certificate from a CA and/or from a Trust
Broker. Anyway, any of these certificates has to provide transaction liability insurance for
electronic transactions, data transmissions. Moreover, the certificates issued by the Trust
broker can contribute to the establishment of trust relationships between different entities,
to the design of a reputation concept based on the behaviour of entities using the
certificates. Managing certificates can be complicated when a server has multiple
certificates.

 SSL certificates can be used, for instance, to verify the identity of a Web site and
to encrypt traffic sent between the client and the Web site. In this case, the SSL certificate
identifies a Web site, and not a Web server. A single Web server can host multiple Web
sites. Alternatively, a single Web site can be hosted on multiple Web servers to provide
redundancy and scalability.

1 Idem 1
2 Adriaan Bruning, Trust Broker in Jericho Project, Capgemini, 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

76

If many websites of different entities are hosted on the same server, then the Web
server needs different certificates for each Web site, in order to allow the verification of
identity and encryption for each Web site.

 On the other hand, if a Web site is stored on different servers (e.g. copies of the
same site) in order to allow the Web site to remain online in the event of a hardware
failure, the same certificate of the Web site can be installed on all the servers.

 As we previously specified, clients can be also authenticated for secure
communications and we recommend this in the context of Jericho Project. Authenticating
clients can also lead to the enforcement of organization’s security policy. For instance,
rather than typing credentials or simply being connected to a Web site anonymously,
entities can or can be enforced to use certificates for authentication.

But, providing the certificate is not enough for the authentication of an entity.
Besides this, an entity presenting the certificate must have also access the certificate’s
private key (the certificate is a public document that can be accessed by any entities) and
also the issuer of the certificate should be included in the CTR of the entities with whom it
communicates in order to be accepted as a valid means of authentication. Possession of the
private key proves that the respective entity is the certificate’s subject (Komar et al.,
2004).

Till this point we discussed mainly SSL certificates for Web servers and for the
clients (namely, for HTTP protocol). However, SSL certificates can be used to protect
several other protocols: LDAP, SMTP, POP3, NNTP, and SQL. So, SSL certificates can
be used to encrypt LDAP and global catalog queries, database queries, to encrypt and
protect messaging communications (Northrup & Thomas, 2004).

When using SSL/TLS for these applications in order to achieve secure
communications, the servers and the clients as well should also have certificates that are
valid and are signed by trusted issuers (CAs or Trust Broker). The configurations for using
SSL/TLS for these protocols and applications are out of the scope of this thesis.

3.5.3 Conclusions

SSL/TLS is an open standard that is widely deployed and supported by a variety of

servers and clients. This means that SSL/TLS meets another requirement proposed by
Jericho Forum, namely to adopt open, inherently secure standards.

 Northrup & Thomas (2004) acknowledged that because SSL/TLS has been widely
adopted, the security community has carefully examined the SSL/TLS standards, as well
as their implementations. Due to this close examination, combined with the relative
maturity of the SSL/TLS standards, the protocol has resulted in a highly secure method for
authenticating clients and servers and protecting the privacy and integrity of
communications.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

77

 According to VeriSign1, SSL/TLS protocol should be deployed in the following
cases:

- For (financial) transactions in electronic commerce
- For business partners accessing confidential information of other companies
- For companies that process sensitive or personal information such as addresses,

birth dates, bank accounts etc.
- For complying with privacy and security requirements of the business partners
- For inspiring trust

All these cases are in fact scenarios that reflect the security requirements of Jericho
Project for secure communications.

However, SSL/TLS protocol should be implemented or enabled only for the cases
that there is a need to secure the communications. This is why, for instance, the data has to
be classified2 according to multiple security levels.

As Northrup & Thomas (2004) noted, although certificates are issued, for instance,
to individual Web sites, SSL/TLS can be configured to offer protection only for sensitive
data that has assigned higher levels of security (confidential, secret etc.) depending on the
classification type used. One part of the Web site might require transmissions of encrypted
data with SSL/TLS (by specifying HTTPS in the URL), and another part of the Web site
might allow transmissions with data in clear (by specifying the simple form of the
protocol, HTTP, in the URL).

The fact that the settings for the use of SSL/TLS can be configured for encrypting
only parts of transferred data offers flexibility in security configuration. This allows
providing end-to-end encryption of confidential data when necessary, and, at the same
time, keeping the balance between security offered and performance3 of the servers. (e.g.
E-commerce sites typically use HTTPS only when exchanging private information,
because this reduces limits on efficiency and performance due to the use of cryptography
in securing the communications.)

An essential issue with reference to the implementation and the use of SSL/TLS,
regards the fact that there should be ensured that the clients trust the root CA certificate of
the Web Server’s certificate chain4. If the Web Server certificate chains to an untrusted
root CA or Trust Broker, users are warned that the certificate is not trusted, and the users
should not connect to the respective server.

The correct validation and checking of the servers’ certificates by the users offers
protection against phishing attacks, and as well against man-in-the-middle attacks.

1 www.verisign.com
2 Remco van Marle, Data classification & Information Leakage in Jericho Project, Capgemini, 2007
3 The use of cryptographic mechanisms influences the performance of the data transmissions and of the Web
servers
4 A certificate chain is a sequence of certificates, where each certificate in the chain is signed by the
subsequent certificate.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

78

In fact, the phishing attacks lead to leakage of information and eavesdropping
because the users are not aware of the risks of accepting invalid or fake certificates issued
by untrusted CAs to attackers. Basically, these certificates issued by untrusted CAs to
untrusted entities have no authentication value in a secure communications.

But there have been reported cases when certificates have been issued by
reasonably trusted CAs to some attackers (e.g. fake organizations etc.) that conducted
phishing attacks and misled the clients with their certificates.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

79

3.6 IPsec

3.6.1 Introduction

IPsec is a suite of protocols that operates at the network layer (layer 3 in the OSI
model) for securing Internet Protocol (IP) network communications through the use of
cryptographic security services that are independent of the interacting applications on the
two hosts. IPsec provides end-to-end security for communications in different network
configurations (e.g. client-to-client, client-to-server, and server-to-server) (Snader, 2005;
Stallings, 2005; Stamp, 2006).

IPsec offers network-level data integrity, data confidentiality, data origin
authentication, and replay protection. Because IPsec is integrated at the Internet layer, it
provides security for almost all protocols in the TCP/IP suite. Moreover, due to the fact
that IPsec is applied transparently to applications, there is no need to configure separate
security for each application that uses TCP/IP. Thus, by implementing security at the IP
level, an organization can ensure secure networking not only for applications that include
security mechanisms, but also for the security ignorant applications.

However, Stamp (2006) confirmed that the major drawback of IPsec is that it is a
complex protocol, characterized as “over-engineered.” This makes the implementation of
the protocol challenging.

Due to the security services for securing the communications and its defining
features, this protocol is further investigated in the context of Jericho Project.

3.6.2 Presentation

This security protocols consists of various cryptographic algorithms, security
protocols, and key management protocols for achieving the features of secure
communications mentioned at the beginning of this chapter. It ensures that the
communications are secured from the source until they reach the destination, and its major
advantage is that it is transparent to applications. By implementing security at the IP level,
an organization can ensure secure networking and secure communications for all the
applications.

Due to the security services for securing the communications, this protocol
presents interest for being investigates in the context of Jericho Project.

IPsec protocols were first defined by RFCs 1825–1829, published in 1995. Then,
in 1998, other RFCs were written and published, namely, RFCs 2401–2412. RFCs 2401–
2412 are not compatible with 1825–1829, although they are conceptually identical. In
2005, third-generation documents, RFCs 4301–4309, were published. These third-

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

80

generation documents standardized the abbreviation of IPsec to uppercase “IP” and
lowercase “sec”.

Support for the features presented in these RFCs is mandatory for IPv6 and
optional for IPv4. The security features are implemented as extension headers that follow
the main IP header. The extension header for authentication is named the Authentication
header. The one for encryption is known as the Encapsulating Security Payload (ESP)
header (Stallings, 2005).

Essentially, IPsec consists of three major protocols (Snader, 2005):

- Authentication Header (AH): This protocol provides data origin authentication,
data integrity, and replay protection

- Encapsulating Security Payload (ESP): This protocol provides the same services
as AH but also offers data privacy (confidentiality) through the use of encryption

- Internet Key Exchange (IKE): This protocol provides all important key-
management functions. The alternative to IKE is manual keying, supported by
IPsec as well.

These protocols can be combined and configured in a flexible manner, but this
leads to an increased overall complexity of the protocol. As Snader (2005) mentioned as a
general rule, complexity is the enemy of security, so the increase in complexity can lead to
a decrease in security. Ferguson & Schneier (1999) stated as well that security's worst
enemy is complexity. Consequently, the increase in complexity leads to the fact that,
typically, IPsec is more difficult to configure and manage.

IPsec Properties

IPsec protocol comprises two protocols that are employed to provide security of
communications, Authentication Header (AH) and Encapsulating Security Payload (ESP).
IPsec enables a system to select the necessary security protocols, decide the algorithms
and primitives to use further for achieving the desired security services.

IPsec provides the following security features (Poddar et al., 2003; Stallings,
2005; Pujolle, 2007):

- Data source authentication: Ensures that the communication takes place with a
client that is authenticated and authorized for communication

- Access control: Ensures that the communication occur with a client that is IPsec
enabled.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

81

- Integrity: Assures that the received data packets are identical with the data packets
sent by the data source. Also assures that the data packets have not been altered.

- Anti-replay protection: Verifies that no redundant data packets are received

- Confidentiality: Enables encryption of transmitted data, so, that the data remains
confidential in traffic and protection is offered against eavesdroppers. It offers also
the possibility to encrypt the IP packet header

- Key management: Offers secure exchange of keys

Stallings (2005) investigated the security services provided by AH and ESP
protocols. AH and ESP protocols represent the core IPsec protocols for communicating
data securely. ESP protocol can be used with or without an authentication option. Both
AH and ESP protocols ensure access control, based on the distribution of cryptographic
keys and the management of traffic flows relative to these security protocols.

 AH ESP
(encryption only)

ESP
(encryption plus authentication)

Access control √ √ √

Connectionless integrity √ √

Data origin
authentication √ √

Rejection of replayed
packets √ √ √

Confidentiality √ √

Limited traffic flow
confidentiality

 √ √

Table 3.10: IPsec services (after Stallings, 2005)

 It is obvious that some of the functionalities of AH (e.g. data integrity and
authenticity) and ESP (e.g. confidentiality, data integrity and authentication) protocols
overlap.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

82

Olifer & Olifer (2006) pointed out that the distribution of security functions
between AH and ESP is justified by limiting export and/or import to the encryption tools,
a practice adopted by many countries. Thus, these protocols can be used independently or
together for achieving the necessary features for secure communications. For instance,
when no encryption is allowed due to imposed limitations, it is possible to supply the
system only with the protection provided by AH protocol. Obviously, according to the
requirements for secure communications in Jericho networks, the protection of transmitted
data offered by AH protocol only won’t suffice. When AH protocol is used, the receiving
party can only check whether the data was sent by the node from which it was expected
(data origin authentication) and whether it is in the same form it was sent (integrity
checking). Thus, for achieving confidentiality of the transferred data, it is necessary to use
the ESP protocol.

Basically, IPsec encompasses three functional areas: authentication,
confidentiality, and key management (Stallings, 2005). Based on the requirements defined
for secure communication in the context of Jericho Project, we investigate further IPsec
protocol as a potential solution for secure communications over the Internet.

IPsec is below the transport layer (TCP, UDP), thus it is transparent to
applications. IPsec can be implemented in the firewall or router, as well on clients. In the
context of Jericho Project, we recommend based on Jericho Forum Commandments that
IPsec should be implemented on clients, thus these become IPsec enabled. When IPsec is
implemented in end systems, upper-layer software, including applications, is not affected.
Thus the protocol offers a transparent method of assuring end-to-end security of the
communications over the Internet.

Another feature of IPsec is that it can be transparent to users. Stallings (2005)
mentioned that there is no need in training users on security mechanisms of issues
regarding the use of cryptographic keys.

Further we will present shortly the IPsec process of protecting a transmitted
message on an IP network (Poddar et al., 2003). This consists of the following steps:

- Firstly, a secure management connection is built for further negotiation

- A negotiation is established between two computers

- Negotiate what security key(s) to use for communication

- Exchange of the security keys (using key management protocols) in order to
provide confidentiality for the transferred message

- The computers involved in the communication process negotiate about the
encryption algorithms required to protect the message

- The Security Association (SA) messages facilitate the exchange of information

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

83

about encryption algorithms

- The IPsec Domain of Interpretation (DOI) controls the IPsec process by defining
message formats, exchange types, and conventions to refer security protocols,
cryptographic algorithms, and security keys.

- Integrity check is performed to ensure that the data does not change during
transmission

- IPsec provides anti-replay features for preventing the transmission of redundant
data

Security Associations

Quiggle (2001), Rhee (2003), Stallings (2005), Pujolle (2007) etc. stated that a
Security Association (SA) is a one–way connection/relationship between a sender and
receiver that permits security services for the traffic carried on it. If a peer relationship is
required, for two-way secure exchange and communication transfer protection, then there
are required and defined two SAs.

Thus, before establishing secure communications for data in traffic, an SA has to
be established and shared between the communicating parties. Security services are
afforded to an SA for the use of AH or ESP, but not both (Stallings, 2005).

Basically, the SA messages support the exchange of information about the
encryption algorithms that will further be used for securing the communications. Poddar et
al. (2003) defined SA as an agreement between a sender and a receiver on a network in
order to determine the security options.

Olifer & Olifer (2006) specified that the procedure of establishing an SA starts
with the mutual authentication of both parties. This ensures that the transmitted data is
exchanged between authenticated parties. The SA parameters that are later chosen define
which of the two protocols, AH or ESP, will be used for data protection and which
functions will be carried out by the security protocol. There can be chosen only
authentication and integrity, or it can also ensure confidentiality. Besides this, other
important parameters of an SA are the private keys used by the AH and ESP protocols.

A security association is uniquely identified by three parameters:

- Security Parameter Index (SPI): This field is present in the AH and/or ESP
headers. This parameter enables the receiving entity to select the SA that defines
the parameters under which a packet will be processed.

- IP destination address: This represents the destination address of the IPsec peer,
which may be an end user system or a network system such as a firewall or router.

- Security Protocol Identifier: This indicates whether an SA is an AH or ESP
Security Association.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

84

Consequently, in any IP packet (e.g. either an IPv4 datagram or an IPv6 packet),
the Security Association is uniquely identified by the IP destination address in the IPv4 or
IPv6 header and the SPI in the enclosed extension header (AH or ESP).

Olifer & Olifer (2007) specified that in IPSec protocol exist possibilities for using
both automatic and manual methods of establishing an SA. In the case of manual
established SA, the administrator configures end nodes to ensure that they support
association parameters. Otherwise, in the case of using an automated procedure of
establishing an SA, IKE protocols operating on different sides of the channel choose
parameters in the course of the negotiation process. Thus, IPsec is a flexible tool for
configuring the parameters used and for securing the transfer of data.

An SA established between two IPsec enabled entities defines the following
parameters (Stallings, 2005):

- Sequence number counter: A 32-bit value used to generate the Sequence Number
field in AH or ESP headers (required for all implementations)

- Sequence Counter Overflow: A flag indicating whether overflow of the Sequence
Number Counter should generate an auditable event and prevent further
transmission of packets on this SA (required for all implementations).

- Anti-replay window: Used to determine whether an inbound AH or ESP packet is a
replay. If a packet has already been received or fails authentication, the packet is
discarded and audit logs are generated (required for all implementations)

- AH Information: Authentication algorithm, keys, key lifetimes, and related
parameters being used with AH (required for AH implementations)

- ESP Information: Encryption and authentication algorithm, keys, initialization
values, key lifetimes, and related parameters being used with ESP (required for
ESP implementations)

- Lifetime of the respective Security Association: A time interval or byte count that
cannot be exceeded, and after which an SA must be replaced with a new SA (and
new SPI) or terminated, plus an indication of which of these actions should occur
(required for all implementations)

- IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all
implementations)

- Path MTU: Any observed path maximum transmission unit (maximum size of a
packet that can be transmitted without fragmentation) and aging variables (required
for all implementations)

Quiggle (2001) indicated that in order to minimize the risk for any encrypted

message to be broken by brute force attacks, Security Associations have a time limit that
cannot be exceed. Otherwise, the IPsec enabled peers have to renegotiate again all the
parameters used for secure communications. Moreover, some SAs implement message
limits as well (e.g. after 10MB of data have been exchanged, the SA is established again

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

85

and the parameters renegotiated).

Operation Modes

 IPsec protocol can operate in two modes: transport and tunnel modes. Basically,
AH and ESP protocols that are embedded in IPsec can protect data in two modes: transport
and tunnel.

 Transport mode

Transport mode provides protection primarily for upper-layer protocols (a TCP
packet or UDP segment or an Internet Control Message Protocol (ICMP) packet). Stallings
(2005) noted that typically, transport mode is used for end-to-end communication between
two hosts (e.g., a client and a server, or two workstations). Snader (2005) acknowledged
that transport mode is transport mode is meant to be used between two fixed hosts, namely
when the end points are the final destinations of the transferred data. Thus, the hosts are
IPsec enabled, and the communications are ‘end-to-end’ secured in traffic.

In the case of a host running AH or ESP protocol over IPv4, the payload is the data
that follows the IP header. For IPv6, the payload is the data that follows both the IP header
and any IPv6 extensions headers that are present, with the possible exception of the
destination options header that might be included in the protection.

Rhee (2003), Stallings (2005) specified that ESP in transport mode encrypts and
optionally authenticates the IP payload, but not the IP header. AH in transport mode
authenticates the IP payload and selected portions of the IP header. Moreover, the authors
noted that a transport mode SA provides security services only for higher-layer protocols,
not for the IP header or any extension headers preceding the ESP header.

In Figure 3.11 is illustrated the transport mode of working:

Figure 3.11: Transport Mode Encapsulation

 When AH is used, then there is no IPsec trailer.

Basically, IPsec is used in transport mode for securing the host-to-host
communications. So, IPsec in transportl mode is used to encrypt and validate the integrity
of communications between two computers. Therefore, IPsec can protect traffic between
Web servers and database servers, or between Web clients and Web servers. For instance,
when an IPsec client attempts to initiate a connection to an IPsec server, the client and
server negotiate IPsec integrity and encryption protocols. After the IPsec connection is
established, the data is transferred within the IPsec connection.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

86

Tunnel mode

Tunnel mode provides protection to the entire IP packet. Shortly, in tunnel mode,
the source data packet is encapsulated in the new IP packet and the data is transmitted over
the network on the basis of the new IP packet header. So, after the AH or ESP fields are
added to the IP packet, the entire packet plus security fields are treated as the payload of
new IP packet that will have a new IP header. The initial data packet travels through a
“tunnel” from one point of an IP network to another, without being exposed to traffic
analysis (the original packet is encapsulated and transmitted in a tunnel). Besides this, the
new packet may have totally different source and destination addresses, in this way adding
to the security.

Figure 3.12 illustrates the tunnel mode encapsulation.

Figure 3.12 : Tunnel Mode Encapsulation

Typically, tunnel mode can be used when one or both ends of an SA are a security
gateway (e.g. a firewall or a router) that implements IPsec. With tunnel mode, a number of
hosts on networks behind firewalls may engage in secure communications without
implementing IPSec. But, this contravenes with Jericho Forum Commandments1 that,
essentially, state that individual systems and data will need to be capable of protecting
themselves. As Snader (2005) mentioned IPsec in tunnel mode provides end-to-end
security.

Snader (2005) added that the tunnel mode could be as well used for securing the
traffic between two hosts In this case, the source and destination addresses of the inner and
outer IP headers would be the same. The disadvantage of this manner of using the tunnel
mode is the extra bandwidth required by the additional IP header. The author suggested
that transport mode could be used and regarded as an optimization of tunnel mode for the
special case of two fixed hosts.

Ferguson & Schneier (1999) pointed out that it would be easy to compress the data
in the inner IP header (in the tunnelling mode). This would be a method to eliminate the
transport mode and the extra complexity it entails, with no cost in extra bandwidth.

Stallings (2005) summarized the transport and tunnel model functionality:

1 www.opengroup.org/jericho/commandments_v1.2.pdf (Version 1.2 May 2007) accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

87

 Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and
selected portions of IP header and
IPv6 extension headers.

Authenticates entire inner IP
packet (inner header plus IP
payload) plus selected portions
of outer IP header and outer
IPv6 extension headers.

ESP Encrypts IP payload and any IPv6
extension headers following the
ESP header.

Encrypts entire inner IP
packet.

ESP with
authentication

Encrypts IP payload and any IPv6
extension headers following the
ESP header. Authenticates IP
payload but not IP header.

Encrypts entire inner IP
packet. Authenticates inner

IP packet.

Table 3.11 : Tunnel Mode and Transport Mode Functionality (after Stallings, 2005)

In the context of Jericho Project, based on the requirements that we determined for
secure communications, which are underpinned by Jericho Forum Commandments, IPsec
should be used in transport mode for providing end-to-end encryption and security for the
transmitted data. In essence, in Jericho Project, the network is the Internet and the
communications occur over the Internet. Due to this aspect, the transport mode for
securing host-to-host communications is recommended in Jericho Project.

Authentication Header (AH)

Authentication Header (AH) protocol provides authentication of IP packets, data
integrity, and protection against a replay attack. But, AH does not comprise security
mechanisms for achieving confidentiality. As we have already mentioned there are
sometimes limitations regarding the use of cryptographic algorithms, and in those cases
AH protocol can be used.

Essentially, AH protocol adds a supplementary field to the IP packet that enables,
upon receipt, the verification of the authenticity of the transferred data.

The data integrity feature ensures that the modifications of a data packet in transit
are detected, while the authentication feature enables an end system to authenticate the
user or application and filter traffic in accordance with the defined policies. Stallings

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

88

(2005) added that it also prevents the address spoofing attacks that occur nowadays in the
communications over Internet. AH also secures against the replay attacks as well.

The Authentication Header consists of the following fields:

- Next Header (8 bits): Identifies the type of header immediately following this
header (e.g. a TCP segment, an UDP message, or an ICMP packet). It represents
the protocol number of the AH payload.

- Payload Length (8 bits): This represents the length of Authentication Header in 32-
bit words, minus 2.

- Reserved (16 bits): For future use.

- Security Parameters Index (32 bits): Identifies an SA.

- Sequence Number (32 bits): Represents a counter that increases by 1 for each AH
datagram that a host sends for a particular SA.

- Authentication Data (variable): A variable-length field (must be an integral
number of 32-bit words) that contains the Integrity Check Value (ICV), or MAC,
for the respective packet.

The Sequence Number field offers anti-replay service. So, this field is used for

protecting the packet from being reproduced by attackers that may try to reuse the sniffed
protected packets sent by the authenticated user. The sender sequentially increases the
value of this field in each new packet transmitted within the framework of this SA, so the
arrival of a duplicate will be noticed by the receiving party (the protection against false
duplication has to be enabled within the respective SA (Olifer & Olifer, 2007).

The Integrity Check Value (ICV) is a message authentication code or a truncated
version of a code produced by a MAC algorithm. The current specification dictates that a
compliant implementation must support the following security mechanisms: HMAC-
MD5-96, HMAC-SHA-1-96. These security mechanisms use the HMAC algorithm, the
first with the MD5 hash code and the second with the SHA-1 hash code1. In both cases,
the full HMAC value is calculated but then truncated by using the first 96 bits, which is
the default length for the Authentication Data field.

In the context of Jericho Project, when chosen to implement IPsec with AH
protocol, it is recommended to use the authentication and integrity services directly
between two hosts (e.g. a server and a client), namely to use a transport mode SA. The use
of a transport mode SA for IPsec enabled hosts, using AH protocol, provides end-to-end
authentication in Jericho networks. To summarize, AH protocol in transport mode
provides: authentication, data integrity, and anti-replay protection to the entire data packet
(IP header and IP payload).

1 We describe the security mechanisms for achieving security services that lead to secure communications in
more details in Chapter 4 of this thesis.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

89

Moreover, in Jericho enabled networks it is advisable to use AH protocol for the
transfer of data that can has attached low security levels (e.g. public data), but still needs
to be checked for integrity and authentication.

Encapsulating Security Protocol (ESP)

The Encapsulating Security Payload (ESP) provides as well authentication, data
integrity, and anti-replay protection, and besides these, also confidentiality. ESP protocol
consists of a header, the ESP header attached to the data packet in order to encrypt the
data, and a trailer, the ESP trailer attached to the data packet in order to provide
authentication. Rhee (2003) pointed out that data authentication and integrity are joint
services offered as an option with confidentiality. The anti-replay service is chosen only if
data origin authentication is selected. Moreover, the service is effective only if the receiver
checks the sequence number.

ESP contains the following fields:

- Security Parameters Index (32 bits): Identifies an SA for communication.

- Sequence Number (32 bits): An increasing counter value that calculates a record of
data packets sent over the SA, and provides anti-replay protection.

- Payload Data (variable): Represents transmitted data protected by encryption. For
the cryptographic algorithms that require an initialization vector (e.g. block cipher
used in CBC mode), this is included in the payload data (Snader, 2005).

- Padding (0-255 bytes): ensures that the encrypted data and the padding are no
longer than 256 bytes.

- Pad Length (8 bits): Indicates the pad length in bytes. The receiver uses this value
for removing the padding bytes after decrypting the data.

- Next Header (8 bits): Identifies the type of data contained in the payload data field
by identifying the first header in that payload

- Authentication Data (variable): A variable-length field (must be an integral
number of 32-bit words) that contains the Integrity Check Value (ICV). The ICV
is calculated over the entire ESP packet except for the authentication data field
itself.

These fields are grouped in the ESP packet in four parts:

- The ESP header: contains the SPI and sequence number fields

- The payload: contains the payload data field

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

90

- The ESP trailer: contains the padding, pad length, and next header fields

- The ESP authentication data: contains the ICV

Encryption and Authentication Algorithms used in ESP

In ESP, confidentiality could be selected independent of all other services offered
by this protocol. But, as Rhee (2003) suggested, the use of confidentiality without integrity
and data origin authentication may be subject to active attacks that undermine the
confidentiality service.

Stallings (2005) specified that payload and the ESP trailer are encrypted by the
ESP service. Based on the specifications of IPsec protocol, a number of other algorithms
can be used for encryption. These1 include: three-key 3DES, RC5, IDEA, three-key triple
IDEA, CAST, and Blowfish.

However, Olifer & Olifer (2007) affirmed that IPsec can employ any symmetric
encryption algorithm for encrypting the data. But, we add that there should be used any
symmetric-key cryptographic algorithm that has not been yet broken and has a sufficient
key size for not being vulnerable in the near future.

In RFC 43052 - “Cryptographic Algorithm Implementation Requirements for
Encapsulating Security Payload (ESP) and Authentication Header (AH)”, there are also
listed the encryption algorithms for ESP.

Algorithm Requirement Note
NULL MUST ESP encryption and

authentication are optional, so
support for the two "NULL"
algorithms is required to
maintain consistency with the
way these services are
negotiated. Authentication and
encryption can each be
"NULL", but they MUST NOT
both be "NULL".

TripleDES-CBC MUST-

The authors of RFC 4305
expect that at some point in the
future this algorithm will no
longer be a MUST.

RFC2451

AES-CBC with 128-bit keys SHOULD+ RFC3602

1 Some of these algorithms are described in Chapter 4 of the thesis
2 http://www.ietf.org/rfc/rfc4305.txt accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

91

The authors consider that it is
likely that an algorithm
marked as SHOULD+ will be
promoted at some future time
to be a MUST.

AES-CTR SHOULD RFC3686

DES-CBC SHOULD NOT RFC2405

Table 3.12 : Encryption algorithms recommended in RFC 4305

The authentication algorithm employed for the ICV computation is specified by the
SA. For ensuring data integrity and authentication in the case of communication between
two points, suitable algorithms include Message Authentication Codes (MACs) based on
symmetric encryption algorithms or on one-way hash function (e.g. MD5 or SHA-1). For
multicast communication, one-way hash algorithms combined with asymmetric signature
algorithms are appropriate.

Basically, the data packet is authenticated by computing the ICV over the ESP
header, payload, and ESP trailer fields, using the algorithm and key specified in the SA.

Stallings (2005) and Rhee (2003) pointed out that compliant implementations must
support HMAC-MD5-96 and HMAC-SHA-1-96 for providing integrity and
authentication.

In RFC 43051 there are also listed the recommended authentication algorithms for
ESP.

Algorithm Requirement Note
HMAC-SHA1-96 MUST RFC2404

NULL MUST

ESP encryption and
authentication are optional, so
support for the two "NULL"
algorithms is required to
maintain consistency with the
way these services are
negotiated. Authentication and
encryption can each be
"NULL", but they MUST NOT
both be "NULL".

AES-XCBC-MAC-96 SHOULD+ RFC3566

1 http://www.ietf.org/rfc/rfc4305.txt accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

92

The authors consider that it is
likely that an algorithm
marked as SHOULD+ will be
promoted at some future time
to be a MUST.

HMAC-MD5-96 MAY
Weaknesses have become
apparent in MD5 (we specified
this in Chapter 4).

RFC2403

Table 3.13:Authentication algorithms recommended in RFC 4305

However, although ESP provides data-origin authentication, it cannot authenticate
all the data within the packet like AH protocol does. Quiggle (2001) recommended in the
case when a higher level of security is required for the transferred data, to deploy both
ESP and AH (this will decrease the overall performance of the transmission).

If ESP is chosen to achieve both authentication and confidentiality, then encryption
is performed first, and then the authentication is provided.

Stallings (2005) pointed out that encryption and authentication can be combined in
order to transmit an IP packet that has both confidentiality and authentication between
hosts. The author explained also different combinations of SAs for achieving
confidentiality and encryption in varied ways.

 However, the cryptographic primitives and algorithms used in the protocols
comprised in IPsec for achieving different security services are extended by vendors with
other algorithms. Nevertheless, when choosing which cryptographic algorithms and
primitives will be applied in IPsec, there should be first considered the security
requirements and objectives that have to be accomplished, and ultimately there should be
taken into consideration the performance issues. Basically, the user can decide which
security algorithm to use for an application depending on the nature of security to be
provided.

Key Exchange

The key management part of IPsec comprises the determination and distribution of
secret keys. Rhee (2003) mentioned that key establishment is at the heart of data
protection that relies on cryptography. Moreover, a secure key distribution for the Internet
represents an essential part of data protection.

Before establishing a secure session, the communicating parties need to negotiate
the terms that are defined in the SA.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

93

IPsec supports two types of key management:

- Manual: A system administrator manually configures each system with its own
keys and with the keys of other communicating systems.

- Automated: An automated system enables the on-demand creation of keys for SAs
and facilitates the use of keys in a large distributed system with an evolving
configuration. This can be done by means of an appropriate protocol. IPsec
implements as automated management protocol the Internet Key Exchange
Protocol (IKE).

The Internet Key Exchange (IKE) protocol handles the problem of key
management by negotiating security associations between peers that want to communicate
securely.

Snader (2005) summarized the working of IKE: the peers perform a Diffie-
Hellman exchange to obtain a shared secret that they use to generate keying material for
the encryption and authentication algorithms used to protect the transmitted data.
However, IKE must protect itself against denial-of-service attacks, replay attacks, man-in-
the-middle attacks, and other attempts to subvert the secure exchange of keys. Besides
exchanging keying material, IKE negotiates the encryption, authentication, and other
cryptographic primitives used for achieving the goals of secure communications.

As described in the literature (Poddar et al., 2003; Rhee, 2003; Snader, 2005;
Stallings, 2005, Pujolle, 2007 etc.), IKE is a hybrid protocol based on other protocols:
Internet Security Association and Key Management Protocol (ISAKMP), Oakley Key
Determination protocol (Oakley) and SKEME protocol.

IKE protocol has been designed for achieving the following goals within IPsec
(Quiggle, 2001):

- Provides a means for parties that use IPsec to agree on the protocols, algorithms,
and keys to be used for a key exchange

- Provides authentication of the IPsec enabled peers

- Manages the keys after they have been agreed upon

Besides negotiating the SAs and handling the key exchange, IKE authenticates
each peer to the other. This ensures that each node can be sure of the identity of its peer.
There are four ways to do this authentication: shared secrets, digital signatures, public key
encryption of nonces, and revised public key encryption of nonces. IPsec provides
certificate-based authentication as well, as a service for secure communications.

Komar et al. (2004) specified that certificates can be used to authenticate the peers

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

94

in an IPsec association. After the peers are authenticated, IPsec is used to encrypt and
digitally sign all communications between the two endpoints. The certificates are used
only for authentication purposes.

For achieving all these functions, IKE combines the functions provided by
ISAKMP and Oakley, and is referred in the literature as referred to as ISAKMP/Oakley
protocol.

- Oakley: This is a key exchange protocol based on the Diffie-Hellman algorithm
that provides details for perfect forward secrecy for keys, identity protection, and
authentication services.

- ISAKMP: Is designed as a framework that expresses additional protocols for
establishing security associations, for performing authentication and key
exchanges. ISAKMP is independent of any particular key-exchange method. In
fact, it is a general framework that can support many key-management protocols.

Due to the space allocated for this thesis and the scope of research, we aim to

provide a general perspective of the security protocols that can accomplish the
requirements for secure communications in Jericho networks. Thus, we do not describe in
detail the mechanisms employed by IKE in IPsec protocol.

However, in the context of Jericho Project, we recommend as appropriate the
automated key management system. In Jericho networks it is required to ensure the
security of communications over the Internet, and this corresponds to the applicability of
the automated key management.

3.6.3 Conclusions

IPsec protocol can be used to secure the communications over the Internet in a
transparent way for the applications. As we have already mentioned, because IPSec
operates at the network layer as an extension to the IP protocol, it provides end-to-end
encryption, meaning that the source computer encrypts the data, and it is not decrypted
until it reaches its final destination.

Thus, in the context of Jericho Project, IPsec can be used to secure the
communications of organizations over the Internet, including the communications
regarding confidential data inside the organizations, as well with the partners. Besides
these, it can also be used for enhancing electronic commerce security, even for some Web
and electronic commerce applications that already have built-in security protocols
(Stallings, 2005).

Northrup & Thomas (2004) pointed out that IPsec can be also used to provide
protection against:

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

95

- Network-based denial-of-service attacks from untrusted computers

- Data corruption

- Data theft

- User-credential theft

The principal security feature offered by IPsec that enables it to ensure the security

of the communications in so many cases is that it can encrypt and/or authenticate all traffic
at the IP level. Consequently, all distributed applications, including remote logon,
client/server, e-mail, file transfer, Web access, and so on, can be secured by using IPsec.
So, in addition to the improved security, IPsec protocol can be used for enabling
communications between remote offices and remote access clients across Internet.

Ferguson & Schneier (1999) concluded that even if there is a lot of criticism
against IPsec because of various reasons (e.g. quality, services provided, complexity,
security flaws etc.) it is still probably the best IP security protocol available. The main
criticism of the authors for IPsec regards the complexity of the protocol. They stated that
IPsec contains too many options and too much flexibility, and there are often several ways
of doing the same or similar things within the protocol.

However, planning and configuring an IPSec infrastructure is a complex task due
to the inherent complexity of IPsec. In this chapter we presented the features of IPsec, the
main aspects of the protocols that it contains, and the security services provided for secure
communications.

In conclusion, for Jericho Project it is recommendable to use IPsec in transport
mode to secure the communications across Internet between two hosts. For using IPsec in
transport mode to encrypt and authenticate the data transmitted over Internet, the clients
have to be IPsec enabled.

However, many computers nowadays are not IPsec enabled. As a result, computers
that are IPsec enabled are typically configured to request peer computers to use IPsec to
for improving the security of the connection.

Northrup & Thomas (2004) described how two hosts establish a connection. Thus,
if two computers determine that they both have IPSec configured, and can agree upon a set
of security standards, they can begin to use IPSec for securing the communications. This
process is known as IPsec negotiation. If the computers fail to establish a negotiation (e.g.
the computers are not IPsec enabled, or might not have the same security protocols
enabled etc.) they might revert to unprotected IP communications or not communicate if
they cannot use IPsec. Of course, it is preferable not to communicate at all when the
negotiation fails and sensitive data needs to be securely transmitted over Internet.

Bragg (2003) suggested that negotiation policies should be used in the following
cases:

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

96

- Computer authentication is required before a connection is allowed: Thus,
connections from computers that cannot authenticate or are not IPsec enabled can
be blocked.

- Sensitive data must be transmitted: IPSec policies can be required to negotiate
encryption type, and thus ensure all data is protected.

- Ensure connection from specific computers only: Authentication can limit
connections. Explicit filters can limit the connections to specific computers using
their IP addresses.

When choosing to implement IPsec, there should be selected the option that best
meet the authentication and encryption needs. It is recommendable to choose both data
origin authentication and encryption features for protecting the transmitted data.

The encryption algorithms can be chosen from the one specified in the RFCs for
IPsec or might be also recommended by an organization’s security policy. However, based
on and results of data classification and on the security level attached to the data, there
should be chosen the adequate cryptographic algorithms for encrypting the transmitted
data. Essentially, there should be chosen the algorithms that have proven security and have
not been yet broken yet. For achieving integrity, it is also recommendable to use HMAC
SHA-1 algorithm because SHA-1 hash function requires more computational resources for
being broken. HMAC-SHA1 is the more secure function, partly due to SHA-1’s longer
key length (SHA-1 uses a 160-bit key as opposed to the 128-bit key used by MD5).
HMAC-MD5 is strong enough for a normal security environment, but HMAC-SHA1 is
the better choice for a high-level security environment (see Chapter 4 for more details)
(Zacker, 2006).

When implementing IPsec, there could be enforced that both master key and
encryption keys can be scheduled to change during data transmissions, and re-
authentication can be required.

Bragg (2003) pointed out that, generally, the more frequently the session is
authenticated and the more frequently master and encryption keys are changed, the more
secure the data will be. However, these options reduce the performance of the CPU. The
options for using IPsec should be made based on sensitivity of data (we assume that the
data is previously classified in the context of Jericho Project), and additional performance
requirements should be met by additional hardware support.

Northrup & Thomas (2004) stated that for IPsec implementations to be successful
in large organizations IPSec policies must be deployed to all computers in organizations,
and, also, the various methods used for deploying IPSec and the circumstances in which to
use each method should be very well understood.

Moreover, after IPsec has been implemented and deployed at a large scale for
securing the communications, additionally, there should be implemented mechanisms for
monitoring and troubleshooting IPsec. Monitoring IPSec is necessary for confirming that

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

97

IPSec has been successfully deployed and is actively protecting communications.
Although, IPsec is an open standard its use and configuration are still complex.

3.7 Comparison of IPsec and SSL/TLS security protocols

Both IPsec and SSL/TLS comprise security services that secure the
communications over Internet. They ensure the authenticity, integrity, and confidentiality
of the transmitted data.

As we have already stated in this chapter, SSL/TLS and IPsec can be used to
secure data transmissions in the context of Jericho Project. Generally, there are different
situations when these protocols are considered appropriate for being used (Bragg, 2004):

- When communications between specific computers can be defined, consider using
an IPsec policy.

- When transmissions to and from specific ports should be absolutely blocked, IPsec
blocking policies should be used. IPsec blocking policies are a way to create
Internet Protocol filters.

- When transmissions to and from specific computers must be secured, IPsec should
be used.

- SSL/TLS should be considered to secure communications for application
supported by this protocol, between clients and servers, when sensitive information
is transferred over Internet and needs to be secured. Essentially, Web server
applications can be secured using SSL/TLS protocol. In the context of Jericho
Project, SSL/TLS should be configured to require both server and client
authentication.

SSL/TLS operates at the transport layer of the OSI model, and it is not transparent
to applications. IPsec is a more universal security protocol because it operates at the
network layer. Consequently, it is absolutely transparent for applications.

IPsec is implemented by the operating system and is completely transparent to the
applications that use IPsec. Resultantly, IPsec can be used to protect almost any type of
network communication.

IPsec can be used to encrypt all data without any need to redesign the application.
SSL, however, must be designed into the individual application (Olifer & Olifer, 2007).
Moreover, SSL/TLS does not secure all applications. Therefore, SSL/TLS cannot be used
to encrypt all communications between two hosts.

On the other hand, IPsec secures all the desired network communications
independent of the interacting applications on the hosts. Additionally, IPsec provides
connectionless security for communications. So, IPsec, unlike SSL/TLS, can secure
connectionless communications such as UDP.

SSL/TLS is less flexible than IPsec because it only supports authentication by

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

98

means of public key certificates, while IPsec allows clients and servers to authenticate
each other by using either public key certificates or a shared secret. Additionally,
SSL/TLS allows one-way authentication, while IPSec requires both sides of a connection
to authenticate. However, in the context of Jericho Project there should be specified and
enforced mutual authentication, for both client and server, even when using SSL/TLS.

Northrup & Thomas (2004), Alshamsi & Saito (2005) summarized the differences
between IPsec and SSL/TLS as follows:

 IPsec SSL/TLS

Authentication Requires authentication for both
the client and the server

Requires either the client or the
server, or both, to be
authenticated

Authentication Type Authenticates by using either
public-key certificates or a shared
secret

Requires public-key certificate-
based authentication

Applications supported Can be used to authenticate and
encrypt communications for any
application

Can be used only to authenticate
and encrypt communications for
applications that specifically
support SSL/TLS

Technology Is a relatively a new technology
that is not yet widely adopted

Is a mature technology that is
widely adopted

Interoperability Does not integrate well with
other IPSec vendors, and in some
cases modifications are required

SSL is trouble free and well
integrated

MAC Both IPSec and SSL/TLS require
the implementation of HMAC-
SHA-1 and HMAC-MD5-1 for
authenticating the exchanged
messages after the connection is
established.

HMAC- SHA-1-96 12 Byte

HMAC-MD5-96 12 Byte

HMAC- SHA-1 20 Byte

HMAC-MD5 16 Byte

The strength of the Hash
Algorithm is based on the length
of the output.

Configuration Hard Easy

Pre-Shared Key Yes No

UDP support Yes No

Compression Support Yes OpenSSL only

Handshake Time Slow Fast

Table 3.14: Comparison of IPsec and SSL/TLS (adapted after Northrup & Thomas, 2004;

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

99

Alshamsi & Saito, 2005)

To conclude with, the following aspects should be considered when choosing
between IPsec and SSL/TLS for securing the communications over Internet and achieving
end-to-end encryption (Northrup & Thomas, 2004; Alshamsi & Saito, 2005; El Aoufi,
2006):

- IPsec can used to secure all IP traffic between computers; while SSL is specific to
individual applications

- IPsec is transparent to applications, so it can be used with protocols that run on top
of IP such as HTTP, FTP, and SMTP. But this can be regarded also as a concern,
because when using IPSec approach, it provides too much isolation between the
application and security services

- SSL/TLS is closely tied to the application

- IPSec can be used to ensure that only specific computers can connect to a server or
can communicate with another host, in order to prevent attacks from other
computers

- IPSec uses a shorter form of HMAC than SSL/TLS, thus SSL data integrity is
more secure

- SSL is more compatible with firewalls than IPSec

- Unlike SSL/TLS, IPsec clients need special IPsec software to be installed

- Although sometimes compression is beneficial in data transmission, SSL/TLS does
not support such a feature. IPsec supports compression

- In most cases IPSec does not interoperate well, so both sides of the connection are
required to have the same vendor’s IPsec deployment

The decision to use either IPSec or SSL for securing the communications depends
on a number of factors. It depends on the users, the users’ location, their reasons and needs
for access, the device they are using, the services they request, the level of access they
receive.

Alshamsi & Saito (2005) concluded that choosing between IPSec and SSL depends
on the security needs for a specific organization and, implicitly its users. When a user
makes a request for a specific service and this is supported by SSL/TLS, it is better to
select SSL/TLS because it eliminates the tasks of configuring, managing, and supporting
IPSec client software installed on the users’ computers, and it is easier and faster to deploy
in comparison with IPsec. Furthermore, SSL/TLS is also included in standard Web
browsers, such as Microsoft Internet Explorer and Mozilla FireFox.

We can conclude that SSL/TLS technology has more advantages than IPSec and it

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

100

started to be largely deployed and preferred for securing the communications. Nowadays
SSL/TLS can support a wide range of Web-based applications apart from Web browsing
and email, and it can be extended to support almost any IP-based application.

Also, most applications for mobile workers are starting to be web-based for several
reasons:

- Less training is required

- Application client software does not need to be installed on the users’ PC

- The applications become available from any computer connected to the company’s
network

However, there are also IP-based applications that are not Web applications. But,

the vendors of SSL/TLS technology have envisioned a few solutions to permit the use of
legacy applications via SSL:

- Web interfaces to legacy applications

- Plug-ins to support specific applications

Using SSL/TLS protocol does no impose any specific software or hardware
requirements, so it can be used from any computer connected to the Internet. However,
when using SSL/TLS, because users can use any computer with a browser to access the
Internet, certain policies should be specified and enforced by organizations for providing
access to uncontrolled client computers1.

El Aoufi (2006) presented the results published by Gartner with reference to a
comparison between SSL/TLS and IPsec. Gartner considers that IPsec protocol will be
replaced in the near future (till 2008) by SSL/TLS.

Gartner predicts that IPsec will play a minor role in securing the communications,
while, SSL/TLS will be the dominating technology for secure communications for most
organizations transferring data over Internet.

We conclude that for accomplishing the goals of secure communications in Jericho
Project it is adequate to employ end-to-end security provided by SSL/TLS, and use IPSec
only for applications that are not supported yet by SSL/TLS. Thus, IPSec will to be
implemented for securing communications to unsupported applications, while SSL/TLS
can be implemented as default for secure communications.

1 In the context of Jericho Project, this issue is discussed as a separate research topic

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

101

3.8 XML Encryption

 In the previous sub-chapters we have analysed SSL/TLS and IPsec protocols
located at different layers in the OSI Model, as possible solutions in Jericho Project for
providing secure communications within the scope of this project. As mentioned before,
for data in transit, encryption is often the most appropriate means of ensuring
confidentiality of communications.

 In this sub-chapter, we will shortly present the features of XML Encryption and the
security services that could provide for ensuring secure communications within the scope
of Jericho Project.

Thorsteinson & Ganesh (2003) underlined the main differences between the
security protocols that we have previously analyzed (SSL/TLS and IPsec) and that can be
used to protect privacy and ensure integrity of data transmitted over Internet, and XML
encryption.

The authors pointed out two aspects of XML Encryption that contrast with the
above presented cryptographic protocols:

- When using XML encryption, there can be selectively encrypted those XML
elements that represent sensitive data, and other non-sensitive elements may be
intentionally left unencrypted

- Moreover, XML encryption can be used for encrypting data that is either
transmitted directly to another application or accessed by many applications via
stored media, such as a disk file or database record.

To the contrary, SSL/TLS and IPSec protocols encrypt the entire connection as a
whole, allowing it to be used between two communicating entities. Anyway, XML
Encryption does not replace these security protocols, but instead solves an entirely
different type of security problem.

XML Encryption addresses two major issues:

- Encrypting only specific subsets of structured data

- Encrypting structured data storage that is accessible to multiple parties

Basically, encrypted data can be expressed in a structured manner using XML and
portions of an XML document can be selectively encrypted. XML Encryption provides a
standardized means for encrypting structured data and representing the result in a standard
XML format. O’Neill et al. (2003) emphasized that selective encryption of an XML
document is a new mechanisms introduced by XML Encryption.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

102

O’Neill et al. (2003) described the correspondence between Web Services and
Services Oriented Architecture (SOA). The term “Services” in Web Services refers to a
Service-Oriented Architecture (SOA). SOA is a recent development in distributed
computing, in which applications call functionality (e.g. service, data) from other
applications over a network (in the case of Jericho Project, the network is the Internet).

In an SOA, functionality is “published” on a network where two important
capabilities are provided— “discovery,” the ability to find the functionality, and
“binding,” the ability to connect to the functionality. In the Web Services architecture,
these activities correspond to three roles: Web Service provider, Web Service requester,
and Web Service broker, which correspond to the “publish,” “find,” and “bind” aspects of
a Service Oriented Architecture.

There are Web Services technologies (e.g. WSDL, SOAP etc.) that enable SOA to
run over Internet. Presenting these technologies is out of the scope of this thesis.

O’Neill et al. (2003) indicated the SOA publish/find/bind functionality in Web
Services depends on XML. Rosenberg & Remy (2004) pointed out that XML is the
foundation of the Web Services standards because XML is text-based and is designed to
make business information transportable and self-describing.

Further, we will describe the concepts that are used in for describing XML
Encryption.

 World Wide Web Consortium (W3C) created a standard, business-centric data
representation format, namely the Extensible Markup Language (XML). This is a meta
language intended to supplement HTML’s presentation features with the ability to
describe the nature of the information being presented (Erl, 2004).

XML is a derivative of the Standard General Markup Language (SGML). SGML is
an international standard for defining electronic documents and represents a meta
document definition language used for describing many document types with defining tags
(Hartman et al., 2003).

XML supplements the content of a document with meta information - self-
descriptive labels for each piece of text. Thus, a Web document becomes a self-contained,
mini-repository (Erl, 2004).

XML Schema is a way of describing the rules for a particular XML document or
instance.

XML can be used as a manner to transport information as it passed between
different computing systems. Object Access Protocol (SOAP) was defined as a way to
transport XML from one computer to another. Observed in terms of a Service-Oriented
Architecture, SOAP allows applications to bind to other applications for making use of

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

103

their functionality. Essentially, SOAP provides a simple, consistent, yet extensible
mechanism that allows one application to send an XML message to another application, so
it can be regarded as a messaging protocol, as well as a means of using functionality that is
published by a remote application (O’Neill et al., 2003; Rosenberg & Remy, 2004).

Because XML is being used more and more to transmit data over Internet, it is vital
to protect the transferred data in terms of privacy, integrity and data source authentication.
Depending on the type of data and its security level, sometimes, the data can be
transmitted in plaintext, but with the security services that ensure integrity of data and
authentication of the data source. Thus, mechanisms, such as XML Encryption and XML
digital signatures can be used for securing the transmitted data.

Firstly, the same as in case of applying SSL/TLS or IPsec, the data has to be
classified and should have attached a certain level of security, determining in this way how
secure the data needs to be and what security mechanisms should be applied in order to
protect it in traffic.

XML Signature represents the underpinning technology for the standard called
WS-Security and for Web services security in general. XML Signature is built on the
mature digital signature technology. Digital signatures provide a mechanism for message
integrity and non-repudiation. XML Signature enables the encoding of digital signatures
into XML documents. XML Signature combines the utility and power of digital signature
mechanism with the power and flexibility of XML.

XML Encryption is built on the mature cryptographic mechanisms, specifically on
symmetric-key cryptography. The core requirements for XML Encryption are that it must
be able to encrypt an arbitrarily sized XML message, and it must do so efficiently. XML
Encryption is employed basically for providing message confidentiality. In essence, XML
Encryption represents a process for encrypting sensitive data and representing the result
using the syntax of XML.

O’Neill et al. (2003), Rosenberg & Remy (2004) mentioned that XML Encryption
is appropriate to be used for Web Services, besides SSL/TLS or IPsec protocols, is
because it allows the security principle of confidentiality to be satisfied across more than
just the context of a single SOAP request. The security context of a SOAP message often
extends beyond a single SOAP request. One obvious scenario is if information in a SOAP
message must be kept confidential while it is sent over a multi-hop SOAP transaction. In
this scenario, if SSL alone is used, a gap exists at each SOAP endpoint, where the
sensitive data would be temporarily in the clear.

Moreover, if information in an XML message must be kept encrypted for
confidentiality reasons, after the XML message has been processed by a Web Service,
XML Encryption is also useful. This means that XML Encryption is what is called
persistent encryption. This contrasts with session encryption (as in the case of SSL/TLS
for instance). The encryption is not linked to the point-to-point SOAP exchange, so it does
not end when the message reaches a SOAP endpoint.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

104

Thus, the key benefit XML Encryption is that it allows confidentiality to be
satisfied across more than just the context of a single SOAP request. Moreover, it allows
selective encryption and persistent encryption as well.

XML Signature and XML Encryption apply standard cryptographic algorithms to
data for achieving the desired security services for secure communications, and then store
that encrypted and signed result in XML. Both mechanisms can be applied selectively
only to portions of an XML document.

Thorsteinson & Ganesh (2003) indicated that XML Encryption, the same as the
other protocols used for securing the communications, makes use of a combination of
symmetric and public-key cryptographic algorithms. The symmetric-key algorithms are
used to encrypt the XML data elements, and the public-key algorithms are used to securely
exchange the symmetric key used in the encryption process.

Table 3.15 enumerates some of the algorithms and their identifiers used for XML
security:

Algorithm Type Identifier
Triple DES Block http://www.w3.org/2001/04/xmlenc#tripledes-cbc

AES-128 Block http://www.w3.org/2001/04/xmlenc#aes128-cbc

AES-256 Block http://www.w3.org/2001/04/xmlenc#aes256-cbc

AES-192 Block http://www.w3.org/2001/04/xmlenc#aes192-cbc

RSA-v1.5 Key transport http://www.w3.org/2001/04/xmlenc#rsa-1_5

RSA-OAEP Key transport http://www.w3.org/2001/04/xmlenc#rsa-oaep-
mgf1p

Diffie-
Hellman

Key agreement http://www.w3.org/2001/04/xmlenc#dh

Triple DES Symmetric key
wrap

http://www.w3.org/2001/04/xmlenc#kw-tripledes

AES-128 Symmetric key
wrap

http://www.w3.org/2001/04/xmlenc#kw-aes128

AES-256 Symmetric key
wrap

http://www.w3.org/2001/04/xmlenc#kw-aes256

AES-192 Symmetric key
wrap

http://www.w3.org/2001/04/xmlenc#kw-aes192

SHA1 Message digest http://www.w3.org/2000/09/xmldsig#sha1

SHA256 Message digest http://www.w3.org/2000/09/xmldsig#sha256

SHA512 Message digest http://www.w3.org/2000/09/xmldsig#sha512

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

105

RIPEMD-
160

Message digest http://www.w3.org/2001/04/xmlenc#ripemd160

Base64 Encoding http://www.w3.org/2000/09/xmldsig#base64

Table 3.15: Cryptographic algorithms and their identifiers for XML Security

In the view of Rosenberg & Remy (2004), XML Signature and XML Encryption
are fundamental mechanisms for the next generation of emerging standards that use these
two standards as building blocks. For instance, WS-Security, the emerging OASIS
standard for Web services security, XML Key Management Specification (XKMS), and
Security Assertion Markup Language (SAML), among many others, all rely on XML
Signature and/or XML Encryption.

W3C has developed specifications for encrypting and digitally signing XML. The
XML-Signature Syntax and Processing specification1 defines processing rules and syntax
to provide integrity, message authentication, and signer authentication services. The XML
Encryption Syntax and Processing specification2 defines a process for encrypting data and
representing the result in an XML document.

 In the literature (O’Neill et al., 2003; Thorsteinson & Ganesh, 2003; Burnett, &
Foster, 2004; Microsoft Corporation, 2005 etc.) described the process of achieving
message layer security through using mechanisms such as XML Encryption and XML
Signature. Moreover, they have presented the advantages of this method of achieving end-
to-end security in comparison with SSL/TLS and IPsec protocols. Message layer security
represents an approach used for achieving secure communications, in which all the
information related to security is encapsulated in the message.

 In the context of Jericho Project XML encryption and XML Signature could be
used when it is not necessary to encrypt and sign the entire data, but just the significant
parts of it (in terms of security level and sensitivity) for achieving end-to-end security of
the data in transit. For instance, XML Encryption allows encrypting a single, specific
element of an XML document instead of encrypting the entire document or data, as would
be the case in SSL/TLS and IPsec. Burnett & Foster (2004) pointed out that the resource
benefit of XML Encryption that offer the option of encrypting only a small amount of data
instead of the entire document becomes substantial.

Moreover, the security provided by message layer security that uses XML
Encryption regards the protection of the stored data as well, after it has been transmitted to
the destination. While SSL/TLS and IPsec protect the data in only in traffic across the
Internet, XML is a data-formatting specification that can be used to archive and store data
as well, apart from protecting it in transit.

Thus, we can conclude that message layer security is more flexible than the other
security protocols we proposed in the context of Jericho Project for secure

1 http://www.w3.org/TR/xmldsig-core/
2 http://www.w3.org/TR/xmlenc-core/

Secure Communications: ‘End-to-end encryption’ in Jericho networks

Alina Stan, VU University Amsterdam

106

communications that incorporates all the security aspects of securing the data in transit in
the message itself. This is in accordance with the Jericho Forum Commandments that
specify that individual systems and data will need to be capable of protecting themselves
in Jericho networks.

Chapter 4 Cryptography

4.1 Introduction

Cryptography is mainly used for sending information between different entities in
such ways that others than the intended recipients cannot decipher it (Kaufman et al.,
2002, p. 41).

The scope of cryptography has diversified and became broader in the last years,
mainly due to the advent of Internet. Currently, cryptography has a broader usage and
applicability and includes cryptographic protocols, digital signatures along with the
cryptographic algorithms and ciphers.

In this chapter, firstly, we create a background for the research of cryptography,
and then we present a more detailed approach for asymmetric key cryptography,
symmetric key cryptography, elliptic curve cryptography, hash functions, MAC (message
authentication code). Further more, we will emphasize the use of cryptography in the real
world for offering certain security services and for designing security protocols that can
be used within the scope of Jericho Project.

We will begin our research in cryptography with the investigation of classical
cipher and examples that incorporate fundamental security principles used in the modern
ciphers as well. Then we will deal with more recent developed algorithms in
cryptography, with attacks and methods to break cryptographic algorithms.

The main purpose of this chapter is to offer a support and background knowledge
for cryptographic primitives and protocols mentioned in the previous chapters for
achieving the security requirements for secure communications in Jericho Project.
Moreover, we aim at making recommendations regarding the cryptographic primitives
that are the most adequate to use for end-to-end encryption in Jericho Project.

Firstly, we will provide an overview of cryptography, and then symmetric and
public – key algorithms will be presented.

The cryptographic algorithms are divided into two groups: symmetric key
algorithms and public-key algorithms. Symmetric key algorithms (secret-key algorithms)
suppose that the same secret key is shared by the communicating parties for encryption
and decryption. In public-key algorithms (asymmetric cryptographic algorithms), there
are used two types of keys, a private key that is kept secret (e.g. for decryption, for
signatures), and a public key that is made public.

Further, hash functions are introduced, and then message authentication codes,
followed by a presentation of elliptic curve cryptography.

Finally, we will have a look at the current situation of cryptography in the real
world and at the most appropriate algorithms that can be used for designing secure
protocols in the context of Jericho Project.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

108

4.2 Overview of cryptography

As Menezes et al. (1997), Mao (2003) stated, cryptography was used in the past
(to be interpreted as the period before the 1960s), and is still used nowadays, as a tool for
protecting the national secrets and strategies. Due to the advances in information
technology, in the 1960s, there has started to appear the need for protecting the
information in digital form also in the private sector.

Although in the past cryptography was used exclusively for military and
governments, nowadays, is largely deployed and underpins the security of the electronic
world in civilian and corporate systems. The secure communications over Internet rely on
the security features obtained with cryptography.

Due to the explosion in communication technologies that erupted in the last
decennia and to the wide use of the Internet, cryptography has become necessary (Atreya
et al., 2002). The increasing computational power, parallel computing, new
communication technologies increased the chances that different types of attacks can be
performed on cryptographic algorithms. Therefore, the field of cryptography is also
evolving.

Mao (2003) underlined the need for the cryptography used in corporate
environments to adopt an open approach. The author stated that the cryptographic keys
and the keying material should be kept secret, but the cryptographic algorithms and
primitives should be made public for general review and, eventually, improvements.

The same as required by Jericho Forum members, Mao (2003) acknowledged that
in the areas of cryptographic algorithms, protocols and security systems, open research
and standards, as well, are more than just a common means to acquire and advance
knowledge. In Jericho Forum Commandment number 4 it is articulated that secure
protocols demand open peer review to provide robust assessment and thus wide
acceptance and use.

According to Stamp (2006, p.2), cryptography has an important role to play in
security protocols and represents a fundamental information security tool. Moreover,
Vaudenay (2006) states that “cryptography is the science of information and
communication security”. Also, the same author defines cryptography as “the science of
information protection against unauthorized parties by preventing unauthorized alteration
of use.”

Stallings (2005) acknowledges that cryptography seems to be the most important
aspect of communications security, and its importance increases in the field of computer
security. In fact, cryptography comprises different mathematical techniques designed to
protect communications.

In this thesis we allocate also a considerate space for investigating, presenting and
comparing different aspects of cryptography that are relevant and can further be used for
Jericho Project for designing secure protocols in order to achieve secure communications
over the Internet.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

109

 “Cryptography itself has grown into an important branch of applied mathematics
and theoretical computer science” (Dent & Mitchell, 2005, p.2).

“Cryptography is the basic building block on which security principles such as
authentication, integrity, non-repudiation and confidentiality are built” (modified De Laet
& Schauwers, 2004; Ramachandran, 2002; Peter Gutmann1).

According to the online publications of RSA Laboratories2, cryptography can be
defined briefly as the study of techniques and applications that depend on the existence of
difficult problems. So, cryptography is fundamentally based on problems that are difficult
to solve. A problem can be difficult to solve due to various reasons, for instance it
requires secret knowledge to be able to find a solution or it is intrinsically difficult to
complete etc.

Difficult, in the context of cryptography, refers more to the computational
requirements in finding a solution than the algorithmic and mathematical conception of
the problem. These problems are called hard problems (in cryptography e.g. integer
factoring, discrete logarithms, elliptic curve discrete logarithms). The role of a hard
problem is to provide a security solution or service to users3.

For instance, in the field of cryptography, encryption is used to provide
confidentiality of data, and can also provide authentication and data integrity; digital
signatures provide authentication, integrity and non-repudiation; hash functions provide
integrity and can provide also authentication.

Confidentiality means insuring that the information is protected against
unauthorized users and is kept private.

Cryptography can be also used to verify the integrity of a communication. Data
integrity means ensuring that data has not been modified by unauthorized entities, and,
thus, the message received by the recipient is the same as the message sent by the sender.

Authentication provided through the means of cryptography can involve
authentication of the entities involved in the communication process, and also data
authentication origin (verify that the sender of the data is indeed the one who is supposed
to be, and that is not being impersonated by an intruder).

Non-repudiation ensures that the sender of any message cannot deny his/her
actions. This can be achieved with digital signatures in conjunction with asymmetric key
encryption (Solomon & Chappel, 2005).

What is interesting about cryptography in the context of Jericho Project is the fact
that basic cryptographic tools can be used to design and build cryptographic (security)
protocols for secure communications over the Internet (e.g. transfer electronic money,
authentication, end-to-end encryption etc.).`

1 Peter Gutmann’ website http://www.cs.auckland.ac.nz/~pgut001/tutorial/index.html accessed April 2007
2 http://www.rsa.com/rsalabs/node.asp?id=2157 accessed May 2007
3 www.rsa.com/rsalabs/staff/bios/bkaliski/publications/other/kaliski-next-pkc-gt-1-2000.ppt accessed May
2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

110

Before proceeding, we give some practical definitions for some basic
cryptographic concepts.

- A message in the original form is named a plaintext or cleartext

- The mangled data is known as ciphertext

- A cryptographic algorithm converts a plaintext into a ciphertext

- The process of transforming a plaintext in ciphertext is named encryption in order
to prevent any but the intended recipient from reading that data. The reverse of
encryption is named decryption

According to Mao (2003), encryption is a practical way for achieving information
secrecy. The author states that “Modern encryption techniques are mathematical
transformations (algorithms) which treat messages as numbers or algebraic elements in a
space and transform them between a region of “meaningful messages” and a region of
“unintelligible messages”.

- A cipher or cryptosystem is any method of encrypting text1. A cipher or
cryptosystem is used to encrypt data.

 A thorough definition of a cryptosystem or a cryptographic system is provided by
Menezes et al. (1996), Mao (2003), Oppliger (2005, p. 229).

 Thus, a cryptographic system consists of:

- a plaintext message space M: a set of strings over some alphabet

- a ciphertext message space C: a set of possible ciphertext messages

- an encryption key space K: a set of possible encryption keys, and a decryption
key space K’: a set of possible decryption keys

- an efficient key generation algorithm G: N → K X K’

- an efficient encryption algorithm E: M X K → C

- an efficient encryption algorithm D: C X K ’ → M

For, instance, for integer 1, G(1) generates a key pair (ke, kd) ∈ K X K’ of length l.

For ke ∈ K and m ∈ M, there will result: c= E ke(m) and this denotes the
encryption transformation.

Further, m= D kd(c) denotes the decryption transformation. It is though
necessary that for all m ∈ M and all ke ∈ K , there exists ke ∈ K’.

D kd(E ke(m)) =m

1 http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213593,00.html accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

111

The following figure illustrates a cryptographic system:

Plaintext input

Encryption
algorithm

Key
generation

Transmitted
Ciphertext

Message channel

Key channel

Ke
Kd

Plaintext output

Decryption
algorithm

Figure 4.1: Cryptographic Systems (adaptation after Mao, 2003)

As we mentioned earlier, there are two types of cryptosystems: secret-key

cryptosystems (generally named symmetric-key cryptosystems in the literature) and
public-key cryptosystems. The symmetric cryptosystems use the same key for encryption
and decryption of the data (Ke=Kd). While, the public-key cryptosystems use a public
key (Ke) for encryption and a private key (Kd) for decryption or for signatures.

Oppliger (2005) provides the following definitions for secret-key and for public-
key cryptosystems.

- A secret-key cryptosystem is a cryptographic system that uses secret parameters
that are shared between the participating entities.

- A public-key cryptosystem is a cryptographic system that uses secret parameters
that are not shared between the participating entities.

Stallings (2005) summarized the main characteristics of cryptographic systems
according to three dimensions:

1) The type of operations used for transforming plaintext to ciphertext
The encryption algorithms are based on two general principles: substitution, in

which each element in the plaintext (bit, letter, group of bits or letters) is mapped into
another element, and transposition or permutation, in which elements in the plaintext are
rearranged.

Most cryptographic systems involve multiple stages of substitutions and

transpositions.

There are also variations of the operations mentioned above (substitution and
transposition/permutation) that are discussed in the literature (Oppliger, 2005).

- monoalphabetic substitution cipher: each letter of the plaintext alphabet is
replaced by another letter of the ciphertext alphabet; in this type of substitution,
a plaintext letter is always replaced by the same ciphertext letter.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

112

- homophonic substitution cipher: plaintext letters can be replaced by more than
one ciphertext letter. The letters that have a higher frequency in the plaintext are
given more equivalents than the lower frequency letters

- polyalphabetic substitution ciphers: flatten the frequency distribution of
ciphertext letters by using multiple ciphertext alphabets

2) The number of keys used

The system can be single-key or symmetric when the sender and the receiver use the

same key. If the sender and receiver use different keys, the system is referred to as
asymmetric or public-key encryption.

3) The way in which the plaintext is processed

According to this dimension, the ciphers are categorized in block and stream
ciphers. Block and stream ciphers differ in how large a unit of the plaintext message is
processed in each encryption or decryption operation. A unit may be either a bit or a
block of bits (e.g. 64 or 128 bits). Block ciphers encrypt plaintext in blocks of different
dimensions.

Block ciphers take as input, messages that are precisely n-bits long and produce
outputs of the same length (Dent & Mitchell, 2005; Seys, 2006). Common block sizes are
64 and 128 bits. While block ciphers operate on large blocks of data, stream ciphers
typically operate on smaller units of plaintext, usually bits1. A stream cipher encrypts a
plaintext one bit or one byte at a time (Stallings, 2005).

Usually, a block cipher consists of a round function that is iterated several rounds.
In each round, an appropriate transformation is applied using a subkey that is derived
from the original secret key. With each performed round, the cryptanalysis of the cipher
becomes more difficult, thus the security is improved. Nonetheless, with every performed
round, the cipher becomes slower and more computations are required (Seys, 2006).

The round function is typically a function of the output of the previous round and
of a subkey which is a key dependent value calculated via a key scheduling algorithm.

Dent & Mitchell (2005) remarked that the major problem with block ciphers is
that the block length n is quite small and, typically, only short message can be encrypted
with block ciphers. Also, if a block cipher used to encrypt the same plaintext message
unit more times with the same encryption key, the same ciphertext block results every
time.

1 http://www.rsa.com/rsalabs/node.asp?id=2174 accessed April 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

113

The block ciphers have different modes of operation1 (Schneier, 1996; Menezes et
al., 1997; Kaufman et al., 2002; Dent & Mitchell, 2005; Oppliger, 2005; etc). These
modes of operation are used for plaintext messages exceeding one block in length.

We give a short overview of these modes of operation in Section 4.2.4. According
to the definition provided by Dent & Mitchell, a mode of operation for a block cipher is a
method of using a block cipher iteratively to encipher long messages and at the same
(generally) avoiding the problems associated with block ciphers (e.g. sending the same
message twice, avoiding certain attacks based on statistical analysis).

Menezes et al. (1997, p. 256) enumerated in their book some of the desirable
characteristics for block ciphers. Some of these characteristics are:

- each bit of the ciphertext should depend on all bits of the key and all bits of the
plaintext;

- there should be no statistical relationship evident between plaintext and
ciphertext;

- altering any single plaintext or key bit should alter each ciphertext bit with
probability 1/2 ;

- altering a ciphertext bit should result in an unpredictable change to the recovered
plaintext block.

In 1883, Kerckhoffs wrote a list of principles with reference to the cryptosystems

(Menezes et al., 1996; Mao, 2003). From these principles, one became to be known as
Kerchoffs’ principle. This states that the knowledge of the algorithm and the key size, as
well as availability of known plaintext are standard assumptions in modern cryptanalysis
(Mao, 2003). An additional assumption in this case is that the attackers have access to all
the communications over the ciphertext channel. So, the cryptographic strengths of
cryptosystems should not be evaluated based on secrecy of the above mentioned
elements. Also, Schneier (1996) stated that “a good cryptosystem is one in which all the
security is inherent in knowledge of the key and none is inherent in knowledge of the
algorithm.”

4.2.1 Cryptographic Attacks

Cryptanalysis is the study of techniques that attempt to compromise, defeat or
break cryptographic primitives2. Cryptography and cryptanalysis form together the field
of cryptology.

1 http://www.itl.nist.gov/fipspubs/fip81.htm DES Modes of Operation, FIPS PUB 81, National Bureau of
Standards, U.S. Department of Commerce, 1981
2 http://www.rsa.com/rsalabs/node.asp?id=2157 accessed April 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

114

“Cryptographic attacks are designed to subvert the security of cryptographic
algorithms, and they are used to attempt to decrypt data without prior access to a key”
(Conrad, 2007). The cryptographic attacks belong to the field of cryptanalysis.

The main purpose of attacks on cryptosystem is to recover the key in use, rather
then simply to recover the plaintext of a single ciphertext.

The types of attacks against encryption systems are discussed thoroughly in the
literature (Schneier, 1996; Kaufman et al., 2002, p. 45; Mao, 2003; Rhee, 2003; Dent &
Mitchell, 2005; Oppliger, 2005, p. 233-235; Stallings, 2005 ; Vaudney, 2006; etc.).

The cryptanalytic attacks attempt to deduce partially or completely a plaintext or
to deduce the key, based on the knowledge about the encryption algorithm and in some
cases on some general characteristics of the plaintext. The attacker might even be in
possession of some plaintext-ciphertext pairs.

In brute-force attacks, the attacker tries every possible key on a part of ciphertext
until finally a plaintext is obtained. Statistically, on average, half of all possible keys must
be tried to achieve success.

Further, we will introduce some of the widely known and studied cryptanalytic
attacks.

- Ciphertext-only attack

The cryptanalyst knows one or several ciphertext units and tries to deduce the
corresponding plaintext message units and/or the key (or keys) that has (have) been used
for encryption. If the attacker succeeds to recover the key (or keys), then he/she is able to
decrypt any ciphertext encrypted with the key.

- Known-plaintext attack

The cryptanalyst has access to one or more pairs of <ciphertext, plaintext> and tries to
deduce the key (or keys) used to encrypt the messages. The attacker tries to decrypt also
other ciphertexts for which he/she does not have yet the corresponding plaintext.

- Chosen-plaintext attack
 In this type of attack, the cryptanalyst has access to the encryption function or to the

device that implements it. So, he/she can encrypt any plaintext at his/her choice. This is
more powerful than a known-plaintext attack, because the cryptanalyst can choose
specific plaintext messages to be encrypted and this could provide some additional
information about the key.

The attacker tries to deduce the key (or keys) used for encrypting the messages or to
deduce an algorithm for decrypting new ciphers for which he/she does not possess the
corresponding plaintext messages, but these have been encrypted with the same key (or
keys). This type of attack is most common for public-key cryptography in the case that
the attacker has access to the public key used for encryption.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

115

The chosen plaintext attack can be performed in two modes1 (Schneier, 1996;
Oppliger, 2005):

- Batch chosen-plaintext attack: The plaintext messages are chosen by the attacker
beforehand encryption occurs.

- Adaptive chosen-plaintext attack: The attacker has not only the possibility of
choosing plaintext messages for encryption, but also he/she can modify
dynamically his/her choice of plaintext for further encryption based on the
previous encryption results that were obtained.

- Adaptive chosen-ciphertext attack
Through this type of attack, the cryptanalyst has access to the decryption function (or

the device that implements the function, respectively) and can decrypt any ciphertext unit
of his/her choice. A device that provides decryptions of chosen ciphertexts units (either
by accident or by design) is generically referred to as a “decryption oracle”2.

The attacker tries to retrieve the key (or keys) that is (are) used for decryption or to
determine the encryption scheme for being able to encrypt plaintext message units for
which he/she does not have yet the corresponding ciphertext units.

Also, this type of attack can be of two types:

- Non-adaptive chosen-ciphertext attack: This type of attack is named also
indifferen chosen-ciphertext attack (or “lunchtime” attack). The ciphertext units
are chosen before the decryption process begins. In the most successful attack
scenario, this type of attack might successfully reveal the secret decryption key
and thus completely break the scheme.

- Adaptive chosen-ciphertext attack: This type of attack is know also as
“”midnight” attack. The attacker can choose dynamically the ciphertext units for
decryption, while the attack is performed. The results of the previous decrypted
ciphertext units are used for selecting the subsequent ciphertext units, in order to
gain information about encrypted messages and about the decryption key (or
keys).

The cryptanalysts can use and exploit any combinations of these attacks in order

to gain information about the encryption/decryption key (or keys). Nonetheless,
Kerckoffs’ principle applies without any doubt to the cryptosystems, namely, the
encryption and decryption algorithms are assumed to be publicly known.

If a cryptographic algorithm or its implementation is kept secret (known in the
literature as security through obscurity) this does not make the respective algorithm
unbreakable. In fact, the best algorithms that exist are the ones that have been made

1 http://en.wikipedia.org/wiki/Chosen_plaintext_attack accessed April 2007
2 http://en.wikipedia.org/wiki/Chosen-ciphertext_attack accessed April 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

116

public (Schneier, 1996; Lail, 2002). These have been analyzed by the best cryptographers
along the years and still remained unbreakable.

4.3 Public-key cryptography

In this sub-chapter we describe how public-key algorithms work. Furthermore, we

perform an investigation regarding the security of the presented algorithms and the
attacks to which they are exposed.

In 1976, Whitfield Diffie and Martin Hellman published in an article (Diffie &
Hellman, 1976) their work regarding public-key cryptosystem that changed the paradigm
of cryptography forever (Schneier, 1996). In this article, the two authors described
public-key cryptography and its applications.

In public-key cryptography, the encryption, and, respectively, the decryption
process are performed using two different keys, this is why it is also called asymmetric
encryption.

The encryption (public) keys can be made public. So, for instance, if the key is
publicly available on Internet, anyone could theoretically encrypt a plaintext message
with that key and send the ciphertext message to the owner of the private key. The
entities participating in the communication process can exchange encrypted messages
without any prior arrangement regarding the public key.

The public-key algorithms have the following essential characteristic: It is
computationally infeasible to determine the decryption key given only knowledge of the
cryptographic algorithm and the encryption key (Stallings, 2005).

While, in symmetric-key cryptography the participants in any secure
communication must have a prior ‘relationship’ because they must agree upon a common
secret key that they will further use for encryption and decryption, with public-key
cryptography it might be possible to securely exchange messages between entities with
no prior ‘relationship’.

Public-key cryptography can be used for more purposes: for exchanging between
entities the secret keys used in symmetric key algorithms (key agreement & key
management), for signing with the private key digital documents (authentication), and
also for the same purposes of symmetric-key cryptography (encrypting data).

Below, in Table 4.1 there are illustrated the applications of some widely known
public-key algorithms:

ALGORITHM Encryption/Decryption Digital Signature Key Exchange
RSA Yes Yes Yes
Diffie-Hellman Yes1 No Yes

1 According to Kaufman et al., 2002, p. 170

Secure Communications: ‘End-to-end encryption’ in Jericho networks

117

Elliptic curve Yes Yes Yes

Table 4.1: Applications for Public-key cryptosystems (modified after Stallings, 2005)

Stamp (2006) acknowledged that public-key cryptography has a critical role to
play in modern information security.

Usually, public-key cryptography and symmetric-key cryptography are used
together in security protocols for achieving different security services. The resulting
cryptosystems that combine secret- and public-key cryptography are often called hybrid.
As we saw in Chapter 3 of this thesis, hybrid cryptosystems are used intensively within
security protocols.

Generally, as Schneider exposed in his book (1996), in most practical
implementations public-key cryptography is used to secure and distribute session keys
that are per session generated and used within symmetric-key algorithms for encrypting
data in traffic.

A public-key cryptosystem can be specified by a set of three algorithms: a
probabilistic key generation algorithm, an encryption algorithm and a decryption
algorithm.

Security of public-key cryptosystems

The security of a public-key cryptosystem is conditional on some assumptions
that certain problems are intractable.

In public-key cryptography a special attention is given to finding adequate
protection against (adaptive) chosen-plaintext attacks, because the encryption key is
public and these types of attacks are always possible and trivial to be performed. Thus,
the design of cryptosystems that are resistant against these types of attacks receives a
special importance in the research of public-key cryptosystems (Oppliger, 2005).

In relation with the chosen-plaintext attacks, in public-key cryptosystems the
concept of “semantic security against adaptive chosen-ciphertext attacks” has been
introduced. For a cryptosystem to be semantically secure, it must be infeasible for an
adversary to derive significant information about a plaintext message when given only its
ciphertext and the corresponding public encryption key. Semantic security can be
described also as indistinguishability of ciphertexts, meaning that the ciphertexts cannot
be distinguished and consequently associated with plaintext messages.

Another notion of security for public-key cryptosystems is non-malleability. An
asymmetric encryption system is non-malleable if it is computationally infeasible to
modify a ciphertext so that it has a predictable effect on the plaintext message. In the
literature it has been shown that the notion of non-malleability is equivalent to the notion
of semantic security against chosen-ciphertext attacks (Oppliger, 2005).

Secure Communications: ‘End-to-end encryption’ in Jericho networks

118

In fact, the security of any cryptosystem depends on the length of the key and the
computational work involved for breaking such a scheme (Stallings, 2005).

4.3.1 RSA

RSA public-key cryptosystem was developed in 1977 by Ron Rivest, Adi Shamir,
and Len Adleman at MIT and first published in 1978. RSA is a block cipher, where each
block of plaintext has a binary value less than some number n. So, the block size must be
less than or equal to log2(n); in practice, the block size is i bits, where 2i < n ≤ 2i+1

(Stallings, 2005).

RSA algorithm can be used for both public key encryption and digital signatures.
The security of this algorithm is based on factoring large integers.

Further, we describe RSA algorithm:

- Two large primes p and q are randomly chosen (Kaufman et al. (2002, p. 152)
advised to choose them around 256 bits each); these numbers are kept private.

- p · q = n is computed; n is publicly known.

- n is the modulus for both the public and private keys

- The totient1 Φ(n) = (p-1)(q-1) is computed

- An integer number e is chosen, which is relatively prime to Φ(n)

- The public key for this algorithm is {e, n}

- For generating the private key, the number d should be found that is the
multiplicative inverse of e mod Φ(n) (d · e = 1 mod Φ(n)) ; The relation d · e = k ·
Φ(n) should be satisfied for any integer k

- The private key for this algorithm is {d, n}

- Encryption of message m : c = me mod n

- Decryption of ciphertext c: m = cd mod n

 According to Stallings (2005), this algorithm has to meet the following
requirements in order to be considered a satisfactory public-key cryptosystem:

- It is possible to find values of e, d, n such that med mod n = m, for all m< n.

- It is relatively easy to calculate me mod n and cd, for all values m< n.

- It is infeasible to determine d given e and n.

1 The totient Φ(n) shows how many numbers are relatively prime to n. Relatively prime means that the
numbers do not share any common factors except 1.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

119

In the literature (Kaufman et al., 2002) it is pointed out that RSA is not less secure
if the number e, relatively prime to (p-1)(q-1), is chosen to be the same number. If the
number e is small or easy to compute, then the operations within RSA become more
efficient. On the other hand, number d, which is the multiplicative inverse of e mod Φ(n),
cannot be chosen to be small or a constant because of the possible attacks that might be
conducted on such a private key.

Kaufman et al. (2002) indicated two popular values for e that are 3 and 65537.
These exponents work only if they are relatively prime to Φ(n).

Security of RSA

A brute force attack on RSA requires an exponential amount of overhead
(Kaufman et al., 2002). The security of RSA is based on the difficulty of factoring big
numbers.

Stallings (2005) enumerated four types of attacks that can be conducted in order
to break RSA:

- Brute force: This involves trying all possible private keys.

- Mathematical attacks: There are several approaches, all equivalent in effort to
factoring the product of two primes.

- Timing attacks: These depend on the running time of the decryption algorithm.

- Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm.

In addition to these mentioned attacks, there is always the risk of having side-
channel attacks against a specific implementation of the algorithm.

Stallings (2005) pointed out that the choice of a small constant value of d for
efficient operation is not recommendable when using RSA algorithm. This is because, a
small value of d is vulnerable to a brute-force attack and to other forms of cryptanalysis.
So, there should be used a large key space when choosing the private key d. Thus, the
larger the number of bits in d, the better. But, because the calculations involved, both in
key generation and in encryption/decryption, are complex, the larger the size of the key,
the slower will run the system.

Oppliger (2005) underlined as well the importance of the size of the public and
private exponents, from a security point of view. As presented above as well, working
with small private exponents is dangerous.

In Table 4.2 below there are enumerated the successful attempts of breaking RSA
keys as responses to the challenges launched by RSA Laboratories. The level of effort is
measured in MIPS-years: a million-instructions-per-second processor running for one

Secure Communications: ‘End-to-end encryption’ in Jericho networks

120

year, which is about 3 x 1013 instructions executed. A 1 GHz Pentium is about a 250-
MIPS machine.

Number of
Decimal Digits

Approximate
Number of

Bits

Date Achieved MIPS-years Algorithm

100 332 April 1991 7 Quadratic sieve

110 365 April 1992 75 Quadratic sieve

120 398 June 1993 830 Quadratic sieve

129 428 April 1994 5000 Quadratic sieve

130 431 April 1996 1000 Generalized number
field sieve

140 465 February 1999 2000 Generalized number
field sieve

155 512 August 1999 8000 Generalized number
field sieve

160 530 April 2003 Lattice sieve

174 576 December 2003 Lattice sieve

200 663 May 2005 Lattice sieve

 640 November 2005

Table 4.2: Progress in Factorization (adapted after Stallings, 2005, RSA Laboratories
Factoring Challenges1)

Stallings (2005) remarked that the threat to larger key sizes is twofold: the
continuing increase in computing power, and the continuing refinement of factoring
algorithms. The different algorithms used in the last years resulted in a tremendous
speedup.

The cryptanalysis of RSA regards more the task of factoring n into its two prime
factors.

Consequently, special attention should be engaged when choosing a key size for
RSA algorithm. Stallings (2005) recommended that for the near future, a key size in the
range of 1024 to 2048 bits seems reasonable. A key of 512 bits is no longer considered
secure. For achieving more security there should be used keys of 2048 bits or even of
4096 bits. However, by using a large key size, the implementers and the users might get a
false sense of security, which can raise other risks (e.g. side-channel attacks etc.). RSA
Laboratories claimed that 1024-bit keys are likely to become broken some time between
2006 and 2010, and that 2048-bit keys are sufficient until 2030, although these results are
under dispute in the cryptographic community.

1 http://www.rsa.com/rsalabs/node.asp?id=2092 accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

121

 The author advised also to choose carefully the prime numbers p and q, in order
to prevent the discovery of p and q by exhaustive methods. It is recommended that these
primes are chosen from a sufficiently large set (p and q must be large numbers). Also
Oppliger (2005) advised that n must be at least as large as to make it impossible to use an
existing algorithm to factorize n. Nowadays, there is a general consensus that at least
1024-bit moduli should be used.

When specific parameters are recommended for a cryptographic algorithm, the
value of the data must be taken into consideration. Thus, it can be recommended in
certain cases to use 2,048-bit moduli for the asymmetric encryption of more sensitive or
valuable data. If a 10240-bit moduli is chosen, the parameters p and q must be about 512
bits long each (Oppliger, 2005).

Stallings (2005) enumerated a series of constraints that have been suggested
previously by researchers. So, in order to avoid values of n that may be factored more
easily, the algorithm’s inventors suggested the following constraints on p and q:

- p and q should differ in length by only a few digits. Thus, for a 1024-bit key (309
decimal digits), both p and q should be on the order of magnitude of 1075 to 10100

- Both (p-1) and (q-1) should contain a large prime factor.

- gcd(p-1, q-1) should be small.

4.3.2 Diffie-Hellman

Diffie-Hellman is the first public-key algorithm that was invented by Whitfield
Diffie and Martin Hellman and made public in 1976.

Diffie-Hellman public-key algorithm is not used for encryption or signatures, but
mainly for exchange of secret keys. It allows entities to agree on a shared key. So, this
algorithm is typically used for key exchange (named also key agreement, key negotiation,
key distribution etc.).

Further, we shortly describe Diffie-Hellman key exchange protocol.

- Let p be a large prime and g be a generator of Z*
p

- Entities A and B (publicly) agree on p and g

- Entity A picks a large random number x and computes X=gx mod p, where

private exponent x ∈ {0, . . . , p − 1}
- A keeps number x a secret, but not the calculated value X (the public exponent). A

sends X to B

- Entity B picks a large random number y and computes Y=gy mod p, where

private exponent y ∈ {0, . . . , p − 1} (x and y should be 512-bit numbers chosen at
random (Kaufman et al., 2002))

Secure Communications: ‘End-to-end encryption’ in Jericho networks

122

- B keeps number y a secret, but not the calculated value Y.

 B sends Y to A
- A computes KAB =Yx mod p= gyx mod p

- B computes KBA =Xy mod p= gxy mod p

- KAB = KBA =K (by modular arithmetic)

- K is the secret key between entities A and B

It has been shown in the literature that, except entities A and B, the secret key K

cannot be calculated by other parties that even possess the knowledge of gx mod p or gy
mod p. So, even if an eavesdropper would know g, p, X, Y, cannot calculate gxy mod p.
This problem is known as Diffie-Hellman Problem (DHP). Solving this problem is as
difficult as solving the discrete logarithm problem (Kaufman et al., 2002; Oppliger,
2005).

Security of Diffie-Hellman

As we mentioned already, the security of a public-key cryptosystem is conditional
on some assumptions that certain problems are intractable.

The security of Diffie-Hellman is based on the difficulty of solving the discrete
log problem. This problem is equivalently difficult with the problem on which RSA is
based (difficulty of factoring).

In its original description, Diffie-Hellman does not provide authentication of the
parties, so it is exposed to the man-in-the-middle attack (Mao, 2003; Stallings, 2005).

The attacker in the man-in-the-middle attack establishes two distinct Diffie-
Hellman keys, one for communicating with A and the other for B. Further, it tries to
masquerade as entity A for B, and as entity B for A. In fact, the attacker has total control
of the communications between A and B. The solution for this type of attack is to
introduce a method to authenticate the parties to each other.

One of the solutions to prevent man-in-the-middle attack is, for each entity
participating in the communication, to have already a permanent public number (e.g. X
for A, Y for B) and the corresponding secret number that should be used for all the
communications. In order for this technique to be usable, all the entities in the
communicating set should previously agree on the common p and g. The generated public
numbers for each entity are then published in a reliable manner (Kaufman et al., 2002).
The generated public values, together with the global public values for p and g, are stored
in some central directory.

Whenever, user A wants to communicate with user B, can access user B's public
value, calculate a secret key, and use that to send an encrypted message to user B. If the
central directory is trusted, then this form of communication provides both confidentiality
and a degree of authentication. In this case, only entities A and B can determine the key,

Secure Communications: ‘End-to-end encryption’ in Jericho networks

123

confidentiality of the communications is achieved. Entity B knows that only A could have
sent the message using that key, and this provides authentication.

This way of working for Diffie-Hellman protects it against active attacks. But this
form of using authentication within Diffie-Hellman algorithm does not offer protection
against replay attacks (Stallings, 2005).

 For combating the man-in-the-middle attacks on Diffie-Hellman, the entities can
be authenticated to each other by means of public-key certificates or digital signatures.

Another issue regarding the security of Diffie-Hellman algorithm refers to the
publicly known values, p and g. In certain situations, when these numbers don’t have
some additional mathematical properties, the algorithm is less secure.

For instance, it is desirable that also (p-1)/2 is also prime. A prime p that satisfies
this additional constraint is called a safe prime or Sofie Germaine prime (Kaufman et al.,
2002). Although it is computationally expensive to choose p and g , it is not advisable to
use the same p and g.

4.3.3 Elliptic curve cryptography

Oppliger (2005) acknowledged that Elliptic curve cryptography (ECC) is a hot
topic in contemporary cryptography. The algebraic structures employed by ECC are
groups of points on elliptic curves defined over a finite field Fn. Thus, ECC makes use of
elliptic curves in which the variables and coefficients are all restricted to elements of a
finite field. Two families of elliptic curves are used in cryptographic applications: prime
curves over Zp and binary curves over GF(2m).

An associative operation should be defined in order to make use of an elliptic
curve. In ECC, this operation is called addition and signifies that two points on an elliptic
curve are said to be added. However, this addition operation is explained geometrically in
the literature dedicated to ECC.

Stallings (2005) remarked that ECC is fundamentally more difficult to explain
than either RSA or Diffie-Hellman. In the context of Jericho Project we aim to introduce
the topic of ECC and to present the most interesting aspects regarding the security
provided in comparison with the above presented public-key algorithms.

Stallings (2005), Konheim (2007) defined a “hard problem” in order to form a
cryptographic system using elliptic curves.

Consider the equation Q = k · P where Q, P ∈Ep(a, b) and k < p. It is relatively
easy to calculate Q given k and P, but it is relatively hard to determine k given Q and P.
This is named the discrete logarithm problem for elliptic curves.

For elliptic curve over Zp, the following equation can be used for defining an
elliptic curve:

Secure Communications: ‘End-to-end encryption’ in Jericho networks

124

y2 mod p = (x3+ax+b) mod p; 4a3 + 27b2 ≠ 0 (mod p)

For elliptic curves over GF(2m) there is used a cubic equation in which the
variables and coefficients all take on values in GF(2m), for some number m, and in which
calculations are performed using the rules of arithmetic in GF(2m).

y2 +xy = (x3+ax+b), a, b ∈ GF(2m), b ≠ 0.

Analog of Diffie–Hellman Key Exchange Using an Elliptic Curve

Stallings (2005), Konheim (2007) described how a key exchange occurs by using
elliptic curves.

Key exchange using elliptic curves can be done in the following manner:

- A large integer q is chosen, which is either a prime number p or an integer of the
form 2m

- Then elliptic curve parameters a and b are chosen for the above mentioned
equations used for elliptic curve cryptography. This defines the elliptic group of
points Eq(a, b)

- Next, a base point G = (x1, y1) is chosen in Ep(a, b) whose order is a very large
value n. The order n of a point G on an elliptic curve is the smallest positive
integer n such that n·G = O

- Eq(a, b) and G are parameters of the cryptosystem known to all participants

A key exchange between entities A and B involves the following steps:

- A selects an integer nA less than n. This is A’s private key. A then generates a
public key PA = nA x G; the public key is a point in Eq(a, b).

- B selects a private key nB and computes a public key PB = nB x G

- A generates the secret key K = nA x PB. B generates the secret key K = nB x PA.

The two calculations performed by A and B for calculating the secret key, produce
the same result :

nA x PB = nA x (nB x G) = nB x (nA x G) = nB x PA

To break this scheme, an attacker would need to be able to compute k given G and
k·G, which is assumed hard (Stallings, 2005).

Secure Communications: ‘End-to-end encryption’ in Jericho networks

125

G, nA x G and nB x G are transmitted in the clear; a and b are secret. The secrecy
of the Diffie–Hellman elliptic curve key exchange is the complexity of elliptic curve
“integer” factorization (Konheim, 2007).

Further, there can be defined an elliptic curve cryptosystem and an elliptic curve
digital signature algorithm. However, due to the time and space allocated to this thesis we
do not present these algorithms.

Security of ECC

Stallings (2005) specified that the security of ECC depends on how difficult it is
to determine k given k ·P and P. This is referred to as the elliptic curve logarithm
problem.

It is said that ECC provides the most security per bit when used for securing the
communications.

Oppliger (2005) mentioned that the elliptic curve cryptosystems are equally
secure with smaller key sizes than their conventional counterparts, RSA and Diffie-
Hellman.

The advantage of ECC (pointed out by Certicom1) is that its inverse operation in
the defined “hard problem” gets harder, faster, against increasing key length than do the
inverse operations in DH and RSA.

This signifies that as security requirements become more stringent, and as
processing power gets cheaper and more available, ECC becomes the more practical
system for use in the future for securing the communications. These properties of ECC
are important for implementations in which key sizes and performance are important
issues (e.g. smartcards).

 Further, at the end of this chapter we will provide a comparison of the presented
public-key cryptography algorithms in terms of security offered and key length.

4.4 Symmetric-key cryptography

In this sub-chapter we describe how symmetric key algorithms work and the
security services they offer for secure communications.

 As we already mentioned, in symmetric-key cryptography, the same key is used
for encryption and decryption. The plaintext is encoded by mangling it with a secret key.
The decryption process requires knowledge of the same key, and reverses the mangling.
Using the same notation from Section 4.1, basically, symmetric-key cryptography can be
represented as follows:

1 http://www.certicom.com/

Secure Communications: ‘End-to-end encryption’ in Jericho networks

126

D kd(E ke(m)) =m, with the condition that kd= ke

 In Figure 4.2 there is illustrated a simplified model for symmetric-key
cryptography:

Figure 4.2: Simplified model for symmetric-key cryptography

The decryption algorithm is the reverse of the encryption algorithm. For
decryption, the encryption algorithm is run in reverse on the ciphertext using the secret
key.

In order for symmetric-key cryptography to be used securely there are two basic
requirements that have to be taken into consideration (Stallings, 2005).

Firstly, a strong encryption algorithm should be used, in the sense that even if an
attacker has knowledge of the algorithm and has intercepted a ciphertext, would still be
unable to decrypt it or retrieve the key with the information available at hand. In a more
restrictive form, this requirement establishes that the attacker should be unable to
discover the secret key even if it has access to different ciphertexts and to the
corresponding plaintexts.

Secondly, the secret key should be distributed in a secure manner to the entities
involved in the communication process.

As we mentioned in Section 4.1, there are certain operations that are performed on
the plaintext messages for transforming it in the ciphertext. Substitutions and
permutations are used in the design of symmetric cryptosystems in order to obtain
confusion and diffusion.

In the design of symmetric encryption systems, permutations and substitutions are
usually used and combined (sometimes in multiple rounds) to provide confusion and
diffusion (Schneier, 1996; Menezes et al., 1997, p. 20; Oppliger, 2005, p. 238; Stallings,
2005). The terms confusion and diffusion were introduced by Claude Shanon in 1949 in
his article “Communication Theory of Secrecy Systems”. These two techniques are
intended to offer protection against cryptanalysis attackes based on statistical analysis.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

127

In diffusion, the statistical structure of the plaintext is distributed into long-range
statistics of the ciphertext. The influence of a single plaintext bit is spread among several
ciphertext bits. The patterns, structures or redundancies in the plaintext are dissipated in
the ciphertext. As Stallings (2005) observed, the purpose of diffusion is to make the
statistical relationship between the plaintext and ciphertext as complex as possible in
order to thwart attempts to deduce the key.

The mechanism of confusion is intended to make the relationship between the
encryption key and the statistics of the ciphertext as complex as possible in order to stop
the attempts of discovering the key.

The symmetric-key cryptosystems are mainly designed and used for minimizing
the computations required to encrypt and decrypt the message units. Possible drawbacks
of these cryptosystem can arise from the flaws in securely distributing the secret key
between the communicating parties. This poses great risks in the case that attackers can
obtain access to secret key or keys (Jaworski & Perrone, 2000).

Further on, we will describe some of the most representative symmetric-key
algorithms.

4.4.1 Data Encryption Standard (DES)

 Data Encryption Standard (DES) is a symmetric cipher defined in Federal
Information Processing (FIPS) Standard Number 461 in 1977 as the federal government
approved encryption algorithm for sensitive but non-classified information.
 In the literature (Schneier, 1996; Menezes et al., 1997; Kaufman, 2002; Mao,
2003; Rhee, 2003; Oppliger, 2005; Stallings, 2005; etc.) there are allocated considerable
spaces for the thorough description of the DES algorithm.
 DES was developed by IBM in the 1970s and was based upon the previous
research done by IBM for Lucifer cipher. DES algorithm was adopted as adopted in 1977
as the Data Encryption Standard by the National Bureau of Standards (NBS) as FIPS
PUB 46. Nowadays, the FIPS PUBS are developed and maintained by the National
Institute of Standards and Technology (NIST). NIST recommended the use of DES for
applications other than the protection of classified information. The standard (DES) was
reaffirmed in 1983, 1988, 1993, and 1999, and it was officially withdrawn in July 20042.
 The last reaffirmation in 19993 of the Data Encryption Standard contains the
specifications of DES and of Triple Data encryption Algorithm (TDEA) that can be used
for protecting highly sensitive data (Oppliger, 2005; p. 239). Typically, the triple DEA
algorithm is referred as triple DES (3DES).

Firstly, we will have a look at DES, and then, an overview of 3DES will be
provided later in this chapter.

The design of DES is based on two general concepts: product ciphers and Feistel
ciphers (Menezes et al., 1997, p. 250). Further, these ciphers are shortly explained.

1 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf accessed May 2007
2 http://csrc.nist.gov/Federal-register/July26-2004-FR-DES-Notice.pdf accessed May 2007
3 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

128

 A product cipher refers to the design of a complex encryption function by
composing several simple operations (transpositions, translations (e.g. XOR) and linear
transformations, arithmetic operations, simple substitutions etc.) that used together offer
complementary, but individually insufficient protection.
 The definition of product cipher, provided by Menezes et al. (1997, p. 251), states
that it combines two or more transformations in a manner intending that the resulting
cipher is more secure than the individual components.

Feistel Ciphers

Feistel (1973) proposed the use of a cipher that alternates substitutions and

permutations on block plaintexts (Menezes et al., 1997; Oppliger, 2005; Stallings, 2005;
etc.).

For Feistel cipher, the alphabet is Σ = Z2 = {0, 1}, and the block length is 2t (for a
reasonably sized t ∈ N+). The Feistel cipher runs in r ∈ N+ rounds. For every k ∈ K,
there are generate r round sub-keys k1, . . . , kr that are used on a per-round basis. In
general, the sub-keys ki are different from K and from each other (Stallings, 2005).

Firstly, the encryption function, Ek, divides the plaintext message block m into
two halves of t bits each. We consider, L0 be the left half, and R0 be the right half, so a
message m has for instance the structure m = (L0,R0). The two halves of the plaintext
message unit pass through r rounds of processing and then combine to produce the
ciphertext block.

Each round i has as inputs Li−1 and Ri−1, derived from the previous round, as well
as a sub-key ki. A sequence of pairs (Li,Ri), for i = 1, . . . , r, is then recursively computed
as follows:

(Li,Ri) = (Ri−1, Li−1 ⊕ fki (Ri−1))
This means that Li = Ri−1 and Ri = Li−1 ⊕ fki (Ri−1).

For i = 1, then L1 and R1 are computed as follows:

L1 = R0
R1 = L0 ⊕ fk1(R0)

For the last round, r, Lr and Rr are computed as follows:

Lr = Rr−1
Rr = Lr−1 ⊕ fkr (Rr−1)

The cipher block is represented by the pair (Rr,Lr), rather than (Lr,Rr),. Thus, the
encryption of plaintext message m using key k can formally be expressed as follows:

Ek(m) = Ek(L0,R0) = (Rr, Lr)
In Feistel cipher, for recursive computation of Li and Ri, the following formula

can be used:

Secure Communications: ‘End-to-end encryption’ in Jericho networks

129

(Li−1,Ri−1) = (Ri ⊕ fki(Li), Li).

The decryption of Feistel cipher uses the same encryption algorithm by applying

the round keys in reverse order, kr, . . . , k1. For the decryption process, the input is
formed by the ciphertext and the round keys in reverse order.

In Figure 4.3 there is illustrated the encryption process going down the left-hand
side and the decryption process going up the right-hand side for a 16-round algorithm
(after Stallings, 2005). The following notation is used: LEi and REi represent the block
units processed through the encryption algorithm, and LDi and RDi for the lock units
processed through the decryption algorithm.

Regarding the relation between the encryption and decryption block units at each
round in Feistel cipher, Stallings (2005) made the following observation: considering the
output of the ith encryption round being LEi || REi (with the signification LEi concatenated
with REi), then the corresponding input to the 16th decryption round is REi || LEi, or
equivalently RD16-i || LD16-i .

Secure Communications: ‘End-to-end encryption’ in Jericho networks

130

Input (Plaintext)

K1

F⊕

LE0 RE0

K2

F

RE1 LE1

K3

F⊕

LE2 RE2

K15LE14 RE14

K16

F

RE15

⊕

LE15

LE16 RE16

⊕

RE16 LE16

Ouput (Ciphertext)
Input (Ciphertext)

F⊕

K16
LD0=RE16 RD0=LE16

⊕F

K15

RD1=LE15 LD1=RE15

LD2=RE14 RD2=LE14

F⊕

K2

LD15=RE1

RD14=LE2

⊕F

K1

LD14=RE2

RD15=LE1

RD16=LE0LD16=RE0

RD16=LE0 LD16=RE0

Ouput (Plaintext)

Figure 4.3: Feistel Encryption and Decryption (adapted after Stallings, 2005)

Secure Communications: ‘End-to-end encryption’ in Jericho networks

131

DES Description

DES is a symmetric block cipher that operates on 64-bit blocks and uses a 56-bit
key. DES encrypts data in blocks of 64 bits. Basically, DES is a Feistel cipher with t=32
(so, the block length is 64 bit) and r=16 (for rounds) (Oppliger, 2005, p. 241).

The DES encryption and decryption algorithms operate in 16 rounds. The input to
the algorithm is a 64-bit block of plaintext and the output from the algorithm is a 64-bit
block of ciphertext after 16 rounds of identical operations. The key length is 56 bits by
removing the 8 parity bits. Every eighth bit from the initial 64-bit key is used for parity
checking and is ignored.

The basic building block of DES is a suitable combination of permutation and
substitution on the plaintext block. DES applies the same combination of techniques on
the plaintext block 16 times.

Typically, for an encryption scheme there are two inputs to the encryption
function: the plaintext to be encrypted and the key. For DES as well, the encryption
function will have as input 64-bit plaintext message units to be encrypted and the 56-bit
key.

In DES, the processing of the plaintext proceeds in three phases (Stallings, 2005).
Firstly, the 64-bit plaintext block X is transposed under the initial permutation IP,
resulting X0 = IP(X) = (L0,R0). Then, the following phase consists of 16 rounds of the
same function that involved both permutation and substitution operations. The output of
the last round (the 16th) consists of 64 bits that are a function of the input plaintext and
the key. The left and right halves of the output are swapped to produce the pre-output.
Finally, the pre-output is passed through a permutation (IP-1) that is the inverse of the
initial permutation function, to generate the 64-bit ciphertext block Y.

Figure 4.4 gives an overview of the basic structure of DES (adapted after
Kaufman et al., 2002, p. 65).

Secure Communications: ‘End-to-end encryption’ in Jericho networks

132

64-bit input

Initial Permutation

Round 1

Round 2

Round 16

64-bit output

Final Permutation

Swap left and right halves

56-bit key

Generate 16 per-round
keys

48-bit K1

48-bit K2

48-bit K16

Figure 4.4: Basic Structure of DES

Further, we provide a short explanation of the DES encryption scheme. Firstly,

the 64-bit input will pass through an initial permutation (IP(m)) from which results a 64-
bit shuffled input. The 56-bit key is used to generate 16 keys of 48-bit per-round. This is
done by selecting different 48-bit subsets from the initial 56-bit key for each round key.
The input of each round consists of 64-bit output of the previous round and the 48-bit
per-round key; then, an output a 64-bit is produced.

DES encryption consists of 16 rounds. After IP(m) is performed, a 16 round
Feistel cipher is applied to IP(m). The 64-bit input plaintext is divided into 32-bit halves
L0 and R0. The rounds are functionally equivalent, 32-bit inputs Li−1 and Ri−1 are used

Secure Communications: ‘End-to-end encryption’ in Jericho networks

133

from the previous round and the 32-bit outputs Li and Ri for 1 ≤ i ≤ 16 are generated as
follows:

Li = Ri−1
Ri = Li−1 ⊕ f (Ri−1, Ki), where f (Ri−1; Ki) = P(S(E(Ri−1) ⊕ Ki))

- E represents a fixed expansion permutation
- P is another fixed permutation on 32 bits

After the last round, the left and right halves are exchanged and, finally, the
resulting message is bit-permuted by the inverse of IP.

After 16 rounds are performed, the left and the right part of the final 64-bit output
are swapped, and then another permutation is performed on this 64-bit message unit by
the inverse of IP.

Decryption involves the same key and algorithm, but with subkeys applied to the
internal rounds in the reverse order. The decryption process for DES algorithm works by
running DES algorithm backwards (Kaufman et al., 2002, p. 65).

It has been analyzed in the literature the initial and the final permutation on the
data included in DES do not increase the security of the algorithm and have no apparent
cryptographic significance, but one reason might be to make DES less efficient to be
implemented in software (Kaufman et al., 2002, p.66; Mao, 2003). For instance, the
Initial Permutation (IP) is a fixed function (e.g. is not parameterized by the input key) and
is also publicly known.

Further on, Figure 4.5 illustrates how the encryption and decryption algorithms
work in a DES round.

⊕ ⊕

Secure Communications: ‘End-to-end encryption’ in Jericho networks

134

Figure 4.5: DES Round

In encryption process in one DES round, the following actions occur:

- the 64-bit input is divided into two 32-bit halves Li and Ri for 1 ≤ i ≤ 16

- outputs Li+1 and Ri+1 are generated

- then Li+1 and Ri+1 are concatenated and results the 64-bit output of the round

- in a DES round, Li+1 is Ri

- Ri+1 is obtained as follows: Li and Ki constitute the input to a mangler function;
the function generates a 32-bit output; then, the operation “⊕ ” is applied to this
32-bit output together with Li, and results Ri+1

In decryption process in one DES round, the following actions occur:

- the 64-bit input is formed by Li+1 concatenated with Ri+1, and these two halves
are known; we want to determine Li and Ri

- Ri is L+1; Ki is also known

- we know already that Ri+1= Li⊕mangler(Ri, Ki); we want to determine Li

- mangler(Ri, Ki) is computed, then the output is “⊕ ” with Ri+1 , and it results Li

- The mangler function is not reversible, although DES algorithm is reversible

- Ri+1 is obtained as follows: Li and Kn constitute the input to a mangler function;
the function generates a 32-bit output; then, the operation “⊕ ” is applied to this
32-bit output together with Li, and results Ri+1

The mangler function takes as input the 32 bits of data (Ri) and the 48-bit key (Ki,)
and generates a 32-bit output. The operation exclusive-or (⊕ , module 2 or XOR) is
applied between the output of the mangler function and Li, and it results Ri+1.

Firstly, mangler function expands Ri to 48-bit value, by divining it into 4-bit
chunks that are then expanded to 6-bit chunks by taking the adjacent bits and
concatenating them to the chunks (Kaufman et al., 2002). For this, an expansion function
is being used E : {0, 1}32 → {0, 1}48.

 This operation is illustrated in the following figure:

Secure Communications: ‘End-to-end encryption’ in Jericho networks

135

Figure 4.6: Expansion of Ri to 48-bit value

Further, the 48-bit Ki is split also in chunks of 6 bits. Then the corresponding

chunks of Ki are ⊕ with the corresponding 6-bit chunks of the expanded Ri; then the
output of 6 bits value constitutes the input for S-box (a function Si : {0, 1}6 −→ {0, 1}4

).

The S-box maps several input values to the same output value. The 4-bit output of
each of the eight S-boxes is concatenated into a 32-bit output that is subject to a
permutation before being ⊕ ’d with Li. The result is Ri+1.

Security of DES

 Talbot & Welsh (2006, p. 117) stated that even now the best known practical
attack on DES is by brute force, that is searching through all 256 possible keys. In 1998,
the Electronic Frontier Foundation1 built a machine that succeeded in decrypting a DES
ciphertext message after approximately three days.

Oppliger (2005, p. 250) affirmed that the most serious vulnerabilities and security
problems of DES are caused due to the relatively small key length and the corresponding
feasibility of an exhaustive key search. The author suggests some solutions for protecting
a block cipher with a small key length, such as: the keys can be frequently changed, or a
complex key set up procedure can be used. The simplest suggested method for protecting
a block cipher against exhaustive key search attacks is to use sufficiently long keys.

For solving the problem of small key length for DES, there are three possibilities:

- The DES may be modified in a way that compensates for its relatively small key
length

- The DES may be iterated multiple times (this resulted in TDEA or 3DES)

- An alternative symmetric encryption system with a larger key length may be used
(e.g. AES).

DES was still reaffirmed as a federal standard in 1999, despite the fact that a brute

force attack on DES was already known to be feasible. However, it was then
recommended that a variant known as Triple DES be used instead.

1 http://www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/ accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

136

Because DES has been subject to public scrutiny since 1977, it has been shown
that there are sixteen DES keys that have certain properties and should be avoided to be
used (Kaufman, 2002, p. 74; Oppliger, 2005, p. 247; Menezes et al., 1997, p. 257). There
are 4 weak keys and 12 semi-weak keys, and these keys are less secure than other keys..
Still, the probability to generate one of these keys is 16/256 , which, in the opinion of
cryptography literature authors (Schneier, 1996; Kaufman, 2002, p. 74; Oppliger, 2005,
p. 248), is negligible.

A DES key k is weak if DESk(DESk(m)) = m for all m∈M= {0, 1}64, meaning that
the DES encryption with k is inverse to itself (e.g. if m is encrypted twice with a weak
key, then the result is again m).

The DES keys k1 and k2 are semi-weak if DESk1 (DESk2 (m)) = m for all m∈M=
{0, 1}64, meaning that the DES encryptions with k1 and k2 are inverse to each other.

4.4.2 3DES

An alternative to solve the problem of small key length for DES is to use multiple
encryption with DES and multiple keys.

Multiple iterations have to be done with different keys in order to improve
security of the algorithm.

It has been shown in the literature (Rhee, 2003; Oppliger, 2005; Stallings, 2005)
that given any encryption keys K1 and K2, it would not be possible to find a third key K3
such that:

E(K2,E(K1,m))=E(K3,m)

 When DES is iterated two times using two encryption keys it becomes vulnerable
to the man-in-the-middle attack. This supposes that an adversary has in possession some
(plaintext, ciphertext) pairs (mi, ci), ci is derived from a double encryption of mi with K1
and K2, and he/she wants to find K1 and K2. The attack is thoroughly described by
Oppliger (2005), Stallings (2005).

 This is one of the reasons why DES should be iterated 3 times, resulting in the use
of 3DES. As we already mentioned, 3DES or Triple Data Encryption Algorithm (TDEA)
is specified by FIPS PUB 46-31.

 3DES can be used alternatively with two keys (K1 = K3, K2) or with three keys
(K1, K2, K3). The last version is preferred, as it results in a great increase in cryptographic
strength (Rhee, 2003). Another option, mentioned by Oppliger (2005, p. 255), is to
consider all three keys equal (K1 = K3 = K2), this representing a single-key DES
implementation.

1 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

137

 The 3DES encryption process works in the following way:

c = E(K3, (D (K2, E(K1,m))),

which is an EDE (“encrypt-decrypt-encrypt”) process.

Stallings (2005) mentioned that 3DES with three keys would be a preferred
alternative encryption algorithm by the researchers due to the cryptographic strength
given by the 168-bit key length. The authored stated also that 3DES .

Moreover, Stallings (2005) stated that 3DES is advantageous from two points of
view. Firstly, the fact that is has 168-bit key length overcomes the vulnerability to brute-
force attack of DES. Secondly, the encryption algorithm in 3DES is the same as in DES.
The underlying algorithm of DES has been subjected to more scrutiny than any other
encryption algorithm over a longer period of time, and no effective cryptanalytic attack
based on the algorithm rather than brute force has been found. Consequently, there is a
high level of confidence that 3DES is very resistant to cryptanalysis.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

138

4.4.3 International Data Encryption Algorithm (IDEA)

International Data Encryption Algorithm (IDEA) originally being called
Improved Proposed Encryption Standard (IPES), was developed in the early nineties by
Xuejia Lai and James Massey at Swiss Federal Institute of Technology in Zurich
(ETHZ).

IDEA encrypts 64-bit plaintext unit blocks into 64-bit ciphertext unit blocks using
a 128-bit key. The same algorithm is used for encryption and decryption. IDEA operates
also in rounds as DES. But each primitive operation in IDEA maps two 16-bit quantities
into a 16-bit quantity, whereas each DES S-box maps a 6-bit quantity into a 4-bit
quantity.

This cryptosystem contains three primitive operations and they are all easy to be
computed in software for creating a mapping and are also reversible (for decryption). The
operations used within IDEA are: XOR (bitwise exclusive or “⊕ ”), addition modulo 216,
multiply modulo 216+1. The result has to be always 16 bits and this is not always the case
when adding or multiplying two 16-bit quantities.

The algorithm expands the 128-bit key into 52 16-bit keys. The key expansion is
executed differently for encryption than for decryption, but the encryption ad decryption
operations are the same in this cryptosystem (Kaufman et al., 2002). The decryption sub-
keys are either the additive or multiplicative inverses of the encryption sub-keys. IDEA
has eight rounds that can be treated also as sixteen rounds (odd rounds and even rounds).
In the literature (Schneier, 1996; Menezes et al., 1997; Kaufman et al., 2002), IDEA
algorithm is described thoroughly.

For IDEA some classes of weak keys have been found (Daemen et al., 1994), but
they are so rare so there is no need to avoid them explicitly. It can be attempted to break
IDEA by exhaustive search on 128-bit key space, but this requires unbelievable
computing resources (Kaufman et al., 2002).

In 2003, Demirci et al. presented their findings about a “new man-in-the-middle
attack” on the reduced-round versions of IDEA block cipher. Also, they mentioned in
their paper other kind of attacks that have been applied by other authors on reduced-
round versions of IDEA.

In addition, Demirci et al. (2003) made a review of the previous attacks on IDEA
and their complexity, the number of rounds, the number of chosen plaintexts needed in
order to conduct the respective attacks, the necessary memory.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

139

4.4.4 Advanced Encryption Standard (AES)

 In January 1997, National Institute of Standards and Technology (NIST) launched
another competition for selecting a new encryption standard to be used for protecting
sensitive, non-classified U.S. government information.

 After close examination of different submissions, NIST chose an algorithm named
Rijndael named so after the cryptographers that designed it (Joan Daemen & Vincent
Rijmen).

 The NIST criteria1 for evaluating AES algorithm for becoming a new standard are
summarized in Table 4.3.

Security Actual security: compared to other submitted algorithms (at the same key and block

size).

Randomness: the extent to which the algorithm output is indistinguishable from a
random permutation on the input block.

Soundness: of the mathematical basis for the algorithm's security.

Other security factors: refer to any attacks that demonstrate that the actual security
of the algorithm is less than the strength claimed by the submitter.

Cost Licensing requirements: the algorithm(s) specified in the AES shall be available on
a worldwide, non-exclusive, royalty-free basis.

Computational efficiency: The evaluation of computational efficiency will be
applicable to both hardware and software implementations. Computational efficiency
essentially refers to the speed of the algorithm.

Memory requirements: The memory required to implement a candidate algorithm
for both hardware and software implementations of the algorithm.

Algorithm and
Implementation
Characteristics

Flexibility: Candidate algorithms with greater flexibility will meet the needs of more
users than less flexible ones, and therefore, inter alia, are preferable. However, some
extremes of functionality are of little practical application (e.g., extremely short key
lengths); for those cases, preference will not be given.

Some examples of flexibility may include (but are not limited to) the following:

a. The algorithm can accommodate additional key- and block-sizes (e.g., 64-bit
block sizes, key sizes other than those specified in the Minimum
Acceptability Requirements section, [e.g., keys between 128 and 256 that are
multiples of 32 bits, etc.])

b. The algorithm can be implemented securely and efficiently in a wide variety
of platforms and applications (e.g., 8-bit processors, ATM networks, voice &

1 http://csrc.nist.gov/CryptoToolkit/aes/round1/aes_9809.htm

Secure Communications: ‘End-to-end encryption’ in Jericho networks

140

satellite communications, HDTV, B-ISDN, etc.).
c. The algorithm can be implemented as a stream cipher, message

authentication code (MAC) generator, pseudorandom number generator,
hashing algorithm, etc.

Hardware and software suitability: A candidate algorithm shall not be restrictive in
the sense that it can only be implemented in hardware. If one can also implement the
algorithm efficiently in firmware, then this will be an advantage in the area of
flexibility.

Simplicity: A candidate algorithm shall be judged according to relative simplicity of
design.

Table 4.3: NIST Evaluation for AES (adapted after Stallings, 2005)

 In 2000, there were defined more specifically other evaluation criteria for
Rijndael cipher.

AES is intended to replace 3DES more because of efficiency reasons. But still,
3DES remains an approved algorithm for use in the future.

The new cryptographic algorithm, AES, became a Federal Information Processing
Standard1 in November 2001, and became effective in May 2002, under the name
Advanced Encryption Standard.

 Rijndael is a symmetric block cipher with variable block and key length. The
block and key length can be chosen independently from 128, 160, 192, 224, and 256 bits.
For AES the block-length was fixed to 128-bit and three different key sizes (128, 192 and
256-bits) were specified.

 In the case of a brute force attack on AES cipher, an exhaustive search on 2128 (=
3.4 x 1038) possible 128-bit keys, 2192 (= 6.2 x 1057) possible 192-bit keys, and 2256 (= 1.1
x 1077) possible 256-bit keys should be performed2.

Stallings (2005) declared that Rijndael was designed to have the following
characteristics:

 - Resistance against all known attacks

 - Speed and code compactness on a wide range of platforms

 - Design simplicity

Similarly to DES, AES is an iterated block cipher with a block length of 128 bits

and a variable key length of 128, 192, or 256 bits. Therefore, AES-128, AES-192 and

1 FIPS 197 contains the actual specification of AES http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf
2 http://csrc.nist.gov/CryptoToolkit/aes/aesfact.html accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

141

AES-256 resulted as three different versions of AES. The number of rounds for each
version of AES depends on the key length (e.g. 10, 12 or 14 rounds).

Although initially it has been publicly informed by NIST1 that AES can be used
for protecting unclassified sensitive information, in 2003 it has been announced by The
Committee on National Security Systems2 U.S. that National Security Agency (NSA)
agreed that AES algorithm (for all the key length e.g. 128, 192, 256 bits) can be used to
protect classified information up to the SECRET level. TOP SECRET information will
require use of either the 192 or 256 bits key lengths. Either, NSA suspected fundamental
weakness in keys that have a shorter length, or they might give preference to a safety
margin for top secret documents.

This can be summarized as showed in Table 4.4:

 Nb Nk Nr
AES-128 4 4 10
AES-192 4 6 12
AES-256 4 8 14

Table 4.4: The three official versions of AES

- Nb represents the block length (the number of 32-bit words in an encryption block)

- Nk refers to the key size in 32-bit words

- Nr represents the number of rounds

The number of rounds, Nr, is a function of the other two parameters (Nb and Nk).

It needs to be larger for longer keys, so it would become as difficult to break the
encryption algorithm as it would be to perform a brute-force attack to recover the
respective key. This allows also sufficient mixing in the encryption process, such that
each bit of the plaintext block has a complex effect on the resulting ciphertext block
(Kaufman et al., 2002).

Rijndael specifies the following formula for the number of rounds:

Nr = 6 + max (Nb, Nk)

The official versions of the AES all work with a block size of Nb · 32 = 4 · 32 =
128 bits. Despite this, some authors (El Aoufi, 2006, p. 50-51; Stamp, 2006, p. 46)
presented also the cases of AES algorithm with different block lengths (e.g. 128, 192, 256
bits).

1 FIPS 197 contains the actual specification of AES http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf accessed May 2007
2 http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

142

This is summarized in Table 4.3 that complements the results presented in Table
4.5.

 Block size (words/bytes/bits)

 Key size
(words/bytes/bits)

4/16/128

6/24/192

8/32/256

4/16/128 10 rounds 12 rounds 14 rounds
6/24/192 12 rounds 12 rounds 14 rounds
8/32/256 14 rounds 14 rounds 14 rounds

Table 4.5: The necessary rounds for different key and block lengths for AES

The formula Nr = 6 + max (Nb, Nk) that represents the way of calculating the
number of rounds holds for larger block lengths for AES cipher.

Internally, AES operates on a two-dimensional array of bytes and this represents

its state. The state has 4 rows and Nb 4-octet (32 bits) columns.

The input to the encryption and decryption algorithms is a 128-bit block. The
input block is represented as a square matrix of bytes that is further transmitted in the
state array. The state array is modified at each round of encryption or decryption. After
the final round, state is copied column by column in the output matrix. Rounds 1 to Nr -1
comprise an identical sequence of operations (see further the description), while in round
Nr one operation is omitted.

The key that is a 4 Nk-octet block is also depicted as a square matrix of bytes1.
The key is further divided into Nk 4-octet columns. Then additional columns are created
until (Nr+1)·Nb number of columns are reached, this representing the exact amount of
expanded key required.

Rijndael is based on the following primitive operations:

1. Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block
 The bytes of the state are substituted according to a given substitution table (this
transformation is called SubBytes() in the AES specification).

2. ShiftRows: This represents a simple permutation
 The rows of the state are shifted left by different offsets (this transformation is called
ShiftRows() in the AES specification).

1 Note that the ordering of bytes within a matrix is by column.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

143

3. MixColumns: A substitution that makes use of arithmetic over GF(28)
 The data within each column of the State are mixed (this transformation is called
MixColumns() in the AES specification).

4. AddRoundKey: A simple bitwise XOR of the current block with a portion of the
expanded key
 A round key is added to the state (this transformation is called AddRoundKey() in the
AES specification).

It is worthy to note that the SubBytes() and ShiftRows() transformations
commute. This implies that if a SubBytes() transformation is immediately followed by a
ShiftRows() transformation, this is equivalent to a ShiftRows() transformation
immediately followed by a SubBytes() transformation (Oppliger, 2005).

Each round, except the final round, comprises the four different operations
mentioned above that are considered internal functions to be described and performed in
a moment (Mao, 2003). In the final round, the MixColumns() operation is omitted. The
round transformations are invertible for the purpose of decryption.

Mao (2003) analyzed in detail these primitive operations and he concluded that

they are quite simple, so their implementation can be done with extremely good
efficiency.

In Figure 4.7 is illustrated the basic structure of AES encryption algorithm

Secure Communications: ‘End-to-end encryption’ in Jericho networks

144

4 Nb octet input

AddRoundKey

Key expansion

K(0)

…

a0

a1

a2

a3

4 Nk octet key

⊕

SubBytes

ShiftRows

MixColumns

AddRoundKey ⊕

Round 1

SubBytes

ShiftRows

MixColumns

AddRoundKey ⊕

Round Nr -1

K(1)

SubBytes

ShiftRows

MixColumns

AddRoundKey ⊕

Round Nr

SubBytes

ShiftRows

AddRoundKey ⊕
K(Nr)

4 Nb octet output

…

K(Nr-1)

4 Nb octet input

…

InvMixColumns

AddRoundKey ⊕

K(0)

K(1)

Invese of
Round Nr

InvSubBytes

InvShiftRows

AddRoundKey ⊕

InvSubBytes

InvShiftRows

Round 2

Invese of
Round Nr-1

4 Nb octet output

…

InvMixColumns

AddRoundKey ⊕

InvSubBytes

InvShiftRows
K(Nr)

K(Nr-1)

Invese of
Round 1

AddRoundKey⊕

InvMixColumns

AddRoundKey ⊕

InvSubBytes

InvShiftRows

Invese of
Round 2

AES encryption AES decryption

Figure 4.7: Basic Structure of AES encryption and decryption (adapted after Kaufman et
al., 2002; Stallings, 2005; El Aoufi, 2006)

 As we can observe from Figure 4.7, AES decryption can be implemented by
applying the inverse of the primitive operations in opposite sequence from that in the
encryption algorithm.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

145

The individual primitive operations used in the AES decryption algorithm are named
InvShiftRows(), InvSubBytes(), InvMixColumns(), and AddRoundKey(). The
AddRoundKey() transformation is its own inverse, as it only involves a bitwise addition
modulo 2. As the SubBytes() and ShiftRows() operations commute, this holds also for
their inverse InvSubBytes() and InvShiftRows() operations.

Security Analysis of AES

 AES is still believed to be very secure1 due to the fact that it has been designed to
resist against classical approximation attacks, such as linear cryptanalysis, differential
cryptanalysis.

Despite this, nowadays there have been reported some successful attacks against
Rijndael/AES algorithm (Schneier, 2005; El Aoufi, 2006).

Some research groups of Institute for Applies Information Processing and
Communication have reported and summarized on their website2 the latest security
aspects regarding AES algorithm.

The attacks against Rijndael/AES algorithm, and generally against block ciphers,
are usually performed on some slightly adjusted versions of the cryptosystems that have
fewer rounds than the official versions. For instance, attacks that succeeded to break the
AES cipher were executed on versions with 6, 7 and 9 rounds.

Table 4.6 presents a summary of these attacks3 on AES (Oswald et al., 2002, p.1;
Al Aoufi, 2006, p. 67)

Attack Year Paper AES-128
10 Rounds

AES-192
12 Rounds

AES-256
14 Rounds

Related Key 2005 Biham et al. (2005) 9 rounds

Truncated
Differential

2003 Jakimoski & Desmedt (2004) 6 rounds

Impossible -
Differential
Related-Key

2003 Jakimoski & Desmedt (2004) 8 rounds

Impossible
Differential

2001 Cheon et al. (2001) 6 rounds

Square Attack 2000 Lucks (2000) 7 Rounds 7 Rounds
Square Attack 2000 Ferguson et al. (2000) 7 Rounds 7 Rounds 9 Rounds
Collision Attack 2000 Gilbert & Minier (2000) 7 Rounds 7 Rounds 7 Rounds

Table 4.6: The best known short-cut attacks on each of the three official AES versions

1 http://www.cryptosystem.net/aes/ accessed May 2007
2 http://www.iaik.tugraz.at/research/krypto/AES/index.php accessed May 2007
3 http://www.iaik.tu-graz.ac.at/research/krypto/AES/#security accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

146

As far as we know up to now, these are the attacks reported in the literature on
AES algorithm. The reports about these attacks raise worries among cryptographers
regarding the security of AES. The margin between the number of rounds specified by
the cipher and the rounds of the best known attacks is becoming smaller and smaller for
achieving and maintaining the desired level of security. The risks reside in the possibility
of finding ways to improve these attacks so that AES algorithm can be broken.

Some researchers1 revealed a new type of attacks on block ciphers, namely on
Rijndael/AES. These attacks that are named algebraic attacks are based on the algebraic
and mathematical structure of the cryptosystems. Currently, these new algebraic attacks
are not practically applicable for Rijndael algorithm due to the complicated calculations
that should be done. But research is further conducted in this direction.

Other types of attacks against Rijndael/AES algorithms are those referred as side-
channel attacks. Side channel attacks do not perform attacks on the underlying cipher, but
rather they attack based on information gained from the physical implementation of the
cipher on systems which inadvertently leak data. Examples of side-channel attacks are the
timing attacks, power analysis, fault analysis. These attacks make assumptions about the
implementations of the ciphers and use additional information gained from attacking
those implementations. Timing attacks assume that an attacker knows the relative time a
particular encryption operation takes.

In the literature2 (Bernstein, 2005; Osvik et al., 2005; etc.) there are presented
different side-channel attacks on AES algorithm and the research conducted in the field
of side-channel analysis.

4.4.5 Camellia

Camellia supports 128-bit block size and 128, 192, and 256-bit key lengths.

Camellia was developed jointly by Nippon Telegraph and Telephone Corporation
(NTT) and Mitsubishi Electric Corporation in 2000. It was designed to withstand all
known cryptanalytic attacks, and it has been scrutinized by worldwide cryptographic
experts.

Camellia is internationally recognized as the unique 128-bit block cipher that
possesses the security level and processing capability equivalent to AES. Moreover,
Camellia was selected as the EU recommended cipher and E-government recommended
cipher in 2003 and was also adopted as the ISO/IEC international standard cipher.

Due to its security features, Camellia is proposed for implementation also in the
design of security protocols such as SSL/TLS, IPsec and XML Encryption.

1 http://www.cryptosystem.net/aes/ accessed May 2007
2 http://www.iaik.tugraz.at/research/krypto/AES/index.php#sca accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

147

4.4.6 RC4

 RC4 is one of the most popular symmetric stream ciphers.

Stream ciphers use internal state, thus the ith ciphertext unit depends on the ith

plaintext unit, the secret key, and some state. Stream ciphers are of two types:
synchronous (or additive) stream ciphers and non-synchronous (or self-synchronizing)
stream ciphers.

Typically, a stream cipher generates a one-time pad and applies it to a stream of
plaintext by using the operation ⊕ (XOR or addition modulo 2).

A one-time pad is a long random (or pseudo-random) string of characters or
numbers that is generated and further is (one-time) used for encrypting a message with
⊕ operation (Kaufman et al., 2002, p.92).

Messages encrypted with keys based on randomness have the advantage that there
is theoretically no way to “break the cipher” by analyzing a succession of messages. Each
encryption process is unique and is not chained to the next encryptions.

 RC41 is a variable-key-size additive stream cipher and it was developed in 1987
by Ron Rivest for RSA Data Security, Inc. Although the algorithm was not indented to be
publicly disclosed by being a trade secret of RSA Data Security, Inc., in 1994 it was
posted anonymously on a mailing list, and in this way it became rapidly widely available
on Internet.

Actually, RC4 represents a simple and fast generator of sequences of
pseudorandom bytes (e.g. a key stream) that are generated independently from the
plaintext messages or ciphertext, and further these sequences are added modulo 2 (⊕) to
the plaintext messages byte sequence (Kaufman et al., 2002; Oppliger, 2005).

The cipher generates variable-length key that can range from 1 to 256 bytes (2048
bits). Oppliger(2005) describes in detail how the key stream is generated. Following, this
is the description of the algorithm.

 RC4 uses an array S of 256 bytes of state information (called S-box). The
elements of S are labeled S[0], . . . , S[255] and they are initialized in three steps:

1. All elements of S are initialized with their index:

S[0] = 0
S[1] = 1
 . . .

 S[255] = 255

1 The acronym RC stands for “Ron’s Code”

Secure Communications: ‘End-to-end encryption’ in Jericho networks

148

2. Another array S2 of 256 bytes is allocated and filled with the key, repeating bytes as
necessary.

3. The S-box is then initialized as suggested in the S-Box initialization algorithm (see
below). The S-Box initialization algorithm only operates on S .

(S)
for i = 0 to 255 do
 j ← (j + S[i] + S2[i]) mod 256
S[i] ↔ S[j] // the S-box entries S[i] and S[j] are swapped
(S)

In addition, after S is initialized (according to algorithm presented above), i and j

are set to zero (all entries of S2 are also set to zero).

Furthermore, RC4 key generation algorithm (see below) is used in order to
generate a potentially infinite sequence of key bytes. The algorithm takes S as input
parameter and outputs a key byte k.

(S, i, j)
i ← (i + 1) mod 256
j ← (j + S[i]) mod 256
S[i] ↔ S[j]
t ← (S[i] + S[j]) mod 256
k ← S[t]
(k)

If a plaintext message (ciphertext) of l bytes must be encrypted (decrypted), then

the algorithm must be iterated l times, and each key byte ki (i = 1, . . . , l) must be added
modulo 2 to the corresponding plaintext message (ciphertext) byte.

Security of RC4

Stallings (2005) pointed out that this cryptosystem is subject to a series of attacks
that make it vulnerable in front of different attacks. Thus, RC4 is not recommended for
use in new applications.

Another aspect that can make RC4 is to use the same keystream to encrypt two
different documents. If the same keystream is used to encrypt different plaintexts, the
encryption can be broken by XORing the two ciphertext streams together. The keystream
drops out, and the result represents a plaintext XORed with another plaintext. The
plaintexts can be recovered by using letter frequency analysis and other basic techniques1.

1 http://www.schneier.com/blog/archives/2005/01/microsoft_rc4_f.html accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

149

However, generally, the primary advantage of a stream cipher is that stream
ciphers are almost always faster and use far less code than do block ciphers.

4.4.7 Block Cipher Modes of Operation

In the sub-chapters above, we have presented different symmetric cryptosystems
(DES, IDEA, AES) that encrypt blocks of messages. For effectively using these ciphers,
there have been proposed different modes of operation1 that specify different modalities
of encrypting multiple block messages with a block cipher.

By using different modes of operation longer messages can be encrypted as well.
A cryptographic mode of operation usually combines the cipher, a sort of feedback
mechanism, and some simple operations (Schneier, 1996). The security of the encryption
process resides in the cryptosystem that is being used and not in the mode of operation.

1. Electronic Code Book (ECB)

This is the simplest mode of operation in which a plaintext message is split into

64-bit blocks (the last block is padded out, if necessary, to be 64 bits). If the block at the
end is shorter, it has to be padded with “some regular pattern” (e.g. zeros, ones,
alternating ones and zeros) in order to make it a complete block of 64 bits.

 Each block is encrypted at a time with the same secret key. The message blocks
can be encrypted in any order because they are independent. Each encrypted block is
decrypted separately.

With this mode of operation, theoretically, it can be created a code book because
it creates a fixed mapping between plaintexts and corresponding ciphertexts. Each
plaintext block has a corresponding ciphertext block for a certain encryption key. This
makes this operation mode vulnerable to attacks of adversaries.

The ECB mode of operation has the following properties:

 - If a message contains identical plaintext blocks, these will result in identical ciphertext
when encrypted with the same key. So, an attacker can gain information from similar
ciphertext blocks

 - The blocks can be encrypted and decrypted independently, so if the ciphertext blocks
are decrypted and reorder accordingly, they result in the corresponding plaintext. So, an
attacker can modify and re-arrange the blocks differently in his/her advantage if this is
the case.

Schneier (1996) presented ECB mode’s weaknesses in examples, and showed that
an adversary can easily remove, repeat, or interchange blocks in the communication

1 DES Modes of Operation FIPS PUB 81 http://www.itl.nist.gov/fipspubs/fip81.htm accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

150

process if he/she is able to intercept the transmitted messages. This can be prevented by
using message authentication codes (MACs), or changing frequently the encryption keys
or by using another operation mode for the cipher block (chaining).

 ECB should not be used in communications between different entities for
encrypting messages due to its mentioned disadvantages.

2. Cipher Block Chaining (CBC)

The cipher block chaining mode is removing some of the disadvantages of ECB.
For instance, if the same plaintext block occurs several times in the encryption process,
the resulting ciphertext blocks are different in the chaining mode.

In the cipher block chaining, the input for the encryption algorithm is result of the
XOR of the current plaintext block and the preceding ciphertext block. The same secret
key is used for each block. The encryption of a plaintext block depends not only on the
current block and the key, but also on the previous plaintext blocks and the initialization
vector (IV) used for the first plaintext block. For the first plaintext block, a random
number (IV) is chosen and is ⊕ ’d with the plaintext, and the result is encrypted under the
secret key.

With CBC mode, identical plaintext messages are mapped to different ciphertext
blocks due to the fact that the input for the encryption function is different for every
plaintext message.

Using the notation from the beginning of the chapter, the encryption formula for a
plaintext mi in CBC is:

ci = E(mi ⊕ ci−1, K), for i = 1, 2, . . .
and the decryption:

mi = D(ci, K) ⊕ ci−1, for i = 1, 2, . . .
For the first block the encryption is:
 c0 = E(m0 ⊕ IV, K),

and the decryption:
m0 = D(c0, K) ⊕ IV

In the literature (Schneier, 1996; Kaufman, 2002), it is mentioned that the IV

should be random in order to prevent the generation of similar ciphertext blocks for
similar plaintexts blocks. This hinders the attackers to build code books or to replay block
messages in the communication process. Also, there is no need to keep the initialization
vector secret and this should be regarded as a dummy initial ciphertext block in the
chaining process. Stallings (2005) suggested that IV should be protected against
unauthorized changes.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

151

With CBC mode, attackers cannot determine if repeated values are transmitted,
but they can still modify the ciphertext.

As error propagation is concerned, with CBC, a single bit error in a plaintext
block will affect the corresponding ciphertext block and all subsequent ciphertext blocks.
But, the decryption process reverses the effect, and the resulting plaintext message has
the same error in the end.

If there is a single bit error in the ciphertext, this affects one block and one bit of
the corresponding plaintext. The plaintext block that contains the error is completely
garbled1, the plaintext block after contains only one bit error in the same bit position as
the error in the cipher, and further the propagation of the error stops. The system recovers
and continues to work correctly for all subsequent blocks.

3. Cipher Feedback Mode (CFB)

The cipher feedback mode turns the block cipher into a stream cipher. A stream

cipher eliminates the need to pad a plaintext message to be a multiple of a certain number
of bits. Schneier (1996) mentioned that some applications need to send in real time
messages in a communication process, for instance bit by bit, or byte by byte. This can be
done with OFB and CFB modes that can encrypt data in units smaller that the used cipher
block size.

CFB can be used for encrypting 64 bits plaintext at once or any k-bit CFB, where
k is less than or equal to the block size.

Dent & Mitchell (2005, p.81) advised that it is better to choose the number of
plaintext bits being encrypted equal with the number of bits of the block cipher. This is
recommended by the second edition of ISO/IEC 101162, and any other choice would
appear to reduce the overall level of security of the scheme.

Schneier (1996) pointed out that the initialization vector (IV) for CFB mode has
to be unique for each transmitted message, otherwise, the attackers can easily recover the
plaintext message.

In CFB mode, an error in the plaintext affects all subsequent ciphertext and
reverses itself at decryption. Typically, for k-bit CFB, a single ciphertext error affects the
decryption of the current and subsequent n/k-1 blocks, where n is the block size for the
cipher. So, if k is a larger number, fewer errors are propagated. The transmitted ciphertext
error will be discarded sooner from the register.

1 An error in transmission, reception, encryption, or decryption that changes the text of a message or any
portion thereof in such a manner that it is incorrect or cannot be decrypted.
2
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38761&scopelist=PROGR
AMME accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

152

A disadvantage for CFB mode regards the performance of the
encryption/decryption process. For instance, if DES is used in CFB mode with plaintext
blocks of 8 bits, then the performance is 8 time slower than DES on 64-bit plaintext
blocks.

An initial vector (IV) is used with the block cipher for generating a sequence of
pseudorandom bits. Then, k bits (the left most significant bits) of the output of the
encryption function are selected and XORed (⊕) with k bits from the plaintext (typically
k=8 for one byte or k=1 for one bit). In this way, the first unit of ciphertext c1 is
generated. At the beginning of the encryption process, the plaintext message is split
initially into blocks of k bits each.

Further more, the contents of the shift register are shifted left by k bits and c1 is
transferred in the rightmost (least significant) k bits of the shift register. This process
continues until all plaintext blocks have been finally encrypted.

For the decryption process, the same encryption function is used to generate the k
bits output that is then XORed with the corresponding ciphertext block for generating the
plaintext block (Stallings, 2005).

The encryption process in CFB mode is illustrated in Figure 4.8:

c1

K

IV

E

 discarded

⊕m1

k bits

k bits

c2

K E

 discarded

⊕m2

k bits

c3

K E

 discarded

⊕m3

k bits

k bits

Shift Shift

Figure 4.8: k-bit CFB (after Kaufman et al., 2002; Stallings, 2005)

4. Output Feedback Mode (OFB)

Output-feedback mode is a method of transforming a block cipher in a stream

cipher. It is somehow similar to CFB, and allows encryption of various block sizes.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

153

But, in the case of output feedback mode, the k bits (the left most significant bits)
of the output of the encryption function are selected and serve as the feedback. They are
added at the right to the shift register.

These feedback blocks form a one-time pad (string of bits) that can be used as a
key stream that is XORed with the plaintext blocks. The one-time pad can be generated in
advance before the message to be encrypted is known.

In Figure 4.9 is illustrated the output feedback mode of operation:

c1

K

IV

E

 discarded

⊕m1

k bits

k bits

c2

K E

 discarded

⊕m2

k bits

c3

K E

 discarded

⊕m3

k bits

k bits

Shift Shift

Figure 4.9: k-bit OFB (after Kaufman et al., 2002; Stallings, 2005)

With OFB, if some bits of the ciphertext are garbled, only those bits of plaintext

get garbled as well, in opposition with CBC and CBF operation modes. OFB has no error
propagation.

Stallings (2005) mentioned that OFB is vulnerable to message stream
modification attacks. An attacker can modify some bits in the ciphertext that can have
effect on the same bits in the recovered plaintext. So, attackers can make controlled
changes to the recovered plaintext.

With OFB mode, it is essential that the shift registers in the encryption process are
identical with the shift registers for the decryption process, because otherwise the
recovered plaintext is not the transmitted one (in fact, it’s non sense).

Schneier (1996) specified that when OFB is used, there should be also
implemented a mechanism for detecting a synchronization loss and a mechanism to fill

Secure Communications: ‘End-to-end encryption’ in Jericho networks

154

both shift registers with a new (or the same) IV to regain synchronization. The author
also recommends that OFB should be used when the feedback size is the same as the
block size.

Another aspect refers to the generated one time pad (key stream) that is XORed
with the plaintext. The same key stream should not be used with the same key, because
this can be exploited by an attacker and achieve no security at all.

If, for example, two plaintext message blocks mi and m’i are encrypted with the

same n-bit key K, then the resulting ciphertext blocks are ci = mi ⊕ K and c’i = m’i ⊕ k. If
the two cipher blocks are XORed, then the effect of the encryption is removed:

ci ⊕ c’i = (mi ⊕ K) ⊕ (m’i ⊕ K)

 = mi ⊕ m’i ⊕ K⊕ K

 = mi ⊕ m’i ⊕ 0

 = mi ⊕ m’i

If one of the plaintext is known to the adversary, then it easy to recover the other
plaintext.

It is worth mentioning here that block ciphers can be transformed in stream
ciphers, based on the different operation modes in which they are used.

For instance, if a block cipher operates in CFB mode, this leads to a non-
synchronous (self-synchronizing) stream cipher. This means that the next state in
generating the ciphertext depends on previously generated ciphertext units.

When a block cipher operates in OFB mode, this leads to a synchronous (additive)
stream cipher. This means that the next state in the encryption process does not depend
on previously generated ciphertext units, and the one-time pad used in the encryption
process can be first generated and then XORed with the plaintext (Oppliger, 2005).

5. Counter Mode (CTR)

In counter mode (CTR) there is generated a one-time pad (counter), encrypted

with the encryption key and then this is XORed with the plaintext unit block. For every
plaintext unit block the counter has to be different.

Typically, the initial counter value is further incremented by 1 for each
subsequent plaintext block. There is no chaining in the counter mode. For encryption, the
counter is encrypted with the cipher, and then it is XORed with the plaintext block to
produce the ciphertext block. For decryption, the same sequence of counter values is

Secure Communications: ‘End-to-end encryption’ in Jericho networks

155

used. Each encrypted counter is then XORed with the corresponding ciphertext block in
order to recover the corresponding plaintext block.

Figure 4.10 illustrates how counter mode works:

⊕ ⊕ ⊕

Figure 4.10: Counter Mode

 With CTR mode, the plaintext blocks can be recovered from the ciphertext blocks
in any order.

 As in OFB mode, there should not be used the same IV and the same key for
encrypting multiple plaintext blocks because of the security loss.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

156

4.5 Hash functions

Message Authentication

Message authentication represents a mechanism or service used to verify the

integrity of a message. Message authentication assures the integrity of the data (e.g. the
data was not modified or replayed) and checks also that the identity of the sender is valid
(Stallings, 2005).

Oppliger (2005, p. 291) exposed the general methods implied in cryptography for
authenticating messages. So, messages can be authenticated by using:

- Public-key cryptography and digital signatures, or
- Secret-key cryptography, message authentication codes (MAC) and secure hash

functions.

Briefly, Stallings (2005) outlined that message authentication represents a

mechanism to verify that transferred messages come from the alleged source and they
have not been altered in traffic. Message authentication may also verify sequencing and
timeliness.

 Intro

A hash function basically maps a variable-length message into a fixed length hash
value, or message digest. For achieving message authentication, a secure hash function
must be combined in some fashion with a secret key.

Essentially, cryptographic hash algorithms are intended to prove authenticity. The
message digest resulted after a hash algorithm is applied on a data message serves as an
identifying fingerprint for the respective data. So, if one bit in the input data is altered,
then the hash should be completely different (Reinhold, 2005).

Thus, hashing is used to prevent tampering of electronic messages. Olsen (2005)
defines a hash as being a numerical code generated from a string of text when a message
is sent. The receiving entity checks it against a hash it creates from the same text, and if
the two resulting hashes are the same, it can be concluded that the transmitted message
was not altered in traffic.

 The hash functions incorporate a compression function. Stallings (2005)
noted that the compression function used in secure hash algorithms falls into one of two
categories: a function specifically designed for the hash function or a symmetric block
cipher. Moreover, most hash functions that have achieved widespread use rely on a
compression function specifically designed for the hash function.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

157

A cryptographic hash function has specific properties. Below we mention the
properties that are relevant from a cryptographic viewpoint.

- A hash function h is preimage resistant if it is computationally infeasible (hard)
to find an input x with h(x) = y for a given (and randomly chosen) output y.

In other words, a hash function is preimage resistant if, given a random hash
code, it is computationally infeasible to find an input that the hash function maps to that
hash code (Dent & Mitchell, 2005).

- A hash function h is second-preimage resistant or weak collision resistant if it is
computationally infeasible to find a second input x’ with x’ ≠ x and h(x’) = h(x)
for a given (and randomly chosen) input x.

Namely, A hash function is second preimage resistant if, given an input to the
hash function, it is computationally infeasible to find a second input that gives the same
hash code (Dent & Mitchell, 2005).

- A hash function h is collision resistant or strong collision resistant if it is
computationally infeasible to find two inputs x, x’ with x’ ≠ x and h(x’) = h(x).

More specifically, a hash function is collision resistant if it is computational

infeasible to find two inputs that give the same hash code (Dent & Mitchell, 2005).

According to the above definitions of the properties for hash functions, it results
that collision resistant hash function must be second-preimage resistant. Oppliger (2005)
pointed out that otherwise it would be possible to find a second preimage for an arbitrary
chosen input, and this second preimage would yield a collision. On the other hand, a
second-preimage resistant hash function must not be collision resistant. Resultantly,
collision resistance implies second-preimage resistance, but not the opposite.

 Based on the properties enumerated above, there could be defined one-way hash
functions (OWHF) and collision resistant hash functions (CRHF).

A one-way hash function is a hash function that is preimage resistant and second-
preimage resistant.

A collision resistant hash function is a hash function that is preimage resistant and
collision resistant.

It is worth mentioning that a CRHF is always an OWHF, while the opposite might
not be true.

RSA Security, Inc. played an important role in the development and deployment

of many practically relevant cryptographic hash functions (Oppliger, 2005). RSA
Security, Inc. firstly designed a proprietary hash function named MD (message digest).

Secure Communications: ‘End-to-end encryption’ in Jericho networks

158

The first published hash function is MD21 that was widely used, mainly in the secure
messaging products of RSA Security, Inc.

Next, the same company designed MD42 that is specified in RFC 1320. Because
of some reported weaknesses of MD4, a new hash function was designed – MD53 by
Ronald Rivest and is specified in RFC 1321. Although, MD5 was considered to be more
secure than MD4 it is also a little bit slower (Oppliger, 2005).

In 1993, the US National Institute of Standards and Technology (NIST) designed

the Secure Hash Algorithm (SHA). Oppliger (2005) noted that SHA algorithm is similar
to MD5, but even more strengthened and also a little bit slower. Next, NIST revised the
initial SHA version and released a new version SHA-1 specified in the Federal
Information Processing Standards Publication (FIPS PUB) 180-14.

In 2002, NIST performed a revision of the standard, and this resulted in a new
FIPS PUB 180-25 that defined three new versions of SHA, with hash value lengths of
256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512 bits.

Finally, the NIST secure hash standard contains the specifications for five hash
functions: SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512.

MD4 and MD5 produce hash values of 128 bits, while SHA-1 produces hash

values of 160 bits. The revised versions of SHA produce hash values that are even longer.

Oppliger (2005) acknowledged that from a security viewpoint, long hash values
are given preference due to the fact that the likelihood of collisions is reduced. Thus, it is
advisable to replace MD5 with SHA-1 or any other function from the SHA family where
possible.

Next, in this sub-chapter we discuss the security of MD5 and SHA hash functions.

4.5.1 MD5

As we have already mentioned, MD5 is a strengthened version of MD4.

MD5 algorithm takes an input message of arbitrary length and produces a 128-bit
hash value of the message. The input message is processed in 512-bit blocks which can

1 http://www.faqs.org/rfcs/rfc1319.html
2 http://www.faqs.org/rfcs/rfc1320.html
3 http://www.faqs.org/rfcs/rfc1321.html
4 http://www.itl.nist.gov/fipspubs/fip180-1.htm
5 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

Secure Communications: ‘End-to-end encryption’ in Jericho networks

159

be divided into 16 32-bit sub-blocks. The message digest is a set of 4 32-bit blocks that
concatenate in order to form a single 128-bit hash code.

Cryptographic hash functions are typically attacked by trying to find two different
documents that have the same hash value (a collision attack). Through collision attacks,
the security of hashes is defeated.

It has been shown in the literature (Kaufman et al., 2002; Oppliger, 2005;
Reinhold, 2005) that based on the mathematical result known as the “Birthday Paradox”,
one needs to try 2 to N/2 possibilities, for finding a collision (N represents the number of
bits in the output).

So, MD5 hash function that has a 128 bits output provides only 64 bits of strength
against brute force attacks.

A series of collision attacks have been reported in the literature1 against MD5.
Thus, Schneier (2005) concluded on his weblog2 that MD5 is broken.

4.5.2 SHA-1

Oppliger (2005) noted that SHA-1 hash function is conceptually and structurally

similar to MD4 and MD5. But, SHA-1 outputs hash values of 160 bits. So, taking into
consideration the “Birthday Attack”, SHA-1 only provides 80 bits of strength, at most.

In 2005 NIST announced the intention to phase out approval of SHA-1 and move
to a reliance on the other SHA versions by 2010.

Although SHA-1 was considered secure, shortly after NIST’s decision to replace
SHA-1, a research team (Wang et al., 2005) succeeded to break this hash function. In
their paper, the researchers presented new collision search attacks on the hash function
SHA-1. They showed that collisions of SHA-1 can be found with complexity less than 269
hash operations. This represents the first attack on the full 80-step SHA-1 that has
complexity less than the 280 theoretical bound as we have previously mentioned for a 160
bits hash function.

Later, in August 2005, another attack on SHA-1 was reported3 about finding

collisions for SHA-1 in 263 operations.

Stallinger (2005) concluded that these results should accelerate the transition to
the other versions of SHA.

1 http://www.cits.rub.de/MD5Collisions/ ;
http://www.schneier.com/blog/archives/2005/06/more_md5_collis.html; http://eprint.iacr.org/2006/104.pdf
accessed May 2007
2 http://www.schneier.com/blog/archives/2005/08/the_md5_defense.html accessed May 2007
3 http://www.rsa.com/rsalabs/node.asp?id=2927 accessed May 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

160

These findings, regarding the collision attacks, are of interest for applications that
require collision resistant hash functions.

Anyway, as Reinhold (2005) suggested, “there is no need to panic”. Taking into
consideration the results of the researches about collision attacks that showed that SHA-1
has at most 63 bits strength, this is still non-trivial to perform such an attack with the
current technology. It is recommended anyway to develop upgrade plans for adopting
stronger cryptographic hash functions.

Reinhold (2005) and Szydlo (2005) suggested viable approaches for improving
the security of applications:

- SHA-1 should not be used in new designs. It should be replaced with stronger
variants. For instance, SHA256, SHA384 and SHA512 are widely available and
free. In any case, MD5 should be phased out because it is even weaker than
SHA-1, but still widely used.

- Another suggestion is to add randomness to hash functions. But in order to
implement this, the applications must have a good source of randomness and
should also change the protocols that use hash functions.

Next, we provide in Table 4.7 a comparison of SHA parameters for hash

functions. In this table, all sizes are measured in bits, and the security refers to the fact
that a “Birthday Attack” on a message digest of size N produces a collision with a
probability of approximately 2N/2.

 SHA-1 SHA-256 SHA-384 SHA-512

Message Digest Size 160 256 384 512

Message size <264 <264 <2128 <2128

Block size 512 512 1024 1024

Word size 32 32 64 64

Number of steps 80 64 80 80

Security 80 128 192 256

Table 4.7: Comparison of SHA Parameters (after Stallings, 2005)

4.6 Message authentication codes

Secure Communications: ‘End-to-end encryption’ in Jericho networks

161

A message authentication code (MAC) is an algorithm that requires the use of a
secret key. So, a secret-key algorithm can be used to generate a small fixed-size block of
data, known as a cryptographic checksum or MAC. The MAC is computed on a message
with a secret key, and verified with the same secret key by the receiver (Oppliger, 2005).

 Consequently, MAC depends on both the message it authenticates and the secret
key that only the legitimate sender and the legitimate recipient(s) are assumed to know.

It is worth noting that there is a fundamental difference between message
authentication using MACs and message authentication using digital signatures. For
MACs, the same secret key is used for computation of the MAC value and for verifying
it, while for digital signatures the secret key is used for signing a message, while the
public key is used for verifying the signature. Digital signatures can be used for achieving
also non-repudiation services, whereas MACs are used only for integrity purposes.

Another difference between MACs and digital signatures is that MACs can be
verified only by the legitimate possessors of the secret key, while the digital signatures
can be verified by any entity that is in the possession of the public key.

Computationally Secure MACs

Oppliger (2005, p. 294) presented some possibilities to design MACs that are
computationally secure. Some of these possibilities are:

- MACs that use symmetric encryption systems
- MACs that use keyed hash functions
- MACs that use pseudorandom functions (PRFs)
- MACs that use universal hash functions

Secure Communications: ‘End-to-end encryption’ in Jericho networks

162

4.7 Public Key Infrastructure (PKI)

 A public key infrastructure (PKI) consists of all the elements (certificates, a
repository for retrieving certificates, a method of revoking certificates, a method of
evaluating a chain of certificates) necessary to securely distribute public keys.

 In fact, a certificate is a message vouching that a certain name goes with a
corresponding public key (Kaufman et al., 2002). There are three types of certificates:
end-user certificates, CA certificates and cross-certificates.

Certificates are issued by certifications authorities (CAs). The CAs is a trusted
company universally or for a certain domain depending on the PKI Trust Model that is
used (e.g. monopoly, oligarchy, anarchy PKI trust models). CAs posses PKI trust anchors
(a public key that has been previously verified and that is trusted to sign certificates) that
are used for issuing certificates to other entities.

The monopoly PKI trust model is not realistic due to the difficulties of using only
one organization for checking the credentials of the entities that request certificates, of
issuing these certificates, and providing further validation and revocation services.

A model that is typically implemented in browsers is the oligarchy PKI trust
model in which the different entities and products are configured and issued certificates
by different CAs that have trust anchors.

Certificates can be used in a variety of situation within protocols and in secure
communications. For instance, if an entity A wants to securely find the public key of
another entity B for sending an him/her an encrypted message, then A can use a PKI Trust
Model for retrieving the public key of B. Also, by the means of certificates, the identity,
the digital signature, the public key of target entities can be verified and validated (If
entity A wants to find a path to B’s key, then the name of B is the target).

 Nevertheless, due to the scope of this thesis, we propose that the PKI should be
considered for future research in the context of Jericho Project.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

163

4.8 Comparison of cryptographic primitives

In the field of cryptography new algorithms surface continuously and existing
algorithms are continuously attacked. Thus, many algorithms that were believed to be
strong against attacks were demonstrated to be weak in front of new designed attacks.

In this sub-chapter we present a comparison of some of the most cryptographic
algorithms and primitives investigated in this thesis. The cryptographic algorithms
provide different levels of cryptographic and security strength, depending on the
algorithm itself and on the variety of key sizes that are used.

The security strength of a cryptographic algorithm for a given key size is
traditionally described in terms of the amount of effort it takes to break it.

Stallings presented a report of Certicom1 containing the comparison of different
cryptographic algorithms and primitives in terms of computational effort for
cryptanalysis for comparable key sizes.

Symmetric Scheme (key
size in bits)

ECC-Based Scheme (size
of n in bits)

56 112

80 160

112 224

128 256

92 384

256 521

Table 4.8: Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis
(after Certicom)

 We observe that computational effort for breaking ECC-based schemes is
comparable with the effort of breaking symmetric cryptographic algorithms. This is due
to the fact that ECC implementations are smaller and more efficient than the
implementation of other public-key algorithms.

 U.S. National Security Agency (NSA) presented a report2 of NIST in which the
conventional cryptographic algorithms are compared with ECC.

1 http://www.certicom.com/ accessed June 2007
2 http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

164

Bits of
security

Symmetric-key
algorithms

Hash
algorithms RSA and Diffie-

Hellman
Key Size (bits)

Elliptic
Curve Key
Size
(bits)

80 SHA-1 1024 160

112 3DES 2048 224

128 AES-128 SHA-256 3072 256

192 AES-192 SHA-384 7680 384

256 AES-256 SHA-512 15360 521

Table 4.9: NIST Recommended Key Sizes

As presented in Table 4.9, for using RSA or Diffie-Hellman to protect 128-bit
AES keys, there should be used 3072-bit keys. Based on the results presented by NIST,
the equivalent key size for ECC is 256 bits.

As the symmetric key size increases, the required key size for RSA and Diffie-
Hellman increases at a considerably faster rate than the required key for ECC. Thus, in
the NSA1 report it is stated that ECC offers more security per bit increase in key size than
RSA or Diffie-Hellman public-key cryptographic algorithms. The ECC security increases
more rapidly as key length increases.

 In the same report there are presented results that illustrate the fact that ECC is
computationally more efficient than RSA and Diffie-Hillman algorithms for the same
symmetric key size. ECC’ mathematical foundation is more complex than either RSA or
DH arithmetic, but ECC offers added strength per bit.

In Table 4.10 there are shown the ratio of DH computation versus EC
computation for each of the key sizes listed in Table 4.9:

Symmetric Key Size
(bits)

Ratio of
DH Cost : EC Cost

80 3:1

112 6:1

128 10:1

192 32:1

256 64:1

Table 4.10: Relative Computation Costs of Diffie-Hellman and Elliptic Curves2

1 http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm accessed June 2007

2 http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

165

For protecting both classified and unclassified National Security information, the
National Security Agency has decided to move to elliptic curve based public key
cryptography. Where appropriate, NSA plans to use the elliptic curves over finite fields
with large prime moduli (256, 384, and 521 bits) published by NIST.

In the same report of NSA it is stated that the United States, the UK, Canada and
certain other NATO nations have all adopted some form of elliptic curve cryptography
for future systems to protect classified information throughout and between their
governments.

NIST1 presented as even a more detailed comparison of the equivalent
cryptographic algorithms strength and made the following recommendations regarding
the cryptographic algorithms to be used further for achieving secure communications and
the minimum key sizes:

Algorithm security
lifetimes

Symmetric
key
algorithms

RSA
&

D-H

ECC

Hash (A) Hash (B)

2007 to 2010

min. of 80 bits of
strength

2TDEA

3TDEA

AES-128

AES-192

AES-256

1024 160 SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

2011 to 2030

(min. of 112 bits of
strength)

3TDEA

AES-128

AES-192

AES-256

2048 224 SHA-224
SHA-256
SHA-384
SHA-512

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

Beyond 2030

(min. of 128 bits of
strength)

AES-128

AES-192

AES-256

3072 256 SHA-256
SHA-384
SHA-512

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

>> 2030

(min. of 192 bits of
strength)

AES-256 7680 384 SHA-384
SHA-512

SHA-224
SHA-256
SHA-384
SHA-512

>>> 2030 15360 512 SHA-512 SHA-256
SHA-384

1 http://csrc.nist.gov/encryption/kms/guideline-overview%20(b-w).pdf accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

166

(min. of 256 bits of
strength)

SHA-512

Table 4.11: Recommended algorithms and minimum key sizes by NIST1

A few observations regarding the recommended algorithms and minimum key
sizes:

- Hash (A): are used for digital signatures and hash-only applications

- Hash (B): are used for HMAC, Key Derivation Functions and Random Number
Generation

- SHA-1 has recently been demonstrated to provide less than 80 bits of security
for digital signatures; the security strength against collisions is assessed at 69
bits. The use of SHA-1 is not recommended for the generation of digital
signatures in new systems; new systems should use one of the larger hash
functions. For the present time, SHA-1 is included here to reflect its widespread
use in existing systems, for which the reduced security strength may not be of
great concern when only 80-bits of security are required.

The algorithms and key sizes in the table are considered appropriate for the
protection of data during the given time periods. Algorithms or key sizes not indicated for
a given range of years shall not be used to protect information during that time period.

This NIST Recommendation applies to U.S. government agencies using
cryptography for the protection of their sensitive unclassified information. However, this
recommendation may also be followed, on a voluntary basis, by other organizations that
want to implement sound security principles in their computer systems. This
recommendation advises the users of cryptographic mechanisms on the appropriate
choices of algorithms and key sizes.

As NIST specified algorithm suites that combine non-comparable strength
algorithms are generally discouraged. However, algorithms of different strengths and key
sizes may be used together for performance, availability or interoperability reasons,
provided that sufficient protection is provided. Generally, the weakest algorithm and key
size used to provide cryptographic protection determines the strength of the protection.

For instance, when security protocols are used for achieving the requirements for
secure communications in Jericho networks, determination of the strength of protection
provided for information includes an analysis not only of the algorithm(s) and key size(s)
used to apply the cryptographic protection to the information for achieving
confidentiality, but also any algorithm(s) and key size(s) associated with establishing the
key(s) used for information protection itself.

1 http://csrc.nist.gov/CryptoToolkit/kms/SP800-57Part1August2005.pdf accessed April 2007;
http://www.keylength.com/en/4/ accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

167

NIST recommends the following configuration1 of algorithms and key sizes for
securing transferred data with confidentiality, integrity, authentication and non-
repudiation protection:

- Confidentiality: Encrypt the information using AES-128. Other AES key sizes
would also be appropriate, but perform a bit slower. In addition, another block
cipher could be used for achieving confidentiality for the transmitted data,
namely Camellia cipher.

Camellia is comparable with AES in terms of security and performance. It was
also adopted into various standard/recommended specifications. As a result,
Camellia is adopted in security protocols, such as SSL/TLS, IPsec, XML etc.

- Integrity, authentication and non-repudiation: It is supposed that only one
cryptographic operation is preferred; for instance digital signatures. SHA-256
could be selected for the hash function. An algorithm for digital signatures
should be selected from what is available to an application (e.g. ECDSA with at
least a 256-bit key).

The Committee on National Security Systems2 recommended that the design and
strength of all key lengths of the AES algorithm (e.g. 128, 192 and 256) are sufficient to
protect classified information up to the SECRET level. TOP SECRET information will
require use of either the 192 or 256 key lengths.

European Network of Excellence for Cryptology recommended slightly larger key
sizes:

L
e
v
e
l

Protection Symmetric

Asymmetric Elliptic
Curve

Hash

1 Attacks in "real-time" by
individuals
Only acceptable for authentication
tag size

32 - - -

2 Very short-term protection against
small organizations
Should not be used for
confidentiality in new systems

64 816 128 128

3 Short-term protection against
medium organizations, medium-

72 1004 144 144

1 http://csrc.nist.gov/CryptoToolkit/kms/SP800-57Part1August2005.pdf accessed June 2007
2 www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf accessed June 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

168

term protection against small
organizations

4 Very short-term protection against
agencies, long-term protection
against small organizations
Smallest general-purpose level,
protection from 2007 to 2010

80 1248 160 160

5 Legacy standard level
Use of 2-key 3DES restricted to 106
plaintext/ciphertexts,
protection from 2007 to 2016

96 1777 192 192

6 Medium-term protection
protection from 2007 to 2026

112 2432 224 224

7 Long-term protection
Generic application-independent
recommendation,
protection from 2007 to 2036

128 3248 256 256

8 "Foreseeable future"
Good protection against quantum
computers

256 15424 512 512

Table 4.12: Recommended algorithms and minimum key sizes by ECRYPT 20071

Regarding the recommendations made in this table, we summarize the following
recommendations:

- the 32 and 64-bit levels should not be used for confidentiality protection; 32-bit
keys offer no confidentiality at all relative to any attacker, and 64-bit offers only
very poor protection

- while both 80 and 128-bit keys provide sufficient security against brute force
key-search attacks (on symmetric primitives) by the most reasonable
adversaries, it should be noted that 80 bits would be practically breakable and
128 bits might correspond to an effective 80-bit level, if one considers attack
models based on pre-computation and large amounts of available storage. As a
simple rule of thumb, one may choose to double the key size to mitigate threats
from such attacks.

- the main consideration for a secure hash function is the size of the outputs. If the
application requires collisions to be difficult to find, the output must be twice the
desired security level. This is the case when used with digital signatures for
instance. When used as a keyed hash for message authentication, however, the
outputs may often be truncated.

- As a remark, 256-bit symmetric key offers good protection against quantum
computers

1 http://www.keylength.com/en/3/ accessed April 2007

Secure Communications: ‘End-to-end encryption’ in Jericho networks

169

Stallings (2005) mentioned that the principal attraction of ECC, compared to
RSA, is that it appears to offer equal security for a far smaller key size. Consequently, the
process overhead is reduced. On the other hand, the theory of ECC appeared in the last
decennia and it was not subject to sustained cryptanalytic analysis for finding its
weaknesses. So, ECC was less researched than the others cryptographic algorithms and
this why it is not yet recommendable to use it for securing the transferred information.
Accordingly, the confidence level in ECC is not yet as high as that in RSA.

When there are conventional cryptographic algorithms available that offer the
same level of protection as ECC, even at the cost of computational resources, these
should be preferred for usage in designing secure protocols instead of using ECC in the
context of Jericho Project.

However, the choice of the cryptographic algorithms to be used for designing
security protocols in the context of Jericho Project depends on the security needs of the
data, on the classification type of the data and on its security level. Also, if an increased
number of transfers of sensitive data over Internet occurs, the mechanisms offered by
ECC can be used within the security protocols proposed for securing the communications
for Jericho Project.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

170

Chapter 5 Conclusions and Future Directions for Research

5.1 Conclusions

In the context of Jericho Forum the need for securing data in transit over the

Internet is essential due to the new threats that occur and the new ways business are
nowadays conducted in a collaborative environment.

Over the past decennia, cryptography has become the pillar for providing securing
communications over the Internet. Cryptography provides the security mechanisms
needed for accomplishing the security services desired for secure communications.

The aim of this thesis was to investigate and recommend the most appropriate
security mechanisms offered by cryptography for being used in security protocols that
offer protection for the data transmitted over the Internet in the contextual framework of
Jericho Project.

In the course of this research we analyzed and made recommendations regarding
the security requirements, the security protocols and the cryptographic algorithms that
could be used in the context of Jericho Project for achieving end-to-end security.

In essence, cryptographic algorithms, primitives and protocols are the means of
designing and deploying secure communications in Jericho networks as well.
Cryptography is at the basis of IPsec, SSL/TLS and XML Encryption protocols that we
have analyzed in this thesis.

Consequently, in this thesis we have investigated the means offered by
cryptography for designing secure protocols in order to obtain end-to-end security in
Jericho networks.

An essential aspect regarding the cryptographic algorithms and primitives used to
design secure protocols in the context of Jericho Project, is that some cryptographic
algorithms provide different levels of cryptographic strength, and implicitly security,
through a variety of key sizes.

Evidently, the cryptographic algorithms may be combined in many ways to
support the design of secure protocols, but we have to select the most adequate means
offered by cryptography for acquiring the goals of secure communications in Jericho
Project.

 In the course of our research we concluded that the security of information in
transit over the Internet, which is protected by cryptographic mechanisms within secure
protocols, depends on the strength of the cryptographic keys, the effectiveness of
mechanisms and protocols associated with keys, and the implementation of the protocols
for the adequate situations.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

171

Nevertheless, protecting the information in traffic is not solely dependent on the
mathematical strength of the chosen cryptographic algorithms to be used for designing
security protocols. Besides the level of security attached to the data as a result of the
classification process, there are also other factors that are taken into consideration when
deciding which cryptographic mechanisms to deploy for achieving the requirements for
secure communications in Jericho Project. If more than one algorithm and key size is
available, the selection may be based on algorithm performance, memory requirements,
as long as the minimum requirements are met.

However, this research does not address implementation details for the
cryptographic algorithms and security protocols that can be used in Jericho networks for
achieving the security requirements identified for secure communications.

Users and developers have many choices in their use of cryptographic
mechanisms for designing security protocols in the context of Jericho Project. Designing
pervasive, inherently secure protocols for achieving secure communications for Jericho
networks is not an easy task.

There are more ways to design a security protocol for achieving the goals for
secure communications in Jericho networks. As stated by Jericho Forum
Commandments, the protocols should be used open, secure, and flexible. Moreover, the
security mechanisms employed for the accomplishment of the security services required
for secure communications in Jericho Project must be pervasive, simple, scalable and
easy to manage.

However, Cole et al. (2005) remarked that while cryptography can be very secure
when used properly, the human element of the process should always be considered and
taken into consideration. So, making the users aware of how to protect the privacy and
integrity of the business and personal data against the different threats is one of the first
steps when implementing a security policy based on Jericho commandments.

5.2 Future Directions for Research

 In the course of our research we determined some interesting topics for future
investigation in the context of Jericho Project.

 We consider the following topics of interest for further analysis and investigation
within the purpose of achieving secure communications in Jericho networks:

- Different methods of authentication of the entities within the security protocols
for secure communications

 Although we have investigated this topic in this thesis, we acknowledge that it
can be more in depth analysed, and recommendations regarding the most appropriate
solutions for authentications should be made in the context of Jericho Project.

- The relationship of the Trust Broker with the Certification Authorities represents
another research topic that deserves more attention in a future investigation

Secure Communications: ‘End-to-end encryption’ in Jericho networks

172

- Key Management provides the foundation for the secure generation, storage,
distribution, and destruction of keys. In the context of Jericho Project, this subject
should be further tackled, and the best approaches for protecting the secret and
private keys against unauthorized disclosure should be recommended.

- Implementation details of the cryptographic algorithms and security protocols
recommended for securing the communications in the context of Jericho Project

- Mechanisms for securing the data in storage and in process should be also further
investigated in the context of Jericho Project

- Other security mechanisms and protocols for securing Web Services

- The possibilities offered by the Authenticated Encryption systems in the context
of Jericho Project. Authenticated Encryption refers to encryption systems that
simultaneously protect confidentiality and authenticity (integrity) of
communications.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

173

References

Alshamsi, A. & Saito, T. (2005). A Technical Comparison of IPSec and SSL. Proceedings

of the 19th International Conference on Advanced Information Networking and
Applications - Volume 2

Andress, A. (2004).Surviving Security: How to Integrate People, Process, and Technology,
Second Edition. Auerbach Publications

Atreya, M., Hammond, B., Paine, S., Starrett, P., & Wu, S. (2002). Digital Signatures.
McGraw-Hill/Osborne

Bernstein, D. J. (2005).Cache-timing attacks on AES. The University of Illinois at Chicago
available at http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Biham, E. & Shamir, A. (1990). Differential cryptanalysis of DES-like cryptosystems. The
Weizmann Institute of Science Department of Applied Mathematics

Biham, E., Dunkelman, O., & Keller, N. (2005). Related-Key Boomerang and Rectangle
Attacks. Advances in Cryptology – EUROCRYPT 2005, LNCS 3494, Springer, p.
507-525

Blaze, M., Diffie, W., Rivest, R.L., Schneier, B., Shimomura, T., Thompson, E., Wiener, M.
(1996). Minimal Key Lengths for Symmetric Ciphers to Provide Adequate
Commercial Security. A Report by an Ad Hoc Group of Cryptographers and
Computer Scientists

Bragg, R. (2004). MCSE Self-Paced Training Kit (Exam 70-298): Designing Security for a
Microsoft Windows Server 2003 Network. Microsoft Press

Burnett, M.M. & Foster, J.C. (2004). Hacking the Code: ASP.NET Web Application
Security. Syngress Publishing

Canavan, J.E. (2001). Fundamentals of Network Security. Artech House, Inc.
Cheon, J.H., Kim, M., Kim, K., Lee, J.Y., & Kang, S. W. (2001). Improved Impossible

Differential Cryptanalysis of Rijndael and Crypton. Information Security and
Cryptology - ICISC 2001

Cole, E, Krutz, R.L., & Conley, J.W. (2005). Network Security Bible. Wiley Publishing,
Inc.

Conrad, E.(2007). Types of Cryptographic Attacks. available at
 http://www.giac.org/resources/whitepaper/cryptography/57.php accessed May 2007
Dam, K.W. & Lin, H.S. Editors (1996). Cryptography's Role in Securing the Information

Society. Committee to Study National Cryptography Policy, Computer Science and
Telecommunications Board, National Research Council, Washington, D.C.

Daemen, J., Govaerts, R. & Vandewalle, J. (1994). Weak keys of IDEA. Advances in
Cryptology, Proceedings Crypto'93, LNCS 773, D. Stinson, Ed., Springer-Verlag, p.
224-231

De Laet, G. & Schauwers, G. (2004). Network Security Fundamentals. Cisco Press
Demirci, H., Selçuk, A. A., & Türe, E. (2003). A New Meet-in-the-Middle Attack on the

IDEA Block Cipher. 10th Annual International Workshop, Selected Areas on
Cryptography, p. 117-129

Dent, A.W. & Mitchell, C.J. (2005). User’s Guide to Cryptography and Standards. Artech
House Computer Security Series

DES Modes of Operation (1981). FIPS PUB 81, National Bureau of Standards, U.S.

Secure Communications: ‘End-to-end encryption’ in Jericho networks

174

Department of Commerce
Diffie, W. & Hellman, M.E. (1976). New Directions in Cryptography. IEEE Transactions

on Information Theory, v. IT–22, n.6, p. 644–654
Dournaee, B. (2002). XML Security. McGraw-Hill/Osborne
Eastlake, D.E. & Niles, K. (2002). Secure XML: The New Syntax for Signatures and

Encryption. Addison Wesley
El Aoufi, S. (2006). Cryptographie en ICT 2e druk Theorie en Praktijk. Academic Service

Sdu Uitgevers BV
Erl, T. (2004).Service-Oriented Architecture A Field Guide to Integrating XML and
 Web Services. Prentice Hall PTR
Feistel, H. (1973). Cryptography and Computer Privacy. Scientific American, 228(5), 15-23
Ferguson, N. & Schneier, B. (1999). A Cryptographic Evaluation of IPsec White Paper.

Counterpane Internet Security, Inc., available at www.schneier.com/paper-ipsec.pdf
Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Wagner, D.,

Whiting, D. (2000). Improved cryptanalysis of Rijndael. In Bruce Schneier, editor,
Proceedings of Fast Software Encryption – FSE’00, number 1978 in Lecture Notes in
Computer Science, pages 213–230. Springer-Verlag, 2000

Galbreath, N. (2002). Cryptography for Internet and Database Applications Developing
Secret and Public Key Techniques with Java. Wiley Publishing, Inc.

Gilbert, H. & Minier, M. (2000). Acollision attack on seven rounds of Rijndael. In
Proceedings of the Third Advanced Encryption Standard Conference, p. 230– 241,
NIST

Goots, N., Izotov, B., Moldovyan, A., & Moldovyan, N. (2003). Modern Cryptography:
Protect Your Data with Fast Block Ciphers. A-LIST Publishing

Gregg, M. (2006). Hack the Stack: Using Snort and Ethereal to Master the 8 Layers of an
Insecure Network. Syngress Publishing

Gutmann, P. available at http://www.cs.auckland.ac.nz/~pgut001/tutorial/index.html
accessed April 2007

Harris, S. (2005). CISSP: All-in-One Exam Guide, Third Edition. McGraw-Hill/Osborne
Hartman, B., Flinn, D. J., Beznosov, K., & Kawamoto, S. (2003). Mastering Web Services
 Security. Wiley Publishing, Inc.
Hassler, V. (2001). Security Fundamentals for E-Commerce. Artech House, Inc.
Hershey, J. E. (2003). Cryptography Demystified. McGraw-Hill
Howard, M. & Lipner, S. (2006). The Security Development Lifecycle: SDL: A Process for

Developing Demonstrably More Secure Software. Microsoft Press
Jakimoski, G. & Desmedt, Y. (2004).Related-Key Differential Cryptanalysis of 192-bit Key

AES Variants. SAC 2003, LNCS Vol. 3006, p. 208-221, Springer
Jaworski, J. & Perrone, P.J. (2000). Java Security Handbook. Sams Publishing
Jericho Forum (2006). Position Paper Federated Identity. Jericho Forum Publications

available at https://www.opengroup.org/jericho/publications.htm
Jericho Forum (2006). Position Paper End Point Security. Jericho Forum Publications

available at https://www.opengroup.org/jericho/publications.htm
Jericho Forum (2006). Jericho Forum Commandments. Jericho Forum Publications Version

1.1 December 2006, available at
 www.opengroup.org/jericho/commandments_v1.1.pdf
Jericho Forum (2007). White Paper – Business rationale for de-perimeterization. Jericho

Secure Communications: ‘End-to-end encryption’ in Jericho networks

175

Forum Publications available at
 http://www.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf
Jericho Forum (2007). Position Paper – Principles for Managing Data Privacy. Jericho

Forum Publications available at http://www.opengroup.org/jericho/Privacy_v1.0.pdf
Johnston, A.B. & Piscitello, D.M. (2006). Understanding Voice over IP Security. Artech

House
Kaliski, B. (2000). Requirements for New Public-Key Algorithms. RSA Laboratories
Kaufman, C., Perlman, R. & Speciner, M. (2002). Network Security Private

Communication in a Public World. Prentice Hall PTR
Kocher, P., Jaffe, J., Jun, B., Laren, C., & Lawson, N. (2002-2003). Self-Protecting Digital

Content A Technical Report from the Cri Content Security Research Initiative.
Cryptography Research, Inc. (CRI)

Komar, B. & the Microsoft PKI Team (2004). Microsoft Windows Server 2003 PKI and
Certificate Security. Microsoft Press

Kruegel, C. (2005). Internet Security. The Industrial Communication Technology
Handbook, CRC Press

Lail, B.M. (2002). Broadband Network & Device Security. McGraw-Hill/Osborne
Larson, R. E. & Cockcroft, L. (2003). CCSP: Cisco Certified Security Professional

Certification All-in-One Exam Guide. McGraw-Hill/Osborne
Lehtinen, R. (2006). Computer Security Basics, 2nd Edition. O'Reilly
Lucks, S. (2000). Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys. In

Proceedings of the Third Advanced Encryption Standard Conference. NIST
Mallery, J. et al. (2005). Hardening Network Security. McGraw-Hill/Osborne
Mao, W. (2003). Modern Cryptography: Theory and Practice. Prentice Hall PTR
Mar-Elia, D., Melber, D., Stanek, W. & Microsoft Group Policy Team (2005). Microsoft

Windows Group Policy Guide. Microsoft Press
Menezes, A.J., van Oorschot, P.C., & Vanstone, S. A. (1996).Handbook of Applied

Cryptography. CRC Press
Merkow, M.S. CCP, & Breithaupt, J. (2000). The Complete Guide to Internet Security.

AMACOM
Microsoft Corporation (2005). Web Service Security: Scenarios, Patterns, and

Implementation Guidance for Web Services Enhancements (WSE) 3.0. Microsoft
Press

Microsoft Corporation (2003). Building Secure Microsoft ASP.NET Applications:
Authentication, Authorization, and Secure Communication. Microsoft Press

Microsoft Corporation (2003). Improving Web Application Security: Threats and
Countermeasures. Microsoft Press

Miller D. (2005). Black Hat Physical Device Security: Exploiting Hardware and Software.
Syngress Publishing

Nantz, B. & Moroney, L. (2005). Expert Web Services Security in the .NET Platform.
Apress

Nash, A., Duane, W., Joseph, C., Brink, D. (2001). PKI: Implementing and Managing E-
Security. The McGraw-Hill Companies

Northrup, T. & Thomas, O. (2004). MCSA/MCSE Self-Paced Training Kit (Exam 70-299):
Implementing and Administering Security in a Microsoft Windows Server 2003
Network. Microsoft Press

Secure Communications: ‘End-to-end encryption’ in Jericho networks

176

O’Neill, M. et al. (2003). Web Services Security. McGraw-Hill/Osborne
Olifer, N. & Olifer, V. (2006). Computer Networks: Principles, Technologies and

Protocols for Network Design. John Wiley & Sons Inc.
Olsen, F. (2005). Hashing out encryption. available at
 http://www.fcw.com/fcw/articles/2005/0207/web-hash-02-07-05.asp
Oppliger, R. (2002). Internet and Intranet Security, Second Edition. Artech House, Inc.
Oppliger, R. (2003). Security Technologies for the World Wide Web, Second Edition.

Artech House, Inc.
Oppliger, R. (2005). Contemporary Cryptography. Artech House, Inc.
Osvik, D.A., Shamir, A. & Tromer, E. (2005). Cache Attacks and Countermeasures: the

Case of AES. Proceedings RSA Conference Cryptographers Track (CT-RSA) 2006,
Springer, 2006 availble at http://theory.csail.mit.edu/~tromer/papers/cache.pdf

Oswald, E., Daemen, J., & Rijmen, V. (2002). AES - The State of the Art of Rijndael’s
Security. availble at
http://www.iaik.tugraz.at/aboutus/people/oswald/papers/aes_report.pdf

Papadimitratos, P. & Haas, Z. J. (2003). Secure message transmission in mobile ad hoc
networks. Ad Hoc Networks, 1(1), 193-209

Piper, F. & Murphy, S. (2002). Cryptography: A Very Short Introduction. Oxford
University Press

Poddar, V., Singh, V.K., Vinoo, A. E., Saraswat, P. (2003). Cryptography Protocols and
Algorithms. SkillSoft Press

Pujolle, G. (ed) (2007). Management, Control and Evolution of IP Networks. International
Scientific and Technical Encyclopedia

Quiggle, A. (2001). Implementing Cisco VPNs : A Hands-On Guide. McGraw-
Hill/Osborne

Raina, K. (2003). PKI Security Solutionsfor the Enterprise: Solving HIPAA, E-Paper Act,
and Other Compliance Issues. Wiley Publishing, Inc.

Ramachandran, J. (2002). Designing Security Architecture Solutions. John Wiley & Sons
Rappa, M. available at http://digitalenterprise.org/models/models.html accessed March 2007
Reinhold, A. The Attack On SHA-1 And Its Implications. available at

http://www.hurwitz.com/index.php?option=com_content&task=view&id=96&Item
Reuvid, J. (2006). The Secure Online Business Handbook—A Practical Guide to Risk

Management and Business Continuity, 4th Edition. Kogan Page
Rhee, M. J. (2003).Internet Security Cryptographic Principles, Algorithms and Protocols.

John Wiley & Sons Ltd
Richards, R. (2006). Pro PHP XML and Web Services. Apress
Rosenberg, J. & Remy, D.L. (2004). Securing Web Services with WS-Security. Sams

Publishing
Sharma, R. K. et al. (2002). Cisco Security Bible. John Wiley & Sons
Schein, P.G. (2000). MCSE Windows 2000 Security Design Exam Cram (Exam 70-220).

The Coriolis Group
Schneier, B. (1996). Applied Cryptography. Second Edition, John Wiley & Sons, Inc.
Schneier, B. (2005). AES Timing Attack. Schneier on Security Blog, available at

http://www.schneier.com/blog/
Seys, S. (2006). Cryptographic Algorithms and Protocols for Security and Privacy in

Wireless Ad Hoc Networks. Catholic University Leuven

Secure Communications: ‘End-to-end encryption’ in Jericho networks

177

Simpson, P. (2006). InsidersChoice to MCP/MCSE Exam 70-293 Windows Server 2003
Certification: Planning and Maintaining a Microsoft Windows Server 2003 Network
Infrastructure, Second Edition. TotalRecall Press

Slone, S. & The Open Group Identity Management Work Area (2004). Identity
Management White Paper. The Open Group

Sluiter, J. (2006). Point of View Service Oriented Architecture and Deperimeterisation.
Capgemini.

Smith, C. (2006). Pro Open Source Mail: Building an Enterprise Mail Solution. Apress
Snader, J.C. (2005). VPNs Illustrated: Tunnels, VPNs, and IPsec. Addison Wesley

Professional
Solomon, M.G. & Chapple, M. (2005). Information Security Illuminated. Jones and Bartlett

Publishers
Stallings, W. (2005). Cryptography and Network Security Principles and Practices, Fourth

Edition. Prentice Hall
Stallings, W. (2003). Network Security Essentials Applications and Standards, Second

Edition. Prentice Hall
Stamp, P., Whiteley, R., Koetzle, L., & Rasmussen, M. (2005). Jericho Forum Looks To

Bring Network Walls Tumbling Down. Analyst Reports at Forrester available at
http://www.csoonline.com/analyst/report3839.html

Stamp, M. (2006).Information Security Principles and Practice. JohnWiley & Sons, Inc.
Stinson, D. (1995). Cryptography: Theory and Practice. CRC Press LLC
Sullivan, D. (2006). The short guide to protecting business internet usage. Realtime

publishers, available at http://nexus.realtimepublishers.com/ accessed May 2007
Szydlo, M. (2005). SHA-1 Collisions can be Found in 263 Operations. available at

http://www.rsa.com/rsalabs/node.asp?id=2927
Talbot, J. & Welsh, D. (2006). Complexity and Cryptography An Introduction. Cambridge

University Press
Thomas, S. A. (2000).SSL & TLS Essentials Securing the Web. John Wiley & Sons
Thorsteinson, P. & Ganesh, G.G.A. (2003). .NET Security and Cryptography. Prentice Hall

PTR
Tipton, H. F. & Krause, M. (2004). Information Security Management Handbook. CRC

Press LLC
Torrubia, A., Mora, F. J. & Marti, L. (2001).Cryptography Regulations for E-commerce and

Digital Rights Management. Computers & Security, 20(8), 724-738
Turban, E., King, D., Viehland, D. & Lee, J. (2006). "Electronic Commerce 2006: A

Managerial Perspective". Pearson Education Inc., Upper Saddle River, New Jersey
Vaudenay, S. (2006). A Classical Introduction to Cryptography: Applications for

Communications Security. Springer Science+Business Media, Inc.
Wagner, D. & Schneier, B. (1996). Analysis of the SSL 3.0 Protocol. The Second

USENIX Workshop on Electronic Commerce Proceedings, USENIX Press
Wang, X., Yin, Y.L. & Yu, H. (2005). Finding Collisions in the Full SHA-1. Advances

in Cryptology – Crypto'05
Zacker, C. (2006). MCSE Self-Paced Training Kit (Exam 70-293): Planning and

Maintaining a Microsoft Windows Server 2003 Network Infrastructure, Second
Edition. Microsoft Press

Secure Communications: ‘End-to-end encryption’ in Jericho networks

178

