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Chapter 1 Introduction 

1.1 Introduction 

Nowadays, there are new ways of doing and conducting businesses, different 
from the traditional business models. Simply defined, a business model is the method of 
doing business by which a company generates revenue1. The online collaboration and 
electronic commerce among multiple business actors are increasing and this involves 
sharing of sensitive data over Internet. Sensitive data might include credentials used for 
authentication, or data such as credit card numbers, or bank transaction details, patient 
healthcare information. Defining what sensitive data is depends on the security policy of 
each organization and on the security levels attached to data (e.g. confidential, secret, top 
secret).  

The Computer Security Act 2 of 1987 provided a broad information definition for 
the term sensitive information: “or modification of which could adversely affect the 
national interest or the conduct of federal programs, or the privacy to which individuals 
are entitled under section 552a of title 5, United States Code (the Privacy Act), but which 
has not been specifically authorized under criteria established by an Executive Order or 
an Act of Congress to be kept secret in the interest of national defense or foreign      
policy.” 

 Consequently, protecting sensitive information means providing at least the 
following security services: confidentiality, integrity and availability of information.  

The Internet business models continue to evolve and, given the rapid advances 
and expansive growth of information and communication technology, new and 
interesting variations will arise in the future3, 4 (Turban et al., 2006).  

The new business models (B2B, B2C, B2E, G2G,  electronic markets, e-shops, 
auctions etc.) that appeared demand for new approaches of providing security. These are 
based on electronic, mobile transactions and users. Therefore, a new security architecture 
where each device is capable to protect itself is needed.5 

In the Internet age, the mission of securing network communications effectively is 
vital for organizations and individuals as well (Mar-Elie et al., 2005; Ramachandran, 
2002; Dam et al., 1996).  

Jericho Forum suggests that the perimeter approach for providing security is not 
suitable anymore and does not meet the increasing demands for security and user 
mobility that are inherent of the e-business models. The old ways for providing protection 

                                                 
1 Michael Rappa http://digitalenterprise.org/models/models.html accessed March 2007 
2 http://csrc.nist.gov/publications/nistbul/csl92-11.txt accessed June 2007 
3 Idem 1 
4 Jericho Forum http://www.opengroup.org/projects/jericho/index.tpl White Paper 
Business Case for De-perimeterization  (January 2007) 
5 Jericho Forum http://www.opengroup.org/projects/jericho/index.tpl  
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with an organizational security boundary are not adequate anymore and become obsolete. 
The traditional security mechanisms do not meet anymore the demands of businesses 
over an open, flexible and Internet-driven enterprise environment.  

This new security approach that sustains collaboration and commerce over open 
networks, within and between organizations, is based on security architecture and design 
approach entitled ‘de-perimeterization’. The new security model, its principles 
(commandments) and a series of white papers are proposed and promoted by Jericho 
Forum. 

In this master thesis, we will focus on proposing and describing end-to-end 
encryption solutions for secure communications within the context of Jericho Project. For 
providing end-to-end encryption, cryptography algorithms and security protocols are 
considered. Cryptography enables two or more parties to communicate and exchange 
information securely over insecure channels. 

 According to Ramachandran (2002) “the success of the Internet as a marketplace 
for services and information depends on the strength of our cryptographic protocols and 
algorithms.” 
 

1.2 Jericho Forum. Jericho Project 
 
Jericho Forum1 is an international community, composed mainly of IT 

organizations, dedicated to the development of open standards to enable secure and de-
perimeterised information flows across networks. 

The members of Jericho Forum recognize that the current security mechanisms 
that protect business information will not scale in the near future to meet the requirements 
for protecting the increasing volumes of transactions and data in a continuously extending 
collaborative business environment.  

Jericho Forum envisions a shift in the security world from the traditional network 
perimeter down to the individual networked computers and devices – and ultimately to 
the level of the data itself. Thus, the security perimeters will disappear step by step. This 
process has been described as ‘re-perimeterization’, followed by ultimate ‘de-
perimeterization’. 

 This forum explores the potential to develop security architectures that support 
de-perimeterized business-to-business networking. The need for such standards has been 
growing over the past years as organizations are conducting more and more businesses 
over the Internet. So, the challenge to remove or to move away from the security 
perimeter has to be tackled. This does not necessarily mean that the firewalls that provide 
basic network protection will be removed, but apart from these, the individual systems 
and the data need to have the capability of protecting themselves.  

                                                 
1 Jericho Forum http://www.opengroup.org/projects/jericho/index.tpl  
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De-perimeterization refers to redesigning the security perimeters in order to foster 
collaboration between and within organisations over open networks. Jericho Forum 
sustains this principle and offers standards, design principles, named commandments1, 
and guidance in order to help the creation and the broad adoption of such security 
technology.  

According to Jericho Forum2, a solution for a de-perimeterized network requires 
that every component is independently secure, demanding systems and data protection on 
multiple levels. In order to design and build a de-perimeterized solution, it will be needed 
a combination of at least the following elements: encryption, inherently-secure computer 
protocols, inherently-secure computer systems, data-level authentication. 

Jericho Forum aims to stimulate a market that provides solutions for de-
perimeterized networks. These solutions should use open standards, improve 
interoperability and integration, both within the IT systems and among the different 
businesses.  

Jericho Project has started in December 2006 at Capgemini Nederland B.V. under 
the initiative of Drs. Marco Plas, in the department Telecom, Travel and Utilities. 
Initially, the project team comprised five students that conduct research for defining a 
solution for Jericho networks. 

The Jericho Project aims at providing a solution based on the commandments 
proposed by Jericho Forum. The solution is defined by a combination of the following 
research subjects: authentication, authorization, accounting, trust broker, endpoint 
security, data classification and end-to-end encryption. More details about each research 
topic and about their importance within Jericho Project will be provided in Chapter 2 of 
the thesis. 

1.3 End-to-end encryption 

The need for information security is fostered by the broad use of Internet and 
emerging collaborative business models. Sensitive information is found nowadays in 
three states: in storage, in transit and in the process of transformation from storage to 
transit. All kinds of information are classified as sensitive: business communication, e-
mails, electronic transfers and other financial transactions, technology and trade secrets, 
personal records containing personal information etc. Basically, sensitive information 
refers to electronic information or data records that, if used improperly, can harm the 
information subjects, information owners or information users or may contravene other 
public-policy interests.3 

                                                 
1 Jericho Forum Commandments http://www.opengroup.org/jericho/commandments_v1.1.pdf accessed 
April 2007 
2 Jericho Forum http://www.opengroup.org/jericho/ accessed April 2007 
3 http://dig.csail.mit.edu/2006/tami-portia-accountability-ws/summary#Overview accessed May 2007 
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The data itself can be found in three states: in storage, in process of 
transformation (e.g. data at rest from storage is being encrypted), and in transit. Data has 
to be protected in all these three states.  

In the context provided by Jericho Project we focus in this thesis on exploring and 
proposing valid solutions for protecting data in transit, namely for end-to-end encryption. 
The aim is to ensure the integrity and confidentiality of the data. In order to do this, the 
entities need to communicate securely, and for this the transferred data has to be 
encrypted.  

1.4 Research objective and research questions 

The aim of this thesis is to investigate and make recommendations regarding the 
most adequate use of cryptography for security protocols that can be used for providing 
end-to-end encryption in Jericho networks. 

The possibilities offered by cryptography for implementing and deploying 
suitable security protocols within Jericho networks are further researched within this 
thesis.  

The following questions will be dealt with and their responses will be analyzed 
further in this thesis: 

  

- What are the requirements for secure communications in Jericho networks? 

- What is the range of solutions that can be used for end-to-end encryption?  

- Which is/are the recommended end-to-end encryption solution(s) in the context 
of Jericho Project?  

- Which are the most adequate cryptographic algorithms, in terms of security 
offered and performance, to be used for security protocols that offer end-to-end 
encryption? 

 

1.5 Research methods 

In order to come with valid recommendations for the research questions 
mentioned above, we will perform a thorough research of the cryptographic algorithms 
and their use and influence on the performance of security protocols for secure 
communications in Jericho networks. 

In the pursuit of this research, firstly, we will define the conceptual model for 
Jericho networks.  Secondly, a theoretical foundation of cryptography and security 
protocols offers the basis for performing a comparison of the different algorithms and 
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protocols in terms of security, performance, key size. Based on the results of the 
comparisons, different case scenarios of security protocols that can be used for obtaining 
end-to-end encryption in Jericho networks will be analyzed. 

Further aspects regarding the implementation and deployment of the security 
protocols will be researched on the vendor market. 

1.6 Scope 

The purpose of this thesis is to investigate different solutions for end-to-end 
encryption and to propose the most suitable solutions that meet the requirements of 
protecting data in transit in Jericho networks. The thesis aims to provide new approaches 
and recommendations for securing the sensitive data that is transferred across Internet.  

Within the scope of this research, firstly, the theoretical foundation of the security 
protocols and cryptographic algorithms will be discussed. Then, their implications and 
applications in the context of Jericho networks will be investigated.  

Moreover, we will conduct research in detail regarding the security provided at 
different levels in OSI model (e.g. network, transport, application level) and perform a 
thorough description and an objective comparison of open standards available such as 
IPsec, SSL/TLS. However, the focus of the thesis will be to study end-to-end encryption. 

For the general purpose of this thesis we need to explore also the security features 
offered by means of cryptography. In this respect, we will investigate, describe and 
compare the most relevant cryptographic algorithms. The cryptographic algorithms will 
be compared in terms of complexity, performance and key size. Besides this, their impact 
on the performance and security features of the solutions for end-to-end encryption will 
be analyzed. 

Furthermore, we will give recommendations about which are the most adequate 
cryptographic algorithms to be used for the analyzed security protocols.  

Finally, it is worth mentioning here that the end goal of Jericho Project is to offer 
possible solutions for Jericho networks, and to implement and test a prototype at the Labs 
of Capgemini Nederland B.V.  

So, we conclude that initially, the general purpose of Jericho Project is to provide 
a roadmap for further implementing and testing a prototype based on the commandments 
proposed by Jericho Forum. 

1.7 Thesis outline 

Including this introductory chapter, the thesis is structured in 5 chapters 
presenting our research and findings about different aspects of cryptography and its use 
for designing security protocols that provide adequate security services within Jericho 
Project. Further on, we briefly review the contents of these chapters. 
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Chapter 2 introduces the business case for Jericho Project within Capgemini 
Nederland B.V. Chapter 1 and 2 provide mainly the research and business context for the 
purpose of this thesis.  

Chapter 3 covers the topic of security protocols that provide end-to-end 
encryption.  

Firstly, we will investigate the security features offered by Secure Sockets Layer / 
Transport Layer Security (SSL/TLS). SSL/TLS is used for securing electronic commerce 
and communications on Internet, and is considered by professionals an elegant and 
efficient protocol (Stamp, 2006, p.5).  

Then, we will explore Internet Protocol Security (IPsec ), a security protocol that 
is more complex than SSL, but offers some similar security services. 

Chapter 4 presents a suite of cryptographic algorithms and is intended to be a 
guide to cryptography. In this chapter, the following topics are presented: asymmetric key 
cryptography, symmetric key cryptography, block ciphers and their operation modes, 
stream ciphers, message authentication codes, hash functions, cryptography in the real 
world. Also, in this chapter we will provide a comparison of the cryptographic primitives 
in terms of security offered and performance in order to establish which are the most 
adequate to be used for providing end-to-end encryption in Jericho project. 

Chapter 5 summarizes the conclusions of the thesis and provides possible 
directions for future research in the context of Jericho Project.  
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Chapter 2 Scenario: Jericho Project 

     2.1 Introduction 

 In this chapter we provide an overview of Jericho Forum. Following, we present 
the research topics within Jericho Project initiated at Capgemini Nederland B.V.  
 

2.2 Jericho Forum 

Jericho Forum1 is an international IT security thought-leadership group dedicated 
to defining ways to deliver effective IT security solutions that will match the increasing 
business demands for secure IT operations over Internet. 

Consequently, Jericho Forum aims to drive and influence development of security 
standards that will meet future business needs. These standards are intended to facilitate 
the secure interoperation, collaboration and commerce over Internet, and to facilitate the 
implementation and deployment of a new security architecture and design approach 
based on the principle of “de-perimeterization”. 

The members of Jericho Forum recognize that the current security mechanisms 
that protect business information will not scale in the near future to meet the requirements 
for protecting the increasing volumes of transactions and data in a continuously extending 
collaborative business environment. The Forum introduces the concept of “de-
perimeterization” and encourages organizations to look at securing the data itself rather 
than the infrastructure that supports it. 

Jericho Forum envisions a shift in the security world from the traditional network 
perimeter down to the individual networked computers and devices – and ultimately to 
the level of the data itself. This process has been described as  “re-perimeterization”, or  
“de-perimeterization”. 

This Forum explores the possibility to develop common security architectures to 
support de-perimeterized business-to-business networking. The need for such standards 
has been growing over the past years as organizations are conducting more and more 
businesses over the Internet. So, the challenge to remove or to move away from the 
security perimeter has to be tackled. This does not necessarily mean that the boundary 
firewalls that provide basic network protection will be removed, but apart from these, the 
individual systems and the data need to have the capability of protecting themselves.  

Stamp et al. (2005) suggested in a Forrester Analyst Report, a roadmap that 
Jericho Forum envisions and aims to materialize in the coming years. The authors 
proposed a four stage roadmap for achieving the goals of Jericho Forum: 

                                                 
1 http://www.opengroup.org/jericho/  
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- Make services available across the perimeter: Organizations are already 

making their services available across the Internet using technologies like Web 
Services, and security protocol such as SSL/TLS, XML encryption.  

- Next, remove the perimeter altogether:  The next stage is to reduce the 
importance of the network boundary (firewalls and intrusion prevention systems) 
as a security control. Traditionally, the perimeter firewall becomes one of a series 
of devices to block malicious traffic. But in a de-perimeterized network, the focus 
is on authenticating entities and giving them the adequate access level.  

- Develop a standards-based approach to data access: Once the perimeter fades 
away, an open, standardized way for entities’ authentication and authorization has 
to be decided upon. Open and inherently secure standards should be made 
designed and used in Jericho networks.  

Jericho Forum aims to stimulate a market that provides solutions for the de-
perimeterization challenge. These solutions should use open standards, improve 
interoperability and integration, both within the IT systems and among the 
different businesses.  

- Then, control access to the data, not the underlying infrastructure: Finally, 
organizations will implement a security model that guarantees data confidentiality 
and integrity independent of the status of the data (in storage, in processing, in 
transit). Organizations will only transfer data between authenticated and 
authorized parties, and the information regarding the encryption capabilities are 
sent along with the data itself.  

 

Consequently, Jericho Forum explores the potential to develop security 
architectures to support de-perimeterized business-to-business networking. 

De-perimeterization refers to redesigning the security perimeters in order to foster 
collaboration between and within the organisations over open networks. Jericho Forum 
sustains this principle and offers standards and guidance in order to help the creation and, 
at the same time, adoption of such security technology.  

Actually, de-perimeterization is a concept that describes how to meet the business 
needs for the businesses without a hardened perimeter. Moreover, this business-driven 
security solution provides defence in depth.  

The members of Jericho Forum have written and published a series of general 
white papers and position papers1 about topics of interest for designing, implementing 
and deploying a network architecture based on the principle of de-perimeterization.  

 

                                                 
1 http://www.opengroup.org/jericho/publications.htm  
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Based on the papers published by Jericho Forum, and especially on the paper 
presenting the Jericho Forum Commandments, the following requirements and features 
are deducted for Jericho networks: 

- Security mechanisms must be pervasive and scalable 

- All devices must be capable of maintaining their security policy on untrusted 
networks 

- All people, processes and technologies must have been authenticated and 
transparent levels of trust are necessary for any transaction to take place 

- Mutual trust assurance levels must be determinable; in fact, de-perimeterization 
requires a universal trust infrastructure 

- Authentication, authorization and accounting must interoperate with other 
implementations outside an organization’s area of control 

- Access to data should be controlled by security attributes of the data itself 

 
Further, these requirements will be investigated in the research topics formulated 

within Jericho Project at Capgemini Nederland B.V. 
 

2.3 Jericho Project 
  

For Jericho Project, the security strategy is built on defining and implementing 
new approaches for authentication, authorization, accounting, endpoint security, data 
classification & information leakage, and secure communications in order to provide 
security services such as privacy, authentication of the entities, non-repudiation, integrity 
in de-perimeterized networks.  These topics will be addressed in detail in the research 
conducted for Jericho Project. 

Capgemini, by being one of the members of Jericho Forum, is actively involved 
in providing and designing a new security architecture based on the principles and 
commandments emitted by Jericho Forum. There is a direct interest within the company 
to provide a sound solution for a new security architecture based on Jericho Forum 
Commandments1. 

Within Capgemini, drs. Marco Plas initiated this project and formed a research 
group, in order to come with a tangible solution for Jericho networks. .  

The goal of Jericho Project is to develop a new security architecture and design 
approach that will enable business to grow safely and securely in an open, Internet-
driven, networked world.  

In this new security architecture, each device is capable of protecting itself and 
each asset of the network is individually protected. De-perimeterization requires security 
to be at the heart of the organisation’s distributed technology architecture.  Security has 
                                                 
1 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007 
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to be implemented in end-user devices, application services, and it has to efficiently and 
effectively protect organisations’ critical information assets themselves. 

The aim of Jericho Project is to define a roadmap for the implementation of this 
new defined security architecture. 

The research group for Jericho Project is composed of five students under the 
direct supervision of Drs. Marco Plas. The work within the research group is directed 
towards a comparative research of possible methods, models, technologies, cryptographic 
algorithms, security protocols from the network security area. The goal of the research 
within Jericho Project is to provide possible solutions for the new security architecture in 
de-perimeterized networks. 

The research conducted for Jericho Project is divided into five distinct parts that 
focus on the following inter-connected topics of research:  

- AAA Framework 
 Authentication 
 Authorization  
 Accounting 

- Trust Broker 
- Endpoint security 
- Data classification 
- End-to end encryption 

 

The interconnections between these topics of research are illustrated in Figure 2.1:  
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Figure 2.1: Process Schema for the research modules in Jericho Forum Project 



2.3.1 AAA Framework 
  
 Authentication1 

 
According to 8th Commandment of Jericho Forum2 “Authentication, authorization 

and accountability must interoperate /exchange outside of your locus / area of control”, 
identity data must be not usable only within one domain, but also be inter-exchangeable 
among multiple parties. 

Authentication is the process which establishes a subject’s identity. It plays a very 
important role in Jericho Project. Data transaction between entities is allowed to happen 
only after the subject’s successful authentication. Authentication can use a single or 
multiple factors. The more factors are present the more assurance one receives of the 
person’s identity.  

The aim of the research is to identify the methods and technologies with which a 
user can be authenticated in federated and user-centric identity systems. The scope of the 
research is limited to the user – trust broker interaction. Some topics of trust and identity 
systems will be covered by the research in order to determine which data may be needed 
by the trust broker.  

Authentication is interconnected with other parts of the research. Authentication is 
an essential part of the AAA framework. Authentication delivers identity data, which finds 
its further usage in the authorisation process. Accounting keeps logs of all the 
authentication process for the further auditing or investigation. Some identity data may 
also be used by the encryption process to encrypt either authentication or data transaction. 

  The deliverables of the Authentication research within Jericho Forum Project will 
be:  

- The logical requirements for authentication in Jericho Forum network 
- Comparison of the identity systems 
- Comparison of the identity models 
- Determine which technical solutions may be used in implementation of the Jericho 

forum network 
- A practical recommendation concerning the suitable solution 

 
 
Authorization 

 
As described within the Federated Identity Position Paper3 (2004), after 

establishing identities, it should be determined what rights are applicable to entities’ 
requests. Within the AAA framework, this process is known as authorization. 

At the moment, authorization is dependent on the authentication process. Only 
after an entity has established its credentials, the authorization process determines what 
rights are associated with the resource it attempts to access and, acting upon this, allows or 
denies the request. 

                                                 
1 Evgeny Barannikov, Authentication & Accounting in Jericho Project, Capgemini, 2007 
2 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007 
3 https://www.opengroup.org/jericho/publications.htm accessed May 2007 
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As such, Authorization research topic is an essential part of the Jericho Project. 
Without authorization, no controlled network interactions can exist. 

A new architecture that can add flexibility and inter-area operability to this concept 
is needed. The claims-based architecture is a promising example. The claims-based 
architecture is a promising example. Whereas until now users had to provide proof of 
identity before the authorization process could commence, authentication and 
authorization can be combined to provide a flexible and more effective solution. 

In the context of Jericho Project, the research about authorization has several 
interactions with other research topics. The Authentication process needs to authenticate 
entities before authorization can take place, whilst the accounting process needs to gather 
data and process it. In addition, the Endpoint security process may need to deliver 
information that can be used to determine authorization rights. 

The scope of the research is limited by the trust broker and authentication process. 
The goal of this research is the establishment of a functional model. 

In order to do this, the following steps have to be researched: 
- Determine the role of Authorization within the Jericho Forum network 
- Determine logical requirements for Authorization process 
- Determine interaction requirements with other processes within this model 
- Determine technical requirements of the Authorization process 
- Compare the established requirements with currently available solutions 
- Recommend currently available solutions 

 
Possible results of this research on Authorization process include the creation of a 

new, universal standard which can be applied to Authorization, the establishment of a 
communication channel with Authorization solution companies in order to Jericho-enable 
future versions of their products and the description or actual implementation of an 
available Authorization solution in a prototype environment. 

 
 
Accounting1 

   
 “Authentication, authorisation and accountability must interoperate /exchange 

outside of your locus / area of control” is stated in Jericho Forum Commandment number 
82. Auditing is a process that collects and processes the log data which is delivered by 
other processes. Separate IT systems in the enterprise architecture provide log data, which 
is processed independently from each other. In case of security breach or performance 
analyses multiple logs must be accessed and analysed.  

Auditing policy must comply with the legislation of the country, where the 
company is established. Also log retention period is dictated by the security policy of the 
corporation and the laws of the country. 

Auditing process may deliver data to other processes that can determine through 
certain algorithms the trustworthiness of the authenticated party. This data may also be 

                                                 
1 Evgeny Barannikov, Authentication & Accounting in Jericho Project, Capgemini, 2007  
2 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007 



 

Secure Communications: ‘End-to-end encryption’ in Jericho networks 

Alina Stan, VU University Amsterdam 
 

 

21

accessed by the third party that objectively and independently establishes the entity’s 
reputation. Anonymity is a very important factor here. Not all data may be disclosed to 
other parties.  

The goal of this sub-project is to research and define technology which could 
consolidate the logs from the multiple systems and provide certain log data to other 
processes.  

The scope of the research is limited by the trust broker and network services.  
Accounting research topic is connected to every single process within the Jericho 

Forum networks. Auditing policy is dictated by the accounting process and flows to other 
processes.  

Information from other modules is collected and processed in the single log 
repository.  

 
The following deliverables of the Accounting research within Jericho Forum 

Project will be produced: 
- The logical requirements for the Jericho Forum network 
- Research and analysis of the existing log consolidation software 
- Comparison chart of the software 
- A practical recommendation concerning the suitable solution 

  

2.3.2 Trust Broker1 
 

Below it is described how the Trust Broker research topic is tackled within Jericho 
Project. 

The main purpose of the Trust Broker is that it will act in trust. In our vision it can 
do this as a neutral third party that will facilitate certain services from which it can not 
take any advantages, except some compensation from the two or the several other parties 
involved. These services can take place on all kinds of areas because the service, or data 
which originate from the service, is frequently carried out at one of the acting parties.  

The only thing what the Trust Broker will supervise is that if these parties can trust 
each other, if these services are carried out effectively, if it is even possible to carry out 
these services, and further if they are performed adequately. This means that a Trust 
Broker will act between two or several parties who want to able to do business with each 
other, but need an extra factor of faith to do this. For this, the Trust Broker must determine 
if every party can be trusted and if it is still the same party when the agreement was 
concluded. Therefore, in principle, the Trust Broker creates a Circle of trust between these 
two or several parties.  

Worldwide computer crime has increased enormous. And the crime that occurs  the 
most has always something to do with unauthorized people accessing certain sensitive data 
by which they can perform several illegal activities, such as transferring money, hold 

                                                 
1 Adriaan Bruning, Trust Broker in Jericho Project, Capgemini, 2007 
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people for ransom, sell corporate secrets or sell peoples (digital) identities. To resolve or at 
least to reduce these problems users have to get control back over their identities and must 
be able decide independently what is right and wrong on Internet. In order to accomplish 
this, it is necessary that all people can perform some kind of simple check if they are 
communicating with the right party. In order to do this there must come some kind of 
simple and unambiguous trust system.  

In short, to reduce the crimes in the digital realm it is necessary to have a system 
that can measure or define someone’s trust level, and this will be the main goal of this 
research topic within Jericho Project. 

The main goal of this research part of Jericho Project is to define the actions of a 
Trust Broker within the context of a Jericho network.   

As the meaning of the concept “Trust Broker” suggests, its main function will be to 
act in trust. The purpose of the trust Broker research is to find out how a Trust Broker 
would function within a federated and a user-centric network. We will focus on federated 
network because of its higher acceptance level. 

 
For this research topic within Jericho Project, there will be used the following 

Jericho Forum commandments:  
- Jericho Forum Commandment (JFC) 2: Security mechanisms must be pervasive, 

simple, scalable & easy to manage. 
- JFC 4: Devices and applications must communicate using open, secure protocols. 
- JFC 5: All devices must be capable of maintaining their security policy on an 

untrusted network. 
 
And particularly: 

- JFC 6: All people, processes, technology must have declared and transparent level 
of trust for any transaction to take place. 

- JFC 7: Mutual trust assurance levels must be determinable. 
- JFC 8: Authentication, authorization and accountability must interoperate / 

exchange outside of your locus / area of control. 
 

            With these Jericho Forum commandments, trust Broker research topic is connected 
with the AAA-framework (C8), encryption (C4), endpoint security (C5,C4) and in order to 
facilitate services there must be a connection with data classification (C9,C10,C11). 

Likely the outcome of the research about Trust Broker will be largely influenced 
by the manner of authentication and how to check someone’s reputation, thus the two 
main subjects for building trust. Further will be investigated if there are some good 
initiatives on the market to tackle these problems, such as ws-security, ws-privacy, ws-
trust, liberty, openid, jyte, etc. 
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2.3.3 Endpoint security 
 

The Endpoint security process is responsible for providing the means to establish 
inherent trust levels between endpoints, with the intention to create a situation where all 
the devices involved in a transaction meet the criteria of trust for that transaction. 

At the moment, many Endpoint security or Network Access Control solutions 
exist. However, most of these solutions were not designed to interoperate with other 
solutions and they lack the ability to verify all network devices. Most solutions provide 
only Endpoint Security for PCs running certain Operating Systems.  

 
Several Jericho Forum Commandments1 refer to the Endpoint Security process.  

- The second Jericho Forum Commandment states that “Security mechanisms must 
be pervasive, simple, scalable & easy to manage”;  

- The fifth commandment states that “All devices must be capable of maintaining 
their security policy on an un-trusted network”; 

- The seventh commandment states that “Mutual trust assurance levels must be 
determinable”. 
 
These commandments require a solution where every device connected to a 

network should be able to participate in the Endpoint security process. This means that a 
universal standard should exist that governs agent behaviour and interactions. 

For enabling secure devices to function in a possibly insecure network, these must 
be able to maintain their security policies. Consequently, this implies the existence of a 
solution that can monitor devices’ status, can act upon it, essentially requiring agents 
installed on devices. 

Endpoint security research topic is interconnected with several other research 
topics within Jericho Project. The Authorization process within Jericho network will be 
dependent on the Endpoint security process for providing authorization information. In 
addition, in Jericho networks, the Accounting process will be used to handle information 
gathered by the Endpoint Security process. 

 
The scope of the research is limited by the trust broker and other network services. 
The goal of this research is the establishment of a functional model for Jericho 

Project. In order to do this, the following steps have to be researched: 
 

- Determine the role of Endpoint Security within the Jericho network 
- Determine logical requirements for Endpoint security process 
- Determine interaction requirements with research topics within Jericho Project 
- Determine technical requirements of Endpoint security process 
- Compare the established requirements with currently available solutions 
- Recommend currently available solutions 

                                                 
1 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007 
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Possible results of this research include the creation of a new, universal standard 

which can be applied to Endpoint Security, the establishment of a communication channel 
with Endpoint solution companies in order to Jericho-enable future versions of their 
products and the description or actual implementation of an available Endpoint security 
solution in a prototype environment. 
 

2.3.4 Data classification and Information Leakage1  
 

According to the 9th Jericho Forum Commandment, access to data must be 
controlled, in order to establish who may and who may not access the data. Firstly, the 
data should be encrypted for providing protection against entities that do not have yet the 
corresponding access level.  
 

Looking at Jericho Forum Commandments you can clearly see that there is a need 
to find an ideal way to classify data in order to prevent information leakage. The 
commandments that make clear there is a need to classify are: 

9. Access to data should be controlled by security attributes of the data itself 
10. Data privacy (and security of any asset of sufficiently high value) requires a 

segregation of duties/privileges 
11. By default, data must be appropriately secured when stored, in transit and in use 

 
Access to data: according to the 9th Jericho forum commandment, access to data must 

be controlled, in order to establish which entities may and which may not access the data. 
Firstly, the data should be encrypted in order to keep entities, that do not have yet at least the 
corresponding access level or that are not authorized, outside. Then the entities which may 
access the data have to be authorized. This can be done by the author but the problem is that it 
is way to much time consuming. It is a lot easier for the author to attach a group-status to data 
e.g. public, non-confidential or confidential. Per group-status are agreements like who may 
access the data and what the level of encryption must be. When the author uses group-status it 
is still time consuming. 

Data privacy (the 10th commandment of the Jericho Forum): To maintain the privacy 
of data, data will have an authentication level. Then the data can only be accessed by an entity 
when it is authorized and has at least the authentication level that is needed. Entities that are 
logged in get an authentication level, when an entity is logged in using only Name + Password 
its authentication level will be low, the more keys and/or certificates are used the higher its 
level is. A person that uses biometrics to log in will get the highest authentication level; this is 
because this the strongest type of authentication and can hardly be forged nowadays. 

 
Appropriate secured data: According to the last commandment of the Jericho forum 

data should always be appropriately secured when stored, transmitted and used. In order to 

                                                 
1 Remco van Marle, Data classification & Information Leakage in Jericho Project, Capgemini, 2007 
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secure data appropriately it’s again necessary to classify it first. After that the right level of 
security can be applied. 

The aim of this research is to find a way to automatically classify data in such a way 
that it can secure itself. This means that the data much is incapable of automatically authorize 
entities and attach the right level of authentication and security. 

Data classification & information leakage integrate with other parts of the Jericho 
Project research topics. It is interconnected with End-to-end encryption, Authentication and 
the Trust Broker  research topics. 

- When data is automatically attached with a level of security End-to-end encryption will 
decide how it must be encrypted 
- In cooperation with the Authentication process, the levels of authentication are 
determined. 
- When an entity wants to access data, the data will request to the Trust Broker  to verify 
that the entity is who it claims to be. 

 
 

2.3.5 End-to-end encryption  
 

 In the context provided by Jericho Project, in this thesis we focus on exploring and 
proposing valid solutions for protecting data in transit, namely on investigating end-to-end 
encryption. The aim is to ensure the integrity and confidentiality of the data. In order to do 
this, the entities need to communicate securely and the transferred data has to be 
encrypted.  

Apart from privacy and integrity, for achieving secure communications other 
requirements have to be fulfilled as well: establishing a secure channel, the entities need to 
be authenticated, the source of the messages have to be authenticated as well, non-
repudiation, accountability.  

Within the scope of Jericho Project, the goal of end-to-end encryption research is to 
investigate the possibilities offered by cryptography for designing and implementing 
suitable security protocols within Jericho networks for achieving secure communications. 
The starting point for this research is based on Jericho Forum Commandment1 number 4 
that states the following: “Devices and applications must communicate using open, secure 
protocols”.  

As stated in Jericho Forum Position Paper “Enterprise Information Protection & 
Control” (Digital Rights Management)2, in a de-perimeterised world it is generally easier 
to provide granular levels of data protection, the closer the protection mechanism is to the 
data. Moreover, the security of the data must reside with that data if it is to be adequately 
protected.  

 
Jericho Forum Commandment number nine states that “Access to data should be 

controlled by security attributes of the data itself” while commandment number eleven 

                                                 
1 www.opengroup.org/jericho/commandments_v1.1.pdf accessed May 2007 
2 www.opengroup.org/jericho/EIPC_v1.0.pdf accessed May 2007 
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states “By default, data must be appropriately secured when stored, in transit and in use”. 
The focus of this thesis is to offer protection of data in transit.  

 
For achieving these objectives, cryptographic mechanisms will be investigated and 

thoroughly analyzed in this thesis with the scope of selecting the adequate for protecting 
data in transit.  

 
However, members of Jericho Forum acknowledged that there is a need for open and 

interoperable standards for specifying these principles in order to achieve adequate data 
protection in all its states. Open standards ensure that the security principles can be 
thoroughly reviewed. Moreover, an open, inherently secure protocol is needed for 
communications that involve transferred data between the enterprises’ servers and other 
entities in the system.  

 
 

 
Scope of end-to-end encryption within Jericho Project 
  

The research on end-to-end encryption for secure communications aims to offer 
recommendations for Jericho networks regarding the following aspects:  

- establishing the requirements for secure communications within Jericho networks 
- investigating a range of security protocols that can be used for end-to-end 

encryption for Jericho Project 
- choosing the most adequate cryptographic algorithms and primitives, in terms of 

security offered and performance, that should be used for security protocols that 
offer end-to-end encryption in Jericho networks 

- defining a roadmap for the implementation of the proposed solutions for Jericho 
networks. 

 
 
Steps to be followed for secure communications 
 
 In order to provide end-to-end encryption for the data in transit, in the context of 
Jericho Project, a number of steps have to be followed.  
 Firstly, the entities involved in the communication have to be authenticated in a 
handshake protocol. 
 Secondly, there will be established a secure connection between the entities, and a 
secure session will be set up for transmitting the content securely. This step is being 
performed or not, according to the output of authentication, authorization processes.  
 Then, the adequate cryptographic primitives are chosen for achieving, further in 
the communication process, certain security services (e.g. confidentiality, integrity, 
authentication of the source of messages, non-repudiation). Also, the most suitable ways 
of distributing the keys are chosen and an agreement is reached.  Typically, the public-key 
algorithms are used for secure key exchange, while the symmetric-key algorithms are used 
for encrypting the data in transit.  
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Moreover, for the research on end-to-end encryption in the context of Jericho 
Project, the sources of the transmitted messages are authenticated, so the aim is to achieve 
authenticated encryption for data in transit.   

In order to achieve authenticated encryption for the data in transit we will 
investigate the security services provided by different security protocols, such as 
SSL/TLS, IPsec, XML encryption, and we will recommend the most suitable 
cryptographic primitives that can be used in the design of these protocols in the research 
context of Jericho Project.  

In Jericho Project, the end-to-end encryption research topic is inter-connected with 
the following modules that are part of Jericho Project research also: data classification, 
trust broker, accounting and authentication modules. The data is previously classified 
before encryption occurs. So, certain security protocols and/or cryptographic primitives 
may be given preference for implementing end-to-end encryption depending on the type of 
data (e.g. highly sensitive, confidential, public etc.). In addition, entities have to 
authenticate before transferring data. Moreover, logs of the authentication process, of the 
encryption process will be kept for further checking. The trust broker deals with the 
establishment and distribution of the encryption keys, the secure storage of the encryption 
keys.  

 The end-to-end encryption research aims to provide the following results within 
Jericho Project:  

-          The logical requirements for secure communications in Jericho network 
-         Investigation and comparison of different secure protocols of interest for secure 
communications  
-         Overview and comparison of different cryptographic primitives that can be used 
for designing security protocols for secure communications  
-      Explore which possible solutions may be used for implementing secure 
communications, respectively end-to-end encryption, for Jericho network 
-      A practical recommendation concerning the possible solution(s) 

2.4 Discussion – overview of roadmap for Jericho Project  
 
For providing a new security architecture, it is of interest for Jericho Project to take 

the following things into consideration as well: 

- Existing threats on networks 
- Choosing appropriate security services to protect network applications, data in 

transit, stored or in use, devices, and also correctly incorporating these services 
into the network 

- Selecting cryptographic algorithms to implement certain security services (e.g. 
confidentiality, authentication of the sources of messages ) 

- Employing existing security protocols—such as SSL/TLS or IPsec—when 
appropriate, or developing new protocols when necessary 

- Implementing security within the appropriate network layer 
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- Balancing security and performance when choosing between different 
technologies, security protocols 

- Finding ways to classify data automatically  
- Addressing issues regarding identity management, trust brokers, digital rights 

management,  network quality of service, business partner risk management 
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Chapter 3 Secure Communications in the context of Jericho Project 

3.1 Introduction 
 

More and more businesses and individuals use Internet for sharing sensitive 
information and for conducting online transactions that should stay private among them.  

In the literature (Ramachandran, 2002; Stamp, 2006) it is asserted that the purpose 
of security is to enable valid communication, preferably in a transparent manner for the 
users.  

So, in the context of Jericho Project, all invalid communication – whether 
unauthorized, unauthenticated, forged or unwanted – should be blocked and prevented 
from occurring in Jericho networks. In order to achieve these security goals, certain steps 
should be implied: all the principles should be authenticated before initiating the 
communication in Jericho networks, further, they should be adequately authorized, and all 
the communication should be encrypted, verified for integrity and monitored.  

For accomplishing these objectives within the scope of Jericho Project, sound 
security policy should be defined and enforced in Jericho networks. Further, robust and 
thorough security protocols should be used for designing security solutions for secure 
communications in Jericho networks. 

In this chapter, we present the rationale for secure communications and end-to-end 
encryption in Jericho Project. Moreover, the security services and security mechanisms for 
achieving secure communications within Jericho networks are explored. Besides this, the 
security protocols intended to implement the security mechanisms within the scope of this 
thesis are analysed in detail. Finally, there will be made suggestions regarding new ways 
of implementing security services and achieving protection against attacks. 

Next, the focus will be on exploring security protocols that are intended to offer 
these security services for secure communications – end-to-end encryption – in the context 
of Jericho Project.  

For achieving these security services, we will use the means offered by 
cryptography. Typically, cryptographic algorithms or primitives provide certain security 
services. Mao (2003) acknowledged that a challenging task in applied research on 
cryptography and cryptographic protocols is to build high quality security services from 
practical and available cryptographic algorithms and primitives. 

In our exploration of cryptographic (secure) protocols for secure communication in 
the context of Jericho Project, we will specify in detail the services that are intended to be 
deployed by the protocols and the mechanisms to achieve these security services. The aim 
of this investigation is to choose the most adequate cryptographic primitives and 
algorithms to be used within the security protocols for accomplishing the goal of secure 
communication in Jericho Project.  
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Hartman et al. (2003) specified that two approaches can be employed for 
protecting the transferred data: connection-oriented or message-oriented. Connection-
oriented mechanisms protect the messages while they are being transmitted between 
systems. For the data in storage, application or operating system mechanisms are used for 
protection. Message-oriented approaches protect messages in transit or in storage. 

Connection-oriented solutions include SSL and IPsec.  Message-oriented solutions 
include XML Encryption and S/MIME. 

In context of Jericho Project, we will investigate the real-time protocols SSL/TLS 
and IPsec, in which the communicating parties negotiate and interact for mutual 
authentication and for establishing session keys for cryptographic protection of the 
communications. Both protocols, SSL and IPsec are used to securely transmit data from 
endpoint to endpoint. A connection is established between two communicating parties. 
The transferred data is encrypted, in this way being protected in transit. So, while the data 
is being transported, it is protected from eavesdropping and modification. But, at the 
endpoint, the data is exposed. Consequently, in some cases connection-oriented protection 
may need to be augmented with other security services for offering the desired level of 
protection in Jericho networks. 

Finally, we investigate also XML Encryption for protecting data in transit in the 
context of Jericho Project. An advantage of XML Encryption is that it allows to encrypt 
also certain parts of a message, and not necessarily the whole message. For instance, only 
the sensitive information in a message can be encrypted, while the public information can 
remain in clear. However, the entire message can be signed by the sender for integrity 
checking.  In this research we will explore also the possibilities offered by XML 
encryption for achieving secure communications in Jericho networks.  

 

3.2 Requirements for secure communications for Jericho Project 
 

According to members of Jericho Forum, businesses require wider collaboration 
between companies outside the enterprises’ perimeters due to the explosion of pervasive, 
fast, reliable, and cheap Internet connectivity. In the White Paper – Business rationale for 
de-perimeterization1, Jericho Forum members mentioned the reasons for a new security 
architecture based on de-perimeterization.  

 
Nowadays there is an increasing trend of business collaboration that involves the 

alignment of business activities and processes with other businesses to create mutual 
benefit. 

  
 There are certain aspects that indicate that companies are going toward a de-
perimeterized security environment2: 
                                                 
1 http://www.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf accessed May 2007  
2 http://www.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf accessed May 2007 
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- Businesses become more integrated and the collaboration relationships extend over 
the organizational perimeter 

- Business demands to interconnect systems directly where B2B relationships exist 

- There is a need to have a very good network connectivity and access to all 
organisations with whom an organization has business relationships 

- Distributed / shared applications across business relationships 

- Increasing use of Web services 

- Increasing inability of traditional firewall and other network perimeter controls to 
protect the sensitive data against threats  

 
The drivers for the new security approach are derived from the business needs, as 

well from the technical needs. Further, we enumerate shortly the business and technical 
drivers that underpin the research of Jericho Project. 
 
Business Drivers  

- collaborative business environment for electronic commerce 

- demand for low cost collaboration and commerce over open networks and 
interfaces 

- the connectivity requirements increase and demand for flexibility and adaptability 

- new business models based on electronic transactions and mobile users 

- relationships and partnerships within and among organizations 

- increasing number of online collaboration and transactions among business 
entities; new work patterns; 

 
Technical Drivers 

- protection needed closer to the application and the data 

- need for protecting the information itself (not to the storing/transmitting medium) 

- need for security of devices and data; the protection of the network is not the main 
focus anymore 

- more sophisticated and faster online threats and new kinds of attacks.  

 

In Figure 3.1 there are illustrated the stages of computing history that lead towards 
a full Internet-based collaboration model among organizations, and finally to a full de-
perimeterized network architecture. 
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Figure 3.1: Computing history and business rationale for de-perimeterization (adopted 
from Jericho Forum White Paper Business rationale for de-perimeterization1)  

Undoubtedly, companies need access to the “network”, namely to the Internet, and 
need to share information, to establish secure communications over Internet. But 
transferring data over Internet is vulnerable to a series of attacks. The number of possible 
users, the type of authentication (sometimes anonymous), locations, and the opportunity 
for error introduced by the global complexity of the Internet, all contribute to this 
vulnerability.  

Security of communications protects information that is transmitted over insecure 
networks, specifically the Internet.  

Following, we aim to provide a systematic overview of security requirements of 
secure communications in the context of Jericho Project. Prior to identifying the properties 
of secure communications across Internet, we enumerate some potential threats. Next, we 
explore the security mechanisms intended to defend against attacks that attempt to violate 
desired properties of secure communications.  

Consequently, we discuss means to implement these security mechanisms in open, 
secure protocols that accomplish the requirements for secure communications in Jericho 
network. We will investigate the existent solutions that could be implemented in Jericho 
network for achieving end-to-end encryption. The most widely used means to secure data 
against tampering and eavesdropping, the Secure Sockets Layer (SSL) and its successor, 

                                                 
1 www.opengroup.org/jericho/Business_Case_for_DP_v1.0.pdf accessed May 2007 
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the Transport Layer Security (TLS) protocol are discussed, as well as Internet Protocol 
Security (IPsec). 

 
The importance of security has increased after the incidence and gravity of attacks 

have boosted on Internet. Stallings (2005) presented the following attacks that can be 
identified in the context of communications across a network1 : 

-  Disclosure: Release of message contents to any person or process not possessing the 
appropriate cryptographic key.  

- Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-
oriented application, the frequency and duration of connections could be determined. In 
either a connection-oriented or connectionless environment, the number and length of 
messages between parties could be determined. 

-  Masquerade: Insertion of messages into the network from a fraudulent source. This 
includes the creation of messages by an attacker that are purported to come from an 
authorized entity. Also included are fraudulent acknowledgments of message receipt or 
non-receipt by someone other than the message recipient. 

-  Content modification: Changes to the contents of a message, including insertion, 
deletion, transposition, and alteration. 

-  Sequence modification: Any modification to a sequence of messages between 
parties, including insertion, deletion, and reordering.  

- Timing modification: Delay or replay of messages. In a connection-oriented 
application, an entire session or sequence of messages could be a replay of some previous 
valid session, or individual messages in the sequence could be delayed or replayed. In a 
connectionless application, an individual message (e.g., datagram) could be delayed or 
replayed. 

- Source repudiation: Denial of transmission of message by source.  

- Destination repudiation: Denial of receipt of message by destination. 
 

The first two types of attacks can be dealt with by applying measures that achieve 
message confidentiality. Against the attacks that modify the transferred messages, 
mechanisms for message authentication are implied. In Chapter 4 we describe in detail the 
mechanisms for achieving confidentiality and message authentication.  
 

These kinds of attacks, along with increasing cyber-crime, have encouraged the 
Jericho Forum’s members to find new means and methods for protecting the networks. 
Based on the Jericho Forum’s principles, in Jericho network every component will be 
independently secure, requiring systems and data protection on multiple levels, using a 
mixture of: encryption,  inherently-secure computer protocols, inherently-secure computer 
systems, data-level authentication.  

 
                                                 
1  We consider in this thesis that the network is Internet 
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Furthermore, we aim to establish a framework for the consequent exploration of 
both the security protocols and cryptographic mechanisms that can be used for achieving 
the security services for secure communications in Jericho Project.  

 
Based on Jericho Forum Commandments and the Position Papers proposed by 

Jericho Forum1, a suite of security services should be accomplished for deploying and 
securing a Jericho network solution.  

 
Stallings (2005) explains based on standard definitions what a security service is. 

A security services can be defined as a service provided by a protocol layer of 
communicating open systems that ensures adequate security of the systems or of data 
transfers2. Another definition is provided in RFC 28283, in which a security service is 
defined as a processing or communication service that is provided by a system to give a 
specific kind of protection to system resources; security services implement security 
policies and are implemented by security mechanisms. 

 
Within the scope of this thesis, we propose for Jericho networks, the attainment 

and enforcement of the following security features (services) in order to design and 
implement secure communications: 

 

- Confidentiality 

Confidentiality refers to the protection of transferred data against attacks 
conducted by unauthorized entities. Transferred data should remain private and should be 
read only by the intended recipients. So, the communications should be kept private from 
all parties except the ones entitled to receive them. Basically, confidentiality prevents 
unauthorized disclosure of sensitive information. 

Raina (2003) specified that good security practice demands that all communication 
is encrypted and kept private, so no information can be revealed to intruders who conduct 
attacks on the network.   

The standard mechanism for enabling confidentiality is encryption. In the context 
of Jericho Project, we will focus in this thesis on the protection of transferred data over 
Internet.  

According to Lai (2002), confidentiality services based on encryption provide 
limited protection against traffic flow analysis. Traffic flow analysis represents a process 
by which an attacker tries to deduce valuable information by monitoring the frequency and 
amount of network traffic flowing between two communicating parties. While some 
security protocols mask the contents of a message, and conceal also its source and 
destination, other protocols just mask the content of the transmitted message without 
concealing the header information. But there are other techniques, such as traffic padding 

                                                 
1 http://www.opengroup.org/jericho/publications.htm   
2 http://fag.grm.hia.no/IKT7000/litteratur/paper/x800.pdf accessed May 2007 
3 www.ietf.org/rfc/rfc2828.txt    
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and routing control that can be used to conceal message length and frequency of network 
traffic. 

Traffic padding represents the injection of spurious traffic into a network to hide 
actual usage patterns. Routing control involves directing traffic along a particular path 
between sender and recipient in order to reduce exposure to eavesdropping. 

 

- Authentication  

Authentication can be subdivided into entity authentication and data origin 
authentication.  

Entity authentication refers to the ability to verify the identities of all entities 
involved in a message transmission. It ensures that the participating entities in a 
communication process are the ones who they claim to be. Typically, it is provided for use 
at the establishment of (sometimes at different times during the data transfer) a 
connection. This security services is intended to offer protection against attackers who can 
impersonate authenticated entities and perform either a masquerade or an unauthorized 
replay of a previous connection. 

Data origin authentication refers to the corroboration that the source of data 
received is the one claimed. This service must assure that the connection is not interfered 
so that a third party can masquerade as one of the two legitimate parties for the purposes 
of unauthorized transmission or reception. A system implementing the authentication 
property assures the recipient that the data is from the source that it claims to be. Assuring 
this service involves binding a set of credentials to a message; these are verified by the 
receiver upon the receipt of the message (Lail, 2002). Mechanisms that provide data origin 
authentication are keyed message digests and digital signatures, which offer also integrity 
protection.   

 

- Non-repudiation 

Non-repudiation service refers to the prevention of denial by an entity (the sender 
or recipient of a message) that has taken a particular action, such as sending or receiving a 
message.  With this service, the receiver can prove that the alleged sender in fact sent the 
message and vice versa. For instance, in the case of transactions between a service 
provider that offers an online service and the customers, non-repudiation hinders both the 
customer and the service provider from credibly denying that a transaction occurred at a 
particular date and time.  

When a message has been transferred, the sender can prove that it has been 
received. Similarly, the receiver can prove that the message has actually been sent. 

 
The primary mechanisms for achieving non-repudiation are digital signatures in 

combination with timestamps (Lail, 2002; Stallings, 2005). Timestamps bind a transaction 
with the time and date when it occurred.  

In fact, non-repudiation has more legal implications than technical ones. Lail 
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(2002) pointed out that non-repudiation encompasses an entire set of policies and 
procedures for establishing and enforcing trusted communication between different 
entities. 

 

- Integrity 

Integrity assures that transferred messages are received as they are sent, with no 
duplication, insertion, modification, reordering, or replays. Also deletion or destruction of 
data is included in this service, so all the transferred data should arrive to the receiver 
(Stallings, 2005). So, this service prevents the unauthorized alteration or destruction of 
transmitted data by unauthorized entities. Typically, this security service is obtained 
through the use of hash functions (message digests). 

 

- Access control  

In the context of network security, access control is the ability to limit and control 
the access to host systems and applications via communications links. In order to achieve 
this goal, each entity trying to gain access must first be identified, or authenticated, so that 
access rights can be issued adequately to the individual. 

 

- Availability:  

Availability characterizes a system whose resources are always ready to be used. In 
the context of communications over Internet, this means that whenever information needs 
to be transmitted, the communication channel is available and the receiver can cope with 
the incoming data. This property makes sure that attacks cannot prevent resources from 
being used for their intended purpose. 

 
All these security services or properties that we described are required in order to 

ensure secure communications in Jericho network. 
 
Following, we mention a series of important objectives that can be accomplished 

by the means of security services (Lail, 2002), and that apply perfectly for secure 
communications in Jericho network as well: 

 
- Ensure  that confidential information is not viewed by unauthorized entities 

- Guarantee that a message cannot be altered without detection on its way from 
sender to recipient; the data is not modified in transit 

- Verify that the data was not modified 

- Authenticating the identity of the entities that are communicating and of the source 
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of a message 

- Preventing the sender of a message from being able to deny his/her actions 
- Determining whether a user has rights to certain resources, and ensuring that only 

authenticated users gain access 

- Making data and network applications and services available to users who request 
access to them 
 
 
In order to achieve these security services for secure communications in Jericho 

network, there are used certain tools named security mechanisms. Typically, there are 
multiple mechanisms for implementing each security service. Thus, one of the challenges 
in designing a secure system is selecting the most appropriate mechanisms. This is also 
our purpose in this research, to choose the most appropriate mechanisms for implementing 
secure communications services for end-to-end encryption in the context of Jericho 
Project.  

 
In the following sub-chapters and, especially, in Chapter 4, we will investigate a 

series of security mechanisms provided by cryptography that can be used for 
implementing security services for end-to-end encryption in Jericho network.  

Such mechanisms include: encipherment mechanism, digital signature 
mechanisms, data integrity mechanisms, authentication mechanism etc. 

  
In this thesis we will deal further with the selection of the appropriate 

cryptographic mechanisms for end-to-end encryption in Jericho network. The selection of 
certain cryptographic mechanisms for achieving a security services is based on several 
factors. Such factors include: compatibility with legacy applications, complexity of 
computation, and intellectual property issues. 
 

Typically, different security mechanisms can be used to enforce the security 
properties defined in a given security policy. Depending on the anticipated attacks, 
different means have to be applied to satisfy the desired properties. The different measures 
against attacks can be divided into three classes of security mechanisms: mechanisms for 
attack prevention, for attack avoidance and for attack detection (Kruegel, 2005). 

 
Attack prevention mechanisms are a class of security mechanisms that contain 

ways of preventing or defending against certain attacks before they can actually reach and 
affect the target. With respect to secure communications, an essential mechanism in this 
category is access control, an instrument that can be applied at different levels such as the 
operating system, the network or the application layer.  

Basically, access control mechanism limits and regulates the access to critical 
resources. This is done by identifying or authenticating the party that requests a resource 
and checking its permissions against the rights specified for the demanded object. 

Within Jericho Project, this mechanism is investigated in separate research topics 
that deal with identity management - AAA framework. So, this signifies that secure 
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communications, more specifically end-to-end encryption, in Jericho networks interact and 
depend on the specification and implementation of access control mechanism.  

Consequently, before implementing secure communications as desired in Jericho 
Project, firstly the entities have to be adequately authenticated and authorized before 
having access to the data they want to access. 

 
Another relevant element in the set of attack prevention mechanisms is system 

hardening. System hardening is used to describe all steps that are taken to make a 
computer system more secure. In the context of Jericho Project this mechanism is dealt 
with in the research topic focused on endpoint security.  

 
Attack avoidance mechanisms assume that an intruder may access the desired 

resource but the information is modified in a way that makes it unusable and invaluable as 
well, for the attacker. 

Based on the principles of these mechanisms, the information is pre-processed at 
the sender before it is transmitted over the communication channel and post-processed at 
the receiver. While the information is transported over the communication channel, it 
resists attacks by being almost useless for an intruder. Nevertheless, attacker can still 
conduct attacks against the availability of the information, as they could still interrupt the 
message transmission.  

Moreover, during the processing step at the receiver, modifications or errors that 
might have previously occurred can be detected by means of integrity checks.  

 
The most important mechanism in this category is cryptography which is defined 

by Schneier (1996) as the science of keeping messages secure.  
 
Within the scope of this thesis in Jericho Project, we will deal with the security 

mechanisms in Chapter 4, and, besides this, we will discuss the implementation of security 
protocols based on these security mechanisms further in Chapter 3.  

 
Attack avoidance and intrusion detection mechanisms aim to offer protection 

against the situations in which an attacker might have obtained access to the desired target 
and succeeded to violate the corresponding security policy.  

 
Within the context of secure communications, mechanisms in this category are 

based on the unrealistic assumption that most of the time the information is transferred 
without interference. Attack detection mechanisms have the task to report possible 
intrusions or attacks that were conducted with the scope of hindering secure 
communications. It would be also desirable to identify the exact type of attack. The most 
important mechanism of the attack detection category is represented by intrusion detection 
systems. Anyway, it is out of the scope of this thesis to investigate in more detail the 
protection means offered by these mechanisms for achieving secure communications.   
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Stallings (2005) summarized in a table the relationship between security services 

and mechanisms: 
 

Mechanisms 
Service Encipherment Digital 

Signature 
Access 
Control 

Data 
Integrity 

Authentication 
Exchange 

Entity 
Authentication 
 

 
Y 

 
Y 

  Y 

Data origin 
Authentication 
 

 
Y 

 
Y 

   

Access control 
 

  Y   

Confidentiality 
 

Y     

Traffic flow 
Confidentiality 
 

 
Y 

    

Data integrity 
 

Y Y  Y  

Non-repudiation 
 

 Y  Y  

Availability    Y Y 

Table 3.1: The relationship between security services and mechanisms (adapted after 
Stallings, 2005) 
 
 In the documentation “Web Service Security: Scenarios, Patterns, and 
Implementation Guidance for Web Services Enhancements (WSE) 3.0” there is described 
a decision matrix for choosing the adequate security mechanisms for assuring message 
protection for transmitted data over the Internet.  

In Table 3.2 we illustrate a modified version of this message protection decision 
matrix. The decision matrix lists the security considerations related to message protection 
and specifies how they are supported by the proposed security mechanisms. 
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Security 

Consideration 
Data Integrity Data Origin 

Authentication 
Data 

Confidentiality 
Verification if the 
contents of a message 
were not altered in 
transit. 
 

Allows verification that 
a message has not 
changed in transit. 

Supports the ability to 
verify that a message 
has not changed in 
transit and verify the 
origin of a message. 

Encryption does not 
prevent the contents 
of a message from 
being altered. 

Verification of the 
data source 
authentication and 
integrity of the 
message (has not been 
altered in traffic) 

Allows verification that 
a message has not been 
changed, but this does 
not necessarily imply 
that the receiver can 
verify the source of the 
data. 

Supports the ability to 
verify that a message 
has not changed in 
transit and verify the 
origin of a message. 
 

Encryption does not 
prevent the contents 
of a message from 
being altered. 
 

Restriction of the 
access to the contents 
of a message to 
authorized users only. 
 

 Does not provide the 
ability to protect 
message contents from 
unauthorized users. 
 

Does not provide the 
ability to protect 
message contents from 
unauthorized users. 
 

Confidentiality can 
be used to encrypt 
the contents of a 
message so that 
only authorized 
users can view the 
message contents. 

Authentication is 
implemented based on 
shared secret between 
the entities 
participating in the 
communication. 
Prevention is required 
against attackers who 
want to recover the 
shared secret 

Generating signatures 
based on shared secrets 
that may have low 
entropy leaves the 
message vulnerable to 
offline cryptographic 
guessing attacks; 
instead, direct 
authentications 
mechanism can be used 

Generating signatures 
based on shared secrets 
that may have low 
entropy leaves the 
message vulnerable to 
offline cryptographic 
guessing attacks; 
instead, direct 
authentications 
mechanism can be used 

Encryption combined 
with data integrity 
and data origin 
authentication can 
be used to protect 
the shared secret. 
 

Implementation of 
message replay 
protection for 
preventing an attacker 
from maliciously 
replaying messages.  . 
 
Replay detection 
depends on the 
ability to uniquely 
identify messages. 
 

This option is often 
implemented using a 
hashing function that 
provides a unique 
identifier that can be 
used to determine if the 
same message is 
received multiple times. 
 

This option is often 
implemented using a 
hashing function or 
digital signature that 
provides a unique 
identifier that can be 
used to determine if the 
same message is 
received multiple times. 
 

Not applicable. 

Table 3.2: Message Protection Decision Matrix 
  

So, we summarize that in order to protect the data in transit in Jericho networks, at 
least three security services should be provided: integrity, confidentiality and data origin 
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authentication. The content of the transmitted messages remains private, is not altered and 
can be verified against tampering upon receiving. For acquiring these security services, 
typically, cryptographic mechanisms (used in security protocols) are employed.  

In order to establish secure communications, apart from using cryptography, 
several steps must be performed in a specific order.  

For building secure communications is essential to establish a secure session. By 
secure session we imply that it uses cryptography and other monitoring and mitigation 
processes in order not to allow the leakage of any information and to protect both the 
server and client from any exposure. Moreover, identification, authentication, and all other 
access-level decisions on the information that exist at the application level must be 
performed. Besides all these, all of the protocol level information should be logged for 
auditing purposes.  
  
 For creating a secure communication between two entities, each entity is required 
to perform the following: 

- Send a connection request. One party initiates the contact, and the other must 
respond 

- Negotiate communication and cryptographic terms of engagement 
- Authenticate the peer entity 
- Manage and exchange of the session keys 
- Renegotiate keys on request 
- Establish data transfer properties such as encryption or protection 
- Manage errors by enabling the use of exceptions, communicating alerts, or sending 

error messages 
- Create audit logs 
- Close connections on successful completion or on fatal errors 
- Re-establish closed connections based on bilateral agreement from the entities 

 
 

3.3 Overview of Open Systems Interconnection (OSI) Model 
 
The International Standards Organization (ISO) introduced the seven-layer Open 

Systems Interconnection (OSI) network protocol stack as a model for network 
communications.  

The OSI reference model segments the networking tasks, protocols, and services 
into different layers. Each layer in the stack has its own responsibilities and functionalities 
regarding how two computers communicate over a network. OSI reference model is a 
layered model for understanding and implementing computer communications and 
computer network protocols.  

Further on, we will present which the vulnerabilities of each layer are and what 
protocols can be used for providing secure communications.  

Each layer in OSI model has a special interface (connection point) that allows it to 
interact with three other layers. A layer can receive communications from the interface of 
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the layer above it, can transmit communications to the interface of the layer below it, and 
can establish communications with the same layer in the interface of the target packet 
address.  

The control functions, added by the protocols at each layer, are in the form of 
headers and trailers of the packet.  

 
 
Figure 3.2: The OSI Reference Model  
 

The Transmission Control Protocol/Internet Protocol (TCP/IP) is a suite of 
protocols that governs the way that data travels from one device to another. Figure 1.2 
shows the differences between the OSI and TCP/IP networking models. 
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Figure 3.3: The OSI and TCP/IP networking models 
 
Each OSI layer has a set of functions to perform for enabling the data to travel 

from a source to a destination on the network.  
 

OSI LAYER Name Description Vulnerabilities 
Application Network processes to 

applications 
Telnet, FTP, rlogin, Windows, 
Mac OS, UNIX, HTTP, 
SNMP, RMON1, DNS, whois, 
finger 

Examples include: e-mail bombs 
and spam; Trojan horses; viruses; 
unauthorized access to key 
devices; brute force attacks; 
browser holes; malicious Java, 
active-X, or CGI exploits; 
reconnaissance and mapping; 
control daemons; holes; 
keyloggers; 

Presentation Data representation ASCII, EBCDIC2, HTML, 
Pict, wav 

Unencrypted data formats can be 
viewed; compressed Trojan and 
virus files can bypass security; 
weak encrypted data; 

Session Interhost 
communication 

NFS, SQL3, RPC4, 
Xwindows, Bind, SMB5 

Traffic monitoring; root access;  

Transport End-to-end 
connections and 
reliability 

TCP, UDP, SPX6 Exploitations using SYN 
flooding and TCP hijacking; 
spoofing;  port scans; 
fragmentations 

Network Address and best path IP, IPX7, ICMP Ping scans and packet sniffing; 
ARP poisoning and spoofing; 
DDos Smurf;  IP spoofing; Tribe 
Flood Network; nuking 
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Data Link Media access MAC8, LLC9 Reconnaissance and sniffing 
Frame manipulation; spoofing 
broadcast storms; ARP cache 
poisoning; misconfigured and 
failing NICs Stored attack robots 
(bots) 

Physical Binary transmission Media, connectors, devices Wire tap and sniffing; full 
network access and recon in a 
nonswitched LAN; natural 
disasters; power failure; theft etc. 

 
Table 3.3: The 7 layers of the OSI Reference Model (adapted after de Laet & Schauwers, 
2004) 
 

1. RMON = Remote Monitoring 
2. EBCDIC = Extended Binary Coded Decimal Interchange Code 
3. SQL = Structured Query Language 
4. RPC = Remote-procedure call 
5. SMB = Server Message Block  
6. SPX = Sequenced Packet Exchange 
7. IPX = Internetwork Packet Exchange 
8. MAC = Media Access Control 
9. LLC = Logical Link Control 

 
 
Each layer of the OSI model has certain vulnerabilities. Understanding the 

vulnerabilities of each layer and how different types of attacks can occur helps in 
assessing the risk and search for adequate security solutions.  

 
There are mechanisms for building reliable and secure communications at all 

layers of the OSI / TCP/IP model. Each of these mechanisms has its advantages and 
disadvantages. 
 Protection provided at the application layer (Layer 7) is application specific. Thus, 
the protection methods need to be reimplemented in every application on the host.  
 By adding protection at the transport layer, application independence is gained. 
The implemented security mechanism might require running over a specific transport-
level protocol. Secure Sockets Layer (SSL) runs over TCP because it is session-oriented 
and it requires reliable communication.  
 Contact with the application is lost when protection is added at the network level. 
In order to capture the user context, the network layer security mechanism must depend on 
a higher-layer interaction. This captures the user context called security association, and 
transfers it down to the network layer.  
 Protection at the data link layer provides protocol-independent protection. Data 
link layer protection is expensive to deploy on a large scale because there is a need to 
protect every single link separately.  
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 In order to provide protection at the lower levels of the OSI model (Data Link and 
Physical), hardware protection units or dedicated private lines can be used for protecting a 
communication link.  

The Secure Sockets Layer protocol provides application and transport-layer 
security, and IPsec provides network-layer security. IPsec represents a framework of 
security protocols and algorithms used to secure data at the network layer. 

Essentially, the Transport layer is intended to provide reliable communications 
between two endpoints. Gregg (2006) acknowledged that both SSL and TLS protocols 
build upon the traditional functionality of TCP to provide confidentiality (by encryption) 
and integrity (via hashing and digital signatures).  

 
If encryption is implemented on one layer, this means that the respective layer and 

all the layers above are protected. Protection implemented at the network layer it offers 
one of the most flexible solutions because it is media independent and at the same time, 
also, application independent.  But nowadays, SSL becomes more popular because of its 
advantages over IPsec. 

If encryption takes place at the lower layers of the OSI model, for instance at 
physical and data layer, this is called link-to-link encryption1. If the encryption takes place 
at higher layers, it is called end-to-end encryption. 

 
 
An example of encryption on different layers can be viewed in the figure below: 
 

                                                 
1 In the literature the link-to-link encryption is also named link-by-link encryption or link encryption. 
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Figure 3.4: Options of protection at different layers (adapted after de Laet & Schauwers, 
2004) 
 
 

3.4 Security protocols 
 

In the context of Jericho Project, for achieving secure communications there will 
be investigated security protocols and cryptographic primitives that provide different 
security services. In the current chapter we will explore security protocols that are of 
interest for Jericho networks and that can be used for different security purposes, such as 
entities authentication, privacy, integrity, authentication of the source of messages. 

We will focus our research on SSL/TLS and IPsec security protocols within the 
scope of this thesis. These protocols are also named cryptographic protocols because they 
perform security-related functions for which cryptographic primitives are used and 
applied. A cryptographic protocol can be defined as a sequence of steps that uses 
encryption and decryption to secure the communication between two or more computers 
on the network.  

Internet Protocol Security (IPsec is an extension of the Internet Protocol (IP) and 
provides a transport level secure communication solution.  It provides security at the IP-
enabled communications between two or more computers on a network. IPsec provides 
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end-to-end security in network configurations such as client-to-server, client-to-client, and 
server-to-server. 

 
In the course of our future research for Jericho project we will investigate also 

other technologies and protocols for providing secure communications over the network 
(basically the network will be the Internet). In the position paper “The Need for Inherently 
Secure Protocols”1 on Jericho Forum, they recommend also the use of: SMTP (Simple 
Mail Transfer Protocol), AS2 (Applicability Statement 2). 
 
 Further, in this chapter, we will present in detail two of the most used security 
protocols used in the real world for securing the communications. Firstly, we will present 
Secure Sockets Layer/Transport Layer Security (SSL/TLS) protocol that is used nowadays 
intensively for securing Internet transactions between web browsers and web servers. 
Secondly, Internet Protocol Security (IPsec) protocol will be described in detail. 
Moreover, we analyse the security flaws existent in these protocols and the possible 
solutions for fixing these security problems. Then we will make a comparison between 
these two protocols in order to see which could provide a better solution for Jericho 
Project, and in which cases. 
  
 In Figure 3.5 below there are presented different security facilities in the TCP/IP 
protocol stack.  
 

HTTP FTP SMTP

TCP

IP/IPSec

HTTP FTP SMTP

TCP

IP

SSL/TLS

PGPS/MIME SET

TCP

IP

Kerberos SMTP HTTP

UDP

Network Level Transport  Level Application Level

 
Figure 3.5: Relative Location of Security Facilities in the TCP/IP Protocol Stack (after 
Stallings, 2005) 
 

IPsec protocol is transparent to end users and applications, and provides a general-
purpose solution. Further, IPsec includes a filtering capability so that only selected traffic 
need incur the overhead of IPsec processing. 

 Another option to provide a general-purpose security solution is to implement 
security above TCP (above the Transport Layer) by using, for instance, SSL or TLS 
protocol. Stallings (2005) specified that there are two implementation choices for this 
protocol: SSL/TLS can be part of the underlying protocol for providing full generality or 

                                                 
1 www.opengroup.org/jericho/Protocols_v1.0.pdf accessed March 2007 
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SSL/TLS can be embedded in specific packages (e.g. Netscape and Microsoft Explorer 
browsers have options for this protocol, as well the Web servers).  
 In the third picture in Figure 3.5 there are illustrated application-specific security 
services that are embedded within particular applications. These services can be tailored to 
the specific needs of a given application. 

 Next, we discuss the security protocols of interest for providing secure 
communications in the context of Jericho Project.  
  
 

3.5 Secure Socket Layer and Transport Layer Security (SSL/TLS) 
 

3.5.1 Introduction 
 

Nowadays, all businesses, most government agencies, and many individuals have 
Web sites and there are many facilities created on the Web for electronic commerce. But, 
Internet and the World Wide Web are vulnerable to all sorts of security attacks. 
Consequently, the demand for secure Web services is growing (Stallings, 2005).  

Plaintext messages are sent and received by Web services over standard Internet 
protocols (e.g. Hypertext Transfer Protocol (HTTP)).  By default, HTTP does not employ 
data encryption for transfers between the Web server and the Web client (Komar et al., 
2004). The transmitted messages can be intercepted by attackers, potentially viewed and 
even modified for malicious purposes, replayed or the communications between the 
entities can be even interrupted (Microsoft Corporation, 2005). 

Web services are offering the possibility for fast and flexible information sharing 
across Internet. Hartman et al. (2003) mentioned in their book that Web services enable 
access to data that previously could be found only on corporate networks and was 
accessible only by using specialized software. Besides this, the authors pointed out the 
risks of exposing sensitive and private data to security attacks such as interceptions, 
unauthorized reading and modification of the data, replay of messages, reflection attacks 
etc.  

Hartman et al. (2003) made some observations regarding the security of Web 
services that are in accordance with the de-perimeterization principles proposed by Jericho 
Forum. Thus, the authors acknowledged that in the world of electronic commerce, where 
all the players (e.g. customers, suppliers, remote employees, partners, competitors) are 
collaborating over the Internet, end-to-end security solutions should be designed and 
deployed for protecting the sensitive data. With reference to secure communications, end-
to-end means that sensitive data is encrypted all the way on the communication channel 
between the user and the data.  
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Jericho Forum’s members presented in one of their position papers1 the principles 
for managing data privacy. In this paper it is specified that there are privacy problems 
related to all kinds of existing data (confidential corporation data, personal information 
etc.) and refers mainly to the Personally Identifiable Information (PII). It is recommended 
in the paper that the privacy information associated with data must be bound to (or reside) 
with that data. These goals can be achieved by developing and using open and 
interoperable standards, open and inherently secure protocols for protecting the 
communications, and by creating and deploying a trusted framework for collecting, 
exchanging and using data2.   

Actually, organizations must focus on building more secure applications from the 
ground up while protecting the data at all times an in all forms (in storage, in process and 
in transit).  

Further, we present in detail one of the most used security protocols deployed in 
the real world for securing the communications, and that can be used also in Jericho 
Project for providing certain security services that are of interest within the scope of this 
research.  

Secure Socket Layer/Transport Layer Security (SSL/TLS) protocol is used 
nowadays intensively for securing Internet transactions between Web browsers and Web 
servers for securely transferring data over insecure channels (Internet), as well for other 
applications (e.g. mail or news applications, Telnet, FTP etc.). Consequently, we explore 
the security services and the security mechanisms included in this protocol, and analyse its 
applicability in the case of Jericho Project.  

The primary goal of the SSL/TLS protocol is to provide privacy and data integrity 
for transferred data between entities. Because the security services provided by the 
protocol match some of the requirements for secure communication in Jericho network, 
we explore further the possibilities offered by this current protocol in the context of 
Jericho Research Project.  

In this sub-chapter we present SSL 3.0, TLS 1.1 and TLS 1.2 (proposed standard) 
protocols and analyse their implications in providing secure communications and end-to-
end encryption in the context Jericho network. 

 

3.5.2 Presentation 
 
 Secure Sockets Layer (SSL) protocol version 2 (version 1 was never deployed) 
was invented by Netscape and it provides reliable end-to-end communications over the 
Internet between two hosts. According to Kaufman et al. (2002), Microsoft improved SSL 
2.0 by fixing certain security problems, and introduced a similar protocol known as Private 
Communications Technology (PCT).  

                                                 
1 http://www.opengroup.org/jericho/Privacy_v1.0.pdf accessed May 2007 
2 Idem 1 
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SSL 2.0 (second version of SSL protocol) provides authentication of the client and 
the server, while SSL 3.0 (third version of SSL protocol) provides all the features of SSL 
2.0 along with increased security and efficiency. SSL 3.01 has extra functionalities for data 
compression; it uses ciphers for communications and also certificate chains.  

It is acknowledged in the literature (Thomas, 2000; Kaufman et al., 2002) that 
Netscape Communications developed the first three versions of SSL protocol with 
significant assistance from the web community and with public review.  

 
Transport Layer Security (TLS) protocol, developed by Internet Engineering Task 

Force (IETF) is based on the specifications of SSL 3.0 protocol with a few modifications 
(Rhee, 2003; Johnston & Piscitello, 2006). It provides confidentiality and integrity for 
sensitive data sent over the Internet. Hassler (2001) pointed out that even if TLS is 
somehow similar, but yet there are some difference (e.g. in the cipher suites that they use 
for achieving different security services) that make them not interoperable. TLS has three 
versions. Till March 2007 the most recent version of TLS was 1.1, and is described in 
RFC 43462. TLS 1.1 incorporates some minor security fixes and clarifications. The current 
version of TLS is 1.2, and is described in an Internet working draft3 that expires in 
September 2007.  

 
Typically, SSL/TLS is most commonly used to secure the channel between a 

browser and Web server, namely for Web communications and web-based transactions. 
Due to its successful application for securing Web communications, SSL/TLS is used with 
other applications as well apart from HTTP, such as mail or news applications, Telnet, 
FTP etc. (Thomas, 2000; Lail, 2002; Oppliger, 2002; Ramachandran, 2002; Komar et al., 
2004; Gregg, 2006). In fact, any upper-layer protocol or application that relies on TCP can 
employ the security services provided by SSL/TLS. 

 
Lail (2002) specified that SSL/TLS protocol, in addition to securing web-based 

traffic, can secure the following as well: 

- Vendor-proprietary communication protocols 
- Connections between back-end servers within enterprise and B2B environments 
- Connections between network devices, such as provisioning equipment and 

routers, and the remote management consoles used to administer these devices  
 
 
SSL/TLS forms an extra layer between the transport (TCP) and the application 

layer and this represents an advantage, because no modifications are needed in the 
software (Oppliger, 2002; Aoufi, 2006).  

 
With SSL/TLS protocol, secure connections between clients and server 

applications can be generated, mutual authentication or server authentication can be 
                                                 
1 http://wp.netscape.com/eng/ssl3/draft302.txt accessed April 2007 
2 http://www.ietf.org/rfc/rfc4346.txt accessed April 2007 
3 http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4346-bis-03.txt accessed April 2007 
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achieved in one established communication session. SSL/TLS also provides privacy and 
integrity of the data that client and server exchange. 

 
Typically, only the server is authenticated (its identity is ensured), while the client 

remains unauthenticated. Based on the requirements of Jericho Project, both entities 
should authenticate, so there is established a mutual authentication.  

 
Both the SSL and TLS protocols allow client/server applications to communicate 

in such a way that they prevent eavesdropping, tampering or message forgery. 
 
Shortly, SSL/TLS protocol consists of a set of messages and rules about when to 

send (and not to send) each one (Thomas, 2000). 
 
Snader (2005) summarized the steps of an SSL/TLS session. Basically, an 

SSL/TLS session has three stages: connection setup, data transfer, and connection 
teardown. Firstly, the encryption, authentication, and compression algorithms are 
negotiated; the identity of the server and, optionally, the identity of client is verified also, 
and a key exchange takes place. 

Secondly, the client and the server exchange application data. These exchanges are 
encrypted and authenticated to ensure that the data cannot be read by third parties 
(encryption) and that third parties cannot alter the data without detection (authentication). 

After ending the transmission of the data, one entity or both of them send a closure 
notification as an EOF. The closure notification is authenticated, so it cannot be forged by 
third parties.  

Also, Snader (2005) noted that the SSL 3.0 and TLS 1.0 specifications require that 
both sides send closure notifications, but in practice, this is often ignored, and only one 
side sends it. 

 
SSL/TLS Properties 
 
SSL has the following security features (Ramachandran, 2002; Cole et al., 2005):  

- SSL/TLS works between the application and transport layers of the network 
protocol stack to ensure security of applications on the transport layer 

- SSL/TLS provides private, reliable, and non-forgeable conversation between two 
communicating processes 

- Basically, SSL/TLS provides client-side and server-side authentication, 
confidentiality (encryption of the messages) and message integrity  

- While frequently associated with web-based transactions, SSL is not limited to 
securing the Hypertext Transfer Protocol (HTTP). Any upper-layer protocol or 
application that relies on TCP can employ the security services provided by SSL 
(e.g. news, email, FTP, Telent, NNTP1, IMAP1, IRC2, and POP33).  

                                                 
1 Network News Transfer Protocol  
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They can all be secured by layering them on top of SSL (the appended letter “S” in 
the corresponding protocol acronyms indicates the use of SSL). But Oppliger (2002) 
also mentioned that SSL has a strong client-server orientation and does not really meet 
the requirements of peer application protocols. 

- The communications can travel over non-secure networks  

Due to the use of encryption in securing communications, the risk of man-in-the-
middle attack can be considerably reduced because the attacker cannot decrypt the 
transmitted message in a reasonable timeframe. The authors pointed out that this 
benefit assumes that SSL/TLS is properly configured and used at both ends of 
communication. 

 
Applications can use a unique port number for SSL/TLS-protected 

communications. So, when the SSL/TLS is used in Jericho networks for protecting the 
transfer of data, the firewall configuration should be changed in order to allow the 
encrypted traffic. Although this will allow SSL/TLS sessions to be established through the 
firewall, the firewall will not be able to analyze the contents of the SSL/TLS-encrypted 
packets. As a result, the firewall will be able to use only the origin and destination of the 
packet to determine whether to let packets through. 

 
The typical ports that various applications use for SSL/TLS are listed in Table 3.4 

below:  

Protocol Standard Port SSL/TLS Port 
Hypertext Transfer Protocol (HTTP) 
 

80 443 

Simple Mail Transfer Protocol (SMTP) 
 

25 465 

Post Office Protocol version 3 (POP3) 
 

110 995 

Internet Message Access Protocol (IMAP) 
 

143 993 

Network News Transfer Protocol (NNTP) 
 

119 563 

Lightweight Directory Access Protocol (LDAP) 
 

389 636 

Global catalogue queries 
 

3268 3269 

 
Table 3.4: Port Numbers Used by Standard and SSL/TLS-Encrypted Protocols 
 

                                                                                                                                                   
1 Internet Message Access Protocol 
2 Internet Relay Chat 
3 Post Office Protocol 
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As we have already specified, roughly, SSL/TLS involves three stages: 

- Peer negotiation for algorithm support  
- Public key encryption-based key exchange and certificate-based authentication 
- Symmetric cipher -based traffic encryption  

 
SSL/TLS protocol makes use of cryptographic algorithms and primitives for 

implementing the security services that supports. Firstly, the two entities need to exchange 
“keying material” with each other (Snader, 2005). Typically, in this process of key 
exchange, the server is also authenticated (optionally the client as well).  

Secondly, the application data and other messages have to be encrypted by means 
of symmetric-key cryptography in the protocol. Several ciphers, both stream and block, 
are supported for this service. Finally, each transmitted record must be authenticated. A 
message authentication code is added to each record.  

In this chapter we mention the possible combinations of cryptographic primitives 
and algorithms supported in SSL 3.0/TLS 1.1/TLS 1.2, while in Chapter 4 will we 
examine them in detail and attempt to make recommendations regarding the most 
adequate to be used in designing effective and efficient security protocols.  

 
 
SSL/TLS Session 
 

SSL/TLS session is assumed to be relatively long, so that many connections can be 
derived from a session (Kaufman et al., 2002; Oppliger, 2002; Stallings, 2005). If an SSL 
session exists, then two entities share a symmetric key K that can be used further to 
establish new connections.  

Rhee (2003) defined an SSL session as being an association between a client and a 
server. The author described in detail the role of an SSL/TLS session. 

Sessions are created by the Handshake Protocol. In a session, a set of 
cryptographic security parameters are defined and they can be shared among multiple 
connections.  

Sessions are used in order to avoid the expensive negotiation of new security 
parameters for each connection. An SSL session coordinates the states of the client and 
server. The state is represented twice as the current operating state and pending state. 
When the client or server receives a change cipher spec message, it copies the pending 
read state into the current read state. When the client or server sends a change cipher spec 
message, it copies the pending write state into the current write state. When the handshake 
negotiation is completed, the client and server exchange change cipher spec messages, and 
they then communicate using the newly agreed-upon cipher spec. 

 
As described above, Oppliger (2002), Rhee (2003) noted that an SSL session is 

stateful and that the SSL protocol must initialize and maintain the state information on 
either side of the session. In Table 3.5 there are summarized the corresponding session 
state information elements: 
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Session State Information Element Description 
Session ID Identifier chosen by the server to identify an active or 

resumable session state 
Peer certificate X.509 version 3 certificate of the peer entity. This 

element of the state may be null. 
Compression method Algorithm used to compress data prior to encryption 
Cipher Spec Specification of the data encryption and MAC 

algorithms. It also defines cryptographic attributes 
such as the hash size. 

Master Secret 48-byte secret shared between client and server. It 
represents secure secret data used for generating 
encryption keys, MAC secrets and IVs. 

Is resumable This is flag that indicates whether the session can 
be used to initiate new connections.  

Table 3.5: SSL/TLS Session State Information Elements (after Oppliger, 2002; Rhee, 
2003; Stallings, 2005) 

 
As we already mentioned, an SSL/TLS session can be used for several 

connections.  
A connection is a transport (in the OSI layering model definition) that provides a 

suitable type of service. Rhee (2003) noted also that for SSL/TLS every connection is 
associated with one session. 

The corresponding connection state information elements are summarized in Table 
3.6.   

 
Connection State Information 
Element 

Description 

Server and client random 
 

Byte sequences that are chosen by the server and 
client for each connection. 

Server write MAC secret 
 Secret key used for MAC operations on data 

sent (written) by the server. 
Client write MAC secret 
 Secret key used for MAC operations on data sent 

(written)  by the client. 
Server write key 
 

Conventional cipher key used for data encryption 
by the server and decryption by the client. 

Client write key 
 

Conventional cipher key used for data encryption 
by the client and decryption by the server. 

Initialization vector 
 

Initialization state for a block cipher in CBC 
mode. This field is first initialized by the SSL 
Handshake Protocol. Thereafter, the final 
ciphertext block from each record is preserved for 
use with the following record. 
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Sequence number 
 

Each party maintains separate sequence numbers 
for transmitted and received messages for each 
connection. 

Table 3.6 : SSL/TLS Connection State Information Elements (after Oppliger, 2002; Rhee, 
2003; Stallings, 2005) 

 
Oppliger (2002) noted that communicating parties may use multiple simultaneous 

SSL sessions and sessions with multiple simultaneous connections. 
 
The establishment of an SSL/TLS session is illustrated in Figure 3.6.  
 

 
Figure 3.6: Simplified SSL/TLS 

 
We will explain shortly the steps in establishing a secure session between a client 

and a server in SSL/TLS protocol (Kaufman et al., 2002; Stamp 2006): 
 

- The client C initiates contact with the server S, sends also a list containing the 
cryptographic algorithms that supports, along with a random number Rc 

- The server sends its certificate to C, a random number Rs, and the cipher that was 
chosen for implementing security services 

- C verifies the certificate, extracts servers’ public key 

- C chooses a random number S (pre-master secret) from which the keys are going 
to be further computed, encrypts it with S’ public key, and sends it along with the 
encryption of the keyed hash of the handshake messages 

This encryption of the keyed hash of the handshake messages can be formulated 
like follows (using the notation introduced in Chapter 4): 

E(h(msgs, CLNT/client finished, K)), where 

 K is the master secret generated from the pre-master secret S and the random 
numbers Rc and Rs. The client C sends a hash of the master key K and the 
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handshake messages in order to prove that knows the key and to ensure that the 
tampering of the handshake messages would be detected. 

 Kaufman et al. (2002) mentioned that although not necessary, the message digest is 
encrypted and integrity protected. The keys used for encrypting the keyed hash that is 
derived from hashing K, Rc and Rs.  

 The keys used for transmission are named write keys, while the keys used for 
reception are called read keys.   

  

- For ensuring that the previous messages were not tampered in traffic and for 
proving that it knows the session keys, the server sends a keyed hash of all the 
handshake messages, encrypted with the write-encryption key and protected with 
the integrity-protection key (Kaufman et al., 2002) 

 E(h(msgs, SRVR/server finished, K)) 
  

For ensuring that the keyed hash sent by the client is different from the one sent by 
the server, the parties include a constant ASCII string value in the hash. In SSL 3.0 the 
initiator constant is CLNT and in TLS is client finished; the reply value is SRVR in SSL 
3.0, respectively, server finished in TLS.  

 
In this basic presentation of SSL/TLS protocol, just the server is authenticated, 

although authentication can be mutual if the client has also a certificate. Kaufman et al. 
(2002) made the observation that if the server wants to authenticate the client, it usually 
happens with a weak authentication mechanism (e.g. name and password encrypted with 
the session keys). 
 

 
SSL Architecture 
 

Stallings (2005) underlined that SSL is designed to make use of TCP to provide a 
reliable end-to-end secure service. SSL is not a single protocol, but rather is composed of 
two layers of protocols. The protocols within SSL/TLS are illustrated below in Figure 3.7.  
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Figure 3.7: SSL/TLS Protocol Stack  
 

The SSL Record Protocol provides basic security services to various higher-layer 
protocols. In particular, the Hypertext Transfer Protocol (HTTP) that provides the transfer 
service for Web client/server interaction can operate on top of SSL.  

Three other higher-layer protocols are defined as part of SSL: the Handshake 
Protocol, The Change Cipher Spec Protocol, and the Alert Protocol. These SSL-specific 
protocols are used in the management of SSL exchanges. 
 
SSL Record Protocol  
 

Basically, the SSL Record Protocol applies the following operations on a 
transmitted message:  fragments the data into manageable blocks, optionally the data is 
compressed, applies then a MAC, encrypts, adds a header, and transmits the result in a 
TCP segment. Received data are decrypted, verified, decompressed, and reassembled and 
then delivered to higher-level users.  

These operations are illustrated in Figure 3.8.  
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Figure 3.8: SSL Record Protocol Operations 
 
Firstly, the SSL Record Protocol fragments the information blocks into 

SSLPlaintext records of 214 bytes or less.  
A MAC is appended to each SSL record. It provides message origin authentication 

and data integrity services. Secure hash functions, such as MD5 or SHA-1, are used for 
MAC computations. The MAC is applied before encryption. In both SSL and TLS 
protocols, the MAC of the record also includes a sequence number, in order to detect 
missing, extra, or repeated messages, as well as replay attacks.  

Next, the compressed message plus the MAC are encrypted using symmetric 
encryption. 

Afterwards, if a block cipher is used for encryption, padding might be added after 
the MAC prior to encryption. The total size of the data (plaintext, MAC and padding) has 
to be a multiple of the block’s length. Padding is added in the case the plaintext plus the 
MAC are not a multiple of block’s length.  

 
The encryption algorithms supported by SSL 3.0 are specified in Table 3.7.  
 

Block Cipher Stream Cipher 
Algorithm Key Size Algorithm Key Size 

AES 128, 256 RC4-40 40 
IDEA 128 RC4-128 128 

RC2-40 40   
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DES-40 40   
DES 56   

3DES 168   
Fortezza 80   

Table 3.7: Encryption algorithms permitted for SSL 3.0  
 
To summarize, the Record Protocol provides connection security that has two 

properties: 
 

-   The connection is private: Symmetric cryptography is used for data encryption. 
The keys for the symmetric encryption are generated uniquely for each        
connection and are based on a master secret negotiated by another protocol 
(SSL/TLS Handshake Protocol). It should be mentioned that the Record        
Protocol can also be used without encryption, but in the context of Jericho Project 
is highly advisable to encrypt the communications.  

 
-  The connection is reliable: Message transport includes a message integrity check 

using a keyed MAC. Secure hash functions (e.g. SHA, MD5, etc.) are used for 
MAC computations. Although the Record Protocol can operate without a MAC, 
generally, when used as transport for negotiating security parameters, it is 
recommendable to use it with message integrity checks for transferring data in 
Jericho network.  
 
 
 
 

Change Cipher Spec Protocol 
 
The Change Cipher Spec Protocol is one of the three SSL-specific protocols and it 

is the simplest (Rhee, 2003; Stallings, 2005). This protocol signals transitions in    
ciphering strategies. It consists of a single message that is in fact a single byte with the 
value 1. The only purpose of this message is to cause the pending state to be copied into 
the current state, which updates the cipher suite to be used on this connection. 
 
 
Alert Protocol 
 

The Alert Protocol is being used to transmit SSL-related alerts to the peer entity 
via the SSL Record Protocol. An alert message consists of two parts, an alert level and an 
alert description. Also, alert messages are compressed and encrypted, as specified by the 
current state. 
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Handshake Protocol  
 

The Handshake Protocol is considered to be the most complex part of SSL/TLS 
protocol. This protocol consists of a series of messages exchanged by the client and the 
server. Oppliger (2003) noted that the main aim of the Handshake Protocol is to have a 
client and server establish and maintain state information that is used to secure 
communications.  

The following operations occur in this protocol: the client and server agree on a 
common SSL protocol version, allows the server and client to authenticate each other, 
select the compression method and cipher spec, create a master secret from which the 
various session keys for message authentication and encryption may be derived. 

Next, we summarize an execution of the SSL Handshake Protocol between a client 
and a server in Figure 3.9.  
   

Client

ServerHello

Application Data

Phase 1

Server Key Exchange *
Certificate *

Certificate Request *

SeverHello Done

Phase 2

Server

Hello messages for establishing a 
logical connection

Sever Authentication and Key 
Exchange

Client Certificate *

Certificate Verify *

Client Key Exchange

ClientHello 

Client Authentication and Key 
Exchange

Phase 3

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Change Cipher suite and finish 
handshake protocol

Phase 4

 
 

Figure 3.9:  SSL Handshake Protocol  
Asterisks (*) are optional or situation-dependent and messages that are not always sent 
 
Phase 1 
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 The aim of this phase in the Handshake Protocol is to initiate a logical connection 
ad to establish the security capabilities associated with it. The Client initiates the message 
exchange with a ClientHello message containing the following parameters: 
 
Version: The highest SSL version understood by the client. 

Random: A client-generated random structure, consisting of a 32-bit timestamp and 28 
bytes generated by a secure random number generator. These values serve as nonces and 
are used during key exchange to prevent replay attacks. 

Session ID: A variable-length session identifier. A nonzero value indicates that the client 
wishes to update the parameters of an existing connection or create a new connection on 
this session. A zero value indicates that the client wishes to establish a new connection on 
a new session. 

CipherSuite: This is a list that contains the combinations of cryptographic algorithms 
supported by the client, in decreasing order of preference. Each element of the list (each 
cipher suite) defines both a key exchange algorithm and a CipherSpec. 

Compression Method: This is a list of the compression methods the client supports. 
 

Afterwards, the server sends the ServerHello message in response to the 
ClientHello message. This contains the same parameters mentioned above. In this case, the 
parameters have different values according to the selections made by the server. The 
Version field contains the lower of the version suggested by the client and the highest 
supported by the server. The Random field is generated by the server and is independent 
of the client's Random field. If the SessionID field of the client was nonzero, the same 
value is used by the server; otherwise the server's SessionID field contains the value for a 
new session. The CipherSuite field contains the single cipher suite selected by the server 
from those proposed by the client. The Compression field contains the compression 
method selected by the server from those proposed by the client. 

 
The first element of the Cipher Suite parameter is the key exchange method that 

represents essentially the means by which the cryptographic keys for conventional 
encryption and MAC are exchanged.  

 
The following key exchange methods are supported as specified in Internet 

Draft1for SSL 3.0:  
 

- RSA: The secret key is encrypted with the receiver’s RSA public key. A public-key 
certificate for the receiver’s key must be made available. 

                                                 
1 http://wp.netscape.com/eng/ssl3/draft302.txt  
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- Fixed Diffie-Hellman: This is a Diffie-Hellman key exchange in which the server’s 
certificate contains the Diffie-Hellman public parameters signed by the certificate 
authority (CA). That is, the public-key certificate contains the Diffie-Hellman 
public-key parameters. The client provides its Diffie-Hellman public key 
parameters either in a certificate, if client authentication is required, or in a key 
exchange message. This method results in a fixed secret key between two peers, 
based on the Diffie-Hellman calculation using the fixed public keys. 

- Ephemeral Diffie-Hellman: This technique is used to create ephemeral (temporary, 
one-time) secret keys. In this case, the Diffie-Hellman public keys are exchanged, 
signed using the sender’s private RSA or DSS key. The receiver can use the 
corresponding public key to verify the signature. Certificates are used to 
authenticate the public keys. This would appear to be the most secure of the three 
Diffie-Hellman options because it results in a temporary, authenticated key. 

 
- Anonymous Diffie-Hellman: The base Diffie-Hellman algorithm is used, with no 

authentication. That is, each side sends its public Diffie-Hellman parameters to the 
other, with no authentication. This approach is vulnerable to man-in-the-middle 
attacks, in which the attacker conducts anonymous Diffie-Hellman with both 
parties. 

- Fortezza: The technique defined for the Fortezza scheme. Stallings (2005) 
specified that Fortezza can be used in smart card encryption scheme. 
 
After defining the key exchange method, CipherSpec follows and it includes the 

following fields: 

- CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES, 
3DES, DES40, IDEA, Fortezza 

- MACAlgorithm: MD5 or SHA-1 

- CipherType: Stream or Block 

- IsExportable: True or False 

- HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes 

- Key Material: A sequence of bytes that contain data used in generating the write 
keys 

- IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC) 
encryption 

 
 
Phase 2 

 
If the server uses a certificate-based authentication, then it sends its certificate to 

the client in a corresponding certificate message. The certificate must be appropriate for 
the selected cipher suite’s key exchange algorithm, and is, generally, an X.509 certificate 
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or a chain of certificates. Stallings (2005) noted that the certificate message is required for 
any agreed-on key exchange method except anonymous Diffie-Hellman. 

The client may send the same type of message for the server’s certificate request 
message. The server’s certificate request message includes two parameters: certificate type 
and certificate authority. The certificate type indicates the public key algorithm and its use 
(signature, authentication). The second parameter represents a list of the distinguished 
names of acceptable certificate authorities. 

 
 
It should be mentioned here that if fixed Diffie-Hellman is used, this certificate 

message functions as the server’s key exchange message because it contains the server’s 
public Diffie-Hellman parameters. 

 
Next, if it is needed, a server key exchange message may be sent. There are two 

situations when the server key exchange message is not required: when the server has sent 
a certificate with fixed Diffie-Hellman parameters, or when it has been agreed that RSA 
key exchange will be used.  

 
The server key exchange message is being sent in the following cases: 

- Anonymous Diffie-Hellman : The message content consists of the two global 
Diffie-Hellman values (a prime number and a primitive root of that number) plus 
the server's public Diffie-Hellman key  

- Ephemeral Diffie-Hellman: The message content includes the three Diffie-Hellman 
parameters provided for anonymous Diffie-Hellman, plus a signature of those 
parameters. 

- RSA key exchange, in which the server is using RSA but has a signature-only RSA 
key: The client cannot simply send a secret key encrypted with the server's public 
key. Thus, the server must create a temporary RSA public/private key pair and use 
the server key exchange message to send the public key. The message content 
includes the two parameters of the temporary RSA public key (exponent and 
modulus) plus a signature of those parameters. 

- Fortezza: The parameters of Fortezza are sent  

 

Thus, a server key exchange message is sent in the case when the server has no 
certificate, or when the certificate is used for signature only (DSS or signing-only RSA 
certificates).  
  

Stallings (2005) described in detail how digital signatures are used in SSL 3.0. The 
authored underlined that hash functions and digital signatures are used not only for the 
parameters of the cryptographic algorithms used for encryption (RSA or Diffie-Hellman), 
but also for the random nonces from the initial hello messages. This ensures protection 
against replay attacks and misrepresentation. 
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Moreover, details about the computation of the digital signatures are provided. In 
the case of a DSS signature, the hash is performed using the SHA-1 algorithm. In the case 
of an RSA signature, both an MD5 and an SHA-1 hash are calculated, and the 
concatenation of the two hashes is encrypted with the server’s private key. 

 
The final message in Phase 2 is the server done message. This is sent by the server 

to indicate the end of the server hello and associated messages. After sending this 
message, the server will wait for a client response. This message has no parameters. 

 
 
 
Phase 3 
 
 Further, upon receipt of the server done message, the client should verify that the 
server provided a valid certificate and check also that the server hello parameters are 
acceptable. After validation, if all is satisfactory, the client sends one or more messages 
back to the server (Stallings, 2005). 
 In the case that the server required a client certificate, the client will send a 
certificate message. If the client has no suitable certificate available, it will send a no 
certificate alert. However, if the client authentication is needed and required, the server 
will answer with a handshake failure in the case of a no certificate alert.  
 
 In the Internet Draft1 for SSL 3.0 it is mentioned client Diffie-Hellman 
certificates must match the server specified Diffie-Hellman parameters. 
 
  Next, the client will send a client key exchange message. The content of the 
message depends on the type of key exchange, as follows (Stallings, 2005; El Aoufi, 
2006): 
 

- RSA: The client generates a 48-byte pre-master secret and encrypts with the public 
key from the server’s certificate or temporary RSA key from a server key exchange 
message.  

- Ephemeral or Anonymous Diffie-Hellman: The client’s public Diffie-Hellman 
parameters are conveyed if they were not already included in the client certificate. 

- Fixed Diffie-Hellman: The client’s public Diffie-Hellman parameters were sent in 
a certificate message, so the content of this message is null. 

- Fortezza: The client’s Fortezza parameters are sent. 
 

Moreover, the client will send a certificate verify message in order to provide 
explicit verification and protection of a client message. Stallings (2005) explained that this 
message is only sent following any client certificate that has signing capability (e.g.  all 
certificates except those containing fixed Diffie-Hellman parameters).  
                                                 
1 http://wp.netscape.com/eng/ssl3/draft302.txt  
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This message signs a hash code based on the preceding messages. Firstly, a hash 

will be computed on all Handshake Protocol messages, the master secret and also two pad 
messages that are used in the hash. Stallings (2005) specified that if the user’s private key 
is DSS, then it is used to encrypt the SHA-1 hash. If the user’s private key is RSA, it is 
used to encrypt the concatenation of the MD5 and SHA-1 hashes.  

Anyway, the purpose of this certificate verify message is to verify the client’s 
ownership of the private key for the client certificate. In the case that an attacker would 
misuse the client’s certificate, this would be unable to send this message. 

 
 
 

Phase 4 
 

This phase completes the setting up of a secure connection. 
Firstly, a change cipher spec message is sent by the client, and the client copies the 

pending CipherSpec into the current CipherSpec. Further, the client sends then 
immediately the finished message under the new algorithms, keys and secrets. On the 
other hand, the server sends in response its own change cipher spec message, transfers the 
pending CipherSpec to the current one, and then sends its finished message under the new 
CipherSpec.  

 
The finished message is always sent immediately by the client, and then by the 

server, after a corresponding change cipher spec message in order to verify that the key 
exchange and authentication processes were successful. The finished message represents a 
concatenation of two hash values over the shared master secret, all the handshake 
messages up to this message, and a code that identifies the sender (either the client or the 
server).  

 
Finally, after the verification of the received finished messages by each entity, the 

handshake is complete and the client and server may begin to exchange application layer 
data.  

Further, application data is carried by the Record Layer and is fragmented, 
compressed and encrypted based on the current connection state. 

 
To summarize, the Handshake Protocol provides connection security that has three 

basic properties: 

- Authentication: The peer’s identity can be authenticated using the means offered 
by public-key cryptography. Although, the authentication is optional, is generally 
required at least for one of the peers and it is advisable to make it bidirectional, as 
a requirement for secure communications in Jericho Project.  

- The negotiation of a shared secret is secure: the negotiated secret is unavailable to 
eavesdroppers, and for any authenticated connection the secret cannot be obtained, 
even by an attacker who can place himself in the middle of the connection. 

- The negotiation is reliable: no attacker can modify the negotiation communication 
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without being detected by the parties to the communication.  
 

All these properties are required and desirable for secure communications in 
Jericho networks.  
 
Cryptographic computations 
 

   In the design of this protocol, public-key algorithms are used in the handshake 
protocol to authenticate parties and to generate shared keys and secrets. 

For all the accepted public-key algorithms (RSA, Diffie-Hellman, Fortezza) 
included in the specification of the protocol for key exchange methods, the same algorithm 
is used to convert the pre-master secret into the master secret.  In order to create the 
master secret, a pre-master secret is first exchanged between two parties and then the 
master secret is calculated from it. 

 
The shared master secret is a value of 48 bytes (384 bits) and is generated for a 

session by means of secure key exchange. The length of the pre-master secret depends on 
the key exchange method. There are two ways for the exchange of the pre-master secret: 

- RSA: A 48-byte pre-master secret is generated by the client, encrypted with the 
server’s public RSA key, and sent to the server. The server decrypts the ciphertext 
using its private key to recover the pre-master secret. 

- Diffie–Hellman: The client and the server generate a Diffie–Hellman common key. 
This private key is used as the pre-master secret and is converted into the master 
secret. 
 

 The pre-master secret should be deleted from memory once the master secret 
has been computed. This prevents attackers or malicious software to steal it from the 
memory (Kaufman et al., 2002). 
 
Both sides now compute the master secret as follows: 
 
     master_secret =  
       MD5(pre_master_secret + SHA('A' + pre_master_secret + 
           ClientHello.random + ServerHello.random)) + 
       MD5(pre_master_secret + SHA('BB' + pre_master_secret + 
           ClientHello.random + ServerHello.random)) + 
       MD5(pre_master_secret + SHA('CCC' + pre_master_secret + 
           ClientHello.random + ServerHello.random)); 
 
 From the master secret there will be generated six keys that will be used in data 
transmission process by each side (for encryption, integrity and for the initial vectors 
(IV)). For each connection, the master secret is shuffled with the random nonces produced 
by the client and server in order to produce the six keys used further in the 
communication.  
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 Basically, the master secret is used to generate keys and secrets for encryption 
and MAC computations for secure data transfer. 
 
   
TLS Protocol  
 
 In this section we underline the differences between TLS 1.1, TLS 1.2 and SSL 3.0 
that are of interest in the context of this research for Jericho Project.  
  

Although there are slightly differences between SSL 3.0 and TLS 1.0, the protocol 
remains substantially the same and the goal is to produce an Internet standard version of 
SSL. Anyway, as mentioned in RFC 22461 the differences are significant enough that TLS 
1.0 and SSL 3.0 do not interoperate (although TLS 1.0 does incorporate a mechanism by 
which a TLS implementation can turn back to SSL 3.0). 

 
One of the differences between SSL 3.0 and TLS 1.0 is that in TLS there is user 

another algorithm for the computations of MACs used for integrity checking of the 
transferred messages. TLS makes use of the HMAC algorithm defined in RFC 21042.  

 
Moreover, TLS 1.0 utilizes a pseudo-random function (PRF) to expand secrets into 

blocks of data for the purposes of key generation or validation. 
 
TLS supports all of the alert codes defined in SSL 3.0 with the exception of 

no_certificate option. A number of additional codes are defined in TLS 1.0 
 
There are several small differences between the Cipher Suites available under SSL 

3.0 and under TLS 1.0. For the key exchange, TLS supports all of the key exchange 
techniques of SSL 3.0 with the exception of Fortezza. With regard to the symmetric 
encryption algorithms, TLS includes all of the symmetric encryption algorithms found in 
SSL 3.0, with the exception of Fortezza. 

 
TLS 1.0 defines the following certificate types to be requested in a 

certificate_request message: RSA_sign, DSS_sign, RSA_fixed_DH, and DSS_fixed_DH. 
These are all defined in SSL 3.0 as well. In addition, SSL 3.0 includes 
RSA_ephemeral_DH, DSS_ephemeral_DH, and Fortezza_kea. TLS does not include the 
Fortezza scheme. 

 
In TLS 1.0 certificate_verify message, the MD5 and SHA-1 hashes are calculated 

only over handshake_messages. In SSL 3.0 the hash calculations also included the master 
secret and pads. But because it was considered that these extra fields add no additional 
security, in TLS 1.0 it has been changed the calculation mode of the certificate_verify 
message. 

                                                 
1 http://www.ietf.org/rfc/rfc2246.txt  
2 www.ietf.org/rfc/rfc2104.txt  
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 Moreover, in TLS 1.0  the calculation of the master secret and of the keying 

material used further in securely transmitting the data are calculated also based on the pre-
master secret and the random numbers of the entities, but the generating algorithms are 
slightly changed.  

 
Another difference refers to padding added prior to encryption of user data. In SSL 

3.0 the padding added is the minimum amount required so that the total size of the data to 
be encrypted is a multiple of the cipher’s block length. However, in TLS 1.0, the padding 
can be any amount that results in a total that is a multiple of the cipher’s block length, up 
to a maximum of 255 bytes. Stallings (2005) pointed out that a variable padding length 
may be used to frustrate attacks based on an analysis of the lengths of exchanged 
messages. 

 
TLS 1.11 is intended to offer some minor security improvements in comparison 

with TLS 1.0. 
TLS 1.22 is a newer version of TLS 1.1 protocol that was released in an Internet 

Draft in March 2007. TLS 1.2 is intended to solve expected problems with digest 
algorithms from previous versions, has improved flexibility, especially for negotiation of 
cryptographic algorithms. The major changes in TLS 1.2 are related to the use of hash 
functions within the different operations in the protocol. 
 Moreover, this new version of TLS protocol has an extra feature, namely support 
for authenticated encryption with additional data modes (AEAD). This is a symmetric 
encryption algorithm that simultaneously provides confidentiality and message integrity 
 In AEAD encryption, the plaintext is simultaneously encrypted and    integrity 
protected. The input may be of any length and the output is generally larger than the input 
in order to accommodate the integrity check value. 
  

 
Challenges of SSL/TLS 
 
  

In theory is stated that SSL/TLS implementations (in particular servers) will be 
able to work with implementations of newer protocol versions. 
 In reality, many SSL/TLS server implementations are broken with respect to 
forward compatibility: e.g. severs using different versions of the protocol are not able to 
establish communication or have implementation problems regarding the correct 
negotiation for the protocol versions to be used for secure communications.  
 
 With regard to the transition from TLS 1.0  TLS 1.1  TLS 1.2, many servers 
do not accept ClientHello messages from TLS 1.1 clients.  
 
                                                 
1 http://www.ietf.org/rfc/rfc4346.txt 
 
2 http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4346-bis-03.txt  
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 In such cases, various situations occur:  

- No response from the server  
- Connection closed immediately, with or without error 
- Some refused to accept TLS 1.1  
- Falls back to SSL v3, even if TLS 1.0 is supported. 

 
However, it is not known whether or not this is caused by server implementation 

errors, or firewall rules. 
 
 So, there are a series of problems with the compatibility between the different 
versions of the protocol, with the incorrect negotiation of the protocol version used by 
entities, and it seems that these problems would continue with the transition to TLS 1.2.  
  
 Consequently, the TLS Working Groups should design specifications and security 
policies intended to solve the problems caused by non-compliant implementations of the 
protocol. 
  
 
Security of SSL/TLS 
 

- SSL does not offer protection against traffic analysis attacks 

Oppliger (2002) pointed out that by examining the unencrypted source and 
destination IP addresses and TCP port numbers, or examining the volume of 
transmitted data, a traffic analyst can still determine what parties are interacting, what 
types of services are being used, and sometimes even recover information about 
business or personal relationships. 
 
- SSL does not protect against attacks directed against the TCP implementation, 

such as TCP SYN flooding or session hijacking attacks 

- Phishing attacks  
- Man-in-the-middle attacks 

Northrup & Thomas (2004) pointed out that the SSL certificates help reduce the 
risk of attacks against Domain Name System (DNS). We add in this case, that the 
correct use and validation of the SSL certificates can reduce the occurrence of these 
risks. If attackers conduct a phishing attack for misleading the users to conduct 
transactions via a fake website, then they can collect any sensitive information about 
the users and their credentials with the man-in-the-middle attack.  

 However, the Web sites have a certificate that is checked by the user. The fake 
(rogue) site could have a certificate containing the name of the impersonated 
organization but issued by an untrusted authority. Generally, the trusted certification 
authorities check thoroughly via the Registration Authorities the credentials of the 
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entities to whom they issue certificates.   

In this case the fake Web site has a certificate issued by an untrusted CA, the user 
will be prompted with an alert message being informed that the CA is untrusted. If 
users ignore these kind of alert messages and accept anyway the provided certificate, 
then they are exposed to a man-in-the-middle attack.  

 
 
Certificate Requirements for SSL/TLS 
 

One of the requirements of Jericho Project for secure communications refers to the 
authentication of entities involved in the data transfer.  

In Jericho Project, the ideal scenario regarding secure communications is to 
encrypt almost all the transmitted, choosing the encrypting ciphers according to the 
sensitive level assigned to data. This solution should hinder even the internal 
administrators from interception and/or reading the data.  

SSL/TLS seems a valuable tool for achieving the goals of secure communications 
in Jericho networks. At the moment, the adequate solution for end-to-end encryption with 
SSL/TLS would be the use of digital certificates. Digital certificates not only authenticate 
the entities, but also allow the use of encryption as a result of the public keys contained in 
the certificates.  

Thus, in order to conduct secure communications across Internet as required in 
Jericho Project, a mechanism is needed in order to validate and verify the identity of the 
entities that want to communicate. Moreover, this security mechanism would ideally allow 
you to encrypt and sign content also – these are other security services desired for secure 
communications in Jericho networks.  

Raina (2003) proposed an interesting model for the general use of the certificates. 
So, SSL/TLS certificates can be used for authentication and for end-to-end encryption as 
well. Moreover, an organization could be identified and authenticated with a valid 
“organizational” certificate. So, this could enable any entity that is being part of the 
organization to use that certificate for authentication. In this way, it would become easier 
to authenticate both the client and the server in an SSL/TLS session, and this would allow 
the deployment of SSL/TLS protocol at a larges scale for any kind of transactions and data 
transfers.  

In SSL/TLS protocol a public key infrastructure (PKI) is the mechanism that 
provides the services and components to validate the identity of entities and exchange the 
keying material used further in the protocol. 

In order to be able to use SSL/TLS protocol, the server must have a suitable 
public-key certificate. Moreover, in the context of Jericho Project we recommend that also 
the clients should have and use public-key certificates.  

 
In essence, the client is configured with public keys of various “trusted 

organizations” (Certification Authorities (CAs)). The user operating at the client machine 
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can modify the list, by adding or deleting keys. If the certificate sent by the server is 
signed by one of the CAs on client’s list, after validating the certificate (e.g. expiration 
date, revocation), the client accepts the certificate. If the sent certificate is signed by 
another organization that is not on the client’s list, the user will be prompted a pop-up 
window informing (see Figure 3.10 Security Alert) about this and will be asked if he/she 
wants to look at the certificate and/or import the signing authority into the trusted list. In 
this case, the user should definitely look at the certificate and check if possible the signing 
authority, and not add automatically this authority to the trusted list of authority that the 
client supports.  

 
 
Figure 3.10 : Security Alert for untrusted certificates 
 
 
However, this warning does not prevent the user from establishing an SSL/TLS-

encrypted session with the server for transferring data. But, the warning might cause the 
user to cancel the connection. Although establishing a connection to a server with an 
untrusted CA still provides encryption and message integrity. Using an SSL/TLS 
certificate issued by an untrusted CA defeats the purpose of the authentication provided by 
SSL/TLS protocol.  In fact, these situations make the protocol vulnerable to man-in-the-
middle attacks and phishing attacks.  

 
This is why, the users in Jericho networks should be aware by the risks posed by 

certificates signed by untrusted CAs. These certificates should be rejected and the 
SSL/TLS connection cancelled, until a solid verification of the issuing CA can be 
performed.  

 
The entities should perform certificate validation for the certificates sent by the 

parties with whom they communicate. The following tests should be performed for 
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certificate validation:  

- Ensure that the certificate chains to a trusted root certification authority (CA) 
- Ensure that the certificate is time-valid 
- Ensure that the certificate has not been revoked 
- Ensures that the Domain Name System (DNS) name in the certificate’s subject 

matches the DNS name in the HTTPS URL. 
 

If the server’ certificate passes all the validation tests, the browser extracts the 
certificate’s associated public key used to transmit further the pre-master secret to the 
server. Depending on the cryptographic service provider (CSP) installed at the server, a 
Diffie-Hellman or a RSA negotiation allows the server and client to use the pre-master key 
to generate a symmetric session key using the same symmetric encryption algorithm. 

 
 When the server wants to authenticate the client, it will send a request 
authentication to the client as well. SSL certificates can only be trusted if the root 
Certification Authority (CA) is trusted. 

 
 

Certificates play an essential role in SSL/TLS protocol: 

- An SSL Certificate enables encryption of sensitive information during online 
transactions 

- Each SSL Certificate contains unique, authenticated information about the 
certificate owner 

- Every SSL Certificate is issued by a Certificate Authority that verifies the identity 
of the certificate owner 

 
Every SSL Certificate is created for a particular server in a specific domain for a 

verified business entity. The certificates are issued by a trusted authority, the Certificate 
Authority (CA). When the SSL handshake occurs, the browser requires authentication 
from the server.  

As we have already mentioned, in Jericho Project we recommend that the 
authentication of the client should be also mandatory, in order to enforce an adequate 
protection of the transferred data. Certificate-based authentication of the client is not 
required for SSL/TLS connections, but it definitely increases the security of the user’s 
credentials. 

For an efficient and secure utilization of SSL/TLS protocol, the entities have to 
check each others certificates. If the information does not match or the certificates are 
expired, error messages or warnings are displayed.  

In the model of Jericho Project, there is another entity, the Trust Broker that should 
manage the certificates issued to the entities, establish trust relationships with Certification 
Authorities.  
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A possible scenario in the context of Jericho Project would be that the Trust 
Brokers issue certificates to clients and servers, like in the model of PGP in which there 
are created webs of trust. Trust Broker is intended to define and to manage rules for trust 
relationships between different organizations, and also to deal with cross-certifying 
hierarchies among companies (hierarchies of trust among companies). Another scenario 
would be that in which the organizations issue self-signed certificates.  

However, the way the Trust Broker manages or creates the certificates for the 
entities in Jericho networks is out of the scope of this thesis. The research topic of the 
Trust Broker in Jericho networks is dealt with by another member of Jericho Project 
research team.  

 
 
 
 

Choosing a certificate provider 
 
 A recent market share report regarding the certificate providers was issued by 
Security Space1 in June 2007. This report focuses on issuers of SSL enabling certificates 
found on web servers in April and May 2007. 

Issuer Market Share 
VeriSign 23.6% 

Equifax (Geotrust) 21.68% 

Thawte 13.44% 

Comodo Limited 8.5% 

Starfield Technologies, Inc. 4.42% 

DigiCert 2.38% 

GoDaddy 1.4% 

Entrust 1.18% 

Network Solutions 1.17% 

Table 3.8: Market share for certificates issuers 

 Nowadays, trust and privacy when transferring sensitive data over the Internet are 
of interest for every organization that conducts business online or establishes 
collaborations over the Internet.  As we mentioned in the introductory part of this chapter, 
there are a series of requirements in Jericho networks for protecting the information 
against alterations, fraud, identity theft, eavesdropping etc.  

                                                 
1 http://www.securityspace.com/s_survey/data/man.200705/casurvey.html?ca=VmVyaXNpZ24= accessed 
June 2007 
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  Basically, these problems can be addressed at this moment with an existing 
solution, namely the digital certificates issued by Certification Authorities. But next, there 
comes another question regarding how to choose a CA to provide certificates for 
authenticating the entities in an organizational and collaborative environment over the 
Internet.  

 Essentially, all the CAs that issue certificates use the same technologies for 
producing and managing their certificates. The CAs offer also “site seals” (see Table 3.9) 
that are clickable images that can be placed for instance on web pages in order to create 
trust.  

 

 
 

 
 

 

  

 
 

 
 

Table 3.9: Site Seals of different certificates providers 

The CAs differ generally in the ways they authenticate and verify the identity of 
entities that require digital certificates. The certificates providers should authenticate and 
verify strictly the information provided by entities requesting certificates, in order to be 
able to embed that information within the digital certificate, which in turn can be viewed, 
verified and confirmed by other entities.  

 When an organization chooses to use SSL/TLS for securing the communications 
for different applications (HTTP, email, etc.), it has to determine from which certificate 
provider will obtain certificates for the clients and for the servers. This decision should be 
considered by the organizations in Jericho networks as well.  

 In the context of Jericho networks, the Trust Broker plays an essential role. One of 
the roles of the Trust Broker can be to act as a Certification Authority, and, consequently, 
issue, manage, revoke certificates for entities. The Trust Broker can issue certificates for 
the clients and servers of the organization that implements and manages this entity (the 
Trust Broker), as well for partners organizations between which the Trust Broker has 
established trust relationships.  

There can be issued certificates for Web servers, for Web sites, for clients and for 
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users. For instance, a Trust Broker can issue one-to-one certificates for authenticating 
users from other organizations (maps distinct certificates for each user/user account), or it 
can issue a many-to-one certificate for users that trust, but from other partner 
organizations. In the latter case, the individual users cannot be differentiated when 
connecting to a Web site or to a Web server, apart from the user accounts defined in the 
many-to-one mapping. 

 Additionally, the Trust Broker would define also the capabilities of a certificate: 
for digital signatures, authentication, and encryption.  

  Another scenario in Jericho networks would be that the Trust Broker could act as a 
Registration Authority that validates the credentials of the entities that submit 
requirements for certificates. In this way, the Trust Broker can manage directly the issuing 
of the certificates to entities. However, this research topic is out of the scope of this thesis 
and should constitute a separate research topic within Jericho Project.  

By using one of the models where the certificates are issued by the Trust Broker, 
or the Trust Broker plays the role of a Registration Authority, or the Trust Broker designs 
and manages a Circle of Trust1 (CoT) for the issuers of the accepted certificates, an 
organization can enforce its security policies and certificate policies, and complies also 
with the guidelines and policies defined by the Trust Broker.  

There are different functional models for the Trust Broker2 (collaborative model, 
consortium model, centralized model).  

In these models for the Trust Broker, there could be created CoT also for accepting 
the authentication of the entities with certificates issued only by the Trust Broker that 
manages the respective CoT or issued by another trusted Trust Broker of CA. This Circle 
of Trust would design in fact a Certificate Trust List (CTR), a concept already existing and 
being implemented by the organizations that use certificates.  

However, an organization can still purchase certificates for its servers from a CA 
until the framework of Trust Broker will be at a global scale implemented.  A server can 
have also more certificates, so it can provide a certificate from a CA and/or from a Trust 
Broker. Anyway, any of these certificates has to provide transaction liability insurance for 
electronic transactions, data transmissions. Moreover, the certificates issued by the Trust 
broker can contribute to the establishment of trust relationships between different entities, 
to the design of a reputation concept based on the behaviour of entities using the 
certificates. Managing certificates can be complicated when a server has multiple 
certificates. 

 SSL certificates can be used, for instance, to verify the identity of a Web site and 
to encrypt traffic sent between the client and the Web site. In this case, the SSL certificate 
identifies a Web site, and not a Web server. A single Web server can host multiple Web 
sites. Alternatively, a single Web site can be hosted on multiple Web servers to provide 
redundancy and scalability.  

                                                 
1 Idem 1 
2 Adriaan Bruning, Trust Broker in Jericho Project, Capgemini, 2007  
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If many websites of different entities are hosted on the same server, then the Web 
server needs different certificates for each Web site, in order to allow the verification of 
identity and encryption for each Web site.  

 On the other hand, if a Web site is stored on different servers (e.g. copies of the 
same site) in order to allow the Web site to remain online in the event of a hardware 
failure, the same certificate of the Web site can be installed on all the servers. 

 As we previously specified, clients can be also authenticated for secure 
communications and we recommend this in the context of Jericho Project. Authenticating 
clients can also lead to the enforcement of organization’s security policy. For instance, 
rather than typing credentials or simply being connected to a Web site anonymously, 
entities can or can be enforced to use certificates for authentication.  

But, providing the certificate is not enough for the authentication of an entity. 
Besides this, an entity presenting the certificate must have also access the certificate’s 
private key (the certificate is a public document that can be accessed by any entities) and 
also the issuer of the certificate should be included in the CTR of the entities with whom it 
communicates in order to be accepted as a valid means of authentication. Possession of the 
private key proves that the respective entity is the certificate’s subject (Komar et al., 
2004).   

Till this point we discussed mainly SSL certificates for Web servers and for the 
clients (namely, for HTTP protocol). However, SSL certificates can be used to protect 
several other protocols: LDAP, SMTP, POP3, NNTP, and SQL. So, SSL certificates can 
be used to encrypt LDAP and global catalog queries, database queries, to encrypt and 
protect messaging communications (Northrup & Thomas, 2004).  

When using SSL/TLS for these applications in order to achieve secure 
communications, the servers and the clients as well should also have certificates that are 
valid and are signed by trusted issuers (CAs or Trust Broker). The configurations for using 
SSL/TLS for these protocols and applications are out of the scope of this thesis.  

 

3.5.3 Conclusions 

 
SSL/TLS is an open standard that is widely deployed and supported by a variety of 

servers and clients. This means that SSL/TLS meets another requirement proposed by 
Jericho Forum, namely to adopt open, inherently secure standards.  

 Northrup & Thomas (2004) acknowledged that because SSL/TLS has been widely 
adopted, the security community has carefully examined the SSL/TLS standards, as well 
as their implementations. Due to this close examination, combined with the relative 
maturity of the SSL/TLS standards, the protocol has resulted in a highly secure method for 
authenticating clients and servers and protecting the privacy and integrity of 
communications. 
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 According to VeriSign1, SSL/TLS protocol should be deployed in the following 
cases:  

- For (financial) transactions in electronic commerce 
- For business partners accessing confidential information of other companies 
- For companies that process sensitive or personal information such as addresses, 

birth dates, bank accounts etc. 
- For complying with privacy and security requirements of the business partners 
- For inspiring trust 
 

All these cases are in fact scenarios that reflect the security requirements of Jericho 
Project for secure communications.  

However, SSL/TLS protocol should be implemented or enabled only for the cases 
that there is a need to secure the communications. This is why, for instance, the data has to 
be classified2 according to multiple security levels.   

As Northrup & Thomas (2004) noted, although certificates are issued, for instance, 
to individual Web sites, SSL/TLS can be configured to offer protection only for sensitive 
data that has assigned higher levels of security (confidential, secret etc.) depending on the 
classification type used. One part of the Web site might require transmissions of encrypted 
data with SSL/TLS (by specifying HTTPS in the URL), and another part of the Web site 
might allow transmissions with data in clear (by specifying the simple form of the 
protocol, HTTP, in the URL).  

The fact that the settings for the use of SSL/TLS can be configured for encrypting 
only parts of transferred data offers flexibility in security configuration.  This allows 
providing end-to-end encryption of confidential data when necessary, and, at the same 
time, keeping the balance between security offered and performance3 of the servers. (e.g. 
E-commerce sites typically use HTTPS only when exchanging private information, 
because this reduces limits on efficiency and performance due to the use of cryptography 
in securing the communications.) 

An essential issue with reference to the implementation and the use of SSL/TLS, 
regards the fact that there should be ensured that the clients trust the root CA certificate of 
the Web Server’s certificate chain4. If the Web Server certificate chains to an untrusted 
root CA or Trust Broker, users are warned that the certificate is not trusted, and the users 
should not connect to the respective server.   

The correct validation and checking of the servers’ certificates by the users offers 
protection against phishing attacks, and as well against man-in-the-middle attacks.  

                                                 
1 www.verisign.com  
2 Remco van Marle, Data classification & Information Leakage in Jericho Project, Capgemini, 2007 
3 The use of cryptographic mechanisms influences the performance of the data transmissions and of the Web 
servers 
4 A certificate chain is a sequence of certificates, where each certificate in the chain is signed by the 
subsequent certificate. 
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In fact, the phishing attacks lead to leakage of information and eavesdropping 
because the users are not aware of the risks of accepting invalid or fake certificates issued 
by untrusted CAs to attackers. Basically, these certificates issued by untrusted CAs to 
untrusted entities have no authentication value in a secure communications.  

But there have been reported cases when certificates have been issued by 
reasonably trusted CAs to some attackers (e.g. fake organizations etc.) that conducted 
phishing attacks and misled the clients with their certificates.  
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3.6 IPsec 

3.6.1 Introduction 

IPsec is a suite of protocols that operates at the network layer (layer 3 in the OSI 
model) for securing Internet Protocol (IP) network communications through the use of 
cryptographic security services that are independent of the interacting applications on the 
two hosts. IPsec provides end-to-end security for communications in different network 
configurations (e.g. client-to-client, client-to-server, and server-to-server) (Snader, 2005; 
Stallings, 2005; Stamp, 2006).  

IPsec offers network-level data integrity, data confidentiality, data origin 
authentication, and replay protection. Because IPsec is integrated at the Internet layer, it 
provides security for almost all protocols in the TCP/IP suite. Moreover, due to the fact 
that IPsec is applied transparently to applications, there is no need to configure separate 
security for each application that uses TCP/IP. Thus, by implementing security at the IP 
level, an organization can ensure secure networking not only for applications that include 
security mechanisms, but also for the security ignorant applications.  

However, Stamp (2006) confirmed that the major drawback of IPsec is that it is a 
complex protocol, characterized as “over-engineered.” This makes the implementation of 
the protocol challenging.  

Due to the security services for securing the communications and its defining 
features, this protocol is further investigated in the context of Jericho Project.  

3.6.2 Presentation 

This security protocols consists of various cryptographic algorithms, security 
protocols, and key management protocols for achieving the features of secure 
communications mentioned at the beginning of this chapter. It ensures that the 
communications are secured from the source until they reach the destination, and its major 
advantage is that it is transparent to applications. By implementing security at the IP level, 
an organization can ensure secure networking and secure communications for all the 
applications.  

Due to the security services for securing the communications, this protocol 
presents interest for being investigates in the context of Jericho Project.  

IPsec protocols were first defined by RFCs 1825–1829, published in 1995. Then, 
in 1998, other RFCs were written and published, namely, RFCs 2401–2412. RFCs 2401–
2412 are not compatible with 1825–1829, although they are conceptually identical. In 
2005, third-generation documents, RFCs 4301–4309, were published. These third-
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generation documents standardized the abbreviation of IPsec to uppercase “IP” and 
lowercase “sec”. 

Support for the features presented in these RFCs is mandatory for IPv6 and 
optional for IPv4. The security features are implemented as extension headers that follow 
the main IP header. The extension header for authentication is named the Authentication 
header. The one for encryption is known as the Encapsulating Security Payload (ESP) 
header (Stallings, 2005). 

Essentially, IPsec consists of three major protocols (Snader, 2005): 

- Authentication Header (AH): This protocol provides data origin authentication, 
data integrity, and replay protection 

- Encapsulating Security Payload (ESP): This protocol provides the same services 
as AH but also offers data privacy (confidentiality) through the use of encryption 

- Internet Key Exchange (IKE): This protocol provides all important key-
management functions. The alternative to IKE is manual keying, supported by 
IPsec as well. 

 

These protocols can be combined and configured in a flexible manner, but this 
leads to an increased overall complexity of the protocol. As Snader (2005) mentioned as a 
general rule, complexity is the enemy of security, so the increase in complexity can lead to 
a decrease in security. Ferguson & Schneier (1999) stated as well that security's worst 
enemy is complexity. Consequently, the increase in complexity leads to the fact that, 
typically, IPsec is more difficult to configure and manage. 

 

IPsec Properties 

IPsec protocol comprises two protocols that are employed to provide security of 
communications, Authentication Header (AH) and Encapsulating Security Payload (ESP). 
IPsec enables a system to select the necessary security protocols, decide the algorithms 
and primitives to use further for achieving the desired security services.  

 

IPsec provides the following security features (Poddar et al., 2003;  Stallings, 
2005; Pujolle, 2007): 

- Data source authentication: Ensures that the communication takes place with a 
client that is authenticated and authorized for communication 

- Access control: Ensures that the communication occur with a client that is IPsec 
enabled.  
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- Integrity: Assures that the received data packets are identical with the data packets 
sent by the data source. Also assures that the data packets have not been altered. 

- Anti-replay protection: Verifies that no redundant data packets are received 

- Confidentiality: Enables encryption of transmitted data, so, that the data remains 
confidential in traffic and protection is offered against eavesdroppers. It offers also 
the possibility to encrypt the IP packet header 

- Key management: Offers secure exchange of keys 

 

Stallings (2005) investigated the security services provided by AH and ESP 
protocols. AH and ESP protocols represent the core IPsec protocols for communicating 
data securely. ESP protocol can be used with or without an authentication option. Both 
AH and ESP protocols ensure access control, based on the distribution of cryptographic 
keys and the management of traffic flows relative to these security protocols. 

 

 

 

 AH ESP  
(encryption only) 

ESP  
(encryption plus authentication) 

Access control √ √ √ 

Connectionless integrity √  √ 

Data origin 
authentication  √  √ 

Rejection of replayed 
packets √ √ √ 

Confidentiality  √ √ 

Limited traffic flow 
confidentiality  

 √ √ 

Table 3.10: IPsec services (after Stallings, 2005) 

 

 It is obvious that some of the functionalities of AH (e.g. data integrity and 
authenticity) and ESP (e.g. confidentiality, data integrity and authentication) protocols 
overlap.  
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Olifer & Olifer (2006) pointed out that the distribution of security functions 
between AH and ESP is justified by limiting export and/or import to the encryption tools, 
a practice adopted by many countries. Thus, these protocols can be used independently or 
together for achieving the necessary features for secure communications. For instance, 
when no encryption is allowed due to imposed limitations, it is possible to supply the 
system only with the protection provided by AH protocol. Obviously, according to the 
requirements for secure communications in Jericho networks, the protection of transmitted 
data offered by AH protocol only won’t suffice. When AH protocol is used, the receiving 
party can only check whether the data was sent by the node from which it was expected 
(data origin authentication) and whether it is in the same form it was sent (integrity 
checking). Thus, for achieving confidentiality of the transferred data, it is necessary to use 
the ESP protocol.  

Basically, IPsec encompasses three functional areas: authentication, 
confidentiality, and key management (Stallings, 2005). Based on the requirements defined 
for secure communication in the context of Jericho Project, we investigate further IPsec 
protocol as a potential solution for secure communications over the Internet.  

IPsec is below the transport layer (TCP, UDP), thus it is transparent to 
applications. IPsec can be implemented in the firewall or router, as well on clients. In the 
context of Jericho Project, we recommend based on Jericho Forum Commandments that 
IPsec should be implemented on clients, thus these become IPsec enabled. When IPsec is 
implemented in end systems, upper-layer software, including applications, is not affected. 
Thus the protocol offers a transparent method of assuring end-to-end security of the 
communications over the Internet. 

 

Another feature of IPsec is that it can be transparent to users. Stallings (2005) 
mentioned that there is no need in training users on security mechanisms of issues 
regarding the use of cryptographic keys.  

 

Further we will present shortly the IPsec process of protecting a transmitted 
message on an IP network (Poddar et al., 2003). This consists of the following steps: 

- Firstly, a secure management connection is built for further negotiation 

- A negotiation is established between two computers  

- Negotiate what security key(s) to use for communication  

- Exchange of the security keys (using key management protocols) in order to 
provide confidentiality for the transferred message 

- The computers involved in the communication process negotiate about the 
encryption algorithms required to protect the message 

- The Security Association (SA) messages facilitate the exchange of information 
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about encryption algorithms 

- The IPsec Domain of Interpretation (DOI) controls the IPsec process by defining 
message formats, exchange types, and conventions to refer security protocols, 
cryptographic algorithms, and security keys. 

- Integrity check is performed to ensure that the data does not change during 
transmission 

- IPsec provides anti-replay features for preventing the transmission of redundant 
data 

Security Associations 

Quiggle (2001), Rhee (2003), Stallings (2005), Pujolle (2007) etc. stated that a 
Security Association (SA) is a one–way connection/relationship between a sender and 
receiver that permits security services for the traffic carried on it. If a peer relationship is 
required, for two-way secure exchange and communication transfer protection, then there 
are required and defined two SAs.  

Thus, before establishing secure communications for data in traffic, an SA has to 
be established and shared between the communicating parties. Security services are 
afforded to an SA for the use of AH or ESP, but not both (Stallings, 2005). 

Basically, the SA messages support the exchange of information about the 
encryption algorithms that will further be used for securing the communications. Poddar et 
al. (2003) defined SA as an agreement between a sender and a receiver on a network in 
order to determine the security options.  

Olifer & Olifer (2006) specified that the procedure of establishing an SA starts 
with the mutual authentication of both parties. This ensures that the transmitted data is 
exchanged between authenticated parties. The SA parameters that are later chosen define 
which of the two protocols, AH or ESP, will be used for data protection and which 
functions will be carried out by the security protocol. There can be chosen only 
authentication and integrity, or it can also ensure confidentiality. Besides this, other 
important parameters of an SA are the private keys used by the AH and ESP protocols. 

A security association is uniquely identified by three parameters: 

- Security Parameter Index (SPI): This field is present in the AH and/or ESP 
headers. This parameter enables the receiving entity to select the SA that defines 
the parameters under which a packet will be processed. 

- IP destination address: This represents the destination address of the IPsec peer, 
which may be an end user system or a network system such as a firewall or router.  

- Security Protocol Identifier: This indicates whether an SA is an AH or ESP 
Security Association. 
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Consequently, in any IP packet (e.g. either an IPv4 datagram or an IPv6 packet), 
the Security Association is uniquely identified by the IP destination address in the IPv4 or 
IPv6 header and the SPI in the enclosed extension header (AH or ESP). 

Olifer & Olifer (2007) specified that in IPSec protocol exist possibilities for using 
both automatic and manual methods of establishing an SA. In the case of manual 
established SA, the administrator configures end nodes to ensure that they support 
association parameters. Otherwise, in the case of using an automated procedure of 
establishing an SA, IKE protocols operating on different sides of the channel choose 
parameters in the course of the negotiation process. Thus, IPsec is a flexible tool for 
configuring the parameters used and for securing the transfer of data.  

An SA established between two IPsec enabled entities defines the following 
parameters (Stallings, 2005):  

- Sequence number counter: A 32-bit value used to generate the Sequence Number 
field in AH or ESP headers (required for all implementations) 

- Sequence Counter Overflow: A flag indicating whether overflow of the Sequence 
Number Counter should generate an auditable event and prevent further 
transmission of packets on this SA (required for all implementations). 

- Anti-replay window: Used to determine whether an inbound AH or ESP packet is a 
replay. If a packet has already been received or fails authentication, the packet is 
discarded and audit logs are generated (required for all implementations) 

- AH Information: Authentication algorithm, keys, key lifetimes, and related 
parameters being used with AH (required for AH implementations) 

- ESP Information: Encryption and authentication algorithm, keys, initialization 
values, key lifetimes, and related parameters being used with ESP (required for 
ESP implementations) 

- Lifetime of the respective Security Association: A time interval or byte count that 
cannot be exceeded, and after which an SA must be replaced with a new SA (and 
new SPI) or terminated, plus an indication of which of these actions should occur 
(required for all implementations) 

- IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all 
implementations) 

- Path MTU: Any observed path maximum transmission unit (maximum size of a 
packet that can be transmitted without fragmentation) and aging variables (required 
for all implementations) 

 
Quiggle (2001) indicated that in order to minimize the risk for any encrypted 

message to be broken by brute force attacks, Security Associations have a time limit that 
cannot be exceed. Otherwise, the IPsec enabled peers have to renegotiate again all the 
parameters used for secure communications. Moreover, some SAs implement message 
limits as well (e.g. after 10MB of data have been exchanged, the SA is established again 
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and the parameters renegotiated). 
 

Operation Modes  

 IPsec protocol can operate in two modes: transport and tunnel modes. Basically, 
AH and ESP protocols that are embedded in IPsec can protect data in two modes: transport 
and tunnel.  

 Transport mode  

Transport mode provides protection primarily for upper-layer protocols (a TCP 
packet or UDP segment or an Internet Control Message Protocol (ICMP) packet). Stallings 
(2005) noted that typically, transport mode is used for end-to-end communication between 
two hosts (e.g., a client and a server, or two workstations). Snader (2005) acknowledged 
that transport mode is transport mode is meant to be used between two fixed hosts, namely 
when the end points are the final destinations of the transferred data. Thus, the hosts are 
IPsec enabled, and the communications are ‘end-to-end’ secured in traffic. 

In the case of a host running AH or ESP protocol over IPv4, the payload is the data 
that follows the IP header. For IPv6, the payload is the data that follows both the IP header 
and any IPv6 extensions headers that are present, with the possible exception of the 
destination options header that might be included in the protection.  

Rhee (2003), Stallings (2005) specified that ESP in transport mode encrypts and 
optionally authenticates the IP payload, but not the IP header. AH in transport mode 
authenticates the IP payload and selected portions of the IP header. Moreover, the authors 
noted that a transport mode SA provides security services only for higher-layer protocols, 
not for the IP header or any extension headers preceding the ESP header. 

In Figure 3.11 is illustrated the transport mode of working: 

 

Figure 3.11: Transport Mode Encapsulation 

 When AH is used, then there is no IPsec trailer.  

Basically, IPsec is used in transport mode for securing the host-to-host 
communications. So, IPsec in transportl mode is used to encrypt and validate the integrity 
of communications between two computers. Therefore, IPsec can protect traffic between 
Web servers and database servers, or between Web clients and Web servers. For instance, 
when an IPsec client attempts to initiate a connection to an IPsec server, the client and 
server negotiate IPsec integrity and encryption protocols. After the IPsec connection is 
established, the data is transferred within the IPsec connection. 
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Tunnel mode 

Tunnel mode provides protection to the entire IP packet. Shortly, in tunnel mode, 
the source data packet is encapsulated in the new IP packet and the data is transmitted over 
the network on the basis of the new IP packet header. So, after the AH or ESP fields are 
added to the IP packet, the entire packet plus security fields are treated as the payload of 
new IP packet that will have a new IP header. The initial data packet travels through a 
“tunnel” from one point of an IP network to another, without being exposed to traffic 
analysis (the original packet is encapsulated and transmitted in a tunnel). Besides this, the 
new packet may have totally different source and destination addresses, in this way adding 
to the security.  

Figure 3.12 illustrates the tunnel mode encapsulation.  

 

Figure 3.12 : Tunnel Mode Encapsulation 

Typically, tunnel mode can be used when one or both ends of an SA are a security 
gateway (e.g. a firewall or a router) that implements IPsec. With tunnel mode, a number of 
hosts on networks behind firewalls may engage in secure communications without 
implementing IPSec. But, this contravenes with Jericho Forum Commandments1 that, 
essentially, state that individual systems and data will need to be capable of protecting 
themselves. As Snader (2005) mentioned IPsec in tunnel mode provides end-to-end 
security.  

Snader (2005) added that the tunnel mode could be as well used for securing the 
traffic between two hosts In this case, the source and destination addresses of the inner and 
outer IP headers would be the same. The disadvantage of this manner of using the tunnel 
mode is the extra bandwidth required by the additional IP header. The author suggested 
that transport mode could be used and regarded as an optimization of tunnel mode for the 
special case of two fixed hosts.  

Ferguson & Schneier (1999) pointed out that it would be easy to compress the data 
in the inner IP header (in the tunnelling mode). This would be a method to eliminate the 
transport mode and the extra complexity it entails, with no cost in extra bandwidth.  

Stallings (2005) summarized the transport and tunnel model functionality: 

                                                 
1 www.opengroup.org/jericho/commandments_v1.2.pdf  (Version 1.2 May 2007) accessed June 2007 
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 Transport Mode SA  Tunnel Mode SA 

AH Authenticates IP payload and 
selected portions of IP header and 
IPv6 extension headers. 

Authenticates entire inner IP 
packet (inner header plus IP 
payload) plus selected portions 
of outer IP header and outer 
IPv6 extension headers. 

ESP Encrypts IP payload and any IPv6 
extension headers following the 
ESP header. 

Encrypts entire inner IP 
packet. 
 

ESP with 
authentication 

Encrypts IP payload and any IPv6 
extension headers following the 
ESP header. Authenticates IP 
payload but not IP header. 

Encrypts entire inner IP 
packet. Authenticates inner 

IP packet. 

 

Table 3.11 : Tunnel Mode and Transport Mode Functionality (after Stallings, 2005) 

 

In the context of Jericho Project, based on the requirements that we determined for 
secure communications, which are underpinned by Jericho Forum Commandments, IPsec 
should be used in transport mode for providing end-to-end encryption and security for the 
transmitted data. In essence, in Jericho Project, the network is the Internet and the 
communications occur over the Internet. Due to this aspect, the transport mode for 
securing host-to-host communications is recommended in Jericho Project.  

 

 

Authentication Header (AH) 

 

Authentication Header (AH) protocol provides authentication of IP packets, data 
integrity, and protection against a replay attack. But, AH does not comprise security 
mechanisms for achieving confidentiality. As we have already mentioned there are 
sometimes limitations regarding the use of cryptographic algorithms, and in those cases 
AH protocol can be used.  

Essentially, AH protocol adds a supplementary field to the IP packet that enables, 
upon receipt, the verification of the authenticity of the transferred data.  

The data integrity feature ensures that the modifications of a data packet in transit 
are detected, while the authentication feature enables an end system to authenticate the 
user or application and filter traffic in accordance with the defined policies. Stallings 
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(2005) added that it also prevents the address spoofing attacks that occur nowadays in the 
communications over Internet. AH also secures against the replay attacks as well. 

The Authentication Header consists of the following fields: 

- Next Header (8 bits): Identifies the type of header immediately following this 
header (e.g. a TCP segment, an UDP message, or an ICMP packet). It represents 
the protocol number of the AH payload.  

- Payload Length (8 bits): This represents the length of Authentication Header in 32-
bit words, minus 2.  

- Reserved (16 bits): For future use. 

- Security Parameters Index (32 bits): Identifies an SA. 

- Sequence Number (32 bits): Represents a counter that increases by 1 for each AH 
datagram that a host sends for a particular SA.  

- Authentication Data (variable): A variable-length field (must be an integral 
number of 32-bit words) that contains the Integrity Check Value (ICV), or MAC, 
for the respective packet.  

 
The Sequence Number field offers anti-replay service. So, this field is used for 

protecting the packet from being reproduced by attackers that may try to reuse the sniffed 
protected packets sent by the authenticated user. The sender sequentially increases the 
value of this field in each new packet transmitted within the framework of this SA, so the 
arrival of a duplicate will be noticed by the receiving party (the protection against false 
duplication has to be enabled within the respective SA (Olifer & Olifer, 2007). 

The Integrity Check Value (ICV) is a message authentication code or a truncated 
version of a code produced by a MAC algorithm. The current specification dictates that a 
compliant implementation must support the following security mechanisms: HMAC-
MD5-96, HMAC-SHA-1-96. These security mechanisms use the HMAC algorithm, the 
first with the MD5 hash code and the second with the SHA-1 hash code1. In both cases, 
the full HMAC value is calculated but then truncated by using the first 96 bits, which is 
the default length for the Authentication Data field. 

In the context of Jericho Project, when chosen to implement IPsec with AH 
protocol, it is recommended to use the authentication and integrity services directly 
between two hosts (e.g. a server and a client), namely to use a transport mode SA. The use 
of a transport mode SA for IPsec enabled hosts, using AH protocol, provides end-to-end 
authentication in Jericho networks. To summarize, AH protocol in transport mode 
provides: authentication, data integrity, and anti-replay protection to the entire data packet 
(IP header and IP payload).  

                                                 
1 We describe the security mechanisms for achieving security services that lead to secure communications in 
more details in Chapter 4 of this thesis.  
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Moreover, in Jericho enabled networks it is advisable to use AH protocol for the 
transfer of data that can has attached low security levels (e.g. public data), but still needs 
to be checked for integrity and authentication.  

 

Encapsulating Security Protocol (ESP) 
 

The Encapsulating Security Payload (ESP) provides as well authentication, data 
integrity, and anti-replay protection, and besides these, also confidentiality. ESP protocol 
consists of a header, the ESP header attached to the data packet in order to encrypt the 
data, and a trailer, the ESP trailer attached to the data packet in order to provide 
authentication. Rhee (2003) pointed out that data authentication and integrity are joint 
services offered as an option with confidentiality. The anti-replay service is chosen only if 
data origin authentication is selected. Moreover, the service is effective only if the receiver 
checks the sequence number. 

ESP contains the following fields: 

- Security Parameters Index (32 bits): Identifies an SA for communication. 

- Sequence Number (32 bits): An increasing counter value that calculates a record of 
data packets sent over the SA, and provides anti-replay protection. 

- Payload Data (variable): Represents transmitted data protected by encryption. For 
the cryptographic algorithms that require an initialization vector (e.g. block cipher 
used in CBC mode), this is included in the payload data (Snader, 2005). 

- Padding (0-255 bytes): ensures that the encrypted data and the padding are no 
longer than 256 bytes. 

- Pad Length (8 bits): Indicates the pad length in bytes. The receiver uses this value 
for removing the padding bytes after decrypting the data.  

- Next Header (8 bits): Identifies the type of data contained in the payload data field 
by identifying the first header in that payload 

- Authentication Data (variable): A variable-length field (must be an integral 
number of 32-bit words) that contains the Integrity Check Value (ICV).  The ICV 
is calculated over the entire ESP packet except for the authentication data field 
itself. 

 

These fields are grouped in the ESP packet in four parts: 

- The ESP header: contains the SPI and sequence number fields 

- The payload: contains the payload data field  
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- The ESP trailer: contains the padding, pad length, and next header fields 

- The ESP authentication data: contains the ICV 

 

Encryption and Authentication Algorithms used in ESP 

In ESP, confidentiality could be selected independent of all other services offered 
by this protocol. But, as Rhee (2003) suggested, the use of confidentiality without integrity 
and data origin authentication may be subject to active attacks that undermine the 
confidentiality service.  

Stallings (2005) specified that payload and the ESP trailer are encrypted by the 
ESP service. Based on the specifications of IPsec protocol, a number of other algorithms 
can be used for encryption. These1 include: three-key 3DES, RC5, IDEA, three-key triple 
IDEA, CAST, and Blowfish.  

However, Olifer & Olifer (2007) affirmed that IPsec can employ any symmetric 
encryption algorithm for encrypting the data. But, we add that there should be used any 
symmetric-key cryptographic algorithm that has not been yet broken and has a sufficient 
key size for not being vulnerable in the near future.  

In RFC 43052 - “Cryptographic Algorithm Implementation Requirements for 
Encapsulating Security Payload (ESP) and Authentication Header (AH)”, there are also 
listed the encryption algorithms for ESP.  

Algorithm Requirement Note 
NULL MUST ESP encryption and 

authentication are optional, so 
support for the two "NULL" 
algorithms is required to 
maintain consistency with the 
way these services are 
negotiated. Authentication and 
encryption can each be 
"NULL", but they MUST NOT 
both be "NULL". 

TripleDES-CBC MUST- 

The authors of RFC 4305  
expect that at some point in the 
future this algorithm will no 
longer be a MUST. 

RFC2451 

AES-CBC with 128-bit keys SHOULD+      RFC3602 

                                                 
1 Some of these algorithms are described in Chapter 4 of the thesis 
2 http://www.ietf.org/rfc/rfc4305.txt accessed June 2007 
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The authors consider that it is  
likely that an algorithm 
marked as SHOULD+ will be  
promoted at some future time 
to be a MUST. 

AES-CTR SHOULD RFC3686 

DES-CBC SHOULD NOT RFC2405 

Table 3.12 : Encryption algorithms recommended in RFC 4305  
 

 

The authentication algorithm employed for the ICV computation is specified by the 
SA. For ensuring data integrity and authentication in the case of communication between 
two points, suitable algorithms include Message Authentication Codes (MACs) based on 
symmetric encryption algorithms or on one-way hash function (e.g. MD5 or SHA-1). For 
multicast communication, one-way hash algorithms combined with asymmetric signature 
algorithms are appropriate.  

Basically, the data packet is authenticated by computing the ICV over the ESP 
header, payload, and ESP trailer fields, using the algorithm and key specified in the SA. 

Stallings (2005) and Rhee (2003) pointed out that compliant implementations must 
support HMAC-MD5-96 and HMAC-SHA-1-96 for providing integrity and 
authentication.  

In RFC 43051 there are also listed the recommended authentication algorithms for 
ESP.  

Algorithm Requirement Note 
HMAC-SHA1-96 MUST RFC2404 

 

NULL MUST 

 

ESP encryption and 
authentication are optional, so 
support for the two "NULL" 
algorithms is required to 
maintain consistency with the 
way these services are 
negotiated. Authentication and 
encryption can each be 
"NULL", but they MUST NOT 
both be "NULL". 

AES-XCBC-MAC-96 SHOULD+      RFC3566 

                                                 
1 http://www.ietf.org/rfc/rfc4305.txt accessed June 2007 
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The authors consider that it is  
likely that an algorithm 
marked as SHOULD+ will be  
promoted at some future time 
to be a MUST. 

HMAC-MD5-96 MAY 
Weaknesses have become 
apparent in MD5 (we specified 
this in Chapter 4). 

 

RFC2403 

Table 3.13:Authentication algorithms recommended in RFC 4305  
 

 

However, although ESP provides data-origin authentication, it cannot authenticate 
all the data within the packet like AH protocol does. Quiggle (2001) recommended in the 
case when a higher level of security is required for the transferred data, to deploy both 
ESP and AH (this will decrease the overall performance of the transmission).   

If ESP is chosen to achieve both authentication and confidentiality, then encryption 
is performed first, and then the authentication is provided.  

Stallings (2005) pointed out that encryption and authentication can be combined in 
order to transmit an IP packet that has both confidentiality and authentication between 
hosts. The author explained also different combinations of SAs for achieving 
confidentiality and encryption in varied ways.  

 However, the cryptographic primitives and algorithms used in the protocols 
comprised in IPsec for achieving different security services are extended by vendors with 
other algorithms.  Nevertheless, when choosing which cryptographic algorithms and 
primitives will be applied in IPsec, there should be first considered the security 
requirements and objectives that have to be accomplished, and ultimately there should be 
taken into consideration the performance issues. Basically, the user can decide which 
security algorithm to use for an application depending on the nature of security to be 
provided. 

 
Key Exchange 

The key management part of IPsec comprises the determination and distribution of 
secret keys. Rhee (2003) mentioned that key establishment is at the heart of data 
protection that relies on cryptography. Moreover, a secure key distribution for the Internet 
represents an essential part of data protection. 

Before establishing a secure session, the communicating parties need to negotiate 
the terms that are defined in the SA.  
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IPsec supports two types of key management: 

- Manual: A system administrator manually configures each system with its own 
keys and with the keys of other communicating systems.  

- Automated: An automated system enables the on-demand creation of keys for SAs 
and facilitates the use of keys in a large distributed system with an evolving 
configuration. This can be done by means of an appropriate protocol. IPsec 
implements as automated management protocol the Internet Key Exchange 
Protocol (IKE).  

 

The Internet Key Exchange (IKE) protocol handles the problem of key 
management by negotiating security associations between peers that want to communicate 
securely. 

Snader (2005) summarized the working of IKE: the peers perform a Diffie-
Hellman exchange to obtain a shared secret that they use to generate keying material for 
the encryption and authentication algorithms used to protect the transmitted data. 
However,  IKE must protect itself against denial-of-service attacks, replay attacks, man-in-
the-middle attacks, and other attempts to subvert the secure exchange of keys. Besides 
exchanging keying material, IKE negotiates the encryption, authentication, and other 
cryptographic primitives used for achieving the goals of secure communications.  

As described in the literature (Poddar et al., 2003; Rhee, 2003; Snader, 2005; 
Stallings, 2005, Pujolle, 2007 etc.), IKE is a hybrid protocol based on other protocols: 
Internet Security Association and Key Management Protocol (ISAKMP), Oakley Key 
Determination protocol (Oakley) and SKEME protocol.  

 

IKE protocol has been designed for achieving the following goals within IPsec 
(Quiggle, 2001):  

- Provides a means for parties that use IPsec to agree on the protocols, algorithms, 
and keys to be used for a key exchange 

- Provides authentication of the IPsec enabled peers  

- Manages the keys after they have been agreed upon 

 

Besides negotiating the SAs and handling the key exchange, IKE authenticates 
each peer to the other. This ensures that each node can be sure of the identity of its peer. 
There are four ways to do this authentication: shared secrets, digital signatures, public key 
encryption of nonces, and revised public key encryption of nonces. IPsec provides 
certificate-based authentication as well, as a service for secure communications. 

Komar et al. (2004) specified that certificates can be used to authenticate the peers 
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in an IPsec association. After the peers are authenticated, IPsec is used to encrypt and 
digitally sign all communications between the two endpoints. The certificates are used 
only for authentication purposes.  

For achieving all these functions, IKE combines the functions provided by 
ISAKMP and Oakley, and is referred in the literature as referred to as ISAKMP/Oakley 
protocol. 

- Oakley: This is a key exchange protocol based on the Diffie-Hellman algorithm 
that provides details for perfect forward secrecy for keys, identity protection, and 
authentication services. 

- ISAKMP: Is designed as a framework that expresses additional protocols for 
establishing security associations, for performing authentication and key 
exchanges. ISAKMP is independent of any particular key-exchange method. In 
fact, it is a general framework that can support many key-management protocols. 

 
Due to the space allocated for this thesis and the scope of research, we aim to 

provide a general perspective of the security protocols that can accomplish the 
requirements for secure communications in Jericho networks. Thus, we do not describe in 
detail the mechanisms employed by IKE in IPsec protocol. 

However, in the context of Jericho Project, we recommend as appropriate the 
automated key management system. In Jericho networks it is required to ensure the 
security of communications over the Internet, and this corresponds to the applicability of 
the automated key management.  

  

3.6.3 Conclusions  

IPsec protocol can be used to secure the communications over the Internet in a 
transparent way for the applications. As we have already mentioned, because IPSec 
operates at the network layer as an extension to the IP protocol, it provides end-to-end 
encryption, meaning that the source computer encrypts the data, and it is not decrypted 
until it reaches its final destination.  

Thus, in the context of Jericho Project, IPsec can be used to secure the 
communications of organizations over the Internet, including the communications 
regarding confidential data inside the organizations, as well with the partners. Besides 
these, it can also be used for enhancing electronic commerce security, even for some Web 
and electronic commerce applications that already have built-in security protocols 
(Stallings, 2005).  

Northrup & Thomas (2004) pointed out that IPsec can be also used to provide 
protection against:  
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- Network-based denial-of-service attacks from untrusted computers 

- Data corruption 

- Data theft 

- User-credential theft 

 
The principal security feature offered by IPsec that enables it to ensure the security 

of the communications in so many cases is that it can encrypt and/or authenticate all traffic 
at the IP level. Consequently, all distributed applications, including remote logon, 
client/server, e-mail, file transfer, Web access, and so on, can be secured by using IPsec. 
So, in addition to the improved security, IPsec protocol can be used for enabling 
communications between remote offices and remote access clients across Internet. 

Ferguson & Schneier (1999) concluded that even if there is a lot of criticism 
against IPsec because of various reasons (e.g. quality, services provided, complexity, 
security flaws etc.) it is still probably the best IP security protocol available. The main 
criticism of the authors for IPsec regards the complexity of the protocol. They stated that 
IPsec contains too many options and too much flexibility, and there are often several ways 
of doing the same or similar things within the protocol. 

However, planning and configuring an IPSec infrastructure is a complex task due 
to the inherent complexity of IPsec. In this chapter we presented the features of IPsec, the 
main aspects of the protocols that it contains, and the security services provided for secure 
communications.  

In conclusion, for Jericho Project it is recommendable to use IPsec in transport 
mode to secure the communications across Internet between two hosts. For using IPsec in 
transport mode to encrypt and authenticate the data transmitted over Internet, the clients 
have to be IPsec enabled.  

However, many computers nowadays are not IPsec enabled. As a result, computers 
that are IPsec enabled are typically configured to request peer computers to use IPsec to 
for improving the security of the connection.  

Northrup & Thomas (2004) described how two hosts establish a connection. Thus, 
if two computers determine that they both have IPSec configured, and can agree upon a set 
of security standards, they can begin to use IPSec for securing the communications. This 
process is known as IPsec negotiation. If the computers fail to establish a negotiation (e.g. 
the computers are not IPsec enabled, or might not have the same security protocols 
enabled etc.) they might revert to unprotected IP communications or not communicate if 
they cannot use IPsec. Of course, it is preferable not to communicate at all when the 
negotiation fails and sensitive data needs to be securely transmitted over Internet.  

Bragg (2003) suggested that negotiation policies should be used in the following 
cases:  
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- Computer authentication is required before a connection is allowed: Thus, 
connections from computers that cannot authenticate or are not IPsec enabled can 
be blocked.  

- Sensitive data must be transmitted: IPSec policies can be required to negotiate 
encryption type, and thus ensure all data is protected.  

- Ensure connection from specific computers only: Authentication can limit 
connections. Explicit filters can limit the connections to specific computers using 
their IP addresses.  

 

When choosing to implement IPsec, there should be selected the option that best 
meet the authentication and encryption needs. It is recommendable to choose both data 
origin authentication and encryption features for protecting the transmitted data.  

The encryption algorithms can be chosen from the one specified in the RFCs for 
IPsec or might be also recommended by an organization’s security policy. However, based 
on and results of data classification and on the security level attached to the data, there 
should be chosen the adequate cryptographic algorithms for encrypting the transmitted 
data. Essentially, there should be chosen the algorithms that have proven security and have 
not been yet broken yet. For achieving integrity, it is also recommendable to use HMAC 
SHA-1 algorithm because SHA-1 hash function requires more computational resources for 
being broken. HMAC-SHA1 is the more secure function, partly due to SHA-1’s longer 
key length (SHA-1 uses a 160-bit key as opposed to the 128-bit key used by MD5). 
HMAC-MD5 is strong enough for a normal security environment, but HMAC-SHA1 is 
the better choice for a high-level security environment (see Chapter 4 for more details) 
(Zacker, 2006).  

When implementing IPsec, there could be enforced that both master key and 
encryption keys can be scheduled to change during data transmissions, and re-
authentication can be required.  

Bragg (2003) pointed out that, generally, the more frequently the session is 
authenticated and the more frequently master and encryption keys are changed, the more 
secure the data will be. However, these options reduce the performance of the CPU. The 
options for using IPsec should be made based on sensitivity of data (we assume that the 
data is previously classified in the context of Jericho Project), and additional performance 
requirements should be met by additional hardware support. 

Northrup & Thomas (2004) stated that for IPsec implementations to be successful 
in large organizations IPSec policies must be deployed to all computers in organizations, 
and, also, the various methods used for deploying IPSec and the circumstances in which to 
use each method should be very well understood. 

Moreover, after IPsec has been implemented and deployed at a large scale for 
securing the communications, additionally, there should be implemented mechanisms for 
monitoring and troubleshooting IPsec. Monitoring IPSec is necessary for confirming that 
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IPSec has been successfully deployed and is actively protecting communications. 
Although, IPsec is an open standard its use and configuration are still complex. 

3.7 Comparison of IPsec and SSL/TLS security protocols  

Both IPsec and SSL/TLS comprise security services that secure the 
communications over Internet. They ensure the authenticity, integrity, and confidentiality 
of the transmitted data. 

As we have already stated in this chapter, SSL/TLS and IPsec can be used to 
secure data transmissions in the context of Jericho Project. Generally, there are different 
situations when these protocols are considered appropriate for being used (Bragg, 2004): 

- When communications between specific computers can be defined, consider using 
an IPsec policy.  

- When transmissions to and from specific ports should be absolutely blocked, IPsec 
blocking policies should be used. IPsec blocking policies are a way to create 
Internet Protocol filters. 

- When transmissions to and from specific computers must be secured, IPsec should 
be used. 

- SSL/TLS should be considered to secure communications for application 
supported by this protocol, between clients and servers, when sensitive information 
is transferred over Internet and needs to be secured. Essentially, Web server 
applications can be secured using SSL/TLS protocol. In the context of Jericho 
Project, SSL/TLS should be configured to require both server and client 
authentication. 
 

SSL/TLS operates at the transport layer of the OSI model, and it is not transparent 
to applications. IPsec is a more universal security protocol because it operates at the 
network layer. Consequently, it is absolutely transparent for applications.  

IPsec is implemented by the operating system and is completely transparent to the 
applications that use IPsec. Resultantly, IPsec can be used to protect almost any type of 
network communication. 

IPsec can be used to encrypt all data without any need to redesign the application. 
SSL, however, must be designed into the individual application (Olifer & Olifer, 2007). 
Moreover, SSL/TLS does not secure all applications.  Therefore, SSL/TLS cannot be used 
to encrypt all communications between two hosts. 

On the other hand, IPsec secures all the desired network communications 
independent of the interacting applications on the hosts. Additionally, IPsec provides 
connectionless security for communications. So, IPsec, unlike SSL/TLS, can secure 
connectionless communications such as UDP. 

SSL/TLS is less flexible than IPsec because it only supports authentication by 
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means of public key certificates, while IPsec allows clients and servers to authenticate 
each other by using either public key certificates or a shared secret. Additionally, 
SSL/TLS allows one-way authentication, while IPSec requires both sides of a connection 
to authenticate. However, in the context of Jericho Project there should be specified and 
enforced mutual authentication, for both client and server, even when using SSL/TLS. 

Northrup & Thomas (2004), Alshamsi & Saito (2005) summarized the differences 
between IPsec and SSL/TLS as follows: 

 IPsec SSL/TLS 

Authentication Requires authentication for both 
the client and the server 

Requires either the client or the 
server, or both, to be 
authenticated 

Authentication Type Authenticates by using either 
public-key certificates or a shared 
secret 

Requires public-key certificate-
based authentication 

Applications supported Can be used to authenticate and 
encrypt communications for any 
application 

Can be used only to authenticate 
and encrypt communications for 
applications that specifically 
support SSL/TLS 

Technology Is a relatively a new technology 
that is not yet widely adopted 

Is a mature technology that is 
widely adopted 

Interoperability Does not integrate well with 
other IPSec vendors, and in some 
cases modifications are required  

SSL is trouble free and well 
integrated 

MAC Both IPSec and SSL/TLS require 
the implementation of HMAC-
SHA-1 and HMAC-MD5-1 for 
authenticating the exchanged 
messages after the connection is 
established. 

HMAC- SHA-1-96  12 Byte 

HMAC-MD5-96     12 Byte 

HMAC- SHA-1  20 Byte 

HMAC-MD5     16 Byte 

The strength of the Hash 
Algorithm is based on the length 
of the output.  

Configuration Hard Easy 

Pre-Shared Key Yes No 

UDP support Yes No 

Compression Support  Yes OpenSSL only 

Handshake Time Slow Fast 

Table 3.14: Comparison of IPsec and SSL/TLS (adapted after Northrup & Thomas, 2004; 
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Alshamsi & Saito, 2005) 

 

To conclude with, the following aspects should be considered when choosing 
between IPsec and SSL/TLS for securing the communications over Internet and achieving 
end-to-end encryption (Northrup & Thomas, 2004; Alshamsi & Saito, 2005; El Aoufi, 
2006): 

-  IPsec can used to secure all IP traffic between computers; while SSL is specific to 
individual applications 

- IPsec is transparent to applications, so it can be used with protocols that run on top 
of IP such as HTTP, FTP, and SMTP. But this can be regarded also as a concern, 
because when using IPSec approach, it provides too much isolation between the 
application and security services   

-  SSL/TLS is closely tied to the application 

- IPSec can be used to ensure that only specific computers can connect to a server or 
can communicate with another host, in order to prevent attacks from other 
computers  

- IPSec uses a shorter form of HMAC than SSL/TLS, thus SSL data integrity is 
more secure 

- SSL is more compatible with firewalls than IPSec 

- Unlike SSL/TLS, IPsec clients need special IPsec software to be installed 

- Although sometimes compression is beneficial in data transmission, SSL/TLS does 
not support such a feature. IPsec supports compression 

- In most cases IPSec does not  interoperate well, so both sides of the connection are 
required to have the same vendor’s IPsec deployment 

 

The decision to use either IPSec or SSL for securing the communications depends 
on a number of factors. It depends on the users, the users’ location, their reasons and needs 
for access, the device they are using, the services they request, the level of access they 
receive. 

Alshamsi & Saito (2005) concluded that choosing between IPSec and SSL depends 
on the security needs for a specific organization and, implicitly its users. When a user 
makes a request for a specific service and this is supported by SSL/TLS, it is better to 
select SSL/TLS because it eliminates the tasks of configuring, managing, and supporting 
IPSec client software installed on the users’ computers, and it is easier and faster to deploy 
in comparison with IPsec. Furthermore, SSL/TLS is also included in standard Web 
browsers, such as Microsoft Internet Explorer and Mozilla FireFox. 

We can conclude that SSL/TLS technology has more advantages than IPSec and it 
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started to be largely deployed and preferred for securing the communications. Nowadays 
SSL/TLS can support a wide range of Web-based applications apart from Web browsing 
and email, and it can be extended to support almost any IP-based application.  

Also, most applications for mobile workers are starting to be web-based for several 
reasons:  

- Less training is required  

- Application client software does not need to be installed on the users’ PC 

- The applications become available from any computer connected to the company’s 
network 

 
However, there are also IP-based applications that are not Web applications. But, 

the vendors of SSL/TLS technology have envisioned a few solutions to permit the use of 
legacy applications via SSL:  

- Web interfaces to legacy applications 

- Plug-ins to support specific applications 

 

Using SSL/TLS protocol does no impose any specific software or hardware 
requirements, so it can be used from any computer connected to the Internet. However, 
when using SSL/TLS, because users can use any computer with a browser to access the 
Internet, certain policies should be specified and enforced by organizations for providing 
access to uncontrolled client computers1. 

El Aoufi (2006) presented the results published by Gartner with reference to a 
comparison between SSL/TLS and IPsec. Gartner considers that IPsec protocol will be 
replaced in the near future (till 2008) by SSL/TLS.  

Gartner predicts that IPsec will play a minor role in securing the communications, 
while, SSL/TLS will be the dominating technology for secure communications for most 
organizations transferring data over Internet.  

We conclude that for accomplishing the goals of secure communications in Jericho 
Project it is adequate to employ end-to-end security provided by SSL/TLS, and use IPSec 
only for applications that are not supported yet by SSL/TLS. Thus, IPSec will to be 
implemented for securing communications to unsupported applications, while SSL/TLS 
can be implemented as default for secure communications.  

                                                 
1 In the context of Jericho Project, this issue is discussed as a separate research topic 
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3.8 XML Encryption 

 In the previous sub-chapters we have analysed SSL/TLS and IPsec protocols 
located at different layers in the OSI Model, as possible solutions in Jericho Project for 
providing secure communications within the scope of this project. As mentioned before, 
for data in transit, encryption is often the most appropriate means of ensuring 
confidentiality of communications. 

 In this sub-chapter, we will shortly present the features of XML Encryption and the 
security services that could provide for ensuring secure communications within the scope 
of Jericho Project.  

Thorsteinson & Ganesh (2003) underlined the main differences between the 
security protocols that we have previously analyzed (SSL/TLS and IPsec) and that can be 
used to protect privacy and ensure integrity of data transmitted over Internet, and XML 
encryption.  

The authors pointed out two aspects of XML Encryption that contrast with the 
above presented cryptographic protocols:  

- When using XML encryption, there can be selectively encrypted those XML 
elements that represent sensitive data, and other non-sensitive elements may be 
intentionally left unencrypted 

-  Moreover, XML encryption can be used for encrypting data that is either 
transmitted directly to another application or accessed by many applications via 
stored media, such as a disk file or database record.  

 

To the contrary, SSL/TLS and IPSec protocols encrypt the entire connection as a 
whole, allowing it to be used between two communicating entities. Anyway, XML 
Encryption does not replace these security protocols, but instead solves an entirely 
different type of security problem.  

XML Encryption addresses two major issues:  

- Encrypting only specific subsets of structured data 

- Encrypting structured data storage that is accessible to multiple parties 

 

Basically, encrypted data can be expressed in a structured manner using XML and 
portions of an XML document can be selectively encrypted. XML Encryption provides a 
standardized means for encrypting structured data and representing the result in a standard 
XML format. O’Neill et al. (2003) emphasized that selective encryption of an XML 
document is a new mechanisms introduced by XML Encryption. 
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O’Neill et al. (2003) described the correspondence between Web Services and 
Services Oriented Architecture (SOA). The term “Services” in Web Services refers to a 
Service-Oriented Architecture (SOA). SOA is a recent development in distributed 
computing, in which applications call functionality (e.g. service, data) from other 
applications over a network (in the case of Jericho Project, the network is the Internet).  

In an SOA, functionality is “published” on a network where two important 
capabilities are provided— “discovery,” the ability to find the functionality, and 
“binding,” the ability to connect to the functionality. In the Web Services architecture, 
these activities correspond to three roles: Web Service provider, Web Service requester, 
and Web Service broker, which correspond to the “publish,” “find,” and “bind” aspects of 
a Service Oriented Architecture. 

There are Web Services technologies (e.g. WSDL, SOAP etc.) that enable SOA to 
run over Internet. Presenting these technologies is out of the scope of this thesis.  

O’Neill et al. (2003) indicated the SOA publish/find/bind functionality in Web 
Services depends on XML. Rosenberg & Remy (2004) pointed out that XML is the 
foundation of the Web Services standards because XML is text-based and is designed to 
make business information transportable and self-describing. 

 

Further, we will describe the concepts that are used in for describing XML 
Encryption.  

 World Wide Web Consortium (W3C) created a standard, business-centric data 
representation format, namely the Extensible Markup Language (XML). This is a meta 
language intended to supplement HTML’s presentation features with the ability to 
describe the nature of the information being presented (Erl, 2004). 

XML is a derivative of the Standard General Markup Language (SGML). SGML is 
an international standard for defining electronic documents and represents a meta 
document definition language used for describing many document types with defining tags 
(Hartman et al., 2003).  

XML supplements the content of a document with meta information - self-
descriptive labels for each piece of text. Thus, a Web document becomes a self-contained, 
mini-repository (Erl, 2004). 

XML Schema is a way of describing the rules for a particular XML document or 
instance.  

XML can be used as a manner to transport information as it passed between 
different computing systems.  Object Access Protocol (SOAP) was defined as a way to 
transport XML from one computer to another. Observed in terms of a Service-Oriented 
Architecture, SOAP allows applications to bind to other applications for making use of 
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their functionality. Essentially, SOAP provides a simple, consistent, yet extensible 
mechanism that allows one application to send an XML message to another application, so 
it can be regarded as a messaging protocol, as well as a means of using functionality that is 
published by a remote application (O’Neill et al., 2003; Rosenberg & Remy, 2004). 

Because XML is being used more and more to transmit data over Internet, it is vital 
to protect the transferred data in terms of privacy, integrity and data source authentication. 
Depending on the type of data and its security level, sometimes, the data can be 
transmitted in plaintext, but with the security services that ensure integrity of data and 
authentication of the data source. Thus, mechanisms, such as XML Encryption and XML 
digital signatures can be used for securing the transmitted data.  

Firstly, the same as in case of applying SSL/TLS or IPsec, the data has to be 
classified and should have attached a certain level of security, determining in this way how 
secure the data needs to be and what security mechanisms should be applied in order to 
protect it in traffic.  

XML Signature represents the underpinning technology for the standard called 
WS-Security and for Web services security in general. XML Signature is built on the 
mature digital signature technology. Digital signatures provide a mechanism for message 
integrity and non-repudiation. XML Signature enables the encoding of digital signatures 
into XML documents. XML Signature combines the utility and power of digital signature 
mechanism with the power and flexibility of XML. 

XML Encryption is built on the mature cryptographic mechanisms, specifically on 
symmetric-key cryptography. The core requirements for XML Encryption are that it must 
be able to encrypt an arbitrarily sized XML message, and it must do so efficiently. XML 
Encryption is employed basically for providing message confidentiality. In essence, XML 
Encryption represents a process for encrypting sensitive data and representing the result 
using the syntax of XML.  

O’Neill et al. (2003), Rosenberg & Remy (2004) mentioned that XML Encryption 
is appropriate to be used for Web Services, besides SSL/TLS or IPsec protocols, is 
because it allows the security principle of confidentiality to be satisfied across more than 
just the context of a single SOAP request. The security context of a SOAP message often 
extends beyond a single SOAP request. One obvious scenario is if information in a SOAP 
message must be kept confidential while it is sent over a multi-hop SOAP transaction. In 
this scenario, if SSL alone is used, a gap exists at each SOAP endpoint, where the 
sensitive data would be temporarily in the clear.  

Moreover, if information in an XML message must be kept encrypted for 
confidentiality reasons, after the XML message has been processed by a Web Service, 
XML Encryption is also useful. This means that XML Encryption is what is called 
persistent encryption. This contrasts with session encryption (as in the case of SSL/TLS 
for instance). The encryption is not linked to the point-to-point SOAP exchange, so it does 
not end when the message reaches a SOAP endpoint.  
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Thus, the key benefit XML Encryption is that it allows confidentiality to be 
satisfied across more than just the context of a single SOAP request. Moreover, it allows 
selective encryption and persistent encryption as well. 

XML Signature and XML Encryption apply standard cryptographic algorithms to 
data for achieving the desired security services for secure communications, and then store 
that encrypted and signed result in XML. Both mechanisms can be applied selectively 
only to portions of an XML document. 

Thorsteinson & Ganesh (2003) indicated that XML Encryption, the same as the 
other protocols used for securing the communications, makes use of a combination of 
symmetric and public-key cryptographic algorithms. The symmetric-key algorithms are 
used to encrypt the XML data elements, and the public-key algorithms are used to securely 
exchange the symmetric key used in the encryption process. 

Table 3.15  enumerates some of the algorithms and their identifiers used for XML 
security: 

Algorithm Type Identifier 
Triple DES Block http://www.w3.org/2001/04/xmlenc#tripledes-cbc  

AES-128 Block http://www.w3.org/2001/04/xmlenc#aes128-cbc  

AES-256 Block http://www.w3.org/2001/04/xmlenc#aes256-cbc  

AES-192 Block http://www.w3.org/2001/04/xmlenc#aes192-cbc  

RSA-v1.5 Key transport http://www.w3.org/2001/04/xmlenc#rsa-1_5  

RSA-OAEP Key transport http://www.w3.org/2001/04/xmlenc#rsa-oaep-
mgf1p  

Diffie-
Hellman 

Key agreement http://www.w3.org/2001/04/xmlenc#dh  

Triple DES Symmetric key 
wrap 

http://www.w3.org/2001/04/xmlenc#kw-tripledes  

AES-128 Symmetric key 
wrap 

http://www.w3.org/2001/04/xmlenc#kw-aes128  

AES-256 Symmetric key 
wrap 

http://www.w3.org/2001/04/xmlenc#kw-aes256  

AES-192 Symmetric key 
wrap 

http://www.w3.org/2001/04/xmlenc#kw-aes192  

SHA1 Message digest http://www.w3.org/2000/09/xmldsig#sha1  

SHA256 Message digest http://www.w3.org/2000/09/xmldsig#sha256  

SHA512 Message digest http://www.w3.org/2000/09/xmldsig#sha512  
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RIPEMD-
160 

Message digest http://www.w3.org/2001/04/xmlenc#ripemd160  

Base64 Encoding http://www.w3.org/2000/09/xmldsig#base64  

Table 3.15: Cryptographic algorithms and their identifiers for XML Security  

In the view of  Rosenberg & Remy (2004), XML Signature and XML Encryption 
are fundamental mechanisms for the next generation of emerging standards that use these 
two standards as building blocks. For instance, WS-Security, the emerging OASIS 
standard for Web services security, XML Key Management Specification (XKMS), and 
Security Assertion Markup Language (SAML), among many others, all rely on XML 
Signature and/or XML Encryption. 

W3C has developed specifications for encrypting and digitally signing XML. The 
XML-Signature Syntax and Processing specification1 defines processing rules and syntax 
to provide integrity, message authentication, and signer authentication services. The XML 
Encryption Syntax and Processing specification2 defines a process for encrypting data and 
representing the result in an XML document. 

 In the literature (O’Neill et al., 2003; Thorsteinson & Ganesh, 2003; Burnett, & 
Foster, 2004; Microsoft Corporation, 2005 etc.) described the process of achieving 
message layer security through using mechanisms such as XML Encryption and XML 
Signature. Moreover, they have presented the advantages of this method of achieving end-
to-end security in comparison with SSL/TLS and IPsec protocols. Message layer security 
represents an approach used for achieving secure communications, in which all the 
information related to security is encapsulated in the message. 

 In the context of Jericho Project XML encryption and XML Signature could be 
used when it is not necessary to encrypt and sign the entire data, but just the significant 
parts of it (in terms of security level and sensitivity) for achieving end-to-end security of 
the data in transit. For instance, XML Encryption allows encrypting a single, specific 
element of an XML document instead of encrypting the entire document or data, as would 
be the case in SSL/TLS and IPsec. Burnett & Foster (2004) pointed out that the resource 
benefit of XML Encryption that offer the option of encrypting only a small amount of data 
instead of the entire document becomes substantial.  

Moreover, the security provided by message layer security that uses XML 
Encryption regards the protection of the stored data as well, after it has been transmitted to 
the destination. While SSL/TLS and IPsec protect the data in only in traffic across the 
Internet, XML is a data-formatting specification that can be used to archive and store data 
as well, apart from protecting it in transit.  

Thus, we can conclude that message layer security is more flexible than the other 
security protocols we proposed in the context of Jericho Project for secure 

                                                 
1 http://www.w3.org/TR/xmldsig-core/ 
2 http://www.w3.org/TR/xmlenc-core/ 
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communications that incorporates all the security aspects of securing the data in transit in 
the message itself. This is in accordance with the Jericho Forum Commandments that 
specify that individual systems and data will need to be capable of protecting themselves 
in Jericho networks.  

 

 

 

 



Chapter 4 Cryptography  

4.1 Introduction 

Cryptography is mainly used for sending information between different entities in 
such ways that others than the intended recipients cannot decipher it (Kaufman et al., 
2002, p. 41).  

The scope of cryptography has diversified and became broader in the last years, 
mainly due to the advent of Internet. Currently, cryptography has a broader usage and 
applicability and includes cryptographic protocols, digital signatures along with the 
cryptographic algorithms and ciphers. 

In this chapter, firstly, we create a background for the research of cryptography, 
and then we present a more detailed approach for asymmetric key cryptography, 
symmetric key cryptography, elliptic curve cryptography, hash functions, MAC (message 
authentication code). Further more, we will emphasize the use of cryptography in the real 
world for offering certain security services and for designing security protocols that can 
be used within the scope of Jericho Project.  

We will begin our research in cryptography with the investigation of classical 
cipher and examples that incorporate fundamental security principles used in the modern 
ciphers as well. Then we will deal with more recent developed algorithms in 
cryptography, with attacks and methods to break cryptographic algorithms. 

The main purpose of this chapter is to offer a support and background knowledge 
for cryptographic primitives and protocols mentioned in the previous chapters for 
achieving the security requirements for secure communications in Jericho Project. 
Moreover, we aim at making recommendations regarding the cryptographic primitives 
that are the most adequate to use for end-to-end encryption in Jericho Project. 

Firstly, we will provide an overview of cryptography, and then symmetric and 
public – key algorithms will be presented.  

The cryptographic algorithms are divided into two groups: symmetric key 
algorithms and public-key algorithms. Symmetric key algorithms (secret-key algorithms) 
suppose that the same secret key is shared by the communicating parties for encryption 
and decryption. In public-key algorithms (asymmetric cryptographic algorithms), there 
are used two types of keys, a private key that is kept secret (e.g. for decryption, for 
signatures), and a public key that is made public.  

Further, hash functions are introduced, and then message authentication codes, 
followed by a presentation of elliptic curve cryptography.  

Finally, we will have a look at the current situation of cryptography in the real 
world and at the most appropriate algorithms that can be used for designing secure 
protocols in the context of Jericho Project. 
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4.2 Overview of cryptography 

As Menezes et al. (1997), Mao (2003) stated, cryptography was used in the past 
(to be interpreted as the period before the 1960s), and is still used nowadays, as a tool for 
protecting the national secrets and strategies. Due to the advances in information 
technology, in the 1960s, there has started to appear the need for protecting the 
information in digital form also in the private sector. 

Although in the past cryptography was used exclusively for military and 
governments, nowadays, is largely deployed and underpins the security of the electronic 
world in civilian and corporate systems. The secure communications over Internet rely on 
the security features obtained with cryptography.  

Due to the explosion in communication technologies that erupted in the last 
decennia and to the wide use of the Internet, cryptography has become necessary (Atreya 
et al., 2002). The increasing computational power, parallel computing, new 
communication technologies increased the chances that different types of attacks can be 
performed on cryptographic algorithms. Therefore, the field of cryptography is also 
evolving. 

Mao (2003) underlined the need for the cryptography used in corporate 
environments to adopt an open approach. The author stated that the cryptographic keys 
and the keying material should be kept secret, but the cryptographic algorithms and 
primitives should be made public for general review and, eventually, improvements.   

The same as required by Jericho Forum members, Mao (2003) acknowledged that 
in the areas of cryptographic algorithms, protocols and security systems, open research 
and standards, as well, are more than just a common means to acquire and advance 
knowledge. In Jericho Forum Commandment number 4 it is articulated that secure 
protocols demand open peer review to provide robust assessment and thus wide 
acceptance and use.  

According to Stamp (2006, p.2), cryptography has an important role to play in 
security protocols and represents a fundamental information security tool. Moreover, 
Vaudenay (2006) states that “cryptography is the science of information and 
communication security”. Also, the same author defines cryptography as “the science of 
information protection against unauthorized parties by preventing unauthorized alteration 
of use.” 

Stallings (2005) acknowledges that cryptography seems to be the most important 
aspect of communications security, and its importance increases in the field of computer 
security. In fact, cryptography comprises different mathematical techniques designed to 
protect communications.  

In this thesis we allocate also a considerate space for investigating, presenting and 
comparing different aspects of cryptography that are relevant and can further be used for 
Jericho Project for designing secure protocols in order to achieve secure communications 
over the Internet.  
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 “Cryptography itself has grown into an important branch of applied mathematics 
and theoretical computer science” (Dent & Mitchell, 2005, p.2). 

“Cryptography is the basic building block on which security principles such as 
authentication, integrity, non-repudiation and confidentiality are built” (modified De Laet 
& Schauwers, 2004; Ramachandran, 2002; Peter Gutmann1). 

According to the online publications of RSA Laboratories2, cryptography can be 
defined briefly as the study of techniques and applications that depend on the existence of 
difficult problems. So, cryptography is fundamentally based on problems that are difficult 
to solve. A problem can be difficult to solve due to various reasons, for instance it 
requires secret knowledge to be able to find a solution or it is intrinsically difficult to 
complete etc. 

Difficult, in the context of cryptography, refers more to the computational 
requirements in finding a solution than the algorithmic and mathematical conception of 
the problem. These problems are called hard problems (in cryptography e.g. integer 
factoring, discrete logarithms, elliptic curve discrete logarithms). The role of a hard 
problem is to provide a security solution or service to users3. 

For instance, in the field of cryptography, encryption is used to provide 
confidentiality of data, and can also provide authentication and data integrity; digital 
signatures provide authentication, integrity and non-repudiation; hash functions provide 
integrity and can provide also authentication.  

Confidentiality means insuring that the information is protected against 
unauthorized users and is kept private.  

Cryptography can be also used to verify the integrity of a communication. Data 
integrity means ensuring that data has not been modified by unauthorized entities, and, 
thus, the message received by the recipient is the same as the message sent by the sender. 

Authentication provided through the means of cryptography can involve 
authentication of the entities involved in the communication process, and also data 
authentication origin (verify that the sender of the data is indeed the one who is supposed 
to be, and that is not being impersonated by an intruder). 

Non-repudiation ensures that the sender of any message cannot deny his/her 
actions. This can be achieved with digital signatures in conjunction with asymmetric key 
encryption (Solomon & Chappel, 2005).  

What is interesting about cryptography in the context of Jericho Project is the fact 
that basic cryptographic tools can be used to design and build cryptographic (security) 
protocols for secure communications over the Internet (e.g. transfer electronic money, 
authentication, end-to-end encryption etc.).` 
                                                 
1 Peter Gutmann’ website http://www.cs.auckland.ac.nz/~pgut001/tutorial/index.html accessed April 2007 
2 http://www.rsa.com/rsalabs/node.asp?id=2157 accessed May 2007 
3 www.rsa.com/rsalabs/staff/bios/bkaliski/publications/other/kaliski-next-pkc-gt-1-2000.ppt accessed May 
2007  



 

Secure Communications: ‘End-to-end encryption’ in Jericho networks 

 

110

Before proceeding, we give some practical definitions for some basic 
cryptographic concepts.  

- A message in the original form is named a plaintext or cleartext 

- The mangled data is known as ciphertext  

- A cryptographic algorithm converts a plaintext into a ciphertext 

- The process of transforming a plaintext in ciphertext is named encryption in order 
to prevent any but the intended recipient from reading that data. The reverse of 
encryption is named decryption 

According to Mao (2003), encryption is a practical way for achieving information 
secrecy. The author states that “Modern encryption techniques are mathematical 
transformations (algorithms) which treat messages as numbers or algebraic elements in a 
space and transform them between a region of “meaningful messages” and a region of 
“unintelligible messages”. 

- A cipher or cryptosystem is any method of encrypting text1. A cipher or 
cryptosystem is used to encrypt data.  

 A thorough definition of a cryptosystem or a cryptographic system is provided by 
Menezes et al. (1996), Mao (2003), Oppliger (2005, p. 229). 

 Thus, a cryptographic system consists of: 

- a plaintext message space M: a set of strings over some alphabet 

- a ciphertext message space C: a set of possible ciphertext messages 

- an encryption key space K: a set of possible encryption keys, and a decryption 
key space K’: a set of possible decryption keys 

- an efficient key generation algorithm G: N → K  X  K’ 

- an efficient encryption algorithm        E: M  X  K  → C 

- an efficient encryption algorithm        D: C  X  K ’  → M 

 
For, instance, for integer 1, G(1) generates a key pair (ke, kd) ∈  K  X  K’ of length l.  

For ke ∈  K and m ∈  M, there will result: c= E ke(m) and this denotes the 
encryption transformation.    

Further, m= D kd(c) denotes the decryption transformation. It is though 
necessary that for all m ∈  M and all ke ∈  K , there exists ke ∈  K’. 

D kd(E ke(m) ) =m 
 

                                                 
1 http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213593,00.html accessed May 2007 
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The following figure illustrates a cryptographic system:  
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Figure 4.1: Cryptographic Systems (adaptation after Mao, 2003) 

 
As we mentioned earlier, there are two types of cryptosystems: secret-key 

cryptosystems (generally named symmetric-key cryptosystems in the literature) and 
public-key cryptosystems. The symmetric cryptosystems use the same key for encryption 
and decryption of the data (Ke=Kd). While, the public-key cryptosystems use a public 
key (Ke) for encryption and a private key (Kd) for decryption or for signatures. 

Oppliger (2005) provides the following definitions for secret-key and for public-
key cryptosystems. 

- A secret-key cryptosystem is a cryptographic system that uses secret parameters 
that are shared between the participating entities. 

- A public-key cryptosystem is a cryptographic system that uses secret parameters 
that are not shared between the participating entities.  

Stallings (2005) summarized the main characteristics of cryptographic systems 
according to three dimensions: 

1) The type of operations used for transforming plaintext to ciphertext  
The encryption algorithms are based on two general principles: substitution, in 

which each element in the plaintext (bit, letter, group of bits or letters) is mapped into 
another element, and transposition or permutation, in which elements in the plaintext are 
rearranged.  

 
Most cryptographic systems involve multiple stages of substitutions and 

transpositions. 

There are also variations of the operations mentioned above (substitution and 
transposition/permutation) that are discussed in the literature (Oppliger, 2005).  

- monoalphabetic substitution cipher:  each letter of the plaintext alphabet is 
replaced by another letter of the ciphertext alphabet; in this type of substitution, 
a plaintext letter is always replaced by the same ciphertext letter. 
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- homophonic substitution cipher: plaintext letters can be replaced by more than 
one ciphertext letter. The letters that have a higher frequency in the plaintext are 
given more equivalents than the lower frequency letters 

- polyalphabetic substitution ciphers: flatten the frequency distribution of 
ciphertext letters by using multiple ciphertext alphabets 

 
2) The number of keys used  
 
The system can be single-key or symmetric when the sender and the receiver use the 

same key. If the sender and receiver use different keys, the system is referred to as 
asymmetric or public-key encryption. 
 

3) The way in which the plaintext is processed  
 

According to this dimension, the ciphers are categorized in block and stream 
ciphers. Block and stream ciphers differ in how large a unit of the plaintext message is 
processed in each encryption or decryption operation. A unit may be either a bit or a 
block of bits (e.g. 64 or 128 bits). Block ciphers encrypt plaintext in blocks of different 
dimensions.  

Block ciphers take as input, messages that are precisely n-bits long and produce 
outputs of the same length (Dent & Mitchell, 2005; Seys, 2006). Common block sizes are 
64 and 128 bits. While block ciphers operate on large blocks of data, stream ciphers 
typically operate on smaller units of plaintext, usually bits1. A stream cipher encrypts a 
plaintext one bit or one byte at a time (Stallings, 2005).  

Usually, a block cipher consists of a round function that is iterated several rounds. 
In each round, an appropriate transformation is applied using a subkey that is derived 
from the original secret key. With each performed round, the cryptanalysis of the cipher 
becomes more difficult, thus the security is improved. Nonetheless, with every performed 
round, the cipher becomes slower and more computations are required (Seys, 2006). 

The round function is typically a function of the output of the previous round and 
of a subkey which is a key dependent value calculated via a key scheduling algorithm. 

Dent & Mitchell (2005) remarked that the major problem with block ciphers is 
that the block length n is quite small and, typically, only short message can be encrypted 
with block ciphers. Also, if a block cipher used to encrypt the same plaintext message 
unit more times with the same encryption key, the same ciphertext block results every 
time. 

                                                 
1 http://www.rsa.com/rsalabs/node.asp?id=2174 accessed April 2007  
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The block ciphers have different modes of operation1 (Schneier, 1996; Menezes et 
al., 1997; Kaufman et al., 2002; Dent & Mitchell, 2005; Oppliger, 2005; etc). These 
modes of operation are used for plaintext messages exceeding one block in length. 

We give a short overview of these modes of operation in Section 4.2.4. According 
to the definition provided by Dent & Mitchell, a mode of operation for a block cipher is a 
method of using a block cipher iteratively to encipher long messages and at the same 
(generally) avoiding the problems associated with block ciphers (e.g. sending the same 
message twice, avoiding certain attacks based on statistical analysis). 

Menezes et al. (1997, p. 256) enumerated in their book some of the desirable 
characteristics for block ciphers. Some of these characteristics are:  

- each bit of the ciphertext should depend on all bits of the key and all bits of the 
plaintext;  

- there should be no statistical relationship evident between plaintext and 
ciphertext;  

- altering any single plaintext or key bit should alter each ciphertext bit with 
probability 1/2 ; 

- altering a ciphertext bit should result in an unpredictable change to the recovered 
plaintext block.  

 
In 1883, Kerckhoffs wrote a list of principles with reference to the cryptosystems 

(Menezes et al., 1996; Mao, 2003). From these principles, one became to be known as 
Kerchoffs’ principle. This states that the knowledge of the algorithm and the key size, as 
well as availability of known plaintext are standard assumptions in modern cryptanalysis 
(Mao, 2003). An additional assumption in this case is that the attackers have access to all 
the communications over the ciphertext channel. So, the cryptographic strengths of 
cryptosystems should not be evaluated based on secrecy of the above mentioned 
elements. Also, Schneier (1996) stated that “a good cryptosystem is one in which all the 
security is inherent in knowledge of the key and none is inherent in knowledge of the 
algorithm.” 

4.2.1 Cryptographic Attacks 

Cryptanalysis is the study of techniques that attempt to compromise, defeat or 
break cryptographic primitives2. Cryptography and cryptanalysis form together the field 
of cryptology.  

                                                 
1 http://www.itl.nist.gov/fipspubs/fip81.htm DES Modes of Operation, FIPS PUB 81, National Bureau of 
Standards, U.S. Department of Commerce, 1981 
2 http://www.rsa.com/rsalabs/node.asp?id=2157 accessed April 2007 
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“Cryptographic attacks are designed to subvert the security of cryptographic 
algorithms, and they are used to attempt to decrypt data without prior access to a key” 
(Conrad, 2007). The cryptographic attacks belong to the field of cryptanalysis. 

The main purpose of attacks on cryptosystem is to recover the key in use, rather 
then simply to recover the plaintext of a single ciphertext.  

The types of attacks against encryption systems are discussed thoroughly in the  
literature (Schneier, 1996; Kaufman et al., 2002, p. 45; Mao, 2003; Rhee, 2003; Dent & 
Mitchell, 2005; Oppliger, 2005, p. 233-235; Stallings, 2005 ; Vaudney, 2006; etc.). 

The cryptanalytic attacks attempt to deduce partially or completely a plaintext or 
to deduce the key, based on the knowledge about the encryption algorithm and in some 
cases on some general characteristics of the plaintext. The attacker might even be in 
possession of some plaintext-ciphertext pairs. 

In brute-force attacks, the attacker tries every possible key on a part of ciphertext 
until finally a plaintext is obtained. Statistically, on average, half of all possible keys must 
be tried to achieve success. 

Further, we will introduce some of the widely known and studied cryptanalytic 
attacks.  

- Ciphertext-only attack  

The cryptanalyst knows one or several ciphertext units and tries to deduce the 
corresponding plaintext message units and/or the key (or keys) that has (have) been used 
for encryption. If the attacker succeeds to recover the key (or keys), then he/she is able to 
decrypt any ciphertext encrypted with the key.  

- Known-plaintext attack 

The cryptanalyst has access to one or more pairs of <ciphertext, plaintext> and tries to 
deduce the key (or keys) used to encrypt the messages. The attacker tries to decrypt also 
other ciphertexts for which he/she does not have yet the corresponding plaintext. 

 

- Chosen-plaintext attack  
 In this type of attack, the cryptanalyst has access to the encryption function or to the 

device that implements it. So, he/she can encrypt any plaintext at his/her choice. This is 
more powerful than a known-plaintext attack, because the cryptanalyst can choose 
specific plaintext messages to be encrypted and this could provide some additional 
information about the key.   

The attacker tries to deduce the key (or keys) used for encrypting the messages or to 
deduce an algorithm for decrypting new ciphers  for which he/she does not possess the 
corresponding plaintext messages, but these have been encrypted with the same key (or 
keys). This type of attack is most common for public-key cryptography in the case that 
the attacker has access to the public key used for encryption.  
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The chosen plaintext attack can be performed in two modes1 (Schneier, 1996; 
Oppliger, 2005):  

- Batch chosen-plaintext attack: The plaintext messages are chosen by the attacker 
beforehand encryption occurs.  

- Adaptive chosen-plaintext attack: The attacker has not only the possibility of 
choosing plaintext messages for encryption, but also he/she can modify 
dynamically his/her choice of plaintext for further encryption based on the 
previous encryption results that were obtained.  

 
- Adaptive chosen-ciphertext attack 
Through this type of attack, the cryptanalyst has access to the decryption function (or 

the device that implements the function, respectively) and can decrypt any ciphertext unit 
of his/her choice. A device that provides decryptions of chosen ciphertexts units (either 
by accident or by design) is generically referred to as a “decryption oracle”2. 

The attacker tries to retrieve the key (or keys) that is (are) used for decryption or to 
determine the encryption scheme for being able to encrypt plaintext message units for 
which he/she does not have yet the corresponding ciphertext units.  

 
Also, this type of attack can be of two types: 

- Non-adaptive chosen-ciphertext attack: This type of attack is named also 
indifferen chosen-ciphertext attack (or “lunchtime” attack). The ciphertext units 
are chosen before the decryption process begins. In the most successful attack 
scenario, this type of attack might successfully reveal the secret decryption key 
and thus completely break the scheme. 

- Adaptive chosen-ciphertext attack: This type of attack is know also as 
“”midnight” attack. The attacker can choose dynamically the ciphertext units for 
decryption, while the attack is performed. The results of the previous decrypted 
ciphertext units are used for selecting the subsequent ciphertext units, in order to 
gain information about encrypted messages and about the decryption key (or 
keys). 

 
The cryptanalysts can use and exploit any combinations of these attacks in order 

to gain information about the encryption/decryption key (or keys). Nonetheless, 
Kerckoffs’ principle applies without any doubt to the cryptosystems, namely, the 
encryption and decryption algorithms are assumed to be publicly known.  

If a cryptographic algorithm or its implementation is kept secret (known in the 
literature as security through obscurity) this does not make the respective algorithm 
unbreakable. In fact, the best algorithms that exist are the ones that have been made 
                                                 
1 http://en.wikipedia.org/wiki/Chosen_plaintext_attack accessed April 2007 
2 http://en.wikipedia.org/wiki/Chosen-ciphertext_attack accessed April 2007 
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public (Schneier, 1996; Lail, 2002). These have been analyzed by the best cryptographers 
along the years and still remained unbreakable.  

4.3 Public-key cryptography 

  
In this sub-chapter we describe how public-key algorithms work. Furthermore, we 

perform an investigation regarding the security of the presented algorithms and the 
attacks to which they are exposed.  

In 1976, Whitfield Diffie and Martin Hellman published in an article (Diffie & 
Hellman, 1976) their work regarding public-key cryptosystem that changed the paradigm 
of cryptography forever (Schneier, 1996). In this article, the two authors described 
public-key cryptography and its applications.  

In public-key cryptography, the encryption, and, respectively, the decryption 
process are performed using two different keys, this is why it is also called asymmetric 
encryption.  

The encryption (public) keys can be made public. So, for instance, if the key is 
publicly available on Internet, anyone could theoretically encrypt a plaintext message 
with that key and send the ciphertext message to the owner of the private key. The 
entities participating in the communication process can exchange encrypted messages 
without any prior arrangement regarding the public key.  

The public-key algorithms have the following essential characteristic: It is 
computationally infeasible to determine the decryption key given only knowledge of the 
cryptographic algorithm and the encryption key (Stallings, 2005).  

While, in symmetric-key cryptography the participants in any secure 
communication must have a prior ‘relationship’ because they must agree upon a common 
secret key that they will further use for encryption and decryption, with public-key 
cryptography it might be possible to securely exchange messages between entities with 
no prior ‘relationship’. 

Public-key cryptography can be used for more purposes: for exchanging between 
entities the secret keys used in symmetric key algorithms (key agreement & key 
management), for signing with the private key digital documents (authentication), and 
also for the same purposes of symmetric-key cryptography (encrypting data). 

Below, in Table 4.1 there are illustrated the applications of some widely known 
public-key algorithms: 

ALGORITHM Encryption/Decryption Digital Signature Key Exchange 
RSA Yes Yes Yes 
Diffie-Hellman Yes1 No Yes 

                                                 
1 According to Kaufman et al., 2002, p. 170 
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Elliptic curve Yes Yes Yes 

Table 4.1: Applications for Public-key cryptosystems (modified after Stallings, 2005) 
 

Stamp (2006) acknowledged that public-key cryptography has a critical role to 
play in modern information security. 

Usually, public-key cryptography and symmetric-key cryptography are used 
together in security protocols for achieving different security services. The resulting 
cryptosystems that combine secret- and public-key cryptography are often called hybrid. 
As we saw in Chapter 3 of this thesis, hybrid cryptosystems are used intensively within 
security protocols. 

Generally, as Schneider exposed in his book (1996), in most practical 
implementations public-key cryptography is used to secure and distribute session keys 
that are per session generated and used within symmetric-key algorithms for encrypting 
data in traffic. 

A public-key cryptosystem can be specified by a set of three algorithms:  a 
probabilistic key generation algorithm, an encryption algorithm and a decryption 
algorithm.  

Security of public-key cryptosystems  

The security of a public-key cryptosystem is conditional on some assumptions 
that certain problems are intractable. 

In public-key cryptography a special attention is given to finding adequate 
protection against (adaptive) chosen-plaintext attacks, because the encryption key is 
public and these types of attacks are always possible and trivial to be performed. Thus, 
the design of cryptosystems that are resistant against these types of attacks receives a 
special importance in the research of public-key cryptosystems (Oppliger, 2005).  

In relation with the chosen-plaintext attacks, in public-key cryptosystems the 
concept of “semantic security against adaptive chosen-ciphertext attacks” has been 
introduced. For a cryptosystem to be semantically secure, it must be infeasible for an 
adversary to derive significant information about a plaintext message when given only its 
ciphertext and the corresponding public encryption key. Semantic security can be 
described also as indistinguishability of ciphertexts, meaning that the ciphertexts cannot 
be distinguished and consequently associated with plaintext messages.  

Another notion of security for public-key cryptosystems is non-malleability. An 
asymmetric encryption system is non-malleable if it is computationally infeasible to 
modify a ciphertext so that it has a predictable effect on the plaintext message. In the 
literature it has been shown that the notion of non-malleability is equivalent to the notion 
of semantic security against chosen-ciphertext attacks (Oppliger, 2005). 
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In fact, the security of any cryptosystem depends on the length of the key and the 
computational work involved for breaking such a scheme (Stallings, 2005).  

4.3.1 RSA 

RSA public-key cryptosystem was developed in 1977 by Ron Rivest, Adi Shamir, 
and Len Adleman at MIT and first published in 1978. RSA is a block cipher, where each 
block of plaintext has a binary value less than some number n. So, the block size must be 
less than or equal to log2(n); in practice, the block size is i bits, where 2i < n ≤ 2i+1 

(Stallings, 2005).  

RSA algorithm can be used for both public key encryption and digital signatures. 
The security of this algorithm is based on factoring large integers.  

Further, we describe RSA algorithm: 

- Two large primes p and q  are randomly chosen (Kaufman et al. (2002, p. 152) 
advised to choose them around 256 bits each); these numbers are kept private. 

- p · q = n is computed; n is publicly known. 

- n is the modulus for both the public and private keys 

- The totient1 Φ(n) = (p-1)(q-1) is computed  

- An integer number e is chosen, which is relatively prime to Φ(n) 

- The public key for this algorithm is {e, n} 

- For generating the private key, the number d should be found that is the 
multiplicative inverse of e mod Φ(n) (d · e = 1 mod Φ(n)) ; The relation d · e =  k · 
Φ(n) should be satisfied for any integer k 

- The private key for this algorithm is {d, n} 

- Encryption of message m : c = me mod n 

- Decryption of ciphertext c: m = cd mod n 

 
            According to Stallings (2005), this algorithm has to meet the following 
requirements in order to be considered a satisfactory public-key cryptosystem:  

- It is possible to find values of e, d, n such that med mod n = m, for all m< n.  

- It is relatively easy to calculate me mod n and cd, for all values m< n. 

- It is infeasible to determine d given e and n. 

 

                                                 
1 The totient Φ(n) shows how many numbers are relatively prime to n. Relatively prime means that the 
numbers do not share any common factors except 1. 
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In the literature (Kaufman et al., 2002) it is pointed out that RSA is not less secure 
if the number e, relatively prime to (p-1)(q-1), is chosen to be the same number. If the 
number e is small or easy to compute, then the operations within RSA become more 
efficient. On the other hand, number d, which is the multiplicative inverse of e mod Φ(n), 
cannot be chosen to be small or a constant because of the possible attacks that might be 
conducted on such a private key. 

Kaufman et al. (2002) indicated two popular values for e  that are 3 and 65537. 
These exponents work only if they are relatively prime to Φ(n).  

Security of RSA 

A brute force attack on RSA requires an exponential amount of overhead 
(Kaufman et al., 2002). The security of RSA is based on the difficulty of factoring big 
numbers. 

Stallings (2005) enumerated four types of attacks that can be conducted in order 
to break RSA: 

- Brute force: This involves trying all possible private keys. 

- Mathematical attacks: There are several approaches, all equivalent in effort to 
factoring the product of two primes. 

- Timing attacks: These depend on the running time of the decryption algorithm. 

- Chosen ciphertext attacks: This type of attack exploits properties of the RSA 
algorithm. 

 

In addition to these mentioned attacks, there is always the risk of having side-
channel attacks against a specific implementation of the algorithm. 

Stallings (2005) pointed out that the choice of a small constant value of d for 
efficient operation is not recommendable when using RSA algorithm. This is because, a 
small value of d is vulnerable to a brute-force attack and to other forms of cryptanalysis. 
So, there should be used a large key space when choosing the private key d. Thus, the 
larger the number of bits in d, the better. But, because the calculations involved, both in 
key generation and in encryption/decryption, are complex, the larger the size of the key, 
the slower will run the system. 

Oppliger (2005) underlined as well the importance of the size of the public and 
private exponents, from a security point of view. As presented above as well, working 
with small private exponents is dangerous. 

In Table 4.2 below there are enumerated the successful attempts of breaking RSA 
keys as responses to the challenges launched by RSA Laboratories. The level of effort is 
measured in MIPS-years: a million-instructions-per-second processor running for one 



 

Secure Communications: ‘End-to-end encryption’ in Jericho networks 

 

120

year, which is about 3 x 1013 instructions executed. A 1 GHz Pentium is about a 250-
MIPS machine. 

Number of 
Decimal Digits 

Approximate 
Number of 

Bits 

Date Achieved MIPS-years Algorithm 

100 332  April 1991  7 Quadratic sieve 

110  365 April 1992 75 Quadratic sieve 

120 398 June 1993 830 Quadratic sieve 

129 428 April 1994 5000 Quadratic sieve 

130 431 April 1996 1000 Generalized number 
field sieve 

140 465 February 1999 2000 Generalized number 
field sieve 

155 512 August 1999 8000 Generalized number 
field sieve 

160 530 April 2003  Lattice sieve 

174 576 December 2003  Lattice sieve 

200 663 May 2005  Lattice sieve 

 640 November 2005   

Table 4.2: Progress in Factorization (adapted after Stallings, 2005, RSA Laboratories 
Factoring Challenges1) 

Stallings (2005) remarked that the threat to larger key sizes is twofold: the 
continuing increase in computing power, and the continuing refinement of factoring 
algorithms. The different algorithms used in the last years resulted in a tremendous 
speedup. 

The cryptanalysis of RSA regards more the task of factoring n into its two prime 
factors.  

Consequently, special attention should be engaged when choosing a key size for 
RSA algorithm. Stallings (2005) recommended that for the near future, a key size in the 
range of 1024 to 2048 bits seems reasonable. A key of 512 bits is no longer considered 
secure. For achieving more security there should be used keys of 2048 bits or even of 
4096 bits. However, by using a large key size, the implementers and the users might get a 
false sense of security, which can raise other risks (e.g. side-channel attacks etc.). RSA 
Laboratories claimed that 1024-bit keys are likely to become broken some time between 
2006 and 2010, and that 2048-bit keys are sufficient until 2030, although these results are 
under dispute in the cryptographic community. 

                                                 
1 http://www.rsa.com/rsalabs/node.asp?id=2092 accessed June 2007 
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 The author advised also to choose carefully the prime numbers p and q, in order 
to prevent the discovery of p and q by exhaustive methods. It is recommended that these 
primes are chosen from a sufficiently large set (p and q must be large numbers). Also 
Oppliger (2005) advised that n must be at least as large as to make it impossible to use an 
existing algorithm to factorize n. Nowadays, there is a general consensus that at least 
1024-bit moduli should be used.  

When specific parameters are recommended for a cryptographic algorithm, the 
value of the data must be taken into consideration. Thus, it can be recommended in 
certain cases to use 2,048-bit moduli for the asymmetric encryption of more sensitive or 
valuable data. If a 10240-bit moduli is chosen, the parameters p and q must be about 512 
bits long each (Oppliger, 2005).  

Stallings (2005) enumerated a series of constraints that have been suggested 
previously by researchers. So, in order to avoid values of n that may be factored more 
easily, the algorithm’s inventors suggested the following constraints on p and q: 

- p and q should differ in length by only a few digits. Thus, for a 1024-bit key (309 
decimal digits), both p and q should be on the order of magnitude of 1075 to 10100

 

- Both (p-1) and (q-1) should contain a large prime factor.  

- gcd(p-1, q-1) should be small. 

4.3.2 Diffie-Hellman 

Diffie-Hellman is the first public-key algorithm that was invented by Whitfield 
Diffie and Martin Hellman and made public in 1976.  

Diffie-Hellman public-key algorithm is not used for encryption or signatures, but 
mainly for exchange of secret keys. It allows entities to agree on a shared key. So, this 
algorithm is typically used for key exchange (named also key agreement, key negotiation, 
key distribution etc.).  

Further, we shortly describe Diffie-Hellman key exchange protocol.  

- Let p be a large prime and g be a generator of Z*
p 

- Entities A and B (publicly) agree on p and g 

- Entity A picks a large random number x and computes X=gx mod p, where  

private exponent x ∈ {0, . . . , p − 1}  
- A keeps number x a secret, but not the calculated value X (the public exponent). A 

sends X to B 

- Entity B picks a large random number y and computes Y=gy mod p, where  

private exponent y ∈ {0, . . . , p − 1} (x and y should be 512-bit numbers chosen at 
random (Kaufman et al., 2002)) 
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-  B  keeps number y a secret, but not the calculated value Y.  

  B sends Y to A 
- A computes KAB =Yx mod p= gyx mod p 

- B computes KBA =Xy mod p= gxy mod p 

- KAB = KBA =K (by modular arithmetic) 

- K is the secret key between entities A and B 

 
It has been shown in the literature that, except entities A and B, the secret key K 

cannot be calculated by other parties that even possess the knowledge of gx mod p or gy 
mod p. So, even if an eavesdropper would know g, p, X, Y, cannot calculate gxy mod p. 
This problem is known as Diffie-Hellman Problem (DHP). Solving this problem is as 
difficult as solving the discrete logarithm problem (Kaufman et al., 2002; Oppliger, 
2005). 

Security of Diffie-Hellman 

As we mentioned already, the security of a public-key cryptosystem is conditional 
on some assumptions that certain problems are intractable.  

The security of Diffie-Hellman is based on the difficulty of solving the discrete 
log problem. This problem is equivalently difficult with the problem on which RSA is 
based (difficulty of factoring).  

In its original description, Diffie-Hellman does not provide authentication of the 
parties, so it is exposed to the man-in-the-middle attack (Mao, 2003; Stallings, 2005).  

The attacker in the man-in-the-middle attack establishes two distinct Diffie-
Hellman keys, one for communicating with A and the other for B. Further, it tries to 
masquerade as entity A for B, and as entity B for A. In fact, the attacker has total control 
of the communications between A and B. The solution for this type of attack is to 
introduce a method to authenticate the parties to each other.   

One of the solutions to prevent man-in-the-middle attack is, for each entity 
participating in the communication, to have already a permanent public number (e.g. X 
for A, Y for B) and the corresponding secret number that should be used for all the 
communications. In order for this technique to be usable, all the entities in the 
communicating set should previously agree on the common p and g. The generated public 
numbers for each entity are then published in a reliable manner (Kaufman et al., 2002). 
The generated public values, together with the global public values for p and g, are stored 
in some central directory.  

Whenever, user A wants to communicate with user B, can access user B's public 
value, calculate a secret key, and use that to send an encrypted message to user B. If the 
central directory is trusted, then this form of communication provides both confidentiality 
and a degree of authentication. In this case, only entities A and B can determine the key, 
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confidentiality of the communications is achieved. Entity B knows that only A could have 
sent the message using that key, and this provides authentication.  

This way of working for Diffie-Hellman protects it against active attacks. But this 
form of using authentication within Diffie-Hellman algorithm does not offer protection 
against replay attacks (Stallings, 2005). 

 For combating the man-in-the-middle attacks on Diffie-Hellman, the entities can 
be authenticated to each other by means of public-key certificates or digital signatures.  
 

Another issue regarding the security of Diffie-Hellman algorithm refers to the 
publicly known values, p and g. In certain situations, when these numbers don’t have 
some additional mathematical properties, the algorithm is less secure.  

For instance, it is desirable that also (p-1)/2 is also prime. A prime p that satisfies 
this additional constraint is called a safe prime or Sofie Germaine prime (Kaufman et al., 
2002). Although it is computationally expensive to choose p and g , it is not advisable to 
use the same p and g. 

4.3.3 Elliptic curve cryptography  

Oppliger (2005) acknowledged that Elliptic curve cryptography (ECC) is a hot 
topic in contemporary cryptography. The algebraic structures employed by ECC are 
groups of points on elliptic curves defined over a finite field Fn. Thus, ECC makes use of 
elliptic curves in which the variables and coefficients are all restricted to elements of a 
finite field. Two families of elliptic curves are used in cryptographic applications: prime 
curves over Zp and binary curves over GF(2m). 

An associative operation should be defined in order to make use of an elliptic 
curve. In ECC, this operation is called addition and signifies that two points on an elliptic 
curve are said to be added. However, this addition operation is explained geometrically in 
the literature dedicated to ECC.  

Stallings (2005) remarked that ECC is fundamentally more difficult to explain 
than either RSA or Diffie-Hellman. In the context of Jericho Project we aim to introduce 
the topic of ECC and to present the most interesting aspects regarding the security 
provided in comparison with the above presented public-key algorithms. 

Stallings (2005), Konheim (2007) defined a “hard problem” in order to form a 
cryptographic system using elliptic curves.  

Consider the equation Q = k · P where Q, P ∈Ep(a, b) and k < p. It is relatively 
easy to calculate Q given k and P, but it is relatively hard to determine k given Q and P. 
This is named the discrete logarithm problem for elliptic curves. 

For elliptic curve over Zp, the following equation can be used for defining an 
elliptic curve: 
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y2 mod p = (x3+ax+b) mod p; 4a3 + 27b2 ≠ 0 (mod p) 
 

For elliptic curves over GF(2m) there is used a cubic equation in which the 
variables and coefficients all take on values in GF(2m), for some number m, and in which 
calculations are performed using the rules of arithmetic in GF(2m). 

y2 +xy = (x3+ax+b), a, b ∈  GF(2m), b ≠ 0. 
 

Analog of Diffie–Hellman Key Exchange Using an Elliptic Curve 

Stallings (2005), Konheim (2007) described how a key exchange occurs by using 
elliptic curves.  

Key exchange using elliptic curves can be done in the following manner: 

- A large integer q is chosen, which is either a prime number p or an integer of the 
form 2m 

- Then elliptic curve parameters a and b are chosen for  the above mentioned 
equations used for elliptic curve cryptography. This defines the elliptic group of 
points Eq(a, b) 

-  Next, a base point G = (x1, y1) is chosen in Ep(a, b) whose order is a very large 
value n. The order n of a point G on an elliptic curve is the smallest positive 
integer n such that n·G = O 

- Eq(a, b) and G are parameters of the cryptosystem known to all participants 

 

A key exchange between entities A and B involves the following steps:  

- A selects an integer nA less than n. This is A’s private key. A then generates a 
public key PA = nA x G; the public key is a point in Eq(a, b). 

- B selects a private key nB and computes a public key PB = nB x G 

- A generates the secret key K = nA x PB. B generates the secret key K = nB x PA. 

 

The two calculations performed by A and B for calculating the secret key, produce 
the same result : 

nA x PB = nA x (nB x G) = nB x (nA x G) = nB x PA 

To break this scheme, an attacker would need to be able to compute k given G and 
k·G, which is assumed hard (Stallings, 2005). 
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G, nA x G and nB x G are transmitted in the clear; a and b are secret. The secrecy 
of the Diffie–Hellman elliptic curve key exchange is the complexity of elliptic curve 
“integer” factorization (Konheim, 2007). 

Further, there can be defined an elliptic curve cryptosystem and an elliptic curve 
digital signature algorithm. However, due to the time and space allocated to this thesis we 
do not present these algorithms.  

 

Security of ECC 

Stallings (2005) specified that the security of ECC depends on how difficult it is 
to determine k given k ·P and P. This is referred to as the elliptic curve logarithm 
problem. 

It is said that ECC provides the most security per bit when used for securing the 
communications.  

Oppliger (2005) mentioned that the elliptic curve cryptosystems are equally 
secure with smaller key sizes than their conventional counterparts, RSA and Diffie-
Hellman.  

The advantage of ECC (pointed out by Certicom1) is that its inverse operation in 
the defined “hard problem” gets harder, faster, against increasing key length than do the 
inverse operations in DH and RSA. 

This signifies that as security requirements become more stringent, and as 
processing power gets cheaper and more available, ECC becomes the more practical 
system for use in the future for securing the communications. These properties of ECC 
are important for implementations in which key sizes and performance are important 
issues (e.g. smartcards).  

 Further, at the end of this chapter we will provide a comparison of the presented 
public-key cryptography algorithms in terms of security offered and key length. 

4.4 Symmetric-key cryptography  

In this sub-chapter we describe how symmetric key algorithms work and the 
security services they offer for secure communications.  

 As we already mentioned, in symmetric-key cryptography, the same key is used 
for encryption and decryption.  The plaintext is encoded by mangling it with a secret key. 
The decryption process requires knowledge of the same key, and reverses the mangling. 
Using the same notation from Section 4.1, basically, symmetric-key cryptography can be 
represented as follows: 
                                                 
1 http://www.certicom.com/  
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D kd(E ke(m) ) =m, with the condition that kd= ke 
 
 In Figure 4.2 there is illustrated a simplified model for symmetric-key 
cryptography: 
 

 
Figure 4.2: Simplified model for symmetric-key cryptography 
 

The decryption algorithm is the reverse of the encryption algorithm. For 
decryption, the encryption algorithm is run in reverse on the ciphertext using the secret 
key. 

In order for symmetric-key cryptography to be used securely there are two basic 
requirements that have to be taken into consideration (Stallings, 2005).  

Firstly, a strong encryption algorithm should be used, in the sense that even if an 
attacker has knowledge of the algorithm and has intercepted a ciphertext, would still be 
unable to decrypt it or retrieve the key with the information available at hand. In a more 
restrictive form, this requirement establishes that the attacker should be unable to 
discover the secret key even if it has access to different ciphertexts and to the 
corresponding plaintexts.  

Secondly, the secret key should be distributed in a secure manner to the entities 
involved in the communication process.  

As we mentioned in Section 4.1, there are certain operations that are performed on 
the plaintext messages for transforming it in the ciphertext. Substitutions and 
permutations are used in the design of symmetric cryptosystems in order to obtain 
confusion and diffusion.  

In the design of symmetric encryption systems, permutations and substitutions are 
usually used and combined (sometimes in multiple rounds) to provide confusion and 
diffusion (Schneier, 1996; Menezes et al., 1997, p. 20; Oppliger, 2005, p. 238; Stallings, 
2005). The terms confusion and diffusion were introduced by Claude Shanon  in 1949 in 
his article “Communication Theory of Secrecy Systems”. These two techniques are 
intended to offer protection against cryptanalysis attackes based on statistical analysis. 
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In diffusion, the statistical structure of the plaintext is distributed into long-range 
statistics of the ciphertext. The influence of a single plaintext bit is spread among several 
ciphertext bits. The patterns, structures or redundancies in the plaintext are dissipated in 
the ciphertext. As Stallings (2005) observed, the purpose of diffusion is to make the 
statistical relationship between the plaintext and ciphertext as complex as possible in 
order to thwart attempts to deduce the key. 

The mechanism of confusion is intended to make the relationship between the 
encryption key and the statistics of the ciphertext as complex as possible in order to stop 
the attempts of discovering the key.  

The symmetric-key cryptosystems are mainly designed and used for minimizing 
the computations required to encrypt and decrypt the message units. Possible drawbacks 
of these cryptosystem can arise from the flaws in securely distributing the secret key 
between the communicating parties. This poses great risks in the case that attackers can 
obtain access to secret key or keys (Jaworski & Perrone, 2000).  

Further on, we will describe some of the most representative symmetric-key 
algorithms.   

4.4.1 Data Encryption Standard (DES) 

 Data Encryption Standard (DES) is a symmetric cipher defined in Federal 
Information Processing (FIPS) Standard Number 461 in 1977 as the federal government 
approved encryption algorithm for sensitive but non-classified information.  
 In the literature (Schneier, 1996; Menezes et al., 1997; Kaufman, 2002; Mao, 
2003; Rhee, 2003; Oppliger, 2005; Stallings, 2005; etc.) there are allocated considerable 
spaces for the thorough description of the DES algorithm. 
 DES was developed by IBM in the 1970s and was based upon the previous 
research done by IBM for Lucifer cipher. DES algorithm was adopted as adopted in 1977 
as the Data Encryption Standard by the National Bureau of Standards (NBS) as FIPS 
PUB 46. Nowadays, the FIPS PUBS are developed and maintained by the National 
Institute of Standards and Technology (NIST). NIST recommended the use of DES for 
applications other than the protection of classified information. The standard (DES) was 
reaffirmed in 1983, 1988, 1993, and 1999, and it was officially withdrawn in July 20042. 
 The last reaffirmation in 19993 of the Data Encryption Standard contains the 
specifications of DES and of Triple Data encryption Algorithm (TDEA) that can be used 
for protecting highly sensitive data (Oppliger, 2005; p. 239). Typically, the triple DEA 
algorithm is referred as triple DES (3DES).  

Firstly, we will have a look at DES, and then, an overview of 3DES will be 
provided later in this chapter.  

The design of DES is based on two general concepts: product ciphers and Feistel 
ciphers (Menezes et al., 1997, p. 250). Further, these ciphers are shortly explained.  
                                                 
1 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf accessed May 2007  
2 http://csrc.nist.gov/Federal-register/July26-2004-FR-DES-Notice.pdf accessed May 2007 
3 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf accessed May 2007  
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 A product cipher refers to the design of a complex encryption function by 
composing several simple operations (transpositions, translations (e.g. XOR) and linear 
transformations, arithmetic operations, simple substitutions etc.) that used together offer 
complementary, but individually insufficient protection.  
 The definition of product cipher, provided by Menezes et al. (1997, p. 251), states 
that it combines two or more transformations in a manner intending that the resulting 
cipher is more secure than the individual components. 
 
  

Feistel Ciphers 
 
Feistel (1973) proposed the use of a cipher that alternates substitutions and 

permutations on block plaintexts (Menezes et al., 1997; Oppliger, 2005; Stallings, 2005; 
etc.).  

For Feistel cipher, the alphabet is Σ = Z2 = {0, 1}, and the block length is 2t (for a 
reasonably sized t ∈  N+). The Feistel cipher runs in r ∈  N+ rounds. For every k ∈  K, 
there are generate r round sub-keys k1, . . . , kr that are used on a per-round basis. In 
general, the sub-keys ki are different from K and from each other (Stallings, 2005). 

Firstly, the encryption function, Ek, divides the plaintext message block m into 
two halves of t bits each.  We consider, L0 be the left half, and R0 be the right half, so a 
message m has for instance the structure m = (L0,R0). The two halves of the plaintext 
message unit pass through r rounds of processing and then combine to produce the 
ciphertext block. 

Each round i has as inputs Li−1 and Ri−1, derived from the previous round, as well 
as a sub-key ki. A sequence of pairs (Li,Ri), for i = 1, . . . , r,  is then recursively computed 
as follows: 

(Li,Ri) = (Ri−1, Li−1 ⊕  fki (Ri−1))  
This means that Li = Ri−1 and Ri = Li−1 ⊕  fki (Ri−1).  

For i = 1, then L1 and R1 are computed as follows: 

L1 = R0 
R1 = L0 ⊕  fk1(R0) 

For the last round, r, Lr and Rr are computed as follows: 

Lr = Rr−1 
Rr = Lr−1 ⊕  fkr (Rr−1) 

The cipher block is represented by the pair (Rr,Lr), rather than (Lr,Rr),. Thus, the 
encryption of plaintext message m using key k can formally be expressed as follows: 

Ek(m) = Ek(L0,R0) = (Rr, Lr) 
In Feistel cipher, for recursive computation of Li and Ri, the following formula 

can be used: 
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(Li−1,Ri−1) = (Ri ⊕ fki(Li), Li).  
 
The decryption of Feistel cipher uses the same encryption algorithm by applying 

the round keys in reverse order, kr, . . . , k1. For the decryption process, the input is 
formed by the ciphertext and the round keys in reverse order.  

In Figure 4.3 there is illustrated the encryption process going down the left-hand 
side and the decryption process going up the right-hand side for a 16-round algorithm 
(after Stallings, 2005). The following notation is used: LEi and REi represent the block 
units processed through the encryption algorithm, and LDi and RDi for the lock units 
processed through the decryption algorithm. 

Regarding the relation between the encryption and decryption block units at each 
round in Feistel cipher, Stallings (2005) made the following observation: considering the 
output of the ith encryption round being LEi || REi (with the signification LEi concatenated 
with REi), then the corresponding input to the 16th decryption round is REi || LEi, or 
equivalently RD16-i || LD16-i .  
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Figure 4.3: Feistel Encryption and Decryption (adapted after Stallings, 2005) 
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DES Description  

DES is a symmetric block cipher that operates on 64-bit blocks and uses a 56-bit 
key. DES encrypts data in blocks of 64 bits. Basically, DES is a Feistel cipher with t=32 
(so, the block length is 64 bit) and r=16 (for rounds) (Oppliger, 2005, p. 241). 

The DES encryption and decryption algorithms operate in 16 rounds. The input to 
the algorithm is a 64-bit block of plaintext and the output from the algorithm is a 64-bit 
block of ciphertext after 16 rounds of identical operations. The key length is 56 bits by 
removing the 8 parity bits. Every eighth bit from the initial 64-bit key is used for parity 
checking and is ignored.  

The basic building block of DES is a suitable combination of permutation and 
substitution on the plaintext block. DES applies the same combination of techniques on 
the plaintext block 16 times. 

Typically, for an encryption scheme there are two inputs to the encryption 
function: the plaintext to be encrypted and the key. For DES as well, the encryption 
function will have as input 64-bit plaintext message units to be encrypted and the 56-bit 
key. 

In DES, the processing of the plaintext proceeds in three phases (Stallings, 2005). 
Firstly, the 64-bit plaintext block X is transposed under the initial permutation IP, 
resulting X0 = IP(X) = (L0,R0). Then, the following phase consists of 16 rounds of the 
same function that involved both permutation and substitution operations. The output of 
the last round (the 16th) consists of 64 bits that are a function of the input plaintext and 
the key. The left and right halves of the output are swapped to produce the pre-output. 
Finally, the pre-output is passed through a permutation (IP-1) that is the inverse of the 
initial permutation function, to generate the 64-bit ciphertext block Y. 

Figure 4.4 gives an overview of the basic structure of DES (adapted after 
Kaufman et al., 2002, p. 65). 
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Figure 4.4: Basic Structure of DES 
 
Further, we provide a short explanation of the DES encryption scheme. Firstly, 

the 64-bit input will pass through an initial permutation (IP(m)) from which results a 64-
bit shuffled input. The 56-bit key is used to generate 16 keys of 48-bit per-round. This is 
done by selecting different 48-bit subsets from the initial 56-bit key for each round key. 
The input of each round consists of 64-bit output of the previous round and the 48-bit 
per-round key; then, an output a 64-bit is produced. 

DES encryption consists of 16 rounds. After IP(m) is performed, a 16 round 
Feistel cipher is applied to IP(m). The 64-bit input plaintext is divided into 32-bit halves 
L0 and R0. The rounds are functionally equivalent, 32-bit inputs Li−1 and Ri−1 are used 
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from the previous round and the 32-bit outputs Li and Ri for 1 ≤ i ≤ 16 are generated as 
follows: 

 
Li = Ri−1 
Ri = Li−1 ⊕  f (Ri−1, Ki), where f (Ri−1; Ki) = P(S(E(Ri−1) ⊕  Ki)) 
 
- E represents a fixed expansion permutation 
- P is another fixed permutation on 32 bits 
 

After the last round, the left and right halves are exchanged and, finally, the 
resulting message is bit-permuted by the inverse of IP.  

After 16 rounds are performed, the left and the right part of the final 64-bit output 
are swapped, and then another permutation is performed on this 64-bit message unit by 
the inverse of IP.  

Decryption involves the same key and algorithm, but with subkeys applied to the 
internal rounds in the reverse order. The decryption process for DES algorithm works by 
running DES algorithm backwards (Kaufman et al., 2002, p. 65). 

It has been analyzed in the literature the initial and the final permutation on the 
data included in DES do not increase the security of the algorithm and have no apparent 
cryptographic significance, but one reason might be to make DES less efficient to be 
implemented in software (Kaufman et al., 2002, p.66;  Mao, 2003). For instance, the 
Initial Permutation (IP) is a fixed function (e.g. is not parameterized by the input key) and 
is also publicly known.  

Further on, Figure 4.5 illustrates how the encryption and decryption algorithms 
work in a DES round.  

 

⊕ ⊕
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Figure 4.5: DES Round 
 
In encryption process in one DES round, the following actions occur: 

- the 64-bit input is divided into two 32-bit halves Li and Ri for 1 ≤ i ≤ 16 

- outputs Li+1 and Ri+1 are generated  

- then Li+1 and Ri+1 are concatenated and results the 64-bit output of the round 

- in a DES round, Li+1 is Ri 

- Ri+1 is obtained as follows: Li and Ki constitute the input to a mangler function; 
the function generates a 32-bit output; then, the operation “⊕ ” is applied to this 
32-bit output together with Li, and  results Ri+1 

 
In decryption process in one DES round, the following actions occur: 

- the 64-bit input is formed by Li+1 concatenated with Ri+1, and these two halves 
are known; we want to determine Li and Ri 

- Ri is L+1; Ki is also known 

- we know already that Ri+1= Li⊕mangler(Ri, Ki); we want to determine Li 

- mangler(Ri, Ki) is computed, then the output is “⊕ ” with Ri+1 , and it results Li  

- The mangler function is not reversible, although DES algorithm is reversible 

- Ri+1 is obtained as follows: Li and Kn constitute the input to a mangler function; 
the function generates a 32-bit output; then, the operation “⊕ ” is applied to this 
32-bit output together with Li, and  results Ri+1 

 
 

The mangler function takes as input the 32 bits of data (Ri) and the 48-bit key (Ki,) 
and generates a 32-bit output. The operation exclusive-or (⊕ , module 2 or XOR) is 
applied between the output of the mangler function and Li, and it results Ri+1.   

Firstly, mangler function expands Ri to 48-bit value, by divining it into 4-bit 
chunks that are then expanded to 6-bit chunks by taking the adjacent bits and 
concatenating them to the chunks (Kaufman et al., 2002). For this, an expansion function 
is being used E : {0, 1}32 → {0, 1}48. 

 This operation is illustrated in the following figure: 
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Figure 4.6: Expansion of Ri to 48-bit value 
 
Further, the 48-bit Ki is split also in chunks of 6 bits. Then the corresponding 

chunks of Ki are ⊕  with the corresponding 6-bit chunks of the expanded Ri; then the 
output of 6 bits value constitutes the input for S-box (a function Si : {0, 1}6 −→ {0, 1}4

 ).  

The S-box maps several input values to the same output value. The 4-bit output of 
each of the eight S-boxes is concatenated into a 32-bit output that is subject to a 
permutation before being ⊕ ’d with Li.  The result is Ri+1. 

Security of DES 

 Talbot & Welsh (2006, p. 117) stated that even now the best known practical 
attack on DES is by brute force, that is searching through all 256 possible keys. In 1998, 
the Electronic Frontier Foundation1 built a machine that succeeded in decrypting a DES 
ciphertext message after approximately three days.  

Oppliger (2005, p. 250) affirmed that the most serious vulnerabilities and security 
problems of DES are caused due to the relatively small key length and the corresponding 
feasibility of an exhaustive key search. The author suggests some solutions for protecting 
a block cipher with a small key length, such as: the keys can be frequently changed, or a 
complex key set up procedure can be used. The simplest suggested method for protecting 
a block cipher against exhaustive key search attacks is to use sufficiently long keys. 

  
For solving the problem of small key length for DES, there are three possibilities:  

-  The DES may be modified in a way that compensates for its relatively small key 
length 

-  The DES may be iterated multiple times (this resulted in TDEA or 3DES) 

-  An alternative symmetric encryption system with a larger key length may be used 
(e.g. AES ). 

 
DES was still reaffirmed as a federal standard in 1999, despite the fact that a brute 

force attack on DES was already known to be feasible. However, it was then 
recommended that a variant known as Triple DES be used instead. 

                                                 
1 http://www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/ accessed May 2007 
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Because DES has been subject to public scrutiny since 1977, it has been shown 
that there are sixteen DES keys that have certain properties and should be avoided to be 
used (Kaufman, 2002, p. 74; Oppliger, 2005, p. 247; Menezes et al., 1997, p. 257). There 
are 4 weak keys and 12 semi-weak keys, and these keys are less secure than other keys.. 
Still, the probability to generate one of these keys is 16/256 , which, in the opinion of 
cryptography literature authors (Schneier, 1996; Kaufman, 2002, p. 74; Oppliger, 2005, 
p. 248), is negligible.  

A DES key k is weak if DESk(DESk(m)) = m for all m∈M= {0, 1}64, meaning that 
the DES encryption with k is inverse to itself (e.g. if m is encrypted twice with a weak 
key, then the result is again m). 

The DES keys k1 and k2 are semi-weak if DESk1 (DESk2 (m)) = m for all m∈M= 
{0, 1}64, meaning that the DES encryptions with k1 and k2 are inverse to each other. 

4.4.2  3DES 

An alternative to solve the problem of small key length for DES is to use multiple 
encryption with DES and multiple keys. 

Multiple iterations have to be done with different keys in order to improve 
security of the algorithm.   

It has been shown in the literature (Rhee, 2003; Oppliger, 2005; Stallings, 2005) 
that given any encryption keys K1 and K2, it would not be possible to find a third key K3 
such that: 

E(K2,E(K1,m))=E(K3,m) 
 
 When DES is iterated two times using two encryption keys it becomes vulnerable 
to the man-in-the-middle attack. This supposes that an adversary has in possession some 
(plaintext, ciphertext) pairs (mi, ci), ci is derived from a double encryption of mi with K1 
and K2, and he/she wants to find K1 and K2. The attack is thoroughly described by 
Oppliger (2005), Stallings (2005). 

 This is one of the reasons why DES should be iterated 3 times, resulting in the use 
of 3DES. As we already mentioned, 3DES or Triple Data Encryption Algorithm (TDEA) 
is specified by FIPS PUB 46-31.  

 3DES can be used alternatively with two keys (K1 = K3, K2) or with three keys 
(K1, K2, K3). The last version is preferred, as it results in a great increase in cryptographic 
strength (Rhee, 2003). Another option, mentioned by Oppliger (2005, p. 255), is to 
consider all three keys equal (K1 = K3 = K2), this representing a single-key DES 
implementation.  

 
                                                 
1 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf accessed May 2007 
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 The 3DES encryption process works in the following way:  
 

c = E(K3, ( D (K2, E(K1,m))),  

which is an EDE (“encrypt-decrypt-encrypt”) process. 

Stallings (2005) mentioned that 3DES with three keys would be a preferred 
alternative encryption algorithm by the researchers due to the cryptographic strength 
given by the 168-bit key length. The authored stated also that 3DES . 

Moreover, Stallings (2005) stated that 3DES is advantageous from two points of 
view. Firstly, the fact that is has 168-bit key length overcomes the vulnerability to brute-
force attack of DES. Secondly, the encryption algorithm in 3DES is the same as in DES. 
The underlying algorithm of DES has been subjected to more scrutiny than any other 
encryption algorithm over a longer period of time, and no effective cryptanalytic attack 
based on the algorithm rather than brute force has been found. Consequently, there is a 
high level of confidence that 3DES is very resistant to cryptanalysis.  
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4.4.3 International Data Encryption Algorithm (IDEA) 

International Data Encryption Algorithm (IDEA) originally being called 
Improved Proposed Encryption Standard (IPES), was developed in the early nineties by 
Xuejia Lai and James Massey at Swiss Federal Institute of Technology in Zurich 
(ETHZ). 

IDEA encrypts 64-bit plaintext unit blocks into 64-bit ciphertext unit blocks using 
a 128-bit key. The same algorithm is used for encryption and decryption. IDEA operates 
also in rounds as DES. But each primitive operation in IDEA maps two 16-bit quantities 
into a 16-bit quantity, whereas each DES S-box maps a 6-bit quantity into a 4-bit 
quantity. 

This cryptosystem contains three primitive operations and they are all easy to be 
computed in software for creating a mapping and are also reversible (for decryption). The 
operations used within IDEA are: XOR (bitwise exclusive or “⊕ ”), addition modulo 216, 
multiply modulo 216+1. The result has to be always 16 bits and this is not always the case 
when adding or multiplying two 16-bit quantities.  

The algorithm expands the 128-bit key into 52 16-bit keys. The key expansion is 
executed differently for encryption than for decryption, but the encryption ad decryption 
operations are the same in this cryptosystem (Kaufman et al., 2002). The decryption sub-
keys are either the additive or multiplicative inverses of the encryption sub-keys.  IDEA 
has eight rounds that can be treated also as sixteen rounds (odd rounds and even rounds). 
In the literature (Schneier, 1996; Menezes et al., 1997; Kaufman et al., 2002), IDEA 
algorithm is described thoroughly.  

For IDEA some classes of weak keys have been found (Daemen et al., 1994), but 
they are so rare so there is no need to avoid them explicitly. It can be attempted to break 
IDEA by exhaustive search on 128-bit key space, but this requires unbelievable 
computing resources (Kaufman et al., 2002). 

In 2003, Demirci et al. presented their findings about a “new man-in-the-middle 
attack” on the reduced-round versions of IDEA block cipher. Also, they mentioned in 
their paper other kind of attacks that have been applied by other authors on reduced-
round versions of IDEA.  

In addition, Demirci et al. (2003) made a review of the previous attacks on IDEA 
and their complexity, the number of rounds, the number of chosen plaintexts needed in 
order to conduct the respective attacks, the necessary memory.  
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4.4.4 Advanced Encryption Standard (AES) 

 In January 1997, National Institute of Standards and Technology (NIST) launched 
another competition for selecting a new encryption standard to be used for protecting 
sensitive, non-classified U.S. government information.  

 After close examination of different submissions, NIST chose an algorithm named 
Rijndael named so after the cryptographers that designed it (Joan Daemen & Vincent 
Rijmen).   

 The NIST criteria1 for evaluating AES algorithm for becoming a new standard are 
summarized in Table 4.3. 

 
Security Actual security: compared to other submitted algorithms (at the same key and block 

size). 
 
Randomness: the extent to which the algorithm output is indistinguishable from a 
random permutation on the input block. 
 
Soundness: of the mathematical basis for the algorithm's security. 
 
Other security factors: refer to any attacks that demonstrate that the actual security 
of the algorithm is less than the strength claimed by the submitter. 
 

Cost Licensing requirements: the algorithm(s) specified in the AES shall be available on 
a worldwide, non-exclusive, royalty-free basis. 
 
Computational efficiency: The evaluation of computational efficiency will be 
applicable to both hardware and software implementations. Computational efficiency 
essentially refers to the speed of the algorithm.  
 
Memory requirements: The memory required to implement a candidate algorithm 
for both hardware and software implementations of the algorithm.  
 

Algorithm and 
Implementation 
Characteristics 
 

Flexibility: Candidate algorithms with greater flexibility will meet the needs of more 
users than less flexible ones, and therefore, inter alia, are preferable. However, some 
extremes of functionality are of little practical application (e.g., extremely short key 
lengths); for those cases, preference will not be given.  
 
Some examples of flexibility may include (but are not limited to) the following: 

a. The algorithm can accommodate additional key- and block-sizes (e.g., 64-bit 
block sizes, key sizes other than those specified in the Minimum 
Acceptability Requirements section, [e.g., keys between 128 and 256 that are 
multiples of 32 bits, etc.]) 

b. The algorithm can be implemented securely and efficiently in a wide variety 
of platforms and applications (e.g., 8-bit processors, ATM networks, voice & 

                                                 
1 http://csrc.nist.gov/CryptoToolkit/aes/round1/aes_9809.htm  
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satellite communications, HDTV, B-ISDN, etc.). 
c. The algorithm can be implemented as a stream cipher, message 

authentication code (MAC) generator, pseudorandom number generator, 
hashing algorithm, etc. 

 
Hardware and software suitability: A candidate algorithm shall not be restrictive in 
the sense that it can only be implemented in hardware. If one can also implement the 
algorithm efficiently in firmware, then this will be an advantage in the area of 
flexibility. 
 
Simplicity: A candidate algorithm shall be judged according to relative simplicity of 
design. 

Table 4.3: NIST Evaluation for AES (adapted after Stallings, 2005) 
 
 In 2000, there were defined more specifically other evaluation criteria for 
Rijndael cipher.  

AES is intended to replace 3DES more because of efficiency reasons. But still, 
3DES remains an approved algorithm for use in the future.  

The new cryptographic algorithm, AES, became a Federal Information Processing 
Standard1 in November 2001, and became effective in May 2002, under the name 
Advanced Encryption Standard.  

 Rijndael is a symmetric block cipher with variable block and key length. The 
block and key length can be chosen independently from 128, 160, 192, 224, and 256 bits. 
For AES the block-length was fixed to 128-bit and three different key sizes (128, 192 and 
256-bits) were specified. 

 In the case of a brute force attack on AES cipher, an exhaustive search on 2128 (= 
3.4 x 1038) possible 128-bit keys, 2192 (= 6.2 x 1057) possible 192-bit keys, and 2256 (= 1.1 
x 1077) possible 256-bit keys should be performed2.  
 

Stallings (2005) declared that Rijndael was designed to have the following 
characteristics: 

  - Resistance against all known attacks 

  - Speed and code compactness on a wide range of platforms 

  - Design simplicity 

 
Similarly to DES, AES is an iterated block cipher with a block length of 128 bits 

and a variable key length of 128, 192, or 256 bits. Therefore, AES-128, AES-192 and 

                                                 
1 FIPS 197 contains the actual specification of AES  http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf  
2 http://csrc.nist.gov/CryptoToolkit/aes/aesfact.html accessed May 2007 
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AES-256 resulted as three different versions of AES. The number of rounds for each 
version of AES depends on the key length (e.g. 10, 12 or 14 rounds).  

Although initially it has been publicly informed by NIST1 that AES can be used 
for protecting unclassified sensitive information, in 2003 it has been announced by The 
Committee on National Security Systems2 U.S. that National Security Agency (NSA) 
agreed that AES algorithm (for all the key length e.g. 128, 192, 256 bits) can be used to 
protect classified information up to the SECRET level. TOP SECRET information will 
require use of either the 192 or 256 bits key lengths. Either, NSA suspected fundamental 
weakness in keys that have a shorter length, or they might give preference to a safety 
margin for top secret documents. 

 
This can be summarized as showed in Table 4.4: 
 

 Nb Nk Nr 
AES-128 4 4 10 
AES-192 4 6 12 
AES-256 4 8 14 

Table 4.4: The three official versions of AES 
 
- Nb represents the block length (the number of 32-bit words in an encryption block) 

- Nk refers to the key size in 32-bit words  

- Nr represents the number of rounds 
 
The number of rounds, Nr, is a function of the other two parameters (Nb and Nk). 

It needs to be larger for longer keys, so it would become as difficult to break the 
encryption algorithm as it would be to perform a brute-force attack to recover the 
respective key. This allows also sufficient mixing in the encryption process, such that 
each bit of the plaintext block has a complex effect on the resulting ciphertext block 
(Kaufman et al., 2002). 

Rijndael specifies the following formula for the number of rounds:  

Nr = 6 + max (Nb, Nk) 
 
 

The official versions of the AES all work with a block size of Nb · 32 = 4 · 32 = 
128 bits. Despite this, some authors (El Aoufi, 2006, p. 50-51; Stamp, 2006, p. 46) 
presented also the cases of AES algorithm with different block lengths (e.g. 128, 192, 256 
bits). 

                                                 
1 FIPS 197 contains the actual specification of AES  http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf accessed May 2007 
2 http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf accessed May 2007 
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This is summarized in Table 4.3 that complements the results presented in Table 
4.5. 

 
     Block size   (words/bytes/bits)   
 
 
       Key size 
(words/bytes/bits)                

  
 

4/16/128 

 
 

6/24/192 

 
 

8/32/256 

4/16/128 10 rounds 12 rounds 14 rounds 
6/24/192 12 rounds 12 rounds 14 rounds 
8/32/256 14 rounds 14 rounds 14 rounds 

 
Table 4.5: The necessary rounds for different key and block lengths for AES  

 

The formula Nr = 6 + max (Nb, Nk) that represents the way of calculating the 
number of rounds holds for larger block lengths for AES cipher.  

 
Internally, AES operates on a two-dimensional array of bytes and this represents 

its state. The state has 4 rows and Nb 4-octet (32 bits) columns.  

The input to the encryption and decryption algorithms is a 128-bit block. The 
input block is represented as a square matrix of bytes that is further transmitted in the 
state array. The state array is modified at each round of encryption or decryption. After 
the final round, state is copied column by column in the output matrix. Rounds 1 to Nr -1 
comprise an identical sequence of operations (see further the description), while in round 
Nr one operation is omitted.  

The key that is a 4 Nk-octet block is also depicted as a square matrix of bytes1. 
The key is further divided into Nk 4-octet columns. Then additional columns are created 
until (Nr+1)·Nb number of columns are reached, this representing the exact amount of 
expanded key required.  

Rijndael is based on the following primitive operations: 

1. Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block 
    The bytes of the state are substituted according to a given substitution table (this 
transformation is called SubBytes() in the AES specification). 
 
2. ShiftRows: This represents a simple permutation 
    The rows of the state are shifted left by different offsets (this transformation is called 
ShiftRows() in the AES specification). 
 

                                                 
1 Note that the ordering of bytes within a matrix is by column. 
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3. MixColumns: A substitution that makes use of arithmetic over GF(28)  
    The data within each column of the State are mixed (this transformation is called 
MixColumns() in the AES specification). 
 
4. AddRoundKey: A simple bitwise XOR of the current block with a portion of the 
expanded key 
     A round key is added to the state (this transformation is called AddRoundKey() in the 
AES specification). 
 

It is worthy to note that the SubBytes() and ShiftRows() transformations 
commute. This implies that if a SubBytes() transformation is immediately followed by a 
ShiftRows() transformation, this is equivalent to a ShiftRows() transformation 
immediately followed by a SubBytes() transformation (Oppliger, 2005). 

Each round, except the final round, comprises the four different operations 
mentioned above that are considered internal functions to be described and performed in 
a moment (Mao, 2003). In the final round, the MixColumns() operation is omitted. The 
round transformations are invertible for the purpose of decryption.  

 
Mao (2003) analyzed in detail these primitive operations and he concluded that 

they are quite simple, so their implementation can be done with extremely good 
efficiency.  

 
In Figure 4.7 is illustrated the basic structure of AES encryption algorithm 
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Figure 4.7: Basic Structure of AES encryption and decryption (adapted after Kaufman et 
al., 2002; Stallings, 2005; El Aoufi, 2006) 
 
 As we can observe from Figure 4.7, AES decryption can be implemented by 
applying the inverse of the primitive operations in opposite sequence from that in the 
encryption algorithm. 
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The individual primitive operations used in the AES decryption algorithm are named 
InvShiftRows(), InvSubBytes(), InvMixColumns(), and AddRoundKey(). The 
AddRoundKey() transformation is its own inverse, as it only involves a bitwise addition 
modulo 2. As the SubBytes() and ShiftRows() operations commute, this holds also for 
their inverse InvSubBytes() and InvShiftRows() operations. 

Security Analysis of AES 
  
 AES is still believed to be very secure1 due to the fact that it has been designed to 
resist against classical approximation attacks, such as linear cryptanalysis, differential 
cryptanalysis.  

Despite this, nowadays there have been reported some successful attacks against 
Rijndael/AES algorithm (Schneier, 2005; El Aoufi, 2006).  

Some research groups of Institute for Applies Information Processing and 
Communication have reported and summarized on their website2 the latest security 
aspects regarding AES algorithm.  

The attacks against Rijndael/AES algorithm, and generally against block ciphers, 
are usually performed on some slightly adjusted versions of the cryptosystems that have 
fewer rounds than the official versions. For instance, attacks that succeeded to break the 
AES cipher were executed on versions with 6, 7 and 9 rounds.  

Table 4.6 presents a summary of these attacks3 on AES (Oswald et al., 2002, p.1; 
Al Aoufi, 2006, p. 67) 

Attack Year Paper AES-128  
10 Rounds 

AES-192  
12 Rounds 

AES-256  
14 Rounds

Related Key 2005 Biham et al. (2005)  9 rounds  

Truncated 
Differential 

2003 Jakimoski & Desmedt (2004)  6 rounds  

Impossible - 
Differential 
Related-Key 

2003 Jakimoski & Desmedt (2004)  8 rounds  

Impossible 
Differential 

2001 Cheon et al. (2001) 6 rounds   

Square Attack 2000 Lucks (2000)  7 Rounds 7 Rounds 
Square Attack 2000 Ferguson et al. (2000) 7 Rounds 7 Rounds 9 Rounds 
Collision Attack  2000 Gilbert & Minier (2000) 7 Rounds 7 Rounds 7 Rounds 
 
Table 4.6: The best known short-cut attacks on each of the three official AES versions  
 

                                                 
1 http://www.cryptosystem.net/aes/ accessed May 2007 
2 http://www.iaik.tugraz.at/research/krypto/AES/index.php accessed May 2007 
3 http://www.iaik.tu-graz.ac.at/research/krypto/AES/#security accessed May 2007 
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As far as we know up to now, these are the attacks reported in the literature on 
AES algorithm. The reports about these attacks raise worries among cryptographers 
regarding the security of AES. The margin between the number of rounds specified by 
the cipher and the rounds of the best known attacks is becoming smaller and smaller for 
achieving and maintaining the desired level of security. The risks reside in the possibility 
of finding ways to improve these attacks so that AES algorithm can be broken.  

Some researchers1 revealed a new type of attacks on block ciphers, namely on 
Rijndael/AES. These attacks that are named algebraic attacks are based on the algebraic 
and mathematical structure of the cryptosystems. Currently, these new algebraic attacks 
are not practically applicable for Rijndael algorithm due to the complicated calculations 
that should be done. But research is further conducted in this direction.  

Other types of attacks against Rijndael/AES algorithms are those referred as side- 
channel attacks. Side channel attacks do not perform attacks on the underlying cipher, but 
rather they attack based on information gained from the physical implementation of the 
cipher on systems which inadvertently leak data. Examples of side-channel attacks are the 
timing attacks, power analysis, fault analysis. These attacks make assumptions about the 
implementations of the ciphers and use additional information gained from attacking 
those implementations. Timing attacks assume that an attacker knows the relative time a 
particular encryption operation takes. 

In the literature2 (Bernstein, 2005; Osvik et al., 2005; etc.) there are presented 
different side-channel attacks on AES algorithm and the research conducted in the field 
of side-channel analysis. 

4.4.5 Camellia 

Camellia supports 128-bit block size and 128, 192, and 256-bit key lengths. 

Camellia was developed jointly by Nippon Telegraph and Telephone Corporation 
(NTT) and Mitsubishi Electric Corporation in 2000.  It was designed to withstand all 
known cryptanalytic attacks, and it has been scrutinized by worldwide cryptographic 
experts.  

Camellia is internationally recognized as the unique 128-bit block cipher that 
possesses the security level and processing capability equivalent to AES. Moreover, 
Camellia was selected as the EU recommended cipher and E-government recommended 
cipher in 2003 and was also adopted as the ISO/IEC international standard cipher.  

Due to its security features, Camellia is proposed for implementation also in the 
design of security protocols such as SSL/TLS, IPsec and XML Encryption.  

                                                 
1 http://www.cryptosystem.net/aes/ accessed May 2007  
2 http://www.iaik.tugraz.at/research/krypto/AES/index.php#sca accessed May 2007 
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4.4.6 RC4 

 RC4 is one of the most popular symmetric stream ciphers.  
 
Stream ciphers use internal state, thus the ith ciphertext unit depends on the ith 

plaintext unit, the secret key, and some state.  Stream ciphers are of two types: 
synchronous (or additive) stream ciphers and non-synchronous (or self-synchronizing) 
stream ciphers.  

Typically, a stream cipher generates a one-time pad and applies it to a stream of 
plaintext by using the operation ⊕ (XOR or addition modulo 2).  

A one-time pad is a long random (or pseudo-random) string of characters or 
numbers that is generated and further is (one-time) used for encrypting a message with 
⊕ operation (Kaufman et al., 2002, p.92).   

Messages encrypted with keys based on randomness have the advantage that there 
is theoretically no way to “break the cipher” by analyzing a succession of messages. Each 
encryption process is unique and is not chained to the next encryptions. 

 RC41 is a variable-key-size additive stream cipher and it was developed in 1987 
by Ron Rivest for RSA Data Security, Inc. Although the algorithm was not indented to be 
publicly disclosed by being a trade secret of RSA Data Security, Inc., in 1994 it was 
posted anonymously on a mailing list, and in this way it became rapidly widely available 
on Internet. 

Actually, RC4 represents a simple and fast generator of sequences of 
pseudorandom bytes (e.g. a key stream) that are generated independently from the 
plaintext messages or ciphertext, and further these sequences are added modulo 2 (⊕ ) to 
the plaintext messages byte sequence (Kaufman et al., 2002; Oppliger, 2005). 

The cipher generates variable-length key that can range from 1 to 256 bytes (2048 
bits). Oppliger(2005) describes in detail how the key stream is generated. Following, this 
is the description of the algorithm. 

 RC4 uses an array S of 256 bytes of state information (called S-box). The 
elements of S are labeled S[0], . . . , S[255] and they are initialized in three steps: 

 
1. All elements of S are initialized with their index: 

S[0] = 0 
S[1] = 1 
   . . . 

            S[255] = 255 

                                                 
1 The acronym RC stands for “Ron’s Code” 
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2. Another array S2 of 256 bytes is allocated and filled with the key, repeating bytes as 
necessary. 

3. The S-box is then initialized as suggested in the S-Box initialization algorithm (see 
below). The S-Box initialization algorithm only operates on S . 

(S) 
for i = 0 to 255 do 
 j ← (j + S[i] + S2[i]) mod 256 
S[i] ↔ S[j]   // the S-box entries S[i] and S[j] are swapped 
(S) 
 
 
In addition, after S is initialized (according to algorithm presented above), i and j 

are set to zero (all entries of S2 are also set to zero). 

Furthermore, RC4 key generation algorithm (see below) is used in order to 
generate a potentially infinite sequence of key bytes. The algorithm takes S as input 
parameter and outputs a key byte k.  

(S, i, j) 
i ← (i + 1) mod 256 
j ← (j + S[i]) mod 256 
S[i] ↔ S[j] 
t ← (S[i] + S[j]) mod 256 
k ← S[t] 
(k) 
 
 
If a plaintext message (ciphertext) of l bytes must be encrypted (decrypted), then 

the algorithm must be iterated l times, and each key byte ki (i = 1, . . . , l) must be added 
modulo 2 to the corresponding plaintext message (ciphertext) byte. 

Security of RC4 

Stallings (2005) pointed out that this cryptosystem is subject to a series of attacks 
that make it vulnerable in front of different attacks. Thus, RC4 is not recommended for 
use in new applications. 

Another aspect that can make RC4 is to use the same keystream to encrypt two 
different documents. If the same keystream is used to encrypt different plaintexts, the 
encryption can be broken by XORing the two ciphertext streams together. The keystream 
drops out, and the result represents a plaintext XORed with another plaintext. The 
plaintexts can be recovered by using letter frequency analysis and other basic techniques1. 

 

                                                 
1 http://www.schneier.com/blog/archives/2005/01/microsoft_rc4_f.html accessed June 2007 
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However, generally, the primary advantage of a stream cipher is that stream 
ciphers are almost always faster and use far less code than do block ciphers.  

 
 

4.4.7 Block Cipher Modes of Operation  

In the sub-chapters above, we have presented different symmetric cryptosystems 
(DES, IDEA, AES) that encrypt blocks of messages. For effectively using these ciphers, 
there have been proposed different modes of operation1 that specify different modalities 
of encrypting multiple block messages with a block cipher.  

By using different modes of operation longer messages can be encrypted as well. 
A cryptographic mode of operation usually combines the cipher, a sort of feedback 
mechanism, and some simple operations (Schneier, 1996). The security of the encryption 
process resides in the cryptosystem that is being used and not in the mode of operation.  

 
1. Electronic Code Book (ECB) 

 
This is the simplest mode of operation in which a plaintext message is split into 

64-bit blocks (the last block is padded out, if necessary, to be 64 bits). If the block at the 
end is shorter, it has to be padded with “some regular pattern” (e.g. zeros, ones, 
alternating ones and zeros) in order to make it a complete block of 64 bits.  

 Each block is encrypted at a time with the same secret key. The message blocks 
can be encrypted in any order because they are independent. Each encrypted block is 
decrypted separately.  

With this mode of operation, theoretically, it can be created a code book because 
it creates a fixed mapping between plaintexts and corresponding ciphertexts. Each 
plaintext block has a corresponding ciphertext block for a certain encryption key. This 
makes this operation mode vulnerable to attacks of adversaries.  

The ECB mode of operation has the following properties: 

  - If a message contains identical plaintext blocks, these will result in identical ciphertext 
when encrypted with the same key. So, an attacker can gain information from similar 
ciphertext blocks 

  - The blocks can be encrypted and decrypted independently, so if the ciphertext blocks 
are decrypted and reorder accordingly, they result in the corresponding plaintext. So, an 
attacker can modify and re-arrange the blocks differently in his/her advantage if this is 
the case. 

Schneier (1996) presented ECB mode’s weaknesses in examples, and showed that 
an adversary can easily remove, repeat, or interchange blocks in the communication 
                                                 
1 DES Modes of Operation FIPS PUB 81 http://www.itl.nist.gov/fipspubs/fip81.htm  accessed May 2007 
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process if he/she is able to intercept the transmitted messages. This can be prevented by 
using message authentication codes (MACs), or changing frequently the encryption keys 
or by using another operation mode for the cipher block (chaining). 

 
 ECB should not be used in communications between different entities for 
encrypting messages due to its mentioned disadvantages. 
 
 

2. Cipher Block Chaining (CBC)  
 

The cipher block chaining mode is removing some of the disadvantages of ECB. 
For instance, if the same plaintext block occurs several times in the encryption process, 
the resulting ciphertext blocks are different in the chaining mode.  

In the cipher block chaining, the input for the encryption algorithm is result of the 
XOR of the current plaintext block and the preceding ciphertext block. The same secret 
key is used for each block. The encryption of a plaintext block depends not only on the 
current block and the key, but also on the previous plaintext blocks and the initialization 
vector (IV) used for the first plaintext block. For the first plaintext block, a random 
number (IV) is chosen and is ⊕ ’d with the plaintext, and the result is encrypted under the 
secret key.  

With CBC mode, identical plaintext messages are mapped to different ciphertext 
blocks due to the fact that the input for the encryption function is different for every 
plaintext message.  

Using the notation from the beginning of the chapter, the encryption formula for a 
plaintext mi in CBC is: 

ci = E(mi ⊕  ci−1, K), for i = 1, 2, . . . 
and the decryption:  

mi = D(ci, K) ⊕  ci−1, for i = 1, 2, . . . 
For the first block the encryption is: 
 c0 = E(m0 ⊕  IV, K),    

and the decryption: 
m0 = D(c0, K) ⊕  IV 
 
In the literature (Schneier, 1996; Kaufman, 2002), it is mentioned that the IV 

should be random in order to prevent the generation of similar ciphertext blocks for 
similar plaintexts blocks. This hinders the attackers to build code books or to replay block 
messages in the communication process. Also, there is no need to keep the initialization 
vector secret and this should be regarded as a dummy initial ciphertext block in the 
chaining process. Stallings (2005) suggested that IV should be protected against 
unauthorized changes.  
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With CBC mode, attackers cannot determine if repeated values are transmitted, 
but they can still modify the ciphertext.  

As error propagation is concerned, with CBC, a single bit error in a plaintext 
block will affect the corresponding ciphertext block and all subsequent ciphertext blocks. 
But, the decryption process reverses the effect, and the resulting plaintext message has 
the same error in the end.  

If there is a single bit error in the ciphertext, this affects one block and one bit of 
the corresponding plaintext. The plaintext block that contains the error is completely 
garbled1, the plaintext block after contains only one bit error in the same bit position as 
the error in the cipher, and further the propagation of the error stops. The system recovers 
and continues to work correctly for all subsequent blocks. 

 
3. Cipher Feedback Mode (CFB) 

 
The cipher feedback mode turns the block cipher into a stream cipher. A stream 

cipher eliminates the need to pad a plaintext message to be a multiple of a certain number 
of bits. Schneier (1996) mentioned that some applications need to send in real time 
messages in a communication process, for instance bit by bit, or byte by byte. This can be 
done with OFB and CFB modes that can encrypt data in units smaller that the used cipher 
block size.  

CFB can be used for encrypting 64 bits plaintext at once or any k-bit CFB, where 
k is less than or equal to the block size. 

Dent & Mitchell (2005, p.81) advised that it is better to choose the number of 
plaintext bits being encrypted equal with the number of bits of the block cipher. This is 
recommended by the second edition of ISO/IEC 101162, and any other choice would 
appear to reduce the overall level of security of the scheme. 

Schneier (1996) pointed out that the initialization vector (IV) for CFB mode has 
to be unique for each transmitted message, otherwise, the attackers can easily recover the 
plaintext message.  

In CFB mode, an error in the plaintext affects all subsequent ciphertext and 
reverses itself at decryption. Typically, for k-bit CFB, a single ciphertext error affects the 
decryption of the current and subsequent n/k-1 blocks, where n is the block size for the 
cipher. So, if k is a larger number, fewer errors are propagated. The transmitted ciphertext 
error will be discarded sooner from the register.  

                                                 
1 An error in transmission, reception, encryption, or decryption that changes the text of a message or any 
portion thereof in such a manner that it is incorrect or cannot be decrypted. 
2 
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38761&scopelist=PROGR
AMME accessed May 2007 
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A disadvantage for CFB mode regards the performance of the 
encryption/decryption process. For instance, if DES is used in CFB mode with plaintext 
blocks of 8 bits, then the performance is 8 time slower than DES on 64-bit plaintext 
blocks.  

An initial vector (IV) is used with the block cipher for generating a sequence of 
pseudorandom bits. Then, k bits (the left most significant bits) of the output of the 
encryption function are selected and XORed (⊕ ) with k bits from the plaintext (typically 
k=8 for one byte or k=1 for one bit). In this way, the first unit of ciphertext c1 is 
generated.  At the beginning of the encryption process, the plaintext message is split 
initially into blocks of k bits each.  

Further more, the contents of the shift register are shifted left by k bits and c1 is 
transferred in the rightmost (least significant) k bits of the shift register. This process 
continues until all plaintext blocks have been finally encrypted. 

For the decryption process, the same encryption function is used to generate the k 
bits output that is then XORed with the corresponding ciphertext block for generating the 
plaintext block (Stallings, 2005).  

 
The encryption process in CFB mode is illustrated in Figure 4.8: 
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Figure 4.8: k-bit CFB (after Kaufman et al., 2002; Stallings, 2005) 
 
 
4. Output Feedback Mode (OFB) 

 
Output-feedback mode is a method of transforming a block cipher in a stream 

cipher. It is somehow similar to CFB, and allows encryption of various block sizes.  
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But, in the case of output feedback mode, the k bits (the left most significant bits) 
of the output of the encryption function are selected and serve as the feedback. They are 
added at the right to the shift register.  

These feedback blocks form a one-time pad (string of bits) that can be used as a 
key stream that is XORed with the plaintext blocks. The one-time pad can be generated in 
advance before the message to be encrypted is known.  

 
In Figure 4.9 is illustrated the output feedback mode of operation: 
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Figure 4.9: k-bit OFB (after Kaufman et al., 2002; Stallings, 2005) 
 
 
With OFB, if some bits of the ciphertext are garbled, only those bits of plaintext 

get garbled as well, in opposition with CBC and CBF operation modes. OFB has no error 
propagation.  

Stallings (2005) mentioned that OFB is vulnerable to message stream 
modification attacks. An attacker can modify some bits in the ciphertext that can have 
effect on the same bits in the recovered plaintext. So, attackers can make controlled 
changes to the recovered plaintext.  

With OFB mode, it is essential that the shift registers in the encryption process are 
identical with the shift registers for the decryption process, because otherwise the 
recovered plaintext is not the transmitted one (in fact, it’s non sense). 

Schneier (1996) specified that when OFB is used, there should be also 
implemented a mechanism for detecting a synchronization loss and a mechanism to fill 
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both shift registers with a new (or the same) IV to regain synchronization. The author 
also recommends that OFB should be used when the feedback size is the same as the 
block size. 

Another aspect refers to the generated one time pad (key stream) that is XORed 
with the plaintext. The same key stream should not be used with the same key, because 
this can be exploited by an attacker and achieve no security at all.  

If, for example, two plaintext message blocks mi and m’i are encrypted with the 

same n-bit key K, then the resulting ciphertext blocks are ci = mi ⊕  K and c’i = m’i ⊕ k. If 
the two cipher blocks are XORed, then the effect of the encryption is removed:  

ci ⊕  c’i = (mi ⊕  K) ⊕  (m’i ⊕  K) 

            = mi ⊕  m’i ⊕  K⊕  K 

            = mi ⊕  m’i ⊕  0 

            = mi ⊕  m’i 
 

If one of the plaintext is known to the adversary, then it easy to recover the other 
plaintext.  

 

It is worth mentioning here that block ciphers can be transformed in stream 
ciphers, based on the different operation modes in which they are used. 

For instance, if a block cipher operates in CFB mode, this leads to a non-
synchronous (self-synchronizing) stream cipher. This means that the next state in 
generating the ciphertext depends on previously generated ciphertext units.  

When a block cipher operates in OFB mode, this leads to a synchronous (additive) 
stream cipher. This means that the next state in the encryption process does not depend 
on previously generated ciphertext units, and the one-time pad used in the encryption 
process can be first generated and then XORed with the plaintext (Oppliger, 2005).  

 
5. Counter Mode (CTR) 

 
In counter mode (CTR) there is generated a one-time pad (counter), encrypted 

with the encryption key and then this is XORed with the plaintext unit block.  For every 
plaintext unit block the counter has to be different.  

Typically, the initial counter value is further incremented by 1 for each 
subsequent plaintext block. There is no chaining in the counter mode. For encryption, the 
counter is encrypted with the cipher, and then it is XORed with the plaintext block to 
produce the ciphertext block. For decryption, the same sequence of counter values is 
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used. Each encrypted counter is then XORed with the corresponding ciphertext block in 
order to recover the corresponding plaintext block. 

  
Figure 4.10 illustrates how counter mode works: 

 
 

⊕ ⊕ ⊕

 
 
Figure 4.10: Counter Mode  
 
 With CTR mode, the plaintext blocks can be recovered from the ciphertext blocks 
in any order.  
 
 As in OFB mode, there should not be used the same IV and the same key for 
encrypting multiple plaintext blocks because of the security loss.  
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4.5 Hash functions 

 
Message Authentication 

 
Message authentication represents a mechanism or service used to verify the 

integrity of a message. Message authentication assures the integrity of the data (e.g. the 
data was not modified or replayed) and checks also that the identity of the sender is valid 
(Stallings, 2005).  

Oppliger (2005, p. 291) exposed the general methods implied in cryptography for 
authenticating messages. So, messages can be authenticated by using: 

-  Public-key cryptography and digital signatures, or  
- Secret-key cryptography, message authentication codes (MAC) and secure hash 

functions. 
 
Briefly, Stallings (2005) outlined that message authentication represents a 

mechanism to verify that transferred messages come from the alleged source and they 
have not been altered in traffic. Message authentication may also verify sequencing and 
timeliness.  

 
 Intro 
 

A hash function basically maps a variable-length message into a fixed length hash 
value, or message digest. For achieving message authentication, a secure hash function 
must be combined in some fashion with a secret key. 

Essentially, cryptographic hash algorithms are intended to prove authenticity. The 
message digest resulted after a hash algorithm is applied on a data message serves as an 
identifying fingerprint for the respective data. So, if one bit in the input data is altered, 
then the hash should be completely different (Reinhold, 2005).  

Thus, hashing is used to prevent tampering of electronic messages. Olsen (2005) 
defines a hash as being a numerical code generated from a string of text when a message 
is sent. The receiving entity checks it against a hash it creates from the same text, and if 
the two resulting hashes are the same, it can be concluded that the transmitted message 
was not altered in traffic.  

 The hash functions incorporate a compression function. Stallings (2005) 
noted that the compression function used in secure hash algorithms falls into one of two 
categories: a function specifically designed for the hash function or a symmetric block 
cipher. Moreover, most hash functions that have achieved widespread use rely on a 
compression function specifically designed for the hash function. 
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A cryptographic hash function has specific properties. Below we mention the 
properties that are relevant from a cryptographic viewpoint. 

 
 

- A hash function h is preimage resistant if it is computationally infeasible (hard) 
to find an input x with h(x) = y for a given (and randomly chosen) output y. 

In other words, a hash function is preimage resistant if, given a random hash 
code, it is computationally infeasible to find an input that the hash function maps to that 
hash code (Dent & Mitchell, 2005). 

- A hash function h is second-preimage resistant or weak collision resistant if it is 
computationally infeasible to find a second input x’ with x’ ≠ x and h(x’) = h(x) 
for a given (and randomly chosen) input  x. 

Namely, A hash function is second preimage resistant if, given an input to the 
hash function, it is computationally infeasible to find a second input that gives the same 
hash code (Dent & Mitchell, 2005). 

- A hash function h is collision resistant or strong collision resistant if it is 
computationally infeasible to find two inputs x, x’ with x’ ≠ x and h(x’) = h(x). 

 
More specifically, a hash function is collision resistant if it is computational 

infeasible to find two inputs that give the same hash code (Dent & Mitchell, 2005). 

 
 

According to the above definitions of the properties for hash functions, it results 
that collision resistant hash function must be second-preimage resistant. Oppliger (2005) 
pointed out that otherwise it would be possible to find a second preimage for an arbitrary 
chosen input, and this second preimage would yield a collision. On the other hand, a 
second-preimage resistant hash function must not be collision resistant. Resultantly, 
collision resistance implies second-preimage resistance, but not the opposite. 

 
            Based on the properties enumerated above, there could be defined one-way hash 
functions (OWHF) and collision resistant hash functions (CRHF). 

A one-way hash function is a hash function that is preimage resistant and second-
preimage resistant.  

A collision resistant hash function is a hash function that is preimage resistant and 
collision resistant.  

It is worth mentioning that a CRHF is always an OWHF, while the opposite might 
not be true.  

 
RSA Security, Inc. played an important role in the development and deployment 

of many practically relevant cryptographic hash functions (Oppliger, 2005). RSA 
Security, Inc. firstly designed a proprietary hash function named MD (message digest). 
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The first published hash function is MD21 that was widely used, mainly in the secure 
messaging products of RSA Security, Inc. 

Next, the same company designed MD42 that is specified in RFC 1320. Because 
of some reported weaknesses of MD4, a new hash function was designed – MD53 by 
Ronald Rivest and is specified in RFC 1321. Although, MD5 was considered to be more 
secure than MD4 it is also a little bit slower (Oppliger, 2005).  

 
In 1993, the US National Institute of Standards and Technology (NIST) designed 

the Secure Hash Algorithm (SHA). Oppliger (2005) noted that SHA algorithm is similar 
to MD5, but even more strengthened and also a little bit slower. Next, NIST revised the 
initial SHA version and released a new version SHA-1 specified in the Federal 
Information Processing Standards Publication (FIPS PUB) 180-14.  

In 2002, NIST performed a revision of the standard, and this resulted in a new 
FIPS PUB 180-25 that defined three new versions of SHA, with hash value lengths of 
256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512 bits.  

Finally, the NIST secure hash standard contains the specifications for five hash 
functions: SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. 

 
MD4 and MD5 produce hash values of 128 bits, while SHA-1 produces hash 

values of 160 bits. The revised versions of SHA produce hash values that are even longer.  

Oppliger (2005) acknowledged that from a security viewpoint, long hash values 
are given preference due to the fact that the likelihood of collisions is reduced. Thus, it is 
advisable to replace MD5 with SHA-1 or any other function from the SHA family where 
possible.  

 
Next, in this sub-chapter we discuss the security of MD5 and SHA hash functions.  
 

4.5.1 MD5 
 
As we have already mentioned, MD5 is a strengthened version of MD4.  

MD5 algorithm takes an input message of arbitrary length and produces a 128-bit 
hash value of the message. The input message is processed in 512-bit blocks which can 

                                                 
1 http://www.faqs.org/rfcs/rfc1319.html  
2 http://www.faqs.org/rfcs/rfc1320.html  
3 http://www.faqs.org/rfcs/rfc1321.html 
4 http://www.itl.nist.gov/fipspubs/fip180-1.htm  
5 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf 
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be divided into 16 32-bit sub-blocks. The message digest is a set of 4  32-bit blocks that 
concatenate in order to form a single 128-bit hash code. 

Cryptographic hash functions are typically attacked by trying to find two different 
documents that have the same hash value (a collision attack). Through collision attacks, 
the security of hashes is defeated.  

It has been shown in the literature (Kaufman et al., 2002; Oppliger, 2005; 
Reinhold, 2005) that based on the mathematical result known as the “Birthday Paradox”, 
one needs to try 2 to N/2 possibilities, for finding a collision (N represents the number of 
bits in the output).  

So, MD5 hash function that has a 128 bits output provides only 64 bits of strength 
against brute force attacks. 

A series of collision attacks have been reported in the literature1 against MD5. 
Thus, Schneier (2005) concluded on his weblog2 that MD5 is broken. 

 

4.5.2 SHA-1 
 
Oppliger (2005) noted that SHA-1 hash function is conceptually and structurally 

similar to MD4 and MD5. But, SHA-1 outputs hash values of 160 bits. So, taking into 
consideration the “Birthday Attack”, SHA-1 only provides 80 bits of strength, at most. 

In 2005 NIST announced the intention to phase out approval of SHA-1 and move 
to a reliance on the other SHA versions by 2010. 

Although SHA-1 was considered secure, shortly after NIST’s decision to replace 
SHA-1, a research team (Wang et al., 2005) succeeded to break this hash function. In 
their paper, the researchers presented new collision search attacks on the hash function 
SHA-1. They showed that collisions of SHA-1 can be found with complexity less than 269 
hash operations. This represents the first attack on the full 80-step SHA-1 that has 
complexity less than the 280 theoretical bound as we have previously mentioned for a 160 
bits hash function. 

 
Later, in August 2005, another attack on SHA-1 was reported3 about finding 

collisions for SHA-1 in 263 operations. 

Stallinger (2005) concluded that these results should accelerate the transition to 
the other versions of SHA. 

                                                 
1 http://www.cits.rub.de/MD5Collisions/ ; 
http://www.schneier.com/blog/archives/2005/06/more_md5_collis.html; http://eprint.iacr.org/2006/104.pdf  
accessed May 2007 
2 http://www.schneier.com/blog/archives/2005/08/the_md5_defense.html accessed May 2007 
3 http://www.rsa.com/rsalabs/node.asp?id=2927 accessed May 2007 
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These findings, regarding the collision attacks, are of interest for applications that 
require collision resistant hash functions. 

Anyway, as Reinhold (2005) suggested, “there is no need to panic”. Taking into 
consideration the results of the researches about collision attacks that showed that SHA-1 
has at most 63 bits strength, this is still non-trivial to perform such an attack with the 
current technology. It is recommended anyway to develop upgrade plans for adopting 
stronger cryptographic hash functions.  

Reinhold (2005) and Szydlo (2005) suggested viable approaches for improving 
the security of applications: 

- SHA-1 should not be used in new designs. It should be replaced with stronger 
variants. For instance, SHA256, SHA384 and SHA512 are widely available and 
free. In any case, MD5 should be phased out because it is even weaker than 
SHA-1, but still widely used.  

- Another suggestion is to add randomness to hash functions. But in order to 
implement this, the applications must have a good source of randomness and 
should also change the protocols that use hash functions.  

 
Next, we provide in Table 4.7 a comparison of SHA parameters for hash 

functions. In this table, all sizes are measured in bits, and the security refers to the fact 
that a “Birthday Attack” on a message digest of size N produces a collision with a 
probability of approximately 2N/2. 

 
 SHA-1 SHA-256 SHA-384 SHA-512 

Message Digest Size  160 256 384 512 

Message size <264 <264 <2128 <2128 

Block size 512 512 1024 1024 

Word size 32 32 64 64 

Number of steps 80 64 80 80 

Security  80 128 192 256 

Table 4.7: Comparison of SHA Parameters (after Stallings, 2005) 
 
 

4.6 Message authentication codes  
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A message authentication code (MAC) is an algorithm that requires the use of a 
secret key. So, a secret-key algorithm can be used to generate  a small fixed-size block of 
data, known as a cryptographic checksum or MAC. The MAC is computed on a message 
with a secret key, and verified with the same secret key by the receiver (Oppliger, 2005). 

 Consequently, MAC depends on both the message it authenticates and the secret 
key that only the legitimate sender and the legitimate recipient(s) are assumed to know. 

It is worth noting that there is a fundamental difference between message 
authentication using MACs and message authentication using digital signatures. For 
MACs, the same secret key is used for computation of the MAC value and for verifying 
it, while for digital signatures the secret key is used for signing a message, while the 
public key is used for verifying the signature. Digital signatures can be used for achieving 
also non-repudiation services, whereas MACs are used only for integrity purposes. 

Another difference between MACs and digital signatures is that MACs can be 
verified only by the legitimate possessors of the secret key, while the digital signatures 
can be verified by any entity that is in the possession of the public key.  

  

Computationally Secure MACs 

Oppliger (2005, p. 294) presented some possibilities to design MACs that are 
computationally secure. Some of these possibilities are: 

- MACs that use symmetric encryption systems 
- MACs that use keyed hash functions 
- MACs that use pseudorandom functions (PRFs) 
- MACs that use universal hash functions 
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4.7 Public Key Infrastructure (PKI)  

 
 A public key infrastructure (PKI) consists of all the elements (certificates, a 
repository for retrieving certificates, a method of revoking certificates, a method of 
evaluating a chain of certificates) necessary to securely distribute public keys.  

 In fact, a certificate is a message vouching that a certain name goes with a 
corresponding public key (Kaufman et al., 2002). There are three types of certificates: 
end-user certificates, CA certificates and cross-certificates.  

Certificates are issued by certifications authorities (CAs). The CAs is a trusted 
company universally or for a certain domain depending on the PKI Trust Model that is 
used (e.g. monopoly, oligarchy, anarchy PKI trust models). CAs posses PKI trust anchors 
(a public key that has been previously verified and that is trusted to sign certificates) that 
are used for issuing certificates to other entities.  

The monopoly PKI trust model is not realistic due to the difficulties of using only 
one organization for checking the credentials of the entities that request certificates, of 
issuing these certificates, and providing further validation and revocation services.  

A model that is typically implemented in browsers is the oligarchy PKI trust 
model in which the different entities and products are configured and issued certificates 
by different CAs that have trust anchors.  

Certificates can be used in a variety of situation within protocols and in secure 
communications. For instance, if an entity A wants to securely find the public key of 
another entity B for sending an him/her an encrypted message, then A can use a PKI Trust 
Model for retrieving the public key of B. Also, by the means of certificates, the identity, 
the digital signature, the public key of target entities can be verified and validated (If 
entity A wants to find a path to B’s key, then the name of B is the target).  

 Nevertheless, due to the scope of this thesis, we propose that the PKI should be 
considered for future research in the context of Jericho Project.  
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4.8 Comparison of cryptographic primitives  
 

In the field of cryptography new algorithms surface continuously and existing 
algorithms are continuously attacked. Thus, many algorithms that were believed to be 
strong against attacks were demonstrated to be weak in front of new designed attacks.  

In this sub-chapter we present a comparison of some of the most cryptographic 
algorithms and primitives investigated in this thesis. The cryptographic algorithms 
provide different levels of cryptographic and security strength, depending on the 
algorithm itself and on the variety of key sizes that are used.  

The security strength of a cryptographic algorithm for a given key size is 
traditionally described in terms of the amount of effort it takes to break it.  

Stallings presented a report of Certicom1 containing the comparison of different 
cryptographic algorithms and primitives in terms of computational effort for 
cryptanalysis for comparable key sizes.  

Symmetric Scheme (key 
size in bits) 

ECC-Based Scheme (size 
of n in bits) 

56 112 

80 160 

112 224 

128 256 

92 384 

256 521 

Table 4.8: Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis 
(after Certicom) 

 We observe that computational effort for breaking ECC-based schemes is 
comparable with the effort of breaking symmetric cryptographic algorithms. This is due 
to the fact that ECC implementations are smaller and more efficient than the 
implementation of other public-key algorithms. 

  U.S. National Security Agency (NSA) presented a report2 of NIST in which the 
conventional cryptographic algorithms are compared with ECC.  

 

 

 

                                                 
1 http://www.certicom.com/ accessed June 2007 
2 http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm accessed June 2007 
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Bits of 
security  

Symmetric-key 
algorithms 

Hash 
algorithms RSA and Diffie-

Hellman 
Key Size (bits) 

Elliptic 
Curve Key 
Size 
(bits) 

80  SHA-1 1024 160 

112 3DES  2048 224 

128 AES-128 SHA-256 3072 256 

192 AES-192 SHA-384 7680 384 

256 AES-256 SHA-512 15360 521 

Table 4.9: NIST Recommended Key Sizes 

As presented in Table 4.9, for using RSA or Diffie-Hellman to protect 128-bit 
AES keys, there should be used 3072-bit keys. Based on the results presented by NIST, 
the equivalent key size for ECC is 256 bits.  

As the symmetric key size increases, the required key size for RSA and Diffie-
Hellman increases at a considerably faster rate than the required key for ECC. Thus, in 
the NSA1 report it is stated that ECC offers more security per bit increase in key size than 
RSA or Diffie-Hellman public-key cryptographic algorithms. The ECC security increases 
more rapidly as key length increases. 

 In the same report there are presented results that illustrate the fact that ECC is 
computationally more efficient than RSA and Diffie-Hillman algorithms for the same 
symmetric key size. ECC’ mathematical foundation is more complex than either RSA or 
DH arithmetic, but ECC offers added strength per bit.  

In Table 4.10 there are shown the ratio of DH computation versus EC 
computation for each of the key sizes listed in Table 4.9: 

Symmetric Key Size 
(bits) 

Ratio of 
DH Cost : EC Cost 

80 3:1 

112 6:1 

128 10:1 

192 32:1 

256 64:1 

Table 4.10: Relative Computation Costs of Diffie-Hellman and Elliptic Curves2 

                                                 
1 http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm accessed June 2007 
 
2 http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm accessed June 2007 
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For protecting both classified and unclassified National Security information, the 
National Security Agency has decided to move to elliptic curve based public key 
cryptography. Where appropriate, NSA plans to use the elliptic curves over finite fields 
with large prime moduli (256, 384, and 521 bits) published by NIST. 

In the same report of NSA it is stated that the United States, the UK, Canada and 
certain other NATO nations have all adopted some form of elliptic curve cryptography 
for future systems to protect classified information throughout and between their 
governments. 

NIST1 presented as even a more detailed comparison of the equivalent 
cryptographic algorithms strength and made the following recommendations regarding 
the cryptographic algorithms to be used further for achieving secure communications and 
the minimum key sizes:  

Algorithm security 
lifetimes 
 

Symmetric 
key 
algorithms 
 

RSA 
&  

D-H 

ECC
 

Hash (A) Hash (B) 

2007 to 2010 

min. of 80 bits of 
strength 

 

2TDEA 

3TDEA 

AES-128 

AES-192 

AES-256 

1024 160 SHA-1 
SHA-224 
SHA-256 
SHA-384 
SHA-512 

SHA-1 
SHA-224 
SHA-256 
SHA-384 
SHA-512 

2011 to  2030 

(min. of 112 bits of 
strength) 

 

3TDEA 

AES-128 

AES-192 

AES-256 

2048 224 SHA-224 
SHA-256 
SHA-384 
SHA-512 

SHA-1 
SHA-224 
SHA-256 
SHA-384 
SHA-512 

Beyond 2030 

(min. of 128 bits of 
strength) 

 

AES-128 

AES-192 

AES-256 

3072 256 SHA-256 
SHA-384 
SHA-512 

SHA-1 
SHA-224 
SHA-256 
SHA-384 
SHA-512 

>> 2030  

(min. of 192 bits of 
strength) 

AES-256 7680 384 SHA-384 
SHA-512 

SHA-224 
SHA-256 
SHA-384 
SHA-512 

>>> 2030   15360 512 SHA-512 SHA-256 
SHA-384 

                                                 
1 http://csrc.nist.gov/encryption/kms/guideline-overview%20(b-w).pdf accessed June 2007 
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(min. of 256 bits of 
strength) 

SHA-512 

Table 4.11: Recommended algorithms and minimum key sizes by NIST1 

A few observations regarding the recommended algorithms and minimum key 
sizes: 

- Hash (A): are used for digital signatures and hash-only applications 

- Hash (B): are used for HMAC, Key Derivation Functions and Random Number 
Generation 

- SHA-1 has recently been demonstrated to provide less than 80 bits of security 
for digital signatures; the security strength against collisions is assessed at 69 
bits. The use of SHA-1 is not recommended for the generation of digital 
signatures in new systems; new systems should use one of the larger hash 
functions. For the present time, SHA-1 is included here to reflect its widespread 
use in existing systems, for which the reduced security strength may not be of 
great concern when only 80-bits of security are required. 

 

The algorithms and key sizes in the table are considered appropriate for the 
protection of data during the given time periods. Algorithms or key sizes not indicated for 
a given range of years shall not be used to protect information during that time period. 

This NIST Recommendation applies to U.S. government agencies using 
cryptography for the protection of their sensitive unclassified information. However, this 
recommendation may also be followed, on a voluntary basis, by other organizations that 
want to implement sound security principles in their computer systems. This 
recommendation advises the users of cryptographic mechanisms on the appropriate 
choices of algorithms and key sizes. 

As NIST specified algorithm suites that combine non-comparable strength 
algorithms are generally discouraged. However, algorithms of different strengths and key 
sizes may be used together for performance, availability or interoperability reasons, 
provided that sufficient protection is provided. Generally, the weakest algorithm and key 
size used to provide cryptographic protection determines the strength of the protection. 

For instance, when security protocols are used for achieving the requirements for 
secure communications in Jericho networks, determination of the strength of protection 
provided for information includes an analysis not only of the algorithm(s) and key size(s) 
used to apply the cryptographic protection to the information for achieving 
confidentiality, but also any algorithm(s) and key size(s) associated with establishing the 
key(s) used for information protection itself.  

                                                 
1 http://csrc.nist.gov/CryptoToolkit/kms/SP800-57Part1August2005.pdf  accessed April 2007;  
http://www.keylength.com/en/4/ accessed June 2007 
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NIST  recommends the following configuration1 of algorithms and key sizes for 
securing transferred data with confidentiality, integrity, authentication and non-
repudiation protection:  

- Confidentiality: Encrypt the information using AES-128. Other AES key sizes 
would also be appropriate, but perform a bit slower. In addition, another block 
cipher could be used for achieving confidentiality for the transmitted data, 
namely Camellia cipher.   

Camellia is comparable with AES in terms of security and performance. It was 
also adopted into various standard/recommended specifications. As a result, 
Camellia is adopted in security protocols, such as SSL/TLS, IPsec, XML etc.  

- Integrity, authentication and non-repudiation: It is supposed that only one 
cryptographic operation is preferred; for instance digital signatures. SHA-256 
could be selected for the hash function. An algorithm for digital signatures 
should be selected from what is available to an application (e.g. ECDSA with at 
least a 256-bit key).   

 

The Committee on National Security Systems2 recommended that the design and 
strength of all key lengths of the AES algorithm (e.g. 128, 192 and 256) are sufficient to 
protect classified information up to the SECRET level. TOP SECRET information will 
require use of either the 192 or 256 key lengths.  

 

European Network of Excellence for Cryptology recommended slightly larger key 
sizes:  

L
e
v
e
l 

Protection  Symmetric
  

Asymmetric Elliptic 
Curve 

Hash 

1 Attacks in "real-time" by 
individuals 
Only acceptable for authentication 
tag size 

32 - - - 

2 Very short-term protection against 
small organizations 
Should not be used for 
confidentiality in new systems 

64 816 128 128 

3 Short-term protection against 
medium organizations, medium-

72 1004 144 144 

                                                 
1 http://csrc.nist.gov/CryptoToolkit/kms/SP800-57Part1August2005.pdf  accessed June 2007 
2 www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf accessed June 2007 
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term protection against small 
organizations 

4 Very short-term protection against 
agencies, long-term protection 
against small organizations 
Smallest general-purpose level, 
protection from 2007 to 2010 

80 1248 160 160 

5 Legacy standard level 
Use of 2-key 3DES restricted to 106 
plaintext/ciphertexts, 
protection from 2007 to 2016 

96 1777 192 192 

6 Medium-term protection 
protection from 2007 to 2026 

112 2432 224 224 

7 Long-term protection 
Generic application-independent 
recommendation, 
protection from 2007 to 2036 

128 3248 256 256 

8 "Foreseeable future" 
Good protection against quantum 
computers 

256 15424 512 512 

Table 4.12: Recommended algorithms and minimum key sizes by ECRYPT 20071  

Regarding the recommendations made in this table, we summarize the following 
recommendations: 

- the 32 and 64-bit levels should not be used for confidentiality protection; 32-bit 
keys offer no confidentiality at all relative to any attacker, and 64-bit offers only 
very poor protection 

- while both 80 and 128-bit keys provide sufficient security against brute force 
key-search attacks (on symmetric primitives) by the most reasonable 
adversaries, it should be noted that 80 bits would be practically breakable and 
128 bits might correspond to an effective 80-bit level, if one considers attack 
models based on pre-computation and large amounts of available storage. As a 
simple rule of thumb, one may choose to double the key size to mitigate threats 
from such attacks. 

- the main consideration for a secure hash function is the size of the outputs. If the 
application requires collisions to be difficult to find, the output must be twice the 
desired security level. This is the case when used with digital signatures for 
instance. When used as a keyed hash for message authentication, however, the 
outputs may often be truncated. 

- As a remark, 256-bit symmetric key offers good protection against quantum 
computers 

                                                 
1 http://www.keylength.com/en/3/  accessed April 2007 
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Stallings (2005) mentioned that the principal attraction of ECC, compared to 
RSA, is that it appears to offer equal security for a far smaller key size. Consequently, the 
process overhead is reduced. On the other hand, the theory of ECC appeared in the last 
decennia and it was not subject to sustained cryptanalytic analysis for finding its 
weaknesses. So, ECC was less researched than the others cryptographic algorithms and 
this why it is not yet recommendable to use it for securing the transferred information. 
Accordingly, the confidence level in ECC is not yet as high as that in RSA. 

When there are conventional cryptographic algorithms available that offer the 
same level of protection as ECC, even at the cost of computational resources, these 
should be preferred for usage in designing secure protocols instead of using ECC in the 
context of Jericho Project. 

However, the choice of the cryptographic algorithms to be used for designing 
security protocols in the context of Jericho Project depends on the security needs of the 
data, on the classification type of the data and on its security level. Also, if an increased 
number of transfers of sensitive data over Internet occurs, the mechanisms offered by 
ECC can be used within the security protocols proposed for securing the communications 
for Jericho Project. 
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Chapter 5 Conclusions and Future Directions for Research 

5.1 Conclusions 

  
In the context of Jericho Forum the need for securing data in transit over the 

Internet is essential due to the new threats that occur and the new ways business are 
nowadays conducted in a collaborative environment.  

Over the past decennia, cryptography has become the pillar for providing securing 
communications over the Internet. Cryptography provides the security mechanisms 
needed for accomplishing the security services desired for secure communications.  

The aim of this thesis was to investigate and recommend the most appropriate 
security mechanisms offered by cryptography for being used in security protocols that 
offer protection for the data transmitted over the Internet in the contextual framework of 
Jericho Project.  

In the course of this research we analyzed and made recommendations regarding 
the security requirements, the security protocols and the cryptographic algorithms that 
could be used in the context of Jericho Project for achieving end-to-end security.  

In essence, cryptographic algorithms, primitives and protocols are the means of 
designing and deploying secure communications in Jericho networks as well. 
Cryptography is at the basis of IPsec, SSL/TLS and XML Encryption protocols that we 
have analyzed in this thesis.   

Consequently, in this thesis we have investigated the means offered by 
cryptography for designing secure protocols in order to obtain end-to-end security in 
Jericho networks. 

An essential aspect regarding the cryptographic algorithms and primitives used to 
design secure protocols in the context of Jericho Project, is that some cryptographic 
algorithms provide different levels of cryptographic strength, and implicitly security, 
through a variety of key sizes.  

Evidently, the cryptographic algorithms may be combined in many ways to 
support the design of secure protocols, but we have to select the most adequate means 
offered by cryptography for acquiring the goals of secure communications in Jericho 
Project. 

 In the course of our research we concluded that the security of information in 
transit over the Internet, which is protected by cryptographic mechanisms within secure 
protocols, depends on the strength of the cryptographic keys, the effectiveness of 
mechanisms and protocols associated with keys, and the implementation of the protocols 
for the adequate situations. 
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Nevertheless, protecting the information in traffic is not solely dependent on the 
mathematical strength of the chosen cryptographic algorithms to be used for designing 
security protocols.  Besides the level of security attached to the data as a result of the 
classification process, there are also other factors that are taken into consideration when 
deciding which cryptographic mechanisms to deploy for achieving the requirements for 
secure communications in Jericho Project. If more than one algorithm and key size is 
available, the selection may be based on algorithm performance, memory requirements, 
as long as the minimum requirements are met.  

However, this research does not address implementation details for the 
cryptographic algorithms and security protocols that can be used in Jericho networks for 
achieving the security requirements identified for secure communications.  

Users and developers have many choices in their use of cryptographic 
mechanisms for designing security protocols in the context of Jericho Project. Designing 
pervasive, inherently secure protocols for achieving secure communications for Jericho 
networks is not an easy task.  

There are more ways to design a security protocol for achieving the goals for 
secure communications in Jericho networks. As stated by Jericho Forum 
Commandments, the protocols should be used open, secure, and flexible. Moreover, the 
security mechanisms employed for the accomplishment of the security services required 
for secure communications in Jericho Project must be pervasive, simple, scalable and 
easy to manage. 

However, Cole et al. (2005) remarked that while cryptography can be very secure 
when used properly, the human element of the process should always be considered and 
taken into consideration. So, making the users aware of how to protect the privacy and 
integrity of the business and personal data against the different threats is one of the first 
steps when implementing a security policy based on Jericho commandments.  

5.2 Future Directions for Research 

 In the course of our research we determined some interesting topics for future 
investigation in the context of Jericho Project.  

 We consider the following topics of interest for further analysis and investigation 
within the purpose of achieving secure communications in Jericho networks: 

- Different methods of authentication of the entities within the security protocols 
for secure communications 

       Although we have investigated this topic in this thesis, we acknowledge that it 
can be more in depth analysed, and recommendations regarding the most appropriate 
solutions for authentications should be made in the context of Jericho Project.  

- The relationship of the Trust Broker with the Certification Authorities represents 
another research topic that deserves more attention in a future investigation 
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- Key Management provides the foundation for the secure generation, storage, 
distribution, and destruction of keys. In the context of Jericho Project, this subject 
should be further tackled, and the best approaches for protecting the secret and 
private keys against unauthorized disclosure should be recommended.  

- Implementation details of the cryptographic algorithms and security protocols 
recommended for securing the communications in the context of Jericho Project 

- Mechanisms for securing the data in storage and in process should be also further 
investigated in the context of Jericho Project 

- Other security mechanisms and protocols for securing Web Services 

- The possibilities offered by the Authenticated Encryption systems in the context 
of Jericho Project. Authenticated Encryption refers to encryption systems that 
simultaneously protect confidentiality and authenticity (integrity) of 
communications. 
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