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van der Mei for being my supervisor from the VU and Francois Lavet for his willingness
to be the second reader.

ii



Management summary

Context. In the heavily competitive world of professional football, clubs strive
to gain a competitive edge adopting new techniques to get an advantage on
the field and consequently reaping the financial benefits. Especially for clubs
without substantial financial resources, identifying talent in young players and
developing them is a key component in building a sustainable foundation to
maintain high-level performances.
Goal. The goal of this study is to capture important characteristics and skills
of young players to be able to perform well in matches, gaining new insights
in the field of talent identification. Leading to the research question: ’To what
extent can player characteristics and/or skills be used to predict the perfor-
mance of football players?’
Method. In the process of predicting a player’s performance, fair metrics have
to be used that not only use success rates, but also capture difficulty and effec-
tiveness of the passes/dribbles/interceptions. Classification models are used to
predict the difficulty of the passes and dribbles (xSP and xSD) using contextual
features extracted from the coordinate data, which are used to calculate the
passing and dribbling performance of the player. While for interceptions the
frequency, defensive gain and offensive gain are used.
Results. The results show that the xSP could be very accurately estimated
using a random forest. The best calibration of xSD models obtained using
catboost was slightly worse, but still accurate enough to fairly assess a player’s
dribbling skills. The most important features in these models aligned with the
expectations, the position on the pitch and pressure mainly influenced the xSD
and xSP. In addition, the length and angle of the pass are also crucial features
for xSP estimation. Adding test data as features only introduced noise and
decreased model performance. Using regression models, the entire disparity
in passing/dribbling performance of the players could not be predicted, but
correlations were observed providing information about important characteris-
tics/skills for players to have.
Conclusions. For passing, mental/cognitive features were most important,
while for dribbling, biological age and dribble speed were the best indicators.
XGBoost and KNN were the best for passes and dribble performance respec-
tively, while interception performance could not be predicted well.
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Introduction

1.1 Business context

Football is the world’s most popular sport with over 4 billion worldwide viewers, conse-

quently it is also the wealthiest in terms of generated revenue and expenditures. Due to the

emotional connection fans have with the clubs and media coverage that mainly focuses on

sporting performances, it is often forgotten that professional football clubs are businesses

that engage in generating high revenue and manage costs while operating in a competitive

market. To maximize sales of merchandise, tickets, broadcasting rights and sponsorship

deals, clubs have to differentiate themselves from the competition using marketing and

performance. Several studies have proven the positive correlation between the sports per-

formances and financial health of the club (Alaminos et al., 2020 (1), Miragaia et al., 2019

(2)), meaning that success on the pitch is significant on both an emotional and financial

level.

In professional football, matches are often decided in the smallest of details and deci-

sions, even the slightest advantage can decide the outcome. This stresses the importance of

careful preparation, smart investing and improve the technical, physical and mental skills

of players to achieve success. According to Ratten, 2010 (3), innovation is a key aspect

in having sustained success in the sporting world. Many clubs have already established

dedicated data analytics departments to help gain competitive advantages. An integral

part of achieving sporting and financial success lies in the quality of the youth academy

for example, clubs such as Ajax and Benfica have both capitalized of their exceptional

academies. Since 2015, both clubs sold over 250 million euros worth of youth players that

led them to success in the Champions League further generating substantial financial ben-

efits. To maintain high level performances and achieve financial stability, identifying and

developing talent is crucial, in particular for clubs without substantial financial resources.
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1. INTRODUCTION

1.2 Research question

To gain new insights in talent identification and development, a deeper understanding of
how specific player skills and characteristics translate to in-game performance has to be
acquired. To achieve this, it will be researched whether the test data has predictive power of
the in-game performances of youth players. The identification of key characteristics/skills
that signify the best performing youth players will provide meaningful insights on talent
identification and development. The central research question of this study is: ’To what
extent can player characteristics and/or skills be used to predict the performance of football
players?’

1.3 Research approach

To answer the research question several machine learning models will be trained and eval-
uated on general player information, test data and match data obtained at academies of
over 10 Dutch and Belgian football clubs. Before predicting performances, it is essential
that a suitable way of evaluating a player’s performance is established using fair metrics.
Completion percentage is a commonly used metric but is considered simplistic and ignores
important factors such as context and difficulty. While the ability to perform difficult
events is an indicator of raw talent regardless of the effectiveness. This will be done using
classification models that estimate the difficulty of events. The probability that a pass
is successful, the Expected Successful Passes (Expected Successful Passes (xSP)), will be
predicted for each pass for pass difficulty estimation. Initially, a baseline is set using only
contextual features of the pass. Subsequently, the test results are added as features for
xSP prediction, aiming to improve the performance of the models. As the true success
probability of the events is not known, the Brier score, Spiegelhalters Z-statistic, expected
calibration error and calibration plot are used for evaluation. Analyzing how the test results
influence predictions gives information on important characteristics of players, providing
insights into crucial skills for specific pass types in all areas of the field. Next, regression
models are applied to predict the overall passing performance of the players using the Pass-
ing Performance Ratio (PPR), which is the ratio between the number of completed passes
divided by the expected completed passes of the player. The PPR is calculated using the
xSP values estimated by the baseline classification model, otherwise players with good test
performance will be punished in the overall performance assessment. The same approach
will be applied for evaluating the dribbling skills using the Dribbling Performance Ratio
(DPR). As interceptions are always successful, a different way of assessment has to be
used. The metric used is a weighted average of a few selected features; frequency and the
defensive/offensive value of the interception.
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1.4 Organization

The conducted tests are based on aspects of The Football Association’s Four Corner
Model (FCM), developed by the FA for assessment of youth development.

1.4 Organization

This paper consists of five main chapters, Chapter 2 analyzes similar researches in the field
of study to provide the current state of knowledge and establish what this paper adds to
this. Chapter 3 provides insight in the data that is used for this study and how this data is
prepared for machine learning. Chapter 4 describes the methods used to obtain the results;
the respective results will be discussed in Chapter 5.
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Literature Review

Due to the still growing popularity and increasing financial interests, the use of data
science in football has seen a marked increase over the last decade. This is observed
in practice, as an extensive amount of research has been conducted over the years and
currently data science is a prominent aspect of the sport.

2.1 Research on expected successful passes

Researching which characteristics influence performance using test data can be approached
using classification and regression models. Classification will be used to see whether
test data improves the xSP model. If certain abilities are important to complete specific
passes, adding test data can lead to an improvement in the results of the xSP model.
Passing is one of the most important aspects of football. However, little research has
been conducted on the topic. It is often observed that players are compared or judged on
their passing completion percentage, ignoring difficulty and quality of passes. In a recent
interview with Sky Sports, Manchester City’s star midfielder Kevin de Bruyne expressed
his opinion on the metric stating, ’Pass completion is one of the most wasteful stats,
it doesn’t define me as a player. You can have 96% pass completion, but if I play it
sideways or backwards I don’t create anything.’ (4). Few papers did research on the
prediction of the likelihood of pass completion, Anzer and Bauer (5) used eXtreme Gradient
Boosting (XGBoost) with 25 contextual features of the pass and divides the predictions into
three levels of pass difficulty. As no true label is known, experts manually label the level
of difficulty of the passes. The models are then evaluated based on expert accordance,
achieving 78%. Unfortunately, manual expert labeling is not available in this research.
With this model they argue that a player’s passing performance can be assessed more
accurately using risk profiles and efficiency.
Significantly more research has been conducted on Expected Goals (xG), which is very
similar to xSP meaning that studies researching xG contain valuable information for this
study. For example, Fairchild et al. (6) predicted probabilities for a shot to be a goal
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2. LITERATURE REVIEW

based on contextual features of the shot, which is what this paper strives to achieve for
passes. The paper by Fairchild et al. models a sequence of shots through a Poisson
binomial distribution, as all shots are taken independently and not necessarily follow the
same distribution. Using logistic regression, they predict whether a shot results in a goal
or not. However, instead of the usual classification metrics such as accuracy, recall and
precision, they propose a different way of evaluation. Considering the number of correct
predictions does not accurately reflect whether the probabilities of the shots are accurate.
They argue that two models that predict 60% and 85% for a shot respectively, have the
same outcome as both predict that the shot is a goal, while it is not known which model is
more accurate. The accuracy of the predicted probability should be the main evaluation
criterion, not the accuracy in predicting whether a shot results in a goal. They propose a
calibration curve, for a set of shots with probabilities in a certain range around probability
π, then π of those shots should result in a goal. A model with accurate predictions would
have the line x=y within the linear fit and its confidence interval. The Brier score β is
proposed as second evaluation metric, which can be calculated using Equation 2.1. With
N being the number of observations, πi is the predicted probability of instance i, and yi

is the label of instance i. Fairchild et al. achieved that the x=y line is within the 95%
confidence interval of the linear fit and a Brier score of β = 0.19. Where β is defined as:

β =
1

N

N∑
i=1

(πi − yi)
2 (2.1)

A similar study conducted by Pardo (7) also creates models that predict the xG and
similar to this paper, it investigates whether adding player quality to the contextual infor-
mation improves the models. However, it does not use data collected by conducting tests,
but the player statistics of the FIFA video game by EA Sports. Using logistic regression,
a random forest and a neural network, it is concluded that adding player quality yields a
slight improvement. After the calibration plot like Fairchild, several post-processing cal-
ibration methods such as No post-calibration, Isotonic regression and Platt scaling, are
used to further improve the results. As the original calibration was already accurate, the
post-processing calibration methods had no significant effect.

Similar to Anzer and Bauer, Cavus and Biecek (8) use Gradient Boosting models to
predict xG. Instead of only using XGBoost, they also implement different algorithms from
the gradient boosting family in LightGBM and CatBoost. The three gradient boosting
algorithms had very similar performances which were slightly worse than the random forest.
Several papers have compared the three variations of the gradient boosting algorithm,
however there is no algorithm that always outperforms the others (9)(10)(11).
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2.2 Evaluation of dribbling

2.2 Evaluation of dribbling

Like evaluating the passing abilities of a player, the success rate is not an accurate metric
for a player’s dribbling skills. A paper by Dick et al. (12) evaluates the player’s situative
dribble effectiveness by looking at the increase in ’V’, which is a number that illustrates
the likelihood of success of the team. This value is indicates how the player increases
the chance of scoring based on his dribble. This metric favors attacking midfielders and
fullbacks considering they are often the ones to bring the ball up the field. They rate the
players based on the number of dribbles per minute that have a higher gain than a static
threshold of V, setting the importance of medium dribbles on the same level as higher
quality dribbles. Decroos et al. (13) uses the difference in scoring probability to value a
players action, given by Equation 2.2. Where the value of action a at time i is the difference
in scoring probability in game state Si (Pscores (Si, x)) and the probability to score in the
previous game state Si−1 (Pscores (Si−1, x)). Their dataset is very similar to the one used
in this study, featuring passes (64.63%), dribbles (8.69%), and interceptions (5.01%) as
event types.

∆Pscores (ai, x) = Pscores (Si, x)− Pscores (Si−1, x) (2.2)

Considering these papers base dribble quality purely on the increase in chance to score,
it is difficult for attackers to highly contribute while performing dribbles under the highest
pressure. Only using this feature ignores dribble context. It could be argued that players
with a higher attacking contribution are better performers than players who are able to
perform harder dribbles. However, especially for young players, the ability to complete
difficult dribbles (or passes) is an indicator of raw talent. With the right coaching and
development, decision making can be improved and this skill can be refined to be used
more effectively. Hence, this paper will develop a different metric that estimates the
difficulty of dribbles and passes.

2.3 Evaluation of interceptions

The evaluation of interceptions is slightly different compared to passing and dribbling. As
an interception is always a successful ball recovery, the frequency becomes more important
as it indicates the ability of the player to consistently recover the ball. The frequency is
often expressed as interception per x time units (often 90 minutes). However, Trainor et al.
(14) introduced a metric to measure a players involvement in defensive actions based on
the number of potential interceptions called Passes Allowed Per Defensive Action (PPDA),
calculated using Equation 2.3. This is mainly used to evaluate a team’s pressing style, but
can be adjusted to get a PPDA value for each player.
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2. LITERATURE REVIEW

PPDAA =
Number of passes B

Number of defending actions A

(2.3)

Using this metric for player evaluation has several drawbacks, players in defensive minded
teams will be heavily penalized for the playing style of their respective teams. Only focusing
on frequency also ignores the importance of interceptions. An interception when you’re the
last defender is significantly more important than an interception on the midfield. Merhej
et al. (15) researched using deep learning by estimating how much threat is prevented.

A masters thesis by Piersma (16) further improved defensive action evaluation by incor-
porating interception difficulty and missed opportunities. This is done by examining all
game states using machine learning on a data set with over ten million events. Unfortu-
nately, due to time and data constraints it is not possible to create a similar model for
defensive action valuation.

2.4 Translating test data to in-game performance

Predicting the overall performance of a player can be seen as a regression problem, it is
seen that several types of regression models were used in similar studies. An example
of this is a paper written by McGuckian et al. (17) which uses subset, linear and non-
linear regression models to identify the association between visual exploration and passing
performance. They concluded that a high number of head turns before the ball was received
heavily correlated with good passing performances. Other studies that also perform tests on
players and connect them to in-game performances often only examine single correlations
of a test and a game performance indicator instead of combining test results to make
predictions. Examples of this are papers by Bila and Hillman (18) and Lipinska and Szwarc
(19). Lipinska and Szwarc used Spearman’s, gamma and Kendall’s tau rank correlation
coefficients to prove a correlation between physical components and match performance.
They found that good performance on speed tests and leg power/strength were significantly
correlated with one-on-one dribbling success. Bila and Hillman show a relationship between
the mental skills of a player and their short-passing performance. Separate Spearman’s
rho values were used to identify the relationship between tests and anxiety/confidence.
However, Abdullah et al. (20) have shown that even though there is a correlation between
psychological factors and performance, psychological factors alone could not accurately
predict the performance of a player. Thus, even though correlations can exist between a
test result and part of a player’s performance, one part of a player’s skill set is not enough
to accurately predict the overall performance of a player.

A study which also assesses youth players through the four categories of the Four Corner
Model is written by Kelly et al. (21). Cross-validated Lasso regression on test and match
data was used to predict subjective performance, which are grades given by players and
coaches, and the likelihood of signing a pro-contract. Fifteen features showed a non-zero
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2.5 Talent identification

SD.

2.5 Talent identification

The field of talent identification and development has been widely researched over the
years, Sarmento et al. (22) have done a systematic review of the performed studies in the
field. They concluded that coaches should consider scaling a player’s technical, tactical
and physiological skills against age. Furthermore, the current knowledge lacks information
on the influence of psychological and environmental factors. According to Fortin-Guichard
et al. (23), the most common approach to identify talent indicators is to compare the
differences between selected and de-selected players while the selection itself still remains
a subjective process decided by coaches. They also state that current studies often ignore
the biological age of the players, as some humans mature earlier than others this can lead
to overlooked potential in players that mature at a later age.

This study tries to bridge these gaps by capturing the differences in test results by
comparing players based on their objectively measured match performances. Regression
models are applied to predict passing, dribbling and intercepting ratings that are calcu-
lated with probabilistic models. The regression models use features based on twelve tests
that, contrary to most other papers, examine the entire skill set of a player by measuring
technical, physical, psychological and cognitive skills, combined with a player’s biological
age.
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Data

The data has been acquired by Forward Football through conducting tests and collecting
match data at twelve clubs in the Netherlands and Belgium. Throughout the six months,
visits have been made to these clubs, actively participating in the data collection process.
In this section, all information regarding the data will be provided. First, in subsection
3.1, a general explanation of the data used in this research will be provided. Then, the
data will be prepared and explored in section 3.2. Information about the meaning of all
features and their respective ranges is seen in Tables A.1, A.2 and A.3 in the Appendix.

3.1 Data description

In this section, general information about the available data is given. Based on sub-scores
of the tests, characteristics of players will be computed according to Forward Footballs
guidelines. For a more detailed description of all features, Tables A.1, A.2 and A.3 in the
Appendix give an oversight of all constructed features, by providing information about the
definition and the range of values observed in the data set.

3.1.1 Player information

The first part of the database contains the player profile and physical characteristics. The
player profile contains the professional information of the players such as their position,
club, team and KNVB ID. The physical characteristics mainly include height, weight, age
and their Age of Peak Height Velocity (APHV), which is the age a person reaches their
maximum growth rate.

3.1.2 Test performance

Twelve tests have been conducted on players from youth teams of twelve football clubs,
which can be divided into five categories. These tests provide information on the technical,
cognitive and physical abilities of a player. Physical abilities are integrated in the tests of

11



3. DATA

the other categories. The fourth and fifth categories are questionnaires about the mental
strength and sport history of the player. As the procedures of the tests are not common
knowledge, the conducted tests will be briefly explained to provide insight on what the
data means and how it is utilized in the prediction of the performance of the players.
Unfortunately, none of the players have participated in every test.

3.1.2.1 Technical tests

The first technical test conducted is the ’Football Skills Track’ (FST), which assesses the
player’s proficiency in dribbling. The track consists of five sections with different dribbling
styles, the cumulative time the player needs to complete these sections is their FST test
result. The whole track is depicted in Figure 3.1.

Figure 3.1: Schematic overview of the Football Skills Track (24)

The second technical ability evaluated is short passing, which is done with the Lough-
borough Soccer Passing Test (LSPT). BenOunis et al. (25) proved the effectiveness of the
LSPT and that it can be used to distinguish elite players from less skilled players. The
player passes sixteen times to benches as fast as possible while minimizing penalty points.
The total time plus penalty points is the final score of the player. A schematic overview
of the test is depicted in Figure 3.2.

12



3.1 Data description

Figure 3.2: Schematic overview of the Loughborough Soccer Passing Test (26)

Then, the speed and fluency of the ball control are tested with the Inside Joy Ball control
Test (IJBT). The test measures the fluency and quantity of six separate exercises. The
final score is calculated as the normalized average of the quantities.

The last technical test will test the long passing under pressure ability. During the
Passing Under Pressure 10m+ (PUP10) test, players have to pass over eleven and sixteen
meters in two directions using both feet while a defender puts pressure on them. Penalty
seconds will be given when a pass is inaccurate. The final score is the total time plus the
penalty seconds.

3.1.2.2 Cognitive tests

Cognitive abilities such as decision-making, spatial awareness, reaction time, and focus are
crucial for players to perform well on the field. Four tests are developed to assess several
of these cognitive abilities. The first cognitive test is the Game Insight inDicator (GID)
test, which tests insight, reaction time, positioning and judgment of the players. Six zones
are presented to the player, divided in three columns and two rows. The objective of the
test is to estimate in which zone the ball will end up based on video footage that turns
black before, during, or after the final ball contact of a player. If the player chooses the
right row, one point is awarded, a second point if the right zone is chosen and three if it
is done within the designated time which differs per situation. Every player does this for
ten different scenarios.

Then, spatial perception and visual memory are tested with the Test of Visual Perceptual
Skills (TVPS). The TVPS score is an average of five different tests which measure the
visual spatial relations, memory, sequential memory, closure and figure ground. During
the exercises the individuals have to remember, recognize and spot differences in figures.

13



3. DATA

Next, the eye-foot coordination of the players is assessed using the Visual Fine Motor Test

(VFMT). The players are required to complete a speed ladder with agility cones as quickly

as possible, every time a cone is touched the player has made an error. The calculation of

the final score is given by Equation 3.1

TVPS score = endtime ∗ (20 : (20− number of errors)) (3.1)

Finally, the focus and information processing speed is tested using the RightEye computer

which measures the eye movements of the player during various games.

3.1.2.3 Questionnaires

The players have participated in two questionnaires, one evaluates the mental strength of

the player, and the other collects information on the player’s sports history. The mental

strength is assessed based on statements about mindset, setting goals and mental tough-

ness, where the answers are numbers between 1-5 that indicate the level of agreement with

the statement.

The sports history questionnaire asks about what sports the player has played and the

number of hours practiced during each age. The questionnaire is based on a research from

Côté et al. (27) that categorizes practicing sports in four categories; free play, deliberate

play, structured practice and deliberate practice. For optimal talent development, they

propose the framework depicted in Table 3.1. At a young age, an athlete is in their try out

phase where the emphasis is on trying a wide variety of sports without structured training.

From age thirteen, the athlete has to start specializing in a sport and balance structured

training with other activities. From age 16 the athlete has to be fully invested in the sport

and full focus has to be placed on structured training.

Phase Deliberate play + other sports activities Deliberate practice Number of sports
Try out (6-12) 80% 20% 3-4
Specialization (13-15) 50% 50% 2-3
Investment (16+) 20% 80% 1-2

Table 3.1: Talent development framework proposed by Cote et al. (27)

3.1.3 Match data

Data of several matches is available, every match has data of the coordinates of all players

and the ball at a frequency of 5 times per second. Additionally, every event that takes

place including passes, tackles/interceptions, shots and dribbles.
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3.2 Data preprocessing and exploration

3.2 Data preprocessing and exploration

In this section the data will be prepared for machine learning together with data exploration
to get an initial indication of the data. As these tasks are often intertwined, these will be
done simultaneously.

3.2.1 Player profile data set

With the data described above, two distinct types of data sets will be made. First, the data
set for regression is made, which contains a player profile including general information, all
test results and the overall match performances for all players. As every test for each team
is saved in separate Excel files, these have to be merged to one data set containing all test
results for each player. To ensure that the files merge correctly, issues such as differences
in formats, score calculations and column names for the same tests, name misspellings and
other data inconsistencies have to be corrected. To further clean the data, columns only
containing NaN values and rows with players that haven’t participated in a match or a
test will be dropped.

This results in a database of 630 players and 983 columns where most columns are sub-
scores of tests or questions of the questionnaires. As this is not a desirable setup, the
sub-scores will be combined to define a specific characteristic of a player. The (inversed)
average answers of the mental questionnaire are also divided into several characteristics.
Finally, for each player, the ratio of deliberate practice and other activities during each
phase will be calculated using the sports history questionnaire. Reducing the total columns
to just 60 without losing information.

The PPR, DPR and interception rating mentioned serve as the target values of the
regression models. A more in-depth explanation including mathematical formulations of
these performance metrics can be found in Subsection 4.2.3.

As initial data exploration, Figure 3.3 depicts the individual correlations of the numerical
predictor variables and the PPR. It is observed that no excessively strong linear correlations
are observed, the sum of the absolute correlations is 2.1, further confirming the absence of
strong correlations. Even though no initial strong correlations are found, it could still be
the case that non-linear correlations exist that are not immediately observed.

3.2.1.1 Data imputation

As no player has participated in every test, most columns consist of more than 30 percent
of missing values. To get a better understanding of the sparsity of the data, Figure 3.4
depicts for each column the percentage of data that is missing.
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Figure 3.3: Correlation of predictors and PPR

Considering that the reason some players did not perform specific tests is independent
of the characteristics of the player, the missing data is regarded as Missing Completely
At Random (MCAR). Columns with over 80 percent missing values are removed from the
dataset completely.

The numerical missing values will be imputed using the KNN imputer, as it is non-
parametric meaning that it does not assume a specific distribution of the features. It is
also able to handle more complex, non-linear relationships. The main drawback is that it
is computationally expensive for large data sets, which does not apply here, since the data
sets are not excessively large.

Figure 3.4: Percentage of missing data per column

Furthermore, according to Peng and Lei (28), KNN seems to perform better than CD,
Mean/Mode Imputation and Multiple Imputation by Chained Equations because it is most
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robust to bias when the percentage of missing data increases. As the data set is sparse,
this is an important feature. When using the KNN imputer, the optimal value for the k
parameter has to be determined, which has been subject to controversy (29). Lall and
Sharma (30) argue that

√
N is the optimal value for k, with N being the sample size of

the data set. Other studies (31) get a significantly lower optimal k of 10 with a data set
larger than 100 samples. Due to the uncertainty in this topic, multiple values for k will
be tested to see what yields better results. Due to the sparsity and the fact that for some
tests there is no player who has done both, imputation was difficult. It is found that a k of√
N preserved the original correlations slightly better than the lower values for k, since it

has an absolute correlation sum of 1.75 compared to 1.61. Figure 3.5 shows the results of
imputed PUP10 values with k=5 against the PPR and Figure 3.6 shows the result for k =
25. Imputation with k = 5 causes many of the imputed values to have the similar values
to outliers, which is illustrated by the vertical lines in the plot. This is less observed when
using k = 25, which imputes closer to the mean while still keeping some variation.

Figure 3.5: Imputation of PUP10 using
k=5

Figure 3.6: Imputation of PUP10 using
k=25

3.2.1.2 Data transformation

Before performing further data pre-processing steps, it is important consider that the
players face a different quality of opponents in the matches, matches are between teams
consisting of players of the same age and level. It will be investigated whether the test
results of players of different ages and different levels differ. The Kolmogorov–Smirnov
(KS) test will be applied to compare all test distributions, as the KS test is efficient and
non-parametric (30). The null hypothesis H0 : ’The test results of O13 and O16 players
have the same distribution’, will be rejected at an α < 0.05. 43 out of the 50 tests have
rejected H0, meaning that the test results follow a different distribution most of the time.
It is observed that the tests which are not rejected are predominantly, but not exclusively
cognitive tests. To illustrate the difference in distributions, Figure 3.7 shows the ball
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control speeds of O13 and O16 and it is clearly observed that O16 players are faster with
the ball. While Figure 3.8 shows that the distribution of the eye movement is similar.

Figure 3.7: Ballcontrol speeds for O13
and O16

Figure 3.8: Eye movements for O13 and
O16

This process is repeated for Sub-elite and Elite level players, where 47 of the 50 distribu-
tions are found to be different. However, the null hypothesis of the PPR feature cannot be
rejected, which can be explained by the difference in opponent difficulty. To ensure that
opponent difficulty is taken into account, the test data are scaled by age/level using the
StandardScaler library of sklearn.

Before regression can be done, it is important to check for multicollinearity between
the predictors. If multicollinearity exist, data transformation such as the earlier described
Principal Component Analysis (PCA) has to be performed, otherwise the results of the
paper can be questioned (32). Especially the assessment of individual characteristics is not
possible if multicollinearity is present (33), which especially in this research, is problem-
atic. The Variance Inflation Factor (VIF) between the predictor variables will be used as
detection mechanism. According to Akinwande et al. (34), the acceptable values for VIF
are between 1-5, greater than 5 could cause problems in the models. Fortunately, no VIF
values greater than five are observed.

Although PCA is not necessary to remove multicollinearity from the predictors, it could
still be useful for dimensionality reduction of the data. A scree plot is used to determine
the number of components, Franklin et al. (35) used Kaiser’s rule to determine how many
components are retained. Kaiser’s rule states that all components with eigenvalues larger
than 1 should be kept, which is in our case 18.

The final two data modification techniques that will be implemented to test whether
it enhances model performance is outlier detection and data augmentation. As the test
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data has mostly been recorded manually, there are some outliers that can be caused by
personal errors. For data sets with a sample size larger than 80, an entry is considered if
the standard score of an entry is ± 3 (36). However, considering outliers can also contain
valuable information, models will be trained with and without outlier removal.

3.2.2 Event data sets

3.2.2.1 Feature engineering

For xSP and xSD estimation, a data set for each event that includes all the recorded occur-
rences with relevant features that are engineered using coordinate data at the timestamp
of the event and (imputed) test results of the player performing the event is made. Based
on the coordinate data, features of the events are derived such as pressure, pass angle,
direction, speed, area on the pitch and pass length. The pressure feature is divided into
several sub-features shown in the list below, which are all computed using the coordinates
of the opponents when the event is performed.

• Pressure direction: the direction from where the player is pressured
• Distance to opponent: distance to the closest opponent to the player
• Mean distance: average distance to all opponents
• Distance back: the distance to the closest opponent behind the player
• Distance front: the distance to the closest opponent in front of the player
• Pressure level: no Pressure, limited Pressure or full Pressure, based on the other

features
For xSD prediction different features are extracted out of the tracking data such as,

distance, highest speed, average opponents within 1m/5m.
To evaluate a player’s defensive contribution, a combination of the interception frequency

and the defensive/offensive gain it provides will be used. The offensive gain is quantified
using a feature called ’Expected threat’, which expresses the probability that a shot on
target happens within five passes from each position on the field. Figure 3.9 shows the
values computed using shot events from the data. A red color indicates a high probability
of a shot happening when starting of in that specific area. Unfortunately, there is not
enough shot data to also evaluate a player’s shooting performance in this study.

It is logical that areas closer to the goal of the opponent the probability of a shot
happening within five passes increases. The corner spot also has a higher probability than
the areas around it. What stands out is that the own five meter box has significantly
higher probability than anywhere else in the own half. The reason for this is that a shot is
more likely to happen within five passes as the goalkeeper tends to kick it long from that
area.

Before features based on the position on the field are added, the position of the away
team has to be inverted. This is done to ensure that the relative position of the pass is
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Figure 3.9: Expected threat on all areas on the pitch

the same for both teams, a pass at the back for the home team is on the other side of
the pitch as a pass at the back for the away team. To get an indication the importance
of the position of the pass Figure 3.10 indicates the heatmap of pass percentage based on
position on the field and Figure 3.11 the heatmap with inverted coordinates for the away
team. The legend of the heatmaps represents the color scale used, with the shades of green
indicating the pass completion percentage. As expected, it is observed that the coordinates
of the pass heavily influence the completion percentage, a higher percentage of passes is
completed in defense than attack. But this is only the case when the coordinates are
adjusted, without adjusting the percentages even out as passes in the defense and attack
are on opposite sides of the pitch for both teams.

Figure 3.10: Pass completion percentage
heatmap

Figure 3.11: Pass completion percentage
heatmap inverted for away team

It is also observed that 60.4% of the passes that are played forward are successful,
while passes played sideways or backwards have a success rate of 76.4%. The contextual
features of the pass have, as expected, correlations with the success rate. When plotting
the distributions of test data for both successful and unsuccessful passes, it is observed
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that the distributions are identical. Similarities were expected, but identical distributions
indicate a weak correlation between test data and pass completion.

Then, interval information of the player at the time of the event is added such as time
playing, heart rate, physical load, etc. This is done to ensure that the test data is the only
thing that differs among the players and to prevent players that are tired from having a
disadvantage compared to players who just entered the field.

3.2.2.2 Class imbalance

When exploring the class frequencies, it is observed that all event classes are imbalanced.
This is expected as high-level football players usually have a higher pass/dribble comple-
tion than 50%. The passing data is moderately imbalanced with 17364 successful passes
recorded and only 7109 unsuccessful passes, while the dribbling data is significantly more
imbalanced with 12,329 successful dribbles and only 2107 unsuccessful dribbles. A drib-
ble is detected every time a player touches the ball before passing/shooting, even a single
touch before passing the ball counts as a successful dribble. This does not define a player’s
dribbling skills, the paper by Dick (12) had a similar problem and filtered out the noise.
Now, only dribbles with over 3 meter distance covered are used to only capture actual
dribbles resulting in 11,119 successful and 1970 unsuccessful dribbles respectively. Sev-
eral oversampling methods can be used to address the class imbalance, Synthetic Minority
Oversampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN) are the
classic oversampling methods. According to Brandt and Lanzén (37), neither is signif-
icantly better than the other, however SMOTE has a slightly better performance than
ADASYN. Thus, this paper uses SMOTE to address class imbalance. SMOTE generates
minority class samples using linear interpolation preventing the overfitting problem of Ran-
dom OverSampling (ROS) (38). There are 4873 recorded interceptions, but interceptions
are always successful, meaning that oversampling is not applicable.

The baseline xSP and xSD models will be made using the data set that contains only
contextual features, then the aim is to improve this model by adding test results of the
player who performs the event as features.
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Methodology

The objective of this paper is to identify key characteristics of football players using test
data, which is done using two types of machine learning methods. Classification will be
used to assess the difficulty of passes and dribbles (xSP and xSD), these values are used to
create descriptive metrics (PPR/DPR) to be able to accurately evaluate the performance of
the players. Regression models are deployed to predict overall performance of the players.
If only the overall performance is predicted, valuable information on how characteristics
influence how players perform different event types will be lost. To address this, the classi-
fication model that only used contextual features of the event will be improved by adding
test data of the player performing the event. This provides a more profound understanding
on how characteristics influence different types of events.

4.1 Classification and Regression models

During data exploration it was observed that no strong linear correlations exist between
the predictor variables and the target variable. Consequently, regression models that as-
sume correlations between predictors and the target will not be effective. This rules out
simple/multiple linear regression, polynomial regression and ridge regression.

4.1.1 Random forest

Random forest is a suitable machine learning for the available data set, as it can be used
to capture complex data patterns in high-dimensional data (39).

4.1.1.1 Theoretical framework

The random forest machine learning model, originally developed by Leo Breimann in 2001
(40), will be used for both classification and regression. In his paper, Breimann proposes
an ensemble method that combines the results of multiple decision trees through voting
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(classification) or averaging (regression). An overview of this process is depicted in Figure
4.1.

Figure 4.1: Illustration of the random Forest voting mechanism (41)

Breimann trains the individual decision trees using bagging; each tree is trained on
a subset sampled with replacement of the training set. The diversity results in more
robustness with respect to outliers and noise, additionally the risk of overfitting is reduced
compared to fitting a single decision tree.

4.1.1.2 Practical implementation

The random forest algorithms are implemented in Python using the sklearn libraries
RandomForestClassifier and RandomForestRegressor respectively. Tuning the mod-
els is also done using functions provided by sklearn. First, feature selection is performed
using SelectFromModel, which transforms the training data such that only features with
an importance greater than a threshold are kept. SelectFromModel is used as feature se-
lection, using feature importances to capture complex non-linear relationships. Then, the
hyperparameters are optimized using the GridSearchCV library, where hyperparameter
configurations are exhaustively evaluated using k-fold cross-validation. The hyperparame-
ter values that are tried are shown in the list below.

• n_estimators: 50, 100, 200, 500
• max_depth: None, 3, 5, 7
• max_features: auto, sqrt, log2
• min_samples_split: 2,5,10
• min_samples_leaf: 1,3,5,10

N_estimators defines the number of trees in the forest and max_depth defines the max-
imum depth of each of the trees in the forest. Min_samples_split and max_features

define the minimum samples required for splitting an internal node and maximum number
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of features used to perform the split. Then min_samples_leaf denotes how many sam-
ples should at least be present in a leaf node. Another parameter that will be carefully
tuned is the oversampling ratio of SMOTE, as a standard ratio of 1:1 could skew the xSP
predictions below the true values.

4.1.2 Gradient Boosting family

In this section, the general gradient boosting framework will be discussed, together with
brief explanations of the algorithms belonging to the gradient boosting family that will be
implemented. Gradient boosting algorithms will also be used for both classification and
regression.

4.1.2.1 Theoretical framework

Similar to the random forest, gradient boosting is an ensemble method based on decision
trees introduced by Friedman (42) in 2001. Contrary to the random forest, it does not
independently create the trees on a subset of the training data but it sequentially adds
trees to the model. Each tree that is added corrects the mistakes of the previous trees
as they are trained on the residuals (43), finally a weighted combination of the individual
trees are used to get a prediction. A schematic overview of this process is depicted in
Figure 4.2

Figure 4.2: Gradient Boosting framework (44)

Friedman describes the Gradient Boost algorithm as 4 steps that are repeated m times
which will be briefly explained. In this section, the equations used to show the calculations
behind the steps are from his paper (42), where Gradient Boosting was first proposed.
Before starting the loop, an approximation of the true function F ∗(x) has to be made,
the initialization is given by Equation 4.1. Where L(yi, ρ) denotes the loss function that
measures the discrepancy between the target yi and the prediction of the model ρ.
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F0(x) = argmin
ρ

N∑
i=1

L (yi, ρ) (4.1)

The first step is identify the samples that the model has predicted badly, which is done
by calculating the pseudo-residuals ỹi. The pseudo-residuals show the magnitude of the
error of each prediction and are calculated using Equation 4.2. The equation shows that
the pseudo-residuals is the negative gradient of the loss function L(yiF (xi)) , with respect
to the predictions of the ensemble F (xi). With xi and yi denoting the input and output
for the i-th sample.

ỹi = −
[
∂L (yiF (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, i = 1, N (4.2)

As seen in Figure 4.2, these pseudo-residuals will be used to train a new decision tree. The
mathematical representation of this process is given by Equation 4.3, where the optimal
configuration of the m-th decision tree am, is calculated by minimizing the loss function.
The value ỹi−βh(xi;a) represents the difference between the pseudo-residuals, ỹi, and the
predictions made by the new individual decision tree h(xi;a) scaled with β and a defining
a specific structure and the characteristics of the individual tree. By optimizing β and a,
the optimal configuration for the new decision tree is found.

am = argmin
a,β

N∑
i=1

[ỹi − βh (xi;a)]
2 (4.3)

As discussed, the prediction of the ensemble is a weighted average of all weak learners
(decision trees) in the ensemble. After creating a new weak learner, the next step is
calculating the optimal weight it has in the final prediction. The weight is calculated using
Equation 4.4, which is similar to the Equation 4.3, but now the predictions of the existing
ensemble methods are taken into account to optimize the weight assigned to the new weak
learner. The optimal weight ρm is calculated by minimizing the loss function, where the
m-th tree multiplied with different values for ρ is added to the existing ensemble Fm−1

based on the previous m− 1 decision trees.

ρm = argmin
ρ

N∑
i=1

L (yi, Fm−1 (xi) + ρh (xi;am)) (4.4)

Finally, the ensemble method is updated by adding the new learner defined using the
earlier equations. Equation 4.5 demonstrates how the new ensemble is the old ensemble
with the new learner weak added, weighted by the optimized weight pm. This process of
updating the ensemble model is repeated m times, or until convergence is reached.

Fm(x) = Fm−1(x) + ρmh (x;am) (4.5)
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The described steps are the same for all algorithms in the gradient boosting family,
however some formulas might be slightly different. The XGBoost algorithm is a more
advanced gradient boosting algorithm introduced by Chen and Guestrin (45). They add
a regularization term and shrinkage to reduce the chance of overfitting, these techniques
achieve this by reducing the complexity of individual trees and reducing the training step
size. The modifications to the equations are the addition of the regularization term Ω(T )

to the loss function and shrinkage adds new weights 6 after each iteration.
LightGBM, introduced by Ke et al. (46), also uses regularization and further improves

the original gradient boosting algorithm by implementing Gradient-based One-Side Sam-
pling (GOSS) and Exclusive Feature Bundling (EFB) to improve efficiency by using less
data and bundle exclusive features.

The advantage of gradient boosting algorithms is that imputation is not a necessity, for
LightGBM and CatBoost one-hot encoding of categorical features is also not necessary.
However, the results of both inputs will be evaluated.

4.1.2.2 Practical implementation

XGBoost, LightGBM and CatBoost all have their respective libraries in python that im-
plement the algorithms described above for both classification and regression. The hyper-
parameters for both regression and classification implementations are the same and will
again be tuned using the GridsearchCV library. The SelectFromModel from the sklearn
library will be used for feature selection. Considering all three are gradient boosting algo-
rithms, the algorithms have similar parameters. The list below shows the values for the
shared parameters of the three models.

• learning_rate: 0.001, 0.01, 0.05, 0.1
• n_estimators: 50, 100, 200, 500
• max_depth: none, 3, 5,8, 10
• subsample: 0.5, 0.7, 0.9
• reg_lambda (or l2_leaf_reg): 0.01, 0.05, 0.1

Considering both the random forest and gradient boosting models are tree based ensem-
ble methods, it is no surprise that several parameters are the same. Subsample defines the
ratio of samples from the training data that is used. The learning_rate and reg_lambda

are both parameters that prevent overfitting in the model. A lower learning rate reduces
the step size during the learning process, giving each weak learner less influence in the final
result, resulting in a slower convergence. Reg_lambda (l2 leaf reg for CatBoost) which is
L2 regularization that adds a penalty to the loss function or to the leaf weights. XGBoost
and LightGBM also have L1 regularization with the parameter reg_alpha. LightGBM
also has num_leaves as parameter which determines the maximum number of leaves the
tree has, values between 10-30 are added to the gridsearch.
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4.1.3 K-Nearest Neighbors (KNN)

Despite it being introduced by Fix and Hodges (47) in 1951 and considered an old algo-
rithm, the K-Nearest Neighbors algorithm is still effective and often used nowadays. As
discussed with the KNN imputer, it is non-parametric (48) and is able to handle complex,
non-linear relationships (49) making it a suitable algorithm for this research.

4.1.3.1 Theoretical framework

KNN is based on the similarity of the samples in the data set. As indicated by the name,
it classifies a sample based on its k nearest neighbors, where k is a predefined number that
represents the number of neighbors used in the prediction. The distance between samples
is calculated with a distance metric, often the Euclidean distance or Manhattan distance.
These two distance metrics can be generalized using the Minkowski distance (50) of which
the formula is shown in Equation 4.6.

dMd (Xi, Xj) =

(
m∑
t=1

∣∣∣xit − xjt

∣∣∣p)1/p

for p ≥ 1 (4.6)

Taking p = 1 results in the formula for the Manhattan distance and the formula is
equivalent to the Euclidean distance when p = 2. Increasing p further would result in
higher sensitivity towards larger values.

4.1.3.2 Practical implementation

Sklearn provides the libraries KNeighborsClassifier and KNeighborsRegressor which
will both be implemented. However, feature selection cannot be done using the SelectFromModel

library for KNN as it is a distance-based algorithm. Sklearn does provide another feature
selection method called SelectKBest that selects features based on individual correlations
with the target. As mentioned above, the optimal value of k is subject to controversy
whether to use a low value to prevent overfitting or a higher value such as

√
k. The fact

that it is an older algorithm is observed in its simplicity, only a few parameters have to be
tuned. The configurations are depicted in the list below.

• n_neighbors: 3, 5, 10, 20, 30, 40
• weights: uniform, distance
• p: 1,2

Due to the uncertainty of the suitable value for k, six values will be tested for n_neighbors.
The weights parameter defines the weight of each neighbor, uniform assigns the same
weight to all k neighbors while distance assigns higher weights to closer neighbors. As
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explained, p defines whether the Manhattan distance or Euclidean distance will be used as
distance metric.

4.1.4 Artificial Neural Network

The Artificial Neural Network (ANN) is inspired by the human brain and uses a highly
interconnected network of neurons that mimic the processes of real neurons (51). As our
data is of tabular form without temporal nature, the best suited architecture type is a
Multi-Layer Perceptron (MLP), which is a feed-forward neural network.

4.1.4.1 Theoretical framework

It has been shown that the MLP is able to approximate every measurable function, even
highly non-linear, without making assumptions about the underlying distribution of the
data(52) (53). The Multi-Layer Perceptron (MLP) consists of connected neurons in an
input layer, one or more hidden layers and an output layer. The basic structure of a MLP
is depicted in Figure 4.3.

Figure 4.3: Structure of MLP (54)

The value of feature i, illustrated as xi in the figure, is propagated through the input layer
to the neurons in the hidden layer. Each neuron in the hidden layers computes a weighted
sum of values it receives and adds a bias, denoted as

∑n
j=1 (xjwj)+ b. Before propagating

it to the next layer, an activation function σ is applied to introduce non-linearity. The
most common activation functions are the sigmoid, reLU, tanh or the softmax function.
Figure 4.4 shows this process graphically, together with the mathematical formulation of
the activation function being applied to the weighted sum.

The weights will be initialized randomly and then optimized using backpropagation
which, like gradient boosting, consists of several steps that will be iteratively repeated.
Backpropagation was originally introduced in 1975 but began to gain popularity after a
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Figure 4.4: Process in a single neuron of a MLP (55)

paper by Rumelhart et al. (56) demonstrated the effectiveness of the algorithm. To begin, a
training sample will be forward propagated through the network with the process explained
above. Then, the error of the output with respect to the target value is calculated using
a loss function. The gradient of the error is computed and backpropagated through the
network by computing the gradients of the error with respect to each weight one layer at
a time. Equation 4.7 represents the gradient of the error with respect to the weighted sum
zlj at node j of the MLP. The partial derivative of the error with respect to the activation
∂E
∂alj

, multiplied by the partial derivative of the activation with respect to zlj ,
∂alj
∂zlj

:.

δlj =
∂E

∂alj

∂alj

∂zlj
(4.7)

The resulting δlj , quantifying the contribution of the activation of neuron j in layer l to
the error of the overall network, can be used to calculate the gradient of the error with
respect to the weights using the chain rule, see Equation 4.8. δlj is multiplied with the
activation al−1

i of the neuron in the previous layer. The gradient of the error with respect
to each weight is used in computations for the weight updates.

∂E

∂wl
i,j

= al−1
i δlj (4.8)

After this, an optimizer is used to iteratively update the weights and biases in the network
such that the loss function is minimized. This process is repeated until convergence by
approaching the minimum of the loss function or when the specified number of epochs
is reached. Gradient descent is the most basic optimizer which updates the weights by
subtracting the original weight by the gradient of the total loss function with respect to
Wj multiplied with the learning rate as seen in Equation 4.9. The total loss function of
weight wj is the sum of the gradients of the loss function with respect to wj over all m
samples. The learning rate determines the step size each iteration and tuning it correctly
is critical. A learning rate that is too high could fail to converge and if it is too small it
takes too long to converge.
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ω∗
j ← ωj − α ∗ ∇w

m∑
1

Lm(w) · ŵj (4.9)

Gradient descent has several disadvantages, the computational efficiency is low as it uses
all training samples each batch. Even though this results in smooth convergence, the lack
of randomness means that it can converge to a sub-optimal solution and thus can get stuck
in a local minima on non-convex functions(57).

By introducing noise and randomness, stochastic gradient descent or the Adam optimizer
reduce the risk of getting stuck in a local minima as opposed to the batch gradient descent
optimizer. Stochastic gradient descent only uses the weight update formula one sample
each batch which is observed in Equation 4.10 as the summation is removed over all m
samples. Mini-batch gradient descent is in-between both earlier mentioned optimizers, it
uses a small number of samples each batch.

ω ← ω − α ∗ ∇wLm(w) (4.10)

Figure 4.5 shows how stochastic gradient descent converges less smooth due to the in-
troduced randomness. As discussed, this can help escape local minima.

Figure 4.5: Convergence comparison of stochastic/batch gradient descent (58)

Since the configuration of the learning rate has a significant impact on the results, a big
advantage of the Adam optimizer is the iterative adjustments of the learning rate during
training, making it a more robust optimizer. The formula of the Adam optimizer is given
by Equation 4.11, where m̂t and v̂t are estimates of the first and second moment of the
gradients respectively. These are used to adapt the learning rate for each individual weight.
ϵ is a small value that prevents a division by zero.

w∗
i,j ← wi,j −

α√
v̂t + ϵ

m̂t (4.11)

The difference between MLP in regression and classification is the loss function used, the
most common loss function for regression is the Mean Squared Error (MSE) and the log-
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likelihood for classification. Even though a training set of 500 players is relatively small
for deep learning methods, a MLP will be made for both classification and regression.

4.1.4.2 Practical implementation

The MLP is implemented in python using the keras modules, which are a part of the
tensorflow package. As both data sets used in this paper are not excessively large, neural
networks of one or two hidden layers will be used to prevent the model from overfitting. In
addition to different architectures, various optimizer configurations and the four activation
functions mentioned will be tested. Finally, the learning rate and number of epochs will
be tuned. The values tested for the learning rate are similar to the previous models; 0.001,
0.01, 0.05, 0.1, while the number of epochs is optimized by plotting the validation and test
loss. The optimal number of epochs is approximately at the point when the training loss
decreases and the validation loss starts to increase or remains stable, indicating an optimal
trade-off between training performance and generalizability.

4.2 Evaluation metrics

4.2.1 Classification

For classification, the most used metrics are the accuracy, recall, precision and F1-score
derived from the confusion matrix. However, as previously discussed, these metrics fail to
show how well a model is calibrated. A model that is able to estimate the xSP accurately
is preferred over a model that predicts more passes correctly as the purpose of the model
is to estimate the difficulty of passes. The issue is that the true xSP of a pass is unknown.
To overcome this issue, the empirical Brier is used that approximates the Brier score by
using the sample outcomes. The empirical Brier score defines the sharpness and calibration
of the model and is calculated using Equation 2.1. A calibration plot is used to visualize
the calibration of the model across several ranges of probabilities. The predictions of the
model are split into bins, the model is well calibrated model if in each bin the proportion
of positive values is equal to the average xSP. The result is a scatter plot with the average
predicted xSP against the true proportion of successful passes of each bin. An overconfident
model would predict higher values than the true proportion which would be observed if
the point in the scatter plot is above x=y and vice versa.

While the Brier score and a calibration plot are often used as metrics to evaluate the cal-
ibration of a model, both are not a quantitative measure of the calibration. The calibration
plot shows a general visualization of the calibration, while the Brier score assesses both the
calibration and the sharpness of the model (59). To formally assess binary predictions, D.J.
Spiegelhalter (60) decomposed the Brier score to the Spiegelhalter’s z-statistic, the formula
is given by Equation 4.12 and it uses the standard normal distribution to measure whether
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a model is well calibrated (61). With xi and pi denoting the true label and predicted
xSP of i. Similar to the calibration plot it compares observed and predicted frequencies,
a higher value indicates a better calibration. The null hypothesis of the statistical test is
that the model is well calibrated, the model is poorly calibrated if the resulting z-score is
outside the range of -1.96-1.96 and thus significant using the conventional α = 0.05 (62)
(63).

Z(p, x) =

∑n
i=1 (xi − pi) (1− 2pi)√∑n

i=1 (1− 2pi)
2 ∗ pi ∗ (1− pi)

(4.12)

The final metric used is the Expected Calibration Error (ECE) which measures the
weighted average of all differences between the predicted and actual fraction in each bin.
But since no single metric gives a complete assessment of a model’s performance, a combina-
tion of these metrics are applied for a comprehensive overview of the model’s performance.

4.2.2 Regression

For regression, the Root Mean Squared Error (RMSE) and Mean Average Error (MAE) are
used to measure the magnitude of the errors and the R2 is used to measure the goodness
of fit of the model performance. The R2 represents how much the variance in the target
variable can be explained by the predictor variables. The main goal of the research is
explaining performance using test results, which means that the main focus is on the R2.
RMSE and MAE can provide additional numerical evaluation metrics to compare models
if the R2 values are similar. In addition to these metrics, a scatter plot of the predictions
versus the true values is made to identify a possible pattern of prediction errors.

4.2.3 Player performance

While the optimal xSP and xSD models are found using the metrics described above, the
performances of the players also have to be evaluated using fair metrics. A player is evalu-
ated based on his Passing Performance Ratio (PPR), Dribbling Performance Ratio (DPR)
and interception rating values. The PPR and DPR are computed using the predicted xSP
and xSD values by the optimal classification models. The PPR of a player is calculated by
dividing his number of successful passes by the number of successful passes the xSP model
predicted him to give. The predicted number of successful passes for a player is simply the
sum of the xSP values of all passes that the player gives. The mathematical formulation
is shown in Equation 4.13.

PPRx =

∑
i∈Px

yi∑
i∈Px

xSPi
(4.13)
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The equation shows the calculation of the PPR for player x, denoted as PPRx, where
Px is the set of all passes given by player x. yi is a binary value equal to 1 if pass i

is successful and 0 if pass i is unsuccessful. xSPi denotes the probability that pass i is
successful according to the optimal xSP model. The PPR of player x is then computed by
summing the yi of all passes made by player x (

∑
i∈P yi) and dividing it by the summation

of the success probabilities xSPi of all passes given by player x (denoted as
∑

i∈P xSPi).
A PPR greater than 1, signifies that the player outperforms the expectations of the model,
while a value lower than 1 indicates a performance lower than expected. Unlike pass
completion percentage, the PPR does not penalize players that perform harder passes, to
illustrate this a small example is given. Consider player A that gives 10 successful passes
out of 12 with an average xSP of 0.95, his PPR is 10

12∗0.95 = 0.87 and a pass completion
percentage of 83%. If Player B gives 8 successful passes out of 12 with an average xSP
of 0.57, he has a PPR of 8

12∗0.57 = 1.17 with a completion percentage of 66.7%. So, even
though Player B has a lower completion percentage, he has a better PPR as he delivers
significantly more difficult passes than Player A.

The calculation of dribble performance (DPR) is identical and shown in Equation 4.14.

DPRx =

∑
i∈Dx

yi∑
i∈Dx

xSDi
(4.14)

Finally, the interception rating is a weighted average of the scaled values of the frequency,
defensive contribution and offensive gain of a player’s interceptions. The frequency is
defined as the number of interceptions a player performs per minute. The offensive gain
is based on the location of the interception quantified using the expected threat values
for each position on the pitch defined in Chapter 3. Lastly, the defensive contribution is
defined as the number of teammates that are in front of the ball (TFB). This means that
an interception becomes more important when only a few teammates are left to defend
the ball as opposed to when the whole team is still able to defend. To ensure a balanced
contribution of each of the three factors, the three values are scaled before being used in
the formula shown by Equation 4.15.

IRx = (0.6 ∗ freqx) + (0.2 ∗
∑

i∈Ix xTi

|Ix|
) + (0.2 ∗

∑
i∈Ix TFBi

|Ix|
) (4.15)

The formula shows how the interception rating of player x (IRx) is calculated. First, the
player’s interception frequency x (freqx) is multiplied by 0.6. 0.6 is chosen as the weight
because the number of ball recoveries is deemed to be the most important of the three
factors. The set of interceptions performed by player x is denoted by Ix,

∑
i∈xTi
|Ix| is the

average offensive gain of the interceptions in Ix. Then the average defensive contribution
is computed using

∑
i∈TFBi
|Ix| . Note that, as discussed, the freqx, xTi and TFBi are scaled.

34



5

Results and Evaluation

This chapter will present and analyze the results of both the models that estimate xSP
and xSD, as well as the models that predict the overall performance of the players. For
the best performing models, the metric values together with the selected features and
hyperparameter configurations will be discussed thoroughly. In Section 5.1, the xSP and
xSD are estimated to create the PPR and DPR metrics, then the results of the overall
performance prediction will be shown in Section 5.2. To avoid repetitiveness, only relevant
plots are shown in this section; less relevant plots are omitted from the report or can be
found in the appendix.

5.1 Event classification

In this section, the difficulty of passes and dribbles will be estimated. First, the models
only using contextual features will be evaluated, then test data will be added to see whether
a more comprehensive understanding of the influence of the test results on specific event
types can be achieved. Finally, the resulting probability predictions will be validated using
common sense and general knowledge of the sport.

5.1.1 xSP

Table 5.1 shows the metric scores for all xSP models only using pass features, to establish
the metric that also evaluates pass difficulty. The table shows that all models are able
to accurately estimate the xSP, but the random forest and XGBoost models exhibit the
best overall performance on the three metrics. Fairchild (6) improved its referenced xG
model by obtaining a Brier score of 0.19, all our models achieve even lower values than 0.19
indicating well calibrated models. All models have high Spiegelhalters p-values, indicating
that no model is poorly calibrated. The average difference between the predicted prob-
abilities and the observed frequencies within each bin is also small, being approximately
0.02. The models are obtained using scaling, KNN imputation and without using SMOTE
oversampling and PCA. Using SMOTE or PCA disrupted the distribution of the passes
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and higher probabilities were predicted for lower probability passes and lower probabilities
for the higher probability pass bins. The calibration plots using SMOTE 1:1 oversampling
and PCA can be seen in Figure A.1 and Figure A.2 in the Appendix.

Model Brier score Spiegelhalters p-value ECE #features
Random Forest 0.171 0.739 0.021 16
XGBoost 0.168 0.722 0.024 15
LightGBM 0.171 0.713 0.026 12
CatBoost 0.172 0.688 0.038 10
KNN 0.180 0.642 0.020 20
MLP 0.178 0.688 0.028 -

Table 5.1: Evaluation xSP models excluding test features

As the metric values for the Random Forest and XGBoost are very similar, their cali-
bration plots will be compared as well to decide the superior model. The calibration plots
of the random forest and XGBoost are depicted in Figures 5.1 and 5.2. It is observed
that there is a very close alignment between the average predicted xSP in a bin and the
fraction of successful passes in a bin for both models. However, the random forest seems
to be slightly better calibrated for passes with lower success rates. As the linear fit of the
random forest is slightly better, it is the best model for estimating the xSP.

Figure 5.1: Calibration plot RF with pass
features

Figure 5.2: Calibration plot XGBoost
with pass features

The random forest uses the following parameter configuration: n_estimators : 500,max_depth :

None,max_features : auto,min_samples_split : 2, min_samples_leaf : 2.

The large number of estimators and no depth maximum, enables the random forest to
capture complex patters. The automatic feature selection mitigates the risk of overfitting
as it helps the model to only focus on important features. Finally the minimum samples
requirements prevents the model from creating specific rules making the results more gen-
eralizable. In combination with these parameters, sixteen features are used by the model
which are ranked by importance in Figure 5.3. The most important features are the pass
length, angle, position on the pitch and several pressure features which seem reasonable.
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5.1 Event classification

Figure 5.4 shows for each player the expected successful passes based on the cumulative
xSP against the true number of successful passes the player has given. The figure further
confirms that the xSP is accurately estimated, as the points are evenly distributed around
the x=y line, indicating the absence of systematic bias or over-/underestimation.

Figure 5.3: Feature importances RF ex-
cluding test data

Figure 5.4: Expected successful passes
against true successful passes for each
player

The predicted xSP for each pass by the baseline model is used to calculate the PPR
for each player. By integrating data about the passer, the probability estimation of a
pass being successful can be improved and give valuable insights into the integral skills of
a player for specific types of passes. Table 5.2 shows that all models except LightGBM
decrease in performance.

Model Brier score Spiegelhalters p-value ECE # features
Random Forest 0.178 0.697 0.038 30
XGBoost 0.178 0.713 0.027 28
LightGBM 0.176 0.705 0.023 50
CatBoost 0.180 0.588 0.045 27
KNN 0.187 0.711 0.025 19
MLP 0.195 0.603 0.035 -

Table 5.2: Evaluation xSP models including test features

Consequently, the LightGBM model performs best, the calibration plot and feature im-
portances are depicted in Figures 5.5 and 5.6. The calibration remains good, but is worse
than only using pass features. The feature importances show that the first test score is
the 21st most important feature, indicating the insignificance of the test features. For the
other models, the best performance was obtained using fewer features, but a constraint was
implemented that at least three test scores must be used to observe the effect it has. So for
single passes, adding player skill sets as features only adds noise. However, it could still be
that the test results are effective in the prediction of overall performance. Considering the
predicted probabilities are less reliable than the baseline model, no insights are obtained
on the effect of test data on specific pass types.
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Figure 5.5: Calibration plot LightGBM
with test features

Figure 5.6: Feature importances Light-
GBM with test data

5.1.2 xSD

The same models can be applied to the dribble events which, as seen during the data
exploration, was significantly more imbalanced. For xSP estimation, using SMOTE over-
sampling decreased performance, however, for xSD estimation oversampling to a 0.25/0.75
instead of the original class balance improved performance. Without oversampling, the
bin sizes of the harder dribbles were too small and a noisy calibration was observed. The
imbalance also meant that the majority of the xSD predictions are over 0.7 and that the
brier score is heavily influenced by this majority class. The calibration plots of the mod-
els showed an accurate estimation of higher xSD dribbles, but a few struggled with the
lower xSD dribbles, which was not reflected in the Brier score because of the dominance
of the well estimated majority class. As seen in Table 5.3, the random forest and catboost
demonstrate the best performance, with the MLP being slightly worse.

Model Brier score Spiegelhalters p-value ECE # features
Random Forest 0.111 0.677 0.050 22
XGBoost 0.128 0.421 0.063 10
LightGBM 0.121 0.533 0.067 24
CatBoost 0.109 0.712 0.044 10
KNN 0.118 0.349 0.070 10
MLP 0.111 0.640 0.059 -

Table 5.3: Evaluation xSD models excluding test features

The performance of catboost seems to be superior; however, the calibration plots of both
the random forest and catboost will be compared to confirm this, as both have very similar
results. Figures 5.7 and 5.8 show the respective calibration plots, apart from one bin, the
catboost indeed shows a better calibration than the random forest. Notably, the catboost
model was the worst model for xSP estimation.
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5.1 Event classification

Figure 5.7: Calibration plot random for-
est for dribbles

Figure 5.8: Calibration plot catboost for
dribbles

The catboost model used ten features which are seen in Figure 5.9 with an optimal param-

eter configuration of colsample_bylevel : 0.5,min_child_samples : 2, n_estimators :

100, subsample : 0.5. The parameter configuration shows a balance between randomness

and regularization. It is interesting that the number of teammates in front of the ball has a

higher predictive power than the area on the pitch, suggesting that context is more impor-

tant than position on the pitch. The pressure on the dribble, here defined as ’opponents in

1m radius’, and the increase in xT are also strong indicators of the difficulty of a dribble.

Difficult dribbles also tend to have a higher max speed as players often accelerate to blow

by opponents.

Figure 5.9: Ten features used by the optimal catboost model to predict xSD
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The results of the models after the test data is added is not shown, as it had the exact
same results as the models without. Contrary to the xSP models, where the test data had
a small feature importance, the test data had for almost all models a feature importance
of smaller than 0.01.

5.1.3 Result validation

The plots and metrics show that the xSP and xSD are well estimated; however, it is im-
portant to verify the numbers visually to judge whether the probabilities make sense using
football knowledge. Figure 5.10 shows the situation of a hard pass, the green dots are the
players that pass/receive the blue dot which represents the ball, while the red dots represent
the opposing team (goalkeeper not shown). The situation resembles a defender/goalkeeper
trying to pass to a forward using a long ball with slight pressure from the right. The model
predicted a 30.5% chance the pass is successful, which seems reasonable as the striker could
win the header but defenders are generally more likely to win aerial duels. According to
FBRef (64), the sixteen players with the best aerial duel win percentage are defenders, with
the highest ranked attacker being placed 55th in the Premier Leagues 2022-2023 season.
Figure 5.11 shows a pass backwards with 97.8% success probability according to the model,
which seems justifiable as it appears to be a simple backwards pass.

Figure 5.10: Pass situation of a hard pass
according to the model

Figure 5.11: Pass situation of an easy
pass according to the model

Dribbles are harder to visualize as it cannot be depicted in a single situation overview
plot like the ones used for illustrating passes. Based on some of the key features from
Figure 5.9, it was decided to give a general overview of the dribble using two position
features, two pressure features and two dribble features. Table 5.4 shows two examples for
easy, medium and hard dribble difficulties.

The two hardest dribbles are characterized by the player being the farthest up the pitch
of their team, which was also the feature with the highest predictive power. Most papers
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xSD Teammates before ball ATC Opp 1m radius Avg opp within 5m Time Highest speed (m/s)
0.119 1 -0.01 2 2.649 15.2 3.162
0.131 0 0.06 1 1 5 7
0.514 2 0.001 1 0.884 8.4 2.236
0.637 4 0 1 2.260 4.4 2.0
0.894 4 0.002 1 0.862 5.6 3.605
0.961 7 -0.004 0 0 2.8 4.242

Table 5.4: Dribble characteristics and their corresponding xSD

used attacking contribution as main feature, but the ATC alone is not enough to distin-
guish dribbles on difficulty. The hardest dribble even has a negative ATC, the model has
predicted an 11.9 percent chance of completing it due to the high pressure and long dribble
time. Dribbles predicted around 50% are a little more in the middle of the field with either
being a longer dribble or slightly pressured. Finally, the easiest dribbles are short dribbles
in defense. Overall, according to the calibration plot and rational reasoning using football
knowledge the estimated xSD is accurate.

5.2 Overall performance

In this section, the overall performance of the players will be predicted using their test
results. Assessing a player’s performance should be done using a metric that is independent
of the test data, the baseline xSP and xSD estimations are used for the PPR and DPR
calculations.
This section is split into three subsections; the PPR will be predicted in Subsection 5.2.1,
the DPR in Subsection 5.2.2 and finally, the interception rating in Subsection 5.2.3

5.2.1 Passing performance

The PPR of a player will be calculated using the estimated xSP values and the preprocessed
test dataset. Table 5.5 shows the performance of the models on the RMSE, MAE and R2

metrics. It immediately stands out that the R2 values of the models are very low, this
does not mean that the models are useless. Although the entire disparity in PPR can not
be explained using test results, valuable information can still be extracted from the results
as some correlation is observed, providing insights into important characteristics/skills.
Accurately predicting the PPR of a single player is not the final purpose of the model,
the goal is to find correlations between test results and performance, any correlation can
provide information.

As discussed, our primary focus is on the R2 metric in which XGBoost performs sig-
nificantly better than the other implemented models. The parameter configuration of
the XGBoost model used to obtain this result is: learning_rate : 0.1, n_estimators :

50,max_depth : 8, subsample : 0.5, reg_lambda : 0.001, reg_alpha : 0.001. Together
with the fifteen features illustrated together with their respective importance in Figure
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Model RMSE MAE R^2 # Features
Random Forest 0.087 0.065 0.071 24
XGBoost 0.091 0.072 0.175 15
LightGBM 0.092 0.070 0.052 14
CatBoost 0.099 0.85 0.033 18
KNN 0.084 0.064 0.053 18
MLP 0.094 0.074 0.044 -

Table 5.5: PPR prediction performance of the models

5.13. Figure 5.12 shows the true PPRs against the predicted PPR values, where each
blue dot represents a player. As indicated by the low R2 value, the model is not able to
accurately estimate the PPRs of the players. However, the observed linear fit is upwards,
indicating a pattern, albeit a small one. Because the entire disparity could not be ex-
plained using the test results, players who excel at the most important skills do not always
outperform players who do not. However, they are more likely to perform well.

Figure 5.12: Scatter plot of XGBoost
PPR predictions against true PPR

Figure 5.13: Feature importances XG-
Boost for PPR prediction

Notably, no features resulting from the PUP10 test are present in the top fifteen features
used to predict the PPR. The most important characteristics and skills to have according
to the model is control, describing how a player deals with his emotions. Next to controlling
emotions, the two mental attitude features hold great significance. Then, the devotion of
the player to the sport player when turning sixteen has the highest importance, this further
validates the research conducted by Cote et al. (27). The importance of devotion is further
confirmed by the importance of commitment and number of hours of free play as they also
serve as indicators for a player’s passion and enthusiasm for the sport. Interestingly, four
of the memory tests are included in the fifteen features used, indicating that players with
a quick and good memory tend to remember the positions of their teammates, reducing
time needed for visual exploration.
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To summarize, characteristics that display the highest importance in the prediction of the
passing ability of youth players are the mental strength/attitude, devotion to the sport and
their memory, all being cognitive abilities. To see whether a youth player is a good passer,
just conducted a passing test, such as the PUP10, does not indicate whether the player
passes well in matches. The fifteen features used to predict performance are predominantly
mental and cognitive features rather than physical tests.

5.2.2 Dribble performance

Similarly to the PPR, the DPRs will be calculated using the resulting xSD values. The
results are presented in Table 5.6, the R2 values indicate again that the full performance
cannot be explained using test results but correlation is observed.

Model RMSE MAE R^2 # Features
Random Forest 0.109 0.083 0.097 17
XGBoost 0.154 0.109 0.066 12
LightGBM 0.129 0.098 0.106 19
CatBoost 0.131 0.100 0.072 20
KNN 0.114 0.096 0.114 20
MLP 0.134 0.096 0.038 -

Table 5.6: DPR prediction performance of the models

Even though the KNN model was one of the worst models for passing, it exhibits the
best performance for dribbling prediction. Figure 5.14 shows the predicted DPR against
the true DPR, a (small) upwards trend is observed. The twenty selected features are shown
in Figure 5.15.

Figure 5.14: Scatter plot of DPR predic-
tions against true PPR of KNN

Figure 5.15: Feature importances KNN
for DPR prediction

There are two features that are significantly more important than the others. While for
passing the most important tests weren’t tests related to passes, the two most important
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features for dribbling are Maturity Offset and ball control speed. MO is the number of years
before a player reaches his/her age of peak height velocity, even though it is not necessarily a
skill it is logical that this feature holds such significance. Players who experience an early
growth spurt and physically more developed are anticipated to perform better dribbles.
Indicating that if a player doesn’t show extremely good dribbling performance but also
hasn’t already reached its APHV, it is too premature to their dismiss potential. Exceptional
dribbling performance before APHV even signifies high potential. The relevance of the ball
control speed feature speaks for itself. So contrary to the passing, the two main features
used to predict performance are physical skills and characteristics.

5.2.3 Interception performance

Finally, the ability to frequently perform useful interceptions will be predicted using each
players respective test results. Table 5.7 shows the model results, what stands out is that
the results are significantly worse than for passing and dribbling.

Model RMSE MAE R^2 # Features
Random Forest 0.566 0.492 0.007 24
XGBoost 0.565 0.423 0.012 20
LightGBM 0.555 0.470 0.003 21
CatBoost 0.601 0.530 0 17
KNN 0.556 0.447 0.014 20
MLP 0.573 0.491 0.0003 -

Table 5.7: Interception rating prediction performance of the models

As seen in Figure 5.16 an even smaller upward trend is observed combined with a lot
more variability in the predictions versus the actual interception ratings scatter plot. The
variability in predictions leads to the high RMSE and MAE values, while the extremely
low R2 indicate that the features almost don’t have predictive power. Contrary to passes
and dribbles, no real correlation is found between the test results and interception rat-
ings. Unfortunately, no reliable conclusion can be drawn from these models. One possible
reason for this could be that the passing/dribbling skills are evaluated using models that
accurately estimated event difficulty, whereas interceptions could not be evaluated using
such probabilistic models resulting in the usage of a more arbitrary metric. The metric
can be improved by using more sophisticated models such as the one developed by Piersma
(16). Another reason could be the size of the data sets, as interceptions is a more rare
event, players often only have between 2-6 interceptions recorded. A sample size this small
probably doesn’t accurately capture a players interception ability.
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Figure 5.16: Actual vs predicted interception ratings KNN
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6

Conclusion

In this study, the primary goal is to capture which skills and characteristics are crucial
for youth players to possess to perform well in matches, assessed using objective and more
sophisticated metrics than just success rate. By bridging the gaps in the current state of
knowledge, the aim was to improve the identification/development of talent. The central
research question of this study is ’To what extent can player characteristics and/or skills
be used to predict the performance of football players?’

The difficulty of the events, expressed by xSP and xSD, are well estimated using a ran-
dom forest and catboost respectively. Despite utilizing the same models for the similar
problems, no model was superior for both and different models excelled. For passes, the
random forest achieved a brier score of 0.171 with a calibration almost perfectly following
the line x=y. The most important features were the length and angle of the pass combined
with the applied pressure and position on the field. The data used was scaled based on age
and level while no PCA or SMOTE oversampling was applied despite the class imbalance.
Slight oversampling to a 0.25:0.75 ratio was optimal for xSD estimation, where catboost
achieved a brier score of 0.109 and a slightly worse calibration. The lower brier score can
be explained by the bin imbalance of the dribbles, as very few dribbles are predicted below
a 50% success probability. The number of teammates behind the ball after the dribble has
the most predictive power of dribble difficulty, indicating that not only position on the
field is important but context matters as well. The highest speed during the dribble and
applied pressure also played a significant role in accurately estimating dribble difficulty.
Integrating test features for individual event success prediction decreased model perfor-
mance, meaning that no information regarding the influence of characteristics on specific
event types is obtained.

Referring back to the research question, the test results could not be used to explain the
entire disparity in performance differences. This does not mean that nothing is achieved,
for passing and dribbling correlations were observed, indicating that players with certain
skills tend to perform slightly better. The best model for PPR prediction was XGBoost,
achieving a R2 of 0.175. Interestingly, the fifteen features used by the XGBoost were
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mental strength/attitude, devotion and cognitive ability. Sub-scores of the PUP10 test
did not appear, thus a player’s passing ability can not be assessed by a simple passing
test, the essential elements lie in the mind. The KNN exhibited the best performance in
predicting DPR with features that are significantly more important than other features.
Contrary to passing, dribble capabilities mainly rely physical characteristics: biological
age and ball control speed. Some players mature at a later age, it is too premature to
dismiss their potential. Conversely, players that mature earlier could quickly reach their
peak. As seen in Chapter 2, studies often overlook the biological age of youth players, yet
the significance becomes apparent. The interception rating was calculated using a more
subjective weighted average due to the lack of resources to develop a more sophisticated
metric. Together with the significantly less interception occurrences, this can be part of
the reason that no correlation could be found in the interception rating and the test re-
sults. Out of the six models used, four of them have exhibited the best performance at
least once, stressing the importance of adopting a diverse selection of models with their
respective (dis)advantages.

As discussed in Chapter 7, the subpar test data quality impacted the results. More
extensive and complete data sets could potentially lead to more, improved insights.
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7

Discussion

7.1 Limitations

7.1.1 Data quality

The limitations of this research are primarily in the quantity and quality of the data. First,

there is not a player that has participated in all the tests conducted, which means that ap-

proximately 50% of the test data consists of NaN values. Even though these missing values

are imputed, the imputation quality is low given the amount of missing data. Furthermore,

each player performs the tests only once, introducing variability. A singular test result does

not provide a comprehensive reflection as numerous circumstantial factors can influence the

test score, causing inaccurate reflections of the player’s skill set. When conducting the tests

myself, some players required time to familiarize with certain exercises before performing it

at their best. Due to the tight training schedules of the clubs, often there was not enough

time for players to achieve their best scores. Another thing that raises concern about the

test data quality is that the questionnaires about mental skills are subject to response bias

and dishonest answers. It was noticed that players occasionally asked about the impli-

cations of the tests on the decision making about their future at the club, indicating a

possible fear of giving honest answers to the questions of the questionnaires. Although the

event data sets were of higher quality, the size is a point of consideration. Similarly to the

test data, only one or two matches worth of data are available per player. To fully assess a

player’s abilities in matches, it is imperative to record data over more games, as not a sin-

gle player consistently performs well every single game he plays, resulting in a skewed view.

As discussed, these concerns about the data quality could be a significant reason the test

data does not have a higher predictive power. When Forward Football obtains more and

data with a higher quality, the pipeline made in this study can be used again to gain new

and improved insights.
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7. DISCUSSION

7.1.2 Metrics

As mentioned in Chapter 2, there are opportunities for improvement of the weighted aver-
age used for the interception rating. Specifically, implementing a similar model proposed
by Piersma (16) that takes interception difficulty and missed interception opportunities
into account would improve results.

7.2 Suggestions for further research

For future research, it is recommended to address the limitations regarding the data and
possibly try a wider range of models. Instead of implementing more models, ensemble
methods could be explored, making the predictions a weighted average of the models al-
ready implemented. Although this study focuses on the present, the objective of identifying
talent is to identify players that perform at a high level in the future. A skill that is not
highlighted in this paper as it did not determine which players perform well right now
could be crucial in later stages. It is not known whether players with certain character-
istics and skills perform at a high level at a later stage. Future studies with substantial
resources could research this by tracking groups of players over an extended period of time,
continuously conducting tests and recording matches to observe changes throughout the
time span and fully document development trajectories. Especially after the observation
that the biological age is a significant factor in the performance of youth players, it could
be valuable to explore the trajectory how players with varying biological ages eventually
develop. Analyzing the trajectory of players over a longer period of time would provide
more context to which players show true potential.

Overall, the field of talent identification/development still presents numerous opportu-
nities for further exploration, not only in football but across all sports. With the ever-
changing world of sports and advancements in technology, new possibilities to approach
these challenges will present.
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Appendix A

Feature Meaning Range
APHV Age of peak height velocity 12.53-15.81
MO Maturity Offset, years until peak height

velocity
-2.43-2.95

Ballcontrol speed Time 8 figure + backwards dribble part of
the FST 3.1

3.71-10.82

Dribble speed Time of dribble + slalom part of the FST
3.1

16.77-34.95

FST Final time total time completing the FST 3.1 +
penalty

24.04-40.17

PUP10 Time Time completing passing course including
penalty for wrong passes

21.29-50

Serie Which foot which the player should use for
specific passes in PUP10

categorical

Decision Making Processing speed of visual information 25-70
Eye Movement Hand-eye/foot-eye coordination measured

by the RightEye vision system
39-70

Focus Test that checks whether the scores of the
previous two features change when adding
distractions

62-100

Sports Functional Score Ability in spotting contrasts in figures 57-84
Sports Vision Football specific Eye Vision score 51-74
Best trial Best score out of 3 VFMT tests, see Equa-

tion 3.1
5.51-21.58

Recognizing Body lan-
guage

Correct ball trajectory section answers 12-27

Recognizing Ball trajec-
tory

Correct ball trajectory answers 1-12

Positioning Speed The time a player chooses the trajectory
of the ball

0-16

GiT Score Final score calculated by adding up the
three features above

14-47

IJBT ballcontrol Score Scaled average of toe taps and hat dance
count

0.26-0.99
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IJBT feint Score Scaled average of remaining IJBT test
counts

0.09-0.85

IJBT Final Score Scaled average of all counts 0.16-0.82
IJBT ballcontrol Flu-
ency

Scaled average of toe taps and hat dance
fluency

0.21-0.99

IJBT feint Fluency Scaled average of remaining IJBT test flu-
encies

0.29-0.89

IJBT Fluency Score Scaled average of all fluencies 0.34-0.93
LSPT3 Final time (total
seconds)

End time LSPT + penalty seconds 28.16-98

Score Spatial Correct figure identifications in a group of
four figures

0-17

Score Memory Quick Correct figure identifications in a
group of four figures

1-16

Score Seq Memory Correct sequence identifications in a group
of four figures

0-16

Vis Clo Correct identifications of objects when
only a part is shown

0-16

Vis Fig Ground Correct figure identifications in a group of
four figures

2-16

Final TVPS3 Score Average of the five features above 3.33-16
M-Compact total score 311-508
MQ-score Scaled value of motor ability tests 84-127
Mental Entity Questions about how much talent deter-

mines ceiling
1-5

Mental Incremental Questions about how much training deter-
mines ceiling

1-5

Confidence Questions about the confidence of the
player

1-5

Control Questions about how the player deals with
his emotions

1-5

Challenge handling Questions about how the players deal with
possible challenges

1-5

Commitment Questions about persistence to achieve
goals

1-5

Learning Orientation Questions about eagerness of learning 1.17-5
Performance Orienta-
tion

Questions about eagerness of performing 1.33-5

Focus playing vs train-
ing

Questions on how much the player is fo-
cused on playing or performing

1.34-4.5

Number of sports
played

Total number of sports the player has
played

1-4

Total hours guided
training

Cumulative hours of football training 260-12345
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Total hours free play Total hours the player has played sports
excluding training

104-9776

Percentage football Age
4-12

Percentage of sports time dedicated to
playing football between age 4 and 12

0.3-1

Percentage football Age
12-15

Percentage of sports time dedicated to
playing football between age 12 and 15

0.33-1

Percentage football Age
16+

Percentage of sports time dedicated to
playing football between age 16+

0.38-1

Table A.1: Explanation of the used test features and their respective ranges of recorded
values

Feature Meaning Range
Time block At which part of the match the pass hap-

pened, each match is divided in six blocks
1-6

Zone Whether the pass is in de-
fence/midfield/attack

-

Area The are on the pitch, the pitch is divided
in 18 different areas

1-18

Angle The angle of the pass, expressed in an ab-
solute value of π

0-3.14

Pass type Whether the pass was lat-
eral/backwards/forward

-

Pass length The length of the pass in meters 1-76.84
adj_X Adjusted X coordinate of the player giving

the pass based on playing direction
0-106

adj_Y Adjusted X coordinate of the player giving
the pass based on playing direction

0-68

Pressure direction The direction from where the player is
pressured, back or front

-

Distance 2 opp Distance to the closest opponent in meters 0.63-47.50
Mean distance Mean distance towards all opponents on

the pitch
4.88-51.63

Distance front Closest opponent in front of the player 0.2-100
Distance back Closest opponent behind the player 0.2-108.6
Pressure level Categorical variable rating the pressure as

no/limited/full pressure
-

Pressure with direction The lowest value of distance back/front
with distance back adjusted to a negative
value

-29.12-40.40

Pressure 10 Pressure level expressed on a scale between
0-10

0-10

Table A.2: Explanation of the used pass features and their respective ranges of recorded
values

59



REFERENCES

Feature Meaning Range
ivt_X_begin Adjusted X coordinate of place where the

dribble starts based on playing direction
0-105

ivt_Y_begin Adjusted Y coordinate of place where the
dribble starts based on playing direction

0-69

ivt_X_end Adjusted X coordinate of place where the
dribble ends based on playing direction

0-108

ivt_Y_end Adjusted Y coordinate of place where the
dribble ends based on playing direction

0-71

Dribble Time The duration of the dribble in seconds 1.2-57.8
Dribble Distance The distance the player covered with the

ball
0.50-71.44

Highest Dribble Speed Highest speed recorded during the dribble
in m/s

0-10

NearbyTeammates 311-508
Opponents in 1m radius Average opponents within 1m during the

dribble
311-508

AverageOpponents Average opponents within 5m during the
dribble

311-508

MaximumOpponents Maximum opponents within 5m during
the dribble

311-508

Teammates before ball
begin

Teammates behind the ball before the
dribble

0-10

Teammates before ball
end

Teammates behind the ball after the drib-
ble

0-10

Opponents before ball
end

Opponents behind the ball before the drib-
ble

0-11

Opponents before ball
begin

Opponents behind the ball after the drib-
ble

0-11

Total playing time Total seconds the player has been on the
pitch

1.2-5476

xT begin Expected threat of the coordinates where
the dribble started

0-0.184

xT end Expected threat of the coordinates where
the dribble ended

0-0.184

ATC dribble Attacking Threat Contribution; difference
between xT begin and xT end

-0.144-0.138

Zone begin The pitch is divided in four zones (horizon-
tal lines), this denotes the starting zone

-

Zone end The pitch is divided in four zones (hori-
zontal lines), this denotes the ending zone

-

IsDribbleForward A boolean on whether the dribble is for-
ward

-
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Table A.3: Explanation of the used dribble features and their respective ranges of recorded
values

Figure A.1: Calibration plot XGB with
pass features and SMOTE oversampling

Figure A.2: Calibration plot XGB with
pass features and PCA
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