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Abstract

Context. In our time many seekers for housing miss a clear insight into their

chances of securing a property and how to adjust their housing preferences to

access better listings on the website. In addition, the scarcity of social housing

exacerbates this situation, as high demand and limited supply of social rental

properties further reduce their chances.

Goal. Supporting prospective tenants is crucial for WoningNet to maintain

the satisfaction of current customers and distinguish itself from its competi-

tors. WoningNet’s Customer Contact Center (KCC) currently handles inquiries

regarding the allocation chances of prospective tenants, a time-consuming pro-

cess. This study aims to predict the allocation probability for prospective

tenants. WoningNet intends to display this information on its website to assist

tenants in identifying houses with better prospects or to effectively adjust their

search criteria.

Method. The allocation probability is closely related to the final position

on the applicant list in the allocation process; therefore, the final position is

predicted. Due to the absence of reproducible studies in this area, a hybrid

approach is utilized, combining mathematical methods for predicting the fi-

nal position with machine learning techniques for predicting the number of

responses to a listing. The mathematical methods compared include a simple

mean approach and a novel sorting ratio approach. This study demonstrates

that accurately predicting the final position requires predicting the total num-

ber of responses on a listing. To predict this, the performance of five machine

learning models (SVR, Random Forest, Extra Trees, LightGBM, and CatBoost)

is compared, with models tuned using Random Search. Additionally, different

feature sets are assessed for their effectiveness. The performance of the models

is evaluated using RMSE and R-squared metrics.



Results. The results show that the mean approach without scaling performed
poorly (R-squared = 0.12). Incorporating the number of responses signifi-
cantly improved its performance (R-squared = 0.99). The sorting ratio ap-
proach achieved an R-squared value of 0.97. All models for predicting the
number of responses demonstrated similar performance, with R-squared values
between 0.84 and 0.89. The minimum age selection criterion emerged as the
most important feature across most models. CatBoost achieved the highest
performance with the fewest features. When using the predicted number of re-
sponses in the position prediction models, the scaled mean approach achieved
R-squared values between 0.79 and 0.86 and RMSE values between 126 and
156. For the sorting ratio approach, the R-squared values ranged from 0.75
to 0.81, and the RMSE values ranged from 130 to 151. Among the models,
LightGBM achieved the highest performance, with R-squared values of 0.86 for
the scaled mean approach and 0.81 for the sorting ratio approach.

Conclusions. The simple mean approach for predicting the number of re-
sponses performed inadequately on the test dataset. Although incorporating
the number of responses made the model highly accurate, this approach is dif-
ficult to scale, necessitating the development of a second model: the sorting
ratio approach. The sorting ratio approach also achieved high performance.
However, it requires the number of responses per listing, which is unknown
in practice. Machine learning methods for predicting the number of responses
performed reasonably well. By integrating these machine learning predictions
with the position-based approaches, the performances were reduced but re-
mained fairly good, with an R-squared value of 0.81 for the scalable sorting
ratio approach. Among all the models, LightGBM achieved the best results.



Contents

1 Introduction 1

1.1 Housing shortage in the Netherlands . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Role of WoningNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Impact of uncertainty in social housing . . . . . . . . . . . . . . . . . . . . . 3
1.4 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Allocation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Literature Review 10

4 Data 15

4.1 Data description and Initial cleaning . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 Applicant list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Allocation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.4 CBS Zip Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.5 Web scraping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Position prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Preprocessing and exploratory data analysis . . . . . . . . . . . . . . 20

4.3 Preprocessing and engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



CONTENTS

4.3.4 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.5 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.6 Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Methodology 28

5.1 Predicting the final position . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.1 Mean approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Sorting ratio approach . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 From the final position to the chance of allocation . . . . . . . . . . . . . . 33
5.3 Predicting the number of responses . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Random Forest Regression . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.3 Extra Trees Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.4 LightGBM and Catboost . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.1 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Results 44

6.1 Predicting final position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Determining chance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Predicting number of responses . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.3 Extra Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.4 LightGBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.5 CatBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.6 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Full model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Discussion 55

7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Conclusion 58

References 61

vii



1

Introduction

1.1 Housing shortage in the Netherlands

In the Netherlands challenges regarding housing availability are persistent with shortage

reaching 390,000 houses in 2023 (30). Experts attribute the housing shortage primarily to

the collapse of new construction following the 2008 credit crunch (23). From 2000 to 2008,

there were huge construction efforts, with approximately 790,000 new homes built annu-

ally (6). After this period this positive trend took a downturn. Post-2013, construction

rates drastically fell to a meager 50,000 homes per year, increasing the housing shortage

(6). Concurrently, the growing population and immigration strained housing resources

further. Moreover, building permit issuance in 2021 faced obstacles due to nitrogen and

PFAS issues. The introduction of the Code of Conduct for Mortgage Loans in 2011 added

complexity, particularly impacting middle-income earners, who found themselves under-

served in both the social housing and homeownership markets. Soaring rents within social

housing and economic instability further widened the socioeconomic gap, leading to differ-

ences between lower-income renters and wealthy homeowners. This led to increased spatial

segregation within the social housing sector, primarily serving low-income and retired in-

dividuals (64% of residents in 2018).

The shortage of social housing is a significant contributing factor to the housing scarcity in

the Netherlands, particularly impacting individuals with limited income. Housing corpo-

rations increasingly use priority criteria and urgency categories to allocate social housing.

According to a survey conducted by the newspaper de Volkskrant across Dutch municipal-

ities (38), this puts less emphasis on waiting lists, especially in areas with severe housing

shortages. Research by the news channel NOS in 2021 showed alarming statistics: in 25%

of municipalities, seekers for social housing faced waiting periods exceeding seven years.
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1. INTRODUCTION

In Amsterdam, not even ranking among the top 10 municipalities with the longest waiting

times, the waiting period stretches to almost 14 years (24). The decrease in the proportion

of social rental homes in the housing stock over the past decade exacerbates this situation.

Housing corporations did not build enough new social rental houses compared to owner-

occupied and free-sector rental houses to compensate for this decline. According to housing

corporations, there is too little flow between homes. This is often due to the unavailability

of suitable housing options, compounded by the fact that moving is often not an attractive

prospect. Also, imposed carbon reduction goals ask for increased renovation budgets and

in 2013, the government introduced a special tax for housing corporations, known as the

landlord levy (30). This put considerable financial pressure on them, reducing their ability

to invest. Where municipalities previously mainly relied on housing associations to build

affordable rental properties, they have increasingly turned to commercial parties to bridge

the gap in affordable rental properties (1). Since last year, this levy has been abolished

and while the abolition offered hope, housing associations are still struggling to regain

this lost ground. The national association of housing corporations, Aedes, is concerned.

Aedes does not oppose other parties building affordable rental properties, it highlights that

commercial parties operate outside the allocation rules followed by housing associations,

including imposing income requirements on renters. Moreover, affordable rental proper-

ties built by commercial parties frequently shift to the private rental sector after 10 or 15

years, with higher returns for landlords. Aedes has requested the Kadaster (Land Reg-

istry) to assess the types of homes built from 2017 to 2020, revealing that only 16% were

corporation-owned, a much lower number than the typical municipal targets of 30 to 40%

social housing (1). In several municipalities, particularly around major cities, there are

indications that hardly any rental properties have been built in the regulated segment in

recent years (1).

1.2 Role of WoningNet

Facing those challenges, organizations like WoningNet have a crucial role in bridging the

gap between housing supply and demand. Through its website, WoningNet facilitates

connections between housing supply from corporations and prospective tenants, with a

primary focus on social housing. Over 200 housing corporations are currently affiliated

with WoningNet. Regarding housing allocation, this encompasses roughly 100 housing

corporations. The organization aims to provide comprehensive support to prospective

tenants while maintaining strong connections with municipalities and housing corporations.
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1.3 Impact of uncertainty in social housing

With advice, WoningNet offers guidance to collaborating housing corporations on reaching

their goals and aids municipalities in translating policies into allocating rules. These goals

frequently involve allocating homes to the appropriate target group. WoningNet strives to

support prospective tenants in responding to suitable offers and managing expectations.

This includes ensuring that their websites are user-friendly and easy to navigate.

When allocating houses, a set of criteria governs the process, including selection and sorting

criteria. These criteria are in place to ensure fair distribution of homes among prospective

tenants, given the current situation of demand exceeding supply, and following European,

national and local regulations. During the application period, prospective tenants can

only apply for a house if they meet the selection criteria. Those who meet these criteria

and actively seek housing are termed suitable home-seekers. Each suitable home-seeker is

assigned a minimum position on a list based on the sorting criteria. This minimum position

represents the position a person would hold if every suitable home-seeker applied for the

house. Sorting criteria vary by region, municipality, and property. Additionally, properties

with higher demand may have more decisive rules, ensuring fairness in applicant selection.

A final applicant list is compiled from all respondents to the house publication. The list

ranks applicants from 1 (the best match) to the lowest position (the least suitable match).

1.3 Impact of uncertainty in social housing

Besides the rational complications of allocating a house, there is also the profound emo-

tional impact on individuals waiting for social housing. Research has been conducted in

Australia on the impact of waiting for social housing (29). Although focused on the Aus-

tralian housing market, the findings have global relevance. The researchers found that

waiting for social housing is marked by triple uncertainty, adding another layer of unpre-

dictability to individuals’ already unstable housing and job situations. This prolonged wait

significantly affects individuals. The housing crisis results in long waiting lists, especially

for those with disabilities. During the wait for social housing, individuals often face diffi-

cult living conditions, with rental stress and insecurity in the private rental sector, possibly

resulting in homelessness. Pursuing social housing may discourage them from pursuing a

career, as higher income might negatively affect their position on the waiting list. Lastly,

prolonged waiting contributes to poor physical and mental health among those waiting,

exacerbated by the uncertainty and lack of control over their future.
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1. INTRODUCTION

1.4 Problem statement

WoningNet aims to provide comprehensive support to prospective tenants, with user-
friendly websites. Currently, prospective tenants often lack indications of their likelihood
of securing a property and the waiting time involved. This leads to numerous inquiries
received by the Customer Contact Center (KCC) of WoningNet. WoningNet seeks to ad-
dress this issue by improving the information available on its website, ultimately providing
prospective tenants with an indication of their chances of securing a property. This addi-
tional insight could help prospective tenants adjust their search criteria, such as the number
of rooms, resulting both in better chances and a reduction of the volume of questions han-
dled by the KCC. This research aims to develop an algorithm to predict the likelihood of a
housing seeker being allocated a home. And offer prospective tenants support by providing
comprehensive and effective information on the website.

1.5 Research question

This study aims to predict an individual’s likelihood of securing a social housing unit
before the final applicant list is known. An individual’s likelihood is closely related to an
individual’s position on the final applicant list. This research aims to assess why the number
of responses is needed to predict an individual’s final position accurately. Therefore, this
study aims to answer the research question:

"How does incorporating the predicted number of responses affect the likelihood
or final position prediction of a prospective tenant securing a social housing
unit?"

To answer this, a hybrid approach will be utilised. This involves machine learning algo-
rithms to predict the number of responses, which is necessary for accurate predictions.
Furthermore, the individual’s likelihood will be determined based on their final position
on the applicant list using traditional modelling techniques.

1.6 Outline

The thesis is divided into several chapters. Chapter 2 describes the background of the
problem and the complexity of the problem. Chapter 3 reviews the existing literature,
which highlights the scarcity of research on this specific topic and draws parallels with
university admissions studies, noting their lack of reproducibility. Chapter 4 describes the

4



1.6 Outline

data used in the study, while Chapter 5 explains the methodology, including the pros and
cons of the used models. Chapter 6 presents the research results, followed by Chapter 8,
which concludes the findings. Finally, Chapter 7 discusses the implications of the results
and possible future research directions.
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2

Background

2.1 Website

A prospective tenant visits the WoningNet website and logs in. Based on the entered data
and preferences, the user sees a selection of properties that meet their criteria. The order
of listings received is based on the so-called "preference match", meaning how closely the
users’ filters match the listing. This preference match can also be used to find parking
spaces or houses in the free sector. However, the majority of WoningNet’s listings cover
social housing. This study therefore only focuses on social housing.

Figure 2.1: Website WoningNet (https://amsterdam.mijndak.nl/)

The preference match provides an interesting overview. However, in scarce supply, the
prospective tenant will probably only see listings that do not entirely meet their pref-
erences. WoningNet wants to provide prospective tenants insights into their chance of

6



2.2 Allocation rules

allocation and how preferences entered influence the properties displayed. For instance,

would they have a better chance if they specified one less bedroom? Prospective tenants

can respond to a maximum of two listings simultaneously. Once a listing period ends, the

person receives their position on the final applicant list, where position 1 has the highest

priority. As described in the introduction, it is aimed to both support prospective tenants

and alleviate the KCC workload. WoningNet aims to prevent withdrawals from listings

before the end, as this confuses the provisional position of others. The provisional position

provides an indication based on all prospective tenants who have responded to the property

at that moment. However, applicants that respond early may see a high position which

is inaccurate compared to the final position. Additionally, responding for an applicant is

limited to two listings at a time. Displaying predicted responses, predicted final positions

or predicted chances can support applicants in making informed choices.

2.2 Allocation rules

Properties can be allocated based on availability, direct mediation, or a lottery system.

Direct mediation is not conducted through the WoningNet website and is excluded from

this research. In the availability model, prospective tenants can respond to listings that

meet selection criteria and the property is assigned based on sorting criteria. In contrast,

lottery properties are allocated randomly but may have sorting criteria, such as prioritizing

residents of a particular region. Each property has a unique set of selection or sorting

criteria. These selection and sorting criteria together constitute a single allocation rule for

each property. Therefore, every property is governed by one specific rule. The allocation

rules for property distribution, are determined by policies at European, national, regional,

and municipal levels. These rules pertain to the distribution of properties, such as the

percentage allocated to specific target groups. Consequently, different types of properties

may target different groups and receive varying numbers of responses. For instance, an

apartment might be open to all target groups, while a larger house with a stair lift may

prioritize individuals with mobility issues due to the high cost of modifying properties.

Selection criteria define how many prospective tenants can respond to a property, but

properties with the same selection criteria may still receive different numbers of responses

based on location and other characteristics. Once a listing is selected, sorting criteria

determine the applicants’ positions. Municipal and regional policies create differences in

these selection and sorting criteria, leading to numerous local variations. The order of

the criterium is not fixed either; a criterium might be in the first position in one listing’s
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2. BACKGROUND

sorting text string but in the fifth position in another. Often, the registration date is the

final criterion. Most sorting criteria are binary—either met or not met. However, not all

listings with the same selection criteria receive the same number of responses, as factors

like neighbourhood can significantly affect attractiveness. The number of sorting criteria

also varies, with some listings having as many as eight sorting criteria. The order of these

sorting criteria is essential, another order can result in an entirely different final position.

After the listing closes, the final applicant list is created, listing everyone who responded to

the property and did not withdraw before the listing end date. Each person has a sorting

string, which is used to order the applicant list. While it may seem obvious that only one

admission is granted per property, it’s important to note that the number one on the list

doesn’t always secure the property. This can occur if the applicant declines for various

reasons, such as dislike of the property or being listed as number one for another property.

Additionally, corporations may reject an applicant if inaccurate personal information is

provided, resulting in individuals with a lower position on the list to secure the property.

2.3 Complexity

Listings can be highly diverse; not every similar type of housing has the same selection

and sorting criteria. Listings include a mix of senior, youth, and regular housing, with

significant differences in response numbers due to varying selection criteria. Each region

has grouped criteria, but these can vary for each listing. Criteria can be enabled or disabled,

the order of importance can be changed, and quantities can be adjusted. For instance,

priority given to families larger than two members can be adjusted to families larger than

four members. House scarcity can result in thousands of responses for specific property

listings, while other listings receive few responses due to stricter selection criteria or less

attractive features. The total number of responses to a listing is important since a higher

number of responses decreases the chances of success for an applicant.

When predicting an individual’s chance of housing allocation, the final position on the

list is crucial as it determines the order in which offers are made. Since the order of

sorting criteria is predetermined, the key question is how many and which people will

respond to a listing. One approach could be to predict the final position (important for

chances) by forecasting who will respond. Data such as all active prospective tenants and

the minimum position are calculated but not stored because they require substantial data

storage. Theoretically, it should be possible to connect multiple data sources and determine

who is an active seeker however, scarcity leads to a tremendous amount of active seekers

8



2.3 Complexity

per listing. The unavailability of suitable data resources made this process too complex and
time-consuming for the scope of this research. The available data includes the applicant
list per property and the characteristics of these properties. Creating a single model that
works across all properties, regions, target groups, and rule sets would be ideal for model
implementation. It is assumed that at least one response is received per property, as no
applicant lists have zero length.

9



3

Literature Review

This chapter discusses literature relevant to this research, comparing the distinctions be-

tween machine learning and traditional models. It also describes similar research within

university admissions and social housing domains, highlighting the rationale behind adopt-

ing a hybrid approach.

Traditional programming has long served as the basis for software engineering. In recent

years, more and more companies have been using machine learning (ML) because of its

remarkable performance in various domains. ML models are trained to learn from data

and make predictions or decisions. Unlike traditional programming, ML can deal well

with complex problems and automate tasks that are difficult to program explicitly. ML

excels in scalability, handling vast amounts of data, and can improve models continuously

through retraining. However, the performance of ML models relies heavily on the qual-

ity and quantity of training data. Despite their remarkable performance, some models,

especially those in deep learning, are criticized for their ’black box’ nature and lack of

interpretability. Training complex models can be computationally expensive and can lead

to overfitting, where models perform well on training data but struggle with new, unseen

data. ML algorithms are generally more accurate than human-made rules because ML

algorithms consider all data points in a dataset without human bias due to prior knowl-

edge. Traditional programming explicitly defines the rules and logic that computers must

follow. It is best suited to tasks with clear, deterministic rules. Traditional methods are

predictable and consistent. This gives developers complete control over the outcome of

models. However, they face challenges in terms of scalability and processing huge datasets

or complex patterns. These models require manual updates to adapt to new scenarios,

10



which can be difficult for problems with high variability or uncertainty.

In the context of social housing, only a handful of studies leveraging machine learning
techniques have been conducted and published. However, these studies focus on predicting
mental health and analyzing floor plan images for design (4) (25). Despite efforts, searches
with terms like "affordable housing," "social housing," or "public housing" in combination
with “machine learning”, “data science”, and “AI” did not yield significant findings. While
an industry blog highlights the potential value of artificial intelligence (AI) in the Dutch
social housing market (21), there is a noticeable absence of papers or articles on the subject.

When examining areas of research that parallel the challenges of housing allocation, uni-
versity admission emerges as a prominent field of comparison. The research area into
university admissions mirrors social housing allocation, as both face constraints of scarcity
and adhere to predefined regulations which provide a sorted list. Furthermore, in both
scenarios, individuals who are admitted may later opt to decline, thereby creating an op-
portunity for someone else. The competition for spots in esteemed programs like MTech
or MBA is intense due to high student demand. Multiple studies emphasize the value of
utilizing machine learning to forecast admission probabilities. This aids students in se-
lecting the most promising universities to apply to and assists institutions in effectively
handling application volumes. Several research papers delve into predicting admission
probabilities using various machine-learning techniques. Joshi Padma et al. (18) employed
Linear Regression, Decision Trees, and Random Forest to forecast the likelihood of stu-
dent admission, with Linear Regression yielding the most accurate predictions at an 82%
accuracy rate. In a study of Sivasangari et al. (33), the CatBoost algorithm, without tun-
ing, emerged as the most accurate predictor with a 95% accuracy rate, surpassing Linear
Regression and Random Forest models. El Guabassi et al. (12), Omaer Faruq Goni et al.
(31), Chakrabarty et al. (8), and Maulana et al. (27) all focus on predicting the chance
of admission El Guabassi et al. (12) demonstrated that Random Forest Regression out-
performed other algorithms with an 89% accuracy rate in predicting college admissions.
Omaer Faruq Goni et al. (31) utilized a DNN model and showed that it scored better
than previous models, achieving a 0.8538 accuracy. Chakrabarty et al. (8) and Maulana
et al. (27) both evaluated Gradient Boosting Regressor and Random Forest algorithms,
with Gradient Boosting Regressor achieving an R-squared score of 0.84, and Random For-
est demonstrating superior performance with an accuracy of 0.816. Additionally, Sridhar
et al. (34) and Kaynar and Özçiloğlu (20) focused on binary admission prediction. Sridhar
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et al. (34) proposed a stacked ensemble model for predicting admission probabilities, out-
performing other algorithms with a 91% accuracy rate, while Kaynar and Özçiloğlu (20)
compared SVM and SDT models, with SVM yielding the best accuracy at 93%. While
these studies highlight the efficacy of machine learning approaches in predicting admission
probabilities, it is important to note that none of these papers define how they compute
the "chance of admission". Recognizing the fundamental difference between university
admissions and social housing allocation processes is crucial. While both involve selecting
applicants from a pool of applicants, it is important to note that all the studies mentioned
focus on admissions data from a single university. This differs from social housing alloca-
tion, where predicting outcomes for a single house is insufficient. In social housing, each
house can only be assigned to one person or family, unlike university admissions where
multiple students get admitted. Moreover, the number of responses is higher for a single
university than for a single house. This distinction underscores the complexity inherent in
social housing admission.

A recommender system is an ML algorithm that provides an ordered list to users. When
predicting someone’s position on the applicant list, the initial instinct may be to utilize
recommender systems. However, certain aspects of applicant list determination indicate
that this may not be the most suitable approach for this problem. Recommender systems
are primarily designed to suggest items to users based on various filters, including user
preferences, behaviour, and similarities with other users. Typically, their objective is to
personalize the user experience by recommending products, services, or content based on
collective user data. However, in the context of housing applicant lists, the goal is not to
recommend individuals for housing. The purpose is not to rank people for a house; the
sorting criteria are already predetermined. Additionally, before posting the house listing,
the final length of the applicant list is unknown. This lack of prior knowledge poses a
challenge in predicting an individual’s final position, as it introduces uncertainty about
the number of applicants and their characteristics relative to the sorting criteria that may
respond to a listing in the future. While recommender systems’ performance measures
could be adapted for this task, as they involve comparing two positions, the direct appli-
cation of recommender systems to predicting final positions on housing applicant lists is
challenging due to the fixed sorting criteria and uncertainty about the number of future
applicants. Therefore, alternative methodologies may be more suitable for this particular
forecasting task.
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Research on real estate within Artificial Intelligence mainly focuses on predicting house
prices using regression models. While this is not the main focus of the present paper,
reviewing the literature provides useful insights into feature selection and engineering. Ad-
ditionally, the comparison of these models is interesting for predicting the total number
of responses on a house listing, as this also involves recent regression techniques. Truong
et al. (36) evaluated several machine learning models for predicting housing prices in Bei-
jing. It was observed that, despite the rapid results of XGBoost and LightGBM, a Hybrid
regression model excelled in performance. Data preprocessing steps included the removal
of features with more than 50% missing data, integration of the distance to Beijing’s city
centre, replacing construction time with the age of buildings, and setting minimums for
price and other attributes. The study also segmented floor types and heights and stan-
dardized the number of living rooms to refine the data. Jha et al. (16) compared the
performance of various regression models, highlighting XGBoost’s efficacy, especially with
target binning, and pointing out the influence of seasonal trends on property purchases.
Particularly, it noted a peak in sales during summer months and a preference for homes
with two or three bedrooms. Chen et al. (9) compared five popular machine learning and
deep learning approaches to predict house prices using a dataset from Kaggle. The meth-
ods included Linear Regression, Bayesian methods, Backpropagation Neural Networks,
Support Vector Regression (SVR), and Deep Neural Network (DNN). The results showed
that Bayesian methods, Backpropagation Neural Networks, and SVR were particularly ef-
fective for predicting house prices. SVR achieved the highest R² value, indicating strong
performance. However, DNN performed poorly due to the small dataset, which is insuffi-
cient for deep learning models. The paper highlights that SVR is especially effective for
predicting house prices due to its robustness and ability to handle nonlinear data. Begum
et al. (3) found that among the algorithms tested for house price prediction—decision tree
regression, random forest regression, and linear regression—random forest regression was
the most effective. Similarly, another study on bird distribution density reached the same
conclusion when comparing these algorithms (39). Mohd et al. (28) attempted to predict
house prices in Malaysia by comparing random forest, decision tree, ridge, linear, and lasso
regression. Random forest was preferred for its overall accuracy, as evaluated by the root
mean squared error (RMSE). Another study assessed algorithms like Linear Regression,
Random Forest, Gradient Boosting, and Extra-Trees on the Kaggle house price dataset
(19). Through feature extraction, the study identified the top 30 features impacting house
sales prices. The feature extraction process was critical for the algorithms to achieve an R2
score over 0.84, with Extra Trees and Gradient Boosting standing out with scores around
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0.925 due to their robust handling of complex interactions within the data. Lastly, a study
discussed the challenges XGBoost faces with large datasets and contrasted it with Light-
GBM’s superior ability to process vast amounts of data quickly while maintaining high
accuracy, evidenced by an accuracy rate of 90.96% (17).

In summary, machine learning (ML) has gained popularity for its ability to handle com-
plex tasks and automate processes that are difficult to program explicitly in the past
decade. ML models can continuously improve by learning from new data through retrain-
ing. Conversely, traditional programming remains valuable for tasks with clear logic and
in environments with limited data or where interpretability is crucial. This study aims
to address the gap in the literature regarding the prediction of an individual’s probability
of authorising a specific house before the listing closes. Since individuals responding to
a house listing are ranked on an applicant list based on predefined sorting criteria, the
challenge lies not in the ranking itself but in the uncertainty of who and how many peo-
ple will respond to each listing. Existing research in similar domains, such as university
admissions seems promising but lacks reproducibility regarding the definition of admission
probabilities in their datasets and there is hardly any research available in the field of so-
cial housing, possibly because organisations opt to retain such information internally. This
research therefore proposes a new approach for predicting the probability of admission,
utilizing both traditional programming and machine learning techniques.
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4

Data

Before describing the methodology in Chapter 5, the data exploration and preparations
are outlined in this chapter. The exploration was necessary in developing the methodology,
and the preparations were essential before executing the methods. This chapter provides
an overview of all data sources and preprocessing steps. Data from the WoningNet plat-
form is transmitted to WoningNet’s Data Warehouse (DWH) daily. Before integration into
the DWH, this data undergoes anonymization and classification. Initially, it is deposited
into a source layer of the data warehouse. Subsequently, the data undergoes several trans-
formations to prepare it for reporting, including the establishment of facts and dimensions.
These facts and dimensions are then accessible through the MicroStrategy reporting tool,
where users can utilize both standard dashboards and conduct customized analyses. While
MicroStrategy generally contains cleaner data than the DWH, however, inaccuracies may
still exist within it. For this study, a total of 6 datasets are utilized:

• 1 dataset is derived from the DWH by combining multiple tables about the candidate
lists.

• 2 datasets are sourced directly from MicroStrategy concerning Publications and Al-
location Rules.

• 2 datasets are obtained from Statistics Netherlands (CBS) regarding zip codes.

• 1 dataset is self-scraped from WoningNet’s publication website (https://woongaard.mijndak.nl/).

In Section 4.1, all datasets will be described along with the initial cleaning process. The
initial cleaning process involved optimizing computation time for the 6 separate datasets.
Not all cleaning processes were performed immediately. To prevent data leakage, certain
data cleaning steps were executed only after the datasets were merged and the training
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and test data were split. For determining the position, the first 3 datasets are used. This

includes the applicants’ lists per listing, allocation rules and the end date of the listing. For

determining the number of responses, the last 5 datasets are used and contain information

about each listing. Section 4.2 describes the pre-processing steps for the first part of

the study, including editing the sorting text and calculating success ratios. Section 4.3

describes the pre-processing steps for the second part of the study, including removing

outliers, imputing missing values, transformation, normalisation, feature engineering and

removing missing values. An overview of the merging process is also given.

4.1 Data description and Initial cleaning

4.1.1 Applicant list

The first dataset was extracted from the data warehouse and includes applicant IDs along

with their sorting strings and status for each listing ID. One of the objectives is to predict

the total number of responses before the listing closes. If an applicant’s detail status is

5, it indicates that the applicant has withdrawn before the listing closes, and thus, the

candidate is excluded from the dataset. Consequently, the applicant’s position at the time

of listing closing is determined by sorting the sorting text of applicants per listing. By

summarizing the data for each listing, the allocation position is determined, as well as

the total number of responses for that listing. After mutating the dataset contains 10

columns and 1,967,154 rows. The dataset covers only listings of the partnership "Gooi en

Vechtstreek" in the years 2020 up to and including 2023, covering 5579 listings.

4.1.2 Listing

The MicroStrategy retrieved Listing dataset contains information on published social hous-

ing advertisements. It contains details such as the number of responses to the listing, prop-

erty characteristics (e.g. number of rooms, living area), address details (street name, house

number, postcode, city, municipality), rent, service charges, target group and the method

of housing sorting (e.g. sorting rules or lottery), and the allocation rule set. Furthermore,

the dataset includes three regional partnerships: ‘Gooi and Vechtstreek’, ‘Woongaard’ and

‘Eemvallei’, for all publications from 2020 to 2023. To prepare the dataset before merging,

several pre-processing steps were performed. Initially, redundant, or irrelevant columns

were removed, including columns with inconsistent data or with more than 80% missing

values. Address-related information spread across multiple columns was consolidated into
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complete addresses and a separate column for zip codes. Entries labelled ‘Empty’ or ‘Un-
known’ were converted to ‘Not Available’ (NA). Columns with only two categories were
converted to Boolean variables. Columns with specific costs were removed due to annual
variations and overlaps with categorical attributes. In addition, some columns were re-
named or merged to make the dataset clearer and more coherent. Rows with missing
values in the ‘Response’ column were removed, as this is the target variable. Entries corre-
sponding to very rare housing types and difficult to merge with other dwellings were also
excluded: trailer stands and temporary housing (together only 3 rows). Missing values
were imputed from row data where possible to avoid data leakage. These pre-processing
steps reduced the shape of the dataset from 61 columns and 20604 rows to a refined ‘List-
ing’ dataset comprising 37 columns and 20601 rows. The dataset is presented in Tabel 8.1
in the Appendix.

4.1.3 Allocation Rules

The third dataset retrieved from MicroStrategy provides insights into the allocation rules
alongside each listing. This dataset contains details such as the Listing ID, partnership, al-
location criteria, criteria type (selecting or sorting), order number, allocation rules set, and
if the criterion was selected. The criteria that were not selected were deleted. Additionally,
it includes the allocation sorting criteria, which remains empty for rules based on binary
conditions, while containing specific values, such as registration periods, for date-based
criteria. In Tabel 4.1 an example dataset is shown, containing only the sorting criteria for
one listing.

Table 4.1: The sorting criteria of one listing

Listing Id Partnership Allocation Criteria Criteria Type Criteria sorting variable Rule set New order Allocation Sorting
25302 Gooi en Vechtstreek Urgent GEV (Calculation date ascending) Sorting Calculation date Social rent: Regular GEV 1 sort_urgent
25302 Gooi en Vechtstreek Relocation urgent (Calculation date ascending) Sorting Calculation date Social rent: Regular GEV 2 sort_others
25302 Gooi en Vechtstreek Regional ties Gooi and Vechtstreek Sorting Empty Social rent: Regular GEV 3 sort_region
25302 Gooi en Vechtstreek Search value Sorting Registration Date Social rent: Regular GEV 4 sort_registration_date

The allocation rule dataset is connected to the sorting text of every applicant in the ap-
plicant list dataset. An example of a sorting text associated with Tabel 4.1 is:

"0_20191202_1_00000000_1_20191001".
In this context, unlike typical boolean values, 0 indicates that the criteria have been met,
while 1 indicates that they have not been met. A calculation date holds two places in the
sorting string, whereas other criteria only hold one place. This is because calculation dates
are associated with urgency criteria, which can either be satisfied or not, resulting in the
presence or absence of a corresponding date. Some publications had too many sorting rules
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in the allocation rule dataset, causing mismatches between the sorting text length from the
candidate list and the sorting criteria in the allocation rules dataset. These instances were
removed. In addition, some listings contained duplicate rules but were written differently.
In such cases, the duplicates were removed: for lottery properties, the last duplicate was
removed; otherwise, the first was removed. The criteria were then sorted and a new sort
value was calculated.
As described earlier the allocation rules play a critical role as they dictate the number of in-
dividuals permitted to respond to a publication. However, they lack precise specifications.
Criteria can contain variables that can be changed in the system before publishing the
listing. For example the criteria: "minimum family size of 2". However, this requirement
may have been adjusted to a minimum size of 4, this reduces the pool of suitable prospec-
tive tenants and potentially decreases the response rate. Yet these modifications are not
currently recorded in the Data Warehouse. For example, all criteria about income were
consolidated into one group, while those concerning youth housing (up to 28 years) were
grouped separately. Due to the non-specific nature of allocation criteria and to enhance
manageability, the criteria were grouped. This consolidation reduces the total number of
unique criteria from 261 to 29, enhancing manageability. In the last column of Tabel 4.1
these grouped criteria are shown.
To prepare for the second part of the research before merging a summarized version was
made of this dataset. For every listing the number of sorting and selecting criteria was
calculated. Moreover, for every listing it was indicated if a grouped criteria was present.
This grouped Allocation Rules dataset contains 32 columns and 20601 rows. The data is
presented in Table 8.2 in the Appendix.

4.1.4 CBS Zip Codes

The fourth dataset, sourced from CBS (2022), comprises information on every postal code
in the Netherlands. Dutch postal codes consist of four numbers and two letters, with the
numbers denoting broader areas and the letters specifying neighbourhoods or segments of
streets. This dataset includes details about the total population, gender, age demographics,
origin of the residents, composition of families, housing stock and ownership status in each
area. Additionally, it provides information on the density of addresses per square kilometre.
To enhance readability, column names were shortened. Furthermore, incomplete data was
present in areas with sparse populations due to privacy reasons, denoted by -99997 in the
dataset, which was replaced with NA. Missing values were imputed based on available data
in other columns. Features containing counted data were converted to ratios to facilitate
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easy comparison across different areas. Zip codes with missing data were replaced by the

closest zip code. This dataset contains 38 columns and 4053 rows. The data is presented

in Table 8.3 in the Appendix.

The fifth dataset, also from CBS but from 2020 because this version of full six-digit zip

codes contained more data than the 2022 version. The dataset includes the same data as the

fourth-digit zip code dataset and more metrics such as welfare recipients, gas and electricity

consumption, and various location-based indicators such as the number of supermarkets

within various km radii and distance to the nearest one. Preprocessing steps mirrored those

of the four-digit postal code dataset, with some columns dropped due to a high number of

missing values. This dataset contains 124 columns and 419131 rows.The data is presented

in Table 8.4 in the Appendix.

4.1.5 Web scraping

The sixth dataset was self-scraped due to limitations in the allocation rule dataset that

were described earlier, and because certain data couldn’t be obtained internally. With

this dataset, an attempt was made to improve the model’s performance. The dataset was

scraped from each listing on WoningNet’s website. The scraped values from each listing

included the number of pictures, construction year, energy label, energy index, target

demographic, minimum and maximum occupancy, requirements regarding children, and a

column about occupancy with an undetermined minimum or maximum. The undetermined

minimum or maximum column arises from changes on the website between 2020 and 2023.

In 2023, most houses had clear and consistent criteria, whereas in previous years the

location of the criteria on the website was ambiguous and sometimes even missing. The

scraped data from earlier years may lack precision, as some descriptions often include terms

like "senior," referring to the surroundings rather than the house itself. However, as will be

shown, including this information improved the results, hence its inclusion. Additionally,

WoningNet seeks input on what information to include in their new data warehouse. Some

data, such as energy-related information and details about gardens, was incomplete in

certain listings and was therefore excluded from the analysis. This dataset contains 11

columns and 20601 rows. The data is presented in Table 8.5 in the Appendix.
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4.2 Position prediction

4.2.1 Preprocessing and exploratory data analysis

The applicant dataset was combined with the allocation rules and subsequently split into

60% training data, 20% validation data, and 20% test data. The positions of urgency dates

were determined and a new sorting string was created, splitting it into separate columns

based on the positions of the urgency dates. If a date was unknown or empty, it was

represented as either ’00000000’ or ’99999999’ and converted to 01-01-2030. By separating

the sorting text, it became visible which criterion corresponded to each part of the sorting

text, refer to Table 4.2. This process allowed the retrieval of registration dates, urgency

dates, and other relevant dates into new columns. From the listing dataset, the end listing

date was retrieved and merged, along with a boolean column indicating if a listing was a

lottery.

Table 4.2: Preprocessing Sorting Text

Listing Id Sorting Text ST1 ST2 ST3 ST4 ST5 ST6 ST7 Lottery Urgent_date Others_date Registration_date End Listing
25302 0_20191202_1_00000000_1_20191001 20191202 20300101 1 20191001 00000000 00000000 00000000 False 2019-12-02 2030-01-01 2019-10-01 2020-01-27
25302 1_00000000_1_00000000_0_20050128 20300101 20300101 0 20050128 00000000 00000000 00000000 False 2030-01-01 2030-01-01 2005-01-28 2020-01-27
25302 1_00000000_1_00000000_0_20051010 20300101 20300101 0 20051010 00000000 00000000 00000000 False 2030-01-01 2030-01-01 2005-10-10 2020-01-27
25302 1_00000000_1_00000000_0_20060828 20300101 20300101 0 20060828 00000000 00000000 00000000 False 2030-01-01 2030-01-01 2006-08-28 2020-01-27
25302 1_00000000_1_00000000_0_20070507 20300101 20300101 0 20070507 00000000 00000000 00000000 False 2030-01-01 2030-01-01 2007-05-07 2020-01-27

Figure 4.1: Histogram of Registration

Date

Figure 4.2: Histogram of Registration

Years

Figure 4.3: Transformation of registration date into registration years (limited to a maximum

of 20 years)

A new sorting text was created for the first approach because the initial sorting text

included fixed dates. After the dates were extracted into separate columns, they were
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converted into the number of days between each date and the listing end date. Since
applicants’ sorting texts will be compared to other sorting texts of applicants in other
listings, a fixed date would be incorrect. In Figure 4.3 on the left side the registration
dates are shown. The data shows a peak in 2020 as it includes listings from 2020 to 2023.
An applicant with a registration date from 2020 can apply for a property listed in 2023, but
an applicant with a registration date from 2023 cannot apply for a property listed in 2020.
In the right segment of Figure 4.3, it is evident that most applicants have a registration
date closely proximate to the publication’s end date. To ensure correct sorting, for the first
approach, the days were transformed such that candidates with the longest registration
period were assigned the lowest numbers. This was achieved by calculating the days until
publication from a theoretical minimum registration date of 34332 days (approximately
94 years, representing the maximum possible registration period). When the number of
days was negative, it was replaced by -1. The days registered until the end of the listing
were subtracted from 34332 to ensure that individuals who had been in the system the
longest had a lower number. The new sorting texts in Table 4.3 were created from the
separate sorting columns: ST1, ST2, ... ST7 in Table 4.2, each containing only one value
per criterion. This approach requires having a set of listings with the same sorting criteria
in the same order. Therefore, the frequency of each combination of sorting criteria, termed
a sorting rule, was calculated, identifying the most common one.

Table 4.3: Preprocessing for the first approach

Listing Id Sorting Text New Sorting Text
25302 0_20191202_1_00000000_1_20191001 34276_34333_1_34214_00000000_00000000_00000000
25302 1_00000000_1_00000000_0_20050128 34333_34333_0_28855_00000000_00000000_00000000
25302 1_00000000_1_00000000_0_20051010 34333_34333_0_29110_00000000_00000000_00000000
25302 1_00000000_1_00000000_0_20060828 34333_34333_0_29432_00000000_00000000_00000000
25302 1_00000000_1_00000000_0_20070507 34333_34333_0_29684_00000000_00000000_00000000

For the second approach, it was assumed that individuals always receive their final position
based on a specific date, which could be either an urgency date (urgency or others) or the
registration date. For each listing, the ratio of applicants meeting the sorting criteria
was calculated. The distributions of these criteria are illustrated in Figure 4.4. Some
criteria exhibit minimal variability (sort_others, sort_urgent, sort_maxpersons), while
others show significant variability in their ratios (sort_seniorlow). The median ratio per
sorting criteria was calculated on the listings of the training dataset and saved. These
ratios will be used for the second approach. Additionally, to implement this approach, three
columns containing lists were created alongside this dataset. The first column identifies
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Figure 4.4: Distribution of the ratio of applicants that meet sorting criteria (calculated by

listing (n > 20))

the values in the sorting area, the second column specifies which criteria pertain to these

values, and the third column indicates if the criteria are binary, refer to Table 4.4.

Table 4.4: Preprocessing for the second approach

Listing Id Sorting Text processed_list processed_list_name processed_list_binary
25302 0_20191202_1_00000000_1_20191001 [0, 56.0] ["sort_urgent", "sort_urgent"] [true, false]
25302 1_00000000_1_00000000_0_20050128 [1, 1, 0, 5477.0] ["sort_urgent", "sort_others", "sort_region", "sort_registration_date"] [true, true, true, false]
25302 1_00000000_1_00000000_0_20051010 [1, 1, 0, 5222.0] ["sort_urgent", "sort_others", "sort_region", "sort_registration_date"] [true, true, true, false]
25302 1_00000000_1_00000000_0_20060828 [1, 1, 0, 4900.0] ["sort_urgent", "sort_others", "sort_region", "sort_registration_date"] [true, true, true, false]
25302 1_00000000_1_00000000_0_20070507 [1, 1, 0, 4648.0] ["sort_urgent", "sort_others", "sort_region", "sort_registration_date"] [true, true, true, false]

4.3 Preprocessing and engineering

The last five datasets that exclusively display data related to publications or zip codes (from

chapters 3.1.1 to 3.1.4) are merged, see Figure 4.5, and subsequently split into 60% training

data, 20% validation data, and 20% test data. Categorical features are then transformed

into dummy features. This section outlines the preprocessing and data engineering steps

of the entire dataset, including outlier treatment, imputation of missing values, feature

engineering, data transformation, normalization, and feature removal. These steps refine

the dataset for predictive modeling.
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4.3.1 Outliers

All features underwent visual inspection to detect outliers within the training dataset.
Realistic value boundaries were established for each column and adjusted as necessary.
These boundaries, derived from the training dataset, were applied consistently to the
validation and test datasets. Any values falling outside these boundaries were replaced
with the median value of the respective dataset. For instance, Figure 4.6 illustrates the
adjustment of outliers in gross rent and living area. Certain minor outliers were retained
if they represented realistic values but were less common. This process was done for 62
features.

Figure 4.5: Publication related datasets: 2. Publications, 3. Allocation Rules, 4. CBS Zip

code-4, 5. CBS Zip code-6, 6. Web scraped.

4.3.2 Missing values

While many missing values were previously eliminated, some columns still exhibit this issue.
For those with less than 20% missing data, imputation was performed using the training
data median. The median is more stable when the data is not distributed normally. In
the case of the eligible rent class, a categorical variable, missing classes were deduced by
referencing the nearest median eligible rent. The following pseudo-code illustrates the
algorithm employed for this process.
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Figure 4.6: Adjustment of outliers for gross rent and living area

Algorithm 1 Impute missing rent_class
Require: rent_class = NaN
1: median_rent_class  median rent by class
2: for each row with missing rent_class do
3: min_difference  1
4: closest_rent_class  None
5: for each rent_class in median_rent_class do
6: abs_rent_diff  |rent�median_rent_class|
7: if abs_rent_diff < min_difference then
8: min_difference  abs_rent_diff
9: closest_rent_class  rent_class

10: end if
11: end for
12: df rent_class  closest_rent_class
13: end for

4.3.3 Feature engineering

New columns were generated by combining existing columns to reduce the dataset dimen-

sion or extract more insightful information. For instance, a set of 28 features representing

distances to various facilities, such as the distance to the nearest school and the nearest

supermarket, were combined by summing their values. This aggregation process is illus-

trated in Figure 4.7. Interestingly, houses with numerous responses tend to have lower

summed distances to facilities, while those with higher cumulative distances generally re-

sult in fewer responses. Other columns created include the sum of facilities within 1km and

20km, the scaled collaboration, house age instead of building year, number of persons, the

age experiment where the minimum and maximum age were combined into one feature,

a combination of less common housing types, young age selection, old age selection, and
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listings per street and place.

Figure 4.7: Feature engineering: combining the number of 28 facilities features

4.3.4 Transformation

The target variable was transformed and saved in a new column due to the prevalence of
publications with only one response, resulting in an approximate exponential distribution.
The use of a Box-Cox transformation was deemed appropriate, even though the variable
is not entirely normally distributed, refer to Figure 4.8. This approach might improve
predictive performance.

y(�) =

(
y��1
� if � 6= 0

log(y) if � = 0
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Figure 4.8: Transformation the target variable (number of responses) of the train data

4.3.5 Normalization

Normalization of features is crucial in certain algorithms, such as regression, for several
reasons. It ensures that all features lie on a consistent scale, thereby preventing a feature
from dominating solely based on its size. In addition, normalization can help improve
convergence speed, leading to more efficient training. It also facilitates the interpretation
of the importance of features. All features were normalized, with the equation:

z =
x� µ

�
(4.1)

where:

z = standardized feature
x = original feature
µ = mean of the feature
� = standard deviation of the feature

4.3.6 Removal

Features were removed in groups in an iterative process based on several reasons: domain
knowledge, high intercorrelation and low correlation. Categorical features were converted
into dummy features, except for CatBoost models where dummy features were omitted.
Features that were removed based on domain knowledge were detected by visual inspection.
This allowed features with noise, low variance or no observable patterns to be detected.
Columns already used for a feature engineering feature were also removed. This led to
the removal of 101 columns, containing mainly features from CBS data. Additional details
are provided in the Appendix. Columns with a high mutual correlation (higher than 0.8)
with other columns were removed to reduce possible adverse effects on model performance.
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Of the correlated columns, those with the lowest correlation with the target feature were
removed, resulting in 81 columns being removed due to high intercorrelation. Additional
details are provided in the Appendix. An example of highly correlated features is net rent
and gross rent, shown in the left segment of Figure 4.9. In the right segment of Figure
4.9, it can be seen that all columns show a weak to moderate correlation to the target
variable (less than 0.45). Columns whose correlation with the target is very low were
removed (0.05). In this step, 30 columns were removed. Additional details are provided in
the Appendix. These steps reduced the total number of features from 281 to 80 columns.
Although 80 columns still seem substantial, some models in the analysis phase include
feature selection techniques. Therefore, the removal of additional columns was delayed so
as not to compromise model accuracy.

Figure 4.9: Features correlation
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Methodology

This chapter describes the methodology of this study. It first discusses the methods used for

predicting the final position of applicants. Next, various machine learning algorithms for

predicting the total number of responses to a listing are explained. Finally, the experimen-

tal setup is described, including hyperparameter tuning. To fill the literature gap discussed

in Chapter 3, this study proposes a hybrid approach using both traditional programming

and machine learning techniques. Traditional programming will be used to determine an

applicant’s final position on the applicant list with 2 methods based on historical data: the

mean approach and the sorting ratio approach. Relying solely on the mean to determine

an applicant’s final position proved to be insufficient, as the number of responses per listing

plays a crucial role. It will be demonstrated how the number of responses is incorporated

into the algorithms. Following this, the number of responses per listing will be predicted

using various ML algorithms. ML is chosen over traditional programming because pre-

dicting an individual’s position is complex and the number of responses per property can

change over time, ML gives the ability to retrain easily.

5.1 Predicting the final position

Two novel methods for predicting the final position in the context of social housing are

described in this section. The mean approach will be detailed first, including its incorpo-

ration of the number of responses. Then the more innovative sorting ratio approach will

be discussed.
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5.1.1 Mean approach

The mean approach uses all average positions of an applicant, including those from listings
where the applicant did not apply, to estimate each applicant’s final position. To determine
the applicant’s position on a listing they did not apply to, the transformed sorting text is
used. This method applies only to listings with the same set of sorting criteria in the same
order. The algorithm below describes how to derive the average position across listings
sharing the same sorting criteria. Since an applicant can have multiple sorting texts due
to data changes over time, and the sorting text is decisive, it was chosen to calculate the
average position per transformed sorting text.

Sets:
L Set of unique listing ID’s in the train data
S Set of unique sorting strings in the train data and input data in ascending sorted

order

Variables:
psl Position of an applicant with sorting string s on listing l, 8s 2 S, 8l 2 L

xsl Boolean, indicating if the position pls of sorting string s on listing l is known, 8s 2
S, 8l 2 L

fs The predicted or forecasted position for an applicant with sorting string s, 8s 2 S

Computations:
8s 2 S:

p1,l = 1

8l 2 L, 8s 2 S \ {1}: 8
<

:
psl = ps�1,l + xs�1,l, if xsl = 0

psl = psl, if xsl = 1

8s 2 S:
fs =

P
l2L pls
L

In addition, the number of responses was added to the algorithm to investigate its influence.
This was accomplished by calculating the average position relative to the total length of
the applicant list for each unique sorting string.

Added variables:
nl The total number of true applicants / total number of responses to listing l, 8l 2 L

rsl The ratio scaled position by the number of responses, 8s 2 S, 8l 2 L
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Added computations:
8s 2 S:

p1,l = 1

8l 2 L:
nl =

P
s2S xsl

8l 2 L, 8s 2 S \ {1}: 8
<

:
psl = ps�1,l + xs�1,l, if xsl = 0

psl = psl, if xsl = 1

8l 2 L, 8s 2 S:
rsl =

psl
nl

8s 2 S:
fs =

P
l2L rsl
L

5.1.2 Sorting ratio approach

The second approach utilizes binary sorting criteria and the number of responses to de-

termine a minimum and maximum position for each applicant and date sorting criteria to

estimate the final position. This method assumes that a mean success ratio can be calcu-

lated for each binary sorting criterion and that the final position is always influenced by the

first date in the sorting criteria. The mean success ratio indicates how many applicants, on

average, meet the criterion per listing. After applying the success ratios, each applicant is

assigned a minimum and maximum position. The final position is then estimated based on

the application date relative to the distribution of dates in the training data. For example,

in Figure 5.1, consider an applicant with the sorting values [0, 1, 0, 15] on a listing with

900 responses. Here, for each criterion 0 indicates success and 1 indicates failure. The

applicant meets the first criterion (success), so their position is initially between 1-600.

Failing the second criterion adjusts their position to 201-600. Meeting the third criterion

further narrows their position to 201-240. The registration date distribution is then ap-

plied to determine the applicant’s final position. Since there are 40 positions left in the

position interval from 201 to 240, the registration date distribution of the training data

will be divided into 40 equal intervals. Because a 15-day registration period is very short,

and people with longer registration times get priority, the person will be in the first group

and receive a final position of 240. The mathematical model that describes this approach

is shown below.
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5.1 Predicting the final position

Figure 5.1: Example of the sorting ratio method

Sets:
A Set of applicants in the input data
L Set of unique listing IDs in the input data
G Set of grouped sorting criteria
P Set of possible positions in the sorting string {1, 2, ..., 7}
I Set of the sorted registration time in days from the train data {i(1), i(2), ..., i(n)},

8a 2 A, 8l 2 L, where {ial|xal = 1}, given i1  i2  ...  in and n =
P

a2A,l2L xal · tl
U Set of the urgency duration in days from the train data {u(1), u(2), ..., u(n)}, 8a 2

A, 8l 2 L, where {ual|yal = 1}, given u1  u2  ...  un and n =
P

a2A,l2L yal · tl
O Set of the other urgency duration in days from the train data{o(1), o(2), ..., o(n)},

8a 2 A, 8l 2 L, where {oal|zal = 1}, given o1  o2  ...  on and n =
P

a2A,l2L zal ·tl

Variables:
tl Boolean, indicating if listing l is in the train dataset (1 = true, 0 = false), 8l 2 L

xal Boolean, indicating if an applicant responded to listing l (1 = true, 0 = false),
8a 2 A, 8l 2 L

yal Boolean, indicating if applicant a on listing l had an urgency (1 = true, 0 = false),
8a 2 A, 8l 2 L

zal Boolean, indicating if applicant a on listing l had another urgency (1 = true, 0 =
false), 8a 2 A, 8l 2 L

valp Value on position p in the sorting string of applicant a on listing l, 8a 2 A, 8l 2
L, 8p 2 P

balp Boolean, indicating if the value on position p in the sorting text of applicant a on
listing l is a boolean value, 8a 2 A, 8l 2 L, 8p 2 P
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galp The name of the grouped sorting criteria on position p in the sorting text of applicant
a on listing l is a boolean value, 8a 2 A, 8l 2 L, 8p 2 P

rg Median ratio of the grouped sorting criteria g in the train data8g 2 G

maxal Maximum position of applicant a on listing l, 8a 2 A, 8l 2 L

minal Minimum position of applicant a on listing l, 8a 2 A, 8l 2 L

kal Difference between the maximum position and minimum position of applicant a on
listing l, 8a 2 A, 8l 2 L

falj Maximum boundary of j-th group in the entire train date distribution cal for applicant
a on listing l, 8a 2 A, 8l 2 L, where j 2 (1, ..., kal)

cal The group where the date from the sorting text of an applicant a on listing l is
located within the entire train date distribution.8a 2 A, 8l 2 L

pal Predicted final position of applicant a on listing l, 8a 2 A, 8l 2 L

Computations:
8a 2 A, 8l 2 L:

maxal =
X

a2A
xal

minal = 1

8p 2 P :
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

maxal = brgalp · (maxal �minal + 1) +minal � 1e, if valp = 0 and balp = True

minal = bminal + rgalp · (maxal �minal + 1)e, if valp = 1 and balp = True

D = (d1, d2, ..., dn) =

8
>>><

>>>:

I if galp = sort_registration_date

U if galp = sort_urgent

O if galp = sort_others

kal = maxal �minal

8j 2 (1, ..., kal) if balp = False

fa,l,0 = 0

fa,l,j = jb n
kal
e, where n = n(D)

cal =

8
>>><

>>>:

0 if k = 0

j|(dfa,l,j�1
< valp  dfa,l,j ), where: if k > 0

dm 2 D,n = n(D), j 2 (1, ..., k)

pal = kal � cal +minal
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5.2 From the final position to the chance of allocation

5.2 From the final position to the chance of allocation

The probability of allocation is closely related to the final position of an applicant. Based

on the distribution of the final positions of allocated applicants, the probability that a

property is allocated to an applicant with a certain final position can be estimated by

dividing the observed frequency of that position by the total frequency. In addition, the

probability that a property is allocated to an applicant with a certain final position or

lower (with the highest position being 1) can be determined. This is equivalent to the

probability of receiving an offer, assuming that the applicant receives the offer before

declining or getting declined. For instance, if the applicant with position 15 is allocated

the property, it means the property was first offered to all applicants with final positions

ranging from 1 to 14. The probability of receiving an offer is calculated as described below.

Sets:
B Set of allocated applicants

Variables:
pb Final position of the allocated applicant b, 8b 2 B

m Maximum of the final positions that allocated applicants received
np Number of allocated applicants with final position p, 8p 2 (1, 2, ...,m)

op Chance of an offer for applicants with final position p, 8p 2 (1, 2, ..m)

Computations:
m = maxb2B pb

8f 2 (1, 2, ...,m):

np =
P

b2B

8
<

:
1, if pb = p

0, otherwise
8o 2 O:

op =
Pm

i=p niPm
j=1 nj

The likelihood of receiving an offer for a property is categorized into five equal classes, as

shown in Table 5.1.
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Table 5.1: Allocation Probability Categories

Chance group Chance
Very High 0.8 - 1.0

High 0.6 - 0.8
Moderate 0.4 - 0.6

Low 0.2 - 0.4
Very Low 0.0 - 0.2

5.3 Predicting the number of responses

The methods for predicting the number of responses on a listing are explained in this

section. The models that will be explained are support vector regression, random forest

regression, extra trees regression, LightGBM, and CatBoost. The dataset used for this

research is high-dimensional, and all selected models are capable of handling such data.

5.3.1 Support Vector Regression

As previously discussed Chen et al. (9) showed that Support Vector Regression (SVR)

is effective in predicting house prices due to its robustness and ability to handle nonlin-

ear data. SVR is a supervised machine learning method that tries to predict continuous

values effectively and is a variant of Support Vector Machines (SVM) based on Vapnik-

Chervonenkis theory (2), see Figure 5.2. SVR introduces an insensitive region ✏ resulting

in an ✏-tube around the estimated function, ignoring errors within this threshold. Con-

sequently, the optimization problem aims to find the flattest tube that contains the most

training instances. Training instances outside the ✏-tube are called slack instances or slack

variables. The objective minimizes the errors of those instances. High and low errors are

penalised equally, due to the symmetrical loss function. Mathematically, the SVR model

minimizes 1
2kwk

2 + C
Pl

i=1(⇠i + ⇠
⇤
i ), subject to the constraints (yi � wxi � b)  ✏ + ⇠i,

(wxi + b � yi)  ✏ + ⇠
⇤
i and ⇠i, ⇠

⇤
i � 0, where w is the weight vector, ✏ is the size of

the tunnel, ⇠i are the slack variables with a negative error and ⇠
⇤
i are the slack variables

with a positive error and yi is the target value for the i-th instance. The solution to this

optimization problem can be expressed as

f(x) =
nX

i=1

(↵i � ↵
⇤
i )K(xi, x) + b
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5.3 Predicting the number of responses

where K(xi, x) is a kernel function that computes the inner product in the feature space,

↵i and ↵
⇤
i are Lagrange multipliers, and b is the bias term. The kernel function K can

be linear, polynomial, or radial basis function (RBF), depending on the complexity of the

approximated underlying function. Furthermore, C is a regularization parameter.

Figure 5.2: Example of Univariate Support Vector Regression with a linear kernel, including

the objective and constraints (32)

Trzciński and Rokita (37) found that Support Vector Regression (SVR) with Gaussian

radial basis functions provides precise and stable prediction results for online video popu-

larity, as measured by the number of views. Although this study is in a different research

area, it similarly addresses the concept of popularity. The study demonstrated that SVR

outperforms existing methods due to its nonlinear nature and robustness by testing it on

datasets with nearly 24,000 videos from YouTube and Facebook. The advantage of Sup-

port Vector Regression (SVR) lies in its foundation in Vapnik-Chervonenkis (VC) theory,

which helps it generalize to unseen data. Using Vapnik’s ✏-insensitive approach, SVR forms

a flexible tube around the estimated function, ignoring errors within a certain threshold

(✏). This ensures that points outside the tube are penalized, while points inside the tube

are not. The value of can be adjusted to balance complexity and prediction error. An-

other key advantage of SVR is that its computational complexity does not depend on the

dimensionality of the input space, making it highly efficient for high-dimensional data.

Additionally, SVR has excellent generalization capabilities and high prediction accuracy

(2).
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5.3.2 Random Forest Regression

Random Forest Regression (RFR) benefits include fast training speed, high prediction

accuracy, and the ability to process high-dimensional data (39) easily. Additionally, as

previously discussed, Mohd et al. (28) compared random forest, decision tree, ridge, linear,

and lasso regression for predicting house prices in Malaysia. Random forest was preferred

for its overall accuracy, as evaluated by the root mean squared error (RMSE). Random

Forest is an ensemble learning method for classification and regression tasks that uses

multiple Decision Trees to make decisions. Unlike a single deep Decision Tree, a random

forest aggregates the outputs from many shallow trees, improving overall performance. It

is useful to first look at Decision Trees to understand Random Forests. Decision Trees split

data into similar segments, working well with high-dimensional data. Decision Trees are

created based on the sum of squared residuals. However, Decision Trees can easily overfit

the training data, leading to high variance and low bias. Methods to avoid overfitting

include setting a minimum split size for leaves, which prevents overly small segments, and

pruning, which removes some leaves and replaces them with averages of larger instances.

Cost complexity pruning, such as weakest link pruning, calculates the sum of the SSR and

a tree complexity penalty, improving generalization on test datasets. Decision Trees are

easy to create, use and interpret. According to Hastie et al. (14), the primary drawback

of Decision Trees, which prevents them from being the ideal tool for predictive learning,

is their inaccuracy and lack of flexibility. Random Forests are used to get around these

drawbacks. Random Forest have the simplicity of a Decision Tree but with flexibility,

resulting in better accuracy. Random Forest uses bagging, see Figure 5.3. Bagging starts

Figure 5.3: Structure of a Random Forest(13)
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by selecting a bootstrapped sample of the original data with the same size as the original

dataset where instances are allowed to occur multiple times. For each bootstrapped dataset,

a new Decision Tree is created with only a subset of the features for each node. This is

often done about 100 times. Finally, the average of all these trees is calculated in the

case of a regression task. This method reduces variance, improves estimation accuracy,

and handles large datasets efficiently. Random Forests can also estimate the importance

of variables and perform well even with missing data.

5.3.3 Extra Trees Regression

Extra Trees is similar to Random Forest, it uses multiple Decision Trees just like Random

Forest. The Extra Trees model is only even more randomised than the Random Forest

model. The values on features the splits in the Decision Trees are random in this algorithm

whereas in Random Forest, the optimal value. This makes the model faster and this allows

it to work better with noisy data.

5.3.4 LightGBM and Catboost

Despite the recent popularity of artificial neural networks (ANN), boosting algorithms

remain preferred for medium or larger-sized datasets due to their relatively fast training

times and minimal parameter tuning requirements (10). Gradient boosting combines nu-

merous small Decision Trees to improve prediction accuracy. It uses boosting to introduce

variety among Decision Trees. Bagging and boosting are the two main methods of ensem-

ble learning. Boosting iteratively adds weak learners to the ensemble model. This is done

in a targeted manner, focusing on parts of the data that are not well understood. Each

iteration weights the data points, guiding new weak learners to improve on the previously

mispredicted points. This process results in an ensemble model that integrates all the in-

termediate weak models, enhancing overall performance (22). Daoud (10) investigated the

efficiency of three gradient boosting methods: XGBoost, CatBoost, and LightGBM, using

the Home Credit dataset with 219 features and 356,251 records. The findings indicate

that, for the dataset used, LightGBM is faster and more accurate than both CatBoost and

XGBoost across different numbers of features and records. While other studies comparing

those methods showed also that LightGBM outperformed CatBoost and XGBoost (15),

(35), (11) it can’t be concluded that this is always the case. For example, for a dataset

with more categorical variables, CatBoost could potentially be more accurate (10). Many

algorithms implement gradient boosting with slight variations. AdaBoost was the first
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Figure 5.4: Difference between level-wise and leaf-wise growth (26)

algorithm to adapt to weak learners. Newer gradient boosting methods include XGBoost,

LightGBM, and CatBoost. XGBoost short for eXtreme Gradient Boosting, is popular in

data science competitions for its accuracy and computational efficiency. XGBoost handles

missing data by fitting all non-missing values first and then determining the best branch

for missing values to minimize prediction error. This results in compact trees and an ef-

fective imputation strategy (7). Despite XGBoost’s success, LightGBM emerged 2 years

later by Microsoft as a high-performance alternative. LightGBM is designed to distribute

and handle large datasets quickly. LightGBM employs a depth-first search (DFS) strategy,

resulting in more complex trees, and higher prediction accuracy, but a higher risk of over-

fitting. LightGBM is particularly effective on large datasets with over 10,000 examples.

It benefits from parallelization and GPU utilization, making it scalable for even larger

problems. It is memory efficient, using histogram-based algorithms to discretize continu-

ous variables into bins (7). Close after the published LightGBM, Yandex made another

interesting GBM algorithm called CatBoost public. Its strongest point is the capability of

handling categorical variables by adopting a mixed strategy of one-hot encoding and target

encoding. Encoding categorical variables in other models is often done in the feature engi-

neering part instead of the modelling. While it seems a smart feature engineering tick, it

has downsides, target encoding can lead to overfitting because you are taking information

from the target into predictors (7). The primary difference between the algorithms lies in

their approach to identifying the best splits within weak learners. All methods avoid the

time-consuming process of evaluating all possible splits by using alternative techniques.

XGBoost employs histogram-based splitting, where histograms are built for each vari-

able to determine the best split per variable, which is then retained as the best overall
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split. LightGBM uses Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature

Bundling (EFB) to enhance efficiency. GOSS filters out data points with low gradients,

focusing on those that need more learning. EFB speeds up the process by handling many

correlated variables. CatBoost employs an approach where the tree splits on the same

condition at each tree level. During training, all possible values of features are divided

into buckets, known as feature-split pairs. Minimal Variance Sampling (MVS) is used to

maximize the accuracy of these splits. The feature-split pair that results in the lowest

loss is selected and applied to all nodes at the same level, leading to symmetric trees. In

Figure 5.4 the difference between level-wise and leaf-wise splitting is shown. XGBoost and

CatBoost grow trees level-wise, but CatBoost creates symmetric trees, unlike XGBoost. In

contrast, LightGBM grows trees leaf-wise, which theoretically offers higher accuracy but

carries a higher risk of overfitting, especially with small datasets (22).

As discussed in the literature review, a study showed that XGBoost faces challenges when

the dataset size increases, whereas LightGBM excels in processing vast amounts of data

quickly while maintaining high accuracy (17). Additionally, CatBoost is highly effective at

handling categorical features efficiently. Therefore, this study will explore LightGBM and

CatBoost.

5.4 Experimental setup

For the first part of this research, the goal is to predict the final position of an applicant. Ini-

tially, the effectiveness of including the actual number of responses is tested. Subsequently,

the relation between the final position and the chance of allocation is shown. Then, the ef-

fectiveness of different machine learning approaches is compared to predict these responses.

For the first approach for predicting an applicant’s final position, the unique sorting text

from the validation set is integrated into the training applicant listings. Subsequently, for

each validation sorting text, the average position among those applicant listings is calcu-

lated. This process is repeated on the test dataset. For the second approach for predicting

an applicant’s final position, the sorting ratios are calculated using the training dataset

and applied to predict positions for both the validation and test data. Because the dataset

encompasses 281 features, for predicting the number of responses using machine learning

models, the performance metrics are compared across different sets of features. Initially,

the default parameters are used. The feature set demonstrating the best performance is

chosen for hyperparameter optimization. As tree-based models are not sensitive to high
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mutual correlation among features, retaining these columns remains an option. To under-

stand feature importance and instance contributions, SHAP values were calculated. SHAP

(SHapley Additive exPlanations) values represent the average contribution of each feature

across all possible combinations of variables. This gives insight into how each feature influ-

ences the model’s predictions. Finally, the performance metrics of the position prediction

models, with the incorporated predicted number of responses, are calculated.

5.4.1 Hyperparameter tuning

Figure 5.5: Comparison between grid search and random search (5)

While grid search and manual search are used widely for hyperparameter tuning, Bergstra

and Bengio (5) demonstrated that random search is more efficient for hyperparameter

optimization, both empirically and theoretically. Random search is more efficient because

it can find parameters that are as good or better than those found by grid search in a

fraction of the time. Additionally, the most important hyperparameters vary for each

problem. This variability makes grid search inefficient, as it allocates too many trials to

unimportant dimensions and does not adequately cover the important ones, see Figure 5.5.

Therefore, in this research, a random search will be used for hyperparameter tuning. For

the random search, k-fold cross-validation with k = 5 was used. The RandomizedSearchCV

function from the sklearn library’s model_selection module was utilized in this research.

The hyperparameters and their ranges utilized for model tuning are detailed below.

Support Vector Regression (from Scikit-learn)
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• C: Controls the regularisation of the model; it adds a penalty for each misclassified

data point. The higher the value of C the more accurate the model performs on the

training data but the greater the chance of overfitting. Therefore a wide range is

chosen: from 0.1 to 100.

• epsilon: The size of the insensitive region, errors within this threshold are ignored.

Smaller epsilon values result in a model sensitive to small deviations in the data,

while larger values are less sensitive. Again a wide range is chosen from 0.001 to 1.

• kernel: The function that computes the inner product in the feature space. The

kernels explored are linear, polynomial, radial basis function and sigmoid.

• degree: the degree when the polynomial is used. A range of 2 to 6 is implemented.

• gamma: How much influence a single point has, where auto is a simpler heuristic

than scale.

Random Forest and Extra Trees (from Scikit-learn)

• n_estimators: Determines the number of decision trees in the random forest. A

higher number of trees generally results in better model performance, but also to

higher computational costs. A range from 100 to 1050 with a step of 50 was selected

to balance performance and efficiency.

• max_features: Defines the maximum number of features considered for splitting

a node. Options include using all features (none), the square root of the number of

features (sqrt) and the logarithm of the number of features (log2). Overfitting can

be avoided by not including all features, as this reduces complexity.

• max_depth: Specifies the maximum depth of the trees. Limiting the depth helps

avoid overfitting. A range of 10 to 30 with a step of 2 was chosen to examine shallow

to moderately deep trees.

• min_samples_split: Specifies the minimum number of samples needed to split an

internal node. Setting this range from 10 to 20 with a step of 2 was chosen to balance

model complexity and generalisation.

• min_samples_leaf : Specifies the minimum number of samples required at a node

in the leaves. A range of 5 to 19 with a step of 2 was chosen to ensure that each

node in the leaves has at least 5 samples, reducing the chance of overfitting.

LightGBM (from Microsoft)

• num_leaves: Defines the complexity of an individual tree in the Light GBM model.

Lower values prevent overfitting by regeralizing more. A range from 20 till 70 was

chosen.
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• learning_rate: Determines how fast the model converges when training. A wide

range was chosen, to cover very slow to relatively fast learning rates.

• n_estimators: Determines the boosting iterations in the model. Generally, a higher

number results in better model performance, but also in higher computational costs.

A range from 100 to 1050 with a step of 50 was selected to balance performance and

efficiency.

• feature_fraction: Indicates the proportion of features chosen before training each

tree. The algorithm will randomly select this fraction of features in each iteration.

This approach can speed up training and help mitigate overfitting.

• subsample: Adds randomness by sampling a random sample containing a fraction

of the training data.

CatBoost (from Yandex)

• one_hot_max_size: The number of values that can be used for one-hot encoding

for the categorical features. Categorical features with more levels than specified will

be transformed. Values between 10 and 30 seem a reasonable amount for this dataset.

• iterations: The number of iterations in the algorithm. Ranging from 100 till 2000.

• od_wait: The number of boosting iterations to continue the training after the

optimal metric value is found. Stopping earlier can help to prevent overfitting and

computation costs. Ranging from 20 to 40.

• learning_rate: Determines how fast the model converges when training. A wide

range was chosen, to cover very slow to relatively fast learning rates.

• depth: Controls the maximum depth of the trees. Ranging from 4 till 10, to balance

complexity and generalization.

• l2_leaf_reg: Specifies the coefficient of the L2 regularization applied to the leaves

to avoid complexity and overfitting. Values from 5 till 9.

• random_strength: Defines the amount of randomness to use for coring splits after

the tree structure is selected. A range from 0.4 to 1 is selected.

• bagging_temperature: Defines the random weights settings of the Bayesian boot-

strap. How much more aggressive the bagging is. Values from 0.5 till 1.5 are selected.

5.4.2 Performance metrics

To evaluate the performance of the models, two metrics will be compared across all models.

The coefficient of determination (R-squared) will be calculated for the predictions versus

the true values. Additionally, the Root Mean Squared Error (RMSE) will be assessed to
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compare the performance of the algorithms. The R-squared measures how well the es-
timated regression line of the model fits the distribution of the data and how many of
variance in the results can be explained by the model. The RMSE measures the standard
deviation of the residuals. It represents the spread of true values around the prediction.
An advantage of the RMSE is that it has the same scale as the target variable. RMSE
gives a higher weight to large errors. Before taking the mean, the errors are squared, so
larger errors affect the RMSE relatively more than smaller errors. The formulas of the
R-squared and the RMSE are as follows:
R-squared

R
2 = 1�

nX

i

(ŷi � y)2

(ŷi � ȳ)2

RMSE

RMSE =

vuut 1

n

nX

i

(yi � ȳ)2

43



6

Results

6.1 Predicting final position

In this section, the results of the mean and sorting ratio approaches are presented. Table

6.1 shows the results for the mean approach without incorporating the number of responses,

alongside the results for the scaled mean approach and the sorting ratio approach, both

incorporating the number of responses. The second column presents the performance

measures of the mean approach without scaling, based on a dataset of 1,206 listings,

which were divided into training, validation, and test subsets. The model shows a low

R-squared score and a high RMSE, indicating a poor model. The third column presents

the results of the scaled model. The model shows high scores on the training, validation

and testing datasets. Despite the illustration of the effectiveness of the approach, the

actual performance will likely be lower due to the need to predict the number of responses.

Moreover, these are only the sorting results for only one sorting rule. This makes the model

less scalable. The last column illustrates the results of the sorting ratio approach, applied

to all 5,577 listings. Similar to the mean approach incorporating the number of responses,

again this model shows promising performance. Although the R squared and RMSE are

worse than those of the mean approach, this method is scalable and applies to all listings

in the train, validation and test data.

6.2 Determining chance

The final positions were divided into groups based on their likelihood of receiving an offer,

to link the allocation probability to the final position of applicants. The left segment

of Figure 6.1 shows the distribution of the final positions of allocated applicants on the

44



6.3 Predicting number of responses

training data. It can be observed that applicants with a final position of 1, are allocated
frequently. After final position 1, the number of allocations decreases sharply. The right
segment of Figure 6.1 shows the distribution of the chance of receiving an offer by the
final position of an applicant. Applicants with a final position of 1, have a 100% chance of
receiving an offer, due to the assumption that applicants receive the offer before declining
or getting declined. The chance of receiving an offer smoothly decreases with the final
position (given the highest position is 1). The probability of receiving an offer in the "very
high" class (80% - 100%) is observed only for applicants with a final position of 1, whereas
a final position of 13 or lower corresponds to a "very low" chance (0% - 20%).

Table 6.1: Performance of models for predicting the final position of applicants

Mean Scaled Mean Sorting Ratio
Train RMSE 267.99 26.68 49.87

R-squared 0.1632 0.9917 0.9703
Validation RMSE 220.18 27.89 51.65

R-squared 0.2451 0.9879 0.9675
Test RMSE 299.08 32.14 54.69

R-squared 0.1190 0.9898 0.9655

Figure 6.1: Insight into the final positions up to 50 of allocated applicants.

6.3 Predicting number of responses

6.3.1 Support Vector Regression

Table 6.2 shows the results of models using different feature sets. Default parameters were
employed for selecting a final feature set. The model trained solely on the listing dataset
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Table 6.2: SVR Comparison with best kernel

Model Number of Features RMSE Train R2 Train RMSE Validation R2 Validation
Listing only 60 205.34 0.4511 206.63 0.4493
Listing + Allocation Rules 91 193.05 0.5149 194.78 0.5107
Listing + CBS 220 197.71 0.4912 200.03 0.4839
Listing + Webscraped 72 203.40 0.4615 204.48 0.4607
Listing + Feature engineering 78 196.91 0.4953 198.35 0.4926
Full Data 281 181.47 0.5713 183.61 0.5652
Full Data Transformed Target 281 106.56 0.8522 124.41 0.8004
Full Transformed - Knowledge-based 181 103.29 0.8611 121.47 0.8097
Full Transformed - Knowledge and Mutual Correlation based 107 110.91 0.8399 132.02 0.7752
Full Transformed - Knowledge, Mutual and Low Correlation based 77 109.43 0.8441 127.24 0.7912
Full Transformed - Knowledge and Low Correlation based 151 101.25 0.8666 117.64 0.8215
Best 50 features 50 197.14 0.4941 205.96 0.4529
Best 25 features 25 207.38 0.4402 214.39 0.4072

showed poor performance on both training and validation data based on performance met-

rics. Incorporating additional datasets (Allocation Rules, CBS, Webscraped) all improved

model performance, with Allocation Rules showing the most influential enhancement. The

full dataset, consisting of 281 features, demonstrated improved performance after trans-

forming the target variable. For comparison, after modelling, both model predictions and

target values were scaled back to their original form before computing performance metrics.

By removing features based on knowledge, the performance remained approximately the

same while reducing the feature count by 100, covering mostly CBS features. Conversely,

removing highly correlated features resulted in decreased performance, whereas retaining

features based on domain knowledge and low correlation, yielding a subset of 151 features,

proved beneficial. A model trained only with the top 50 or 25 features showed worse perfor-

mance, indicating that a broader set of features is needed to capture the target accurately.

A random search was performed on the 151 features subsequently for hyperparameter tun-

ing, the results are shown in Table 8.7 of the Appendix. After tuning the hyperparameters,

a small improvement in the performance on both the training and validation set is observed

(R-squared 0.028 higher and RMSE 9.61 lower). Although, the model overfits more on the

training data than without tuning. The scores on the validation dataset and the test set

are comparable, indicating stability.

Table 6.3: Performance scores of the final model with tuning

Dataset Root Mean Squared Error (RMSE) R2 Score
Train 67.33 0.9410
Validation 108.03 0.8495
Test 114.81 0.8400
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6.3.2 Random Forest

Table 6.4: Random Forest Performance Comparison

Feature set Number of Features RMSE Train R2 Train RMSE Validation R2 Validation
Listing 60 50.63 0.9666 143.53 0.7343
Listing + Allocation Rules 91 42.00 0.9770 108.19 0.8490
Listing + CBS 220 48.84 0.9690 137.72 0.7554
Listing + Webscraped 72 48.99 0.9688 138.50 0.7525
Listing + feature engineering 78 46.46 0.9719 132.99 0.7720
All 281 40.00 0.9792 106.37 0.8541
All Transformed Target 281 42.71 0.9763 107.24 0.8517
All - Knowledge-based 181 39.56 0.9796 105.53 0.8564
All - Knowledge and Mutual Correlation based 107 39.67 0.9795 106.16 0.8547
All - Knowledge, Mutual and Low Correlation based 77 39.70 0.9795 108.08 0.8493
Best 50 50 68.06 0.9397 170.11 0.6268
Best 25 25 116.96 0.8219 184.58 0.5606

Again, several feature sets were evaluated for the Random Forest. Table 6.4 summarizes

the performance differences across these feature sets. Adding the allocation rules features

was most beneficial. Transforming the target did not increase the performance, so the

original scale was retained. Removing features based on domain knowledge was effective,

reducing the number of features by 100 while slightly improving the R-squared and low-

ering the RMSE. Removing highly mutually correlated or low correlation features yielded

similar performance. Selecting only the best 50 or best 25 features resulted in decreased

performance, indicating that a wider set of features is necessary to capture the complex-

ity of the data. The feature set containing 181 features was selected, excluding columns

based on prior knowledge. The best-fit parameters identified by the random search for the

RandomForestRegressor model are shown in Table 8.8 of the Appendix.

Table 6.5: Performance scores of the final model with tuning full

Dataset Root Mean Squared Error (RMSE) R2 Score
Train 62.48 0.9492
Validation 102.63 0.8642
Test 108.84 0.8562

The performance scores of the final model with tuning on the training, validation, and

test datasets are presented in Table 6.5. The training set performance decreased after tun-

ing (RMSE increased by 22.92 and R-squared decreased by 0.0304), while the validation

set performance improved slightly (RMSE decreased by 2.90 and R-squared increased by

0.0078). The decrease in performance on the training set suggests that the model gener-

alizes better on unseen data when using the tuned hyperparameters. The performance on
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the test dataset does not differ much from the performance on the validation set, indicating

a relatively stable model. Figure 6.2 displays the feature importance and the contribution

of the features on instances using SHAP values. The left segment of Figure 6.2 shows

the features that had the most impact on the Random Forest model. The feature "Select

min age" had the highest impact, with a mean SHAP value of 84.21. This boolean value

indicates whether there was a minimum age selection criterion for the listings, primarily for

senior homes. The figure also illustrates the substantial combined contribution of the 172

other features. The right segment of Figure 6.2 shows the impact of each instance in the

training dataset on the outcome of the Random Forest model. The colour of each instance

represents the value, with red representing a high value and blue representing a low value.

The x-axis shows whether the impact of the SHAP value on the outcome is positive or

negative. From this figure, we can conclude that a high value (1) for "Select min age"

negatively affects the number of responses. This makes sense, as there are typically fewer

responses for senior housing.

Figure 6.2: Feature importance of Random Forest Regression

6.3.3 Extra Trees

The performance of the Extra Trees model with different feature sets shown in Table 6.6,

demonstrate that the most effective approach is to create a model using all features except

the knowledge-based features. Additionally, tuning the hyperparameters yielded the same

values as those for the Random Forest model shown in Table 8.8 of the Appendix. The

performance of the model using the tuned hyperparameters and 181 features shown in Table

6.7. After tuning the hyperparameters, the performance on the training set decreased,

with RMSE increasing by 52.05 and R-squared decreasing by 0.0406. In contrast, the
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performance on the validation set remained similar, with RMSE decreasing by 0.96 and R-

squared increasing by 0.0025. This decrease in training set performance suggests that the

model generalizes better to unseen data when using the tuned hyperparameters. Although

the test set scores are slightly lower than the validation set scores, the model is stable due

to the small difference. The R-squared score of approximately 0.85 on the test dataset

indicates that 85% of the variation in responses on a listing can be explained by the input

features. Figure 6.3 illustrates the importance of features in the Extra Trees model. Both

segments of the figure are similar to that of the Random Forest model due to the similarities

between the models. The feature "Select min age" has the highest impact on the model.

The figure also indicates that although the top 9 features are influential, the combined

contribution of 172 other features is also substantial, with a mean SHAP value of roughly

135. The scaled collaboration region and the end month of the listing features have a

lower impact than in the Random Forest model, while the region sorting criteria feature

has more impact.

Table 6.6: Extra Trees Performance Comparison

Features Number of Features RMSE Train R2 Train RMSE Validation R2 Validation
Listing 60 50.63 0.9666 143.57 0.7343
Listing + Allocation Rules 91 42.00 0.9770 108.19 0.8490
Listing + CBS 220 48.84 0.9690 137.72 0.7554
Listing + Webscraped 72 48.99 0.9688 138.50 0.7525
Listing + feature engineering 78 46.46 0.9719 132.99 0.7720
All 281 3.93 0.9998 104.89 0.8581
All Transformed Target 281 3.99 0.9998 107.67 0.8505
All - Knowledge-based 181 3.93 0.9998 104.20 0.8600
All - Knowledge and Mutual Correlation based 107 4.05 0.9998 104.79 0.8584
All - Knowledge, Mutual and Low Correlation based 77 5.62 0.9996 107.21 0.8518
Best 50 50 25.18 0.9917 149.53 0.7116
Best 25 25 108.87 0.8456 189.97 0.5346

Table 6.7: Performance scores of the final model with tuning ET

Dataset Root Mean Squared Error (RMSE) R2 Score
Train 55.98 0.9592
Validation 103.24 0.8625
Test 111.76 0.8484

6.3.4 LightGBM

The performance of the LightGBM model with default parameters on different feature sets

in Table 6.8 follows a similar pattern to that of the CatBoost and Extra Trees models.
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Figure 6.3: Feature importance of Extra Trees Regression

Although the model with all features yields a slightly higher R-squared than the model

without features based on knowledge, it is preferable to use the smaller feature set. The

difference is only 0.001 in R-squared and 0.02 in RMSE. Additionally, the model with the

reduced feature set has 100 fewer features. Random Search resulted in the hyperparame-

ters shown in Table 8.9 in the Appendix. The performance of the LightGBM model with

tuned hyperparameters is shown in Table 6.9. The results suggest a slight reduction in

generalization after tuning. After tuning, the model demonstrated improved performance

on the training dataset and the metrics on the validation set were comparable, with the

RMSE decreasing by only 2.69 units and the R-squared showing a marginal increase of

0.007. The test set achieved an R-squared of 0.88 and an RMSE of 100, indicating reason-

able predictive accuracy, especially given the wide range of the target value in the dataset.

In Figure 6.4 the feature importance of the LightGBM regression model shows that the

year of the listing’s end date is the most influential feature, followed by the minimum age

selection criteria feature, which was the most important feature in the Random Forest and

Extra Trees models. Notably, the combined influence of the 172 other features is substan-

tially greater than in the other models. The SHAP values in the right segment of the figure

indicate that a higher end year positively impacts the model’s output. Indicating that the

number of responses in 2023 on listings were higher than in 2020.

6.3.5 CatBoost

The results of the CatBoost model are shown in 6.10. CatBoost can handle categorical

features without the necessity of creating dummy features, this reduces the overall number

of features. Using listing features only yielded better performance (R-squared of 0.80 and
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Table 6.8: Light GBM Performance Comparison

Model Number of Features RMSE Train R2 Train RMSE Validation R2 Validation
Listing only 60 105.33 0.8556 143.18 0.7356
Listing + Allocation Rules 91 86.92 0.9017 106.38 0.8540
Listing + CBS 220 85.05 0.9058 131.65 0.7765
Listing + Webscraped 72 99.28 0.8717 139.41 0.7494
Listing + feature engineering 78 89.04 0.8968 131.58 0.7767
All 281 66.78 0.9419 98.98 0.8737
All Transformed Target 281 78.63 0.9195 99.19 0.8731
All - Knowledge-based 181 67.97 0.9399 99.00 0.8736
All - Knowledge and Mutual Correlation based 107 71.18 0.9340 102.43 0.8584
All - Knowledge, Mutual and Low Correlation based 77 74.55 0.9276 104.06 0.8603
Best 50 77 104.87 0.8568 141.74 0.7409
Best 25 77 153.38 0.6938 180.98 0.5776

Table 6.9: Performance scores of the LightGBM model with tuning, removed features knowl-

edge

Dataset Root Mean Squared Error (RMSE) R2 Score
Train 54.39 0.9615
Validation 96.29 0.8804
Test 99.86 0.8790

RMSE of 124.62) compared to all other models which all achieved an R-squared of around
0.73 and an RMSE of around 143. The addition of feature sets improved model perfor-
mance, except for adding CBS features. Transforming the data yielded slightly better
performance metrics. The highest performance metrics were observed when knowledge-
based features only were removed, resulting in 65 features. Hyperparameter tuning with
random search resulted in the parameters shown in Table 8.10 in the Appendix. The per-
formance metrics of the tuned model, as shown in Table 6.11, demonstrate that parameter
tuning did not result in better performance. The validation and test metrics of the tuned
model are comparable. Note that all performance metrics for models predicting the trans-
formed target were rescaled to the original scale before calculation. The R-squared value
on the test dataset suggests that 89% of the variance in the data is explained by the Cat-
Boost model, indicating good performance. Notably, the model performed well with the
addition of only allocation rule features. The feature importance of the CatBoost model
is presented in Figure 6.5, the SHAP values show the impact on the model output before
rescaling the predictions. Again the ’Select min age’ feature has the most impact on the
model output. Similarly, as observed in the feature importance of the LightGBM model,
the sum of other features is considerable. The feature-engineered variables ’Age_range’
and ’Nearest’ did not rank among the top 9 features in terms of importance in the other
models. Analysis of the SHAP values from the right segment of the figure indicates that
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Figure 6.4: Feature importance of LightGBM Regression

a higher value of ’Nearest’ has a negative impact on the model output, whereas a higher
value of ’Age_range’ has a positive impact. The remaining SHAP values are consistent
with those from other models, and categorical variables are depicted in grey in the SHAP
value visualization.

Table 6.10: CatBoost Performance Comparison

Model Number of Features RMSE Train R2 Train RMSE Validation R2 Validation
Listing only 28 98.26 0.8743 124.62 0.7997
Listing + Allocation Rules 59 78.91 0.9189 96.78 0.8792
Listing + CBS 188 87.43 0.9005 124.78 0.7992
Listing + Webscraped 37 93.12 0.8871 121.93 0.8082
Listing + feature engineering 43 86.97 0.9015 120.05 0.8141
All Data - CBS 83 71.98 0.9326 96.45 0.8800
Transformed All Data - CBS 83 77.03 0.9228 95.03 0.8835
Transformed All - CBS and Knowledge based 65 77.39 0.9221 94.36 0.8852
Transformed All - CBS, Knowledge and Mutual Correlation based 50 79.28 0.9182 97.27 0.8780
Transformed All - CBS, Knowledge, Mutual and Low Correlation based 45 82.49 0.9114 99.92 0.8712

Table 6.11: Performance scores of the CatBoost model with tuning

Dataset Root Mean Squared Error (RMSE) R2 Score
Train 53.77 0.9624
Validation 95.08 0.8834
Test 96.77 0.8864

6.3.6 Residuals

The left segment of Figure 8.1 in the Appendix illustrates the distribution of residuals for
the five tuned models, focusing on the range from -150 to 150. CatBoost shows the highest
concentration of residuals near zero, which partly explains the high performance. It is
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Figure 6.5: Feature importance of CatBoost Regression (Transformed Target)

notable that while the LightGBM model had similar performance, its residual distribution
curve more closely resembles those of the other models than that of CatBoost. The right
segment of Figure 8.1 in the appendix illustrates the residuals of the Support Vector Re-
gression Model. Figure 8.2 in the Appendix displays the residuals of the Random Forest
and the Extra Trees models and 8.3 in the Appendix shows the residuals of the Random
Forest and the Extra Trees models. Analyzing the residuals of all models indicates that,
although the residuals generally resemble random noise, the range of positive residuals
is larger than the range of negative residuals across all models. This suggests that the
largest residuals are more often due to under-prediction rather than over-prediction. The
CatBoost model shows the most balanced distribution around zero, although its largest
residuals are bigger than those of the LightGBM model. To investigate the source of these
large residuals, the listings associated with the residuals were examined on WoningNet’s
website. Remarkably, these are primarily listings of houses in Hilversum or Amersfoort
that lack interior photos.

6.4 Full model

The same train, validation, and test sets were utilized for both position prediction and the
number of responses prediction, allowing the models to be evaluated together. The position
prediction data specifically covers the collaboration region ’Gooi en Vechtstreek.’ Due to
the random split of the data, the execution remains valid. It is important to note that the
scaled mean approach was tested on a smaller subset of listings, which might result in an
optimistic bias in the results. The performance metrics for the scaled mean approach in
Table 6.12, illustrate that the R-squared values on the test set range from 0.79 to 0.86. This
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represents a satisfactory level of performance. The RMSE values range between 126 and
156, which is acceptable if the largest squared errors are for applicants with an observed
low or poor position. However, it would not be ideal if the largest squared errors originate
from applicants with a high or good position. The sorting ratio approach, detailed in Table
6.13, shows R-squared values on the test set ranging from 0.75 to 0.81. These values are
lower compared to the scaled mean approach, this method is applied to all listings and is
scalable. The RMSE values for this approach are between 130 and 151. It stands out that
the best RMSE observed in the sorting ratio approach (130 for the LightGBM model) is
lower than the RMSE values of all other models using the scaled mean approach.

Table 6.12: Combined model performance of the scaled mean approach

SVR RF ET LightGBM CatBoost
Train RMSE 88.68 75.61 66.50 65.43 70.08

R-squared 0.9012 0.9282 0.9445 0.9462 0.9383
Validation RMSE 101 89.12 92.67 90.76 95.68

R-squared 0.8474 0.88095 0.8713 0.8766 0.8628
Test RMSE 155.83 147.15 149.37 126.63 131.50

R-squared 0.7868 0.80987 0.8041 0.8592 0.84815

Table 6.13: Combined model performance of the sorting ratio approach

SVR RF ET LightGBM CatBoost
Train RMSE 98.76 90.40 81.86 78.44 84.25

R-squared 0.8816 0.9008 0.9187 0.9253 0.9138
Validation RMSE 129.51 124.98 123.30 116.51 121.42

R-squared 0.7971 0.8110 0.8161 0.8358 0.82165
Test RMSE 150.76 146.61 144.35 130.49 136,78

R-squared 0.7477 0.7614 0.7687 0.8109 0.79235
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Discussion

This chapter first discusses the limitations of the research and offers suggestions for possible

directions in future research. The results seem promising, but it is important to recognize

that the study has limitations before drawing conclusions.

7.1 Limitations

This research had certain limitations that will be acknowledged. One of the limitations

was the presence of noise in the data, which likely impacted the model’s performance.

This noise arises from various sources, such as data entry inconsistencies and listing type

variations. Variations in listing types were not distinguishable in the data. Some listings

were pre-listings, where users express interest in a property without actually securing it.

This is often the case for new-build homes but can occur with other types as well. The

inclusion of these pre-listings without clear differentiation from actual listings complicates

data modelling. Furthermore, sorting criteria within the data lacked specification. For in-

stance, the minimum and maximum family size was not specified in the selection criteria,

which affects the group allowed to respond to a listing. Moreover, the criteria for sorting

text and listings were not always consistent with those used on the website. This is also a

primary complaint among Woningnet users, as incorrect criteria can affect the popularity

of a listing. It should be noted, however, that Woningnet is actively addressing these is-

sues, suggesting that the inconsistencies are likely attributable to the data currently being

utilized. The availability of homes with zero responses in the listing data was another

limitation. Although listings with no responses are probably rare, their absence can affect

the model’s performance and ability to predict the number of responses to a listing ac-

curately. In Amsterdam, recent changes to housing application rules have introduced the
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concept of "search points", where applicants apply to listings not necessarily out of interest

but to accumulate points. This creates uncertainty about the model’s applicability when

scaling to this region, as the behaviour driven by search points might not reflect genuine

interest in the listings. Fortunately, other regions do not have plans to implement similar

systems, limiting this issue’s impact to the region of Amsterdam. Moreover, due to time

constraints, the final positions were not converted into chance classes yet. Lastly, the mean

approach for predicting the final positions of applicants was conducted on a set of 1,206

listings that follow the same allocation rule, whereas the median approach was applied to

5,577 listings with various allocation rules. This difference makes the comparison between

the two approaches not entirely fair.

7.2 Future research

For future research, there are numerous opportunities to explore. Expanding the sorting

ratio approach by grouping the target groups is one such opportunity. For instance, senior

applicants might have a wider range of registration years compared to starters. Another

interesting future research direction involves replacing the current position prediction ap-

proach with a machine learning model. This model could assign specific weights to each

allocation rule, with some rules being more influential than others. For example, the first

criterion might carry more weight than the fifth criterion. Combining this with the listing

data could lead to a model that directly predicts the position. To ensure the model’s accu-

racy, it is important to split the data based on listing ID and perhaps undersample listings

with many applicants. This can help avoid overfitting on popular listings. Moreover, using

classification techniques for analyzing positions and chances, rather than regression tech-

niques, would be interesting. Given the class imbalance, special attention should be paid

to the first 10 positions, as those are the most important. Currently, Woningnet is working

on designing a new data warehouse. It would be beneficial for this new data warehouse

to include specific allocation rules. In addition, implementing restrictions on criteria entry

could enhance data reliability. This includes making the input criteria more robust to

prevent minor spelling errors from creating new, unintended rules, aligning sorting text

criteria with listing criteria, and restricting urgency dates or registration dates that are

later than the actual registration date. A more challenging but valuable task would be

standardizing the allocation rules across different regions to ensure consistency, leading to

a more reliable grouping of allocation rules. Exploring these directions in future research
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could improve the prediction of allocation chances. It would be valuable to convert both
the currently predicted final positions and the actual positions into chance classes and to
construct a confusion matrix to assess the performance. For future research, it would also
be interesting to research how the combined models using LightGBM or CatBoost perform
when tuning the model with only the added allocation rules features, as this requires fewer
data sources. Moreover, examining the allocation chance by looking at the number of re-
fusals on the offer by listing would be interesting. Furthermore, exploring the influence of
pictures on the website could provide valuable insights into applicant behaviour and pref-
erences. In addition, using natural language processing to analyze the listing descriptions
could be beneficial.
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Conclusion

Throughout this study, this research aimed to address the following question:

"How does incorporating the predicted number of responses affect the likelihood
or final position prediction of a prospective tenant securing a social housing
unit?"

The dataset was evaluated using different approaches to determine the effectiveness of
incorporating the predicted number of responses. The mean approach without scaling
demonstrated poor predictive performance, with an R-squared value of 0.12 and an RMSE
of 299 on the test dataset. The low R-squared indicates that the model explained only 12%
of the variance in the data, making it unreliable. Incorporating the number of responses
significantly improved the performance of the mean approach, achieving a high R-squared
value of 0.99 on the test set, suggesting high performance. However, this approach was
limited to a single set of rules, restricting its applicability across different listings. The
sorting criteria method also performed well, with an R-squared value of 0.97 on the test
set. Unlike the scaled mean approach, the sorting criteria approach is scalable across
different regions and sets of sorting criteria. However, its success heavily depends on the
appropriate grouping of the sorting criteria, which could be seen as a potential weakness.
Incorporating the mean significantly improved the performance of the mean approach and
was essential for utilizing the sorting ratio approach. Traditional models demonstrated
strong predictive capabilities without using machine learning, provided that the number of
responses was known. However, in practical scenarios, the number of responses is typically
unknown. Chance groups were defined based on the likelihood of receiving an offer. Only
applicants with a final position of 1 were categorized into the ’very high’ chance group,
whereas those with a position of 13 or worse were classified into the ’very low’ chance
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group. The performance of the five machine learning models was similar, with R-squared
values ranging from 0.84 to 0.89 on the test set and RMSE values ranging from 92 to 115.
This is a reasonable performance. CatBoost achieved the best performance, while Support
Vector Regression had the poorest performance. The difference between the training and
test performance metrics of all models indicates some overfitting, though it is not severe.
However, there is room for improvement due to the presence of noise in the data. The
minimum age criterion for selection was the most important feature across most tree-
based models. Senior listings often have a minimum age requirement, and those typically
receive fewer responses. For the LightGBM model, the end year was an important feature,
suggesting growth in the number of responses to listings over time. The residuals of
the models appear as random noise and are roughly equally distributed among negative
and positive values. However, the positive residuals had a wider range than the negative
residuals, indicating that the largest residuals are more often due to under-prediction
rather than over-prediction. Remarkably, the listings primarily consisted of houses in
Hilversum and Amersfoort that lacked interior photos. Including other location features
might improve the model. When adding different sets of features, the allocation rules
emerged as the best addition to the listing data. Incorporating CBS data might not be
necessary as it only led to small improvements, although the feature-engineered value
’Distance’ derived from this dataset was among the top 9 most important features in the
CatBoost model. The webscraped values also only led to small improvements, although
they were used for data cleaning in the allocation rules. Relying solely on the 25 or
50 most important variables resulted in poor model performance for the SVR, RF, ET,
and LightGBM models. Based on the results of combining machine learning models that
predict the number of responses with traditional position methods, several conclusions can
be drawn. Both position prediction approaches perform worse when using the estimated
length of the applicant list compared to the true length. The scaled mean approach shows
higher R-squared values on the test set, ranging from 0.79 to 0.86, indicating a satisfactory
level of performance. The RMSE values for the scaled mean approach range from 126 to
156, which are acceptable, provided that the largest errors are associated with applicants
in lower or poorer positions rather than those in higher or better positions. However, this
approach may carry an optimistic bias due to the smaller sample size. In contrast, the
sorting ratio approach, which is scalable and applicable to all listings, yielded slightly lower
R-squared values on the test set, ranging from 0.75 to 0.81. Notably, the best RMSE value
observed with the sorting ratio approach (130 for the LightGBM model) is lower than
the RMSE values for all other models using the scaled mean approach. It is noteworthy
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that the LightGBM model demonstrated slightly better performance metrics compared
to the CatBoost model across both combined approaches. However, the CatBoost model
previously showed slightly better performance specifically in predicting the number of
responses.
To address the research question, "How does incorporating the predicted number of re-
sponses affect the likelihood or final position prediction of a prospective tenant securing
a social housing unit?", it can be concluded that incorporating predicted responses en-
hances the performance of predicting the likelihood. The traditional methods, using the
actual number of responses, demonstrated strong predictive capabilities. Incorporating
the predicted number of responses, while naturally lowering the performance metrics, still
yielded reasonably good results. Specifically, the LightGBM model achieved the highest
score with a test R-squared of 0.81 and an RMSE of 130 for the scalable sorting ratio
approach. Further investigation is warranted to understand where the largest residuals oc-
cur, particularly in positions with fewer responses. From a practical perspective, while the
results are promising and exceed initial expectations, the current models require further
refinement before they can be implemented for direct use by Woningnet. Future research,
as outlined in Chapter 7, aims to address these limitations and enhance the models further.
Unfortunately, due to the current lack of comprehensive data, such as detailed allocation
rules and high-quality web-scraped data, significant improvements remain challenging at
this stage.
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Appendix

Table 8.1: Listing dataset

Listing Collaboration Criteria Set Branch Responses Start Listing End Listing End year End month Unit rooms Unit address
31217 Woongaard Regular KleurrijkWonen 89 2019-12-24 2020-01-01 2020 1 4 Heivlinder 14, 4007JD Tiel
31330 Woongaard Senior Woonservice Meander 1 2019-12-24 2020-01-02 2020 1 2 Ridder van de Merwedestraat 40, 4268GR Meeuwen
31329 Woongaard Regular KleurrijkWonen 189 2019-12-24 2020-01-02 2020 1 3 Debussystraat 65, 4102AR Culemborg
31274 Woongaard Regular Woonservice Meander 77 2019-12-24 2020-01-02 2020 1 3 Wijnpeerhoef 4, 4266NB Eethen

Listing Unit zipcode Unit zipcode 4 Unit floor Unit elevator Unit independent Unit living area Listing drawing Listing new build Listing corporation Rent class
31217 4007JD 4007 0 0 1 72 0 0 1 Maximum rental limit
31330 4268GR 4268 0 0 0 76 0 0 1 High capping limit
31329 4102AR 4102 1 0 0 53 0 0 1 Low capping limit
31274 4266NB 4266 1 0 0 66 0 0 1 High capping limit

Listing Rent net Rent gross Rent subs Rent service charge subs Rent service charge Personalized rent Exclusive situation points Reply term
31217 717.41 720.01 717.41 0.00 2.60 0 0 9
31330 636.87 636.87 636.87 0.00 0.00 0 0 10
31329 524.91 532.44 524.91 0.00 7.53 0 0 10
31274 606.75 626.75 622.75 16.00 4.00 0 0 10

Listing Published units Unit municipality Unit residence Unit accessibility Unit home type detail Listing contract form Listing target group Unit apartment
31217 1 Tiel Tiel House without special accessibility Terraced house Indefinite contract Family 0
31330 1 Altena Meeuwen House without special accessibility Terraced house Indefinite contract Seniors 0
31329 1 Culemborg Culemborg House without special accessibility Gallery flat Indefinite contract Family 1
31274 1 Altena Eethen House without special accessibility Upstairs apartment Indefinite contract Person 1

Table 8.2: Selection and Sorting Criteria dataset

Listing Selection Sorting Select max income Select appropriate Select others Select max persons Select min age Select no kids Select max age high Select min persons Select min income Select max age low Select flexible Select start study Sort other
100056 2 5 1 0 0 0 1 0 0 0 0 0 0 0 5
100058 2 4 1 1 0 0 0 0 0 0 0 0 0 0 3
100060 1 3 1 0 0 0 0 0 0 0 0 0 0 0 2
100061 1 5 1 0 0 0 0 0 0 0 0 0 0 0 3

Listing Sort primair Sort senior low Sort urgent Sort regulation Sort lotery Sort flow Sort income low Sort middleage Sort young Sort max persons Sort min persons Sort region Sort residence Sort family Sort senior high Sort registration date
100056 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100058 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
100060 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100061 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
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Table 8.3: CBS 4-length zip code data (https://download.cbs.nl/postcode/2023-

CBS_pc4_2022_v1.zip)
Zip code 4 Total persons Male Female age_t_15 age_15_25 age_25_45 age_45_65 age_65p NL_origin_NL NL_origin �_EU NL_origin_OutsideEU OutsideNL_origin_EU OutsideNL_origin_outsideEU
1012 8800 0.55 0.45 0.04 0.19 0.48 0.20 0.09 0.40 0.00 0.10 0.30 0.20
1013 21940 0.50 0.50 0.11 0.11 0.36 0.27 0.15 0.50 0.00 0.10 0.10 0.20
1014 3660 0.51 0.49 0.21 0.05 0.44 0.23 0.07 0.60 0.10 0.10 0.10 0.10
1015 14910 0.50 0.50 0.08 0.12 0.35 0.28 0.17 0.50 0.10 0.10 0.20 0.20

Zip code 4 Total families Single Multiple persons without children Single-parent Two-parent Household size Total houses build_b_1945 build_1945_1965 build_1965_1975 build_1975_1985 build_1985_1995
1012 6275 0.68 0.25 0.03 0.04 1.40 6005 0.83 0.00 0.01 0.02 0.07
1013 13470 0.62 0.21 0.07 0.10 1.60 12560 0.54 0.02 0.01 0.13 0.12
1014 1705 0.39 0.29 0.04 0.28 2.10 1745 0.01 0.00 0.06 0.00 0.01
1015 9875 0.65 0.22 0.05 0.08 1.50 9965 0.74 0.01 0.02 0.08 0.11

Zip code 4 build_1995_2005 build_2005_2015 build_2015l Multi-family Owner-occupied home Rental home Rental corporation Not inhabited Mean woz Persons on benefits addresses/km2 category
1012 0.04 0.02 0.01 0.95 0.20 0.80 0.12 0.18 480.00 0.07 8578 1
1013 0.04 0.10 0.04 0.99 0.30 0.70 0.51 0.06 471.00 0.12 6581 1
1014 0.11 0.00 0.81 0.90 0.50 0.50 0.09 0.10 731.00 0.05 3309 1
1015 0.03 0.01 0.00 0.95 0.30 0.70 0.35 0.12 532.00 0.09 11080 1

Table 8.4: CBS full zip code data (https://download.cbs.nl/postcode/2023-

cbs_pc6_2020_vol.zip)

Zip Code Total Male Female Age < 15 Age 15-25 Age 25-45 Age 45-65 Age > 65 NL Origin Western Origin Non-Western Origin Total Households Single Person Household
1011AC 20 0.50 0.50 0.17 0.17 0.25 0.17 0.25 0.60 0.20 0.20 10 0.50
1011AG 5 0.50 0.50 0.00 0.00 1.00 0.00 0.00 0.33 0.33 0.33 3 0.25
1011AH 30 0.67 0.33 0.08 0.08 0.67 0.08 0.08 0.40 0.30 0.30 15 0.33
1011AJ 20 0.75 0.25 0.08 0.08 0.50 0.25 0.08 0.60 0.20 0.20 10 0.50
Zip Code Multi-Person Without Children Household Single Parent Household Two Parent Household Household Size Total Housing Built Before 1945 Built 1945-1965 Built 1965-1975 Built 1975-1985 Built 1985-1995 Built 1995-2005 Built 2005-2015
1011AC 0.17 0.17 0.17 1.70 3 0.12 0.12 0.12 0.12 0.12 0.12 0.12
1011AG 0.25 0.25 0.25 1.70 3 0.12 0.12 0.12 0.12 0.12 0.12 0.12
1011AH 0.67 0.00 0.00 1.80 15 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1011AJ 0.17 0.17 0.17 1.50 15 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Zip Code Built After 2015 Owner-Occupied House Rented House Property Value Gas Consumption Electricity Consumption Nearest Supermarket Supermarket Within 1km Supermarket Within 3km Supermarket Within 5km Nearest Grocery Store Grocery Store Within 1km
1011AC 0.12 0.50 0.50 517 1190.00 2830.00 0.50 1.00 43.00 132.00 0.70 9.00
1011AG 0.12 0.50 0.50 517 1190.00 2830.00 0.40 10.00 78.00 154.00 0.00 109.00
1011AH 0.00 0.20 0.80 304 860.00 1430.00 0.40 10.20 77.90 153.80 0.00 107.50
1011AJ 0.00 0.50 0.50 762 1160.00 2290.00 0.40 11.00 79.00 153.00 0.00 106.00

Zip Code Grocery Store Within 3km Grocery Store Within 5km Nearest Department Store Department Store Within 5km Department Store Within 10km Department Store Within 20km Nearest Cafe Cafe Within 1km Cafe Within 3km Cafe Within 5km Nearest Snack Bar
1011AC 383.00 885.00 1.20 13.00 23.00 42.00 0.70 9.00 389.00 670.00 0.40
1011AG 582.00 966.00 0.60 13.00 23.00 45.00 0.10 161.00 533.00 695.00 0.00
1011AH 583.80 966.40 0.60 13.00 23.00 45.00 0.10 159.90 533.00 694.80 0.00
1011AJ 588.00 966.00 0.60 13.00 23.00 45.00 0.10 158.00 533.00 694.00 0.00

Zip Code Snack Bar Within 1km Snack Bar Within 3km Snack Bar Within 5km Nearest Hotel Hotel Within 5km Hotel Within 10km Hotel Within 20km Nearest Restaurant Restaurant Within 1km Restaurant Within 3km Restaurant Within 5km Nearest Daycare Daycare Within 1km
1011AC 15.00 461.00 902.00 0.50 362.00 434.00 505.00 0.10 32.00 800.00 1717.00 1.10 0.00
1011AG 156.00 662.00 954.00 0.10 377.00 439.00 514.00 0.00 250.00 1252.00 1831.00 0.40 3.00
1011AH 155.50 662.20 953.50 0.10 377.00 439.00 514.20 0.00 248.20 1253.80 1833.50 0.40 3.00
1011AJ 157.00 666.00 952.00 0.20 377.00 439.00 515.00 0.00 244.00 1258.00 1835.00 0.40 3.00

Zip Code Daycare Within 3km Daycare Within 5km Nearest Kindergarten Kindergarten Within 1km Kindergarten Within 3km Kindergarten Within 5km Nearest Fire Station Nearest Highway Nearest Train Transfer Station Nearest Train Station Nearest Attraction Attraction Within 10km
1011AC 41.00 131.00 1.10 0.00 54.00 263.00 1.60 5.00 1.10 1.10 1.80 6.00
1011AG 53.00 161.00 0.40 6.00 105.00 326.00 0.90 4.40 0.50 0.50 1.10 6.00
1011AH 53.90 161.60 0.40 6.00 105.70 326.00 0.90 4.40 0.50 0.50 1.10 6.00
1011AJ 55.00 162.00 0.40 6.00 108.00 326.00 0.90 4.50 0.50 0.50 1.10 6.00

Zip Code Attraction Within 20km Attraction Within 50km Nearest Cinema Cinema Within 5km Cinema Within 10km Cinema Within 20km Nearest Museum Museum Within 5km Museum Within 10km Museum Within 20km Nearest Performing Arts Venue Performing Arts Venue Within 5km
1011AC 12.00 57.00 2.00 11.00 13.00 17.00 1.20 43.00 46.00 67.00 0.90 35.00
1011AG 13.00 57.00 1.30 12.00 13.00 19.00 0.50 44.00 47.00 67.00 0.50 37.00
1011AH 13.00 57.00 1.30 12.00 13.00 19.00 0.50 44.00 47.00 67.00 0.50 37.00
1011AJ 13.00 57.00 1.30 12.00 13.00 19.00 0.50 44.00 47.00 67.00 0.40 37.00

Zip Code Performing Arts Venue Within 10km Performing Arts Venue Within 20km Nearest Library Nearest Ice Rink Nearest Music Venue Nearest Sauna Nearest Tanning Salon Nearest Swimming Pool Nearest School School Within 1km School Within 3km School Within 5km
1011AC 48.00 59.00 0.40 5.50 3.10 1.40 2.30 2.70 1.10 0.00 19.00 79.00
1011AG 50.00 64.00 0.60 4.80 2.40 0.80 1.70 2.10 0.40 2.00 28.00 98.00
1011AH 50.00 64.00 0.60 4.80 2.40 0.80 1.80 2.10 0.40 2.00 28.60 98.00
1011AJ 50.00 64.00 0.60 4.80 2.40 0.80 1.80 2.10 0.40 2.00 29.00 98.00
Zip Code Nearest HAVO/VWO School HAVO/VWO School Within 3km HAVO/VWO School Within 5km HAVO/VWO School Within 10km Nearest VMBO School VMBO School Within 3km VMBO School Within 5km VMBO School Within 10km Nearest Secondary School Secondary School Within 3km Secondary School Within 5km Secondary School Within 10km Nearest GP
1011AC 1.80 1.00 22.00 48.00 1.80 1.00 20.00 54.00 1.80 1.00 33.00 75.00 1.00
1011AG 1.20 9.00 27.00 48.00 1.20 5.00 29.00 55.00 1.20 9.00 45.00 76.00 0.30
1011AH 1.20 9.50 27.20 48.00 1.20 5.50 29.00 55.00 1.20 9.50 45.20 76.00 0.20
1011AJ 1.20 11.00 28.00 48.00 1.20 7.00 29.00 55.00 1.20 11.00 46.00 76.00 0.20

Zip Code GP Within 1km GP Within 3km GP Within 5km Nearest Hospital Hospital Within 5km Hospital Within 10km Hospital Within 20km Nearest Hospital Outpatient Clinic Hospital Outpatient Clinic Within 5km Hospital Outpatient Clinic Within 10km Hospital Outpatient Clinic Within 20km Nearest Pharmacy Nearest GP Post
1011AC 1.00 31.00 111.00 3.30 1.00 5.00 10.00 2.10 2.00 6.00 14.00 0.80 3.30
1011AG 4.00 56.00 129.00 2.60 1.00 5.00 10.00 1.40 2.00 6.00 15.00 0.40 2.60
1011AH 4.00 56.00 129.60 2.60 1.00 5.00 10.00 1.50 2.00 6.00 15.00 0.40 2.60
1011AJ 4.00 56.00 130.00 2.60 1.00 5.00 10.00 1.40 2.00 6.00 15.00 0.40 2.60

Table 8.5: Webscraped data

Listing number of images construction year target group min persons max persons child unknown persons age min age max no kids
31409 0 1989 Regular 1 10 0 0 0 100 0
31412 0 1972 Regular 1 10 0 0 0 100 0
30539 3 1918 Regular 1 10 0 0 0 100 0
30596 4 1930 Regular 1 10 0 0 0 100 0
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Deletion Reason Features
Knowledge Corporation publication, Flexible, Male, Female, NL origin EU, Semi-detached house, Attached house, Semi-detached two-under-one-roof house, Room, Detached house

Temporary contract, Multi-family, Two-under-one-roof house, Seniors, Care, Youth, Start study, Middle age, Senior high, Registration date, Other
Primary, Lottery, Female, Age 25-45, Age 45-65, Age 65+, Built before 1945
Built 1945-1965, Built 1965-1975, Rental houses, Food stores within 3 km, Department store within 5 km, Café within 3 km
Snack bar within 3 km, Snack bar within 5 km, Hotel within 5 km, Restaurant within 3 km, After-school care within 3 km, Daycare within 3 km, Cinema within 5 km
Museums within 5 km, Performing arts within 5 km, School within 3 km, HAVO/VWO within 3 km, HAVO/VWO within 5 km
VMBO within 3 km, VMBO within 5 km, VO within 3 km, VO within 5 km
General practitioner within 3 km, Hospital within 5 km, Hospital outpatient clinic within 5 km, Max persons, Min persons, Unknown persons
Urgent, Youth, Target group match youth, Max age high, No kids, Target group match old, Nearest attraction, Nearest HAVO/VWO
Nearest sauna, Nearest tanning bed, Nearest swimming pool, Nearest train
Nearest museums, Nearest department store, Nearest general practitioners’ post, Nearest library
Nearest fire brigade, Nearest hote, Nearest cinema, Nearest café, Nearest general practitioner, Nearest highway, Nearest after-school care
Nearest restaurant, Nearest school, Nearest daycare, Nearest ice rink, Nearest food store, Nearest pharmacy, Nearest supermarket, Nearest snack bar
Attraction within 20 km, After-school care within 1 km, Daycare within 1 km, School within 1 km, General practitioner within 1 km, Rental service costs, Household size
Cooperation association Gooi and Vechtstreek, Cooperation association Eemvallei, Cooperation association Woongaard, Nearest hospital outpatient clinic

High mutual correlation Excluded situation points, Living area, Gross rent, Rent subsidy, Log gross rent, Net rent, Senior rule set, Senior care target group, Youth students rule set, Max low age
Senior low, Region, Total persons, NL origin NL, Outside NL origin outside EU, Total houses, Two-parent, Housing corporation, Owner-occupied house, Nearest performing arts
Supermarket within 3 km, Supermarket within 5 km , Food stores within 5 km, Intermediate house, Nearest hospital, Restaurant within 5 km, Daycare within 5 km, School within 5 km
General practitioner within 5 km, Total, Total household, Single-person household, Two-parent household, Supermarket within 1 km, Café within 5 km
Café within 1 km, Snack bar within 1 km, Restaurant within 1 km, After-school care within 5 km, VMBO within 10 km, Museums within 10 km, HAVO/VWO within 10 km
VO within 10 km, Hospital outpatient clinic within 10 km, Hospital outpatient clinic within 20 km, Department store within 10 km, Accessible ground-floor house, VMBO nearest
VO nearest, Nearest pop podium, Hospital within 20 km, Museums within 20 km, Performing arts within 20 km, Cinema within 20 km, Hotel within 10 km
Hospital within 10 km, Addresses per km², Category, Transfer station train, Year of construction, Regular target group match, Performing arts within 10 km
Department store within 20 km, Age over 15, Food stores within 1 km, Hotel within 20 km, Age range, Max age, Min age, Number of persons, Regular rule set, Origin, NW origin

Low correlation Age 15-25, Age up to 15, Built 2015 and later, Gas consumption, Unoccupied, Multi-person without children, Age 25-45, Built 1975-1985, Built 1975-1985, Built 2005-2015
Multi-family, Built 1995-2005, Built 2015 and later, Electricity consumption, Other combination house type, Number of images, Built 1985-1995, Temporary contract Log net rent
Regular special rule set, End house, Log living area, Child, Portico house, Corner house, Ground floor house, Starter target group, Multi-person without children household, Age 45-65, Sorting

Table 8.6: List of removing feature sets

Table 8.7: Tuned hyperparameters for the Support Vector Regression model

Parameter Value
C 5
epsilon 0.1
kernel rbf
degree (only polynomial kernel) 4
gamma scale

Table 8.8: Tuned hyperparameters for the Random Forest and Extra Trees models

Parameter Value
max_depth 18
max_features None
min_samples_leaf 5
min_samples_split 10
n_estimators 550
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Table 8.9: Tuned hyperparameters for the LightGBM model

Parameter Value
num_leaves 20
learning_rate 0.05
n_estimators 750
feature_fraction 0.8
subsample 0.95

Table 8.10: Tuned hyperparameters for the CatBoost model

Parameter Value
one_hot_max_size 30
iterations 1500
od_wait 40
learning_rate 0.1
depth 7
l2_leaf_reg 5
random_strength 0.4
bagging_temperature 1.5

Figure 8.1: All model residuals and SVR model residuals
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Figure 8.2: Random Forest model residuals and Extra Trees model residuals

Figure 8.3: LightGBM model residuals and CatBoost model residuals
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