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Activity Context Detection during Smartphone Keyboard Interactions: A
Machine Learning Approach

Abstract

There is a continuous demand of the modern lifestyle, the use of smartphones
or smartwatches or in general the use of any piece of technology, in order people
to monitor and potentially improve their health condition. Self-tracking from
devices can generate valuable data, but the main issue is that the data are col-
lected in a real-world environment; hence they inherently carry noise due to the
underlying activity done while interacting with the smartphone. For example,
keystroke dynamics can be utilised as a digital biomarker in relation to clinical
outcomes used by clinicians to assess, e.g. fine motor skills. However, the typ-
ing behaviour is likely affected by what the person is doing while typing. This
research project investigates the boundary conditions within a given typing ses-
sion, and this happens in three different levels: investigate if the person who
is typing is walking or performing any other non-motion activity, investigate if
the person is typing with one or two hands and finally if the person is typing
with the thumb or the index finger. Collecting the data and following a machine
learning workflow (exploratory data analysis, feature engineering and selection,
data preparation, machine learning models) yielded the following results per
target: for target activity (distinguish between walking or non-motion activ-
ity), the best performing model achieved an F1 score=0.955 in cross-validation
and on the hold-out set an F1 score=0.927. For the handedness target, the
cross-validation F1 score on the training set was 0.835, and on the hold-out
set 0.818, and for the finger dominance target, the best model achieved an F1
score=0.92 on the training set with cross-validation and an F1 score=0.909 on
the Hold-out set. For the models to predict based on the typing sessions, they
leveraged a combination of features coming both from the keystroke and the
sensor dataset. These findings suggest that the combination of keystroke and
sensor features have sufficient predictive power in order to distinguish between
the aforementioned boundary conditions, which is beneficial if one wishes to
explain the variability coming from the keystrokes; however, further research
is still to be conducted in the direction of using these results in the healthcare
context.
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1 Introduction

1.1 Research Context

According to [24], biometric data are physical or behavioral features that are
unique to each person and can be used as a means of individual validation for
security purposes. Physical biometric features can include, for example, finger
prints, iris scans, and face scans, which are unlikely to change except through
physical damage. Behavioral features are able to change based on the variable
state of a person and can include keystroke dynamics, gait, voice, and other per-
sonal identifiers from which an overall personal profile can be developed. The
biometrics of keystroke dynamics are based on the assumption that different
people have different typing mannerisms and that these neuro-physiological fac-
tors are reflected in the data of that individual, leading to a “typing signature”
of a person at any given time. Neurocast B.V. [16] is a company that operates
in this context.

Neurocast is a med-tech company, which specializes in passively monitoring
patients. The company aims to leverage the interaction with smartphone tech-
nology, such as keystroke dynamics and sensor data, in order to produce valuable
insights regarding a person’s mental, physical and emotional status. Because
people with chronic illnesses do not want to be confronted with their illness
and actively monitored, doctors and researchers cannot come up with valuable
results; hence Neurocast introduced its technology to collect data in a entirely
unobtrusive manner, with privacy embedded by design and available for ev-
eryone. Through their platform and technology Neurocast obtains a complete
picture of a patient’s clinical data by collecting a consistent flow of real-world
data. Neurocast’s mission is to turn everyday digital interactions into clinically
approved outcomes, enabling doctors and researchers to measure individual pa-
tients’ performance in daily life passively.

1.2 Research Objective

In this era, the modern lifestyle demands the use of technology as part of our
life. People who carry a smartphone and wear a smartwatch can potentially
gather a significant amount of data, that can be used, e.g., to monitor and
improve the person’s health condition. Self-tracking from devices can generate
useful data, but the main issue is that the data are collected in a real-world
environment, hence they inherently carry noise due to the underlying activity
done while interacting with the smartphone. This is where machine learning
can help us understand better the data. Using machine learning techniques,
one can capture meaningful insights from the data and turn them into useful
suggestions or predictions. In this work, the focus will be on data collected pas-
sively during a typing session via an application developed by Neurocast B.V.,
namely, Neurokeys [17].

According to [12], the analysis of press and release keyboard interactions -
keystroke dynamics - allows the identification of typing behaviour (e.g. amount,
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speed and error rate of typing) in a real-world setting which can reflect motor
and non-motor functioning. It is hypothesised that keystroke dynamics can be
utilised as a digital biomarker in relation to clinical outcome used by clinicians
to assess e.g. fine motor skills and fatigue. However, since the typing behaviour
is likely affected by what the person is doing while typing, the goal is to infer
the boundary conditions within a given typing session. By boundary condition
it is meant e.g.:

• infer if the person is typing with one or two hands;

• infer if the person is walking or sitting;

• infer if the person is typing with the thumb or the index finger.

The knowledge of such boundary conditions can be used to explain part of the
variance coming from the Keystroke Dynamics, while the remaining information
can be linked to a specific clinical outcome. Furthermore, it will be investigated
if it is possible to flag the typing session as an anomaly whenever someone else
is typing in the smartphone. In this way, the anomalous typing session can be
discarded prior to any clinical assessment using the Neurocast technology.

1.3 Literature Review

This subsection provides the primary research in the broader research context
of this project, as this specific research has not been developed yet by any other
researcher or research team.

Lam [12] in his study takes advantage of the Neurokeys App [17] in order to
collect data and investigate the keystroke dynamics in the field of Multiple Scle-
rosis. The aim of the study was to determine the reliability and validity of
keystroke dynamics to assess clinical aspects of Multiple Sclerosis. Keystroke
dynamics were reliable, distinguished patients and controls, and were associated
with clinical disability measures.

Twose et al. [24] in his study aim to test the feasibility of using Non-Linear
Time Series Analysis within Keystroke Dynamics. The results showed a daily
change in Keystroke Dynamics for all users but only clinically relevant changes
in the population with Multiple Sclerosis.

The work by Voicu et al. [25] takes advantage of a custom smartphone app avail-
able for Android devices, and the smartphone sensors (accelerometer, gyroscope
and gravity sensors) in order to perform activity recognition using a deep learn-
ing technique to classify the raw data in six different activities, namely walking,
sitting, standing, running, walking upstairs and downstairs. It is shown how
human activity recognition can be achieved by using sensors available on a
smartphone.

He et al. [26] utilize the Built-In Kinematic Sensors of a Smartphone in order
to perform physical activity recognition. The sensors included in their work
were the triaccelerometer, the gyroscope and the magnetic sensor. The results
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indicated that the accelerometer was significant to physical activity recognition,
while gyroscope was effective to recognize the change of body posture. In this
work, the accelerometer and the gyroscope sensors are utilized in order to make
accurate predictions about the activity of the smartphone users.

Dagum [3] in order to identify digital biomarkers associated with cognitive func-
tion, analyzed human–computer interaction of smartphone use in 27 subjects.
Utilizing an app that worked on the background and captured tactile user ac-
tivity that included swipes, taps, and keystroke events, collectively termed hu-
man–computer interactions (HCI). It is shown that one using passively acquired
data during daily use of a smartphone, can generate digital biomarkers corre-
lated with gold-standard neurocognitive tests.

1.4 Summary Results

The outcome of this research project is that using machine learning techniques,
one can predict the boundary conditions using the suggested features. The
results of the research were promising enough to conclude about the practical
aspect of the models. The key performance metric that is used to measure the
performance of each model is F1 score, which is explained in Section 3.6. Briefly,
for every target the results are summarized as followed:

• Activity: The results that are achieved for target activity are: F1 score
0.927 and AUC of 0.92. The models are certain enough in predicting if
the person is performing a motion or non-motion activity.

• Handedness: The results that are achieved for target handedness are: F1
score 0.818 and AUC of 0.80. The models are certain enough in predicting
if the person is typing with two hands.

• Finger Dominance: The results that are achieved for target finger domi-
nance are: F1 score 0.909 and AUC of 0.84. The models are certain enough
in predicting if the person is typing with the thumb.

1.5 Thesis Structure

The thesis is organized in the following three main sections:

• Section 2 refers to the study overview and explains in detail the set-
up of the project, the study design, the data collection, the three different
datasets that are introduced, the creation of the Hold-out set and assump-
tions and limitations of the project.

• Section 3 addresses the methodology of the research project and includes
feature engineering, feature selection, exploratory data analysis of the
datasets, the models used to make the predictions, the machine learning
approaches, the required data preparation and the evaluation metrics.
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• Section 4 of the thesis is the results Section, where the results are ex-
plained in detail for every target separately, and error analysis is con-
ducted, followed by feature importance.

• Section 5 and 6 discuss the limitations, assumptions and recommenda-
tions of this research project, and the final section is the conclusion, where
the research question is answered.
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2 Study Overview

The current section will address the study design: a description of the popu-
lations and how and when the data were collected; keystroke data acquisition:
an introduction to the Neurokeys technology; and the ethical approval of the
study.

2.1 Study Design

The data have been collected through the Neurokeys app [17], which is devel-
oped to measure health status through regular typing on the smartphone. All
keyboard interaction data were remotely collected throughout the internship.
The data from the participants were collected from June 2021 to September
2021, and all the participants were considered healthy subjects. The age of the
participants is concentrated between 26 to 34, except for one user who is at the
age of 55, and the data was collected from iOS devices only. Table 1 summarizes
the information of the research internship.

Table 1: Summary of the study design

App OS Participants Age Condition Duration
Neurokeys iOS 9 26-55 Healthy 4 months

2.2 Data Collection

A smartphone app (Neurokeys, Neurocast B.V., Amsterdam) was developed
for Android and iOS to measure health status through regular typing and via
sensors, GPS, and questionnaires. The Neurokeys keyboard was installed on the
participants’ smartphones and replaced the default. At the beginning of typing
session, the participant labels the typing session. Chooses the activity category
between lying, sitting, standing, walking or other, the finger dominance category
between thumb and finger, the handedness category between single-handed or
two-handed and the anomaly detection category between ”me” and ”not me”.
The labelling of the typing session can also be chosen after the participant is
finished typing. During regular typing, keyboard interactions of interest were
logged and timestamped in the background: alphanumeric keys, backspaces,
space bars and punctuation keys. Based on these timestamped key types, the
manner and rhythm of typing can be discerned by analysing keystroke features.
Keyboard interactions and activity tracking data were continuously collected
and stored per typing session, defined as one successive period of activation
followed by inactivation of the keyboard. When a typing session starts, keystroke
data, labels and sensor data from the previous session are sent and removed from
the smartphone. The final dataset is constructed by merging the three different
types of datasets. The collection of data through Neurokeys did not require
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additional action from the participants. Finally, note that if the labels are not
provided for a given typing session, underlying data are discarded a priory.
Figure 1a and Figure 1b show a screenshot of the Neurokeys keyboard and the
smart panel questionnaire.

(a) The Neurokeys Keyboard (b) The labeling options in the Neurokeys
app

2.2.1 Target Dataset

Throughout this work, supervised machine learning techniques are leveraged.
In short, such an approach is defined by its use of labelled datasets to train
algorithms to classify data and/or predict outcomes. In our case, the labels
coming from the smart panel questionnaire are used as a target to train math-
ematical models. Once the data are collected, one can request them from the
cloud server using customized API, and they are returned as pandas data frame.
The labels are returned sorted by timestamp; hence the labels of a typing ses-
sion are located in different rows of the data frame. Furthermore, user_ID and
session_ID are provided in order to discern data among users and instances,
respectively. An example of the target dataset is shown below in Table 2. Note
that the data are utterly artificial due to privacy reasons; however, they are
representative of the original.

Table 2: The labels dataset

session ID timestamp user ID activity handedness finger
dominance

anomaly
detection

MFJNVDI9469 2021-06-02 07:57:23 2300 walking single handed thumb me
PFVMF245607 2021-06-28 10:24:58 280 standing two handed thumb me
NVUREJ23498 2021-08-10 16:45:20 1458 lying single handed finger not me
JNCFVJFU245 2021-08-18 22:50:03 575 sitting two handed finger me
BUITN694786 2021-09-24 04:12:48 834 other single handed thumb not me

Before preprocessing, the labels dataset was of shape (9403, 19), where 9403
are the rows, and 19 are the data frame columns. After a preprocessing proce-
dure, the total amount of labels is 2224, which can also be seen as the dataset’s
upper bound value valid for model training and validation.
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2.2.2 Feature Dataset: Keystroke Data

The keystroke dataset is the dataset that contains all the necessary information
about the typing behaviour of the participant in a given typing session. When
such a data source is requested from the cloud server, a pandas data frame that
contains all the keystroke features aggregated via different summary statistics
(e.g. mean and standard deviation) per typing session and per user is provided.
The keystroke dataset is returned sorted by timestamp, and the features in this
dataset are viewed as aggregations of the current typing session. The essential
features of the keystroke dataset are described in [12] and the short definition
is below.

• Hold Time: The time a key is pressed;

• Flight Time: The time between a key being released and the next key
press;

• Press Press Latency: The time between successive key presses;

• Release Release Latency: The time between successive key releases;

• Correction Duration: The amount of time during which a user is cor-
recting a mistake.

An instance of the keystroke dataset is shown below in Table 3. Note that the
data are entirely artificial due to privacy reasons; however, they are representa-
tive of the original.

Table 3: The keystroke dataset. All features shown in this table are aggregations
of the average time (in milliseconds) for a specific typing session

timestamp user ID session
duration

correction
duration

release
release
latency

press
press

latency
2021-06-02 07:57:23 2300 6429.70 633.66 349.68 632.40
2021-06-28 10:24:58 280 2456.90 450.89 325.81 546.76
2021-08-10 16:45:20 1458 23048.19 232.67 678.12 347.34

Note that all the features mentioned above are expressed milliseconds. In
addition, for each feature are calculated five summary statistics (i.e. vectors):
mean and median (indicators of central tendency), standard deviation (SD;
an indicator of dispersion) and minimum and maximum (indicators of range).
Other statistics are also calculated and added as vectors of the feature as skew
and kurtosis. Furthermore, features that count all the events in the typing
session, the word length and the emojis are also included in the dataset. Figure
2 shows and explains schematically the keystroke features that were derived
from timestamped keyboard interactions.
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Figure 2: Schematic representation of the definition and aggregation of the
timing-related keystroke features. Image courtesy of Lam et al. [12]

In the end, the original keystroke dataset prior to merging with the target
dataset contains 17543 samples and 388 features. These features are subse-
quently combined in composites score where each cluster is created based on
similarities observed from both a conceptual and a statistical point of view.

2.2.3 Feature Dataset: Sensor Data

The sensor data are collected within the typing session and can provide a sig-
nificant insight regarding the user’s motion while typing. The sensor dataset
is divided into two subsets: the gyroscope and the accelerometer. The sensor
dataset consists of (x, y, z) directions of accelerometer and gyroscope signals.
At every typing session, signals are picked up at a frequency of 30Hz. However,
the data is re-sampled at 15Hz to avoid mismatches between accelerometer and
gyroscope samples. Therefore, sensors are not guaranteed to pick up signals
flawlessly at 30Hz. Moreover, a Butterworth filter is applied to smooth the
signal and increase the signal-to-noise ratio. Each of these datasets contains
information about the device’s movement when the participant is typing. A
brief explanation can be found below.

• Gyroscope: A gyroscope allows us to keep track of the phone orientation.
The ability of the gyroscope to accurately measure the orientation of an
object is used in this work to capture the smartphone’s orientation.

• Accelerometer: An accelerometer allows us to keep track of the phone’s
acceleration. From a standstill position changing to any velocity, the ac-
celerometer can measure the object’s acceleration; in this work, the smart-
phone acceleration.

When this dataset is requested from the cloud server, it is returned as pandas
data frame containing all the built-in Neurocast’s data pipeline features. The
requested data are returned as aggregation per typing session, meaning that
a data sample is composed of summary statistics relative to a specific user’s
motion on a given typing session. The sensor dataset is returned sorted by
timestamp, and the features in this dataset are viewed as aggregations of the
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current typing session. The essential features of the sensor dataset are described
below. A feature instance of the gyroscope dataset is shown below in Table 4
and an instance of the features of the accelerometer dataset is shown in 5. Note
that the data are entirely artificial due to privacy reasons; however, they are
representative of the original.

Table 4: The gyroscope dataset

timestamp user ID pitch yaw roll omega
2021-07-07 09:52:34 2300 -0.599 0.264 0.245 3.234
2021-08-19 16:54:58 280 -1.109 0.361 -0.970 6.235
2021-08-14 21:36:09 1458 -0.183 0.086 -0.149 3.914

Table 5: The accelerometer dataset

timestamp user ID x filtered y filtered z filtered
2021-07-07 09:52:34 2300 -0.464 -0.831 0.359
2021-08-19 16:54:58 280 -0.356 -0.873 0.389
2021-08-14 21:36:09 1458 -0.574 -0.776 0.280

The features obtained from the movement of the participant and the device
during the typing session are explained and defined as follows:

• Pitch, Yaw, Roll: Specify the rotation degrees around 3 axis. Unit
(rads)

• Angular velocity : Specify the rate of change of the angular velocity of
an object along 3 axis of its own local coordinate system. Unit rad/s

• Angular acceleration: Specify the rate of change of the angular accel-
eration of an object along 3 axis of its own local coordinate system. Unit
rad/s2

• Accelerometer Filtered (x, y, z): Specify the acceleration (rate of
change of the velocity) of an object along 3 axis of its own local coordinate
system. The unit is m/s2

2.3 Creating a Hold-out Set

Creating a hold-out set is a prevalent practice in machine learning projects.
This hold-out set, also named the test set, will be used only to evaluate the
final models’ performance because this is a way to avoid any bias coming from
the data that the models have already seen and trained. Furthermore, two main
reasons for creating a hold-out set are to prevent overfitting the training set and
data leakage, i.e:
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• Overfitting refers to a model that fits the training set in extreme level.
That occurs when the model learns all the details of the training set and
is not able to generalize this performance into unseen data [11].

• Data leakage refers to information used outside the training set and
is used to construct the models. Data leakage can harm the predictive
power of the models and yield to untrustworthy models predicting invalid
estimations on the test set [9].

Due to the high imbalance of the sizes between the data collected from the
participants and the reasons above, a hold-out set containing data from 7 users
provides only 18% of the final dataset and the training set containing the rest
82% of the data was created. Thus, given the data of two participants, the
approach is to predict the boundary conditions of the rest without any previous
knowledge of those data points. The split between the dataset is summarized
in Table 6

Table 6: The splitting of the dataset

Training Set Hold-out Set
Samples 1841 383

# of Users 2 7

2.4 Assumptions & Limitations

The most critical assumption is that each participant has correctly performed
the labelling of the typing sessions; in other words, the participants have labelled
all the typing sessions honestly and did not conduct any mislabeling by purpose
(or unintentionally), which could lead to any mislabeling to a later stage in false
evaluation.

Another assumption comes from the participants’ demographics, where it is
assumed that all participants are healthy and their typing behaviour did not
change throughout the entire experiment under any circumstances. On top of
that, the range of age of the participants was relatively small, leading to poten-
tial data drifting when predictions are made with people outside this range.

Finally, the study has been carried out purely on a healthy population; conse-
quently, the machine learning models derived with such dataset might not be
generalizable for any other type of population, e.g. a population affected by a
specific chronic disease.

2.5 Study Approval

The participants involved in the study were individually informed about the
way of the data collection, and they did provide their consent to retrieve and
process their data. The study is conformed to the General Data Protection
Regulation (GDPR).
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3 Method

In this section, the methodology behind the research project is discussed. Then,
essential pieces of a machine learning workflow are analysed and explained step
by step as follows:

• Exploratory Data Analysis

• Machine learning models

• Feature engineering for the keystroke and sensor dataset

• Feature selection per target

• Evaluation metrics

• Feature Importance

3.1 Exploratory Data Analysis

In general, classical statistics test hypotheses that already establish the problem;
this is done by fitting specific models and demonstrating specific relationships
in the data. It assumes that the problem hypotheses are already known, and
there is an overall understanding of the data. However, this is rarely the case in
machine learning. Therefore, before modelling the data and testing hypotheses,
first comes the exploration of the data. Then, the relationship of understanding
and exploring the data is obtained by summarizing, plotting and reviewing the
actual dataset. This approach of analysis before modelling is called Exploratory
Data Analysis.

It is called exploratory data analysis because the exploration and understanding
of the data build an intuition for how the underlying process works and provoke
questions and ideas that one can use as the basis for modelling. In addition,
this process can be used to evaluate the data, identify outliers, and find specific
machine learning strategies for handling any issues. [23]

Five vital findings were revealed after the exploration and understanding of the
dataset. All of them are explained and argued with valuable visualizations.
These five findings are explored in the following order: Missing Values, Imbal-
anced Targets, t-Distributed Stochastic Neighbor Embedding (t-SNE), Walking
vs Rest, Chi-square statistic.

• Missing Values: Real-world datasets often have missing values. Data
can have missing values for several reasons, such as observations that were
not recorded and data corruption. Handling those missing data is critical
as many machine learning algorithms do not support data with missing
values, do not provide any insights and can mislead the direction of the
problem. Figure 3 shows how and why the specific missing values are
removed from the dataset. Features containing over 60% of missing values
are discarded from the dataset, and as the figure shows, there are 29, and
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the reason is that it is not feasible to make an accurate imputation of
those missing values, which can yield misleading conclusions about the
data and results. The shape of the new dataset after removing features
that contain over 60% missing values is: (2224, 135).

Figure 3: Missing values distribution

• Imbalanced Targets: In every machine learning project, the targets
have to be investigated explored. Investigating the targets, in this case,
three targets with multiple classes can provide insights into how classes are
distributed within the targets. Furthermore, depending on the balanced
or imbalanced dataset, one can use this information to select appropriate
models and metrics. In this specific case, the dataset is imbalanced for all
targets, and this can also be verified in Figure 4, which leads on using as
metric the F1 score, which take into account imbalanced targets because
it distributes the weights accordingly to all classes.
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Figure 4: The distributions of the targets including the percentages for every
class.

• t-Distributed Stochastic Neighbor Embedding: t-Distributed
Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction
technique used to represent a high-dimensional dataset in a low-dimensional
space of two or three dimensions so that it can be visualized. First, T-SNE
constructs a probability distribution for the high-dimensional samples so
that similar samples have a high likelihood of being picked. Then, t-SNE
defines a similar distribution for the points in the low-dimensional embed-
ding. Finally, t-SNE minimizes the KullbackLeibler divergence between
the two distributions concerning the locations of the points in the embed-
ding.[14]

In this case, the dimensionality of the dataset was reduced to 2 dimensions,
and the KullbackLeibler divergence was 0.71. t-SNE provides valuable in-
sights for the target activity, which as it is also shown in Figure 5 concludes
that the classes ”sitting”, ”lying”, ”standing”, ”other”, do not present a
clear cluster, which suggests a possible high percentage of misclassification
among these classes. However, the class ”walking” seems to be separated
from the other classes.
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Figure 5: The dataset is visualized in 2D space using the dimensionality reduc-
tion technnique t-SNE, colored observations corresponding in different classes
of the target activity

• Walking vs Rest: Due to the insights provided first by the t-SNE anal-
ysis, it was decided to investigate the target further ”activity. This part
of the exploratory analysis was critical because the transition from five
classes (”walking”, ”sitting”, ”lying”, ”other”, ”standing”) to two classes
(”walking” vs ”the rest”) was decided.
Plotting and exploring the features that are considered predictive for the
class ”activity” yields the conclusion that the dataset features are not ca-
pable of providing the models with information to distinguish between five
classes, as four of them seem similar.

Figure 6 shows four boxplots of the target ”activity” and the features
acceleration_MAC_SAMPLE_S, angularACC_MOMENTS_ABV,
acceleration_STD and angularVEL_STD for the target ”activity”. The
values for the classes ”sitting”, ”lying”, ”other”, ”standing” are identical,
thus making the case of predicting those classes difficult. The hypothesis
that four classes seem to be similar is argued with these four boxplots and
supports the decision to change this multiclass target into a binary target.
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Figure 6: Walking vs Rest

In order to support the insights from the t-SNE analysis and the visual-
ization of the features in boxplots statistically, a one-way ANOVA test is
conducted to confirm that the means of these classes are significantly dif-
ferent. Indeed, in Table 7 the results show a significant difference between
the classes of target activity for every feature mentioned above.

Table 7: ANOVA table to find if there is significant difference between the
associated features

activity/features
accel STD accel MACS angularVEL STD angularACC STD

F-stat p-val F-stat p-val F-stat p-val F-stat p-val
activity-classes 28.31 2.80e-20 29.39 5.84e-21 21.11 1.55e-15 29.21 7.50e-21

Although the obtained results from the ANOVA table provided the sig-
nificant difference between the classes of activity, there is no information
which of them are significantly different. To find which classes have dif-
ferent means, one can use the pairwise Tuckey test [4]. This test conducts
multiple comparisons of means in a pairwise form. Indeed, the results
show that ’walking’ is significantly different from the other classes, and
also, the remaining classes are not significantly different between them.
Hence, the decision to keep only two classes in the final dataset is con-
firmed statistically. Table 8 below shows the pairwise Tuckey Test.
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Table 8: Pairwise comparison of Means with the Tuckey Test

Multiple Comparison of Means - Tukey HSD, FWER=0.05
group1 group2 meandiff p-adjust reject
lying other -0.0979 0.6977 False
lying sitting -0.0773 0.2817 False
lying standing 0.0489 0.8649 False
lying walking 0.5352 0.001 True
other sitting 0.0206 0.9 False
other standing 0.1468 0.3341 False
other walking 0.6331 0.001 True
sitting standing 0.1262 0.0116 True
sitting walking 0.6125 0.001 True

standing walking 0.4863 0.001 True

• Chi-square statistic [19]: The Chi-square test is a non-parametric sta-
tistical test that enables us to understand the relationship between the
categorical variables of the dataset. In addition, it defines the correlation
amongst the grouping categorical data. In this case, conducting Chi-
square tests among the targets (activity, handedness, finger dominance)
is helpful, as it enables understanding the dependency between the tar-
gets. Similar to other statistics, Chi-square is defined by two hypotheses
as follows:

– The null hypothesis: The grouping variables have no association
or correlation amongst them.

– The alternate Hypothesis: The variables are associated with each
other and happen to have a correlation between the variables.

To summarize, the targets that are correlated based on the Chi-square
tests are the following: activity and finger dominance are dependent,
handedness and finger dominance are dependent, activity and handedness
are independent, as it is also shown in Table 9, 10, 11 when the p-value is
smaller than 0.05 the null hypothesis is rejected. As was expected, there is
a strong association between the target handedness and finger dominance
because most people, for example, tend to use two hands and thumbs in-
stead of two hands and their fingers while typing. Therefore, although
the p-value between activity and handedness is close to the value 0.05,
the test suggests accepting the null hypothesis that there is no association
between the two targets.
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Table 9: Chi-square Test between Activity and Handedness

activity/handeness single handed two handed All
walking 35 106 141
vs Rest 375 1708 2083

ALL 410 1814 2224

Statistical Value p-value degrees of freedom
4.08 0.12 2

Table 10: Chi-square Test between Activity and Finger Dominance

activity/finger dominance finger thumb All
walking 3 138 141
vs Rest 202 1881 2083

ALL 205 2019 2224

Statistical Value p-value degrees of freedom
9.04 0.01 2

Table 11: Chi-square Test between Finger Dominance and Handedness

finger dominance/handeness single handed two handed All
finger 104 306 410
thumb 101 1713 1814
ALL 205 2019 2224

Statistical Value p-value degrees of freedom
156.64 9.67e-35 2

3.2 Machine Learning Models

This subsection is a short introduction of the models that are used to train
the dataset and make the final predictions. The models are explained in the
following order: general ensemble models, two specific cases of ensemble models;
the random forests and the gradient boosting, multi-layer perceptron and k-
neighbors. Various models are used for training; however, the top-performing
models are chosen. The implementation of these models is taken only from the
scikit-learn library [20] for consistency.

• Ensemble Model: Using the ”wisdom of the crowd” baseline, ensemble
models aggregate the predictions of a group of predictors (many classi-
fiers), often yielding better results than the best individual predictor. A
group of predictors is called an ensemble; thus, this technique is called
ensemble learning. A simple way to create an ensemble classifier is to
aggregate the predictions of each classifier and predict the class that gets
the most votes. This majority-vote classifier is called a ”hard” voting
classifier.
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– Random Forest: A Random Forest is an ensemble of Decision
Trees, meaning that a random forest model is made up of a large
number of small decision trees, called estimators, which produce their
predictions, generally trained via the bagging method. The Random
Forest introduces extra randomness when growing trees; instead of
searching for the very best feature when splitting a node, it searches
for the best feature among a random subset of features. As a result,
standard decision tree classifiers have the disadvantage of overfitting
the training set. The random forest’s ensemble design allows the ran-
dom forest to compensate for this and generalize well to unseen data,
including data with missing values [2].

– Gradient Boosting: Boosting refers to any ensemble method com-
bining several weak learners into a strong learner. The idea of most
boosting methods is to train predictors sequentially, each trying to
correct its predecessor. For example, gradient Boosting [5] instead of
tweaking the instance weights at every iteration; tries to fit the new
predictor to the residual errors made by the previous predictor.

• Multi Layer Perceptron: A multi-layer perceptron is a neural network
connecting multiple layers in a directed graph, which means that the signal
path through the nodes only goes one way. Apart from the input nodes,
each node has a nonlinear activation function. This specific network uses
a technique called backpropagation as a supervised learning technique.
Since there are multiple layers of neurons, the multi-layer perceptron is
considered a deep learning technique [8].

• K-Neighbors: K-Nearest Neighbors (KNN) is a classification and algo-
rithm which uses nearby points to generate predictions. It takes a point,
finds the K-nearest points, and predicts a label for that point, K be-
ing user-defined. For classification, the algorithm uses the most frequent
class of the neighbors. KNN, being a distance-based classifier, can use
different types of distance metrics to calculate similarity, such as the Eu-
clidean distance, Manhattan distance, and Minkowski distance. Being a
non-parametric algorithm, it does not have coefficients [21].

3.3 Feature Engineering

According to [18], feature engineering refers to the process of using domain
knowledge to select and transform the most relevant variables from raw data
when creating a predictive model using machine learning or statistical modelling.
The goal of feature engineering and selection is to improve the performance of
machine learning (ML) algorithms. Feature engineering consists of creating,
transforming, extracting, and selecting features, also known as variables, that
are most conducive to creating an accurate machine learning algorithm.

• Feature Creation: Creating features involves identifying the variables
that will be most useful in the predictive model; this is a subjective process
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that requires human intervention and creativity. Then, existing features
are mixed via addition, subtraction, multiplication, and ratio to create
new derived features with greater predictive power.

• Transformations: Transformation involves manipulating the predictor
variables to improve model performance; e.g. ensuring the model is flexible
in the variety of data it can ingest; ensuring variables are on the same scale,
making the model easier to understand; improving accuracy; and avoiding
computational errors by ensuring all features are within an acceptable
range for the model.

• Feature Extraction: Feature extraction automatically creates new vari-
ables by extracting them from raw data. The purpose of this step is to
automatically reduce the volume of data into a more manageable set for
modelling. Some feature extraction methods include cluster analysis, text
analytics, edge detection algorithms, and principal components analysis.

In order to achieve the goals of feature engineering and keep only the most
valuable features of the dataset, the composite scores are introduced to reduce
the number of features and maintain the information of the previous features.
According to [1], the composite scores represent small sets of data points that
are highly related to one another, both conceptually and statistically. Thus,
combining and presenting these items as a single score reduces the potential for
information overload.

3.3.1 Keystroke Dataset

The concept of composite scores is applied to the keystroke dataset. Table 12
shows an example of the way some features are aggregated. Using the composite
scores, the features are reduced from 388 to 84 and most of the information is
maintained. Both features presented in Table 12 are time-related features and
measure how fast or slow a person is typing.
In this work, fine_motor_score_CENTRALITY is considered a feature with high
predictive power because it considers the general trend of a given typing session,
which can lead to some expectations on common sense. People while walking
and typing are expected to be slower than when sitting, or similar, when typing
just with one hand instead of two. Also, it is common to type with the thumb
while walking because it is more convenient. All these expectations are time-
related and expressed based on the fine_motor_score_CENTRALITY values. In
general, high values of this feature means slower typing.
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Table 12: The clustering some of the keystroke features

fine motor score CENTRALITY fine motor score STD
flight time MEAN flight time STD

press press latency MEAN press press latency STD
release release latency MEAN release release latency STD

flight time MEDIAN -
press press latency MEDIAN -

release release latency MEDIAN -

3.3.2 Sensor Dataset

As discussed in Subsection 2.2.3, the sensor dataset is originated from the gy-
roscope and the accelerometer dataset. Both datasets contain many features,
specifically the gyroscope dataset consists of 268 and the accelerometer dataset
consists of 94 features. For the same purpose as for the keystroke dataset, re-
ducing the number of features is required.

For each feature of the sensor data (rotation, angular velocity, angular accel-
eration for the gyroscope and acceleration features for the accelerometer), five
summary statistics (i.e. vectors) are calculated: mean and median (indicators
of central tendency), standard deviation (SD; an indicator of dispersion) and
minimum and maximum (indicators of range). In addition, other statistics are
also calculated and added as vectors of the feature as skew, kurtosis, the last and
first max value, the mean absolute change and the sample entropy. Definitions
of those statistics are as follows:

• Mean Absolute Change: Average of the absolute change (positive)
between a point in a sequence and the next point.

• Sample Entropy: Measure of time series complexity. Is the negative
natural logarithm between two template vectors [22].

In order to reduce the size of the features, correlations and distributions of the
features are investigated. High correlated features with identical distributions
are averaged to reduce the features but keep the overall information of the
data and features. The averaging for the gyroscope features is performed based
on the same unit features, meaning that rotations (pitch, yaw and roll) are
investigated together, angular velocity (x, y, z) are investigated together, and
the same applies to angular acceleration (x, y, z) features. The averaging of
the accelerometer features is produced as for the acceleration (x, y, z) of the
gyroscope. The initial feature size of the accelerometer and the gyroscope are
57 and 267. After performing the composite score analysis and aggregating
the features into new information, the feature size of the accelerometer and
gyroscope datasets are 21 and 93, respectively. Understandably, the reduction of
the features is substantial without removing much information power from that
dataset. Table 13 shows an example of the way some features are aggregated.
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The correlation of those features is high, as shown in Figure 7, thus a composite
score is constructed.

Figure 7: Scatterplot of pitch, yaw and roll features, originating from the gyro-
scope that express the rotational degrees of the smartphone and the aggregations
of the mean and the median in the given typing session. The data points are
linear with high correlation.

Table 13: The clustering of sensor features

rotational CENTRALITY angularVEL CENTRALITY angularACC CENTRALITY
pitch MEAN omega x MEAN x filtered MEAN
yaw MEAN omega y MEAN y filtered MEAN
roll MEAN omega z MEAN z filtered MEAN

pitch MEDIAN omega x MEDIAN x filtered MEDIAN
yaw MEDIAN omega y MEDIAN y filtered MEDIAN
roll MEDIAN omega z MEDIAN z filtered MEDIAN

3.4 Feature Selection

According to [10], feature selection is the process of reducing the number of in-
put variables when developing a predictive model. It is desirable to reduce the
number of input variables to both reduce the computational cost of modelling
and, in some cases, improve the model’s performance. Statistical-based feature
selection methods involve evaluating the relationship between each input vari-
able and the target variable using statistics and selecting those input variables
that have the most robust relationship with the target variable. These methods
can be fast and effective, although statistical measures depend on the data type
of both the input and output variables.

In order one to find the best input features, creates many models with differ-
ent subsets, which results in the best performing model based on the chosen
performance metric, which in this work is the F1 score and is explained in sub-
section 3.6; this approach is called wrapper feature selection. Although these
methods can be computationally expensive, these methods are unconcerned
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with the variable types. Recursive feature elimination (RFE) [7] is an example
of a wrapper feature selection method and is also the technique that is used
in order to select the best features for every target separately. This wrapper
method evaluates multiple models using procedures that add and/or remove
predictors to find the optimal combination that maximizes model performance.
Cross-validation is used with RFE to find the optimal number of features, score
different feature subsets and select the best scoring collection per model.

The cross-validation scheme that is used for the feature selection part is the
Stratified K-Fold [20]. This cross-validation scheme provides train/test indices
to split data into train/test sets. This cross-validation object is a simple KFold
that returns stratified folds. The folds are made by preserving the percentage
of samples for each class and this is why this scheme is selected.

Four models are used to complete the RFE with cross-validation, decision trees,
random forest, gradient boosting model and AdaBoost, which are explained in
Section 3.2. The metric that is used to evaluate the performance is the F1
score, which is explained in Section 3.6. The small dataset is constructed from
the union of features that the models produce, which is used later for train-
ing and testing. The union of the recommended features is preferred because
this methodology increases the robustness as every model has its mathematical
structure, and if all of them agree on the same feature, then there is the confi-
dence that those features contain predictive power.

In order to perform RFE with cross-validation for each target separately, the
target is separated from the dataset. The targets are considered as binary tar-
gets as they include two classes. The models learn from the combination of
features of both datasets, the keystroke and sensor dataset. Figures 8, 9, 11
show the performance of each model and for every target. In the x-axis are
located the number of features used within the cross-validation scheme, and on
the y-axis is the F1 score, achieved every time the model removed a feature.
Furthermore, Figures 8, 9, 11 show the results after training and evaluating,
where for every model, the best F1 score is kept along with the number of fea-
tures used.

While the F1 scores of the models are not far away from the best score, and
because Figures 8, 9, 11 show that the best model selects a high number of
features, thus it is optimal to apply the union of the features produced by the
models to construct the mini datasets for every target, in order to create a ro-
bust dataset with predictive power.

Figure 8 shows that the random forest model performs the best by scoring
0.95 and using 17 features. Applying the union to construct the mini activ-
ity dataset, which finally, contains the following features: angularVEL_STD,
angularACC_MOMENTS_ADV, acceleration_MAC_SAMPLE_S. It was expected that
the best features would come from the sensor dataset because the target activity
implies an underlying movement either from the subject or the smartphone.
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Figure 8: RFE with cross validation for target activity. The random forest
classifier achieves the highest score at 0.954 and selects 17 features.

In Figure 9, AdaBoost performs the best by scoring 0.828 and using 19 fea-
tures. Applying the union to construct the mini handedness dataset, which
finally, contains the following features: fine_motor_score_CENTRALITY,
fine_motor_score_MIN. Target handedness implies that the subject will be
evaluated based on how quick and accurate is typing with one or two hands,
and this is the reason why features that measure the motor skills are selected
as predictive features for this target, which was expected, due to the nature of
this target.

Figure 9: RFE with cross validation for target handedness. The AdaBoost
classifier scores 0.828 by selecting 19 features.

To support the selection, Figure 10 shows indeed that the choice of those
features can yield promising results on the final evaluation. The minimum values
for the fine motor score class are lower in the case, which the subject is typing
with two hands than typing with one hand. The participants are responding
quicker, either when it comes to fast typing or correcting a mistake when typing
with two hands.
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Figure 10: The boxplot of the fine motor score MIN feature, which is the av-
erage of the minimum values of the features flight time, press press latency and
release release latency in a given typing session, one can observe that the fastest
keypress recorded using two hands is roughly twice times faster than the scenario
with one hand.

Figure 11 displays the Gradient Boosting classifier, which performs the best
by scoring 0.839 and using seven features. Applying the union to construct the
mini finger dominance dataset, which finally, contains the following features::
acceleration_STD, angularACC_BOUNDS_MAX, fine_motor_score_CENTRALITY.
This target implies that the participants are typing either with their thumbs or
index fingers. As many people are performing their typing sessions using the
thumbs, because it is more convenient than typing with the index finger, it is
expected that at least one feature would have been chosen from the keystroke
dataset, as typing with the thumb practically means typing faster and more
accurate. Also, there is an association between the targets finger dominance
and activity, as it is shown in Section 3.1 by performing the chi-square test.
Because it is expected the users to use their thumb while walking, the models
use features associated with the activity target to understand the possibility of
a person walking in the specific typing session and then associate this possibility
with the motor skills measures to predict either thumb or finger.
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Figure 11: RFE with cross validation for target finger dominance

3.5 Data Preparation & Machine Learning Approaches

In this subsection, the process is explained, which the models are prepared to be
trained, which is similar for both approaches that are used to predict the bound-
ary conditions and the approaches themselves. In machine learning, preparing
the data is an integral part of a predictive modelling process.

Correct data preparation application will transform raw data into a representa-
tion that allows learning algorithms to get the most out of the data and make
skilful predictions. It is also common practice to evaluate machine learning
models on a dataset using k-fold cross-validation scheme.

The custom pipeline used for preparing the dataset includes the following steps
explained in detail below: Imputation of missing values, detecting outliers, scal-
ing the data for the models that need scaled data, and the models’ hyperpa-
rameters.

• Imputation Datasets may have missing values, and these cause prob-
lems for many machine learning algorithms. Thus, it is vital to identify
and replace missing values for each column in the training data before
modelling any prediction task. This is called missing data imputation or
imputing for short. A popular approach to missing data imputation is to
use a model to predict the missing values. This requires a model to be
created for each input variable that has missing values. Although a range
of different models can be used to predict the missing values, the k-nearest
neighbor (KNN) algorithm has proven to be effective [20], often referred
to as ”nearest neighbor imputation”. Configuration of KNN imputation
often involves selecting the distance measure (e.g. Euclidean) and the
number of contributing neighbors for each prediction, the k hyperparam-
eter of the KNN algorithm. Each sample’s missing values are imputed
using the mean value from ”k neighbors” nearest neighbors found in the
training set. Two samples are close if the features that neither is missing
are close.

• Outlier detection A dataset can contain extreme values outside the
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range of what is expected and unlike the other data. These are called
outliers, and often machine learning modelling can be improved by un-
derstanding and even removing these outlier values. An outlier is an ob-
servation that is unlike the other observations. It is rare, or distinct, or
does not fit somehow. Unfortunately, there is no precise way to define and
identify outliers in general because of the specifics of each dataset.

The chosen method of identifying and removing the outliers of the dataset
is the interquantile range method (IQR). In this work, the interquantile
range is calculated as the difference between the 95th and the 5th per-
centiles of the data. The IQR can be used to identify outliers by defining
limits on the sample values that are a factor k of the IQR below the 5th
percentile or above the 95th percentile. The standard value for the factor
k is the value 1.5. A factor k of 3 or more can be used to identify values
that are extreme outliers or “far outs” when described in the context of
box and whisker plots. Figure 12 shows how the dataset is formed before
and after applying the IQR method in different percentiles. Figure 13
shows an example of outlier removal.

Figure 12: Example of two features prior and post outlier removal operation with
focus on activity target. In this specific case the method discards all sample of
angular vel STD greater than 25 rad/s.

• Robust Scaling The method that is used to scale the data is Robust
scaling [20]. This method scales features using statistics that are robust
to outliers. This Scaler removes the median and scales the data according
to the quantile range (defaults to IQR: Interquartile Range). The IQR
ranges between the first quartile (25th quantile) and the third quartile
(75th quantile). Centering and scaling happen independently on each
feature by computing the relevant statistics on the samples in the training
set.

• Model Tuning The last step of the custom pipeline for preprocessing the
dataset before fitting it into a training model is to specify the model and
the hyperparameters. The hyperparameters are fine-tuned through the
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process of grid searching, that is, searching in a specific set of parameters
the ones that fit the dataset the best. Tables 14, 15, 16 shows exactly
which hyperparameters are tuned for each model and the specific values
chosen for each model. Fine-tuning is performed for every binary target
separately.

Table 14: The hyperparameters and the models for target Activity

Activity Gridsearch Parameters

Gradient Boosting K-Neighbors Random Forests
Param Name Param Value Param Name Param Value Param Name Param Value
n estimators 200 algorithm brute criterion entropy
learning rate 0.1 leaf size 10 max depth 10

loss exponential n neighbors 8 max features auto
min samples leaf 4 weights uniform class weights balanced

subsample 0.9 n estimators 200
max depth 4

Table 15: The hyperparameters and the models for target Handedness

Handedness Gridsearch Parameters

Gradient Boosting Random Forests Multi Layer Perceptron
Param Name Param Value Param Name Param Value Param Name Param Value
n estimators 150 criterion entropy hidlayer sizes 100
learning rate 0.1 max depth 10 activation relu

loss exponential max features auto alpha 0.0001
min samples leaf 3 class weights balanced learning rate constant

subsample 0.9 n estimators 200 max iter 300
max depth 4

Table 16: The hyperparameters and the models for target Finger Dominance

Finger Dominance Gridsearch Parameters

Gradient Boosting K-Neighbors Multi Layer Perceptron
Param Name Param Value Param Name Param Value Param Name Param Value
n estimators 150 algorithm brute hidlayer sizes 100
learning rate 0.1 leaf size 10 activation relu

loss exponential n neighbors 8 alpha 0.0001
min samples leaf 3 weights uniform learning rate constant

subsample 0.9 max iter 300
max depth 4

3.5.1 Binary Target Classification

The first approach is binary classification. Each target is distinguished into
two classes, and for each target, different models are trained separately with
different features taken from the original dataset. The targets and the classes
are shown in Table 17.
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Table 17: The targets and the classes

Targets Classes
Activity Walking vs Non-motion

Finger Dominance Finger vs Thumb
Handedness Single vs Two Handed

3.5.2 Multilabel Classification

The second approach is the multilabel classification, where the target is con-
sidered multilabel because the models are trying to distinguish the boundary
conditions of the three targets simultaneously. All the features used to predict
each target separately are considered in the training of the multilabel classifi-
cation, in total, eight features. Table 18 is the nature of the features that are
used to investigate the boundary conditions of each target and of the multilabel
classification.

Table 18: The targets and the features

Targets Features
Activity Only 3 sensor features

Finger Dominance Mix of 1 sensor and 2 keystroke features
Handedness Only 2 keystroke features

3.6 Evaluation Metrics

Choosing an appropriate metric is generally challenging in applied machine
learning but is particularly difficult for imbalanced classification problems. Firstly,
because most of the standard metrics widely used assume a balanced class dis-
tribution, and because typically not all classes, and therefore, not all prediction
errors, are equal for imbalanced classification.

An evaluation metric quantifies the performance of a predictive model. It typi-
cally involves training a model on a dataset, using it to make predictions on a
holdout dataset not used during training, then comparing the predictions to the
expected values in the holdout dataset. For example, for classification problems,
metrics involve comparing the expected class label to the predicted class label
or interpreting the predicted probabilities for the class labels for the problem.

Importantly, different evaluation metrics are often required when working with
imbalanced classification. For example, unlike standard evaluation metrics that
treat all classes as equally important, imbalanced classification problems typi-
cally rate classification errors with the minority class as more important than
those with the majority class. As such, performance metrics may be needed that
focus on the minority class, which is made challenging because it is the minority
class where we lack the observations required to train an effective model.

Important terminology needed to understand the following metrics:
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• True Positives or TP: Are the test samples that are correctly predicted
from the class considered as the positive class.

• False negatives or FN: Are the test samples that are wrongly predicted
from the class considered as the positive class.

• True Negatives or TN: Are the test samples that are correctly predicted
from the class considered as the negative class.

• False positives or FP: Are the test samples that are wrongly predicted
from the class considered as the negative class.

Selecting a model and even the data preparation methods together is a search
problem guided by the evaluation metric. Experiments are performed with
different models, and the outcome of each experiment is quantified with a metric.
These metrics used to quantify the performance of the models are the following:

• F1-score: Precision and recall can be combined into a single score that
seeks to balance both concerns, called the F-score or the F1-measure. The
F1-score is a popular metric for imbalanced classification. It is considered
as the harmonic mean of precision and recall. Whereas the regular mean
treats all values equally, the harmonic mean gives much more weight to
low values.

F1-score =
TP

TP+FN+FP
2

• Precision: Precision summarizes the fraction of examples assigned the
positive class that belong to the positive class. In other words is the
accuracy of the positive predictions.

Precision =
TP

TP+FP

• Recall: Recall summarizes how well the positive class was predicted and
is the same calculation as sensitivity. It is also called sensitivity or the
true positive rate (TPR), which is the ratio of positive instances that are
correctly detected by the classifier.

Recall =
TP

TP+FN

• Confusion Matrix: The confusion matrix is a summary of prediction
results on a classification problem. The correct and incorrect predictions
are summarized with count values and broken down by each class. It is
the key to the confusion matrix. The confusion matrix shows how any
classification model is confused when making predictions. It gives insight
into the errors being made by the classifier and, more importantly, the
types of errors that are being made. An instance of a confusion matrix
can be seen in Figure 13.
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Figure 13: Example confusion matrix, [6]

• ROC - AUC score: ROC is an acronym that means Receiver Operat-
ing Characteristic and summarizes a field of study for analyzing binary
classifiers based on their ability to discriminate classes. A ROC curve is a
diagnostic plot for summarizing the behaviour of a model by calculating
the false positive rate and true positive rate for a set of predictions by the
model under different thresholds. Each threshold is a point on the plot,
and the points are connected to form a curve. A classifier with no skill
(e.g. predicts the majority class under all thresholds) will be represented
by a diagonal line from the bottom left to the top right. Any points below
this line have worse than no skill. A perfect model will be a point in the
top left of the plot. The ROC Curve is a helpful diagnostic for one model.
The area under the ROC curve can be calculated and provides a single
score to summarize the plot used to compare models. A no skill classifier
will have a score of 0.5, whereas a perfect classifier will have a score of 1.0.
The true positive rate is the recall or sensitivity. Hence, the ROC curve
plots sensitivity (recall) versus 1 - specificity.

3.7 Feature Importance with SHAP

Machine learning applications need to understand why the models are making
confident predictions. However, this part is often difficult because the interpre-
tation of the model’s behaviour is not straightforward due to the underlying
naive tension between the performance measures and the interpretability of the
models.

A unified framework for interpreting predictions is used to address this problem,
namely, SHapley Additive exPlanations (SHAP). As it is described in [13] SHAP
assigns each feature an importance value for a particular prediction. Its novel
components include (1) identifying a new class of additive feature importance
measures and (2) theoretical results showing a unique solution in this class with
a set of desirable properties.
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Each point is a Shapley value for an instance and a feature. The position on
the x-axis is determined by the Shapley value and on the y-axis by the feature.
Thus, the blue color represents a lower feature value, whereas red represents a
higher value. The features are ordered according to their importance, and the
summary plot replaces the typical bar chart of feature importance. It explains
which features are most important and their range effects over the dataset. The
process of investigating the importance of the features per target is shown below.
Note that when points do not fit together on the line, they pile up vertically to
show density. Each dot is also colored by the value of the feature from high to
low.
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4 Results

In this section, the results will be described. This section is organized as fol-
lows: three primary levels are introduced for every target separately. Firstly,
presenting the ROC Curves of the hold-out set, the confusion matrices, and the
feature importance per target.

4.1 Activity

This target aimed to investigate if the person who is typing is walking or per-
forming any other activity, and the model achieved the goal with a very high
degree of certainty. Table 19 shows the obtained results after evaluating the
model on the final Hold-out set. The F1 score (0.927), which is the desired
performance metric, is considered more than acceptable.

Table 19: The activity results

Target/Metrics F1 score Precision Recall Accuracy AUC Score
Activity (walking vs rest) 0.927 0.932 0.932 0.932 0.92

In Figure 14 it is shown the Receiver Operating Characteristic curve, both
for the training and the Hold-out set. Unexpected, the model performs better in
the case of the Hold-out set, which is due to a combination the concept of data
shifting [15] issue as well as the way how the train and test set were splitter.
The blue line represents the average value of the AUC score, for the training set
after five validation folds, with an AUC score of 0.77. The yellow line represents
the AUC score on the Hold-out set, which yielded an AUC score of 0.92, and
the red dashed line represents a model that has no skill in predicting the target
activity.

Figure 14: ROC for target Activity
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Figure 14 shows unexpected performance on the hold-out set. The AUC
score on the hold-out set is considerably greater than on the training set; how-
ever, this can be explained by the concept of data shifting. Figure 15 visualizes
precisely the concept of data shifting, where on the training set there are differ-
ent data points, hence the model is trained on those situations. There are no
observations on the hold-out set for the feature acceleration_MAC_SAMPLE_S

greater than the value of 0.75.

Figure 15: Data shifting target Activity

When explicitly investigating the mistakes for target activity, it is revealed
that the final model scores might be optimistic. Part of this information is
available in the confusion matrix, which allows checking the mistakes the model
made per class like described in Subsection 3.6. For example, figure 16 shows
precisely the number of misclassified ”walking” typing sessions that the model
predicts and the ratio computed per class. The model predicts correctly 45
typing sessions out of 64, which were included in the Hold-out set. However,
the model is very confident in predicting the class ”sitting-lying-standing-other”
with a correct predicted typing session ratio of 0.972.

Figure 16: Confusion Matrix for target Activity

Page 37



Activity Context Detection during Smartphone Keyboard Interactions: A
Machine Learning Approach

A SHAP value for a feature of a specific prediction represents how much
the model prediction changes when the feature is observed. All the SHAP
values are plotted in the activity summary plot for a single feature (such as
angularVEL_STD) on a row, where the x-axis is the SHAP value. By doing
this for all features, one can see which features drive the model’s prediction,
such as angularVEL_STD, which is the main contributor and only affects the
predictions on a little (such as angularACC_MOMENTS_ADV). Specifically, higher
values for the angularVEL_STD and the acceleration_MAC_SAMPLE_S features
have a high and positive impact on the prediction of the class ”walking”, and
that is the reason as people that are not walking while typing tend to have low
or none velocity or acceleration; however, the feature angularACC_MOMENTS_ADV
is negatively correlated with the class ”walking”.

Figure 17: Shap feature importance plot for target Activity

4.2 Handedness

This target aimed to investigate if the person who is typing is using one or two
hands, and the model achieved the goal with a very high degree of certainty.
Table 20 shows the obtained results after evaluating the model on the final Hold-
out set. The F1 score (0.818), the desired performance metric, is considered
more than acceptable.

Table 20: The handedness results

Target/Metrics F1 score Precision Recall Accuracy AUC Score
Handedness 0.818 0.844 0.803 0.803 0.84

Again for this target, before evaluating the results of the Hold-out set, the
training set (only two users) was evaluated through the cross-validation scheme.
In Figure 18 it is shown the Receiver Operating Characteristic curve, both for
the training and the Hold-out set. The model is performing slightly better in
the case of the Hold-out set. The blue line represents the average value of the
AUC score, which is at 0.81, for the training set after five validation folds. The
yellow line represents the AUC score on the Hold-out set with an AUC score of
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0.84, and the red dashed line represents a model that has no skill in predicting
the target activity.

Figure 18: ROC for target Handedness

Also, in the case of the ”Handedness” target, the confusion matrix allows
identifying the incorrectly misclassified typing sessions that the model predicted
as ”single handed”. Indeed, the model is very optimistic as the ratio of the
correct classified ”single handed” typing sessions is 0.60. However, the model is
very confident in predicting the class ”two handed”, with a ratio for the correct
predicted typing sessions at 0.844.

Figure 19: Confusion Matrix for target Handedness
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In the handedness summary plot, all the SHAP values are plotted for a single
feature (fine_motor_score_MIN) on a row, where the x-axis is the SHAP value.
Doing this for all features allows one to see which features drive the model’s
prediction, such as fine_motor_score_MIN. Specifically, higher values for the
fine_motor_score_MIN and the fine_motor_score_CENTRALITY features have
a high and negative impact on the prediction of the class ”single handed”, which
can also be verified if one breaks down the fine_motor_score class. The
fine_motor_score class contains information about the flight times and the
press and releases of the keystrokes, which explains the higher impact of lower
values in the ”single handed class”, as people are often typing faster when they
are using two hands.

Figure 20: Shap feature importance plot for target Handedness

4.3 Finger Dominance

This target aimed to investigate if the person who is typing is using the thumb or
the finger, and the model achieved the goal with a very high degree of certainty.
Table 21 shows the obtained results after evaluating the model on the final Hold-
out set. The F1 score (0.909), the desired performance metric, is considered
more than acceptable.

Table 21: The finger dominance results

Target/Metrics F1 score Precision Recall Accuracy AUC Score
Finger Dominance 0.909 0.913 0.924 0.924 0.80

In Figure 21 it is shown the Receiver Operating Characteristic curve, both
for the training and the Hold-out set. As expected, the model performs better
in the case of the training set. The blue line represents the average value of the
AUC score at 0.89, as described in subsection 3.6, for the training set after five
validation folds. The yellow line represents the AUC score on the Hold-out set
(0.80), and the red dashed line represents a model with no skill in predicting
the target activity.
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Figure 21: ROC for target Finger Dominance

In the case of the ”Finger Dominance” target, the confusion matrix allows
identifying the incorrectly misclassified typing sessions that the model predicted
as ”finger”, which seem overall very promising. However, the model is optimistic
as the ratio of the correct classified ”finger” typing sessions are at a ratio of 0.417.
However, the model is very confident in predicting the class ”thumb”, with a
ratio of 0.985. Only 36 typing sessions are provided on the Hold-out set; on the
contrary, the typing sessions labelled as ”thumb” are 343.

Figure 22: Confusion Matrix for target Finger Dominance
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In the finger dominance summary plot, all the SHAP values are plotted for
a single feature (such as fine_motor_score_CENTRALITY) on a row, where the
x-axis is the SHAP value. Specifically, lower values for the acceleration_STD

feature have a high and negative impact on predicting the class ”finger”, and
higher values for the fine_motor_score_CENTRALITY feature have medium to
high and positive impact on the prediction class ”finger”. Depending on the
values of the feature acceleration_STD, any typing session can be described as
active or not. For example, while a person is typing with the finger, a require-
ment is a motionless position for the smartphone (especially, in case of typing
with both hands and fingers, then the smartphone needs to be placed on an ob-
ject, so 0 acceleration). Hence, lower values of the feature acceleration_STD

are highly associated with the class ”finger”.

Figure 23: Shap feature importance plot for target Finger Dominance

Table 22 shows the summary results of the whole project. The most accurate
predicted target is Activity, where the model predicts with F1 score at 0.927,
which is the best F1 score amongst the targets and is the performance metric
in which the models are optimized.

Table 22: The summary results

Targets/Metrics F1 score Precision Recall Accuracy AUC Score Exact Match Ratio
Activity (walking vs rest) 0.927 0.932 0.932 0.932 0.92 -

Finger Dominance 0.909 0.913 0.924 0.924 0.80 -
Handedness 0.818 0.844 0.803 0.803 0.84 -
Multilabel 0.908 0.908 0.911 - - 0.705

Page 42



Activity Context Detection during Smartphone Keyboard Interactions: A
Machine Learning Approach

5 Discussion

From Section 4 the output and predictions of the models are considered as
promising for every target. However, there is still room for improvement, which
is addressed in this Section.

The classification problem that is tackled in this research project is to identify
the boundary conditions given a typing session; by boundary conditions, it is
meant to investigate if the person is typing with or two hands if the person
is typing with the thumb or finger and the activity the person is performing.
Therefore, it is understandable that the project has limitations and considers
some assumptions that influence the final result.

Healthy people conduct the research and data collection, so the models are
trained and evaluated on data from healthy people. In order to have a clear
outcome, the models have to be tested on patients and evaluate the results. If
the models perform accurately also on patients data, then it can be concluded
that patients behaviour is not far from healthy people, at least in investigating
the boundary conditions. Furthermore, it is assumed that people who partic-
ipated in the research and data collection have labelled their typing sessions
honestly, which is an important parameter that can affect the outcome of the
project. Also, the size of the dataset is considered decent, but the number of
the participants is small. The same project with more data points, balanced
classes and more participants could yield in totally different results.

A vital aspect to mention is that all three targets have imbalanced classes. In
order to tackle this problem in this research problem, the F1 score is used as the
primary evaluation metric because it takes into account imbalanced classes and
is explained in Subsection 3.6. However, other techniques can be used to tackle
the problem of imbalanced classes. Techniques like oversampling the minority
class or undersampling the majority can be proved to be valuable to increase
the performance of the models.
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6 Conclusion

In conclusion, the research project has produced encouraging results for every
target that can be further improved. In this project, two approaches have been
addressed, the binary target classification and the multilabel classification. The
binary target classification approach includes the following classes: for target
activity; walking vs rest, for target handedness; single handed vs two handed
and for target finger dominance; finger vs thumb. The multilabel classification
approach includes all the classes simultaneously, and a prediction is considered
correct only when the model predicts all three classes correct of a typing session.
The research project established the following research question: ”Can a ma-

chine learning approach investigate the boundary conditions of a typing ses-
sion?”, the question is answered and argued in the previous Sections and with
a high degree of certainty that the boundary conditions can be predicted, al-
though, the models are not very confident in predicting the minority class for
the target finger dominance.

As a final takeaway message, the boundary conditions of a given typing session
can be predicted with a high degree of certainty based on the features pro-
duced by the Neurokeys app and is recommended further research taking into
account the above limitations and assumptions that have been already discussed
in Section 5.
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