
VRIJE UNIVERSITEIT AMSTERDAM

MASTER THESIS

Vehicle Damage Detection using Deep
Convolutional Neural Networks

Author:

R.E. van Ruitenbeek
Supervisor:

Prof. Dr. S. Bhulai

Second reader:

Dr. M. Hoogendoorn

External Supervisor:

M.Sc. N.L. de Bruin

Faculty of Science
Master Business Analytics

July 24, 2019

ii

i

Vehicle Damage Detection using Deep
Convolutional Neural Networks

Author:
R.E. van Ruitenbeek

Supervisor:

Prof. Dr. S. Bhulai

External Supervisor:

M.Sc. N.L. de Bruin

Submitted in fulfilment of the requirements

for the degree Master Business Analytics

Vrije Universiteit Amsterdam
Faculty of Science

Master Business Analytics
De Boelelaan 1085

1081 HV Amsterdam

Pon Holdings BV
Pon Datalab

Rondebeltweg 31
1329 BN Almere

July 24, 2019

ii

iii

VRIJE UNIVERSITEIT AMSTERDAM
Faculty of Science

Master Business Analytics

Abstract

This paper investigates the applicability of deep learning to detect vehicle damages.
5, 000 images, with more than 10, 000 objects are used to draw a comparison between
different deep learning models. A total of 13 damage classes are incorporated in this
research, showing a strong performance difference between the classes. Using dif-
ferent transfer learning approaches, we optimise the damage detection performance.
A comparison between human performance and the deep learning approach is con-
ducted, showing that the deep learning model achieves comparable performance.
Additionally, an evaluation is conducted at the light street of Pon Logistics, showing
several limitations of the model under strong light conditions.

Keywords: Computer Vision, Image Recognition, Object Detection, Deep Learning,
Vehicle Damage Detection

iv

v

Acknowledgements

This thesis has been written to fulfil the requirements for the master Business Analyt-
ics at Vrije Universiteit Amsterdam. This thesis has been conducted from February
2019 till July 2019 for the amount of 36 EC.

I would like to thank my university supervisor, Prof. Dr. S. Bhulai, for the sup-
port and guidance throughout this research. Furthermore, I would like to thank
M.Sc. N.L. de Bruin for fulfilling the role of external supervisor at Pon Datalab.
Lastly, I would like to thank both Pon Holdings BV and Pon Logistics for the oppor-
tunity to conduct this research and the support and time provided by a variety of
employees to make this possible.

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Problem Statement 3
2.1 Company Background and Context . 3
2.2 Objective . 4
2.3 Potential Value . 5

3 Literature 7
3.1 Damage Detection . 7
3.2 Neural Networks . 10

3.2.1 Activation Functions . 11
3.2.2 Forward Propagation . 11
3.2.3 Loss Function . 12
3.2.4 Backward Propagation . 13
3.2.5 ANN for Image Processing . 15

3.3 Convolutional Neural Network (CNN) 15
3.3.1 Layers . 15
3.3.2 Classification Models . 17

3.4 Object Detection . 20
3.4.1 Sliding Window . 20
3.4.2 Region-based Convolutional Neural Network (R-CNN) 20
3.4.3 Single Shot multi-box Detector (SSD) 21
3.4.4 You Only Look Once (YOLO) . 24

3.5 Evaluation . 26
3.6 Training Neural Networks . 28

3.6.1 Regularisation . 28
3.6.2 Augmentation . 29
3.6.3 Transfer Learning . 30
3.6.4 Hyperparameter Tuning . 31

4 Data 33
4.1 Damage Dossiers . 33
4.2 Damage Web . 34
4.3 Light Street . 35
4.4 Pon Logistics Master Data . 37
4.5 Preprocessing . 38

4.5.1 Train and Validation Split . 39
4.5.2 Annotation Process . 39

vii

5 Methodology 41
5.1 Research Design . 41

5.1.1 Image Preprocessing . 42
5.1.2 Models . 43
5.1.3 Implementation . 44

5.2 Hyperparameter Optimisation . 46
5.2.1 General Hyperparameters . 46
5.2.2 Augmentation . 46
5.2.3 Transfer Learning . 47
5.2.4 Anchor Boxes . 47

5.3 Evaluation . 48

6 Results 49
6.1 Initial Parameter Tuning . 49

6.1.1 Input Preprocessing . 50
6.1.2 Hyperparameter Optimisation 51

6.2 Model Comparison Damage Web . 53
6.3 Model Comparison Damage Dossiers 56
6.4 Model Comparison Combined . 59
6.5 Employee Performance . 59
6.6 Light Street Performance . 62
6.7 Inference Speed . 64

7 Conclusion and Discussion 65
7.1 Conclusion . 65
7.2 Discussion . 66

Bibliography 69

A Activation Functions 73

B Model Architectures 74

C Web Image Extraction 77

D Excerpts from the Damage Datasets 78
D.1 Damage Dossiers . 78
D.2 Damage Web . 79

E Annotations 80
E.1 Annotation Classes . 80
E.2 Bounding Box Dimensions . 81

F Excerpts from the Augmented Data 82

G Anchor Priors 83

H Excerpts from the Predictions 84
H.1 Damage Web . 84
H.2 Damage Dossiers . 85

viii

ix

List of Abbreviations

Adam Adaptive Moment Estimation. 14

AlexNet Alex Network. 17, 18

ANN Artificial Neural Network. vi, 7, 11, 15

API Application Protocol Interface. 44

AUC Area Under the Curve. 27

AWS Amazon Web Services. 44, 64

BCE Binary Cross-Entropy. 12, 13

BP Backward Propagation. 13, 14, 28, 31, 48

BS Batch Size. 41, 56

CAD Computer-Aided Design. 9

CAE Convolutional AutoEncoders. 7

CCE Categorical Cross-Entropy. 12, 13

CNN Convolutional Neural Network. vi, 7–9, 15–17, 21, 31, 42, 44, 46, 67

COCO Common Objects in Context. 15, 54

CPU Central Processing Unit. 44, 64

DNN Deep Neural Network. 11

DSSD Deconvolutional Single Shot Detector. 23, 24

ECR Elastic Container Register. 44

FCL Fully Connected Layer. 11, 15

FP Forward Propagation. 11, 28

FPS Frames Per Second. 19, 21, 25, 36, 45

FSSD Feature Fusion Single Shot multi-box Detector. 23

GPU Graphical Processing Unit. 12, 44, 64

HD High Definition. 37

ILSVRC ImageNet Large Scale Visual Recognition. 17, 20

x

IoU Intersection over Union. 27, 48, 51

IP Internet Protocol. 37

LR Learning Rate. 41, 56

LRN Local Response Normalisation. 9

mAP Mean Absolute Precision. 9, 20, 21, 24, 25, 27, 44, 48–56, 58, 59, 65, 67, 68

MP Mega Pixel. 37

MSE Mean Squared Error. 12

PASCAL VOC 2012 Pattern Analysis, Statistical modelling and Computational Learn-
ing Visual Object Classification. 8, 15, 20, 21, 25, 38, 54

PoE Power over Ethernet. 36, 37

PPA Pyramid and Patching Augmentation. 9

R-CNN Region-based Convolutional Neural Network. vi, 20, 21, 24, 25, 27, 44

ReLu Rectified Linear Unit. 11

ResNet Residual Network. 18, 19

RFB-SSD Receptive Field Block Single Shot multi-box Detector. 24

RMSprop Root Mean Square Propagation. 14, 46

S3 Simple Storage Solution. 45

SGD Stochastic Gradient Descent. 14, 31

SQL Structured Query Language. 37

SSD Single Shot multi-box Detector. vi, 21–25, 27, 42–44, 46–48, 53

SVM Support Vector Machine. 21, 30

TanH Hyperbolic Tangent. 11

VGG Visual Geometry Group. 18, 19, 23

YOLO You Only Look Once. vi, 9, 24, 25, 27, 41–44, 47, 48

1

Chapter 1

Introduction

During the last decade, deep learning models gained popularity due to the increased
computational power at large scale data centres. This opened up opportunities for
the area of image classification, to classify images based on the content, and later
object detection to locate different objects within the image. The application of image
classification and object detection increased in the last few years to a wide variety
of domains. A lot of research has been conducted in the field of cancer detection
(Ragab, Sharkas, Marshall, & Ren, 2019) and Brinker et al. (2018) and self-driving
cars.

So far, limited research has been conducted on the automatic detection of vehicle
damages. Patil, Kulkarni, Sriraman, and Karande (2017) and De Deijn (2018) used
deep learning to classify vehicle damages based on a limited dataset from the inter-
net. Li, Shen, and Dong (2018) went beyond damage classification and added dam-
age localisation by the use of object detection. Although Li et al. (2018) used damage
detection, they used only two classes: damaged or undamaged. We extend previous
research in two ways. Firstly, we use a significantly larger dataset, by extending the
vehicle damages from the internet with internal data from Pon Logistics. Secondly,
we apply damage detection with 13 different damage classes. With the second con-
tribution, we overcome the intra-class interference of Patil et al. (2017) and De Deijn
(2018) and extend the research of Li et al. (2018).

In this research, the following research question is answered: How accurately can
deep learning detect vehicle damages and how can these models be used to improve
the logistics process?

This research shows that deep learning is able to detect vehicle damages accu-
rately. More precisely, it shows that deep learning can locate and classify vehicle
damages on a detailed level. Furthermore, this research indicates a large perfor-
mance difference between deep learning models when applied to vehicle damage
detection. It is shown that the deep learning approach meets human performance
on 2D images. Furthermore, the damage detection proved its applicability to reduce
the intra-class interference.

This research starts with a detailed problem statement in Chapter 2, followed by
a literature study in Chapter 3. The datasets are presented in Chapter 4 and the se-
lected methods and research design is presented in Chapter 5. Lastly, the results are
presented in Chapter 6, followed by a conclusion and recommendation for further
research in Chapter 7.

Chapter 1. Introduction 2

3

Chapter 2

Problem Statement

This section describes the host company, Pon Logistics, and the context of the prob-
lem in Section 2.1. The objective of this research, together with the research question,
is formulated in Section 2.2. The potential value for Pon Logistics is summarised in
Section 2.3.

2.1 Company Background and Context

Pon Logistics assists a broad range of companies in automating and improving their
logistics process. One of their key businesses is the vehicle terminal in Leusden (The
Netherlands), responsible for handling over 120, 000 vehicles a year. Vehicles are
being imported from Volkswagen factories across Europe and transported to Leus-
den by truck or train. On arrival, all vehicles receive a detailed quality control and
are stored at the vehicle terminal, having a total capacity of 7, 500 vehicles. A broad
range of services1 is applied to the vehicles, before being transported to the end cus-
tomer. The logistics process is summarised in Figure 2.1.

FIGURE 2.1: Flow chart of the Pon Logistics vehicle terminal.

Pon Logistics has a strong focus on innovation, communicated by the Dutch slo-
gan: "Voorsprong door slimme logistieke oplossingen" ("Advantage by smart logis-
tics solutions"). Its focus is placed on a fast process while maintaining high-quality
standards on the products. Part of the process is the inbound quality control in the
Light Street. At the quality control, each vehicle is driven from the incoming truck
and placed in the Light Street. A damage check is performed by Pon employees,
taking up a few minutes to complete. Furthermore, the vehicle will be formally reg-
istered. When logged in to the system, the vehicle is officially handed over from the
transporting company to Pon Logistics. This step is crucial in the process, since any
damage that is not detected will be at the expense of Pon Logistics.

1Switching the tires to Continental, changing the interior such as leather or seat heating, etc.

Chapter 2. Problem Statement 4

However, the current process is time-consuming. At peak moments, the queue
for the Light Street can extend to tens of vehicles, making the waiting time long.
As the truck driver has to drive approximately eight vehicles from the truck, a total
of eight visits to the Light Street is required. This process takes up a large propor-
tion of the unloading time for the truck driver. Additionally, long waiting queues
could potentially result in more employee pressure and therefore less accurate dam-
age detection. Currently, approximately 2 percent of the vehicles are detected with
damage, when received. Approximately 1.5 percent of the vehicles are detected with
damage later in the process, which is either undetected damage at the receiving pro-
cess, or damage created during the logistics process after the Light Street. Currently,
not all vehicles are routed through the Light Street as it is a rather time-consuming
task. Therefore, applying automated vehicle damage detection could speed up this
process and make it beneficial to screen all incoming vehicles.

2.2 Objective

This research focuses on identifying to which extend vehicle damages can be de-
tected by the development of a deep learning model. As limited previous research is
available in this field of study, no clear performance target can be presented upfront.
Therefore, the main focus will be to identify the applicability of deep learning on
vehicle damage detection and to identify its boundaries and limitations. Improving
the logistics process is not limited to an increased detection rate, or a speed improve-
ment, but also focuses on the improvement of working conditions for the employees.
Some areas are hard to inspect by a human, where especially the roof and the rims
are a bottleneck in the process.

Based on the above objectives, the following research question is formulated:

Research question
How accurately can deep learning detect vehicle damages and how can these

models be used to improve the logistics process?

It is expected that the model will be working in parallel with the employees, rather
than replacing them. Therefore, it is desired that the model constructs the predic-
tions for the damage detection, within the time window where the vehicle is present
in the Light Street. As each vehicle is only a few minutes in the Light Street, it is de-
sired that the analysis will be performed within a minute to give employees enough
time to interpret the output. The faster the model creates the predictions, the more
potential there is to speed up the process in the future. Having a fast detection speed
might eventually reduce the average vehicle time in the Light Street. Although the
detection speed is of relevance, Pon Logistics is mostly concerned with identifying
the ability of an automatic system, making the accuracy the most important evalua-
tion measure.

The model will have to deal with varying conditions. Firstly, damage images of
Pon Logistics are collected outside and are therefore subject to reflection and weather
conditions. Secondly, the vehicles in the Light Street are transported by truck and
therefore exposed to weather types such as rain and ice, covering the vehicle surface.
Lastly, a protection cover is sometimes placed partly over the vehicles, making the
detection of damage less evident. As cover damage is a signal of vehicle damage,
the detection of cover damage should be included in this research.

An initial setup for automatic vehicle inspection will be installed at the Light
Street, to evaluate the trained models in the correct environment. This gives the

Chapter 2. Problem Statement 5

ability to compare the performance between the damage images and the Light Street
video stream.

2.3 Potential Value

When the developed model proves to be able to recognise vehicle damages accu-
rately enough, the software can be used to: improve the working conditions of the
employees, reduce the number of missed damages, and to speed up the process.
The software can be used for difficult areas such as the roof, tire rim, and spoiler.
This makes the damage detection for employees less intensive, as bending (rim and
spoiler) and climbing (roof) can be limited. The quality of the detection process can
be improved when the system runs as a decision support system, showing damage
locations through an interface. Lastly, the overall inspection duration can potentially
be reduced when moving to more automatic screening, as the screening process can
be performed in a matter of seconds.

Speed improvement opens up opportunities to screen all inbound and outbound
vehicles, due to its scalability. Passing all inbound vehicles through the Light Street,
can improve the detection rate and therefore directly reduces the expenses for Pon
Logistics. Adding additional outbound vehicle inspection could improve the quality
delivered towards customers. Lastly, external transportation companies benefit from
the speedup in the process, as waiting lines can be reduced. Reducing the waiting
lines makes the truck unloading significantly faster.

Automatic systems are largely scalable, being robust to loss of knowledge by
retiring employees. In the future, the knowledge can be applied in other companies
of Pon Holdings BV, such as the rental branch. A joined model can be constructed,
combining the knowledge and training data of all business units.

Chapter 2. Problem Statement 6

7

Chapter 3

Literature

In this chapter, a literature review is conducted on damage detection in Section 3.1.
The development and technical details of Artificial Neural Networks, as well as its
extension to image processing with Convolutional Neural Networks, is described in
Section 3.2 and 3.3, respectively. A variety of evaluation measures is presented in
Section 3.5, where the chapter ends with an approach for training ANNs in Section
3.6.

3.1 Damage Detection

To our best knowledge, only Patil et al. (2017), Li et al. (2018) and De Deijn (2018)
used a deep learning approach to identify vehicle damages from 2D images. That
is, Patil et al. (2017) evaluated the ability of Convolutional Neural Networks (CNNs)
(see Section 3.3) in classifying vehicle damages. They used three different approaches
to classify the damage into seven damage categories1 and one undamaged category.
They used a total of 1, 200 images containing vehicle damage and 1,271 images with-
out damage. They trained a CNN from scratch, resulting in a classification accu-
racy of 72.46 percent. Secondly, Patil et al. (2017) used Convolutional AutoEncoders
(CAE) which made use of unsupervised learning methods and requires, therefore,
less training data. A slightly higher classification accuracy (73.43 percent) was ob-
tained.

The third applied method, of Patil et al. (2017), made use of transfer learning
(see Section 3.6.3) to fine-tune different pre-trained models with the set of vehicle
damages. This method increased the classification accuracy to 88.24 percent. Fur-
thermore, they showed that pre-trained models, trained on a broad object range,
outperform pre-trained models trained specifically for vehicle classification. This
broad object range is of relevance as vehicle damages detection might require dif-
ferent shapes compared with recognising vehicles itself (Patil et al., 2017). Lastly,
they used an ensemble method which combines all trained models by use of a linear
combination. A final classification accuracy was achieved of 89.5 percent. They de-
scribe that small damages are often misclassified, since the proportion of damage is
relatively low, compared to the undamaged proportion of the vehicle. Furthermore,
they explained that the classification task is non-trivial due to the large inter-class
similarity of damages.

Although De Deijn (2018) claimed to be the first in analysing 2D vehicle damages,
they conducted a research comparable with Patil et al. (2017). De Deijn (2018) added
the use of a cascade of three models, to perform damage classification. The first
classifier recognises if the image contains a vehicle. The second classifier indicates

1Categories: Bumper dent, Door dent, Glass shatter, Head-lamp broken, Tail-lamp broken, Scratch,
Smash.

Chapter 3. Literature 8

if a damage is present on the images, whereas the third model classifies the type,
location and size of the damage. For their research, 29, 000 images without a vehicle,
16, 185 images with undamaged vehicles, and 1, 007 images with damaged vehicles
have been used. To increase the dataset size, they used image augmentation which
increases the dataset size by constructing artificial images from the original images.
They solely used horizontal flipping as image augmentation to avoid overfitting.

De Deijn (2018) used pre-trained CNNs for all three classifiers and applied trans-
fer learning in a similar way as Patil et al. (2017). De Deijn (2018) emphasised the
effect and importance of the parameter tuning for all three models and focused on
achieving high accuracy while working with limited data. They achieved an impres-
sive 99.04 percent test accuracy on the classification of vehicles. Damaged vehicles
were excluded from the training and testing, as those images were mainly deviating
from the other images. When applied to the damaged vehicles, their system still
achieved 89.1 percent test accuracy. To compare, Chen, Zhu, Papandreou, Schroff,
and Hartwig (2018) from Google Research achieved 95.5 percent accuracy on the car
category of PASCAL VOC 2012 (Everingham, Van Gool, Williams, Winn, & Zisser-
man, n.d.). However, it should be mentioned that the samples of De Deijn (2018)
might have been easier, compared with PASCAL VOC 2012. The majority of images
from De Deijn (2018) contains a single large vehicle and no other classes.

The damage detection, of De Deijn (2018), suffers from a large class imbalance of
94.2 percent undamaged vehicle images. Predicting all images as undamaged will
already achieve a 94.2 percent classification accuracy. Despite this, they achieved
99 percent precision and 89.6 percent recall, indicating that the system is able to
recognise the damaged vehicles as such. Classification of damage classes 2, location3

and size4 achieved an accuracy of respectively 75.1 percent, 68.7 percent and 54.2
percent (De Deijn, 2018). They explained that inter-class similarity complicates the
classification process, especially for location and size. This statement is in line with
the statement of Patil et al. (2017) that, location prediction can be complicated due
to boundaries between two locations. Furthermore, De Deijn (2018) gave rise to the
idea that the model might not predict the location of the damage, but rather the view
on the vehicle.

De Deijn (2018) showed that the damage size classification suffers from large in-
terference between the categories small and medium. They explain that this might
be biased by the manual labelling process. Furthermore, the difference in zoom level
to the vehicle might complicate this classification process. Having close-up pictures
might complicate the true size estimation, compared with a full vehicle view. Fur-
thermore, having only one label for each image increases the class interference, for
images where two types of damage are present. Vehicles with multiple damage
classes are assigned by De Deijn (2018) to the dominant damage class in the image.
They showed that a dent and scratch get largely misclassified, which might occur
due to both classes being present.

Li et al. (2018) conducted similar research, as compared to Patil et al. (2017) and
De Deijn (2018). However, Li et al. (2018) went beyond image classification and
added damage localisation by use of bounding boxes. They used this technique to
develop a system pipeline, able to identify similar damages to cope with insurance
fraud. For this research, they used manually annotated images from the internet
(1790) and extended this with 98 images captured in parking lots. Their dataset con-
tained mainly three types of damage: scratch, dent, and crack. Although the dataset

2Classes: Dent, Glass, Hail, and Scratch.
3Location: Front, Rear, Side, and Top.
4Size: Large, Medium, Small.

Chapter 3. Literature 9

contained multiple classes, they focused on detecting damage itself and did not ap-
ply multi-class detection. Li et al. (2018) explain that localising vehicle damages is a
challenging task as, unlike normal object detection, each damage can be of different
shape. They used the one-stage model: You Only Look Once (Section 3.4.4), to de-
tect if a damage is present and where the damage is located. An advantage of object
detection over image classification of Patil et al. (2017) and De Deijn (2018) is that
the explained intra-class interference is reduced. Object detection enables to label
each damage separately, making sure that the different damages are localised and
classified independently.

Although Li et al. (2018) used slightly more images, compared to Patil et al. (2017)
and De Deijn (2018), they applied transfer learning as well. To handle the various
light conditions, they applied Local Response Normalisation (LRN) layers which
reduce the effect of light reflections being misclassified as damage. They showed
that adding these layers increases the precision from 32.75 percent to 37.96 percent
and the recall from 57.58 percent to 81.75 percent. Their example detections showed
that damages can be localised correctly, however, predicting an accurate bounding
box can be complicated. This falls in line with the statement of Patil et al. (2017) that
detecting damage is non-trivial due to the different shapes of the damages.

Jayawardena (2013) applied a completely different methodology to detect vehi-
cle damages, compared with previously mentioned research. They proposed to use
3D Computer-Aided Design (CAD) models of undamaged cars and used their 3D
pose estimation algorithm to align the damaged vehicle with the ground truth CAD
model. They researched the effect of reflection detection and isolation before apply-
ing the CAD models as they discovered a large inter-object reflection on the vehicle
surfaces. They proposed a method, using a multi-view on the vehicle, to distinguish
damage edges from reflection edges. Although the method succeeds in recognising
damage correctly, they showed that a large proportion of reflections gets misclassi-
fied as damage. Although no performance accuracy is given, Jayawardena (2013)
visually showed the potential of their proposed 3D CAD models. Due to the lack
of performance measurement, this method cannot be compared to the 2D methods
applied by Patil et al. (2017), Li et al. (2018), and De Deijn (2018). Jayawardena (2013)
explained the importance of an accurate estimation of the 3D CAD models for the
final detection accuracy. The proposed and used laser scanner costs around USD
5, 000 and outperforms the cheaper versions (around USD 100) by far. They stress
the importance of an accurate model, especially for minor damages.

Going beyond vehicle damage detection, extensive research on damage detection
can be found in general. Cha, Chen, and Büyüköztürk (2017) proposed a computer
vision architecture to detect cracks in concrete structures, by use of edge detection
filters and Kalman filtering of frequencies. A second research was conducted using
CNNs to detect cracks under various light conditions, making it more robust than
the Kalman filtering approach.

Shihavuddin et al. (2019) used a CNN to detect wind turbine blade damages
from high-resolution drone images. They showed that the automatic system almost
achieves human performance accuracy while reducing downtime and increasing de-
tection speed. Different base network architectures with transfer learning were ap-
plied, which showed that a strong performance difference exists between the back-
bones. Furthermore, they focused strongly on data augmentation and applied a
Pyramid and Patching Augmentation (PPA) to dramatically increase the Mean Ab-
solute Precision (mAP) (see Section 3.5) from 25.9 percent to 70.5 percent. They ap-
plied this augmentation to cope with the small damage objects in images of high
resolution.

Chapter 3. Literature 10

3.2 Neural Networks

Neural Networks have grown in popularity over the last few decades. This is partly
driven due to the growth in computational power, needed for large scale training.
Neural networks are built around the central idea of a Perceptron, which has been
introduced by Rosenblatt (1958). A Perceptron can be seen as the simplest available
neural network, which is able to linearly classify data points in a similar way as
the Least Squares methods (Aggarwal, 2018, p. 5). In contrast to the Least Squares
methods, a Perceptron guarantees to find a perfect separation of the data points if
the data is linearly separable. Figure 3.1 visualises a Perceptron, having Xi with
i 2 {1, 2, ..., n} input signals, a bias B and an activation function. Each input signal
(xi or B) contributes with weight wi to the output variable.

B

X1

X2

Xn

Y

W0

W1

W2

Wn

FIGURE 3.1: Perceptron with bias.

Calculation of the target value for the perceptron is performed in two stages: calcu-
lating the weighted sum of the input signals by Equation (3.2) and transforming the
weighted sum by activation function f to output ŷ (Equation (3.1)). The Perceptron
makes use of the Heaviside step function, defined in Equation (3.3), mapping the
weighted sum into a binary output. Rosenblatt (1958) explained that the Perceptron,
with use of the Heaviside function, mirrors the neurons in the brain. The input sig-
nal activates the neuron when the signal is strong enough (z � 0) and sets the output
equal to one. The evaluation of ŷ can be simplified to matrix notation, resulting in
Equation (3.4), with x0 = 1 and B = w0.

ŷ = f(z) (3.1)

z =
n

Â
i=1

xiwi + b (3.2)

f(z) =

(
1 z � 0
0 z < 0

(3.3)

ŷ = f
�
x w

�
(3.4)

Although the perceptron algorithm guarantees a linear separable decision bound-
ary, there is no ability to model non-linear data. Minsky and Papert (1969) showed,
by use of the classical XOR-problem, that the single-layer perceptron fails. Stack-
ing multiple Perceptrons on top of each other will give the ability to model non-
linear decision boundaries, such as the boundary given in Figure 3.2a. Modelling
this boundary, a slightly more complex model is required, containing an input layer

Chapter 3. Literature 11

(the input signal), a hidden layer, and an output layer combining the output of the
hidden layer. Figure 3.2b represents the required architecture to model the non-
linear decision boundary of Figure 3.2a.

The model presented in Figure 3.2 can be extended arbitrarily large by varying
the number of hidden layers and the number of nodes in each layer. A layer where
all nodes of layer l are connected with all nodes of layer l + 1 is called: Fully Con-
nected Layer (FCL).

X2

X1

(A) Non-linear decision boundary.

X1

X2

Input Hidden Output

Y

(B) Two-layer perceptron model
without bias for readability.

FIGURE 3.2: Modelling a non-linear decision boundary.

3.2.1 Activation Functions

Where the perceptron uses the Heaviside step function of Equation (3.3), multi-layer
networks can have different activation functions. The choice of the activation func-
tion strongly depends on the nature of the output. For example, a binary prediction
requires the Sign function or the Heaviside step function and a probability output
requires mostly the Sigmoid function (Aggarwal, 2018, p. 11). Using non-linear ac-
tivation functions, the network layer is able to learn non-linear interaction between
the input variables and output variables. See Appendix A for five widely used acti-
vation functions. In the early developed ANNs, the Sign, Sigmoid, and Hyperbolic
Tangent (TanH) functions were most frequently used (Aggarwal, 2018, p. 12). The
Rectified Linear Unit (ReLu) function has largely overruled the early adopted func-
tions due to its ease of training in deep neural networks (Pattanayak, 2017, p. 106).
Pattanayak (2017) explains that ReLu is not only fast in training, due to the absence
of exponents, but also has an advantage as both Sigmoid and TanH suffer from a
vanishing gradient. A Deep Neural Network (DNN), that has multiple hidden lay-
ers, benefit largely from the speedup of ReLu over Sigmoid and TanH.

3.2.2 Forward Propagation

Forward Propagation (FP), frequently referenced to as Inference, calculates the net-
work output based on a given input signal. The calculation is executed according
to the Perceptron principles explained in Equation (3.3) and Equation (3.4). Figure
3.3 shows a generalised network architecture with multiple input nodes, multiple
hidden layers, and multiple output nodes. The notation can be generalised by tak-
ing L as the number of hidden layers, Ml as the number of nodes in layer l, and a

(l)
m

Chapter 3. Literature 12

as node m of layer l. The weights between layer l-1 and layer l are denoted by Wl .
Furthermore, the input vector x is defined as a(0) and the output vector y as a(L+1).

Using the defined notation, forward propagation for layer l is generalised from
the Perceptron calculation to the matrix notation of Equation (3.5) and Equation (3.6).
Followingly, z(l) represents the weighted sum between all input signals of layer l

(al�1) and the corresponding weights (Wl). Lastly, z(l) gets mapped into a new do-
main by passing it through the activation function fl . The matrix formulation is of
special interest for large networks, as matrix computations can efficiently be com-
puted with GPUs.

XM (L+1)

aM (L+1)

aMLaM (L+1)
(L)(1)

1(0)aM0

Input Hidden 1 Hidden L Output

X1

!M

Y1

0

a1(0) a1(1) a1(L) a1(L+1)

FIGURE 3.3: Multi-layer network architecture, without bias nodes for
readability.

z(l) = w(l) a(l�1) (3.5)

a(l) = f(l)�z(l)
�

(3.6)

3.2.3 Loss Function

Similar to regression models, the loss function defines the deviation between the tar-
get value (y) and the predicted value (ŷ). The defined network in Figure 3.3 makes
use of multiple output neurons, to predict multiple output values. A deviation be-
tween the predicted value and the target value is, therefore, a vector of shape (1, K),
with K = ML+1 (the number of targets to predict). Different loss functions can be
used, depending on the nature of the target values. Regression tasks commonly
use the Mean Squared Error (MSE), or a related measure, for the loss value. The
MSE loss function is defined in Equation (3.7). The MSE takes for each data sam-
ple i the squared deviation between the target values and predicted values, where
j 2 {1, 2, ..., K} (Duffner, 2009, p. 64).

EMSE =
1
N

N

Â
i=1

1
K

K

Â
j=1

�
ŷij � yij

�2 (3.7)

For classification tasks, Binary Cross-Entropy (BCE) is most frequently used which
gives a higher loss value if the incorrect class receives a high confidence prediction.
The BCE is shown in Equation (3.8), where yi = 1, if example i corresponds to class
1. K is omitted, as the number of output nodes is one. The BCE can be generalised
to multiple classes (C) by Equation (3.9), called Categorical Cross-Entropy (CCE)
(Godoy, 2018). The number of classes should be equivalent to the number of output

Chapter 3. Literature 13

nodes and therefore: C = K. yij is 1, if sample i corresponds to class j. ŷij 2 [0, 1] is
the predicted probability of sample i belonging to class j.

EBCE = �
N

Â
i=1

�
yilog(ŷi) + (1 � yi)log(1 � ŷi)

�
(3.8)

ECCE = �
N

Â
i=1

C

Â
j=1

yijlog(ŷij) (3.9)

3.2.4 Backward Propagation

Backward Propagation (BP), was introduced by Rumelhart, Hinton, and Williams
(1986). It minimises the loss function with an iterative approach by updating the
weights of the network. Since BP is an iterative approach, that moves towards a
lower loss value, it potentially reaches a local minimum and does not guarantee a
global minimum. Using the notation from Section 3.2.2, BP is formulated for the
general network of Figure 3.3. The BP algorithm calculates the derivative of the
error and moves gradually in the opposite direction to minimise the loss.

The BP algorithm starts by calculating the derivative of the error and updating
the weights from layer L+ 1 towards layer 1. We derived the following formulations
of the BP algorithm from (Bishop, 2006, pp. 241-249). The computation will firstly be
introduced per node and is then generalised towards matrix notation. Though we
are only interested in the derivatives of the weights, the derivatives of the error with
respect to a

l and z
l are required in order to propagate through the network. Let wij

be defined as the weight from node i in layer l to node j in layer l + 1. Furthermore,
we define z

l

j
as z of node j in layer l and a

l

j
similarly. By taking the derivative of E

with respect to w, the derivative of Equation (3.10) arises. By substituting Equation
(3.5), the formulation is further reduced to the right-hand side.

∂E

∂w
l

ij

=
∂E

∂z
l

j

∂z
l

j

∂w
l

ij

=
∂E

∂z
l

j

a
l

j
(3.10)

The derivative of the error, with respect to the output layer, is shown in Equation
(3.11). This derivative simply reduces towards the deviation between the target and
prediction.

∂E

∂z
L+1
j

=
∂ 1

2 ÂN

i=1(yi � ŷi)2

∂yj

= yj � ŷj (3.11)

Before defining the derivative of E with respect to z
l , the derivatives of z

l+1
j

with
respect to a

l

i
and the derivative of a

l

i
with respect to z

l

i
need to be defined. Equation

(3.12) is obtained by substituting Equation (3.5). Equation (3.13) is obtained by the
substitution of Equation (3.6).

∂z
l+1
j

∂a
l

i

=
∂ ÂN

i
w

l+1
ij

a
l

i

∂a
l

i

= w
l+1
ij

(3.12)

∂a
l

i

∂z
l

i

=
∂fl(zl

i
)

∂z
l

i

(3.13)

Chapter 3. Literature 14

The derivative of the output error, with respect to node i in the hidden layer l, is de-
fined recursively by Equation (3.14). The previously defined derivatives of Equation
(3.12) and Equation (3.13) are used to simplify the equation.

∂E

∂z
l

i

= Â
j

∂E

∂z
l+1
j

∂z
l+1
j

∂a
l

i

∂a
l

i

∂z
l

i

= Â
j

∂E

∂z
l+1
j

w
l+1
ij

∂fl(zl

i
)

∂z
l

i

(3.14)

The above defined BP can be transformed to matrix notation by reformulating: ∂E
∂z(L+1) =

Dz(L+1), ∂E
∂z(l) = Dz(l), ∂E

∂w(l+1) = Dw(l+1), and ∂fl(zl

i
)

∂z
l

i

= f0(z(l)). By substituting the re-
formulated equation into Equation (3.10), (3.11), and (3.14), the matrix notation of
Equation (3.15)-(3.17) is defined.

Dz(L+1) = ŷ � y = a(L+1) � y (3.15)

Dz(l) = w(l+1)T

Dz(l+1) · f(l)
0
(z(l)) (3.16)

Dw(l+1) = Dz(l+1)a(l)
T

(3.17)

The error is used to optimise the weights throughout the network, based on a set of
rules. A variety of optimisation algorithms exists, of which the three most commonly
used are Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam),
and Root Mean Square Propagation (RMSprop). The optimisation algorithm up-
dates the weights of the network, based on the found values in the backward step.

Building on the notation defined for BP, SGD, as proposed by Rosenblatt (1958),
is formulated by Equation (3.18) and Equation (3.19). h is the learning rate and b
defines the momentum which accelerates SGD in the right direction, by dampening
the oscillations. For each batch of images, DW is averaged with the previous step by
b.

vDWt
= bvDWt�1 + (1 � b)DW (3.18)

Wt+1 = Wt � hvDWt
(3.19)

Despite the momentum of SGD to damp oscillations, the learning is often not stable
enough. That is, the optimisation is not performed in a straight line towards the
minimum. RMSprop tries to overcome these shortcomings by the notion of SDWt

(Equation (3.20)), which is the exponential average of squares of gradients (Ruder,
2018). Another advantage of RMSprop is the automatic decrease of the gradient
as soon as the steps are decreasing, indicating that the algorithm is approaching a
(local) minimum. This reduces the need for a manual learning rate reduction. The
RMSprop algorithm is derived from the formulation of Ruder (2018) as shown in
Equation (3.20) and Equation (3.21) respectively.

SDWt
= bSDWt�1 + (1 � b)DW2

t (3.20)

Wt+1 = Wt � h
DWtp

SDWt
+ e

(3.21)

Adam combines the benefits of SGD and RMSprop. It takes the benefits of accelerat-
ing in the direction of the local minimum (SGD), while reducing the search towards
oscillations (RMSprop). The formulation is derived from Ruder (2018) and shown in

Chapter 3. Literature 15

Equation (3.22). vDWt
and SDWt

are as defined in Equation (3.18) and Equation (3.20),
with substitution of b by b1 and b2 respectively.

Wt+1 = Wt � h
vDWt

Wtp
SDWt

+ e
(3.22)

3.2.5 ANN for Image Processing

Applying ANNs to image analysis requires the mapping between the input image
and the network input layer of size 1⇥ N. Figure 3.4 shows the most straightforward
approach, where each pixel represents one input neuron. The input layer dimension
equals 1 ⇥ WH where W and H represent the number of image pixels in the hori-
zontal and vertical direction respectively. For colour images, the W ⇥ H dimension
extends to W ⇥ H ⇥ 3, making the input layer dimension equal to 1 ⇥ 3WH.

W

H

XWH

X1

FIGURE 3.4: General approach of an ANN for image processing.

3.3 Convolutional Neural Network (CNN)

Applying ANNs to the field of image analysis resulted in a decreasing improve-
ment on both the PASCAL VOC 2012 and Common Objects in Context (COCO) (Lin
et al., 2014) challenges. These challenges received a dramatic improvement when
LeNet was introduced by LeCun et al. (1989), being the foundation of the modern
CNNs. This network was mainly developed to serve banks by identifying handwrit-
ten digits from checks (Aggarwal, 2018, p. 316). CNNs improved both PASCAL VOC
2012’s and COCO’s performance dramatically. One of the key benefits of CNNs is
the ability to share weights across layers, making it possible to learn complex struc-
tures with limited parameters. Applying one FCL for a 100 ⇥ 100 image size and
a hidden layer of 1024 nodes already requires more than ten million parameters
(100 ⇥ 100 ⇥ 1024 = 10, 240, 000). Furthermore, an ANN has trouble identifying
general features as spatial image information is not incorporated in the network.

3.3.1 Layers

Similar to ANNs, CNNs are built of multiple layers. The main difference is the
spatial structure, preserved in the layers of CNNs. That is, ANNs mainly use FCL,
where each neuron of layer l � 1 is connected with each neuron of layer l, whereas
CNNs use a variety of layer types. Each layer has its own function and some CNNs
still use the FCL in the final layers to map the feature into an output vector. The input
layer is a matrix of pixel intensities, having the dimension: width ⇥ height ⇥ colour,
of which the colour dimension is 1 (black and white) or 3 (colour/RGB image).

Chapter 3. Literature 16

Convolution

The most important part of the CNN is the convolution layer, hence the term ’Con-
volutional Neural Network.’ The central idea of convolution arises from the fact that
each pixel shares information with its surrounding pixels. Therefore, a submatrix is
taken from layer l and multiplied with a filter to transfer surrounding pixel infor-
mation to layer l + 1 (Gulli & Pal, 2017, pp. 74–75). Convolutions can be calculated
by applying a filter to the input layer through the sliding window approach (3.4.1),
applying the same filter to multiple areas of the image. Reusing the same filter for
multiple areas reduces the number of parameters significantly. Convolutions use
multiple hyperparameters to define how each filter is applied to the image and what
the output size will be. The used parameters are summarised below, where Figure
3.5 shows the defined parameters with a zero padding of 1. Based on the below
parameters, the output dimension can be calculated by Equation (3.23) (Deshpande,
2019). Figure 3.6a displays a 3 ⇥ 3 filter applied on a 5 ⇥ 5 matrix with strides of 1.

• Filter size (F): The height and width of the filter in number of pixels, where the
filter is mostly of squared size.

• Number of filters (NF): The number of applied filters.

• Stride (S): The number of pixels between the centre of each applied filter. A
stride of 1 indicates that the filter is moved one pixel, each time the filter is
applied. A stride of 2 shifts the filter two pixels between each application.

• Padding (P): Padding increases the matrix size, where a zero padding of i adds
i rows and columns on all sides of the matrix. Padding is used on the input
matrix to preserve the same output size after the convolution is applied.

FIGURE 3.5: A 2 ⇥ 2 filter applied on a matrix of size 4 ⇥ 4 with zero
padding of 1 (Perera, 2018).

�
Wl+1; Hl+1; Dl+1

�
=

�Wl � F + 2P

S
+ 1;

Hl � F + 2P

S
+ 1; NF

�
(3.23)

Chapter 3. Literature 17

Pooling

A Pooling layer sub-samples the volume spatially, by applying an operation on sub-
matrices. The main application of pooling is the dimensional reduction, which de-
creases the required memory and computational cost of the network. The most com-
monly used operation is max pooling, which calculates the maximum over the input
matrix. Other types are average pooling and L2-normalisation pooling (Deshpande,
2019). A visual representation of 2 ⇥ 2 pooling is shown in Figure 3.6b. Although
pooling has been a key feature in CNNs, Deshpande (2019) explained that several
researchers argue to remove pooling from the network, as the performance improve-
ment is relatively low compared with the added computational complexity. The out-
put dimension (Wl+1 ⇥ Hl+1 ⇥ Dl+1) after applying the pooling is determined by the
input dimension Wl ⇥ Hl ⇥ Dl , the filter size F, and the stride size S. The calculation
is displayed in Equation (3.24).

1 4 2
3 2 1
2 1 1
2 1 5

1
3
2
2

1 4 2 1
1
3
2
2

3
1
1

0
0

1 0

1
1
1

17 10 14
13
11

10
14

13
11

(A) Convolution by a 3 ⇥ 3 filter applied
on a 5 ⇥ 5 matrix.

1 4 2
3 2 1
2 1 1
2 1 5

1
3
2
2

4
2

3
5

2x2 pooling

(B) 2⇥ 2 max pooling operation on 4⇥ 4
matrix.

FIGURE 3.6: CNN layers: 3⇥ 3 convolution (left) and 2⇥ 2 max pool-
ing (right).

�
Wl+1; Hl+1; Dl+1

�
=

�Wl � F

S
+ 1;

Hl � F

S
+ 1; Dl

�
(3.24)

3.3.2 Classification Models

A broad range of classification algorithms has been developed over the past ten
years, in which convolutional networks started playing an important role from 2013
onward. A typical CNN consists of a convolutional base, which extracts features
from the image and a classifier which transforms the detected features into a pre-
diction. Some of the most important networks will be discussed briefly, since clas-
sification networks mainly serve as a basis for object detector algorithms. All below
performance measures are reported for the ImageNet Large Scale Visual Recogni-
tion (ILSVRC) challenge, commonly referenced to as ImageNet. This competition re-
quires the classification model to classify 50, 000 images in 1, 000 classes (Krizhevsky,
Sutskever, & Hinton, 2012). All below-mentioned error rates are defined as the clas-
sification error for the ILSVRC challenge.

Krizhevsky et al. (2012) published the first deep learning CNN, reducing the
classification error from 26.2 percent to 15.3 percent. The network, called AlexNet,
used only five convolutional layers and max-pooling layers, with an addition of
three fully connected layers. They applied three different filter sizes: 11 ⇥ 11, 5 ⇥ 5,
and 3 ⇥ 3.

Chapter 3. Literature 18

In 2014, the error rate dropped below ten percent for the first time, creating a
significant improvement over AlexNet. The first place was received by GoogleNet,
also referenced to as Inception V1. They used 22 layers with small convolutions to
reduce the size of the network from 60 million parameters (AlexNet) to 4 million
(Szegedy et al., 2015). They introduced the Inception module, which combines fea-
tures from multiple filter sizes. Different filters are applied on the input layers and
all results are concatenated to form one output. The Inception module is visualised
in Figure 3.7a.

VGG-16, proposed by Simonyan and Zisserman (2015) achieved the second place
with an error rate of only seven percent. They showed that reducing the size of con-
volutional filters to 3⇥ 3, alongside an increase in the number of layers, significantly
reduces the number of parameters while maintaining the same feature extraction.
They showed that a 7 ⇥ 7 filter results in 49 parameters, while 3 consecutive layers
of 3 ⇥ 3 filters accumulate to 27 parameters. This approach reduces the number of
parameters significantly while covering the same area as the 7 ⇥ 7 filter. Depending
on the configuration, they used 11-19 filter layers, with three fully connected layers
on top. Despite its effective algorithm, between 133 and 144 million parameters are
present, mainly due to the three fully connected layers taking up around 85 percent
of the total number of parameters.

He, Zhang, Ren, and Sun (2016) evaluated the effect of an increasing network
depth on the classification error. They discovered that an increased network depth,
increases the error rate, due to the complexity of both training and optimising the
network. He et al. (2016) introduced Residual Learning to connect convolutional
output values with the input values, by use of an identity mapping. They named
the network: ResNet. Using Residual Learning, convolutional layers make smaller
changes to the input, transferring more information towards the deeper layers. The
residual learning is imposed by the use of Residual blocks, where He et al. (2016)
used two consecutive layers in each Residual Block. The used Residual Block is
shown in Figure 3.7b. An impressive error rate of only 3.57 percent has been achieved,
with their configuration of 152 convolutional layers (ResNet-152).

(A) Inception module. (B) Residual block.

FIGURE 3.7: Advanced layers: Inception module (left) (Szegedy, Van-
houcke, Ioffe, Shlens, & Wojna, 2016) and Residual block (right) (He,

Zhang, Ren, & Sun, 2016).

Chapter 3. Literature 19

Redmon and Farhadi (2017) proposed a novel network of only 19 convolutional lay-
ers and 5 max-pooling layers, called: Darknet-19. Their network achieved compara-
ble performance with ResNet-50, with an error of 8.8 percent instead of the 7.8 per-
cent of ResNet-50. Although a comparable performance is achieved, they managed
to reduce the required number of calculations by 27 percent (Redmon & Farhadi,
2017). This reduction is mainly achieved by replacing the fully connected layers
with a 1 ⇥ 1 convolution. Darknet-19 achieves a speed of 200 Frames Per Second
(FPS), compared with 90FPS for ResNet.

Based on Darknet-19 and the residual blocks of ResNet, Redmon and Farhadi
(2018) designed Darknet-53. A deeper network of 53 convolutional layers, in which
the residual blocks of He et al. (2016) are used to ensure the trainability of the in-
creased network depth. They used 3 ⇥ 3 and 1 ⇥ 1 convolutions within the residual
blocks, similar to ResNet. This network is much more powerful than Darknet-19,
while being more efficient than ResNet-101 (Redmon & Farhadi, 2018). The error
rate of Darknet-53 is comparable to ResNet-101, while doubling the FPS (Redmon &
Farhadi, 2018).

The extensive growth of networks increases the need for computational power
in both training and inference. Using deep learning applications on mobile devices
is therefore not always possible. Although the training can be processed upfront
in the cloud, the inference is sometimes required to be locally available. A large
model is both memory intensive and slow in inference. Therefore, Google developed
MobileNet v1 and v2, taking up only 16 MB, compared with 256 MB for VGG-16.
Besides the memory reduction, the inference time is improved significantly, making
it a well-suited model for applications on mobile devices (Sandler, Howard, Zhu,
Zhmoginov, & Chen, 2018).

The above networks are summarised in Table 3.1, comparing the classification
error and the model size in the number of parameters.

TABLE 3.1: Classification comparison in model performance and
model size, based on: Szegedy et al. (2015), Siddharth (2017), Red-

mon and Farhadi (2017, 2018).

Model Year Place Error Parameters (million)

AlexNet 2012 1st 15.3% 60
GoogLeNet 2014 1st 6.6% 4
VGG-16 2014 2nd 7.3% 138
ResNet-50 2015 - 7.1% 26
ResNet-152 2015 1st 3.6% 60
Darknet-19 2017 - 8.8% unk

Darknet-53 2018 - 6.2% unk

MobileNet v1 2017 - 12.9% 4
MobileNet v2 2018 - 8.9% 3

Chapter 3. Literature 20

3.4 Object Detection

Whereas classification assigns one label to each image, object detection can assign
labels on an object level. Object detection models predict, in addition to the class,
the location of an object. Therefore, each image can have multiple objects. This
approach extends the problem from classification to classification and regression,
increasing the number of output values from C (classes) to h(C + 4), where h is the
number of objects and 4 coordinates are used for each object location.

3.4.1 Sliding Window

Perhaps the most convenient and straight forward approach to move from image
classification to object detection, is by the use of the sliding window approach. The
sliding window approach consists of three steps: the cropping stage, the detection
stage, and the merge stage. Figure 3.8 visualises the sequential steps. A more ac-
curate bounding box can be generated by reducing the size of the crops, or making
overlapping crops of the original image. The downside of this approach is its high
inference time, as each cropped image needs to be passed through the classifier. Fur-
thermore, Gandhi (2018) explained that large differences in object size complicate
the detection process as multiple window sizes should be used.

FIGURE 3.8: Sliding window approach.

3.4.2 Region-based Convolutional Neural Network (R-CNN)

R-CNN, proposed by Girshick, Donahue, Darrell, and Malik (2014), outperformed
previously developed models by far on the PASCAL VOC 2012, by increasing the
mAP with more than 30 percent. They compared their proposed model with Over-
Feat (sliding window detector), proving R-CNN to outperform the sliding window
detection in both speed and accuracy on the ILSVRC dataset (Girshick et al., 2014).
They explained that the efficiency of R-CNN is established by reducing the large
number of regions of the sliding window approach, to only 2, 000 region propos-
als by use of selective search (Gandhi, 2018). The algorithm steps are summarised
below.

1. Generate many candidate regions.

2. Use a greedy algorithm to merge similar regions recursively into large regions.

3. Warp each region to a squared input image.

Chapter 3. Literature 21

Each proposed region is passed through a CNN to produce a 4096-dimensional fea-
ture vector, used to predict the bounding box coordinates with regression and the
object class with the use of a Support Vector Machine (SVM). Although the network
uses the same feature vector for the bounding box regression and object classifica-
tion, 2, 000 regions need to be evaluated by the CNN. Additionally, no learning is
applied to the region proposal which might result in poor region proposals. Al-
though the model is an improvement over the sliding window approach, there is no
uniform model. This is, the region proposal, the CNN, the bounding box regression,
and the SVM for classification are operating in isolation. The model architecture is
shown in Appendix B.

To address the independent models in R-CNN, Girshick (2015) aggregates the
independent feature vectors of R-CNN into a single CNN. This innovative approach
removes the separate regression and SVM and predicts both tasks with the same
CNN. This new approach is named: Fast R-CNN (see Appendix B). The single for-
ward pass constructs a feature map from which regions are extracted. Each of the
regions is then passed to a bounding box regressor and object classifier.

Although fast R-CNN resulted in a major speed improvement, selective search
for the region proposals still results in a high computational burden. To address
this, Ren, He, Girshick, and Sun (2017) proposed Faster R-CNN, which removes the
selective search and incorporates the region proposal in a second CNN. This new
approach has the major advantage over the previous versions, in that it is able to op-
timise the proposals, whereas it was static in previous versions. As a result, Faster R-
CNN is almost 11 times faster compared with Fast R-CNN (Ren et al., 2017). There-
fore, the model is able to run up to 5 FPS on a Titan-X GPU, making it applicable for
real-time object detection.

He, Gkioxari, Dollar, and Girshick (2017) extended Fast R-CNN with an object
mask prediction and called their approach: Mask R-CNN. Whereas bounding boxes
are forced to predict a box region, mask enables to predict the contours of the object
accurately. Using this, Mask R-CNN is able to construct a more accurate location
estimation. The mask is learned in parallel with the bounding box regression and the
object classification. By this, the mask adds only a small burden to the computational
speed (He et al., 2017).

3.4.3 Single Shot multi-box Detector (SSD)

Single Shot multi-box Detector (SSD) combines feature extraction, class prediction,
and localisation in one forward calculation, making the model applicable for real-
time image processing while outperforming Faster R-CNN (Liu et al., 2015). SSD
achieves a mAP of 76.9 for input size 300 ⇥ 300 and a mAP of 76.9 percent for input
size 512 ⇥ 512 on the PASCAL VOC 2012 challenge (Liu et al., 2015). SSD maintains
the high accuracy due to its uniform model architecture, making it possible to use
the complete image for predicting each bounding box, contrary to R-CNN which
uses regions to predict each bounding box. The model architecture is visualised in
Appendix B.

SSD uses a trained image classification model, without the classification layers,
as base network. On top of the base network, convolutional feature layers are added,
decreasing in dimensionality further in the network. Each of the feature layers pre-
dicts the class and location of the objects for multiple cells. A novel feature map is
introduced, where the image is separated into a grid with cells, where each cell pre-
dicts a fixed set of objects. The number of objects per cell is the number of default

Chapter 3. Literature 22

anchors used. For each default anchor, the model predicts the confidence score per
object class and the location of the object, relative to the cell centre.

The location is predicted by the height and width offset between the detected
object and default anchor. An input image, with its corresponding 8 ⇥ 8 and 4 ⇥ 4
feature map, is shown in Figure 3.9. Different default anchors are draws on the
feature maps for illustration. A network with C classes, k default anchors, and a
m ⇥ n feature map, results in (C + 4)kmn predictions. Breaking the equation down
m ⇥ n cells with k default anchors, results in a total of k ⇥ m ⇥ n default anchors to
predict. For each default anchor, C class predictions are made, as well as the D(x, y)
(anchor offset) and the D(w, h) (weight and height offset).

FIGURE 3.9: SSD feature maps. Original image (left), 8 ⇥ 8 feature
map (centre), and 4 ⇥ 4 feature map (right) (Liu et al., 2015).

Training the network is performed with a single loss function, combining the con-
fidence loss and location loss. Liu et al. (2015) derived the loss function from the
Multi-Box objective and extended this to handle multiple object classes. To define
the loss function, we use the parameters listed below.

i = default box,
j = ground truth box.

C = # classes.

x
p

ij
=

(
1, if the i-th default box matches the j-th ground truth box of class p.
0, else.

ĉ
p

i
=

e
c

p

i

Âp e
c

p

i

Softmax loss over multiple class confidence.
More informally, the confidence of the actual class p divided by the sum of all confidences.

N = Number of images in the epoch.
l = Predicted box.
g = Ground truth box.

Before the loss can be calculated, each predicted bounding box needs to be matched
to a ground truth box. Liu et al. (2015) uses the Jaccard overlap (Equation (3.25)
between the ground truth box and the predicted box and sets the threshold to 0.5,
indicating that an overlap of at least 0.5 is a positive match. A negative match assigns
the truth to be background (no object).

Chapter 3. Literature 23

Jaccard Overlap(i, j) =
area(i \ j)

min(area(i), area(j))
(3.25)

The total loss, defined in Equation (3.26), consists of the weighted sum over the
confidence loss (Lcon f) and the localisation loss (Lloc), where a is set to one by cross-
validation of Liu et al. (2015). As the majority of predicted boxes (i) are considered
to be negative, hard negative mining is applied where the negative predictions are
sub-sampled to a ratio of 3 : 1 (negative : positive). The below formulations are
derived from Liu et al. (2015).

L(x, c, l, g) =
1
N

�
Lcon f (x, c) + aLloc(x, l, g)

�
(3.26)

Using the Jaccard overlap to distinguish the positive and negative boxes and by
using the softmax for class confidence, the confidence loss of Equation (3.27) is for-
mulated.

Lcon f (x, c) = �
N

Â
i2pos

x
p

ij
log(ĉp

i
)� Â

i2neg

log(ĉ0
i
) (3.27)

The localisation loss makes use of the smooth L1 loss, which compares the predicted
box (l = (xc, yc, xw, yw)) with the ground-truth box (g = (xc, yc, xw, yw)). The Smooth
L1 loss makes the regression less sensitive to outliers (Liu et al., 2015). The location
loss is formulated in Equation (3.28). To account for the difference in bounding box
sizes, the predicted box size is divided by the width and height of the actual width
and height of the ground truth box. This approach transforms the actual deviation
into a percentage deviation and makes each bounding box contribute equally to the
loss function, independently of its size.

Lloc(x, l, g) =
N

Â
i2pos

Â
m2{cx ,xy,w,y}

x
k

ij
L1(l

m

i
, ĝ

m

i
) (3.28)

L1(lm

i
, ĝ

m

i
) = |xc � x̂c|+ |yc � ŷc|+ |xw � x̂w|+ |yw � ŷw| (3.29)

Deconvolutional Single Shot Detector (DSSD)

To address the lack of detection capabilities of small objects in SSD, Fu, Liu, Ranga,
Tyagi, and Berg (2017) developed Deconvolutional Single Shot Detector (DSSD).
They made two contributions. Firstly they introduced the use of ResNet-101 as the
base network, instead of VGG-16 proposed by the original authors. Secondly, they
introduced a deconvolutional module which increases the resolution of the feature
maps. The latter significantly increased the performance for the small object by pro-
viding more context to the classifier. The increased performance comes at a relatively
small speed reduction (Fu et al., 2017). The model architecture is displayed in Ap-
pendix B.

Feature Fusion Single Shot multi-box Detector (FSSD)

Similar to DSSD, Feature Fusion Single Shot multi-box Detector (FSSD) extends the
conventional SSD to address the lack of performance on small objects. Li and Zhou
(2017) applied the Feature Fusion module on the SSD layers, to transfer contextual

Chapter 3. Literature 24

information between layers. The transfer of contextual information is of special in-
terest for smaller objects, as small objects rely more on the surrounding context (Li &
Zhou, 2017). They explain that feature maps, responsible for small object detection,
are not large enough to incorporate contextual information and therefore benefit
largely from the transfer between layers. Furthermore, Li and Zhou (2017) explain
that the use of contextual information improves the accuracy, by reducing the detec-
tion of multi-parts of an object such as a dog and the head of a dog. They achieve
a significantly higher mAP, compared with the conventional SSD: 82.7 on 512 ⇥ 512
compared with 81.2 on 300⇥ 300. Their model architecture is displayed in Appendix
B.

Receptive Field Block Single Shot multi-box Detector (RFB-SSD)

Liu, Huang, and Wang (2018) explained that the performance gain of DSSD is mostly
obtained from the use of ResNet-101, making it relatively slow in inference. To create
a powerful and yet efficient network, Liu et al. (2018) constructed a Receptive Field
block, inspired by the Receptive Field of the human visual cortex. Using the Recep-
tive Field block, features of multiple convolution filters are combined and therefore
also referred to as multi-branch convolution layer (Liu et al., 2018). Liu et al. (2018)
showed that a more light-weighted network such as MobileNet can be used while
maintaining a comparable detection performance. The receptive field block is shown
in Figure 3.10, the model architecture is displayed in Appendix B.

FIGURE 3.10: RFB block with three convolution branches (Liu,
Huang, & Wang, 2018).

3.4.4 You Only Look Once (YOLO)

You Only Look Once (YOLO), proposed by Redmon, Divvala, Girshick, and Farhadi
(2016) outperformed R-CNN in terms of detection speed, while maintaining a com-
parable accuracy performance. They achieved this by combining the bounding box
regression and class estimation in the same network as the feature extraction. The
power of this method is the unified architecture, making it possible to optimise the
model end-to-end (Redmon et al., 2016). Besides the fact that YOLO runs in 45
frames per second, and is, therefore, able to run in real-time. It makes fewer mis-
takes in the background as it uses the full image for the class prediction, contrary to
fast R-CNN which only incorporates the local surrounding for the class prediction.
Additionally, it generalises better to other domains compared with previous meth-
ods (Redmon et al., 2016). Redmon et al. (2016) explained the downside of YOLO

Chapter 3. Literature 25

being less accurate compared to systems not running in real-time and having trou-
bles predicting accurate bounding boxes, as well as predicting small objects.

Techniques, similar to SSD, are used to optimise the architecture. An S ⇥ S grid
(Figure 3.11) is used with B default bounding boxes per grid cell. Each default
bounding box makes a prediction for the x, y coordinate of the object, and the box
width and height (Redmon et al., 2016). Furthermore, each grid cell has C condi-
tional class probabilities, making a vector of S ⇥ S ⇥ (5B + c) predicted values in
the output (Redmon et al., 2016). The network uses a relatively small input size of
416 ⇥ 416 images and uses a sequence of 24 convolutional layers, followed by two
fully connected layers, which map the predictions to the output tensor. When the
default anchors represent the object sizes in the dataset, the need for bounding box
regression training is reduced. The full network architecture is visualised in Ap-
pendix B.

FIGURE 3.11: YOLO default anchors on grid size 11 ⇥ 8 with B = 2.

Redmon and Farhadi (2017) presented version two of YOLO, approximately a year
after the first introduction. The improved version outperforms Faster R-CNN, hav-
ing 78.6 mAP on 40 FPS instead of 76.4 mAP on 5 FPS for PASCAL VOC 2012. A
variety of optimisation techniques were implemented: introducing the Darknet-19
backbone, applying batch normalisation, removing all fully connected layers and
adding more default anchors. They added k-means clustering to define the optimal
default anchor sizes. To overcome the prediction error for small objects in version
one, they added a second feature map from an earlier layer and added this to the
final prediction.

To further improve the performance on small objects, Redmon and Farhadi (2018)
introduced YOLO v3, pushing the performance from 44.0 AP50 (version two) to 61.1
AP50 on the COCO challenge. To achieve this, they changed the Darknet-19 back-
bone to Darknet-53. Although the performance increased significantly, the model
dropped in inference speed. Furthermore, they changed the softmax layer, for class
prediction, to independent logistic classifiers which improve the training process for
overlapping objects (Redmon & Farhadi, 2018). The last big change to the network is
a third prediction scale and adding upsampling to further improve the performance
on small objects. Using multi-scale predictions, performance improved on small ob-
jects, while decreasing the performance on medium and large size objects (Redmon
& Farhadi, 2018).

YOLO uses a single loss function to update the weights across the full network.
The final loss function, developed by Redmon and Farhadi (2018), consists of classi-
fication loss, localisation loss, and confidence loss. The total loss function is the sum
of the independent loss functions, having weight acoord, acon f , and anoobj. 1

obj

i
= 1

if an object appears in grid cell i and 1
obj

ij
= 1 if default bounding box j in cell i is

Chapter 3. Literature 26

responsible for detecting the object. 1noobj

ij
= 1� 1

obj

ij
. C defines the confidence score,

where p(c) defines the classification loss.
The classification loss is displayed in Equation (3.30) and calculates for each grid

cell i 2 {S}2 the squared sum of differences between the actual class and the pre-
dicted class probability. The classification loss is only taken into account if 1obj

ij
= 1.

This is, the classification loss is only taken into account if default bounding box j in
cell i is responsible for detecting the object (Redmon & Farhadi, 2018). The locali-
sation loss, displayed in Equation (3.31), takes for each grid cell and each bounding
box, the squared difference in box centre and box size. The box width and height
is reduced by the square root to make it more robust to outliers. When no object is
present, the loss is taken over the confidence score C and no localisation or classifi-
cation loss is used (Equation (3.32).

lossclassi f ication =
S

2

Â
i=0

1
obj

i Â
c2C

(pi(c)� p̂i(c))
2 (3.30)

losslocalisation = lcoord

S
2

Â
i=0

B

Â
j=0

1
obj

ij

✓
(xi � x̂i)

2 + (yi � ŷi) (3.31)

+ (
p

wi �
p

ŵi)
2 + (

p
hi �

q
ĥi)

+ (ci � ĉi)
2
◆

lossnoobj = lnoobj

S
2

Â
i=0

B

Â
j=0

1
noobj

ij
(ci � ĉi)

2 (3.32)

3.5 Evaluation

One of the most widely known evaluation measures for classification problems is
accuracy. The accuracy for C classes can be measured by Equation (3.33), where
the corresponding variables are shown in the confusion matrix (3.34). The confusion
matrix shows, with pij, the number of objects or images of class i which are predicted
as class j. Therefore, the number of correctly predicted objects, or images, of class c

is pcc

Accuracy =
ÂC

i=1 pii

ÂC

i=1 ÂC

j=1 pij

(3.33)

2

6664

p11 p12 . . . p1C

p21 p22 . . . p2C

...
...

pC1 pC2 . . . pCC

3

7775
(3.34)

Due to the simplicity of both calculation and interpretation, the accuracy measure is
widely applied for many machine learning evaluations. However, Michelucci (2018)
explained the downside when imbalanced class distributions are present, having
ambiguous accuracy values for different distributions. Class imbalanced arises if ni

(the number of samples in class i) for i 2 [1, 2, ..., C] strongly deviates. The drawback
can most easily be explained with two classes. If n1 = 90 and n2 = 10, the trained

Chapter 3. Literature 27

model can achieve a 90 percent accuracy by predicting the first class for all 100 in-
stances. An accuracy of 90 percent will not be accurate, whereas a class distribution
of n1 = n2 = 50 with accuracy 90 percent will be a good accuracy.

To overcome class unbalance influence, both Precision and Recall are introduced.
Precisionc defines the fraction that the model predicted class c correctly out of all
predicted class c. Recallc defines how often images or objects of class c are classi-
fied correctly as class c. The Precision and Recall multi-class calculation, inspired
by Sokolova and Lapalme (2009), is given in Equation (3.35) and Equation (3.36)
respectively.

Precisionc =
pcc

ÂC

i
pic

(3.35)

Recallc =
pcc

ÂC

j
pcj

(3.36)

Classification problems, such as the Caltech 256 dataset (Griffin, Holub, & Perona,
2007), requires a forced choice to predict one of the classes for each instance. Object
detectors like R-CNN, YOLO, and SSD not only require evaluation of the classifi-
cation, but also require evaluation of the bounding box estimation. They require
to estimate the class and location for all objects in the given instance/image (Ev-
eringham, Van Gool, Williams, Winn, & Zisserman, 2009). A common approach
to evaluate the generated bounding boxes is by use of the Intersection over Union
(IoU), which compares the predicted bounding box with the ground truth bounding
box. Figure 3.12 displays a partly matched bounding box, where Equation (3.37) can
be used to calculate the IoU with Bp the bounding box of the prediction and Bgt the
bounding box of the ground truth.

Prediction

Ground truth

FIGURE 3.12: IoU visualisation.

IoU =
area(Bp \ Bgt)

area(Bp [Bgt)
(3.37)

The Mean Absolute Precision (mAP) combines the Precision, Recall, and IoU into
one unified measure. Prior to the use of the mAP, the Area Under the Curve (AUC)
has been widely used, to measure the model quality in a performance/recall trade-
off graph (Everingham et al., 2009). Everingham et al. (2009) explained that the
two methods are generally in agreement. However, the mAP is considered under
different IoU values, resulting in the measure: mAPa with a the IoU threshold as
shown in Equation (3.37). Precisionc(Recallci) is defined as the precision at recall
value i for class c. The interpolated maximum of the precision for class c, to the
right, is then defined by: max

�
Precisionc(Recallcj : j 2 [i, i + 0.1, ..., 1])

�
. The final

mAP is defined in Equation (3.38). When averaging the mAP over multiple IoU
thresholds, more accurate localisation tends to get rewarded.

Chapter 3. Literature 28

mAPa =
1
C

C

Â
c=1

1
11 Â

i2[0,0.1,...,1]
max

�
Precisionc(Recallcj : j 2 [i, i + 0.1, ..., 1])

�
(3.38)

3.6 Training Neural Networks

The goal for Neural network training is to minimise the loss function by use of an
iterative approach. The Forward Propagation (FP) and Backward Propagation (BP)
is used to optimise the weights. The total dataset with N images is split into B equal
batches of NB images. Each batch is passed through the network by use of FP and
the output is stored for each individual image. Secondly, BP is used to adapt the
weights, based on the error over the batch of images. One forward and backward
pass is called an iteration. Within each iteration, the BP updates the weights based
on the optimisation algorithm, defined in Section 3.2.4. The intensity of the weight
update is depending on the Learning rate (a). The batch size, as well as the learning
rate, are largely influencing the training process. The effect of these two parameters
is explained in Section 5.2. The model is optimised during several epochs, where
one epoch processes NB batches in sequence. A single epoch makes the complete
dataset pass through the FP and BP once.

3.6.1 Regularisation

As previously explained in Section 3.2, increasing the model complexity enables
the network to learn more complex structures. Without regularisation, the network
could potentially learn the training data correctly, without being able to generalise
to unseen examples (overfitting). Table 3.2 shows four possible performance options
after training. The model in the top left fits the data well and generalises good to new
data, the model in the top right has trouble fitting the data and does not generalise.
The model in the bottom left fits the data well but does not generalise to unseen data
(overfitting). The model in the bottom right does not fit the train data (high bias)
and is, therefore, also unable to accurately predict the unseen data.
Overfitting can be reduced using Regularisation. A common approach for regular-
isation is dropout, which removes each node and corresponding connections with
probability p. The central idea behind dropout is to reduce the dependency on each
node and therefore, force the network to focus on more general features (Witten,
Eibe, Hall, & Pal, 2017, p. 434).

Two other approaches are L1 regularisation and L2 regularisation. Both meth-
ods perform a form of feature selection by penalising large weights in the network.
L1 regularisation, also called Lasso, performs feature selection by assigning a zero
weight to irrelevant features. L2 regularisation, also called Ridge, makes irrelevant
weights smaller but does not make then zero in a way Lasso does. This makes L2
regularisation not a feature selector. The regularisation can be used to extend the
original loss function. Equation (3.39) shows L1 regularisation and Equation (3.40)
shows L2 regularisation.

L = L + a Â
i

|wi| (3.39)

L = L + a Â
i

w
2
i

(3.40)

Chapter 3. Literature 29

TABLE 3.2: Bias variance trade-off with dotted line the validation loss
and solid line the training loss.

Low Bias High Bias

Low Variance

High Variance

To reduce overfitting in particular, early stopping can be used. This approach cuts-
off training as soon as the validation loss does not improve for a fixed set of epochs,
or the validation loss starts to increase (Witten et al., 2017, p. 261). This approach is
of special interest when the number of samples is low, making overfitting a potential
danger. By early stopping, the training is terminated before the overfitting starts.

3.6.2 Augmentation

Image augmentation constructs different images, based on the images in the original
dataset. Using image augmentation, a more diverse dataset arises and is, therefore,
especially important for small datasets. Use of augmentation reduces overfitting and
makes the model more robust to unseen images. Some frequently used augmenta-
tion functions are listed below:

• Cropping and Padding: A random percentage is used to either crop (a < 1)
or pad (a > 1) the image. Padding increases the image dimension by adding
pixels to the side of the image with the pixel mean.

• Horizontal flipping: An image is flipped horizontally with probability p =
0.5.

• Contrast Normalisation: Changes the contrast in an image.

• Multiply: Multiply is used to create a darker (a < 1) or brighter (a > 1) image.

• Rotate: Random rotation is used to make the model more robust to different
camera angles.

• Gaussian blur: Gaussian blur distorts the image slightly, to make the model
more robust against quality loss in images. With this, a filter is of size f is
applied to the image where the filter is normally distributed in the width and
height of the filter.

Chapter 3. Literature 30

3.6.3 Transfer Learning

Each deep-learning model tries to extract features, starting from low-level features
at the first layers, till high level features at the last layers. As deep-learning models
require an extensive number of training images to learn the full range of features,
it cannot be applied when the number of available training instances is low. Using
transfer-learning, a trained model on a large number of images for task A is reused
for a different task (B), which has a low number of training instances. The central
idea behind transfer learning is that low-level features are relatively similar across
networks, trained for different tasks. Low-level features are typically stripes, where
the last layers combine the lower level features into a prediction (Martin, 2019).

Transfer learning can be applied in multiple ways. Pu, Apel, Szmigiel, and Chen
(2019) removed the last X layers from the networks and trained a Support Vector
Machine (SVM) on the output vector, to transform the features into the desired class
predictions. This approach requires a pre-trained model, where the original task is
relatively similar to the new objective.

Another approach takes the first layers (base network) from the trained model
on task A, and initialises another model for task B with the trained weights. Using
this technique, the second model is already able to extract low-level features without
any training. Fine-tuning is then used to train the last layers, to transform the low-
level features into a prediction. Since the number of classes most frequently deviate
between the two tasks, the number of weights in the last layers deviates. Therefore,
the weights of the last layers cannot be transferred and are mostly initialised at ran-
dom. The transfer process is visualised in Figure 3.13. During the fine-tuning, the
base model can be frozen (no learning is applied on the weights) and only the extra
layers, as well as the location and confidence, are trained. Another approach is to
train the complete network.

FIGURE 3.13: Transfer learning, based on (Pu, Apel, Szmigiel, &
Chen, 2019).

Chapter 3. Literature 31

3.6.4 Hyperparameter Tuning

Apart from the weight parameters within the network, a large variety of hyperpa-
rameters is present. The weight parameters itself are updated using the BP algo-
rithm, specified in Section 3.2.4. Hyperparameters are set upfront and require opti-
misation by an iterative search process. Three commonly tuned parameters during
CNN training are listed below. Although many more hyperparameters exist, we
will not dive into all of them. A few other examples are augmentation types and
intensity, regularisation intensity, and learning rate reduction.

• Learning rate: To which extent should the weights be updated after each iter-
ation.

• Batch size: The number of images provided in each iteration.

• Optimiser parameters: The optimisation algorithm used during BP, requires
the specification of different parameters (e.g. momentum in SGD and regular-
isation intensity for Adam.).

Figure 3.14a shows the effect of different learning rates on the loss value. A high
learning rate ensures fast convergence, however, the learning potentially ends up in
a local minimum. A low learning rate gives too few learning abilities and the model
might under-fit or training takes too long. A low batch size, Figure 3.14b, gives
fluctuating loss values. This unstable loss value could reduce the training ability of
the network. On the other hand, a high batch size results in a more smooth training
process but reduces the training speed.

L
os
s

Epoch

Very high

Low
High
Good

(A) Learning rate influence on loss per epoch,
based on (Karpathy, 2017).

L
os
s

Epoch

(B) Batch size influence on loss per iteration,
based on (Karpathy, 2017).

FIGURE 3.14: The effect of the hyperparameters on the training pro-
cess: learning rate (left) and batch size (right).

Chapter 3. Literature 32

33

Chapter 4

Data

This section describes the data used throughout this research. Three separate image
data sources are used, further referenced to as Logistics Dossiers, Damage Web, and
Light Street video stream. The first dataset is provided by Pon Logistics (Section 4.1),
whereas the Damage Web dataset is collected from the internet (Section 4.2), and the
Light Street video stream is captured using a camera setup at the Light Street of Pon
Logistics (Section 4.3). Section 4.4 describes the master data of all incoming vehicles,
used as ground truth for the damages reported in the Light Street.

4.1 Damage Dossiers

Historical vehicle damages have been made available by Pon Logistics. This data
consists of 2, 499 dossiers, where each dossier contains multiple1 images of the dam-
aged vehicle and/or the damaged vehicle during the repair process. The dataset
contains a wide range of viewpoints and zoom levels. Furthermore, undamaged
sides of the vehicle are included as well. A total of 19, 907 images is present, where
the irrelevant images such as vehicles during repair, vehicles without damage, im-
ages without vehicles, or poor quality images2 are omitted. The relevant images are
manually selected from the dossiers, yielding a total of 3, 513 images, being only
17.65 percent of the provided dataset. An excerpt from the dataset is included in
Appendix D.1.

Image dimensions fluctuate in the pixel range of w 2 [640, 4800] and h 2 [680, 4100],
having an average aspect ratio of approximately 2.0 : 1.0 3. The dimension diversity
is visualised in Figure 4.1a. Images are manually annotated according to Section
4.5.2, yielding a total of 7, 900 objects, where the object class frequency is visualised
in Figure 4.1b. A large class imbalance is present, which is further discussed in Sec-
tion 4.5.2.

1Average: 8, min: 0, and max: 89.
2Too blurred images, taken against the light, or when the damage is not visible for annotation.
3Aspect ratio: (weight : height).

Chapter 4. Data 34

0 1000 2000 3000 4000 5000
Width

0

500

1000

1500

2000

2500

3000

3500

4000

4500
H
ei
gh

t

(A) Image dimensions.

Sc
ra

tc
h

D
en

t

Co
ve

r
da

m
ag

e

Be
nt

G
la

ss
sh

at
te

r

Li
gh

t
br

ok
en

W
in

do
w

 t
ex

t

Cr
ac

k

M
is

si
ng

Ti
re

 c
ra

ck

Ru
st

Bu
ile

n

Class

10

20
30

100

200
300

1000

2000
3000

10000

#
 B

ox
es

 (
lo

g
)

(B) Number of annotations per class.

FIGURE 4.1: Data statistics of the Damage Dossiers dataset.

4.2 Damage Web

To enrich the data provided by Pon Logistics, a dataset is constructed by use of
web scraping on Google image search. Besides the enlargement of the total image
dataset, this external data is used to compare the performance of the model trained
on internal data with a model trained on external data. The external data contains
images of higher resolution and vehicles are on average less clean, making the model
potentially more robust. Lastly, although Li et al. (2018) and De Deijn (2018) used a
slightly different approach, it enables some performance comparison with previous
research.

By use of web-scraping in Python, approximately 2, 500 images have been ex-
tracted from Google image search. The used search words are listed in Appendix C,
where the maximum number of images (limit) is set to prevent from downloading
too many irrelevant images. The limit differs per query based on manually inspect-
ing the threshold of relevance. Any irrelevant4 images are manually removed during
the annotation process. Duplicate removal and removal of irrelevant images yields
a dataset of 1, 338 images. Compared with the Damage Dossiers, stronger fluctuations
are present in the image dimensions: w 2 [150, 9216] and h 2 [130, 4800], having an
average aspect ratio of approximately: 2.2 : 1.0. An excerpt from the dataset is in-
cluded in Appendix D.2. Images are manually annotated according to Section 4.5.2,
yielding a total of 3, 392 objects. The image dimensions are visualised in Figure 4.2a,
where Figure 4.2b shows the object class frequency.

4Irrelevant images are either of bad quality, containing unclear damages, or no vehicle.

Chapter 4. Data 35

100 200300 500 1000 2000 400010000
Width (log)

100

200
300
400
500

1000

2000
3000
4000
5000

10000
H

ei
gh

t
(l

og
)

(A) Image dimensions.

Sc
ra

tc
h

D
en

t

Be
nt

Ru
st

G
la

ss
 s

ha
tt

er

Cr
ac

k

Li
gh

t b
ro

ke
n

H
ai

l

M
is

si
ng

Bu
ile

n

O
th

er

Class

1
2

10
20

100
200

1000
2000

10000

#
 B

ox
es

 (
lo

g
)

(B) Number of annotations per class.

FIGURE 4.2: Data statistics of the Damage Web dataset.

4.3 Light Street

Each vehicle, which arrives by truck, is checked on damage in the Light Street. No
vehicle images are captured in the Light Street and therefore a camera system is put
in place to capture the incoming vehicles. For testing purpose, it has been decided
to start with four cameras to prove business value. Any expansions in the number
of cameras can be made, if the initial approach shows its ability to add value to the
business process. Increasing the number of cameras could potentially increase the
number of areas to inspect.

As explained in Section 2.2, some areas are more frequently damaged and some
areas are more difficult to inspect by a human. As only four cameras are placed in
the testing phase, a selection is made on the areas to cover with the cameras. Priority
has been given to capture the vehicle from each side and to include the rim, tire, and
roof. Each camera should be placed as close as possible to the vehicle to capture a
less distorted image. Furthermore, each vehicle is of different size in height, width
and length and the cameras should therefore not be placed to close to the vehicle.

Based on all requirements, it seemed best to install the cameras according to the
setup of Figure 4.3. The side cameras (camera one and camera three) are placed
high enough to capture the roof for each passenger car. Capturing a minivan roof
is not ensured in all cases (e.g., Volkswagen Crafter and Volkswagen Transporter),
as placing the camera high enough for minivans endangers the quality of capturing
the lower parts of the vehicle. Therefore, it has been decided to place these cameras
at a height of 265 cm from the floor. The front camera (camera four) and rear camera
(camera two) are placed at a lower height of 200 cm as the roof is already covered by
the side cameras.

One of the alternative camera locations would be to point each camera at the
corner of the vehicle, to ensure that all areas are accurately visible. However, the
downside is that rims are less visible under a strong side angle. As rim damage is
relatively difficult to inspect, it has been decided that priority is put on inspecting
the left and right side of the vehicle. Furthermore, most vehicle damages are at

Chapter 4. Data 36

the side, front, rear, bonnet, and roof. Contrary to vehicles on the road, only a small
proportion has damage at the vehicle corners. This is due to the majority of damages
being transport-related, making the described areas most vulnerable. Therefore, the
setup of Figure 4.3 has been selected as implemented setup.

12.30m

12.30m

10.00m

10.00m

3.81m

3.00m

Data recorder

Camera 1

Camera 2

Camera 4

Camera 3

FIGURE 4.3: Camera setup.

In order to remove the need for manual interference, it has been decided to capture a
video stream instead of pictures. This ensures that present employees do not need to
press the capture button, when vehicles arrive. Furthermore, it ensures that the sys-
tem can run autonomously, making it possible to implement the system at the train
unloading area where speed is crucial. Furthermore, using a video stream ensures
more frames and gives the flexibility to select only the frames where no employees
are blocking the view on the vehicle. To reduce the generated data flow from the
cameras, the FPS has been reduced to the lowest supported configuration: 2 FPS.
The used camera system is selected based on the following requirements:

1. Image quality: The large distance between the camera and vehicle, as well as
the relatively small damages, requires a high image resolution.

2. Light adjustable: The Light Street contains a large illumination and therefore,
the cameras should be manually configurable to adjust for light conditions.

3. Cloud integration: A (near) real-time connection should be possible to enable
cloud-based damage detection.

4. Internal storage: No data should be lost if internet connection (temporary) fails.

5. Power over Ethernet support: No sockets are available at the camera locations
and hence the camera should be powered by Power over Ethernet (PoE).

6. Wide angle: The side cameras are relatively close to the vehicle and should
therefore have at least a 70 degree angle to capture the largest passenger vehi-
cles in full.

After ranking different providers, both Reolink and Swann seem to meet the above
requirements. Swann seems to have the best cloud integration, however, shipment
to the Netherlands was not well supported and therefore Reolink has been selected.

Chapter 4. Data 37

5MP Super HD PoE IP cameras5 are used for the research as Ultra HD was not yet
available. The cameras ensure a stable resolution of 2560x1920 at 5MP, well above
average resolution of the provided damage images. Figure 4.4 shows a capture of all
four video streams, according to the setup of Figure 4.3.

(A) Camera I. (B) Camera II.

(C) Camera III. (D) Camera IV.

FIGURE 4.4: Light Street camera view.

4.4 Pon Logistics Master Data

Each vehicle, entering the Light Street, is formally checked in by a scan event. The
scan event, together with general vehicle information, is stored in a Structured Query
Language (SQL) database. Each damaged vehicle is registered in a second database
table with information regarding the damage. These two datasets are used to search
effectively in the captured Light Street video stream to compare the model perfor-
mance with the output of the employees in the Light Street. A vehicle not being
present in the second table indicates that the vehicle was not damaged.

The vehicle will appear in the damage table if the damage is detected later in the
process. This can either indicate that the vehicle is damaged later in the process, or
the damage was present but not detected in the Light Street. The below features are
a subset of the obtained join between the required tables. Only vehicles which have
detected damage somewhere in the logistics process are included. Furthermore, we
excluded all vehicles which are not transported by truck and therefore not routed
through the Light Street. The following fields are present in the final table:

5Product code: 5MP RLK8-410B4.

Chapter 4. Data 38

• Description: Unique id of vehicle.

• Dstamp: Scan event datetime.

• To Loc id: Destination of the vehicle after the scan event is performed.

• Brand: The brand of the vehicle.

• Model: The model of the vehicle.

• id: Unique id of vehicle.

• Required repair: Some damages are within the margins and a ’N’ will indicate
no repair required. ’Y’ will be repair required.

Figure 4.5 shows the number of registered damages per week from 2018-12-31 till
2019-07-08. The damages are grouped into four categories, depending on the lo-
cation of detection: Customer, Inbound, Logistics process (between inbound and
outbound), and Other. The diversity of vehicles is limited to the Volkswagen group,
incorporating: Volkswagen, Seat, Skoda, Audi, and Porsche. The fraction of dam-
ages, caused by transportation is approximately fifty percent.

FIGURE 4.5: Number of detected damages per detected location.

4.5 Preprocessing

To make the data suitable for deep-learning models, several preprocessing steps are
applied in sequence. Figure 4.6 shows the five successive steps. Restructuring trans-
forms all image extensions to .jpg (for convenience), renames images, and structur-
ing the files. Duplicates are removed by comparing the average image hash, inspired
by the approach of Zhang, Fu, and Qiu (2013). Contrary to Zhang et al. (2013), only
exact duplicates should be removed as most images are relatively similar but contain
a different damage or vehicle. Therefore an average hash distance of zero is used,
to only exclude exact duplicates. The duplicate removal is followed by a manual
cleaning process, where irrelevant images are removed. The fourth step involves
annotating the damages, where polygons are used to avoid excluding deep learn-
ing models based on the annotation type. Lastly, the annotations are formatted into
PASCAL VOC 2012 format and divided into a train and validation set.

C
O
N
FI
D
EN
TI
A
L

Chapter 4. Data 39

FIGURE 4.6: preprocessing steps.

4.5.1 Train and Validation Split

A reliable estimate of the model performance is required to evaluate the applicability
of the model, before implemented at Pon Logistics. To create a reliable estimation,
the data is divided into a train set (used for training) and a validation set (used for
validation). The train fraction is set to 80 percent, slightly lower than the 90 percent
proposed by Flach (2012, p. 10). This value is set slightly lower as no cross-validation
is used due to the computationally expensive algorithms. Furthermore, the damages
are diverse and noisy and therefore a larger validation set will create a more reliable
estimation of the performance.

The Damage Web dataset is split randomly between the train and validation set
with probability 80 percent of ending up in the train set. Applying the same random
image split to the Damage Dossiers might leak information from the train set into the
validation set, as each dossier can contain multiple images. Therefore, the Damage

Dossiers are split randomly on a dossier level with probability 80 percent of ending
up in the train set. An assigned dossier to either the train or the validation set will
assign all images of the corresponding dossier to the train or validation set.

4.5.2 Annotation Process

Manual annotating all images has been done using the tooling: Supervisely6. Each
image has been annotated using polygons to support object detection, instead of an-
notating the complete image for classification. This approach has been chosen as
De Deijn (2018) explained that classification between damaged and undamaged can
be complicated due to small object sizes, as the majority of the vehicle is mostly un-
damaged. Besides this, of the requirements from the Light Street employees is to
have an estimation of the damage location, as a generic classification will require the
employees to search for the damage. The need for detection might not have been
necessary for Patil et al. (2017) and De Deijn (2018), as the damage sizes are rela-
tively large and therefore easier to detect when the model predicts damage. For Pon
Logistics, small damages are present and therefore classification will not be suited.
Both the previous arguments, as well as the promising results from Li et al. (2018),
to apply damage localisation, made us select object detection as the used technique
for this research.

Each dataset is manually annotated in a detailed manner, to include all small
damages which are of major interest for Pon Logistics. Pon Logistics uses multiple
classes to define the type of damage. Builen, Dent, Hail, and Scratch are inspired
by the internal damage evaluation system. From interviews with employees of the
Light Street, it turned out that cover damage frequently turned out to be vehicle
damage. Therefore, having cover damage should alarm the employees as much as

6See: https://supervise.ly

Chapter 4. Data 40

damage itself. To capture this, the class: Cover damage, has been added. Overlap-
ping damage types are frequently occurring, therefore a dent can contain a scratch
and so on. Both Patil et al. (2017) and De Deijn (2018) showed that classification
suffers from large class interference which can be resolved as multiple damages and
damage types can be annotated in the same image. Therefore, a scratch can be an-
notated within a dent, potentially improving the learning process as less class inter-
ference should be present.

A total of thirteen damage types is used, to compare the model performance be-
tween different types. This level of detail is selected as it gives the ability to compare
model performance across different damage types. A detailed class explanation is
presented in Appendix E.1. The following object classes are used:

• Bent

• Builen

• Cover dam-
age

• Crack

• Dent

• Glass shatter

• Hail

• Light broken

• Missing

• Rust

• Scratch

• Tire Crack

• Window text

Bounding box dimensions differ within and across classes. Especially Scratch, Dent,
and Cover damage have a diverse range of bounding box sizes. Crack, Tire crack,
Builen, Rust, and Window text are relatively small. Hail damage is mostly large,
as it is frequently affecting the complete vehicle. Therefore, object size and class
are related. Appendix E.2 shows scatter plots of the bounding box dimensions for
all thirteen image classes. Bounding boxes are normalised by the dimension of the
image for unbiased comparison.

FIGURE 4.7: Example annotations.

41

Chapter 5

Methodology

In this subsection, we first give a detailed description of the research design. Sec-
ondly, we focus on the used models and configurations. Finally, we discuss the
implemented techniques.

5.1 Research Design

Our research consists of five consecutive steps, which are summarised below. We
firstly optimise a subset of hyperparameters (1), regarding the input images, aug-
mentation, and transfer learning, respectively. The input preprocessing approach is
outlined in Section 5.1.1, whereas the augmentation and transfer learning are out-
lined in Section 5.2.2 and Section 5.2.3, respectively.

The initially optimised parameters are used to tune the different deep learning
models on the Damage Web dataset (2). We firstly optimise the Batch Size (BS) and
Learning Rate (LR), according to Section 5.2.1. Based on the optimised LR and BS,
we optimise the default anchors in combination with the pre-trained weights, during
transfer learning. Lastly, the best parameter settings are projected across all imple-
mented deep learning models and backbones. The best models and configurations
of (2) are used to train a model on the Damage Dossiers dataset (3). A comparison is
drawn in (4) to evaluate the performance of the model trained on the Damage Web

dataset, the Damage Dossiers dataset, and the combined dataset. Lastly, the models
are evaluated on the data from the Light Street and compared with human perfor-
mance (5). The following research steps are conducted:

1. Initial Parameter Tuning

(a) Input Preprocessing: Input normalisation and Image resize method.
(b) Initial hyper Parameter Optimisation: Transfer learning and augmenta-

tion.

2. Damage Web performance optimisation

(a) Hyperparameter tuning: Tuning hyperparameters based on YOLOv3 with
Darknet-53.

(b) Model and backbone tuning: Comparing different models and back-
bones.

3. Damage Dossiers performance optimisation

4. Cross-comparison: Between models and datasets.

5. Performance Evaluation: Comparing human performance with the best per-
forming model and evaluating the performance in the Light Street.

Chapter 5. Methodology 42

Due to the relatively low number of bounding boxes per object class, we only ex-
clude classes having fewer than 10 bounding boxes. Although this value is rela-
tively low, we do not want to exclude too many classes upfront as it might turn
out that some classes are easier to detect and therefore require less bounding boxes.
Furthermore, some classes are having shared information such as Hail and Dent,
which potentially decrease the required number of bounding boxes. Lastly, it gives
the opportunity to estimate which data should be collected in the future, based on
performance instead of the number of objects.

Hyperparameter optimisation is performed on a selective number of parameters.
Cross-parameter interference requires to optimise parameters in a high-dimensional
grid, instead of isolation. However, due to the computational complexity of training
CNNs, testing a multi-dimensional hyperspace of parameters increases computa-
tion time drastically. To illustrate, three hyperparameters with five discrete options
each, resulting in a total of 53 = 125 configurations. Therefore, grid search on all
parameters at once is not desired. Each parameter space is carefully considered,
to reduce the dimension per parameter. Furthermore, some parameters are having
small inference with other parameters and are, therefore, optimised in isolation.

Hyperparameters are firstly optimised on YOLO V3 with the default backbone:
Darknet-53. This choice has been made as optimising all hyperparameters for each
model results in too many configurations. Despite potential performance decrease
compared with an hyperparameter optimisation per model, it is expected that the
loss in performance is relatively low. This assumption is made as the different SSD
models, as well as YOLO v3 are relatively similar.

5.1.1 Image Preprocessing

Section 4.5 explained the relevance of input normalisation and outlined several ap-
proaches. The used pre-trained models make use of normalisation with respect to
the dataset pixel means in each channel (RGB). As the base network will not be re-
trained, it seems most suited to implement the same normalisation technique. How-
ever, the normalisation technique can strongly influence the model performance. As
the pre-trained weights used data normalisation during training, we restrict to dif-
ferent normalisation techniques and omit standardisation.

Let xlijk 2 [0, 255] define the original pixel intensity in row i, column j, and chan-
nel k 2 {RGB} for image l. Define exlijk, as the normalised pixel intensity, in a similar
way. Then the mean pixel intensity of image l and channel k is given by Equation
(5.1). Lastly, the channel means for a dataset with N instances is defined by Equation
(5.2). Using this, we evaluate the following three normalisation techniques:

xl..k =
1

WimgHimg

Wimg

Â
i=1

Himg

Â
j=1

xlijk (5.1)

x...k =
1
N

N

Â
l=1

xl..k (5.2)

• Pixel centring per dataset channel: Scale each image channel (RGB) to have
zero mean across the entire dataset: exlijk =

xlijk

x...k
8l, i, j, k.

• Pixel centring per channel: Scale each image channel (RGB) to have zero im-
age mean: exlijk =

xl..k
x...k

8l, i, j, k.

Chapter 5. Methodology 43

• Pixel normalisation: Scale each pixel to the range [0 : 1]: exlijk =
xlijk

255 8l, i, j, k.

We compare two image resize methods: resizing while preserving the aspect ratio
and resizing while ignoring the aspect ratio. When preserving the aspect ratio, the
image is first resized to have the largest dimension fit the target size. Secondly,
it is placed randomly in the target canvas and the surrounding area is filled with
the pixel mean of the dataset. Placing the image randomly on the target canvas
makes the model more robust than centring it. When the resize is performed, while
ignoring the aspect ratio, the image gets resized and starched to fit the target canvas.
The two approaches are visualised in Figure 5.1.

These two approaches are evaluated as preserving aspect ratio keeps the image
more closely to its original, while making a part of the image irrelevantly filled with
the dataset mean. Contrary, ignoring the aspect ratio moves further away from the
original, but makes use of the full image size and contains, therefore, more infor-
mation. Atwood (2007) explained that the inter cubic resize method preserves more
information compared with Inter linear and Nearest Neighbour, when downsizing
the images. As Section 4 showed that most images are larger than the input size of
the network, inter cubic will be used.

Preserve Ignore

FIGURE 5.1: Resize an image in landscape (top) or portrait (bottom).

5.1.2 Models

We evaluate the damage detection performance under different algorithms. Sections
3.4.2-3.4.4 point out that each model has its benefits and drawbacks. Although it is
explained that one-stage models largely outperform two-stage models, we incorpo-
rate R-CNN in the comparison to serve as a benchmark for the two-stage models.
The default configuration of SSD, as well as the extension: RFB-SSD and FSSD are
incorporated in the comparison. we excluded the DSSD configuration, as Liu et al.
(2018) explained that the performance improvement of DSSD is largely due to the
ResNet-101 backbone, as well as the fact that RFB-SSD and FSSD are already outper-
forming SSD for small objects. Therefore, SSD is included to serve as a benchmark
for the one-stage models. The extensions: RFB-SSD and FSSD are included for its
performance improvement over SSD, with respect to small objects. Lastly, YOLO v3
is added to the evaluation as it compares with FSSD and RFB-SSD in terms of per-
formance and is especially applicable for small objects. Its predecessors are not in-
cluded as Redmon and Farhadi (2018) explained that the third version outperformed
its predecessors by far.

Chapter 5. Methodology 44

We compare all one stage models across four base models: Darknet-53, ResNet-
50, VGG-16 and MobileNet v2. The first three are selected due to the proven per-
formance on classification tasks, as displayed in Table 3.1. MobileNet v2 is added to
the comparison as it gives a fair estimation of the performance when implemented
on a mobile device. R-CNN is only implemented on ResNet-50 as it serves as a
benchmark and is expected to perform worse, compared with the one-stage meth-
ods in terms of the mAP. Furthermore, R-CNN is relatively slow and therefore not
expected to be implemented in the Light Street, but only evaluated for research pur-
poses.

5.1.3 Implementation

We used the Python programming language for the implementation of the various
deep learning models. Initially, Keras (Chollet et al., 2015) has been used in combi-
nation with Tensorflow (Abadi et al., 2015) to implement the deep learning models.
Keras is a high-level API, suitable for rapid prototyping due to its user-friendly syn-
tax. Tensorflow is a highly optimised library for efficient matrix multiplications,
required for large scale neural networks and therefore used by Keras for the compu-
tations.

Since Tensforflow used significant memory during preliminary model training,
large GPU instances were required to provide the required GPU memory. Besides
this, Keras trained relatively slow. These two drawbacks made us eventually se-
lect PyTorch (Paszke et al., 2017) as the final deep learning library. Rosinski (2017)
showed that PyTorch is on average 20 percent faster compared with Keras for CNN
models, delivering a significant improvement during parameter tuning.

The large number of parameters in the backbone of SSD, YOLO, and R-CNN
requires the use of GPU enabled machines, which performs matrix multiplication
much faster than CPUs. Fortunately, Pon Datalab provided access to their Amazon
Web Services (AWS) environment, which is a cloud-based service, offering a variety
of GPU enabled machines, as well as storage and service management. Although
the GPU reduces training time from days to a few hours, the CPU is still used to
move images from storage to the GPU and to preprocess the images (resize and
augmentation). To load a batch of 16 images into the GPU, all 16 images have to
be loaded from disk and preprocessed, taking up to 50 percent of the total training
time. Fortunately, PyTorch can be used to run preprocessing and training in parallel,
ensuring that the GPU does not have to wait for the preprocessing. This approach
improved the GPU utilisation from 25 percent to 80 percent, reducing the training
time significantly.

In addition to the parallel data training and loading, we decreased the training
time significantly by keeping all images into the RAM of the instance. This approach
removes the data loading of all images from disk during the preprocessing. The data
is only read from disk at initialisation. This approach is possible due to the high
RAM (64GB) present in the used instances and the relatively small dataset size. This
improvement increased the GPU utilisation further to over 90 percent.

Cloud Architecture

To ensure a stable model, which can be used in training and production, we created
the cloud architecture of Figure 5.2. The deep learning model, written in Python,
is uploaded by use of a Docker container to Elastic Container Register (ECR). The

Chapter 5. Methodology 45

dataset is stored in Simple Storage Solution (S3), as well as the pre-trained weights
for each model. Before each training, the following steps are taken:

1. Create configuration file: containing the model to train, hyperparameters,
dataset location, and the pre-trained weights location in S3.

2. Submit the training job: Start Jupyter notebook and submit the job with the
configuration file location to AWS Sagemaker.

The program will log all intermediate results to a Tensorboard file on S3 and store
the trained weights every 5 epochs on S3. The benefits of the above-defined archi-
tecture are that different models and hyperparameters can easily be evaluated by
modifying the configuration file. This removes the need for any adaptations in the
program when different models, datasets, or hyperparameters need to be evaluated.
This benefit extends beyond this research, by enabling the Pon Datalab to reuse the
developed program for other object detection tasks in the future.

FIGURE 5.2: Implemented cloud architecture.

Light Street

Damage detection in the Light Street requires several preprocessing steps, to be
able to transform the video stream into input images for the damage detection al-
gorithm. Figure 5.3 summarises the preprocessing steps schematically. The 2 FPS
video stream is sub-sampled by a factor 10 to reduce the number of frames to pro-
cess. Vehicle and person detection are performed on the frames, where frames with
a vehicle count � 1 are kept. Each frame is cropped to the vehicle size, to remove
irrelevant surroundings from the image. This approach reduces false positives and
additionally, increases the size of the car in the input image. Persons are detected
and removed from the image, for privacy matters, by filling the bounding box with
white pixels. Lastly, the preprocessed image is passed through the damage detection
algorithm to create the final predictions.

Chapter 5. Methodology 46

Sub-sample
Detect

Vehicle & Person
Crop & remove

employees
Detect damageVideo stream

FIGURE 5.3: preprocessing steps on the Light Street video stream.

5.2 Hyperparameter Optimisation

The preprocessing of image data is more topic-related than dataset related. There-
fore, initial parameter tuning on input preprocessing is performed for the Damages

Web dataset and the found optimal settings are used for the Damage Web and Damage

Dossiers respectively. The same approach is followed for a subset of hyperparame-
ters, to reduce the required number of evaluations.

5.2.1 General Hyperparameters

One of the most important hyperparameters during the training of CNNs is the ini-
tialisation of the Learning rate and Batch size, as explained in Section 3.6. As the LR
and BS are closely related, we use a small grid-search to optimise the parameters in
the 2D state space: {(LR, BS) : LR 2 [1�3, 5�3, 1�4, 5�4, 1�5] and BS 2 [16, 32, 64]}.

We use the Adam optimiser, instead of SGD or RMSprop, since it is explained
in Section 3.2.4 that Adam combines the benefits of SGD and RMSprop in a single
optimiser. Furthermore, we use an adaptive learning rate schedule which reduces
the learning rate by a factor of 0.5 if the evaluation loss did not improve for three
consecutive epochs. This approach reduces overfitting as it reduces the learning rate
when the evaluation loss is either stable or increasing. At the first few epochs, a
higher learning rate is required than during the last few epochs as it is approaching
the (local) minimum. We set the early stopping to 10 epochs, to ensure that the
learning stops when the evaluation loss did not improve for 10 epochs. This number
is relatively high but has been selected to see how the model behaves when it starts
to overfit. Lastly, we use for the L1 regularisation: a = 0.0001 following the approach
of Liu et al. (2015).

The threshold for the Jaccard overlap in YOLO v3 and all SSD models, is set to
0.5 as proposed by Liu et al. (2015) and Redmon and Farhadi (2018). The non-max
suppression threshold is set to 0.5, being in line with the papers of Liu et al. (2015)
and Redmon and Farhadi (2018). Lastly, we set the maximum number of detections
to 100 to restrict the time of the NMS algorithm.

5.2.2 Augmentation

Using augmentation increases the variety of images in the dataset and is especially
of use for small datasets. Although our dataset is significantly larger compared with
Patil et al. (2017), Li et al. (2018) and De Deijn (2018), image augmentation will still
be used. The following augmentations, explained in Section 3.6.2, are evaluated on
the resized images to enlarge the dataset. The first two augmentation methods are
included by default, as recommended by Liu et al. (2015) for SSD models. Multi-
ply, rotate and Gaussian blur are evaluated in addition to the default augmentation.

Chapter 5. Methodology 47

The frequently used vertical flipping is omitted as it is expected to complicate the
learning process and does not represent the real situation accurately.

• Cropping and Padding

• Horizontal flipping: p = 0.5.

• Contrast Normalisation: Normalised the contrast in an image.

• Multiply: To make the model more robust to different light conditions.

• Rotate: Random rotations are used to make the model more robust to differ-
ent camera angles. Furthermore, rotation is expected to make the model more
robust against different scratches. The fraction horizontal scratches is consid-
erably larger than slightly rotated scratches.

• Gaussian blur: Small Gaussian blur is added to distort the image slightly and
make it more robust against quality loss in images.

5.2.3 Transfer Learning

As described in section 3.1, Patil et al. (2017) explained that transfer learning for
damage detection works better when the initial model is trained on a broad class of
objects. Therefore, pre-trained models on PASCAL VOC 2012 and COCO 2014 are
used with twenty and eighty object classes respectively. Both datasets are incorpo-
rated in this research as Pont-Tuset and Gool (n.d.) explained that COCO 2014 has
in general smaller object where 80 percent of the objects are below 5 percent of the
image size, compared with 50 percent for PASCAL VOC 2012. As the object sizes are
relatively small for both damage datasets, it is expected that COCO 2014 pre-trained
will result in the best performance. Besides this, the diversity of the objects is larger,
making it potentially better for damage detection, as explained by Patil et al. (2017).
However, to test this assumption, both PASCAL VOC 2012 and COCO 2014 are used
for the pre-trained weights.

It is explained in Section 3.6.3, that the number of trainable layers is a trade-off
between overfitting and flexibility of the model. To avoid overfitting, we initially
train only the extra layers, confidence layers, and location layers. The base network,
as well as any normalisation and pyramid layers, are initially frozen. Based on the
first results, we will include more layers in the training if overfitting remains within
limits while improving evaluation performance.

5.2.4 Anchor Boxes

The different SSD configurations, as well as YOLO v3 require the construction of
default anchors. Liu et al. (2015) provide a detailed calculation for the construction
of the default anchors, which is independent of the dataset. Therefore, the proposed
default anchors from the initial authors of SSD (Liu et al., 2015), FSSD (Li & Zhou,
2017), and RFB-SSD (Liu et al., 2018) will be used for each model. The used default
anchors are displayed in Appendix G.

Redmon and Farhadi (2017) showed that YOLO v3 largely benefits from default
anchors, which are set based on the used dataset. They propose to use K-means
clustering, to construct 9 default anchors for each dataset. Therefore, we normalise
each bounding box according to Equation (5.3) and Equation (5.4) to compensate for
the difference in image size. eHbb 2 [0, 1] and eWbb 2 [0, 1] represent the normalised

Chapter 5. Methodology 48

box wide, whereas the original bounding box is of size Hbb X Wbb and the image of
size: Himage X Wimage . We applied K-means clustering with k = 9, as proposed by
the authors, on each dataset, and displayed the exact cluster centres in Appendix G.
The clusters are visually represented in Figure 5.4a and Figure 5.4b for the Damage

Web and Damage Dossiers respectively.

eHbb =
Hbb

Himage

(5.3)

eWbb =
Wbb

Wimage

(5.4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Width

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ei
gh

t

(A) Damage Web.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Width

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ei
gh

t

(B) Damage Dossiers.

FIGURE 5.4: Bounding box clustering for anchor dimension estima-
tion.

5.3 Evaluation

Although SSD and YOLO typically use a different loss function during the BP, we
applied the loss function of SSD to all models, enabling a fair comparison between
the different models. Besides the loss function, a confusion matrix is used to compare
the model performance with the employees of Pon Logistics. This measure is added
as it shows if damages get misclassified and which classes are frequently interfering
with each other. The third and last method used to compare model performance is
the mAP (See Section 3.5). The mAP will be reported for an IoU threshold of 0.5,
instead of multiple thresholds as suggested by the COCO 2017 challenge. The mAP
of PASCAL VOC2007 is used instead of the mAP of COCO 2017 as the second tends
to reward models that are better at precise localisation, which is of lower relevance
for Pon Logistics.

49

Chapter 6

Results

This section describes the results of the experiments, defined in Section 5. The results
of the initial parameter tuning are described in Section 6.1 and are used as starting
values for all other experiments. Section 6.2 compares the performance between dif-
ferent deep learning models and model configurations for the Damage Web dataset.
The same analysis is performed for the Damage Dossiers in Section 6.3. The perfor-
mance influence of extending internal data with external data, from the internet, is
evaluated in Section 6.4. The model performance on the Light Street data is evaluated
in Section 6.6 and the inference speed per model is shown in Section 6.7.

6.1 Initial Parameter Tuning

All evaluations for the initial parameter tuning were performed with the Damage Web

dataset. Parameter tuning for the input preprocessing stage is presented in Section
6.1.1. The hyperparameters, from Section 5.2, are presented in Section 6.1.2.

Initially, the default augmentation methods, as explained in Section 5.2.2, were
slightly tuned. The cropping and padding augmentation was evaluated in the fol-
lowing domain: {(acrop, apad) : acrop 2 {0.1, 0.3, 0.5, 0.7} and apad 2 {1.1, 1.3, 1.5, 1.7}}.
The performance comparison for the cropping and padding augmentation is shown
in Table 6.1. Cropping seems to result in the best mAP at acrop = 0.3, where more
or fewer cropping results in a lower mAP independently of apad. An increased apad

seems to improve the mAP, independently of the acrop. The optimal parameter set-
ting in the performed grid search is (acrop = 0.3, apad = 1.7).

TABLE 6.1: Effect of acrop and apad on the mAP for YOLO v3 with
Darknet-53, Adam optimiser, a learning rate of 1e�3, normalised in-
put with 0-1 scaling, and image resize while ignoring the aspect ratio.

Pad
Crop 0.1 0.3 0.5 0.7

1.1 0.170 0.183 0.177 0.153

1.3 0.181 0.198 0.182 0.164

1.5 0.216 0.243 0.220 0.197

1.7 0.239 0.251 0.244 0.239

Chapter 6. Results 50

6.1.1 Input Preprocessing

Figure 6.1a compares three image normalisation techniques from Section 5.1.1: 0-1
scaling, dataset mean subtraction, and image mean subtraction. The normalisation
by image mean (pixel centring per channel) seems to perform less, compared with
0-1 scaling (pixel normalisation) and dataset mean normalisation (pixel centring per
dataset channel). The best performance is achieved when the pixel mean of the com-
plete dataset is subtracted per image channel. Furthermore, Figure 6.1 indicates that
preserving the aspect ratio does not improve the mAP.

0-1 Scaling Dataset Mean Image Mean

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
A
P

(A) Input normalisation method.

Ignore Aspect Preserve Aspect

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
A
P

(B) Image resize method.

FIGURE 6.1: Image normalisation method (left) and image resize
method (right).

Despite the absence of a clear performance difference between ignoring the aspect
ratio and preserving the aspect ratio, a performance difference is present between
the different damage classes. Figure 6.2 indicates an increased performance for the
class Missing, when preserving the aspect ratio. Contrary, ignoring the aspect ratio
seems to improve the mAP on the class Hail and the class Scratch. As the detection
of scratches is of more relevance for Pon Logistics, we ignore the aspect ratio in the
further extension of this research.

FIGURE 6.2: mAP comparison for resize without perseverance of the
aspect ratio (blue) and with perseverance of the aspect ratio (orange).

Chapter 6. Results 51

6.1.2 Hyperparameter Optimisation

Firstly, different augmentation techniques are compared in addition to the previ-
ously optimised parameters: acrop = 0.3 and apad = 1.7. These parameters, in com-
bination with normalisation by the dataset mean and resize while ignoring the as-
pect ratio, will be used throughout this section. Secondly, different transfer learning
strategies are evaluated.

Augmentation

A preliminary evaluation showed large diversity in mAP per damage class (Figure
6.2), where the classes Bent, Crack, Rust, and Scratch were lacking behind in perfor-
mance. Although the performance on all four classes is relatively low, the number
of objects of class Scratch is relatively large. Therefore, all images containing at least
one scratch were isolated and a model has been trained on this dataset. Table 6.2
shows the performance of seven different evaluations, where evaluation 1 serves as
a benchmark. For a larger image size (evaluation 2), the model tends to locate the
objects more precisely. However, the mAP does not increase to a large extent. As the
mAP takes objects into account with an IoU of at least 0.5, it gives rise to the idea
that an increased image size improves box locations, which already had an IoU of
0.5. Evaluation 3 and 4 result in an increased performance when more rotation is
added. Lastly, evaluation 5 and 6 show that Gaussian blur and multiplying the pix-
els to change light conditions, increased the performance further. The best mAP was
achieved for evaluation 6, where the loss values are comparable with the benchmark
evaluation, but the mAP increased by a factor 2.4.

TABLE 6.2: Effect of augmentation on scratch detection for IoU= 0.50,
with the model: YOLO v3 and backbone: Darknet-53 on 50 epochs.
The following hyperparameters are used: acrop = 0.3, apad = 1.7,
horizontal flipping(p = 0.5), resize while ignoring the aspect ratio,

LR = 1e
�3, and BS = 32.

Evaluation 1 2 3 4 5 6 7

Scratch subset 416 ⇥ 416 X X X X X
Scratch subset 680 ⇥ 680. X X
Rotation range 10 15 30 15
Gaussian blur & multiply X X X
mAP 0.067 0.076 0.132 0.152 0.142 0.161 0.115
Total loss 4.04 3.62 4.11 4.08 4.16 4.10 3.77
Confidence loss 2.33 2.24 2.27 2.32 2.32 2.27 2.16
Location loss 1.71 1.38 1.84 1.76 1.84 1.83 1.61

Transfer Learning

The learning performance is highly affected by the fraction of locked weights during
transfer learning. A trade-off exists between the flexibility of the model and overfit-
ting. Figure 6.3a shows the mAP after 70 epochs for two different levels of frozen
layers. The category frozen freezes all layers and only trains the extra layers, the loca-
tion layers and the confidence layers. The category free unfreezes more layers where

Chapter 6. Results 52

only the base network is frozen and all other layers1 are trainable. FSSD benefits
largely from the additional trainable weights, increasing the mAP from 0.21 to 0.33.

Figure 6.3b shows the location loss for FSSD, with the solid line as the training
loss and the dashed line as the validation loss. With the frozen layers, the model
is not able to learn the data to a large extent, as the training and validation loss is
approximately equal (high bias). The added trainable layers increased the flexibility
of the model, resulting in a lower loss value for both training and evaluation.

Model

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m
AP

FSSD RFB SSD

Free
Frozen

eedom

(A) Influence on the mAP per model.

FSSD Free
FSSD Frozen

0 5 10 15 20 25 30 35 40 45 50 55 60 6570
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
nfi

de
nc

e
Lo

ss

FSSD Free
FSSD Frozen

0 5 10 15 20 25 30 35 40 45 50 55 60 6570
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
nfi

de
nc

e
lo

ss

FSSD Free
FSSD Frozen

0 5 10 15 20 25 30 35 40 45 50 55 60 6570
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
nfi

de
nc

e
Lo

ss

FSSD Free
FSSD Frozen

0 5 10 15 20 25 30 35 40 45 50 55 60 6570
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
nfi

de
nc

e
Lo

ss

FSSD Free
FSSD Frozen

0 5 10 15 20 25 30 35 40 45 50 55 60 6570
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

(B) Influence on the confidence loss for FSSD.

FIGURE 6.3: Influence of more trainable weights, using the same set-
tings as for Table 6.2 with the parameters of evaluation 6.

As this preliminary research showed promising results for FSSD, we made a more
detailed comparison for the effect of the number of trainable layers on the loss value
and the mAP, respectively. We decided to perform the detailed analysis on FSSD
solely, as RFB and SSD did not increase in performance when more layers are train-
able. The results are summarised in Table 6.3, showing more overfitting when the
number of trainable layers is increased. Contrary, the mAP increased when unfreez-
ing more layers. The mAP decreased significantly when the base network is added
to the trainable layers. The model tends to overfit when the base network is train-
able, resulting in a large difference between the training loss and the evaluation loss.
The last evaluation shows the performance when the base network is frozen for the
first 50 epochs and made trainable for the last 20 epochs. Using this, the base net-
work is used during the fine-tuning process with a relatively low learning rate. This
resulted in the highest mAP while having a comparable evaluation loss with evalu-
ation 1.

1FSSD: normalisation, extra, transformation, pyramid, location, and confidence. RFB: normalisa-
tion, extras, location, and confidence. SSD: normalisation, extras, location, and confidence.

Chapter 6. Results 53

TABLE 6.3: Effect of the number of trainable layers on the loss and
mAP respectively. Trained on 70 epochs.

Evaluation 1 2 3 4 5 6

Base X > epoch 50
Normalisation X X X
Transformation X X X X
Pyramids X X X X
Extras X X X X X
Location X X X X X X
Confidence X X X X X X
mAP 0.139 0.211 0.252 0.331 0.221 0.341
Training loss (total) 4.644 3.818 3.627 3.427 2.073 2.807
Validation loss (total) 4.764 4.281 4.122 3.988 4.315 3.883

6.2 Model Comparison Damage Web

This section shows the batch size (BS) and learning rate (LR) in a small grid search for
the Damage Web dataset and compares the influence of different pre-trained weights,
in combination with different default anchors. Lastly, it draws a performance com-
parison between different deep learning models, configured with varying backbones
(base models). In the comparison, the input was scaled by the dataset mean, the im-
age was resized while ignoring the aspect ratio, and the augmentation was set to the
best evaluation of Section 6.1.2: acrop = 0.3, apad = 1.7, horizontal flipping(p = 0.5),
rotation of 30 degrees, Gaussian blur, and multiply. All layers, except the base net-
work, were trainable for the SSD, FSSD, and RFB-SSD models.

Batch Size and Learning Rate

The batch size (BS) and learning rate (LR) were optimised using a small grid in the
dimensions BS 2 {16, 32, 64} and LR 2 {1e

�3, 5e
�3, 1e

�4, 5e
�4, 1e

�5}. The results are
shown in Table 6.4. A batch size of 32 seems to outperform the other batch sizes on
all evaluated learning rates. Using a higher batch size (64) seems to prefer a higher
learning rate. Overall, batch size 32 with learning rate 1e

�4 resulted in the highest
mAP on the evaluated grid.

TABLE 6.4: Batch size and learning rate optimisation.

BS
LR 1e

�3 5e
�3 1e

�4 5e
�4 1e

�5

16 0.286 0.289 0.291 0.287 0.286

32 0.303 0.313 0.333 0.292 0.288

64 0.234 0.216 0.207 0.196 0.179

Chapter 6. Results 54

Anchor Size and Pre-trained Weights

Figure 6.4a illustrates the mAP performance for pre-trained weights: COCO and
PASCAL VOC 2012, for different anchor sizes: COCO, PASCAL VOC 2012, and K-
means clustering as suggested in the paper of Redmon and Farhadi (2017). The
clustered anchors, illustrated in Figure 5.4a are used, where all anchor sizes are pre-
sented in Appendix G. Figure 6.4b shows the lowest loss in the localisation of the
bounding boxes for the COCO pre-trained weights with corresponding anchors. The
anchors constructed with K-means clustering result in a higher loss and lower mAP,
compared with the anchors used during training of the pre-trained weights.

COCO COCO (K-means) VOC VOC (K-Means)

0 5 10 15 20 25 30 35 40 45 50 55 60 6570
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m
A
P

(A) mAP

COCO COCO (K-means) VOC VOC (K-Means)

0 5 10 15 20 25 30 35 40 45 50 55 60 6570
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

(B) Bounding box location loss.

FIGURE 6.4: Influence of pre-trained weights and anchors on the
mAP (left) and location loss (right).

Model and Backbone Comparison

Table 6.5 compares the mAP for all five models with different backbones (base mod-
els). The trainable layers were set to the settings as discussed in Transfer learning,
with only the base network frozen.

TABLE 6.5: Cross comparison on the mAP between different models
with varying backbone configurations For each model, the backbone

with the highest mAP is indicated in bold.

Model Darknet-53 ResNet-50 VGG-16 MobileNet v2

FSSD 0.330 0.254 0.278 0.273
RFB 0.275 0.272 0.298 0.207
SSD 0.271 0.257 0.234 0.223
YOLO v3 0.333 0.297 0.257 0.253
R-CNN - 0.241 - -

Both YOLO v3 with Darknet-53 and FSSD with Darknet-53 resulted in the highest
mAP. To boost the performance further, the base network was added to the trainable
layers and the networks were trained for an additional 30 epochs. This approach was
used as Table 6.3 showed a promising improvement in both the loss and mAP for
this strategy. The performance of FSSD improved from 0.330 to 0.361 and the perfor-
mance of YOLO v3 improved from 0.333 to 0.413. YOLO v3 benefits the most with

Chapter 6. Results 55

an improvement of 25 percent, compared with 9 percent for FSSD. A breakdown per
object class is visualised in Figure 6.5. The class Missing seems to benefit largely
from the additional training, as well as the smaller objects: Bent, Rust, and Scratch.
YOLO v3 seems to outperform FSSD in all classes, except the class: Light broken.

FIGURE 6.5: mAP comparison per class for FSSD and YOLO v3 before
unfreezing the base network and after unfreezing the base network.

Figure 6.6a shows the ability of the model to detect small scratches on the vehicle
accurately. The benefit of damage localisation instead of classification is shown in
Figure 6.6b. The model accurately predicts different damages on the same vehicle,
providing a more detailed result on both the location and the class. Figure 6.7 il-
lustrates the robustness of the model against light fluctuations and reflections and
makes this comparison before and after the repair. Figure 6.8 shows that the model is
able to detect small damages, but is having trouble to accurately construct a bound-
ing box. Furthermore, it fails to predict one large scratch, while being able to detect
the others. Although the model seems to be robust against water on the surface, the
water might complicate the construction of the bounding boxes. Additional excerpts
are provided in Appendix H.

(A) Scratches. (B) Bending (dark blue), dent (light blue),
light broken (yellow), and scratch (ochre).

FIGURE 6.6: Two examples with detected damage for YOLO v3 with
Darknet-53.

Chapter 6. Results 56

FIGURE 6.7: Detected damages on a reflecting surface before the re-
pair (left) and after the repair (right) for YOLO v3 with Darknet-53.

(A) Original image. (B) Image after prediction.

FIGURE 6.8: Damaged vehicle before the prediction (original image)
(left) and image after prediction of the bounding boxes with YOLO

v3 and Darknet-53 .

6.3 Model Comparison Damage Dossiers

The best performing model on the Damage Web dataset was used to set a benchmark
on the Damage Dossiers. YOLO v3 with Darknet-53 backbone was used, as well as
FSSD with Darknet-53. We firstly optimised the LR and BS in a similar way as done
for the Damage Web dataset. Table 6.6 shows the performance difference on the mAP
for varying parameter values. The optimal learning rate, on the evaluated grid, is
5e

�3 and the optimal batch size is 32. The LR is slightly higher compared with the
LR for the Damage Web dataset.

Chapter 6. Results 57

TABLE 6.6: Batch size and learning rate optimisation for 70 Epochs.

BS
LR 1e

�3 5e
�3 1e

�4 5e
�4 1e

�5

16 0.236 0.257 0.287 0.299 0.301

32 0.305 0.349 0.315 0.292 0.263

64 0.313 0.321 0.300 0.240 0.221

We set the batch size to 32 and the learning rate to 5e
�3. The train and evaluation loss

development for FSSD is visualised in Figure 6.9. The model clearly started overfit-
ting after epoch 70, where we unfreezed the base network. The confidence loss for
the training data started to decrease, while the confidence loss for the evaluation
data increased. After 140 epochs the model started to overfit extremely. YOLO v3
showed similar patterns, indicating that this dataset overfits more easily, compared
with the Damage Web dataset.

SD

0 20 40 60 80 100 120 140 160 180 200220
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Co
nfi

de
nc

e
Lo

ss

SD

0 20 40 60 80 100 120 140 160 180 200220
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(A) Confidence loss.

SD

0 20 40 60 80 100 120 140 160 180 200220
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ca

ti
on

 L
os

s

SD

0 20 40 60 80 100 120 140 160 180 200220
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(B) Location loss.

FIGURE 6.9: Loss per epoch for FSSD with the confidence loss (left)
and localisation loss (right).

We resumed training from epoch 70 and added heavier data augmentation with
padding on 2.0 and cropping on 0.1, as the damage dossiers contain more close-up
images. Furthermore, we froze the base network to avoid overfitting. This approach
improved the confidence loss for FSSD to 2.781 and the localisation loss to 1.942. The
same methodology was followed for YOLO v3, where the model results per object
class are shown in Table 6.7. In contrast with the results for the Damage Web dataset,
FSSD seems to outperform YOLO v3 on almost all classes. The model seems to be
robust against water and reflections, as displayed in Figure 6.10a and Figure 6.10b
respectively. Although, the model can handle reflections, it seems to be less robust
than the model which is trained on the Damage Web dataset. Figure 6.11a and Figure
6.11b show that the model is having trouble to detect some of the scratches under
different conditions. This might indicate that the model requires more training sam-
ples to perform consistently under different light conditions and angles. Contrary,
the reflection in Figure 6.11a might cause the poor detection quality, as the reflection
is on the same location as the scratch.

Chapter 6. Results 58

TABLE 6.7: mAP comparison between YOLO v3 and FSSD per object
class.

Class YOLO v3 FSSD

Bent 0.232 0.246
Cover Damage 0.142 0.176
Crack 0.257 0.467
Dent 0.272 0.323
Glass Shattter 0.654 0.713
Light Broken 0.098 0.202
Missing 0.276 0.365
Rust 0.143 0.156
Scratch 0.176 0.186
Tire Crack 0.0 0.411
Window Text 0.615 0.600

mAP 0.266 0.349

(A) Scratch. (B) Dent (blue) and glass shatter (yellow).

FIGURE 6.10: Two examples of detected damage for FSSD with
Darknet-53.

(A) Scratches, partly missed. (B) Scratches detected.

FIGURE 6.11: Two examples of detected damage for FSSD with
Darknet-53.

Chapter 6. Results 59

6.4 Model Comparison Combined

A cross-comparison is made on how well each trained model for dataset y is per-
forming on the evaluation set of dataset x. Table 6.8 shows the used training data
on the y-axis and the evaluation dataset on the x-axis. To construct an unbiased
comparison, we compared all models on the same classes. Therefore, we removed
the class Hail from the Damage Web dataset and removed the classes Builen, Cover
damage, Tire crack, and Window text from the Damage Dossiers. It can be seen that
increased performance on the Damage Dossiers is achieved when the Damage Web

data is added to the training instances. Contrary, the performance on the Damage

Web data decreased when the Damage Dossiers are added to the training instances.

TABLE 6.8: mAP performance for the best model, trained on the
dataset of axis x.

Damage Web Damage Dossiers All data

Damage Web 0.348 0.159 0.213
Damage Dossiers 0.170 0.258 0.247
All data 0.293 0.304 0.301

6.5 Employee Performance

We compared the performance of the model with the performance of two employees
from Pon Logistics. For this, we used 100 images from the Damage Dossiers dataset.
Since each dossier contains a detailed description of the damage location and class,
the ground truth is known. For the Damage Web dataset, no exact ground truth is
known and therefore this dataset was excluded from the comparison. Two employ-
ees, working at the Pon Logistics Light Street, have annotated the total of 100 images
manually. The model used approximately 1.5 minutes to process all images, where
the employees used approximately 2 hours and 15 minutes.

A confusion matrix is shown in Table 6.9. This matrix is constructed by ignoring
the different ways of annotating the same damage. For this, we count each damage
class only once in each image and assign True if the model/employee predicts the
damage class correctly. Which is, having a bounding box overlap of at least 30 per-
cent with the correct class. We assign False otherwise. The confusion matrix shows
that both the employee and FSSD Darknet-53 made a relatively low number of er-
rors between the damage classes. The last column indicates the predicted damages
which are, in fact, no damage. The number of missed damages are presented in the
last row. Compared with the employee, the model is especially better in detecting
the class Bent, as well as the class Cover damage. Contrary, the employee seems to
be better at detecting the class Dent and Scratch.

The random sample of 100 images seems to be slightly easier compared with the
general images in the Damage Dossiers dataset. The mAP of the model was 0.382.
Figure 6.12 compares the performance of the employees (left) with the performance
of FSSD with Darknet-53 (right). The first row shows that the employees assigned
the label Scratch, instead of Scratch and Dent. The second row shows that the model
did not detect the scratch at the rim and incorrectly detected a scratch on the tire. The
third row illustrates that the employees missed the right broken tail light. Further-
more, it indicates that the model classifies the damages in more detail. The fourth
row shows that the model detects the cover damage, which is not annotated by the

Chapter 6. Results 60

employees. Lastly, the glass shatter in row five is detected in more detail by the
model.

TABLE 6.9: Confusion matrix with the prediction on the y-axis and
the ground truth on the x-axis. The predictions are made with thresh-
old 0.25. (Bent, No Damage) indicates that the model predicted class
Bent but there was no Bent present. Contrary, (No Damage, Bent)
indicates that the model did not predict Bent but there was in fact a

damage of class Bent present.

Employee FSSD Darknet-53

Be
nt

C
ov

er
D

am
ag

e
C

ra
ck

D
en

t
G

la
ss

Sh
at

te
r

Li
gh

tB
ro

ke
n

M
is

si
ng

Sc
ra

tc
h

N
o

D
a
m

a
g

e

Be
nt

C
ov

er
D

am
ag

e
C

ra
ck

D
en

t
G

la
ss

Sh
at

te
r

Li
gh

tB
ro

ke
n

M
is

si
ng

Sc
ra

tc
h

N
o

D
a
m

a
g

e

Bent 3 8
Cover Damage 5 8
Crack 2 2
Dent 35 1 5 27 3 3
Glass Shatter 8 7
Light Broken 2 3
Missing 2 2
Scratch 47 4 3 42 5
No Damage 6 4 1 2 2 1 3 - 1 1 1 7 3 6 -

Chapter 6. Results 61

(A) Scratch. (B) Scratch and Dent.

(C) Scratch. (D) No Damage.

(E) Scratch and Dent. (F) Scratch, Dent, Bent, and Light
broken.

(G) Scratch. (H) Scratch and Cover damage.

(I) Glass shatter and Dent. (J) Glass shatter and Dent.

FIGURE 6.12: Example in performance difference between the em-
ployees (left) and FSSD Darknet-53 with confidence threshold 0.25

(right).

Chapter 6. Results 62

6.6 Light Street Performance

We evaluated the performance in the Light Street with the model trained on all data
(Damage Web and Damage Dossiers), as specified in Section 6.4. The performance eval-
uation was done by use of the master data as ground truth, as the low-resolution
images make it impossible to detect the damage with the human eye. To evaluate
the performance in the Light Street, we took images from 50 vehicles with detected
damage. We excluded images when the detection location is not the Light Street.
Any damage detected after the Light Street does not guarantee that the damage was
already present at the Light Street. This made us decide to exclude all images which
did not have a detected damage in the Light Street. Furthermore, we added 50 ve-
hicles without a detected damage anywhere in the supply chain. To ensure this, we
sampled 50 undamaged vehicles from the vehicles which have been transported to
a dealer or customer. By this, we are almost certain that all used negative examples
are indeed negative. Table 6.10 shows the confusion matrix, constructed in a similar
way as done in Section 6.5.

The model has a relatively low precision with a moderate recall. The model in-
correctly finds many damages, ending up in the last column of the confusion matrix.
The confusion between the different damage classes is relatively low. With this, the
model seems to have trouble identifying the difference between background and
a damage. When a damage is present, the model seems to accurately predict the
correct damage class.

TABLE 6.10: Confusion matrix with the prediction on the y-axis and
the ground truth on the x-axis. The predictions are made with thresh-
old 0.2. (Bent, No Damage) indicates that the model predicted class
Bent but there was no Bent present. Contrary, (No Damage, Bent)
indicates that the model did not predict Bent but there was in fact
a damage of class Bent present. The images where no damage was

present and no damage is predicted are excluded from the matrix.

Be
nt

C
ov

er
D

am
ag

e
C

ra
ck

D
en

t
G

la
ss

Sh
at

te
r

Li
gh

tB
ro

ke
n

M
is

si
ng

Sc
ra

tc
h

N
o

D
a
m

a
g
e

Bent 2 1
Cover Damage 9 23
Crack
Dent 14 1 43
Glass Shatter 1 18
Light Broken 3
Missing
Scratch 2 8
No Damage 4 6 1 8 -

We noticed that the environmental variables in the Light Street are largely influenc-
ing the detection performance. Figure 6.13a illustrates that the strong light influence,
in combination with the low resolution is creating multiple false positives. The same
issue arises in Figure 6.13b, where the roof got incorrectly classified as dent. Figure
6.14 shows a vehicle at the Light Street before removal of the cover (left) and after

Chapter 6. Results 63

removal of the cover (right). The cover damage is not visible from the image and
the model was not able to detect the cover damage. With the cover partly removed,
Figure 6.14b shows that the model accurately detected the partly removed cover and
detected the right dent. The left dent was not detected by the model. Figure 6.15a
shows that, despite the reflection, the model is able to detect a bonnet dent correctly.
Figure 6.15b shows that the model is able to detect the dent at the right front door
correctly.

(A) Incorrectly detected glass shatter and
dent.

(B) Incorrectly detected dent.

FIGURE 6.13: Incorrectly predicted damages.

(A) Cover damage on the bonnet, not de-
tected by the model.

(B) Detected cover damage and detected
dent on the bonnet. The left bonnet dent

is not detected by the model.

FIGURE 6.14: Vehicle with Cover damage and two dents at the bon-
net. Vehicle before removal of the cover (left) and vehicle after partly

removal of the cover (right).

Chapter 6. Results 64

(A) Correctly detected dent on the bonnet. (B) Correctly detected dent on the right
front door.

FIGURE 6.15: Correctly detected dents.

6.7 Inference Speed

Inference speed is measured for a single forward pass through the network, without
required image preprocessing. The inference time in milliseconds is reported for
academic purposes on a V100 Tesla GPU (Table 6.11). The inference time on a CPU
is measured to resemble the most likely implementation at Pon Logistics. The CPU
inference time is shown in Table 6.12.

TABLE 6.11: Inference time on an AWS p3.2xlarge instance, config-
ured with one TeslaV100 GPU (16GB Memory), eight Intel Xeon E5-
2686 v4 CPUs with a total of 61GB RAM. Each reported time in mil-
liseconds per image for a forward pass through the network without
augmentation, preprocessing and loading from disk. All inference

times are reported in milliseconds.

Backbone Input dimension Darknet-53 ResNet-50 VGG-16 Mobilenet v2

YOLO v3 416 ⇥ 416 4.97 5.03 2.03 4.49
SSD 300 ⇥ 300 4.21 3.43 1.63 4.05
FSSD 300 ⇥ 300 4.01 3.85 1.98 3.87
RFB-SSD 300 ⇥ 300 6.11 5.75 4.00 4.89
Faster R-CNN 800 ⇥ 800 - 203 - -

TABLE 6.12: Inference time on a 2.8GHz Intel Core i7 with 16GB
RAM. Each reported time in milliseconds per image for a forward

pass through the network.

Backbone Input dimension Darknet-53 ResNet-50 VGG-16 Mobilenet v2

YOLO V3 416 ⇥ 416 694 656 803 568
SSD 300 ⇥ 300 388 358 421 342
FSSD 300 ⇥ 300 615 437 700 387
RFB-SSD 300 ⇥ 300 447 497 613 324
Faster R-CNN 800 ⇥ 800 - 6,420 - -

65

Chapter 7

Conclusion and Discussion

This section firstly concludes on the results and answers the research question in
Section 7.1. Secondly, some limitations of this research are outlined in Section 7.2, as
well as topics for further research are presented.

7.1 Conclusion

We will conclude on the results, presented in Section 6, to answer our research ques-
tion: How accurately can deep learning detect vehicle damages and how can these models

be used to improve the logistics process?. We will first look into the performance of the
different models and datasets, to conclude if deep learning is able to locate damages.
Secondly, we conclude how the performance of deep learning compares with human
performance on the Damage Dossiers dataset. Lastly, we conclude on the performance
in the Light Street and close this section by providing possibilities to optimising the
business process by use of automatic damage detection.

Table 6.5 showed that FSSD with Darknet-53 and YOLO v3 with Darknet-53
yields the best mAP for the Damage Web dataset. Using different transfer learning
techniques, a major improvement has been achieved, resulting in YOLO v3 with
Darknet-53 as the best performing model. Therefore, we can conclude that, among
the evaluated models, YOLO v3 with Darknet is best suited for damage detection
on the Damage Web dataset. Furthermore, the performance of FSSD shows that dam-
age detection benefits from the preserved contextual information in the FSSD model.
This can be concluded as the performance of FSSD is significantly higher, compared
with the performance of SSD. The Damage Dossiers dataset is affected by overfitting,
indicating that too few data was present. The best model for the Damage Dossiers is
FSSD with Darknet-53. The mAP on the Damage Dossiers dataset is lower, compared
with the mAP on the Damage Web dataset. This gives rise to the idea that the dam-
ages at Pon Logistics are relatively difficult when compared with the Damage Web

dataset. We showed, that the mAP on the Damage Dossiers dataset improved when
the Damage Web dataset is added to the training data. Therefore, adding external
data improves the performance on the internal data of Pon Logistics.

Comparing the performance of the employees with the performance of FSSD
Darknet-53, showed that the model made 33 errors on an object level and the em-
ployee 29 for a subset of 100 images from the Damage Dossiers dataset. The employee
is better at detecting the class Dent and more accurately assigns a damage to the cor-
rect class. FSSD Darknet-53 makes fewer false negatives on the class Bent and Cover
damage. The employee makes fewer false negatives on the class Dent. With the fact
that the model has a relatively large true positive fraction in the confusion matrix,
we can conclude that deep learning is able to detect vehicle damages from images.
Furthermore, the model annotates the damages in more detail compared with the
employees. This is, the model makes a better distinction between different classes

Chapter 7. Conclusion and Discussion 66

and constructs smaller bounding boxes. FSSD with Darknet-53 seems to lack perfor-
mance in the Light Street. The model got largely influenced by the strong light re-
flections, resulting in many false positives. Based on the confusion matrix, the model
seems to have a relatively low precision with a moderate recall. The model seems
to have trouble identifying the background (no damage) from a damage, resulting
in the large proportion of false positives. Contrary, when a damage is present on the
vehicle, and the model predicts a damage, the model seems to accurately predict the
the correct damage class. Therefore, the model is able to distinguish the different
damage classes within the light street.

In short, we can conclude that deep learning is able to detect vehicle damages.
A relatively high performance is achieved for both the Damage Web dataset and the
Damage Dossiers dataset. We showed that the model is able to detect small damages
and distinguish accurately the different damage classes. Furthermore, we evalu-
ated different deep learning models in combination with the different backbones
and showed that the performance is strongly depending on the dataset. This is,
FSSD with Darknet-53 works best for the Damage Dossiers where YOLO v3 with
Darknet-53 works best for the Damage Web dataset. Comparing the performance
of the employees with the performance of the deep learning model showed that the
model achieves comparable results. The performance in the Light Street is relatively
low, compared with the performance on the Damage Web dataset and the Damage

Dossiers dataset. Despite this, we showed that deep learning can be used to locate
and classify damages in detail.

Using the automatic vehicle damage detection within the process of Pon Logis-
tics is possible. However, automatic detection without the inference of employees
is not yet possible. Some adaptations are required in order to improve the perfor-
mance and reliability of the model. We recommend to implement more cameras and
to place each camera closer to the vehicle. Using this, the resolution is increased and
this could potentially improve the detection of scratches. Furthermore, we recom-
mend Pon Logistics to evaluate the ability to place the cameras outside the Light
Street. The Damage Dossiers were mainly captured outside, having a more natural
light and therefore fewer reflections, resulting in a higher performance. Alterna-
tively, replacing the current lights with a more natural light might reduce the reflec-
tion.

7.2 Discussion

In this section, we discuss several advantages and limitations of this research. Fur-
thermore, we recommend further studies to focus on the limitations of this research,
by providing potential resolutions.

Limited Data

We used significantly more data than previous research Patil et al. (2017) and Li et
al. (2018) and De Deijn (2018). Besides this, the dataset was still limited in size and
diversity. We noticed that the model is not completely stable against different light
conditions, camera angles, and zoom levels. Therefore, using a larger training set
might increase the stability of the model. Furthermore, the images from Pon Lo-
gistics contained multiple images of the same damage, making the total number of
distinct damages lower. As we evaluated our research on multiple datasets, we ex-
pect that the outcomes on different training techniques and augmentation methods

Chapter 7. Conclusion and Discussion 67

can be projected to a situation with more training images. The images from Pon
Logistics contain more reflections, compared with images from the web. This might
be the reason for the lower mAP. Therefore, we suggest exploring the possibilities
of reflection removal before applying CNNs. Lastly, the data from Pon Logistics is
limited to the Volkswagen concern, therefore, no claims can be made on the perfor-
mance for other vehicle brands.

Annotations

Our approach showed that the damage detection results in a relatively low inter-
ference between classes. Therefore, using damage detection instead of classification
for the complete image improves the performance. Although the detailed annota-
tion process results in less class interference, it is explained that the localisation of
each damage is non-trivial. Scratches can be separated into multiple scratches or
labelled as one large scratch. Due to the manual annotation process, the reported
performance is largely influenced by the annotated ground truth boxes. As damage
location is more ambiguous than for objects of the COCO or PASCAL VOC 2012
challenges, further research could use multiple persons to cross-validate or average
the annotations. Lastly, further research could focus on the impact on the mAP when
different annotation granularities are used.

Default Anchors

Despite our approach to use k-means clustering, as suggested by Redmon and Farhadi
(2018), to construct the default anchors, we did not realise a performance improve-
ment over the COCO default anchors. This might be due to the low number of
training samples, but we were not able to test this assumption. Therefore, we sug-
gest that if more data becomes available, this assumption gets reevaluated.

Model Comparison

We used multiple deep learning models and compared these models for a variety
of base networks. This comparison showed strong performance differences between
the different models, indicating that damage detection especially benefits from mod-
els which are focused on small objects and contextual information. Although the per-
formance differences where large between some models, we evaluated each model
and backbone configuration only once. We performed each evaluation only once to
reduce the overall training time. The random initialisation of weight within the net-
work requires to perform multiple comparisons for each configuration. Although
we found large performance differences, further research could try to evaluate each
configuration multiple times to statistical test the performance difference.

To limit the training time, we optimised the hyperparameters on YOLO v3 with
Darknet-53 and used these parameters for all other models. This approach relies on
the assumption that the (sub)optimal hyperparameters of YOLO v3 with Darknet-53
are representative for the other models. As we did not validate this claim, further
research could focus on identifying if this claim is justified by optimising the hyper-
parameters for each model.

Chapter 7. Conclusion and Discussion 68

Image Input Size

We evaluated the performance of the model under two different image input sizes
for Scratch detection. This evaluation did not show a major improvement and, there-
fore, we did not construct a performance comparison for all damage categories. Fur-
ther research could incorporate the effect of the image input size on the overall mAP
performance.

Evaluation Measure

We used multiple evaluation measures to construct a well-founded performance
comparison. We used the same loss function for each model to ensure that the loss
values can be compared between the models. Despite this, a large performance dif-
ference exists between the different damage classes in terms of the mAP. We noticed
that this is partly due to the level of difficulty and partly due to the non-triviality
of the damages. Scratches seem to be difficult to annotate, while damages such as
Glass Shatter or Hail are relatively easy to assign. Therefore, we expect that the
model is performing significantly lower on Scratches than on Hail and Glass Shat-
ter. By this, comparing the different types of damage on the same mAP scale might
be an unfair performance evaluation. We recommend exploring other methods to
either overcome the non-trivial annotations for some classes, or to incorporate this
unfair comparison within the performance measure during further research.

Employee Performance

We used a subset of 100 images from the evaluation set of the Damage Dossiers to
compare the performance of FSSD Darknet-53 with the performance of employees
within Pon Logistics. The small dataset made it hard to compare the performance
in detail. The confusion matrix was relatively sparse and contained only a few sam-
ples for some classes. We made use of this small dataset, to limit the effort and time
required from the employees. Further research could try to make a more solid com-
parison by increasing the number of images, annotated by employees with domain
knowledge. Furthermore, increasing the number of employees creates a more reli-
able estimation.

Light Street Performance

Although we used a relatively high-resolution camera in the Light Street, the dis-
tance between the camera and vehicle made the resolution of the captured vehicle
low. In most cases, we were not able to detect the damage itself from the captured
video stream, due to a combination of the small damage sizes and the low resolution.
Due to the low number of cameras, we had to place the cameras relatively far away
from the vehicle to capture it in full. This resulted in a low resolution as the vehicle is
only located on a small part of the image. Further research might use higher camera
resolutions, or use more cameras to make each camera capture a smaller proportion
of the car. Using this, the overall resolution is increased. Due to the low number of
detected damages in the Light Street, we were not able to train a model specific for
this environment. Fine-tuning the model on the Light Street data might improve its
performance, therefore, collecting more training data is required before further im-
provements can be made. Using this, we expect that the model will be more robust
against the light reflections.

69

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X.
(2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Retrieved May 28, 2019, from http://tensorflow.org/

Aggarwal, C. (2018, September 13). Neural networks and deep learning. Springer-Verlag
GmbH. ISBN: 3319944622. Retrieved from https://www.ebook.de/de/produ
ct/33161337/charu_c_aggarwal_neural_networks_and_deep_learning.html

Atwood, J. (2007). Better image resizing. Retrieved March 6, 2019, from https : / /
blog.codinghorror.com/better-image-resizing/

Bishop, C. (2006, August 17). Pattern recognition and machine learning. Springer-Verlag
New York Inc. ISBN: 0387310738. Retrieved from https://www.ebook.de/de/
product/5324937/christopher_m_bishop_pattern_recognition_and_machine_
learning.html

Brinker, T. J., Hekler, A., Utikal, J. S., Grabe, N., Schadendorf, D., Klode, J., . . . von
Kalle, C. (2018). Skin cancer classification using convolutional neural networks:
Systematic review. Journal of Medical Internet Research, 20(10), e11936. doi:10 .
2196/11936

Cha, Y., Chen, J., & Büyüköztürk, O. (2017). Output-only computer vision based
damage detection using phase-based optical flow and unscented kalman fil-
ters. Engineering Structures, 132, 300–313. doi:10.1016/j.engstruct.2016.11.038

Chen, L., Zhu, Y., Papandreou, G., Schroff, F., & Hartwig, A. (2018). Encoder-decoder
with atrous separable convolution for semantic image segmentation. In The

european conference on computer vision (eccv) (Vol. 11211, pp. 833–851). doi:10 .
1007/978-3-030-01234-2_49

Chollet, F. et al. (2015). Keras (Version 2.2.4). Retrieved May 28, 2019, from https :
//keras.io

De Deijn, J. (2018). Automatic car damage recognition using convolutional neural networks

(Master’s thesis). Retrieved from https://www.semanticscholar.org/paper/
Automatic- Car- Damage- Recognition- using- Neural- Deijn/48f258246f7248a
81458ddb14d9214e33759d7d7

Deshpande, A. (2019). A beginner’s guide to understanding convolutional neural
networks part 2. Retrieved February 12, 2019, from https : / / adeshpande3 .
github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-
Networks-Part-2/

Duffner, S. (2009). Face image analysis with convolutional neural networks. Munich: GRIN
Publishing. ISBN: 3640397169.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (n.d.).
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.

Everingham, M., Van Gool, L., Williams, C., Winn, J., & Zisserman, A. (2009). The
pascal visual object classes (VOC) challenge. International Journal of Computer

Vision, 88(2), 303–338. doi:10.1007/s11263-009-0275-4
Flach, P. (2012). Machine learning. Cambridge: Cambridge University Press. ISBN:

1107422221.

BIBLIOGRAPHY 70

Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., & Berg, A. (2017). Dssd : Deconvolutional
single shot detector. CoRR, abs/1701.06659. arXiv: 1701.06659. Retrieved from
https ://www.semanticscholar .org/paper/DSSD- %3A- Deconvolutional -
Single-Shot-Detector-Fu-Liu/cc3bd45efe9a6db3c4dc06c83ab2d63605696fc4

Gandhi, R. (2018). R-cnn, fast r-cnn, faster r-cnn, yolo - object detection algorithms.
Retrieved June 11, 2019, from https://towardsdatascience.com/r-cnn-fast-r-
cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

Girshick, R. (2015). Fast r-CNN. In 2015 IEEE international conference on computer vi-

sion (ICCV) (pp. 1440–1448). doi:10.1109/iccv.2015.169
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. In 2014 IEEE conference on

computer vision and pattern recognition (pp. 580–587). doi:10.1109/cvpr.2014.81
Godoy, D. (2018). Understanding binary cross-entropy / log loss: A visual explana-

tion. Retrieved June 20, 2019, from https://towardsdatascience.com/underst
anding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset (tech. rep.
No. 7694). Retrieved from https://core.ac.uk/download/pdf/4875878.pdf

Gulli, A. & Pal, S. (2017, April 28). Deep learning with keras. Packt Publishing. ISBN:
1787128423. Retrieved from https://www.ebook.de/de/product/29085781/
antonio_gulli_sujit_pal_deep_learning_with_keras.html

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. CoRR, abs/1703.06870.
arXiv: 1703.06870. Retrieved from http://arxiv.org/abs/1703.06870

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recogni-
tion. In 2016 IEEE conference on computer vision and pattern recognition (CVPR).
doi:10.1109/cvpr.2016.90

Jayawardena, S. (2013). Image based automatic vehicle damage detection (Doctoral disser-
tation, College of Engineering and Computer Science (CECS)). Retrieved from
https://openresearch-repository.anu.edu.au/handle/1885/11072

Karpathy, A. (2017). Convolutional neural networks for visual recognition. Retrieved
February 18, 2019, from http://cs231n.github.io/neural-networks-3/

Kathuria, A. (2018). What’s new in yolo v3? Retrieved July 3, 2019, from https://
towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84–90. doi:10.
1145/3065386

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recogni-
tion. Neural Computation, 1(4), 541–551. doi:10.1162/neco.1989.1.4.541

Li, P., Shen, B., & Dong, W. (2018). An anti-fraud system for car insurance claim based
on visual evidence. CoRR. Retrieved from http://arxiv.org/abs/1804.11207

Li, Z. & Zhou, F. (2017). Fssd: Feature fusion single shot multibox detector. Retrieved
from https://www.researchgate.net/publication/321511662_FSSD_Feature_
Fusion_Single_Shot_Multibox_Detector

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick,
C. L. (2014). Microsoft COCO: Common objects in context. In Computer vision –

ECCV 2014 (pp. 740–755). doi:10.1007/978-3-319-10602-1_48
Liu, S., Huang, D., & Wang, Y. (2018). Receptive field block net for accurate and fast

object detection, 404–419. doi:10.1007/978-3-030-01252-6_24
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. (2015).

Ssd: Single shot multibox detector. CoRR, abs/1512.02325. doi:10.1007/978-3-
319-46448-0_2. eprint: 1512.02325

BIBLIOGRAPHY 71

Martin, S. (2019). What is transfer learning? [Blog Post]. Retrieved from https : / /
blogs.nvidia.com/blog/2019/02/07/what-is-transfer-learning/

Michelucci, U. (2018). Applied deep learning. Apress. ISBN: 9781484237908.
Minsky, M. & Papert, S. (1969). Perceptrons: An introduction to computational geometry.

Cambridge, USA: MIT Press. ISBN: 9780262130431.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., . . . Lerer, A.

(2017). Automatic differentiation in pytorch. Retrieved from https://openre
view.net/pdf?id=BJJsrmfCZ

Patil, K., Kulkarni, M., Sriraman, A., & Karande, S. (2017). Deep learning based car
damage classification, 50–54. doi:10.1109/icmla.2017.0-179

Pattanayak, S. (2017). Pro deep learning with tensorflow. New York: Apress. ISBN: 1484230957.
Retrieved from https://www.ebook.de/de/product/29894588/santanu_
pattanayak_pro_deep_learning_with_tensorflow.html

Perera, A. (2018). What is padding in convolutional neural network’s(cnn’s) padding
(multi-class image classification step by step guide part 4). Retrieved March 6,
2019, from https://medium.com/@ayeshmanthaperera/what-is-padding-in-
cnns-71b21fb0dd7

Pont-Tuset, J. & Gool, L. V. (n.d.). Boosting object proposals: From pascal to coco,
1546–1554. doi:10.1109/ICCV.2015.181

Pu, Y., Apel, D. B., Szmigiel, A., & Chen, J. (2019). Image recognition of coal and coal
gangue using a convolutional neural network and transfer learning. Energies,
12(9), 1–11. doi:10.3390/en12091735

Ragab, D. A., Sharkas, M., Marshall, S., & Ren, J. (2019). Breast cancer detection us-
ing deep convolutional neural networks and support vector machines. PeerJ, 7,
e6201. doi:10.7717/peerj.6201

R-CNN, Fast R-CNN, and Faster R-CNN Basics. (2019). Retrieved May 20, 2019, from
https://nl.mathworks.com/help/vision/ug/faster-r-cnn-basics.html#mw_
a9cdd2b3-b910-4d3d-90db-b485b415fd9b

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Uni-
fied, real-time object detection, 779–788. doi:10.1109/cvpr.2016.91

Redmon, J. & Farhadi, A. (2017). YOLO9000: Better, faster, stronger, 6517–6525. doi:10.
1109/cvpr.2017.690

Redmon, J. & Farhadi, A. (2018). Yolov3: An incremental improvement. CoRR, abs/1804.02767.
eprint: 1804.02767. Retrieved from http://arxiv.org/abs/1804.02767

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster r-CNN: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/tpami.2016.2577031
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6), 386–408. doi:10.1037/
h0042519

Rosinski, W. (2017). Deep learning frameworks speed comparison. Retrieved June
28, 2019, from https://wrosinski.github.io/deep-learning-frameworks/

Ruder, S. (2018). An overview of gradient descent optimization algorithms. Retrieved
June 18, 2019, from http ://ruder . io/optimizing- gradient - descent/ index .
html#rmsprop

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Parallel distributed process-
ing: Explorations in the microstructure of cognition. In D. E. Rumelhart, J. L.
McClelland, & C. PDP Research Group (Eds.), (Chap. Learning Internal Rep-
resentations by Error Propagation, Vol. 1, pp. 318–362). Cambridge, MA, USA:
MIT Press. ISBN: 0-262-68053-X. Retrieved from http://dl.acm.org/citation.
cfm?id=104279.104293

BIBLIOGRAPHY 72

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2:
Inverted residuals and linear bottlenecks, 4510–4520. doi:10.1109/cvpr.2018.
00474

Shihavuddin, A., Chen, X., Fedorov, V., Christensen, A., Riis, N., Branner, K., . . .
Paulsen, R. (2019). Wind turbine surface damage detection by deep learning
aided drone inspection analysis. Energies, 12(4), 1–15. doi:10.3390/en12040676

Siddharth, D. (2017). Ccn architectures: Lenet, alexnet, vgg, googlenet, resnet and
more... Retrieved March 20, 2019, from https://medium.com/@sidereal/cnns-
architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

Simonyan, K. & Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556. Retrieved from https://www.
semanticscholar.org/paper/Very-Deep-Convolutional-Networks-for-Large-
Scale-Simonyan-Zisserman/061356704ec86334dbbc073985375fe13cd39088

Sokolova, M. & Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4), 427–437.
doi:10.1016/j.ipm.2009.03.002

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A.
(2015). Going deeper with convolutions. doi:10.1109/cvpr.2015.7298594

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. doi:10.1109/cvpr.2016.308

Tsang, S. (2018). Review: Dssd - deconvolutional single shot detector (object detec-
tion). Retrieved April 5, 2019, from https://towardsdatascience.com/review-
dssd-deconvolutional-single-shot-detector-object-detection-d4821a2bbeb5

Witten, I., Eibe, F., Hall, M., & Pal, C. (2017). Data mining: Practical machine learning

tools and techniques (4th ed.). Cambridge, USA: Morgan Kaufmann Publishers.
ISBN: 0128042915. Retrieved from https : / / www . ebook . de / de / product /
26440029/ian_witten_eibe_frank_mark_a_hall_christopher_ j_pal_data_
mining.html

Zhang, Q., Fu, H., & Qiu, G. (2013). Tree partition voting min-hash for partial dupli-
cate image discovery, 1–6. doi:10.1109/icme.2013.6607460

Zhuang, S., Wang, P., Jiang, B., Wang, G., & Wang, C. (2019). A single shot framework
with multi-scale feature fusion for geospatial object detection. Remote Sensing,
11(5), 1–20. doi:10.3390/rs11050594

73

Appendix A

Activation Functions

TABLE A.1: Activation functions.

Name Plot Function Derivative

Identity

-6-5 -4 -3 -2 -1 0 1 2 3 4 5 6
z

-6

-4

-2

0

2

4

6

f(
z) f(z) = I(z) = z f0(z) = 1

Sigmoid

-6-5 -4 -3 -2 -1 0 1 2 3 4 5 6
z

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

f(
z) f(z) = s(z) = 1

1+e�z f0(z) = s(z)(1 � s(z))

TanH

-6-5 -4 -3 -2 -1 0 1 2 3 4 5 6
z

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

f(
z) f(z) = TanH(z) = e

2z�1
e2z+1 f0(z) = 1 � TanH

2(z)

ReLU

-6-5 -4 -3 -2 -1 0 1 2 3 4 5 6
z

0

1

2

3

4

5

6

f(
z) f(z) = ReLU(z) = max(0, z) f0(z) =

(
1 z > 0
0 z  0

L-ReLU

-6-5 -4 -3 -2 -1 0 1 2 3 4 5 6
z

-1
0
1
2
3
4
5
6

f(
z) f(z, a) = LReLU(z, a) =

(
az z > 0
z z � 0

f0(z, a) =

(
�a z < 0
1 z � 0

74

Appendix B

Model Architectures

FIGURE B.1: R-CNN (“R-CNN, Fast R-CNN, and Faster R-CNN Ba-
sics”, 2019).

FIGURE B.2: Fast R-CNN (“R-CNN, Fast R-CNN, and Faster R-CNN
Basics”, 2019).

FIGURE B.3: Faster R-CNN (“R-CNN, Fast R-CNN, and Faster R-
CNN Basics”, 2019).

Appendix B. Model Architectures 75

FIGURE B.4: SSD (Tsang, 2018).

FIGURE B.5: DSSD (Tsang, 2018).

Appendix B. Model Architectures 76

FIGURE B.6: FSSD (Zhuang, Wang, Jiang, Wang, & Wang, 2019).

FIGURE B.7: YOLO v3 (Kathuria, 2018).

77

Appendix C

Web Image Extraction

TABLE C.1: Image search queries.

Category Query Image limit

Dent Car dent 400
Dent Car dent front 200
Dent Car dent back 200
Dent Car dent rear 200
Dent Car dent bumper 200
Dent Car dent side 200
Dent Car dent door 200
Dent Car dent crease 200
Dent Car dent small 200
Dent Car dent big 200
Dent Car dent roof 100

Hail Car Hail 200

Window Car window crack 200
Window Car windshield crack 200
Window Car window broken 300
Window Car window damage 100

Scratch Car scratch 100
Scratch Car scratch 100
Scratch Car scratch minor 100
Scratch Car scratch small 100
Scratch Car damage scratch 100
Scratch Car roof scratch 100
Scratch Car key scratch 100
Scratch Auto lakschade (Dutch search) 100
Scratch Auto kras (Dutch search) 100

General Car minor damage 200
General Car small damage 200
General Car damage rear 100

78

Appendix D

Excerpts from the Damage Datasets

D.1 Damage Dossiers

FIGURE D.1: Excerpts from the Damage Dossiers dataset.

Appendix D. Excerpts from the Damage Datasets 79

D.2 Damage Web

FIGURE D.2: Excerpts from the Damage Web dataset.

80

Appendix E

Annotations

E.1 Annotation Classes

1. Bent: A bending in vehicle components or sheet metal transition.

2. Builen: A dent to the outside of the sheet metal instead of inside.

3. Cover Damage: Torn or partly removed covering foil.

4. Crack: Sheet metal torn in two parts.

5. Dent: Inward bending of sheet metal.

6. Glass Shatter: Broken glass or cracks in the glass.

7. Hail: Damage due to hail.

8. Light Broken: Broken glass of either the front or rear light.

9. Missing: A part or component of the vehicle not being present.

10. Rust: Rust on the vehicle metal.

11. Scratch: Damage on the car paint.

12. Tire Crack: Crack in the surface of the tire.

Appendix E. Annotations 81

E.2 Bounding Box Dimensions

Class

0

0.2

0.4

0.6

0.8

1

H
ei
gh

t

0

0.2

0.4

0.6

0.8

1

H
ei
gh

t

0

0.2

0.4

0.6

0.8

1

H
ei
gh

t

0

0.2

0.4

0.6

0.8

1

H
ei
gh

t

0

0.2

0.4

0.6

0.8

1

H
ei
gh

t

0 0.2 0.4 0.6 0.8 1
Width

0 0.2 0.4 0.6 0.8 1
Width

0 0.2 0.4 0.6 0.8 1
Width

Bent Builen Cover damage

Crack Dent Glass shatter

Hail Light broken Missing

Rust Scratch Tire crack

Window text

FIGURE E.1: Bounding box dimensions per class.

82

Appendix F

Excerpts from the Augmented Data

FIGURE F.1: Excerpts from the augmented data with: cropping, ex-
pansion, rotation, and multiply.

83

Appendix G

Anchor Priors

TABLE G.1: Anchor prior comparison across datasets for YOLO v3.
COCO as reported by Redmon and Farhadi (2018), PASCAL VOC by
K-means clustering as no reliable source was found. Damage Web,
Damage Dossiers, and Damage as constructed by K-means clustering.

Scale COCO PASCAL VOC Damage Web Damage Dossiers Damage

[0.024, 0.031] [0.050, 0.071] [0.051, 0.045] [0.042, 0.040] [0.047, 0.043]
I [0.038, 0.072] [0.095, 0.175] [0.159, 0.143] [0.226, 0.116] [0.110, 0.174]

[0.079, 0.055] [0.142, 0.385] [0.386, 0.178] [0.101, 0.154] [0.237, 0.116]

[0.072, 0.146] [0.242, 0.596] [0.747, 0.226] [0.221, 0.355] [0.240, 0.369]
II [0.146, 0.108] [0.254, 0.202] [0.224, 0.355] [0.837, 0.301] [0.536, 0.478]

[0.141, 0.286] [0.356, 0.375] [0.493, 0.480] [0.450, 0.182] [0.311, 0.716]

[0.278, 0.216] [0.446, 0.681] [0.291, 0.705] [0.525, 0.458] [0.536, 0.478]
III [0.375, 0.475] [0.679, 0.402] [0.838, 0.557] [0.307, 0.710] [0.311, 0.716]

[0.896, 0.783] [0.748, 0.748] [0.786, 0.853] [0.787, 0.793] [0.809, 0.786]

TABLE G.2: Anchor prior comparison for SSD Liu et al. (2015), FSSD
Li and Zhou (2017), and RFB-SSD Liu, Huang, and Wang (2018),
based on the authors reported default anchors. All models are using

aspect ratio: [1
3 , 1

2 1,2,3].

SSD FSSD RFB-SSD

[16, 16] [8, 8] [16, 16]
[32, 32] [16, 16] [32, 32]
[64, 64] [32, 32] [64, 64]
[100, 100] [64, 64] [100, 100]
[150, 150] [100, 100] [150, 150]
[300, 300] [300, 300] [300, 300]

84

Appendix H

Excerpts from the Predictions

H.1 Damage Web

FIGURE H.1: Excerpts from the predictions on the Damage Web data
with YOLO v3 and Darknet-53.

Appendix H. Excerpts from the Predictions 85

H.2 Damage Dossiers

FIGURE H.2: Excerpts from the predictions on the Damage dossiers
data with FSSD and Darknet-53.

