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Abstract

Keywords : Land Use Regression, Vision Language Model, Emission, Nitrogenoxides

Air-polluting emissions negatively impact health and the environment, with NOx being a significant contrib-
utor. This research explores a novel approach of enhancing Land Use Regression (LUR) data by using a Vision-
Language-Model (VLM). For modelling NOx emission data a set of 42.323 1 km2 squares in the Netherlands is
used, emissions (kg/km2/year) are estimated by the RIVM. The VLM (Google’s Gemini Flash 2.0) reclassifies
OpenStreetMap obtained ’landuse:industrial’ parcels — four times with different prompt settings — to more
detailed landuse by analysing aerial images. Additionally, the VLM returns a yearly emission estimate for the
parcel which is added as a new feature. An Elastic Net, Random Forest (RF), and Histogram-based Gradient
Boosting Regression (HGBR) are fitted to the four adapted datasets and compared with performance on the
benchmark dataset.

The results show improvements in two of the four enhanced datasets compared to the benchmark dataset
evaluated with RMSE. On the full test-set, the benchmark-HGBR combination results in an RMSE of 18.318
kg, and the best scoring enhanced-HGBR combination results in an RMSE of 17.762 kg, achieving a 3,0%
decrease. When only considering the 1.127 ’enhanced’ 1 km2 squares of the test-set, an improvement is
made from 48.138 kg RMSE to 48.094 kg RMSE, resulting in a 0,1% decrease in RMSE loss. On the other
’unenhanced’ 1km2 squares, an improvement is made from 4.949 kg RMSE to 4.684 kg RMSE, resulting in a
5,4% decrease in RMSE loss. Due to the wide confidence intervals of RMSE, statistical significances on these
numbers could not be claimed.

The study highlights challenges in modelling high emission values but demonstrates that VLM-enhanced
open-source data can introduce meaningful improvements in predictive performance. Although RMSE im-
provements are modest and not statistically conclusive, other metrics suggest that the approach has practical
potential to strengthen LUR modelling of emissions.
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1
Introduction

It is known that release of NOx (nitrogen-oxides) has negative impact on air quality. A group of researchers
from the WHO [1] state that, after adjustment for particulate matter (PM), long-term exposures to NO2 are
associated with; respiratory and cardiovascular mortality, and with childrens respiratory symptoms and lung
functioning. In addition to the impact on health, the impact on biodiversity through nitrogen deposition
and acid rain is even more extensive according to the research by Clark [2]. The loss of biodiversity has im-
mense and unseen effects on the circle of life according to consensus studies by Cardinale [3] and Tilman [4],
justifying raise of alarms.

There have been investigations into the sources of NOx emissions for a long time. Figure 1.1 displays the
distribution of emissions per category in The Netherlands for the year 2022. The dependency on combustion
engines remains a large source, with traffic, transport and inland navigation accounting for more than 65%
of the yearly NOx emissions. Additionally, the energy an industry and waste sectors account for another 24%
of NOx, again due to their use of fossil fuels required to create energy and products.

Figure 1.1: Emissions of NOx in the Netherlands in 2022 by source. Road traffic and mobile sources account for 51.8% and are by far the
largest contributor to NOx emissions. The industry sector (industry, waste, and energy) accounts for 24.2% of emissions. Source: CBS [5]

RIVM1 has been constructing insights in air quality since 1990 by measuring matters such as NOx, SOx, PM
(sulphur-oxides, particulate-matter). Their models are based on detailed layers of estimated emissions and
annual environmental reports of businesses. Estimations are based on the principle of Emission = Activity×
Emission Factor, followed by allocation to sector and geographical location. For example, the amount of fuel
types used in combination with scientifically derived emission factors is converted into an amount of emis-
sion per company sector[6]. Or emissions from manure management based on cattle livestock counts and
emission factors by the National Emission Model for Agriculture (NEMA)[7]. The RIVM combines these layers

1Rijksinstituut voor Volksgezondheid & Milieu, National Institute for Public Health and the Environment
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and many more by mathematical models which result in detailed insights to specific data-slices aggregated
per year to; sectors, provinces, municipalities, and even square kilometres [8].

National institutions like the RIVM provide insights of high quality, however, their frequency of reporting is
annually and lagged by two years. At the moment of writing, February 2025, the emissions available for in-
spection only include the years up to 2022. Governmental institutions responsible for installing regulations
that result in emissions reduction will require insight into what actions to take against which costs for what
benefits. Yearly reports are not enough to investigate effects of these measures taken, and therefore the fre-
quency of reporting should be increased and the lag should be minimised.

It is thought that by incorporating near-live data from satellites, measurement stations, traffic movements,
and energy use in machine learning models, contrary to the method presented by the RIVM, the frequency
and lag of emission reports could be bettered. This is what Caeli accomplishes by moving to a data-driven ap-
proach. Additionally, more advanced methods could be used across broader areas, crossing national borders,
and thus research areas of national institutes.

Hoek [9] conducted a review of Land-Use-Regression (LUR) models constructed between 1993 and 2008 as-
sessing air pollution, of which 21 are about NO2 concentrations. The typical model is built on only a few
weeks of measurements from monitoring sites. Spatial variations are recorded over time and an estimation
model is built to capture these patterns. Models achieve an R2 of 0.60.8 on validation sets, depending on
factors such as research size, location, and model complexity. Relevant predictors include traffic intensity,
distances to roads, population- and housing density, land-cover factors, and topographical data. The sources
of these features are often experimental based —traffic counts to estimate traffic density— or obtained from
open source databases. Thus, while LUR models have proven effective, they reach a limit due to the availabil-
ity and precision of their input, and are not scalable to other regions without performing experiments.

One of the largest open source databases about "roads, trails, cafés, railway stations, and much more, all over
the world" is OpenStreetMap (OSM), where a community of ’mappers’ is constantly improving a twin model
of the world. One of the ways that OSM lacks precision is when an object is given the tag "landuse:industry"
solely, as it does not differentiate between industry types. This omission is significant because emission levels
vary drastically between sectors. For example, the largest energy industry facilities can emit up to 18 million
kg of NOx annually [10], whereas warehouses themselves emit almost none. When these facilities are only
represented in the "landuse:industry" area feature, the difference in order of magnitude could not be captured
by the models.

To be less dependent on others and allow for automation, a Vision Language Model (VLM) could be used to
make adaptations to the LUR data. The hypothesis is that VLMs are capable of analysing aerial images and
create output of several features linked to the area, and thereby improve quality of the dataset. Scientifically,
this approach holds the potential to enhance the precision of LUR modelling by including diverse environ-
mental, visual, and documental data, which can easily be adapted for other pollutants such as NH3 or PM,
and scaled to different geographic regions. For Caeli, the application of this methodology can markedly im-
prove the accuracy of their emission and air quality models.

In short, the goal of this thesis is to contribute to the scientific frontier of LUR modelling and thereby help
Caeli improve their activities. Therefore, this report investigates to what extent Vision-Language-Model-
derived features can complement traditional Land Use Regression datasets for modelling NOx emissions
in the Netherlands. The research will begin with additional information in Chapter 2. The data sources
resulting in a benchmark dataset are presented in Chapter 3. Followed by training several LUR models on this
data in Chapter 4. An investigation will be held on making the best use of a VLM to enhance the benchmark
dataset in Chapter 5. This will result in the fitting of new LUR models on the newly created datasets in Chapter
5, eventually comparing the results in Chapter 6.



2
Additional Insights

In this chapter, additional information is presented; what are nitrogen-oxides, current emission levels and
targets, and the relevant literature on LUR modelling and the use of VLMs.

2.1. What is the 'Matter'?
Nitrogen-dioxide, with the chemical formula NO2, is an inorganic compound of nitrogen and oxygen. The
pure substance occurs as a poisonous reddish-brown gas, which is highly soluble in water. It forms nitric
acids. The gas is a strong oxidiser, heavier than air, and reacts violently with other substances, such as metals.

Approximately 78% of the air we breathe is composed of nitrogen (N2) while only 21% is made up of oxygen
(O2), both crucial for sustaining life as we know it. It is the burning of fossil fuels at high temperatures and
pressures that allows NO to form from N2. First, nitrogen reacts with oxygen through N2 + O ⇔ NO + N and
N + O2 ⇔ NO + O, known as the Zeldovich reactions. Since NO is an unstable molecule at room temperature
and atmospheric pressure, it oxidises with ozone to form NO2 by NO + O3 ⇔ NO2 + O2 , with a rate depending
on factors such as sunlight, temperature, and humidity as stated by Walters [11] and Beychok [12]. When
measuring a source that emits NO into fresh air, first around 10% of nitrogen is in the form of NO2 which
increases to 90% in a timespan of minutes or a few hours, measured by Wild [13]. Over more hours, this NO2

reacts to other products such as O3 (ozone), HNO3 (nitric-acid) and others, disappearing from the scene. NO
and NO2 together are notated as NOx and named nitrogen oxide.

It is crucial to emphasise the difference between emission and concentration. Emission is a measure of mass
accumulated over time, whilst concentration is the presence of matter and thereby a measure of mass per
volume at a certain moment in time. Emissions undergo dispersion because of meteorological effects and/or
the movement of sources, which makes the analysis of the relation between concentration measurements
and emission sources complex. This will require dispersion modelling with calibrations by measurements of
ground stations, sound balloons, satellites, etc., which is outside the scope of this research, only emission is
considered.

2.2. Guidelines
The raise of alarms has resulted in actions by means of laws and policies since the World Health Organisation
(WHO) has set guidelines of limitations on particulate matter (PM2.5 and PM10), ozone (O3), nitrogen dioxide
(NO2), sulphur dioxide (SO2) and carbon monoxide (CO) in 1987[14]. In 2005 and 2021 there have been
global updates of these guidelines (see Table 2.1) which stimulated authorities to intensify efforts to study
and restrict harmful emissions. The levels set are ought not to be harmful to human health and natural
ecosystems.

The European Union has set up a Zero Pollution Action Plan for 2050, in which it demands their member
states to comply with the WHO 2021 guidelines on air quality by 2030[15]. The research of Zara [16] has shown
already massive reductions in the annual mean NOx emissions of -35% from 2005 up to 2018 throughout
Europe, with high reductions in high-emission zones the Po valley, Ruhr Area, and BeNeLux.

Figure 2.1 provides a closer understanding of the concentration numbers in the Netherlands. The daily aver-
age NO2 concentration over 2023 is 9-11 mug/m3 in regional areas, 16-18 mug/m3 in urban areas, and 20-22

3
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Pollutant Averaging Time 2005 AQGs 2021 AQGs Unit

PM2.5
annual 10 5 µg/m3

24-houra 25 15 µg/m3

PM10
annual 20 15 µg/m3

24-houra 50 45 µg/m3

O3
peak seasonb - 60 µg/m3

8-houra 100 100 µg/m3

NO2
annual 40 10 µg/m3

24-houra - 25 µg/m3

SO2 24-houra 20 40 µg/m3

CO 24-houra - 4 µg/m3

Table 2.1: Air Quality Guidelines of the WHO per emission type of 2005 and 2021. a: 99th percentile (i.e. 34 exceedance-days per year),
b: average of daily maximum 8-hour mean O3 concentration in the six consecutive months with the highest six-month running-

average O3 concentration.

mug/m3 in traffic dense areas. Since 2017 there has been no exceedance of the EU guidelines. The numbers
are derived from the Luchtmeetnet initiative [17] where the measurements of validated ground stations are
published near real-time.

Figure 2.1: Yearly averages of daily NO2 µg/m3 in the Netherlands in regional, urban and traffic dense locations from 1993-2023. Since
2017 there has been no exceedance of the European Union guidelines of 40 µg/m3. The trend reaches towards WHO AQGs of 10 µg/m3

in 2030. Source: RIVM[18]

2.3. Relevant Literature
2.3.1. About Land Use Regression
There have been methods to estimate emissions for a certain area. These methods start with registering emis-
sions by stations or samples for a certain period to obtain averages of emissions near highways, urban areas,
industry sites and more. Then these measurements are predicted using Land Use Regression (LUR) models,
which learn dependencies on geographical features such as proximity to highways, population density, and
industrial areas, as shown in Figure 2.2. When model performance is deemed satisfactory, it can be used for
the estimation of emissions in areas where no measurements are taken.
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Figure 2.2: A schematic illustration of how eight different geographical features on a location, of which four areal and four
distance-based features. The features are used to predict some emission or concentration in Land Use Regression models. From:[19]

2.3.2. Development and Usage of Vision-Language Models
The research of Radford [20] ’Contrastive Language-Image Pre-training’ (CLIP) combined text- and image-
encoders with Large Language Models (LLMs) to bridge the gap between textual and visual data comprehen-
sion. Unlike traditional image classification datasets that only predict on a set of predefined labels, such as
CIFAR-10/100[21], the model builds a conceptual understanding of the 400 million image-text pairs and thus
also describes images on unseen topics, known as zero-shot learning.

Improvements in the area of interest— counting objects and analysing of satellite images— have been made
by the research of Liu [22] with ’RemoteCLIP’. Their model outperforms the CLIP baseline by 10% on average
on 9 out of 12 downstream datasets for remote sensing, datasets containing images obtained by satellites or
unmanned aerial vehicles (UAVs). To further improve on their model, they state that larger models, larger
datasets, and higher data quality are issues to address.

Ever since, there have been rapid developments in Vision Language Models (VMLs) and new usecases were
unlocked. For example, Pan [23] uses VLMs to extract information from satellite and street-view images for
housing-attributes in a real estate setting. Or the research of Roberts [24] classifies aerial images to be used for
detection of deforestation or land-use planning. A different approach is presented by Steininger [25], which
uses aerial images directly to build a deep-learning model for estimating air pollution on that scene.

For this research, the model used should be capable of analysing aerial clip-shots of industrial areas. There-
fore, it is preferable that the model excels in object detection from real-world satellite-like images, counting
of objects, reading text from POIs, whilst not losing its knowledge on gauging emissions.

One of the features relevant for the estimation of NOx emission estimation is population density [9]. The fea-
ture is, in combination with other LUR features, an expression of traffic intensity, traffic load, transportation
of goods, energy production, commercial activity, and more.



3
Data Insights

Now that the context of LUR modelling and emissions has been set, a description of several datasets forming
the benchmark dataset is presented.

3.1. Emission data by the RIVM
It is decided to train the LUR models on the RIVM emission data of 2022 spanning the entirety of the Nether-
lands with a 1km2 resolution. The data are considered of high quality due to its build-up from measurements,
scientific research and environmental annual reports. An estimate on annual total NOx emissions with Monte
Carlo simulations results in a 95% confidence interval relative to the mean of 19% [26]. Thus, when total emis-
sions are estimated at 100, the actual emissions are likely to be in the range of 90,5 and 109,5.

3.1.1. Creators of the data
The RIVM publishes registrations on 375 different emissions, such as NOx, from Dutch sources of each year,
which is commissioned by the ministries of I&W1, KGG2, and LVVN3. The collaboration involves CBS4, PBL5,
WUR 6, and Deltares7, led by the RIVM [8]. Besides these, different institutions provide other relevant infor-
mation, such as Rijkswaterstaat8 on traffic and the road network. The involvement of all these contractors
and institutes highlights both the importance and complexity of this matter.

The construction of the result involves a total of seven task forces, each responsible for a specific sector: LU-
LUCF9, ENINA10, VenV11, MEWAT12,WESP13, and TRV14.[27] The task-forces are each responsible for:

• Calculating emissions using the best available methodologies based on the results of scientific research.

• Determining necessary methodological changes based on new (inter)national scientific insights.

• Quality control of data in the relevant work fields.

• Jointly approving the data under the responsibility of the task-force chairperson.

• Annually updating methodology reports.

• Defining necessary research to maintain and/or improve the quality of emission calculations.

1Infrastructuur en Waterstaat, Infrastructure and Water Management
2Klimaat en Groene Groei, Climate Policy and Green Growth
3Landbouw, Visserij, Voedselzekerheid en Natuur; Agriculture, Fisheries, Food Security, and Nature
4Centraal Bureau voor de Statistiek, Statistics Netherlands
5Planbureau voor de Leefomgeving, Environmental Assessment Agency
6Wageningen University & Research
7Dutch knowledge institute for water and the subsurface
8Executive agency of I&W
9Land Use, Land Use Change, and Forestry

10Energie, Industrie en Afval; Energy, Industry, and Waste
11Verkeer en Vervoer, Traffic and Transport
12Methodeontwikkeling Emissies Water, Method Development for Water Emissions
13Werkgroep Servicebedrijven en Productgebruik, Working Group Service Companies and Product Use
14Taakgroep Ruimtelijke Verdeling, Spatial Distribution
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3.1.2. Construction of the Data
Each year, the emissions of year 1990 up to year t-2 are presented based on the most up to date knowledge
on models and data. One of the reasons of this delay is caused by the requirement of large companies to
report their digital Environmental Annual Report (elektronisch Mulieujaarverlag, eMJV), which is part of the
European-PRTR registration[10]. These statements are gathered and audited by the RIVM and used in the
construction of annual emission data. The threshold for companies having to report their emissions has
been set such that approximately 85%-90% of emissions from companies should be captured by the selected
group. The remaining percentages for companies are estimated by scientific methods based on activity data
and emission factors.

Besides the emissions from these companies, the task-forces estimate emissions from other sources. This is
an accumulation of very detailed emission sources that range from energy usage of passenger and railway
traffic, to airport movements, to cold engine starts, to waste incineration, to inland shipping and wood burn-
ing[28]. Here, not all aspects are covered, but one example will be given to provide an insight in the method-
ology that the task-forces apply. One of the determining factors of NOx is combustion engines running on
fossil fuels. The RIVM distinguishes between traffic of passenger cars, public transport, construction machin-
ery and more[29]. The passenger cars traffic itself, is divided into six categories based on maximum speed
and traffic type which is obtained by the NWB15. The traffic intensity is obtained from the DatMobility, which
itself is based on the road network in combination with the research of ODiN by CBS taking into account the
population density and locations of employment. This results in a distribution grid for the specific categories,
for which the total NOx emission estimations will be allocated to, of which two out of six categories are shown
in Figure 3.1. All these distribution grids combined with emission factors of fuel consumption per car type
and car usage (derived by TNO16[30]) result in a final emission layer of NOx from the road network annually.

Figure 3.1: Two distributions keys on NOx emissions per 1km2 for the light traffic category on roads with <60km/h and on roads for
>=100km/h, constructed by the RIVM methodology. Source:[29]

15Nationaal Wegenbestand, National Road-network-reference
16Nederlandse organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek, Dutch Organisation of Applied-Scientific Research
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This example only provides a sketch on one of the layers constructed by a single task force, which again
highlights the complexity and level of detail that is captured in the data. Eventually, all the results of these
layers are gathered and reported in a document as well as an accessible dashboard[8].

The highest resolution of emission data is by square kilometre and fits to RD-coordinates17, formalised by
the NCG18. In this coordinate reference system (CRS, EPSG:28992) units are steps of 1 km, which makes the
Netherlands range from 0 to 280 on x-coordinates, and from 300 to 625 in y-coordinates. Including the Ex-
clusive Economic Zone (EEZ), the coordinates range from -40 to 280 and 300 to 860 for x- and y-coordinates
respectively.

3.1.3. Analysis of the RIVM Emission Data
As of February 2025, the most recent data of emissions in The Netherlands with a resolution of 1km2 is on the
year 2022. Since the data are massively rightly skewed, a log10 transformation of the emission data provides
better visualisations of the data in Figure 3.2 and Figure 3.3.

A summary of the data is shown in Table 3.1. Because later in the research the scope is narrowed down to
industrial facilities, it decided to only train models on the land data-points and discard the sea subset.

Set Count Mean Std. Min 25% 50% 75% Max

Total NOx (kg/km2/y) 99.698 2.993 18.087 0 159 1.002 2.809 2.686.139
log10(NOx) 99.698 2,85 0,80 0 2,20 3,00 3,45 6,43

Land NOx (kg/km2/y) 42.323 5.182 27.479 0 1.140 2.069 3.813 2.686.139
log10(NOx) 42.323 3,23 0,72 0 3,06 3,32 3,58 6,43

Sea NOx (kg/km2/y) 57.375 1.379 2.303 0 105 249 1.600 20.155
log10(NOx) 57.375 2,57 0,74 0 2,03 2,40 3,20 4,30

Table 3.1: Summary statistics for NOx and log10(NOx) emissions for total coverage and separated into land an sea surface subsets.
Percentage columns denote quantile values.

Figure 3.2: The distribution of logged NOx emissions of 2022 reveals a difference between land and sea emissions per 1km2 squares.

17Rijksdriehoekscoordinaten, National Triangulation Coordinates
18Nederlands Centrum voor Geodesie en Geo-Informatica, Netherlands Centre for Geodesy and Geo-Information
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Figure 3.3: Logged NOx emissions of 2022 in the Netherlands. Red border splits between land and sea subsets. The map reveals
shipping routes of maritime activities with its connection points to the port of Amsterdam, Rotterdam, and Antwerp. Likewise, the road

network is clearly visible. The axes are meters in the RD-coordinate system. Data source: RIVM[8]
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3.2. Population Density
The population count per square kilometre was obtained from a dataset at a resolution of 400m stored in a
Vector H3 hexagons format with global coverage[31]. The dataset was obtained by a fusion of the Global Hu-
man Settlement Layer (GHSL), Facebook, Microsoft Buildings, Copernicus Global Land Service Land Cover,
Land Information New Zealand, and OpenStreetMap data. The hexagons have been mapped by equation
(3.1) to RD-coordinates by intersection of geometric shapes between hexagons and squares, as illustrated in
Figure 3.4.

Ps =
∑

h∈H

(
Ah ∩As

Ah
·Ph

)
(3.1)

where Ps is the total population of square s, Ph is the population of hexagon h, Ah ∩As is the intersection area
between hexagon h and square s, Ah is the area of a full hexagon, and H is the set of intersecting hexagons
with square s.

Figure 3.4: Subset of the Netherlands that illustrates the mapping of the population count from the original data in hexagons to the
RD-coordinate 1km2. The axes denote RD-coordinates which is used for the emission-registration.

3.3. Maritime Routing Data
Besides the emissions of vehicles on the road network, the Netherlands has a large network of maritime trans-
portation and access entries of the ports of Amsterdam, Rotterdam and Antwerp. Shipping is an activity that
still relies massively on the burning of fossil fuels. Two datasets from PDOK19 have been used to obtain the
maritime routes. Navigability is classified from 0 to VI and is determined by the CEMT20 shown in Table 3.2.
The shipping routes on sea have been mapped to the VIc class, one that allows for the largest ships to navigate.
Figure 3.5 shows the shipping routes obtained from the datasets. Each meter of shipping lane class has been
projected to the corresponding 1km2 squares.

19Publieke Dienstverlening Op de Kaart , Public Service On Charts, "Vaarweg Netwerk Data Service-bevaarbaarheid" has been used for
inland routes, and "Nationaal Wegen Bestand - Vaarwegen" has been used for routes at sea.

20Conférence Européenne des Ministres des Transport
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Figure 3.5: Display of the maritime routes in the Netherlands classified by CEMT categories. Data source: PDOK
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CEMT Classification Shiptype
0 Small vessels and recreational shipping
I Spits

II Kempenaar
III Dortmund - Eemskanaal ship
IV Rhine-Herne canal ship, Single push-tow unit
Va Large Rhine ship, Single push-tow unit
Vb Two-barge push-tow unit (long formation)

VIa Two-barge push-tow unit (wide formation)
VIb Four-barge push-tow unit
VIc Six-barge push-tow unit

Table 3.2: CEMT classification standards for accessibility for inland European waterways. Source:[32]

3.4. Open Street Map Data
3.4.1. Mapping the World
The largest and most complex data-source used is obtained from Open Street Map [33]. This is an online
database and map of detailed attributes which is built and kept up to date by a community of more than
40.000 monthly active users. The data contains features to be expected such as roads, land-uses, buildings,
railways, but also more detailed amenities like waste-baskets, windmills, bus-stops and traffic-lights. The
objects on the map are one of three geometrical types; node, representing a point in space, way, representing
lines and areas, or relation, representing a set of nodes and/or ways. In total, the dataset contains almost
9 ·109 nodes, 1 ·109 ways and 1 ·107 relations. Nowadays around 2 ·106 nodes and 2 ·105 ways are added each
day to the database, resulting in new objects or increased precision in existing objects [34]. Additionally, each
object has one or more tags which is a combination of a key and a value and describe an object. As of February
2025 there are about 13 ·103 frequently used tags[35].

For illustration, Figure 3.6 shows a way object part of the A7 highway, listing detailed tags about the number
of lanes, routing information, speed limits and surface type. Figure 3.7 shows another way object, the indus-
trial complex of the Enecogen power plant in Europoort Rotterdam, listing address tags, but more important:
energy output in Megawatts by gas combustion. Although this energy output might not be accurate and up-
to-date, it is an indicator of the capacity of this plant. It must be noted that an energy output tag is provided
for some energy plants only, and thus not different types of industrial activities.

Objects in OSM are created and updated through an proposal process, which allows different users to validate
and update changes in objects or tags. It has to be noted that the database is continuously improving, and
thus not always factual. Once changes are approved by consensus between some users (8 votes and at least
75% approval rate), they are added to a temporary changeset which will eventually be added to the database.
This results in active and inactive versions of the database, allowing the tracking of changes in objects or
locations over time. The complete active dataset stores around 2.000 GB of information.

In the Netherlands, the OSM data is of great quality due to its many users. When using the map elsewhere
one has to keep in mind that the completeness of OSM map objects is highest in western countries, mostly
European. However, according to a research by Zhou [36], countries with low coverage still have high quality
in objects.
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Figure 3.6: Illustration of an OpenStreetMap way object, part of the A7 highway, with 14 tags providing information about names, lanes,
speed limits etc. The tag ’highway:motorway’ stores the geometric information with a set of nodes. Additionally relations to which the

object belongs to are shown. Hyperlinks point to different versions, tag usages, instances and relations.

Figure 3.7: Illustration of an OpenStreetMap way object, the Enecogen power plant in Europoort Rotterdam, with 15 tags providing
information about names, address, power plant capacity and energy source. The tag ’landuse:industrial’ stores the geometric

information with a set of nodes.



3.4. Open Street Map Data 14

3.4.2. Which data to collect?
For the estimation of NOx emissions by LUR, one requires features of high quality that will likely correlate
with emission sources. The collection of OSM objects in a certain square km2 will be aggregated into features
representing area, length, or count on a certain tag. For visualisation reasons only, they have been separated
into six tag-topics. The descriptions of the topics traffic, traffic-related, industry, buildings, port, and land-
use are given below. The complete list of tags used is presented in the Appendix A.

Since traffic is one of the most emitting sectors as seen in 1.1, the road network should be represented in the
dataset. OSM provides twelve distinct types of roads for vehicles under the tag key ’highway’ with tag values
such as ’motorway’ ,’secondary’, ’residential’, ’motorway_link’, ’railway’ and ’unclassified’, see Figure 3.8. For
each type, the length is multiplied by the number of lanes to obtain length features for 1 km2 squares.

Figure 3.8: An example of OpenStreetMap feature retrieval on the tag-topic ’roads’ for a 1km2 square in Purmerend.

Besides the road network, extra traffic related features are interesting, since they reveal the locations of traf-
fic congestions and traffic in acceleration and/or idle state. This is important since combustion engines
emit more when running in non-ideal states, by Zhang and Johnson [37], [38]. Therefore objects like ’traf-
fic_signals’, ’parking_space’, ’shop:car’, and ’bus_stop’ are gathered in their own tag-topic, see Figure 3.9.

Figure 3.9: An example of OpenStreetMap feature retrieval on the tag-topic ’road related’ for a 1km2 square in Purmerend.

Another sector responsible for high emissions is industry, which generates power, either for production of
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goods or for consumption by households, often relying on fossil fuels. The tag-topic ’industry’ contains fea-
tures such as ’power:plant’, ’man_made:chimney’, and ’building:industrial’, see Figure 3.10

Figure 3.10: An example of OpenStreetMap feature retrieval on the tag-topic ’industrial’ for a 1km2 square located at the Tata Steel
IJmuiden factory.

Features like ’building:commercial’ and ’building:retail’ might have an effect on traffic density aside from the
’population’ counts together with infrastructural features. See Figure 3.11 for an example of these features.

Figure 3.11: An example of OpenStreetMap feature retrieval on the tag-topic ’building’ for a 1km2 square located around the city centre
of Purmerend.
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Besides transportation on land there is transportation over water both inland and outland, together with activ-
ities in ports. This means that the port tag-topic contains features like ’man_made:pier’,’man_made:goods_conveyor’,
’man_made:pipeline’, and ’amenity:ferry_terminal’, see Figure 3.12.

Figure 3.12: An example of OpenStreetMap feature retrieval on the tag-topic ’port’ for a 1km2 square located at the Maasvlakte, Port of
Rotterdam.

Finally a landuse tag-topic is created to compute areas on tags such as ’landuse:construction’,’landuse:residential’,
’landuse:farmland’ and ’landuse:forest’.

Figure 3.13: An example of OpenStreetMap feature retrieval on the tag-topic ’landuse’ for a 1km2 square in Purmerend.
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3.4.3. OSM Feature Creation
Since not all objects that are returned by the API are required, or in the required format, some functionalities
have been built in. For reproducibility on each of the functionalities, see the respective implementation
settings in Appendix A

Filtering. Some features retrieve too many objects. For example ’building:yes’ is labelled to some industrial
buildings, but also to garden sheds. The aggregated area does not distinguish this difference. To make the
’building:yes’ feature more suitable for industrial purposes, it is decided to filter out single objects below a
certain threshold.

Overlap Resolving. Some objects pointing to certain locations overlap. For example the tag ’landuse:industrial’
is allocated to industrial areas, but in some cases also to industrial facilities belonging to this industrial area.
This means that any smaller object is subtracted from larger objects such that the smaller area is used only
once instead of twice.

Tag Setting. When retrieving an object based on a single tag, such as ’power:plant’, many more tags could
belong to this object such as ’plant_source:gas’ as seen in Figure 3.7. First, the objects are given a simple
tag based on the order of importance. This importance makes sure that when an object has more tags, the
more detailed tag is selected (e.g. ’industrial:refinery’ is prioritised over ’landuse:industrial’ ). Then, several
objects are further specified into a final tag by a secondary tag of the object. For example, objects having the
’power:plant’ tag often come with the tag ’plant_source’, which makes the final tag ’power:plant_<source>’.
Resulting tags could become ’power:plant_gas’, ’power:plant_waste’ or ’power:plant_solar’ etc.

Tag Remapping. Since some tags differ slightly in name, they are remapped to existing tags.

Object Weighting. This is a functionality that reweights objects based on certain secondary tags belonging
to objects, such as ’lanes=2’ of ’highway:motorway’. For now, this is done by multiplying the object length by
’lanes’.

Object Splitting. This functionality ensures that the energy output is distributed proportionally over differ-
ent km2 squares when an object spans more than one grid square. For example a ’power:plant’ object with
’plant:output:electricity=736MW ’ that overlaps two grid squares will have its output divided proportionally to
the area of the facility within each grid.

3.5. Final Benchmark Dataset Creation
The final dataset is a spatial join on all 1 km2 squares with all datasets below:

• RD Coordinates, containing geographic information about 1 km2 squares,

• RIVM emission data, containing emissions for each 1 km2 square in 2022,

• Population data, containing population count on each 1 km2 square,

• Maritime data, containing maritime routes on sea and land for each 1 km2 square,

• OpenStreetMap features, containing objects aggregated on area, length or count for each 1 km2 square.

This dataset is used as a benchmark dataset on which the VLM will indirectly make alterations. All 139 area,
19 length, 12 count features, 10 maritime, and the single population features have coverage on all the 42.323
grids. The 19 MW columns affect only a few grids, at most 25.

Figure 3.14 shows features correlated with NOx emissions using the Kendall-correlation. The strongest fea-
tures are related to energy, urban, and industrial features. At first glance, the scatter-plots appear almost
exponentially decreasing, not suggesting positive relationships. However, the correlations are explained by
patterns in the lower ranges of the data, shown in Figure 3.15, where the y-axes are limited to the 97th per-
centile of NOx emissions. This illustrates why simple bivariate inspection can be misleading and why ad-
vanced modelling approaches are required to uncover meaningful relationships.
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Figure 3.14: The correlation matrix for top 9 features on the benchmark dataset sorted on absolute values of correlation with target. The
non-parametric Kendall is used since the features are highly rightly skewed. On the y-axis a features count is shown.

Figure 3.15: Scatter-plots on the Top 9 Kendall-correlated features on NOx of the benchmark dataset.



4
Land Use Regression

The possible improvements by the VLM enhanced dataset will be assessed by several models; Random Forest
since it is a model used in many LUR researches, Histogram-XGBoost since it is another sophisticated tree
ensemble model, and Elastic-Net for displaying the gains of tree ensemble models. The selection of these
different types of models should provide insight in what kind of models are better at alleviating the enhanced
data that is created through the usage of VLMs. A brief explanation of their function follows to support intu-
itive understanding. Finally, the implementation of the training is outlined.

4.1. From Decision Trees to Gradient Boosting Trees
Elastic Net is a regularised Linear Regression model which combines L1 regularization (Lasso Regression) and
L2 regularization (Ridge Regression). The first method adds a penalty for the sum of absolute coefficients,
tending to filter out non-predicting features. The second method adds a penalty for the sum of squares of
coefficients, reducing the size of large coefficients. Elastic Net is then a hybrid, adding L1 and L2 penalties
with strength λ, and a L1-L2 proportion of α, resulting in the loss function described by Equation 4.1.

LossElasticNet =
m∑

i=1
(yi − ŷi )2 +λ

(
[α]

n∑
j=1

|β j |+ [1−α]
n∑

j=1
β2

j

)
, where λ ∈ [0,∞),α ∈ [0,1] (4.1)

Decision Tree is a model that partitions the input space into regions by binary splits based on any feature
of choice. The model could be used for classification, as shown in Figure 4.1, and regression. An upside-
down tree-like structure separates the dataset starting from the root node through decision nodes down to
leaf nodes. A collection of data-points in a leaf is used for the classification or regression of unseen samples,
for example by selecting the majority class or average value, respectively. Training the DT on a training set
involves determining the decision variables at each binary split, the number of leaves allowed, the depth of
the tree, etc. For a full description of DTs consult the work of Leo [39] and Bishop [40].

Random Forest is a so-called tree ensemble model. This is a collection of Decision Trees, in the order of hun-
dreds or thousands, hence a Forest, that aggregate the predictions of all separate trees into a final prediction.
The method prevents overfitting twofold. First, a subset of predictors is sampled for each tree, resulting in
different estimations per tree. Secondly, a bootstrapping technique is used that samples a random subset of
the data on which a tree is built. Typically 67% of the dataset is used to build the tree, and the remaining
33% is used to calculate the Out Of Bag (OOB) error. This results in a built-in method prevents overfitting, see
Breiman [41] and Fife [42].

Gradient Boosting could be seen as a more sophisticated version of a Random Forest model, which does not
outperform an RF by definition. It builds not just a collection of trees independently, but sequentially, where
a new tree is based on errors of previous tree created and thereby complements previous predictions. The
trees are built with respect to a loss function, allowing for gradient computations for faster convergence to an
optimum. Consider Chen’s work for a full explanation [43].

Histogram-based Gradient Boosting Regression Tree is an adaptation to the Gradient Boosting Regression
Tree structure available in the scikit-learn library [44] which is recommended for larger datasets (n > 10.000).
It uses a smaller memory by placing each feature instance in a bin, which additionally reduces the number of

19
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Figure 4.1: Example of a Decision Tree that partitions a 2D input space for binary classification: blue or red. (left): At each decision
node a binary split is made based on the X1 or X2 value. The leaf nodes of the tree denote the probability of observing a blue class.
(right): A visualisation of the splits by the DT with the data-points in the training set, and the probabilities of observing blue that

coincide with the values in the leaf nodes. New nodes will be classified as blue or red based on these probabilities.

potential binary splitting-points. The model is significantly faster and at least as good as the base model, as
stated by researches of Piotr [45] and Pedregosa [44].

4.1.1. Why Tree Models work for LUR
Tree ensemble methods have proven to be more effective than other traditional models when used for LUR
modelling. Besides being able to capture complex nonlinear relations, the model optimisation algorithm
contains functionalities for the prevention of overfitting. The latter is done by using boosting, bagging, feature
sampling, tree pruning, and more. On top of that, the models allow for usage of different data-types, missing
values, scalability to large datasets, insight in feature importance, and fast model inference.

4.2. Research Implementation
4.2.1. Target Scaling & Model Performance Metrics
Feature scaling is not required for tree ensemble models, thus RF and HGBR, since they bin features based
on order of values, which is not affected by scaling. On the other hand Elastic Net requires feature scaling,
thus a scaler object standardises the training data for this case only. The testdata are scaled using the same
parameters of the scalar per feature obtained from scaling the training data.

On the other hand, a deliberate choice has to be made on whether to transform the target data or not. Since
emission target values are highly positively skewed and sparse in the right tail of the distribution (Fig. 3.2),
the optimisation metrics behave differently on the raw or log-transformed scale. It is decided to train models
twice, once on the original target scale and once on the transformed target scale log10 and compare the model
fits on the original target scale.

In this research, the Root Mean Squared Error loss function (RMSE) will be used for model optimisation (Eq.
4.2). Its selected to emphasise more on larger errors. By rooting, it becomes a more interpretable unit of
NOx/y/km2.

RMSE =
√

1

n
Σn

i=1

(
ytrue − ypredicted

)2 ∈ [0,∞), n: number of observations, y : target value (4.2)

The RMSE measure will be used for the comparison of model performance within this research. Secondly, the
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R2 metric (Eq. 4.3) will be computed to compare with methods outside this of research, as it is often reported
in other research on NOx estimations. When R2 = 0, the model performs equally well as a baseline model
which always predicts the mean y . When R2 = 1, the model performs perfectly, predicting the target data
without errors. When R2 < 0, the model performs worse than the baseline model, subsequently rejecting the
model. The R2 metric is not comparable between models trained on different target scales. Therefore, the
metrics are computed after inverse transformations of log scale predictions, making them comparable on the
original scale.

R2 = 1− (ŷtarget − ŷmodel)
2

(ŷtarget − y)2 ∈ (−∞,1], where y = 1

n

n∑
i=1

yi ,n: number of observations, y : target value. (4.3)

4.2.2. Train-Test Split Creation
All models will be trained on the same 80% of the data and tested once on the remaining 20%, (33.807 train,
8.516 test). Since the data are about spatial objects, the data instances are not independent and identically
distributed, i.e., high population numbers in the surrounding area, likely results in more traffic on roads.
Therefore, the testset will be split based on 4×4 grid blocks, instead of randomly sampling directly. Due to
the imbalanced target (Table 3.1), the grid blocks are sampled by stratified sampling based on the maximum
target value within the grid blocks. This ensures that the sampling of grid blocks is not fully random, but
results in similar distribution of target values between the training and test set. In this research, the square
kilometres are divided into training and test set using strategy=’quantile’ and ’n-bins’=8 to preserve equal bin
sizes, Figure 4.2 shows a part of the result.

Figure 4.2: A section of the 80-20 train-test split created by stratified-sampling. All 1 km2 squares have been grouped to 4×4 chunks,
and binned to one of the 8 target bins, see colour scale. By random sampling of chunks per bin, a test set was created denoted in red.

Hyperparameter selection is performed by employing the Optuna framework, see Section 4.2.4. During train-
ing k-Fold Stratified Cross Validation is used, creating k subsets of the training data where during each fold
one subset acts as validation set. This prevents overfitting the training data as a whole whilst using its en-
tirety. Again, stratified sampling is used to create the k = 5 subsets of the training data with similar distribu-
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tions (strategy=’quantile’,’n-bins’=4 due reduced number of data-points). When the best hyperparameters for
a model are found, a new model instance is trained on the entire training set of 80%.

4.2.3. Test Set Evaluation
The metrics RMSE and R2 computed on the test set are only point estimates, since they are obtained from
a finite sample of the underlying distribution of real emission values. Consequently, the composition of this
sample has a strong influence on the reported metric. A procedure known as bootstrapping, where the test set
is repeatedly resampled with replacement, allows for obtaining uncertainty estimates and enabling statistical
testing. For each resample, the metrics are recalculated, producing a distribution of performance differences.

The differences between a baseline and an alternative model are given by Equation 4.4. Significance is then
assessed by the proportion of bootstrap instances where the difference is in the hypothesized direction. For
metric M, the probability that the baseline model performs better than the alternative is given by Equation
4.5. If p > 0,975, the alternative model is significantly worse based on M. If p < 0,025, the alternative model
is significantly better. When p = 0,5, the baseline and alternative methods are equal based on M.

∆Mb = Mb
basel i ne −Mb

al ter nati ve ,where M : Metric , b = 1,2, ...,B (4.4)

p = Pr(∆M < 0) ≈ 1

B

B∑
b=1

(∆Mb < 0) , for large B (4.5)

Parameter B must be chosen such that the collection of all M converges. Based on the graphs with different
values of B in Figure 4.3, B = 5.000 was selected. This B was also sufficient for the other combinations of
model and dataset.

Figure 4.3: Histograms of computed metrics RMSE and R2 obtained from bootstrapping on the test-set predictions of the HGBR-nox
model trained on the benchmark dataset with different number of samples B.

Bootstrapping on the test set serves a role conceptually similar to cross-validation on the training set: both
approximate variability through repeated resampling. In cross-validation, subsets of the training data are
resampled to estimate how well a model generalises during development. In contrast, test-set bootstrapping
is applied after training to quantify the uncertainty of final performance estimates and to enable significance
testing between models.
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4.2.4. Model Hyperparameter Tuning
All the hyperparameters for the three models are tuned by the Optuna framework [46]. It uses Bayesian op-
timisation to sample promising hyperparameters, resulting in a combination of the best hyperparameters
and model parameters. The hyperparameter ranges were determined through an iterative process, where a
few preliminary trials were used to identify unstable or irrelevant values, after which the search space was
narrowed to focus on plausible regions. All models are trained using 40 trials, after which the best set of
hyperparameters is saved.

Parameter Range / Values Notes
alpha 10−4 – 10.0 (log scale) Regularization strength
L1_ratio 0.0 – 1.0 L1 vs L2 mix
fit_intercept {True, False} Fit intercept flag
selection {cyclic, random} Coordinate descent mode
random_state 5 For reproducibility)

Table 4.1: Hyperparameter search space for ElasticNet

Parameter Range / Values Notes
n_estimators 50 – 500 Number of trees
max_depth 3 – 20 Max tree depth
min_samples_split 2 – 20 Minimum samples to split
min_samples_leaf 1 – 20 Minimum samples per leaf
max_features {sqrt, log2, None} Feature subset strategy
max_leaf_nodes 200 – 1200 Tree complexity control
min_impurity_decrease 0.0 – 1.0 Minimum impurity decrease
bootstrap {True, False} Sampling with replacement
max_samples 0.5 – 1.0 If bootstrap=True
random_state 5 For reproducibility)

Table 4.2: Hyperparameter search space for RandomForestRegressor

Parameter Range / Values Notes
learning_rate 0.01 – 0.2 Step size, sample log scale
max_iter 50 – 500 Number of boosting trees
max_depth 6 – 15 Max depth single tree
max_leaf_nodes 200 – 1000 Max leaves single tree
min_samples_leaf 1 – 50 Minimum samples per leaf
L2_regularization 0.0 – 1.0 L2 penalty
max_features 0.1 – 1.0 Fraction of features
max_bins 128 – 255 Histogram bins
early_stopping True Fixed (enabled)
validation_fraction 0.1 – 0.3 Validation split fraction
tol 10−7 – 10−4 (log scale) Tolerance for stopping
n_iter_no_change 10 Fixed
random_state 5 For reproducibility)

Table 4.3: Hyperparameter search space for HistGradientBoostingRegressor
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Enhanced Land Use Regression

In the previous chapters, the benchmark dataset is built, followed by a brief explanation of the types of mod-
els and the implementation of research. The following chapter addresses how alterations to the benchmark
dataset are generated using a VLM.

5.1. Vision Language Model Selection
Some models are open source meaning that the model parameters and structure are available for analysis.
They allow for running the models locally and even fine-tune to specific tasks. Other models are open data,
providing all the data the models were trained on. Finally, there exist closed-source models, for which the
model structure, training data and parameters are disclosed. Oftentimes these are high performing models
that are only accessible through applications or APIs and thereby trying to protect their advantages.

To compare all kinds of models — LLM, VLM, open-source, closed-source, multi-modal, etc.— benchmark
datasets are created. Typically each benchmark dataset focusses on a specific task such as question answer-
ing, image captioning, ’Optical Character Recognition’ (OCR), object detection, reasoning, relation finding,
etc. Providing an example, the ’Massive Multi-discipline Multimodal Understanding’ (MMMU)[47] is one of
the most comprehensive benchmark datasets. It consists of 11.500 questions from college exams, quizzes,
and textbooks, covering core disciplines such as Engineering, Science, and Medicine. The questions consist
of an image-text pair with multiple-choice options featuring diverse image types such as charts, diagrams,
maps, and chemical structures. The dataset is constructed to test models on skills such as perception, reason-
ing, and knowledge. In February 2025, the leaderboard on accuracy sets Human Expert (High) on top with
an accuracy of 88,6% while the best performing model ’o1’, by OpenAI, achieves an accuracy of 78,2%. By
July 2025 the best performing model is Google’s Gemini 2.5 Pro Deep-Think at an accuracy score of 84,0%,
depicting the active improvements of this subject.

To get an overview of performance by model and benchmark dataset, there exist communities (most preem-
inent Hugging Face[48]) that test and evaluate models. One method is to test VLMs against a collection of
benchmark datasets such as OpenVML Leaderboard[49]. Another method is based on user interaction with
anonymous models and voting such as Arena(Vision)[50] which evaluate the models on unseen prompts,
images, documents, and questions.

At the start of this research the two best performing models on the leaderboard of Arena(Vision) were ver-
sions of OpenAI’s GPT-3 and Google’s Gemini Flash 2.0 model. There was no insight in which documents or
datasets have been used in training these models. It would at least be reasonable to assume for Google to
incorporate trainingdata on its own services such as Google Maps, which contains aerial image understand-
ing. For OpenAI this would have been illegal regarding Google’s policies [51], although a different dataset
could have been used, which, in return, would not have included Google’s point-of-interests. Therefore, this
research uses the Gemini Flash 2.0 model with a knowledge cut-off in June 2024 [52]. The model will be used
through an API and will not be fine-tuned.

24
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5.2. Vision Language Model Deployment
5.2.1. 'Enhancement' Approach
To improve the quality of the OSM data constructed for the benchmark dataset model, several options could
be investigated. Options that come to mind when inspecting Figure 1.1 are traffic and industry related, which
account for 51,8% and 24,2% respectively. Considering the comprehensive coverage of the traffic network,
consisting of more than 18 types including rails and waterways, in combination with population densities,
one could argue that the low hanging fruit has been included for traffic.

While some facilities, such as refineries in Rotterdam, have been extensively tagged by OSM mappers, oth-
ers remain underspecified. For instance, the steel factory of Tata-Steel and the ICL fertilizer facility are not
clearly categorised in terms of their operational use. In general, the geometries are accurately mapped, but
the attribution through tags lacks consistency. For example, both raw material storage sites and concrete
factories may be labelled as ’landuse:industrial’, although the first does not directly emit NOx, whereas the
latter does. This inconsistency motivates why this research investigates the enhancement through the ’lan-
duse:industrial_area’ feature.

In total, 4.629 OSM objects are tagged with ’landuse:industrial’. Many of the objects span an entire industrial
region, see Figure 5.1. Therefore, these objects are partitioned into cadastral parcels with the [53] dataset. An
algorithm is applied to filter only objects with ’reasonable’ sizes and shapes, see Section 5.3.1 for more details.
This is done only for computational and cost reasons and therefore could be omitted. The result is 80.992
parcel objects and thus aerial images that will be processed by the VLM, see Section 5.3.2 for image creations.

In total, the feature ’landuse:industrial_area’ in the benchmark dataset represents an area of 482 km2, which
is 1,14% of the total dataset’s area spanning 42.323 km2. The selected parcel objects for reclassification span
an area of 296 km2, which is 0,7% of the original dataset area. The parcel objects are located in 5.697 of the 1
km2 squares, thus, 13,5% of the benchmark dataset rows will be altered in several columns.

Which columns will be altered is given by a list of tags displayed in Table 5.1. It is a selection made from tags
available by OSM but also new ones, consisting of a wide range of operations whilst not being too extensive.
The selection was guided by the types of companies listed on the site of RIVM displaying emissions [8]. Doc-
umentation on prompting techniques did not provide what number of tags would work best for structured
outputs [54].

In addition to the modifications of the area columns, a new column, NOx_emission_estimate, obtained from
the VLM, is introduced (see Section5.2.2). This feature is generated by the VLM through reasoning on context
it produces. The purpose of adding this feature is to guide the model in distinguishing between facilities with
vastly different emission levels, thereby aiming to improve its ability to predict NOx emissions across several
orders of magnitude. This process of indirectly altering the benchmark dataset will be done four times with
different settings for the VLM, resulting in four ’enhanced’ datasets, more in Section 5.2.2.

amenity:parking industrial:logistics landuse:retail
building:commercial industrial:manufacturing leisure:marina
building:industrial industrial:metal-construction man-made:pier
industrial:asphalt ∗ industrial:port natural:water
industrial:car-terminal ∗ industrial:recycling power:plant-biomass
industrial:cement industrial:wastewater-plant power:plant-coal
industrial:chemical industrial:infrastructure ∗ power:plant-diesel
industrial:dry-bulk landuse:construction power:plant-gas
industrial:fertilizer ∗ landuse:grass shop:car
industrial:liquid-bulk landuse:other ∗ shop:car-repair

Table 5.1: landuse:industrial tags are reclassified by the VLM to one of the following tags above. ∗ non-existing tags in benchmark
dataset.
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Figure 5.1: Red: geometric shape of the ’Westhaven’ OSM object near Amsterdam which is only labelled with landuse:industrial (id:
188873529). The object spans a huge industrial area with many different industrial facilities of which no geometric shape exists in OSM
yet, by inspection: car terminals, warehouses, dry-bulk transport and refineries. Blue: the partitioned OSM object into cadastral parcels,

resulting in a complex collection of geometries that not only divide the facilities but also fragment the facility locations themselves.

5.2.2. About Model Inferencing
The Google Gemini documentation [54] provides prompt engineering guidelines that should improve model
performances, suggesting to (paraphrased):

• provide context on the inputs and overall objective,

• narrow down the focus by step-by-step problem solving,

• provide examples, known as few-shot-prompting,

• add prefixes like "Answer is:", "Examples:", "English text:",

• add confirming patterns, instead of anti patterns,

• aggregate intermediate task answers to a final answer

• provide constraints on output format and size.

The system instruction, provided at the beginning of each model initialisation, will give the model context, an
objective, and ’personality’. This system instruction is used with every prompt following in the conversation.
The system instruction, presented below, declares a role, context, and desired output with constraints.

"""
Role: You are an aerial image analyst classifying industrial parcel landuses and estimating

its direct (not indirect activities outside location) yearly nitrogen-oxide emissions in
kilograms based on industrial attributes visible.

Constraints: You are allowed to come up with any label as long as it is fitting, concise, and
conventional. Each step pairs with some *optional* examples.

About the Image: The image is an aerial view from Google Maps with a magenta highlighted
cadastral parcel. There is space around the highlighted area that could serve as context.

Output: The output is a structured json.
"""

The creation of four alterations mentioned earlier originate from evaluating two different prompts with each
two different model temperature settings. The first aim is to investigate whether providing the VLM with more
steps guides the model to better output. Additionally, the temperature setting is lowered from the default value
of 1,0 to 0,1. A lower temperature makes the VLM output more deterministic —which could be interpreted as
less creative— which might result in different output behaviours. Hence, the four ’enhanced’ datasets created
are named ’steps_1.0’, ’steps_0.1’, ’direct_1.0’, and ’direct_0.1’.
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The first prompt was adjusted by trial and error on a small selection of examples, which resulted in the sev-
eral steps declared. The prompts are linked with a different variable containing the tags listed in Table 5.1,
providing the VLM with a set of options to choose from.

# Prompt with Steps
"""
**Instructions:**
1.**name**: Identify a text label from the image that most probably fits the highlighted

area if it is a facility. The name may be outside the magenta border if there’s a
clear link (e.g., signage, adjacent facilities, surrounding fences). If no name
suffices, set it to "NO_NAME".

*Examples:* "Betoncentrale Van Kamp BV", "NO_NAME", "Tata Steel IJmuiden", etc.
2.**context_features**: List distinct objects and features *outside* the magenta border

for context. Focus on industrial, or infrastructural elements. Do NOT include names
or text from the image.

*Examples:* "cement truck", "road", "storage", "parking lots", "used water access",
"railway", "ore piles", "industrial chimney", "red/brown deposit", etc.

3.**parcel_features**: Now, list distinct objects with size or amount only *inside* the
magenta border.

*Examples:* "mixing drum", "loading bay", "few large storage silos", "warehouse", "low
office building", "large facility", "many silos", etc.

4.**activity_description**: Based on observations from the previous steps, infer and
describe the primary activity occurring within the *highlighted* area.

*Examples:* "production and distribution of concrete", "storage and administration",
"steel smelting and relocation", "navigation pilots harbour", etc.

5.**landuse_tag**: Based on observations from the previous steps, classify the
*highlighted* area’s land use. Choose concise but conventional labels.

6.**NOx_reasoning**: In one sentence, reason about the direct annual NOx emissions for
the highlighted area in kilogram/year. Is it a large heavy energy industry facility
or smaller? etc.

*Examples:* "one of the largest steel facilities, exceptionally high on energy usage",
"industrial but not energy demanding besides office buildings and hangars having low
emissions", etc.

7.**NOx_emission_estimate**: Now with all the above information, estimate the annual NOx
emissions for the highlighted area in kilogram/year.

*Examples:* office buildings: 1, material deposit: 1000, fertilizer production: 14000,
energy plant: 654000, steel factory: 4138000, etc.

"""

The second prompt is created from reducing the first prompt, thus, containing fewer but exact similar steps.

# Prompt with more Direct approach
"""
**Instructions:**
1.**name**: Identify a text label from the image that most probably fits the highlighted

area if it is a facility. The name may be outside the magenta border if there’s a
clear link (e.g., signage, adjacent facilities, surrounding fences). If no name
suffices, set it to "NO_NAME".

*Examples:* "Betoncentrale Van Kamp BV", "NO_NAME", "Tata Steel IJmuiden", etc.
2.**parcel_features**: Now, list distinct objects with size or amount only *inside* the

magenta border.
*Examples:* "mixing drum", "loading bay", "few large storage silos", "warehouse", "low

office building", "large facility", "many silos", etc.
3.**landuse_tag**: Based on observations from the previous steps, classify the

*highlighted* area’s land use. Choose concise but conventional labels.
4.**NOx_emission_estimate**: Now with all the above information, estimate the annual NOx

emissions for the highlighted area in kilogram/year.
*Examples:* office buildings: 1, material deposit: 1000, fertilizer production: 14000,

energy plant: 654000, steel factory: 4138000, etc.
"""
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5.3. Technical details
5.3.1. Parcel Filter Algorithm
It is decided to filter out some peculiarly shaped cadastral parcels to not overload the VLM with too many
images based on difficult geometries. These ’difficult’ parcels mainly consist of public infrastructural spaces
being subdivided into parcels over time, resulting in complex combinations of shapes. These parcels remain
classified as ’landuse:industrial’. Filtering involves the convex-hull of a geometric shape, which is the smallest
periphery on a set of points, see Figure 5.2. Equation 5.1 is used to compute a shape-simplicity metric.

Shape Simplicity = shapearea

convex-hullarea
×

shapeleng ht

convex-hullleng ht
, ∈ (0,1] (5.1)

Figure 5.2: Example of an orange convex-hull geometry of a green geometry shape. A low area ratio between the two geometries — i.e.
much white space — is defined to be more ’complex’.

Figure 5.3 shows an example of what shape-simplicity values for parcels results in. The goal is to filter out the
difficult shaped areas, representing infrastructural areas and other peculiar shapes. Therefore, all parcels with
a shape-simplicity lower than 0,7 were filtered out. To further reduce the number of objects to be reclassified,
all parcels with an area smaller than 1.500 m2 were filtered out. Figure 5.4 illustrates the filtered parcels from
the earlier example. The result is a set of 80.992 parcels that will be reclassification by the VLM.

Figure 5.3: Example of what the shape-simplicity metric by Equation 5.1 results in for some parcels. The objective is to filter out low
values having a more ’complex’ shape, which mainly affects public and infrastructural spaces. OSM id: 6320163.
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Figure 5.4: ’landuse:industrial’ cadastral parcels after filtering on shape-simplicity and area using thresholds of 0.7 and 1.500m2

respectively. These parcels are used for reclassification by the VLM.

5.3.2. Aerial Image Creation
For aerial images, the PDOK ’2022_ortho25’ dataset [53] was used, containing raw images where each pixel
size represents 25x25cm. It is decided to align the image input with the prompt engineering guidelines from
Section 5.2.2. This means that the image will contain context with respect to the parcel, but not too exten-
sive. Therefore, a context-buffer has been added for cases that a parcel’s geometry is just at the edge of a tile,
resulting in more tiles being retrieved and merged. Preventing too much context, a blackout-buffer is added,
which masks out part of the image based on the parcel’s simplified geometry shape. The current buffer is at
0,000.05 geometric degrees, a small shift to buffer and smooth out the geometric shape, only tested for the
Netherlands. The final image is clipped to contain limited blacked out parts as possible.

In short, creating an aerial image of a parcel that is used for VLM inferencing involves the following steps:

1. compute, using coordinates, which files are required for the parcel,

2. retrieve tiles from directory or fetch using the API,

3. merge tiles together in one image,

4. draw simplified shape of the parcel’s geometry,

5. draw blackout-buffer around the context window,

6. reshape image with minimal black area.

Figure 5.5 depicts the results of step 2, showing what tiles have been fetched. Figure 5.6 shows the result of
steps 3 to 6. The latter image is input for the VLM which will be used to reclassify the area of the original
parcel.
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Figure 5.5: Tiles for a single parcel that will be merged. On top their corresponding tile-coordinates. OSM id: 223962763. Tiles source
PDOK [53]

Figure 5.6: The resulting image of merging, drawing and reshaping that will be used as input for the VLM.



6
Results

First, results are presented on outputs of the VLM and how they differ in each of the prompt-temperature
combinations. Then the results on the benchmark datasets are presented, to depict how the different model
types perform. Finally, bootstrapping on the test set will reveal if any significant improvements have been
made by ’enhancing’ the benchmark dataset with a VLM.

6.1. Vision Model Output
Table 6.1 displays four different VLM outputs based on the prompts from Section 5.2.2 and the randomly
selected aerial image in Figure 5.6. It is observed that the VLM is able to retrieve important information from
the image and results in a classification of ’industrial:recycling’ in all four combinations. It must be noted
that VLMs are stochastic and thus outputs change when re-inferencing, especially with higher temperature
settings.

Prompt-
Temperature

Context Parcel Activity Landuse Tag NOx Reasoning NOx
Estimate
(kg/km2/y)

direct_0.1 – scrap metal piles,
cranes, barges, ware-
houses, vehicles,
storage tanks

– industrial:recycling – 2.234

direct_1.0 – large metal scraps,
several cranes, sev-
eral warehouses,
numerous vehicles,
large piles of re-
cycling materials,
barges

– industrial:recycling – 3.128

steps_0.1 adjacent
industrial
buildings,
road, boats,
trees

scrap metal piles, sev-
eral cranes, barges,
warehouse, storage
containers, vehicles

The parcel is used for
metal recycling and
storage, with loading
and unloading activi-
ties from barges.

industrial:recycling The site involves heavy
machinery for moving
and processing scrap
metal, as well as trans-
portation via barges,
leading to moderate NOx
emissions.

3.128

steps_1.0 adjacent
buildings,
barges on
the river,
road

several piles of scrap
metal, storage build-
ing, mobile cranes,
trucks, barges load-
ing/unloading

Metal recycling and
processing, with load-
ing and unloading
activities via barges.

industrial:recycling Recycling facility involves
heavy machinery and
transportation, but lacks
the energy demand of
smelting or chemical
production, leading to
moderately high NOx
emissions.

13.404

Table 6.1: The combinations of ’steps’ and ’direct’ approach with two different temperatures results in four VLM results on one aerial
image, see Figure 5.6.
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6.1.1. Emission estimates
Figure 6.1 displays for each of the prompt-temperature combinations a histogram on ’NOx_emission_estimate’
values for all the 80.992 parcels. To test whether there is significant ’bias’ in prompt-temperature predictions,
a OLS model on all the log10 scaled estimates is fitted (log10_nox_estimate = c(prompt_approach) *
c(temperature)). It is observed that for the ’direct’ prompt, changing the temperature setting does not
significantly change the emission estimates. For the ’steps’ prompt changing the temperature results in sig-
nificant changes: about -13% lower estimates on average for the ’steps_0_1’ combination compared to the
other three combinations. This is visually confirmed by the green histogram, showing a higher count of lower
emission estimates and lower maximum emissions estimates. This is probably because changing the tem-
perature does affect the columns ’Activity’ and ’NOx Reasoning’ (see Table 6.1) the most. Why this results in
lower emission estimates on average is hard to determine without in-depth investigations. For the full OLS fit
see Appendix D.

Figure 6.1: ’NOx_emission_estimates’ histogram by the different prompt-temperature combinations.

Additionally, by visual inspection, there seems to be a bias towards certain numeric values, as shown in Fig-
ure 6.2. There is a tendency towards numbers present in the prompts (1.000, 654.000, 4.138.000) and rounded
numbers (1.000, 1.200, 12.000, 15.000). For both the results created by ’steps_0_1’ and ’steps_1_0’ the max-
imum emission estimate was 4.138.000, which was listed with ’steel factory’ in the prompt. It seems that a
higher temperature results in a modest reduction in bias towards rounded numbers when comparing the
regions of 15.000 ↔ 17.000.
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Figure 6.2: Four graphs displaying parts of the ’NOx_emission_estimate’ histograms. Prompt numbers are present in the prompt used
for instructing the VLM, for which the VLM has a tendency towards for selecting as emission estimates.

6.1.2. Tag Classifications
The classifications by the different prompt-temperature combinations results in some differences as could
be seen in Figure 6.3. It is hard to uncover why the differences exist without verifying the ground truth of
parcels’ land-uses, and the fact that the experiments are performed one time on the same parcels with fixed
prompt-temperature settings. From Figure 6.4 it is observed that he reclassified area is largest for general in-
dustrial land-uses, where ’industrial:logistics’, ’industrial:manufacturing’, and ’building:industrial’ account
for 50% of the total. From Figure 6.5 and Figure 6.6 there are indications that the ’NOx Reasoning’ step (see
Table 6.1) has effect on estimating emissions with more consideration. A clear difference between the two
prompting approaches is observed for the tags ’industrial:metal_construction’, ’building:industrial’, and ’in-
dustrial:cement’, with the variation likely reflecting closer alignment with actual emissions when evaluated
in aggregate.

Figure 6.3: Displaying maximum differences between counts of land-use tags used by the four prompt-temperature settings, relative to
the total number of classified parcels.
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Figure 6.4: Displaying the total area being reclassified from ’landuse:industrial_area’ per land-use tag for each of the
prompt-temperature setting.

Figure 6.5: The total NOx emissions being assigned to each of the land-use tags, relative to the total emissions on all the parcels
reclassified per prompt-temperature setting.

Figure 6.6: The average NOx emissions being assigned to a single parcel of the land-use tags.
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6.2. Models on Benchmark Dataset
All models have been optimised on the RMSE metric with the Optuna framework as described in Section 4.2,
see Appendix B for hyperparameter tuning results.

Table 6.2 presents the results of the metrics for different models trained on the benchmark dataset. The HGBR
model performs best on the evaluation of the pointwise test set (PW) on both the RMSE and R2 metric and
therefore is selected as a baseline. It is observed that models trained on a log-scaled target do not obtain good
fits. Both the RF and EN models are statistically worse than the baseline, and the HGBR is almost.

It could not be concluded that the HGBR model trained on the original scale significantly outperforms the RF
model, but the EN model also does not perform well. Thus, based on the RMSEmean metric, the HGBR model
will represent the benchmark dataset fit when comparing with the ’enhanced’ datasets.

Model Target RMSE PW RMSE 95%-CI RMSE mean R2 PW R2 95%-CI R2 mean Sign.

HGBR log10(nox) 20.593 [7.648 ; 33.433] 18.995 0,13 [0,05 ; 0,49] 0,21 0,87
RF log10(nox) 21.759 [9.992 ; 34.012] 20.235 0,03 [0,01 ; 0,11] 0,04 worse1,0

EN log10(nox) 425.804 [163.787;646.141] 400.625 -373 [-2.308;-48] -603 worse1,0

HGBR nox 20.027 [7.574 ; 32.713] 18.318 0,17 [0,06 ; 0,60] 0,27 baseline
RF nox 20.053 [7.564 ; 32.821] 18.480 0,17 [0,06 ; 0,59] 0,26 0,58
EN nox 23.207 [12.438 ; 32.974] 22.391 -0,29 [-2,16 ; 0,25] -0,35 0,86

Table 6.2: Metrics of fitted models by RMSE optimisation on the benchmark dataset. Metrics on the kg/km2/year scale. The
significance levels pertain to both RMSE and R2, 0,50 is similar to baseline.

Residual plots provide insight into the prediction behaviour of the models. From the graphs in Figures 6.7 and
6.8 it is observed that all models have an upward spread in residuals, showing underestimations on higher
emission grids. The RF model trained on log-scale has constant underestimation of emissions, and the EN
models have massive over-predictions on lower true emissions.

Figure 6.7: Residual graphs of the HGBR-target combinations on the benchmark dataset. A model of higher quality would have points
closer to the red line, minimizing residuals. The spread of residuals increases with higher true emissions, showing underestimations for

both models in high-emission areas.∗The remaining percentile points have been clipped to the boundaries of the graph axes.
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Figure 6.8: Residual graphs of the RF-target and EN-target combinations on the benchmark dataset. A model of higher quality would
have points closer to the red line, minimizing residuals. The spread of residuals increases with higher true emissions, showing

underestimations for both models in high-emission areas. ∗The remaining percentile points have been clipped to the boundaries of the
graph axes.



6.2. Models on Benchmark Dataset 37

Figure 6.9: Predicted vs. True NOx plot of the best fitting model on the benchmark dataset: HGBR trained on the NOx scale. Points on
the red line would be a perfect prediction.∗The remaining percentile points have been clipped to the boundaries of the graph axes.

From the graph in Figure 6.9 it is even clearer that the best model structurally underestimates the high emis-
sion values. One reason for the underestimation is the prediction mechanism of Decision Trees, explained
in Section 4.1. Since predictions are obtained by averaging the observed values within terminal nodes, the
predictions are restricted to the range of its set of data points. This in combination with the sparsity of high-
emission km2 areas limits the likelihood of forming terminal nodes with strong predictive power for grids
with exceptionally high emissions. The feature importances presented in Figure 6.10, provide some insight
into the incomprehensible nature of tree ensembles. The feature ’landuse:industrial_area’ which will be ’en-
hanced’ is in the top five important features. Furthermore, it is observed that negative features, with respect
to direct NOx emission, have influence on prediction, such as ’generator:electricity:wind’, ’natural:water’ and
’landuse:grass’. The top 15 features account for 66% of accumulated feature importance.

Figure 6.10: This graph shows the relative feature importances of the best-fitting model on the benchmark dataset, computed using
permutation importance (features are randomly shuffled row-wise to measure the impact on predictive performance) and normalised

across all features.
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6.3. Models on VLM 'enhanced'Dataset
The training of models on the four newly created ’enhanced’ datasets results in similar model fit character-
istics as with the ’benchmark’ dataset. Therefore, only the results on the best performing models of each
’enhanced’ dataset are presented in Table 6.3. Again, these models have been selected based on the lowest
bootstrapped mean RMSE on the test-set of size 8.516. All selected models were trained on the kg/km2/year
scale.

None of the models trained on the ’enhanced’ datasets significantly outperform the baseline HGBR model
trained on the benchmark dataset. The best performing model is an HGBR model trained on the ’direct_1.0’
dataset regarding the RMSEmean metric. There remains underestimation of higher emissions in all fits, see
Figure C.1 in Appendix .

Dataset Model RMSE PW RMSE 95%-CI RMSE mean R2 PW R2 95%-CI R2 mean Sign.

benchmark HGBR 20.027 [ 7.574 ; 32.713] 18.318 0,17 [ 0,06 ; 0,60] 0,27 baseline

direct_0.1 HGBR 19.468 [11.081 ; 28.245] 18.760 0,22 [-0,81 ; 0,40] 0,08 0,47
direct_1.0 HGBR 19.345 [ 8.268 ; 30.872] 17.762 0,23 [ 0,15 ; 0,54] 0,28 0,36
steps_0.1 RF 18.629 [ 9.755 ; 28.860] 17.965 0,29 [-0,51 ; 0,44] 0,19 0,41
steps_1.0 HGBR 20.209 [ 7.801 ; 32.876] 18.426 0,16 [ 0,05 ; 0,57] 0,25 0,86

Table 6.3: Comparison between best fitted models by RMSE optimisation on different datasets. Dataset: either the benchmark or a VLM
’enhanced’dataset, Metrics on the kg/km2/y scale.

Changes in the feature importances, see Figure 6.11, with the newly added feature ’NOx_emission_estimate’
prominently on seventh place. The cumulative importance of the top 15 features decreased from 66% to
55%, suggesting that the predictive power is more distributed between features. From Figure 6.13 it becomes
clear that there have been great changes in feature importance order. The ’landuse:industrial’ feature has
lost predictive importance, which might be caused by three features in green and blue which were altered
or added by VLM changes. This is even more extensive on the RF model trained on the ’steps_0.1’ dataset,
introducing five new VLM ’enhanced’ features and ’NOx_emission_estimate’ topping the list.

Figure 6.11: Relative feature importances of the best-fitting model, computed using the models built-in feature importance
(importance derived from how much each split reduces prediction error during training) and normalised across all features.
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Figure 6.12: Comparison of the top 15 feature importances of the best-fitting models on the ’benchmark’ and ’direct_1.0’ datasets.

Figure 6.13: Comparison of the top 15 feature importances of the best-fitting models on the ’benchmark’ and ’step_0.1’ datasets.
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6.4. Improvements
Table 6.4 shows if significant improvements have been made when computing metrics only for set of the 1
km2 squares based on VLM ’enhancement’ or not. It is observed that gains, if there are any, of the models
trained on the ’enhanced’ datasets with respect to the model trained on the ’benchmark’ dataset is driven
by improvements on the ’unenhanced’ grids. It even turns out that the RF model trained on the ’steps_0.1’
dataset is significantly better than the ’unenhanced’ 1 km2 squares baselineu, decreasing the RMSE from
4.949 to 4.330 kg/km2/year and increasing R2 from 0,589 to 0,686. These observations suggest that only the
’unenhanced’ grids benefit from ’enhancing’ grids by the VLM.

Bootstrapped Metrics Pointwise Metrics

Dataset-Model km2 Set RMSE %∆ R2 %∆ Sign. RMSE %∆2 R2 %∆

benchmark ALL 18.318 – 0,269 – BLa 20.027 – 0,174 –
HGBR ENH 48.138 – 0,184 – BLe 53.560 – 0,098 –

UNE 4.949 – 0,589 – BLu 4.971 – 0,590 –

direct_0.1 ALL 18.760 -2,4% 0,078 -71,0% 0,47 19.468 2,8% 0,219 25,9%
HGBR ENH 50.227 -4,3% -0,208 – 0,47 52.118 2,7% 0,146 49,0%

UNE 4.727 4,5% 0,626 6,3% 0,11 4.746 4,5% 0,626 6,1%

direct_1.0 ALL 17.762 3,0% 0,283 5,2% 0,36 19.345 3,4% 0,229 31,6%
HGBR ENH 48.094 0,1% 0,166 -9,8% 0,36 51.789 3,3% 0,157 60,2%

UNE 4.684 5,4% 0,632 7,3% 0,17 4.713 5,2% 0,631 6,9%

steps_0.1 ALL 17.965 1,9% 0,192 -28,6% 0,41 18.629 7,0% 0,285 63,8%
RF ENH 47.840 0,6% -0,049 – 0,42 49.990 6,7% 0,214 118,4%

UNE 4.330 12,5% 0,686 16,5% 0,02 4.337 12,7% 0,688 16,6%

steps_1.0 ALL 18.426 -0,6% 0,253 -5,9% 0,86 20.209 -0,9% 0,159 -8,6%
HGBR ENH 48.996 -1,8% 0,148 -19,6% 0,97 54.256 -1,3% 0,074 -24,5%

UNE 4.642 6,2% 0,638 8,3% 0,23 4.657 6,3% 0,640 8,5%

Table 6.4: Comparison between the model trained on the benchmark dataset and the models trained on the VLM ’enhanced’datasets.
The first two columns denote the dataset and model trained on the kg/km2/year target scale, and set of the 1 km2 grids: ALL are the

8.516 test set km2s, ENH only the 1.127 enhanced km2s, and UNE the 7.389 un-enhanced km2 grids. The ’Point Metrics’ columns
denote metrics, computed pointwise on the testset, and improvements with respect to the model trained on the benchmark dataset.

’Bootstrapped Metric’ columns denote metrics, computed on a set of metrics obtained by bootstrapping the testset, and improvements
with respect to the model trained on the benchmark dataset. BLx mark the baseline on certain km2 sets.

To better understand what might cause the effects, Table 6.5 shows the same columns but computed for the
mean absolute error error (MAE). This is a confirmation of the same effect: ’enhanced’ grids being predicted
worse than ’unenhanced’ grids. However, using this metric, there are two models trained on ’enhanced’
datasets statistically outperforming the model trained on the benchmark dataset.

The marginal improvements in RMSE of the HGBR model trained on the ’direct_1.0’ dataset after bootstrap-
ping are 3,0% on the entire dataset, driven by 5,4% improvement on the ’unenhanced’ grids and only 0,1%
improvement on the ’enhanced’ grids. Figures 6.14 and 6.15 show that the improvement in predictions occurs
along the entire range of true emissions and is similar in specific regions.
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Bootstrapped Metrics

Dataset-Model km2 Set MAE %∆ Sign. Interpr.

benchmark ALL 2.749 – BLa BLa
HGBR ENH 8.177 – BLe BLe

UNE 1.919 – BLu BLu

direct_0.1 ALL 2.826 -2.8% 0,76 –
HGBR ENH 10.031 -22.6% 0,99 worse

UNE 1.734 9.7% 0,00 better

direct_1.0 ALL 2.526 8.1% 0,00 better
HGBR ENH 9.098 -11.2% 1,00 worse

UNE 1.534 20.1% 0,00 better

steps_0.1 ALL 2.602 5.3% 0,09 –
RF ENH 9.179 -12.2% 0,91 –

UNE 1.595 16.9% 0,00 better

steps_1.0 ALL 2.544 7.4% 0,00 better
HGBR ENH 8.692 -6.3% 0,98 worse

UNE 1.608 16.2% 0,00 better

Table 6.5: See caption Figure 6.4, now with the mean absolute error metric (MAE).

Figure 6.14: Both of these graphs are two residual plots combined of the best models trained on the ’benchmark’ and the ’direct_1,0’
datasets. The arrows denote the shifts in predictions (’benchmark’ −→ ’direct_1,0’) on each of the ’VLM-enhanced’ 1 km2 squares, where

a green arrow denotes an improved prediction, and a red arrow is a worsened prediction.

Figure 6.15: See caption of Figure 6.14, now on ’unenhanced’ grids.
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Figure 6.16: Histogram of target NOx emissions split between the enhanced and unenhanced 1 km2 grids.

The ’enhanced’ grids are substantially harder to predict. Across all trained models, their RMSE for ’enhanced’
grids is about 10 times higher than for ’unenhanced’ grids. Since higher emission values are harder to model,
and Figure 6.16 shows the ’enhanced’ set contains mostly high emission values, the ’enhanced’ set results in
much higher errors. This indicates that ’enhanced’ grids represent fundamentally different or more complex
regions.

In addition, the ’enhanced’ subset is also much smaller (≈ 5,7k grids) compared to the ’unenhanced’ subset
(≈ 36,6k grids). Since ’enhanced’ grids form a minority of the dataset, they have less influence during model
training. Models optimise for global improvements and thus sacrifice accuracy on the ’enhanced’ subset over
improvements on the ’unenhanced’ subset.

The effect is visible in RMSE and R2. RMSE penalises large errors more, amplifying poor performance on
’enhanced’ grids. MAE, being less sensitive to large errors, amplifies the effect more clearly. Furthermore, this
metric shows significant differences due to tighter confidence intervals, which confirms the effect.

Depending on the chosen metric, models trained on the VLM ’enhanced’ datasets show statistically signif-
icant improvements or not relative to the model trained on the benchmark dataset. Since this research fo-
cusses on the RMSE as the primary metric, no statistically significant improvement has been made.
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Conclusion

This research demonstrates that enhancing the quality of open source data for Land Use Regression (LUR) by
a Vision Language Model (VLM) is a promising approach. By aerial imagery analysis, the VLM successfully
extracts meaningful features that enable tree ensembles to make improved predictions, as evidenced by the
results on the RIVM NOx 2022 dataset. Models trained on ’enhanced’ datasets achieve improvements on
pointwise RMSE, but lack statistical significance when bootstrapping the testset.

The investigation revealed several critical insights into behaviour of the VLM. Although these models have a
robust capacity to interpret aerial images and infer critical context values, their decision-making processes
remain largely opaque — making it challenging to pinpoint their reasoning driving predictions. Prompt en-
gineering emerged as a critical factor, with subtle adjustments affecting outcomes massively. Introducing
steps that generate reasoning-context enhanced understanding of emissions by the VLM, resulting in better
predictions. Furthermore, a recurring bias toward round numbers or values explicitly mentioned in prompts
was observed in numeric outputs, complicating proper emission estimation. Temperature parameter adjust-
ments mitigated this bias to some extent and improved reasoning, though significant bias persisted.

A notable challenge arose in predicting high emission values, where all trained models constantly underes-
timated true high emissions. This underscores the inherent limitations in capturing extreme values with
Decision Tree-based models. The research approach handled imbalance by creating a train-test split with
stratified sampling, further strategies are needed to increase representation of high-emission grids.

This research lacks a thorough validation on the ground truth of land-use activities of the parcels, and there-
fore no strong claims could be made about the correctness of the VLM output. Nevertheless, the reclassifi-
cation of objects from ’landuse:industrial’ to more specific land uses, together with the introduction of the
new feature ’NOx_emission_estimate’ by the VLM, did influence the models trained on the enhanced data.
Inspecting the feature importances shows that the contribution of the ’NOx_emission_estimate’ was greater
than areal features. The impact of the reclassified area features may also have been affected by the the way
overlap resolving was implemented. Overall, however, these features did not provide the models with suffi-
cient predictive power for the ’enhanced’ grids, which predominantly consisted of high-emission areas.

Although learning to replicate RIVM NOx emissions remains a challenge, the research achieved meaningful
results, demonstrating that open-source data enhanced by a VLM has the potential to complement LUR mod-
elling with a statistically significant difference. The findings establish a promising new direction for accurate
environmental modelling.
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During the course of this research, a number of possible improvements were identified. The following list
presents these, ordered from minor adaptations to substantial modifications and new approaches.

• Create a tailored list from which the VLM can select tags, some tags might be missing, too similar or
redundant.

• Increase the size of parcels being reclassified by the VLM, by lowering the thresholds of filtering, or
including more objects than ’landuse:industrial’. Some outliers in OSM tags were observed.

• Retrieve more or different output features, adapt VLM parameters, and test different VLM models.

• Adapt each prompt per parcel to include additional available information.

• Enable Google Search grounding when inferencing with the VLM, which allows for searching of relevant
information.

• Create multi-level prompts, allowing for follow-up questions based on certain results.

• Explore contributing to OSM, correcting mistakes or improving labels.

• Incorporate more data features emission estimation, like emission reports, weather, or energy usage.

• Get a theoretical understanding of VLM model outputs by testing on a ’ground-truth’ dataset, for exam-
ple the EPRTR dataset [10], and tune a model for specific tasks.

• Build an architecture for a data-driven method of the RIVM approach, including layers based on differ-
ent models.
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A
Open Street Map tags

A.1. Collecting OSM data through an API
To build features for the entire grid of 1km2 squares the python package OSMnx[55] is used, which allows for
downloading geospatial features. The library can connect with different APIs of which the Overpass API is
the official OSM read-only type and serves as an database over the web[56]. The Overpass Turbo application
allows for testing Overpass Query-Language (OQL) for certain objects to get an understanding of what will be
fetched. The OSMnx package simplified the retrieval of information by providing functions that transform a
single line of code into the structured OQL and transform the return file in a GeoPandas ’geodataframe’. This
is a format type that allows for analysis, transformation, and visualisation of the geometric objects queried.

A.2. Queried Tags
To query OpenStreetMap features using the osmnx library, one needs to provide a dict of ’key:value’ tags.
The table below displays the ’key:value’ tags in an organised manner. The ’category’ column could be used to
plot certain topics. The ’type’ column declares what the feature will be transformed to: area, count, or length.
The ’min’ and ’max’ columns are used to filter out single objects based on their area or length. The ’expand-
on-tag’ column is used for fine-tuning ’key:tags’ to ’key:tags<̃expand-on-tag>’, such as ’power:plantc̃oal. The
column ’weight-on-tag’ is used to multiply area or counts by the number of lanes, capacity or other relevant
tags. Finally, the ’importance’ column notes the priority (lower) of that tag compared to others when an OSM
object has multiple tags defined.

importance category key value type min max expand on tag weight on tag

2 industrial industrial refinery area
3 industrial power generator area generator:source
4 industrial power plant area plant:source
5 buildings building retail area
6 buildings building house area
7 buildings building apartments area
8 buildings building school area
9 buildings building greenhouse area
11 buildings building yes area 100
12 industrial abutters industrial length
13 industrial man_made silo count
14 industrial man_made chimney count
15 buildings building industrial area 100
16 buildings building commercial area 100
17 industrial aeroway aerodrome area aerodrome:type
18 landuse landuse commercial area
19 landuse landuse construction area
20 landuse landuse residential area
21 landuse landuse retail area
22 landuse landuse institutional area
... ... ... ... ... ... ... ... ...
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importance category key value type min max expand on tag weight on tag

... ... ... ... ... ... ... ... ...
23 landuse landuse allotment area
24 landuse landuse farmland area
25 landuse landuse farmyard area
26 landuse landuse forest area
27 landuse landuse meadow area
28 landuse natural scrub area
29 landuse landuse grass area
30 landuse natural wood area
31 landuse natural water area
32 landuse natural heath area
33 landuse natural wetland area
37 industrial man_made wastewater_plant area
39 industrial landuse industrial area 50 cargo#product

#industrial
41 port man_made storage_tank count
42 port man_made pier area 10
43 port man_made crane area
44 port amenity ferry_terminal count
45 port leisure marina area 100
46 port route ferry length
47 port attraction boat_ride count
48 port man_made pipeline length
49 port man_made goods_conveyor length
50 port industrial port area cargo
51 road_related amenity parking area capacity
52 road_related amenity parking_space area
53 road_related amenity fuel area
54 road_related amenity parking count
55 road_related amenity charging_station count capacity
56 road_related highway stop count
57 road_related highway traffic_signals count
58 road_related highway bus_stop count
59 road_related highway stop_position count
60 road_related shop car count
61 road_related shop car_repair count
62 road_related highway bus_stop count
63 roads highway motorway length lanes
64 roads highway trunk length lanes
65 roads highway primary length lanes
66 roads highway secondary length lanes
67 roads highway tertiary length lanes
68 roads highway residential length lanes
69 roads highway unclassified length lanes
70 roads highway motorway_link length lanes
81 roads highway trunk_link length lanes
82 roads highway primary_link length lanes
83 roads highway secondary_link length lanes
84 roads highway tertiary_link length lanes
85 roads highway service length lanes
86 roads highway road length lanes
87 roads highway busway length lanes
89 buildings building residential area
102 roads railway rail length
103 landuse landuse orchard area
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A.3. Remapping of some Tags
The table below displays the grouping of tags from remapped to target, which removes duplicate feature
names. The areas are summed to the target variable.

Target Remapped
landuse:industrial~<...>_area
meat slaughterhouse
metal_construction foundry
container container_terminal
wellsite wellsite;works
wastewater_plant man_made:wastewater_plant, industrial:wastewater_plant
wood woodworking, wood_processing, timber, sawmill
gas natural_gas
oil oil_depot
scrap_yard auto_wrecker
dry_bulk sand
recycling waste_processing, junkyard
shipyard boatyard
logistics transport, distributor
medical_supply pharmaceuticals
pumping_station water_distribution, distributor_water
vehicle passengers;vehicle
bakery bakery_products
highway:unclassified_length abutters:industrial_length



B
Optuna Hyperparameter Tuning

Results

The tables below present the results of the hyperparameter-tuning by the Optuna framework of five the mod-
els trained on the different datasets. The best performing model is the model trained on the steps_0.1 dataset,
which is a relatively smaller model, since it contains fewer trees, a ... The other models are relatively ... models
with many

Parameter Range / Values Notes steps_0.1

n_estimators 50 – 500 Number of trees 249
max_depth 3 – 20 Max tree depth 19
min_samples_split 2 – 20 Minimum samples to split 6
min_samples_leaf 1 – 20 Minimum samples per leaf 1
max_features {sqrt, log2, None} Feature subset strategy None
max_leaf_nodes 200 – 100 Tree complexity control 791
min_impurity_decrease 0,0 – 1,0 Minimum impurity decrease 0,643594
bootstrap {True, False} Sampling with replacement True
max_samples 0,5 – 1,0 If bootstrap=True 0,942533

Table B.1: Hyperparameter search space with results for RandomForestRegressor models labelled by dataset trained on.

Parameter Range/Values Notes benchmark direct_1.0 direct_0.1 steps_1.0

learning_rate 0,01 – 0,2 Step size, sample log scale 0,028869 0,030711 0,07775 0,053148
max_iter 50 – 500 Number of boosting trees 426 478 301 305
max_depth 6 – 15 Max depth single tree 10 11 12 8
max_leaf_nodes 200 – 1.000 Max leaves single tree 613 786 646 626
min_samples_leaf 1 – 50 Minimum samples per leaf 9 8 6 5
L2_regularization 0,0 – 1,0 L2 penalty 0,97405 0,155995 0,871578 0,197911
max_features 0,1 – 1,0 Fraction of features 0,591747 0,152275 0,443484 0,518431
max_bins 128 – 255 Histogram bins 150 238 225 187
early_stopping True Fixed (enabled) True True True True
validation_fraction 0,1 – 0,3 Validation split fraction 0,238082 0,220223 0,257581 0,185338
tol 10−7 – 10−4 (log scale) Tolerance for stopping 0,000008 0,000013 0,000029 0,0
n_iter_no_change 10 Fixed 10 10 10 10

Table B.2: Hyperparameter search space with results for HistGradientBoostingRegressor models labelled by dataset trained on.
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C
Model Fit Results

C.1. Enhanced LUR Models

Figure C.1: Predicted vs. True NOx plot of the best fitting model on the ’enhanced’ datasets. Points on the red line would be a perfect
prediction. The ’direct_1.0’ HGBR model performs best on RMSEmean.
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D
VLM output Bias

The following tables describe a OLS model fit on: log10_nox_estimate = c(prompt_approach) * c(temperature).
The goal is to find out how the prompt-temperature combinations differ in NOx emission estimates across
the entire dataset.

Model fit statistics
R2 0,000
Adj, R2 0,000
F-statistic 39,02
Prob(F) 3,37×10−25

Observations 323.977
Residual df 323.973
Log-likelihood −5,9513×105

AIC 1,190×106

BIC 1,190×106

Durbin–Watson 1.667

Term coef std err t p>|t| [0,025 0,975]
Intercept 2,4713 0,005 463,026 0,000 2,461 2,482
c(prompt_name)[T,steps_nox_direct] -0,0608 0,008 -8,060 0,000 -0,076 -0,046
c(temperature)[T,1,0] 0,0133 0,008 1,758 0,079 -0,002 0,028
c(prompt_name)[T,steps_nox_direct]:C(temperature)[T,1,0] 0,0485 0,011 4,545 0,000 0,028 0,069

Table D.1: OLS results for log10 NOx estimates with prompt × temperature interaction,

Dataset by: Pred. % Change CI_low CI_upper CI Lower (%) CI Upper (%)

direct_0,1 296,01 baseline 288,97 303,23 -2,38 2.44
direct_1,0 305,19 3,10 297,93 312,64 0,65 5,62
steps_0,1 257,32 -13,07 251,20 263,60 -15,14 -10,95
steps_1,0 296,66 0,22 289,60 303,89 -2,17 2,66

Table D.2: Back-transformed ’NOx_emission_estimate’ predictions in kg with percent changes relative to baseline. For the direct
approach, there is a minimal effect of increasing the temperature value. For the steps approach, changing the temperature has large

effects, where a lower temperature on average results in lower predictions.
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