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Preface 
 
 
The study Business Mathematics and Informatics at the Vrije Universiteit in 
Amsterdam has to be completed with an internship at a company, research 
facility, or institute. During this internship a real world problem is solved by the 
knowledge gained during the study Business Mathematics and Informatics. 
 
For this internship I worked in the applied statistics department of 
Witteveen+Bos at their headquarters in Deventer. It consisted of the 
improvement of an existing validation model used for the analysis of 
measurement data collected in a sewer system. 
 
I would hereby like to thank Hans Korving and Elke Ottenhoff of the applied 
statistics department of Witteveen+Bos. Without their time, help, and 
enthusiasm this report would not have been possible. I would like to thank 
Wojtek Kowalczyk for his most valuable guidance and comments, and his fast 
replies. Furthermore, I would like to thank all colleagues of Witteveen+Bos who 
have made these past six months a very pleasant and fun period. 
 
 
Jaap de Rue 
 
Deventer, August 2007 
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Management summary 
 
 
(Confidential)
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1 Introduction 
 
 

1.1 Company 
 
 
Witteveen+Bos is a company that provides advice and engineering services for 
projects in the sectors: water, infrastructure, environment, and construction. 
Typical for the method of working of Witteveen+Bos is the multidisciplinary 
project procedure: specialists from different sectors work together on the 
solution of complex assignments. The clients of Witteveen+Bos are 
governments, trade and industry, and different kinds of collaboration 
relationships. Witteveen+Bos serve them from eight offices in the Netherlands 
and from four offices abroad. 
 
Via their work they give shape to society. Witteveen+Bos feel responsible for 
the delivery of reliable solutions for technical and social assignments. Clients 
and society may feel free to comment Witteveen+Bos on that. Employees (also 
Witteveen+Bos’ stakeholders) are able to associate themselves with this 
responsibility awareness. 
 
 

1.2 Background 
 
 
 (Confidential) 
 
 

1.3 Relevance 
 
 
(Confidential) 
 
 

1.4 Value 
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The validation tool is used to answer questions like: “Is the sensor working?”, 
“Are the measurement data reliable?”, “Can the data be used in the reports?”, 
and “Are the data suitable for model calibration?”. The answers to these 
questions are then used by the sewer administrator to gain more certainty in 
locating and the effectivity of planning measures, and to test and increase the 
reliability of the sewer model. Next to that, a good quality control is of great 
importance for the quality of the so-called overflow-reports, as this is demanded 
by the water quality administrator. Furthermore, these overflow-reports are used 
to determine who is to blame in case of calamities. 
 
(Confidential) 
 
Lastly, the quality control of the measurement data can be used to test the 
operational control of the sewer system. For instance, tracing adjustments in the 
tuning of a consort. Although this is not the primary goal of the data control, it 
may be helpful in this way. 
 
 

1.5 Goal 
 
 
The main goal of this internship is to apply Data Mining techniques in order to 
improve the quality control. 
 
To be able to determine whether a measurement is “good”, “questionable”, or 
“fault”, numerous mathematical models can be used. During the internship I will 
apply two Data Mining methods to examine the effect these have on the results 
of the quality control. Since the quality of these measurements is of such high 
importance to the clients of Witteveen+Bos (see paragraph 1.4), it is important 
to determine this quality with as high accuracy as possible. 
 
(Confidential) 
 
 

1.6 Approach 
 
 
The bigger part of this internship will consist of applying the different 
techniques to the data. The first phase however will consist of an extensive data 
exploration. The measurement data will be summarized both numerical and 
graphical and the underlying probability distribution of the data will be studied 
in order to gain more insight into the behaviour of the measurement data. 



Internship end report 

 
 

Page 12 
 

 
After the data exploration is rounded up, an extensive analysis of the correlation 
between the measurement data of the sixteen sensors will be done. The goal of 
this analysis is to discover dependencies in the data. For instance, it is already 
shown that the correlation between the turbidity measurements and the 
precipitation on a four hour time interval is much higher than the correlation of 
the measurements based on the original five minute time interval. The necessary 
functions will be implemented in R (see paragraph 1.8) to calculate the 
correlation of all possible combinations. The goal of this correlation analysis is 
to divide the sixteen sensors into two groups. One group for which holds that the 
sensors have a high correlation, and one group for which holds that the sensors 
have less correlation. This way, comparison is possible between the results 
obtained by the M5P and robust regression. 
 
When the correlation analysis is finished, the M5P and robust regression 
methods will be applied to try and improve the current quality control. After 
these methods are applied, a comparison with the current models will be done in 
order to study the effect these models have on the results of the quality control. 
At last a third technique will be devised, applied and tested to study whether 
faulty sensors can be identified. 
 
 

1.7 Paper organization 
 
 
This first part of the report gives the background of this internship. It is purely of 
an informative and introductory nature. In the second part the results of the data 
analysis are described. The data analysis consists of the numerical and graphical 
summary (chapter 2), the density study (chapter 3), and the correlation study 
(chapter 4). All steps taken, results, and conclusions will be given in the related 
chapters. 
 
The third part of this report (Modelling, Evaluation, and Identification) will 
consist of the application of the two Data Mining techniques (chapters 5 and 6) 
and the evaluation of these techniques (chapter 7). All steps taken, all results, 
and the conclusions will be given in the corresponding chapters. Lastly, a 
technique will be described and applied to the measurement data in order to try 
to identify faulty sensors. The results of this technique will be given in chapter 
8, where the conclusions will also be given. 
 
The last part of this report (Conclusions) will describe all conclusions and 
recommendations that resulted out of this internship. 
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1.8 Programs 
 
 
During this internship, two systems for data analysis will be used. For the first 
three phases, the open source program R will be used. R is a language and 
environment  for statistical computing and graphics. It provides a wide variety 
of statistical and graphical techniques, and is highly extensible. One of R’s 
strengths is the ease with which well-designed publication-quality plots can be 
produced, including mathematical symbols and formulae where needed. 
 
The second program that will be used is Weka. Weka is also open source 
software that contains a collection of machine learning algorithms for data 
mining tasks. The algorithms can either be applied directly to a dataset or called 
from one’s own Java code. Weka contains tools for data pre-processing, 
classification, regression, clustering, association rules, and visualization. It is 
also well-suited for developing new machine learning schemes. 
 
Two classification tasks will be performed to the measurement data in the Weka 
software. To be able to do so, the data will have to be converted to a so-called 
arff format. An arff (Attribute-Relation File Format) file is an ASCII text file 
that describes a list of instances sharing a set of attributes. ARFF files were 
developed by the Machine Learning Project at the University of Waikato for use 
with the Weka software. 
 
ARFF files have two distinct sections. The first section is the Header 
information, which is followed by the Data information. The Header of the 
ARFF file contains the name of the relation, a list of the attributes (the columns 
in the data), and their types. An example of an ARFF file is as follows: 
 
 % 1. Title: Sewer network database 
 % 
 % 2. Sources: 
 % (a) Creator: J.M. de Rue 
 % (b) Donor: City of (Confidential) 
 % (c) Date: May, 2007 
 % 
 
 @RELATION Group1 
 

@ATTRIBUTE WL_sewer2 Numeric 
@ATTRIBUTE WL_sewer3 Numeric 
@ATTRIBUTE WL_sewer5 Numeric 
@ATTRIBUTE WL_surface2 Numeric 
@ATTRIBUTE WL_surface3 Numeric 
@ATTRIBUTE WL_surface4 Numeric 
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@ATTRIBUTE WL_surface6 Numeric 
@ATTRIBUTE Precipitation Numeric 
 
@DATA 
3.0,4.0,8.0,5.0,6.0,13.0,15.0,16.0 
-0.14,-1.46,-1.03,?,?,?,0.6,0.0174 
-0.14,-1.47,-1.03,0.57,0.55,0.55,0.59,.0174 
-0.14,-1.46,-1.03,0.57,0.5413,0.55,0.61,0.0174 
-0.14,-1.46,-1.03,0.57,0.54,0.55,0.61,0.0174 
-0.13,-1.46,-0.98,0.57,0.5484,0.55,0.61,0.0174 
-0.12,-1.47,-0.88,0.57,0.5418,0.5418,0.61,0.0174 
-0.11,-1.45,-0.79,0.57,0.548,0.548,0.61,0.0174 
-0.11,-1.46,-0.72,0.57,0.55,0.55,0.62,0.0174 

 
All missing values, i.e. NaN’s, are represented by a question mark. 
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Part II Data analysis 



Internship end report 

 
 

Page 16 
 



Internship end report 

 
 

Page 17 
 

2 Data summary 
 
 
In this chapter a numerical and graphical summary will be made to gain more 
insight into the measurement values. In the first paragraph the mean, median, 
standard deviation, minimum, maximum, skew ness, and kurtosis of the 
measurement values is calculated and the results will be discussed. In the second 
paragraph, histograms, box plots, and numerous different plots will be generated 
and discussed. 
 
 

2.1 Data 
 
 
(Confidential) 
 
 

2.2 Choice of sensors 
 
 
For this internship, sixteen sensors have been chosen. This group of sensors 
consists of three different types of sensors, namely: sensors that measure the 
water level in the sewer network (type W), sensors that measure the water level 
of the surface water (type Z), sensors that measure the discharge of the water 
(type D), and one sensor that measures the precipitation (N). This choice was 
made after taking a first glance at the data and was made such that multiple 
types of sensors, multiple types of faults in the data, and multiple locations are 
represented.  
 
No turbidity sensors were chosen for this internship. The main reason for this is 
that quality labels still have to be developed for the turbidity measurements, i.e. 
the quality control of turbidity sensors is given as a different internship project. 
 
The measurement data used during these three phases is the data of the months 
January and February. Since the data of the precipitation is largely missing of 
these two months, data of the precipitation in De Bilt is gathered from the 
website of the KNMI. This data was added because precipitation can be of great 
influence to the behaviour of the water levels and other measurements in the 
sewer network. (Confidential) 
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So to make sure that the vectors of measurement values are all of the same 
length, the data of the precipitation was adjusted such that the resulting vector 
contained the measurements of the precipitation every five minutes. This has as 
a side-effect that measurements of other sensors still can only be related to the 
precipitation on a daily basis, i.e. the precipitation is constant during the day, so 
small deviation or extreme values in the measurements of another sensor can not 
be related to the precipitation. This also means that the correlation study might 
lead to less good results wherever the measurement data of the precipitation is 
involved. Still, the precipitation is believed to be of great influence to the 
measurement data of the sewer network, even with measurement values on a 
daily basis instead of a five-minute basis. 
 
Table 1 lists the names, locations, types, and comments of the sixteen sensors. 
Of these sixteen sensors, seven are of type W (water level in the sewer network), 
six are of type Z (water level of the surface water), two are of type D (discharge 
of the water), and one sensor is op type N (precipitation). Names are created for 
the sensors in order to gain clarity on what sensor is being discussed in this 
report. The seven sensors that measure the Water Level in the sewer network are 
named WL_sewer1 - 7, the six sensors that measure the Water Level in the 
surface water are named WL_surface1 - 6, the two sensors that measure the 
discharge of the water are named Discharge1 and 2, and the precipitation sensor 
is called Precipitation. 
 
   

Name Location Type Comments 
WL_sewer1 02.0453 W All values the same 
WL_sewer2 21.1166 W   
WL_sewer3 01.1521 W   
WL_sewer4 05.0136 W Many missing values 
WL_sewer5 13.0208 W   
WL_sewer6 13.0222 W   
WL_sewer7 14.0037 W   

WL_surface1 02.0453 Z All values the same 
WL_surface2 05.0904 Z   
WL_surface3 06.0470 Z   
WL_surface4 06.0738 Z   
WL_surface5 20.0811 Z   
WL_surface6 03.0846 Z   
Discharge1 13.0222 D   
Discharge2 14.0037 D   
Precipitation De Bilt N   

Table 1: Types and locations of sensors 
 



Internship end report 

 
 

Page 19 
 

The sensors are spread out through the sewer network, their location is coded in 
its original sensor name, i.e., sensors WL_sewer1 and WL_surface1, 
WL_sewer6 and Discharge1, and WL_sewer7 and Dischare2 are placed at the 
same location. However, water flows through the sewer network, i.e., from the 
location of one sensor to the location of another sensor. It can thus be possible 
that despite different locations, the measurement values of two sensors have a 
high correlation, taking into account the time delay.  
 
The comments in Table 1 mention the obvious faults in the data when taking a 
first glance at these. The first and eight sensor in the table contain measurement 
data of which the values are all the same, which could mean that the sensors are 
not operating properly, or they are not located at the proper location. 
Furthermore, the measurement data of sensor WL_sewer4 contains a lot (8792 
out of 16992 measurements) of “NaN” values, i.e., missing values. 
 
 
It should be noted here that the original measurement values of the sensors are 
used unless stated otherwise, i.e., in some cases the sums of the measurement 
values of one (or more) hour(s) is taken to gain clarity on the results. In this 
case, it will be stated clearly if and what sums were taken. 
 
 

2.3 Numerical 
 
 
To obtain a first understanding of the measurement data of the sixteen sensors, a 
numerical summary is made. The calculation of the mean, the standard error, the 
median, and the range can provide valuable information about the data. Table 2 
lists the results of the calculations on the measurement data. 
 

Sensor Unit Mean Median St. deviation Min Max 
WL_sewer1 m. to NAP 0,05 0,05 0 0,05 0,05 
WL_sewer2 m. to NAP -0,119 -0,13 0,0587 -0,21 0,62 
WL_sewer3 m. to NAP -1,4681 -1,47 0,0072 -1,49 -1,43 
WL_sewer4 m. to NAP -1,4489 -1,47 0,1414 -1,47 0,2 
WL_sewer5 m. to NAP -0,9971 -1,03 0,0979 -1,04 0,04 
WL_sewer6 m. to NAP -1,4517 -1,8 0,4026 -1,8 0,41 
WL_sewer7 m. to NAP -1,9801 -1,64 0,569 -2,7 -1,08 

WL_surface1 m. to NAP 0,05 0,05 0 0,05 0,05 
WL_surface2 m. to NAP 0,554 0,55 0,0943 0,4726 0,83 
WL_surface3 m. to NAP 0,5448 0,54 0,0752 0,48 0,66 
WL_surface4 m. to NAP 0,5319 0,53 0,0254 0,4644 0,65 
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WL_surface5 m. to NAP 0,2684 0,46 0,3202 -0,33 0,5982 
WL_surface6 m. to NAP 0,5962 0,6 0,0254 0,49 0,69 
Discharge1 m3 per 5 min. 3,714 0 10,6973 0 70,7414 
Discharge2 m3 per 5 min. 0,7351 0 3,3517 0 19,3139 
Precipitation mm. per 5 min. 0,1006 0,0278 0,1577 -0,0035 0,8611 

Table 2: Characteristics of the data 
 
The results for the sensors that measure the water level in the sewer network 
(WL_sewer1 – 7) show that the mean value is low with respect to the range, and 
that the median is close to the mean value. This could mean that there is a large 
number of measurements that are responsible for the distortion of the range. 
Furthermore, the median is somewhat smaller than the mean value, which could 
mean (with the exception of WL_sewer7) that there is a relatively small number 
of large measurement values, i.e., outliers or extreme values. This is emphasized 
by the positive skewness, which is a measure of the asymmetry of the 
probability distribution. A positive skew means that the mass of the 
measurement data is concentrated to the left. The skewness for the measurement 
values of all sensors is given by Table 3, together with the kurtosis which is a 
measure for the peaked ness of the measurement data. The higher the kurtosis, 
the more of the variance is due to infrequent deviations. The high skewness and 
kurtosis for sensors WL_sewer2, WL_sewer4, and WL_sewer5 means that mass 
of the measurement data is concentrated to the left and that it has a very high 
peak and thus very thick tails. The negative value for the skewness of 
WL_sewer7 means the mass of the measurement values is concentrated to the 
right and that there is a relatively small number of small measurement values. 
 

Sensor Skewness Kurtosis 
WL_sewer1 NaN NaN 
WL_sewer2 6,967438 62,73134 
WL_sewer3 0,0602827 2,870637 
WL_sewer4 8,766245 83,94596 
WL_sewer5 6,183808 49,6689 
WL_sewer6 0,3568109 1,260769 
WL_sewer7 -0,4273429 1,271375 

WL_surface1 NaN NaN 
WL_surface2 2,232511 25,70422 
WL_surface3 0,5345028 4,188145 
WL_surface4 0,3859615 3,675442 
WL_surface5 -0,9075874 1,87412 
WL_surface6 0,0627399 3,287606 
Discharge1 3,186569 13,17393 
Discharge2 4,659952 23,4081 
Precipitation 2,463079 10,55633 

Table 3: Skewness and kurtosis of the data 
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The results for the sensors that measure the water level of the surface water 
(WL_surface1 – 6) show that the range of measurement values of sensor 
WL_surface5 is about three to four times bigger than the other ranges and that it 
is the only sensor of this type that has a negative skewness. This could be an 
indication that the measurement values of this sensor contain extreme values. 
 
Furthermore, the results for the discharge meters (Discharge1 - 2) show that the 
standard deviation and range of Discharge1 is far bigger than the standard 
deviation and range of sensor Discharge2, which could indicate that the 
measurement values of sensor Discharge1 contain a number of extreme values. 
In addition to this, the range of sensor Precipitation shows that the minimum 
value is negative, which is not possible. This could indicate that the 
measurement values are biased, or that the sensor is not working properly. 
 
The measurement values of the bigger part of the sensors have a positive 
skewness, which means that the mass of the measurement data is concentrated to 
the left. This could be a result of the precipitation. When it does not rain, the 
sensors in the sewer network measure (very roughly spoken) the same. When it 
does rain, a lot of water flows into the network resulting in sensors measuring 
higher values. So the bigger part (or mass) of the data is concentrated to the left. 
 
In addition to this, it can be concluded that the sensors WL_sewer1 and 
WL_surface1 measure a constant value. It is therefore decided to ignore these 
two sensors for the remainder of the internship. The technique in chapter eight 
will be used to try and identify faulty sensors. So for this chapter these two 
sensors will again be regarded. 
 
 

2.4 Graphical 
 
 
In this part of the report a graphical summary of the data will be given by 
providing different illustrations of the data. By means of this the numerical 
summary and its comments will be supported and accentuated. 
 
 

2.4.1 Plots 
 
To obtain a first impression on the behaviour of the measurement data, plots are 
made of the measurement values. Figure 1 gives the plots of the measurement 
data of the fourteen sensors. In this figure it can be seen that the measurement 



Internship end report 

 
 

Page 22 
 

values of sensors WL_sewer2 and WL_sewer5 have a number of extreme 
values. Furthermore, the plot of sensor WL_sewer4 shows a lot of gaps in the 
data, these are the “NaN’s” or missing values that this sensor was seen to have 
in the numerical summary. Furthermore, the plot of sensor WL_sewer3 shows 
an extreme small range when compared to the other sensors that measure the 
water level in the sewer network. 
 
The plots of sensors WL_sewer6 and WL_sewer7 show a gap in the data at the 
approximately the same dates as the plots of sensors Discharge1 and Discharge2 
respectively. For all four sensors it holds that these are not gaps as data is 
missing, but gaps where the sensor measures a constant “low” value for the 
water level of the surface water and for the discharge of the water at that 
location. The plots of the sensors WL_surface2, WL_surface3, WL_surface4, 
and WL_surface6 seem to be in accordance with each other. They show the 
same behaviour and extreme values at the same dates, where the extreme values 
of sensor WL_surface2 are more extreme than those of the other three sensors. 
This can also be seen by the range of the y-axis. Due to these plots, it is made 
visible what happens to the measurement data of sensor WL_surface5. The 
measurement data makes a drop and seems to continue from this drop on. The 
measurements before this drop are in accordance with the measurements of the 
other sensors that measure the water level of the surface water. This drop in 
measurement data could be the result of one of the companies replacing the 
sensor, while its operation was not changed, i.e., it measures the water level to 
NAP, which of course cannot change like the plots suggest. 
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Figure 1: Plots of data of fourteen sensors 

 
Next to this, the plots of sensors Discharge1 and Discharge2 show that the data 
of both sensors contain extreme values, where the extreme values of Discharge1 
are more extreme than those of Discharge2. 
 
Comparing the plots of the sensors that measure the water level in the sewer 
network with the plot of the precipitation it can be seen that most of the extreme 
values in the water level occur in cases of heavy downpour. An additional plot 
of these cases should provide more insight. Figure 2 gives a plot of all the data 
of all the sensors that measure the water level in the sewer network and the data 
of the precipitation. In this plot, the measurement data of the sensors are 
adjusted such that the data of a sensor is plotted above the data of the previous 
sensor. This way the plot is more clarifying and more information can be 
subtracted from it. 
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Figure 2: Plots of water level in sewer network and Precipitation 

 
From this plot it can be seen that in most cases the extreme values of the water 
level in the sewer network occur in cases of (extreme) downpour (or 
precipitation). There are some exceptions to this rule, as the downpour seems to 
have no effect on the data of sensor WL_sewer3 whatsoever. The data of sensor 
WL_sewer4 seems to be effected only “once” by the  downpour, but since a lot 
of measurement values are missing from the data of this sensor, it might be that 
the measurement values of this sensor are in fact being influenced by the 
downpour and that in a case of (extreme) downpour, this leads to a measurement 
error or a missing value. 
 
In addition to this, the data of sensors WL_sewer6 and WL_sewer7 again seem 
not to be affected by the quantity of downpour. Except for the measurements 
around the twelfth of February, which results in an increase in water level at 
these two locations. 
 
A same plot is made for the five sensors that measure the water level of the 
surface water together with the measurement data of the precipitation. For this 
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plot it also holds that the range of the data is adjusted such that the data of the 
sensors is plotted above each other. 
 

 
Figure 3: Plots of water level of surface water and precipitation 

 
This plot shows that the measurement data of the sensors that measure the water 
level of the surface water follows the cases of (extreme) downpour. The data 
shows outliers where the precipitation shows outliers. Due to this plot it can be 
seen clearer that the measurement data of sensor WL_surface5 after the drop, is 
indeed from that point on in accordance with the other sensors of this type. 
Furthermore, the data of these sensors seem to be operating fine. With the 
exception of the drop in data of sensor WL_surface5 it seems that the 
measurement data “behaves” as one would expect. From this plot it can be seen 
that there is a strong correlation between the measurement values of these 
sensors and to some extend with the precipitation. 
 
In addition to this, a third plot is made of the sensors that measure the discharge 
of the water. To this plot the data of the precipitation and the data of sensor 
WL_sewer6 and WL_sewer7 is added, since the sensors are placed at the same 
location as Discharge1 and Discharge2 respectively. The data of the discharge 
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sensors is rescaled to result in approximately the same range as the three sensors 
that were added, to keep the plot clarifying and informative. 
 

 
Figure 4: Plots of discharge and corr. water level in sewer netw. plus prec. 

 
What can be seen from this plot is that, in contradiction with what was first 
concluded from the plot, the measurement data of sensors Discharge2 and 
WL_sewer7 do not drop at the same date. Furthermore, the precipitation does 
not seem to have any effect on the measurement values of Discharge2 and 
WL_sewer7. The measurement data of sensors Discharge1 and WL_sewer6 do 
seem to drop at the same date and with the exception of the drop it seems that 
the quantity of downpour does have any effect on the measurement data. In 
addition to this, it can be seen that for all four sensors it holds that the drop in 
values stops at the same date.  
 
What has to be noted at these plots, is that the drop in the data is not the results 
of “NaN’s” or missing values in the data, but is the result of a constant 
measurement. An explanation for this could be the location of the sensors, i.e. 
when these sensors are placed in a well where water is pumped in only when the 
water level at a nearby well has reached some specified level. This would result 
in water level that is constant over time, but increasing whenever the pump is 
started and water is pumped into this well. This can also explain why 
Discharge2 and WL_sewer7 seem to have no effect on the amount of 
precipitation, since the water level at this location (and thus the discharge of the 
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water) is only effected by a pump. The fact that Discharge1 and WL_sewer6 do 
seem to be effected by the amount of precipitation means that the pump that is 
responsible for the water level at that location is turned on faster. 
 
 

2.4.2 Histograms 
 
Next, histograms are made of the fourteen sensors. A histogram is a graph at 
which a scale for the measurements is presented at the horizontal axis. For every 
interval a rectangle is placed such that the surface of this rectangle is 
representative for the frequentation in that interval. This way a good impression 
of the spread of the measurements is obtained, which provides a first idea about 
the behaviour and distribution of the data. 
 
For the histograms in this paragraph the density of the measurements is plotted, 
instead of the frequency of the measurements. This means that the probability 
densities are plotted, so the histogram has a total area of one. Since the 
measurements values of the sensors will also be studied for probability 
distributions, this was found more appropriate.  
 
The histograms are given in Figure 5. The histograms of sensors WL_sewer2, 
WL_sewer4, and WL_sewer5 show that these measurement values contain 
extreme values that result in a very distorted range of the histogram. The 
histograms of sensors WL_sewer6 and WL_sewer7 show a distinction between 
measurement values to the left and to the right, which can be explained as a 
result of dry weather and rainy weather. 
 
The histogram of sensor WL_sewer3 also shows a somewhat distorted range, 
which is the result of extreme values to the right of the mass of the measurement 
values. 
 
Furthermore, the histograms of sensors WL_surface2 – 6 show that these 
measurement data might be normally distributed, with the exception of the 
histogram of sensor WL_surface5. The histogram of WL_surface2 also shows a 
distorted range, when compared to the other sensors of this type. Examining the 
range of the measurement data of WL_surface2, it can be seen that there are 
some measurement values greater than 0.7 where the other sensors of this type 
do not have such extreme values. The measurement data of WL_surface5 can be 
seen to be split into two parts. Of these two parts, the right part was earlier on in 
the report seen to be correct and the left part being biased measurements. 
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Looking at the range of this data and comparing this to the range of the other 
five sensors of this type, it can be seen that the right part of the measurement 
data is correct and the left part being biased measurements. 
 

 
Figure 5: Histograms of all sensors 

 
Next to this, the histograms (and in particular the range) of the two discharge 
sensors reveal that the measurement data of these sensors also contain extreme 
values. There is a huge amount of measurements to the left of the data and a 
small number of extreme values to the right. This is the result of a pump being 
switched on or off. Here, the extreme values of sensor Discharge1 are even 
bigger than those of sensor Discharge2. Furthermore, the histogram of sensor 
Precipitation might be exponentially distributed, except for the fact that there are 
(again) extreme values to the right of the mass of the measurement values. 
 
 

2.4.3 Box plots 
 
Where histograms provide a graphical image of the data, box plots provide a 
combination of a graphical and numerical summary. A box plot is a convenient 
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way of graphically depicting the minimum, the lower quartile (which cuts off 
the lowest 25% of the data), the median, the upper quartile (which cuts off the 
highest 25% of the data), and the maximum. A box plot thus provides 
information about possible extreme values in the data. Measurements that are 
smaller than the lower (or first) quartile plus one and a half times the inter 
quartile range (the upper quartile minus the lower quartile) or measurements that 
are larger than the upper (or third) quartile plus one and a half time the inter 
quartile range are marked as an extreme value and therefore marked separately. 
Furthermore, the median can be read out of the plot, with which the skewness of 
the measurement data again can be seen. 
 

 
Figure 6: Box plots of the fourteen sensors 

 
Figure 6 shows the box plots for all sensors. The box plots for sensors 
WL_sewer2, WL_sewer4, and WL_sewer5 show an enormous amount of 
extreme values, which was already noticed by means of the histograms. The box 
plot of sensor WL_sewer7 shows a few extreme values to the left and right, of 
which the extreme values to the left were not noticed by the histograms. 
Furthermore, the histograms of sensors WL_sewer6 and WL_sewer7 could be 
seen to be split up into two parts, of which it can now be seen that the median of 
WL_sewer6 is to the left of the data and the median of WL_sewer7 is to the 
right. This could already be concluded by the positive and negative 
(respectively) skewness, but is now made visible by these box plots. 
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Furthermore, the box plots of sensors WL_surface3, WL_surface4, and 
WL_surface6 can be seen to behave in a similar way; some extreme values to 
the left and right. The exception to the rule again is the box plot of sensor 
WL_surface5, which has no extreme values according to the box plot and for 
which holds that the mass of the measurement values is to the right. 
Furthermore, it can be seen that the measurement data of sensor WL_surface2 
contains more extreme values than the measurement data of the other sensors of 
this type. 
 
The results of the discharge sensors show a huge amount of extreme values, of 
which the extreme values of Discharge1 can be seen to be on a far greater scale 
than those of Discharge2. These extreme values are most interesting and will 
therefore be the subject of further analysis. The box plot of sensor Precipitation 
can be seen to have some extreme values to the right of the measurement data. 
This is logical because one can think of cases of extreme rainfall, which occur 
on a rare basis. These cases will result in extreme values to the right and since a 
negative precipitation is not possible, no extreme values will occur to the left of 
the measurement values. 
 
 

2.5 Conclusions 
 
 
Initial plots show that an extreme value for the precipitation does indeed in most 
cases lead to an extreme value in the data of sensors WL_sewer2, WL_sewer4, 
and WL_sewer5. Histograms of the data of these sensors showed that the data 
can be divided into two groups, one group of “stationary” measurements and 
one group of “real” measurements. With “real” measurements is meant that 
these measurements seem to be the result of precipitation.  
 
The other three sensors of this type (water level in the sewer network) seem not 
to be effected by the quantity of downpour. Sensor WL_sewer3 is not effected at 
all, it can almost be said to measure a constant value. The data of sensors 
WL_sewer6 and WL_sewer7 both show a gap in the data which indicates that 
the measurement values of these sensors are heavily influenced by pumps, or 
water flowing over an overflow. This also holds for the measurement data of 
sensors Discharge1 and Discharge2, which are placed at the same locations 
respectively. 
 
The behaviour of the measurement data of the sensors that measure the water 
level of the surface water is in accordance with each other. At least, when the 
measurement data of sensor WL_surface5 is disregarded from the twelfth of 
February on. The measurement values of this last sensor make a drop around 
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this date, but from that date on continue to operate completely in accordance 
with the other sensors of this type (water level of the surface water). One 
explanation for this drop could be that the sensor is replaced, which does not 
have any effect on the operation of the sensor. But, it does have an effect on the 
measurement values. In addition to this, the precipitation does have effect on the 
measurement data of these five sensors. 
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3 Density 
 
 
In this chapter a study will be done to try and discover the underlying 
probability distribution function of the measurement data of the fourteen 
sensors. During this study, numerous plots will be used to obtain a first 
impression of the data. After that, multiple tests will be used to test the 
hypothesis that the measurement values of a certain sensor are distributed 
according to a certain well known probability distribution function. 
 
When a probability distribution function can be discovered in the measurement 
data of a sensor, numerous calculations can be made on the data under the 
assumption that the data is distributed according to this probability distribution 
function. Furthermore, when a probability distribution can be assigned to the 
measurement data of, say, two vectors, it can also be said that the measurement 
data of these two sensors behaves accordingly to each other. This can be of great 
importance to the correlation study and thus to the choice of which sensors to 
place in the group that share a high correlation and which sensors in the other 
group. 
 
 

3.1 Introduction 
 
 
A first impression of the probability distribution function of measurement data 
can be obtained by means of histograms. Since these are already added to this 
report in paragraph 2.4.2, only the results will be given here. 
 
What can be discovered by the histograms is that the measurement data of 
sensors WL_sewer2 – 7 cannot be assigned to any well known probability 
distribution. 
 
Furthermore, the histograms of sensors WL_surface2 – 6 seems to be normally 
distributed with the exception of sensor WL_surface5. This histogram is split 
into two parts. These two parts were seen to be in accordance with the other 
sensors of this type, where the second (right) part has a much lower mean value. 
If this is correct, both parts of the measurement data of this last sensor should 
also be normally distributed. In addition to this, the histogram of the 
measurement data of sensor WL_surface2 seems to be normally distributed 
except for the measurements greater than 0.7, which distort the range. 
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Next to that, the only probability distribution that can be discovered from the 
histograms is that of an exponential distribution when looking at the histogram 
of the precipitation. 
 
 

3.2 QQ-plots 
 
 
To get a first impression of the probability distribution function of the 
measurement values of the fourteen sensors, QQ-plots are made. A QQ-plot is a 
method to judge whether a sample comes from a certain known distribution 
function. Suppose  are independent replicas of a probability distribution 
F. De i-th order statistic  will then approximately have a fraction of i/(n+1) 
of the measurements below. It is therefore approximately the i/(n+1)-quartile of 
the measurements. It is thus expected that the points 
 

   

 
are approximately on a straight line. A QQ-plot is a plot of these n points. 
Therefore, if the plot approximately shows a straight line y=x, it can be assumed 
that this sample comes from the distribution function F. 
 
The previous paragraph described that based on the histograms, the 
measurement data of sensors WL_surface2, WL_surface3, WL_surface4, 
WL_surface5, and WL_surface6 seem to be normally distributed. It should be 
noted that the measurements of sensor WL_surface5 need to be split up into two 
parts: all measurements smaller than 0.2 and the remaining part of the 
measurements. QQ-plots will be made according to this. 
 
Figure 7 gives the QQ-plots for these seven sensors, of which the measurement 
data of sensor WL_surface5 is split into two parts, for which two QQ-plots are 
made. Next to that, only the measurement values of sensor WL_surface2 smaller 
than 0.7 are taken into account. All QQ-plots results in an approximate straight 
line, which indicates that the measurement values (or parts thereof) of these 
sensors indeed might be normally distributed. In addition to this, it can thus be 
assumed that these sensors generate similarly distributed data. This thus 
indicates a strong dependency between these sensors. 
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Figure 7: QQ-plots of the seven sensors 

 
Of sensors WL_sewer2 – 7 and the discharge sensors, the measurement data was 
also split into two parts, again the so-called “stationary” measurement values 
and the “real” measurement values. This “real” part (or right part) of the 
measurement values was also tested for normality by means of a QQ-plot, but no 
convincing plots resulted from this. No normality of these measurements can 
thus not be assumed based on the QQ-plots. 
 
In addition to this, a plot will be made of the quartiles of an exponential 
distribution against the quartiles of the data of the precipitation. First, the data is 
rescaled such that the minimum of the measurement data is equal to zero, thus 
assuming the measurement values of the Precipitation sensor are biased. 
Furthermore, the measurement values of this sensor that are greater than 0.6 are 
also removed. 
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Figure 8: QQ-plot exp vs. Precipitation 

 
Figure 8 shows the resulting QQ-plot, which cannot be said to result in a straight 
line. Based on the QQ-plot, it can thus be said that the measurement data of the 
sensor Precipitation are not exponentially distributed. 
 
 

3.3 Pairs 
 
The previous paragraphs showed that the measurement data of five sensors 
might be normally distributed. An additional graphical way to test this is by 
means of creating scatter plots of the quartiles of the measurement values of one 
sensor against the quartiles of the measurement values of another sensor. If the 
measurement values of the two sensors result approximately in the straight line y 
= a + bx, it can be assumed that these two sensors are from the same location-
scale family. The function in the statistical program R that creates all 
combinations of QQ-plots given the measurement values of sensors is called 
Pairs, hence the name of this paragraph. 
 
So, when the measurement values of the surface water level sensors are indeed 
normally distributed (and thus originate from the same location-scale family), a 
plot of the measurement values of one sensor against the measurement values of 
one of the other sensors, should approximately result in the straight line y = a + 
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bx. Since the measurement data of sensor WL_sewer6 contains a gap and thus a 
lot of measurements are missing, it is of no use to apply this function for this 
sensor. 
 
Therefore, the function is only used for the four sensors that measure the water 
level of the surface water, since these are all of the same length. In addition to 
this, the behaviour of the measurement values of these four sensors seems to be 
in accordance with each other, i.e., they contain extreme values at approximately 
the same dates.  
 
To take into account possible time delays between the measurement values of 
different sensors, the sums of the measurements are taken over four hours. This 
also means that the higher number of extreme values in the measurement values 
of sensors WL_surface2 are smoothed. 
 

 
Figure 9: Plots of four surface water level sensors 

 
Figure 9 shows that the plots of all different combinations results in 
approximately a straight line, which indicates that the (four hour sums of the) 
measurement values of these four sensors originate from the same location-scale 
family. 
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3.4 Tests 
 
 
The previous paragraphs have shown some form of a distribution for some of 
the sensors. In this paragraph the measurement values of the sensors will be 
tested for normal or exponential distributions. To test this, some well known 
statistical tests will be performed. 
 
For these tests, the following hypotheses are thus formulated: 
 
  H0: the measurement values are normally distributed 
  H1: the measurement values are not normally distributed 
 
The null hypothesis is rejected at a p-value of a = 0.05 and these test are 
performed on five of the fourteen sensors, namely: WL_surface2, WL_surface3, 
WL_surface4, WL_surface5 (measurement values < 0.2), WL_surface5 
(measurement values > 0.2), and WL_surface6. 
 
 
The Shapiro-Wilk test tests the null-hypothesis that a sample came from a 
normally distributed population. The test calculates a W statistic, of which small 
values are evidence of departure from normality. The results of the Shapiro-
Wilk test showed that the data of none of the above mentioned sensors could be 
assumed to be normally distributed. The test resulted in very small p-values, but 
in some cases in very large values for the statistic. To gain some certainty on the 
rejection of the null-hypothesis, an additional test was done, namely the 
Kolmogorov-Smirnov test. 
 
The Kolmogorov-Smirnov test is based on the biggest difference Dn between the 
empirical distribution function and the distribution function of the distribution 
that is tested for. The null-hypothesis is rejected for small values of Dn. This test 
proved not to be applicable since no correct p-values could be computed because 
of ties in the data. 
 
Eventually, the Jarque-Bera test was used. This test is a goodness-of-fit measure 
of departure from normality, based on the sample kurtosis and skewness. The 
null hypothesis is a joint hypothesis of both the skewness and excess kurtosis 
being 0, since samples from a normal distribution have an expected skewness of 
0 and an expected excess kurtosis of 0. Any deviations from this increases the 
statistic of this test.  
 
After applying this last test to the data of the five sensors, no normality can be 
assumed of the data of any of the five sensors based on this test. Table 4 gives 
the results of the three tests, where the results of the Jarque-Bera test are given 
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by a value of 1 when no normality can be assumed based on this test, and a 
value of 0 when normality can be assumed based on this test. 
 

  Shapiro-Wilk 
Kolmogorov-

Smirnov 
Jarque-

Bera 
  Statistic P-value Statistic P-value Output 

WL_surface2 0.8692 2.20E-16 0.9955 0.275 1 
WL_surface3 0.9728 1.09E-15 1 0.2701 1 
WL_surface4 0.9884 3.45E-09 1 0.2701 1 

WL_surface5 ( < 0.2) 0.9312 6.81E-13 1 0.2701 1 
WL_surface5 ( > 0.2) 0.9151 2.20E-16 1 0.2701 1 

WL_surface6 0.9936 9.10E-06 1 0.2701 1 
Table 4: Test statistics 

 
 

3.5 Conclusions 
 
 
Of the sensors that measure the water level of the surface water, the idea existed 
that these were normally distributed. Of one of these sensors (WL_surface5) the 
data was split into two parts, because previous plots learned that the 
measurements of this plot makes of drop and continues on measuring from that 
point on. Therefore, these two parts of the measurement data of this sensor were 
examined individually. QQ-plots that were made of the quantiles of the data 
against the quantiles of a normal distribution resulted in an approximated 
straight line, which indicates normality of the data. Eventually, the Jarque-Bera 
test pointed out that the measurement data of these sensors can not be assumed 
to be normally distributed. 
 
Furthermore, the measurement data of some of the sensors that measure the 
water level in the sewer network (WL_sewer2, WL_sewer3, WL_sewer4, 
WL_sewer5, WL_sewer6, and WL_sewer7) and the sensors that measure the 
discharge of the water (Discharge1 and Discharge2), the measurement data was 
split into two parts. Namely, one “stationary” part of which the measurements 
are the result of dry weather, and one “real” part of which the measurements are 
the result of rainy weather. The “real” part was investigated for normality, but 
after examining plots of the quantiles of this data against the quantiles of a 
normal distribution, it became clear that normality could not be assumed. 
 
Of the measurement data of the precipitation it was suggested by the histograms 
that these might be exponentially distributed. However, QQ-plots made it clear 
that this was not the case. Even after removing the extreme values, an 
exponential distribution could not be assumed. It has to be noted here, that the 
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measurement values of this sensor were first rescaled to have a minimum value 
of zero, assuming that the measurements are biased. 
 
The measurement data of these fourteen sensors turns out to be too distorted to 
be approached by one of the known probability distributions. The numerical 
summary in paragraph 2.3 already learned that the values of the skewness and 
kurtosis of these measurement data are in many cases very high. Next to that, the 
number of extreme values in the data is also shown to be very high. This are 
most probably the reasons no known probability distribution can be assumed. 
Especially for the data that was believed to be normally distributed: for a normal 
distribution it holds that the skewness of a normal distribution is equal to zero 
and the kurtosis of a normal distribution is equal to three, of which the data of 
many sensors show a (huge) deviation. 
 
Furthermore, considering the amount of measurements (16992 measurements of 
each sensor) it might not even be that peculiar that the statistical tests reject 
normality of the data. Since with such a huge amount, there will always be 
deviations from a normal distribution. However, what might be more important 
is the fact that a strong relation was shown between the measurements of the 
sensors that measure the water level. 
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4 Correlation 
 
 
The correlation of two vectors  and  is classically 
calculated by Pearson correlation coefficient or Spearman rank coefficient. The 
Pearson correlation coefficient is a measure of the correlation of two variables X 
and Y, that is, a measure of the tendency of the variables to increase or decrease 
together. It is defined as the sum of the products of the standard scores of the 
two measures divided by the degrees of freedom: 
 

   

 
Spearman’s rank correlation coefficient is a non-parametric measure of 
correlation. Unlike the Pearson correlation coefficient, it does not require the 
assumption that the relationship between the variables is linear, nor does it 
require the variables to be measured on interval scales. In principle,  is simply 
a special case of the Pearson coefficient in which the data are converted to 
rankings before calculating the coefficient. 
 
In this case, calculating the correlation between two vectors of measurements 
would not reveal all dependencies. Water can enter the sewer network by an 
enormous amount of locations. The water then flows through the network to so-
called water purification plants. So from the point of entry to the water 
purification plant, the water comes by multiple sensors. This means that when 
the water level at the location of sensor one rises at some time point, the water 
level at the location of sensor two also rises, but with a given time delay. 
 
To take into account a possible time delay between measurements of two 
sensors, the measurements on the basis of a certain time interval will be used. If 
there exist a time delay of, for instance, two hours between the measurements of 
two sensors, this should result in a higher correlation when this correlation is 
calculated based on the measurements on a two hour time interval. Therefore, 
the correlation will be calculated based on all possible time intervals of two 
sensors from a time interval of one hour up to a time interval of 48 hours. The 
following paragraph will describe all steps taken and all results of this study. In 
order to reduce the enormous calculation time in R, the measurement data used 
in this chapter is based on hourly values instead of the original five minute 
values. 
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4.1 Sums 
 
 
 
The first step in this study is to examine all different time intervals, i.e. first the 
correlation of two vectors (with each the measurement data of one sensor) is 
calculated on a one hour basis, then on a two hours basis, up to a 48 hours basis 
(since it can be assumed that under normal conditions all water in the sewer 
network is flushed out in this time period). Furthermore, the correlation of these 
two vectors will also be calculated based on all different possible combinations 
of time intervals, i.e. the following table will provide more clarity on this last 
statement. 
 

Vector 1 Vector 2 
1 hr. t.i. 1 hr. t.i. 
1 hr. t.i. 2 hrs. t.i. 
1 hr. t.i. 3 hrs. t.i. 

… … 
… … 

1 hr. t.i. 48 hrs. t.i. 
 
The first row in this table states that the correlation of two vectors is calculated, 
where both vectors are based on measurements on a one hour base (or 1 hrs. t.i.). 
The second row states that the correlation of two vectors is calculated, where the 
first vector contains measurements on a one hour base and the second vector 
contains measurements on two hours base. This process is repeated up to the last 
row where the correlation is calculated of two vectors where the first vector 
contains measurements on a one hour base and the second vector contains 
measurements on a 48 hours base. 
 
The next step is given by the following table, where this whole process is 
repeated but then the first vector is on a two hours base and the second is on a 
one hour base for the first calculation of the correlation and again up to a 24 
hours base for the last correlation. 
 

Vector 1 Vector 2 
2 hrs. t.i. 1 hr. t.i. 
2 hrs. t.i. 2 hrs. t.i. 
2 hrs. t.i. 3 hrs. t.i. 

… … 
… … 

2 hrs. t.i. 48 hrs. t.i. 
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This process is repeated over and over again until the first vector is on a 48 
hours base and the second vector on a one up to 48 hours base. This way the 
correlation of two vectors based on all possible combinations of time intervals 
between one hour and 48 hours is calculated. This process is off course done for 
all possible combinations of vectors. 
 
What has to be taken into account here, is that in the last step the correlation of 
two vectors is calculated where for both vectors the measurements are taken 
based on a 48 hours base. This means that the length of these vectors of 
measurement values is then 24 times shorter than the original vectors of 
measurement values based on one hour. The shorter the two vectors become, the 
higher the correlation will be, i.e. the correlation between two vectors both of 
length two will always be one. This means the behaviour of the correlation has 
to be examined while increasing the time intervals. 
 
After all combinations have been generated and the correlation between these 
are calculated, three different cases come to light: 
 
- The first case is the case where the maximum correlation is obtained due to 

true dependency between the vectors 
 
- The second case is the case where the maximum correlation is obtained due 

to the (shorter) length of both vectors, i.e. the maximum correlation is 
obtained based on measurements on a 48 hours basis for both vectors 

 
- The third case is the case where the maximum correlation is obtained due to 

a time interval of 48 hours for one of two vectors. 
 

The cases of the first type need no further study, since a maximum correlation is 
obtained within a time interval of 48 hours. The cases of the second type need 
no further study, since it is evident that the correlation is increasing due to the 
decreasing length of the vectors with measurements. 
 
The cases of the third type do need some additional  calculation, since these 
cases fall right between the other two cases. Therefore, for these cases the whole 
process is repeated for time intervals up to 96 hours. The results show that some 
of the cases of the third type have now become cases of the first type. 
 
The last step is to take into account a time shift. For this step, the same steps are 
taken as described above, i.e. all combinations of possible time intervals will be 
examined. But in addition to this, these combinations will be examined with a 
time shift between the two vectors of measurement values. To explain this, the 
table given above will be used. The first step is now to calculate the correlation 
of two vectors of which the first vector is on a one hour base and the second 
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vector is on a one hour base, but of this second vector, the measurements are 
taken of one hour later. For the second step, the measurements of the second 
vector are taken of two hours later, up to 24 hours later. 
 
This process is repeated over and over again until the first vector is on a 48 
hours base and the second vector on a one up to 48 hours base, with a time shift 
of one hour up to a time shift of 24 hours. This way the correlation of two 
vectors based on all possible combinations of time intervals between one hour 
and 48 hours is calculated and with a time shift between one and 24 hours. The 
results are given in Appendix A. 
 
On the diagonal are the sensors that were studied. Above the diagonal is the 
increase in correlation that was obtained rounded of to two decimals. Under the 
diagonal the behaviour of the correlation is described in pictograms. When the 
correlation of two vectors increases after the first step (a case of type one), this 
is depicted by a green arrow. When the correlation of two vectors results in a 
case of type two, this is depicted by a red cross. Finally, when the correlation of 
two vectors results in a case of type three, this is depicted by a question mark. 
The latter cases were examined further for time intervals up to 96 hours. When 
the correlation of two vectors during this second step results in a case of type 
one, this is depicted as a green arrow (which is depicted after the earlier 
resulting question mark). When the correlation of two vectors during this second 
step results in a case of type two or three, this is depicted by a red cross. 
 
It can be seen that in a lot of cases, the correlation of two vectors of 
measurement values can be increased. In one case, the correlation even increases 
with 0.36, which is the correlation of the measurement vectors of the two 
discharge sensors. The cases in which an increase in correlation of the 
measurements of two sensors can be obtained can indicate that these are cases 
where there is a physical connection between these two vectors. However not al 
obtained “winnings” in correlation are very high. The final correlations of the 
measurement values of all sensors can be found in Appendix B. 
 
The conclusions on the previous chapter already learned that there is a strong 
dependency among four of the sensors that measure the water level of the 
surface water, i.e. WL_surface2, WL_surface3, WL_surface4, and 
WL_surface6. This strong dependency can no be seen from the correlations 
which are given in Appendix B. Furthermore, the measurement values of 
sensors WL_sewer2 and WL_sewer5 also share a high correlation. This was also 
seen in chapter 2, since the behaviour of the measurement values of these 
sensors was in accordance with each other. In addition to this, there is a high 
dependency between the measurement values of sensors WL_sewer6 and 
WL_sewer7, which already showed to behave in accordance with each other in 
chapter 2 where it was also shown that the measurement values of the two 
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discharge sensors is in accordance with each other. What went unnoticed before 
is the dependency between the measurement values of sensor WL_surface5 and 
WL_sewer3 and WL_sewer3 and WL_sewer5. 
 
 

4.2 Spearman 
 
 
For this part of the study, the rank correlation test of Spearman will be used to 
test the dependencies among the measurement vectors for significance. First the 
dependencies between measurement vectors will be tested as there are no time 
intervals or time shifts used. After that, the dependencies between the 
measurement vectors will be tested as they are calculated in the previous 
paragraph. The rank correlation test of Spearman is most interesting for this 
study, since this test is based on the ranks of the measurement values and it 
therefore does not require the assumption that the relationship between two 
vectors of measurement values is linear. 
 
For this test, the following hypotheses are formulated: 
 
  H0: Xi en Yi are independent 
  H1: Xi en Yi are dependent 
 
The null hypothesis is rejected when the bootstrap approach of the left p-value is 
smaller than a/2 = 0.025. The results are given in Appendix C. It can be seen 
from the results that for three combinations of measurement vectors, the 
dependency was at first not significant, but after applying the time intervals and 
time shifts, the dependency is significant. 
 
Furthermore, it is noticed that all sensors that measure the water level of the 
surface water share a dependency that is significant and have a high correlation. 
This could also be concluded from Figure 3. Next to that, the sensors at the same 
location (i.e. WL_sewer6 and Discharge1 and WL_Sewer7 and Discharge2) also 
share a dependency that is significant. Of the dependency between the sensors of 
type W nothing can be said, i.e. no hard conclusions can be made. The same 
holds for other combinations of types of sensors, with the exception of the 
discharge sensors, that seem to be have a significant dependency more often 
with sensors of type W, than of type Z. 
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4.3 Choice 
 
 
The eventual choice for which sensors should belong in the two groups for the 
remaining part of this internship is based on the results obtained in the previous 
chapters. The goal is to create two groups of eight sensors where the 
measurement values of one group share a high correlation and one group where 
the sensors do not. 
 
It is obvious that the four sensors that measure the water level of the surface 
water should end up in the group that share a high correlation, since all results 
point out that these are very dependent on each other. The same holds for the 
sensors WL_sewer2 and WL_sewer5, of which the strong dependency was also 
seen throughout this report. Furthermore, what was not seen throughout this 
report, but came to light only in the last chapter, is the strong dependency 
between sensors WL_sewer3 and WL_sewer5 and again for WL_sewer3 and 
WL_surface5. Next to that, the precipitation was seen to be responsible for most 
of the extreme values seen in the plots that were made in the second chapter. 
The extreme values that were measured were seen to be the result of 
precipitation in most of the cases. Since all three Data Mining tasks at hand in 
the next part of the internship are based on regression techniques, precipitation 
may very well be used as an explanatory variable. It is therefore decided that the 
sensor Precipitation is the eight, and therefore last, sensor to be added to the 
group of sensors that share a high correlation. 
 
With this in mind, the following two groups are now created: 
 

Group 1 
WL_sewer2               

0,13 WL_sewer3             
0,50 0,11 WL_surface2           
0,44 0,06 0,84 WL_surface3         
0,67 0,08 0,62 0,50 WL_sewer5       
0,24 0,11 0,90 0,83 0,30 WL_surface4     
0,13 0,08 0,79 0,77 0,12 0,95 WL_surface6   
0,48 0,03 0,57 0,49 0,51 0,33 -0,23 Precipitation 
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Group 2 

WL_sewer1               
- WL_surface1             
- - WL_sewer4           
- - 0,08 WL_sewer6         
- - 0,12 0,52 Discharge1       
- - 0,02 0,67 0,30 WL_sewer7     
- - 0,18 0,20 0,64 0,28 Discharge2   
- - 0,09 0,72 0,30 0,49 0,12 WL_surface5 
 
These two groups will now be used for the three planned tasks for the remaining 
part of this internship and to study, among others, the differences in obtained 
results of these three tasks when sensors share a high(er) correlation and when 
sensors share a low(er) correlation. 
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Part III Modelling, Identification & Evaluation 
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5 M5P 
 
 
The following two chapters will describe the application of two Data Mining 
tasks for numeric prediction. In numeric prediction the outcome of an attribute 
instance is written as a linear sum of the other attribute instances with 
appropriate weights. So for this internship, the outcome of a measurement of one 
sensor is written as a linear sum of the measurement values of the other sensors 
with appropriate weights. (Confidential) 
 
In this chapter the M5P algorithm will be applied to the measurement data. The 
M5P algorithm is used for numeric prediction. It uses a decision tree, except that 
at each node it stores a linear regression model that predicts the class value of 
instances that reach the leaf. The model tree is constructed by first using a 
decision tree induction algorithm to build an initial tree. First, the technique of 
linear regression will be explained, followed by an explanation of the M5P 
algorithm. 
 
 

5.1 Linear regression 
 
 
In linear regression the relationship is modelled between a dependent variable  
and independent variables  [1]. The dependent variable is often 
called the response variable and the independent variables the explanatory 
variables. The idea is to express the response variable as a linear combination of 
the explanatory variables with predetermined weights: 
 
   
 
where is the response variable, are the weights and 

 are the explanatory variables. The mostly used technique to 
calculate the weights is called the least-squares analysis, which is also used for 
the currently used models. 
 
The weights are calculated from the training data. Suppose that the predicted 
value for the i-th instance of the response variable is given by the following 
notation: 
 
   

Y
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Moreover, for notation purposes it is convenient to add an extra explanatory 
variable  whose value is always 1. Then the predicted value for the i-th 
instance is given by: 
 

  . 

 
The method of least-squares analysis is to choose the weights  to 
minimize the sum of the squares of the differences between the predicted values 
and the actual values. The sum of the squares of these differences is defined by: 
 

  . 

 
This sum of squares is what is to be minimized. This results in a set of weights, 
based on the training data, which can be used for the prediction of a class of new 
instances. 
 
Choosing the explanatory variables is the next difficulty. The goal is to obtain a 
good model with as few explanatory variables as possible. One way of building 
a model is to add explanatory variables one by one, where adding a variable has 
to meet certain criterions. Another way of building a model is to start with the 
model with all explanatory variables and to remove them one by one according 
to certain criterions. 
 
By means of the correlation coefficient, different models can be compared and 
the quality of the model can be judged. The correlation coefficient is defined as 
follows: 
 

  , 
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The correlation coefficient is a measure of the overall quality of the model. It 
holds that . The closer  is to 1, the better the model is.  
 
 

5.2 M5P 
 
 
The M5P algorithm uses a decision tree for numeric prediction. Trees used for 
numeric prediction are just like ordinary decision trees except that at each leaf 
they store either a class value that represents the average value of instances that 
reach the leaf, in which case the tree is called a regression tree, or a linear 
regression model that predicts the class value of instances that reach the leaf, in 
which case it is called a model tree [2]. 
 
The splitting criterion is used to determine which attribute is the best to split that 
portion T of the data that reaches a particular node. It is based on treating the 
standard deviation of the output of the response variable in T as a measure of the 
error at that node, and calculating the expected reduction in error as a result of 
testing each attribute at that node. The attribute which maximizes the expected 
error reduction is chosen for splitting at the node. So, for each attribute 
(explanatory variable) and for all possible split positions of this attribute, the 
standard deviation reduction (SDR) is calculated. The attribute for which the 
maximum SDR is obtained is split at this node and at the split position where 
this attribute obtained its maximum SDR. 
 
The expected error reduction is calculated by: 
 

  , 

 
where  are the sets that result from splitting the node according to the 
chosen attribute. The splitting process terminates when the class values of the 
instances that reach a node vary only slightly, that is, when their standard 
deviation is just a small fraction (e.g. less than 5%) of the standard deviation of 
the original instance set. Splitting also terminates when just a few instances 
remain, say, four or fewer. Experiments show that the results obtained are not 
very sensitive to the exact choice of these thresholds. 
 
When a model tree is used to predict the value for a test instance, the tree is 
followed down a leaf in the normal way, using the instance’s attribute values to 
make routing decisions at each node. The leaf will contain a linear model based 
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on some of the attribute values, and this is evaluated for the test instance to yield 
a raw predicted value. Instead of using this raw value directly, however, it turns 
out to be beneficial to use a smoothing process to compensate for the sharp 
discontinuities that will inevitably occur between adjacent linear models at the 
leaves of the pruned tree. This is a particular problem for models constructed 
from a small number of instances. Smoothing can be accomplished by producing 
linear models for each internal node, as well as for the leaves, at the time the tree 
is built. Then, once the leaf model has been used to obtain the raw predicted 
value for a test instance, that value is filtered along the path back to the root, 
smoothing it at each node by combining it with the value predicted by the linear 
model for that node. An appropriate smoothing calculation is: 
 

   

 
Where p’ is the prediction passed up to the next higher node, p is the prediction 
passed to this node from below, q is the value predicted by the model at this 
node, n is the number of instances that reach the node below, and k is a 
smoothing constant. Experiments have shown that smoothing substantially 
increases the accuracy of predictions. 
 
As is mentioned, a linear model is needed for each interior node of the tree, not 
just at the leaves, for use in the smoothing process. Pruning is a method for 
reducing the error and complexity of induced trees. Prior to pruning, a model is 
calculated for each node of the un-pruned tree. The model takes the form: 
 
  , 
 
where  are attribute values. The weights  are 
calculated using standard regression. The pruning procedure makes use of an 
estimate, at each node, of the expected error for test data. First, the absolute 
difference between the predicted value and the actual class value is averaged 
over each of the training instances that reach that node. Because the tree has 
been built expressly for this dataset, this average will underestimate the expected 
error for unseen cases. To compensate, it is multiplied by the factor (n+v)/(n-v), 
where n is the number of instances that reach the node and v is the number of 
parameters in the linear model that gives the class value at that node. The 
expected error for test data at a node is calculated as described above, using the 
linear model for prediction. Because of the compensation factor (n+v)/(n-v), it 
may be that the linear model can be further simplified by dropping terms to 
minimize the estimated error. Dropping a term decreases the multiplication 
factor, which may be enough to offset the inevitable increase in average error 
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over the training instances. Terms are dropped one by one, so long as the error 
estimate decreases. 
Once a linear model is in place for each interior node, the tree is pruned back 
from the leaves, as long as the expected estimated error decreases. If the 
expected error of a node is smaller than the expected error of the sub-tree below, 
the sub-tree is replaced by this single node. 
 

+---------------------------------------------------------------------------------------------+ 
|         | 
|   Attribute1 <= Criterion1      | 
|   | Attribute1 <= Criterion2  :   LM1    | 
|   | Attribute1 >  Criterion2    | 
|   | | Attribute2 <= Criterion3  :  LM2  | 
|   | | Attribute2 >  Criterion3  :  LM3   | 
|   Attribute1 > Criterion1      | 
|   | Attribute3 <= Criterion4  :  LM4    | 
|   | Attribute3 >  Criterion4  :  LM5    | 
|   .        | 
|   LM1  :  Attribute4 = Constant + a*Attribute1   | 
|   LM2  :  Attribute4 = Constant     | 
|   LM3  :  Attribute4 = -Constant + c*Attribute7   | 
|   LM4  :  Attribute4 = Constant - d*Attribute6   | 
|   LM5  :  Attribute4 = Constant + f*Attribute1   | 
|         | 
+---------------------------------------------------------------------------------------------+ 

Figure 10: Example M5P model tree 
 
Figure 10 gives an example of an M5P model tree. Note here that attribute1 does 
not necessarily mean it is the first attribute of the data set. 
 
To train and test the models, cross validation will be used. Cross validation is 
one of several approaches to estimating how well the model you’ve just learned 
from some training data is going to perform on future as-yet unseen data. There 
are several approaches of cross validation, among which test-set-validation, 
leave-one-out cross validation, and k-fold cross validation, of which the last will 
be used during the data mining tasks. 
 
In k-fold cross validation, the data set of N samples is divided into k subsets 
(“folds”) of equal size N/k and k models are built. Each time, one of the k 
subsets is used as the test set and the other k-1 subsets are put together to form a 
training set. A common choice for the number of folds k is ten, which will also 
be used for the tasks at hand.  
 
The results will eventually be compared to the results obtained with the current 
models. These results will be discussed in chapter 7. This chapter will describe 
the M5P algorithm in detail and next to that, it will discuss the results of this 
algorithm and all steps taken to achieve these results.  
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5.3 Results 
 
 
(Confidential) 
 
 

5.4 Summary 
 
 
(Confidential) 
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6 Robust Regression 
 
 
This chapter will first describe the algorithm of Robust Regression. This 
algorithm was applied to the measurement data of the fourteen sensors. The 
results of this application will be given in this chapter, together with all steps 
taken to obtain these results. 
 
 

6.1 Algorithm 
 
 
Noisy data is known to cause problems in linear regression. Therefore, 
statisticians often check data for outliers and remove them manually. In the case 
of linear regression, outliers can be identified visually, although it is never 
completely clear whether an outlier is an error or just a surprising, but correct, 
value. Outliers have a dramatic effect on the usual least-squares regression, 
because the squared distance measure accentuates the influence of points far 
away from the regression line. 
 
Statistical methods that address the problem of outliers are called robust. One 
way of making regression more robust is to use an absolute-value distance 
measure instead of the usual squared one. This weakens the effect of outliers, 
but gross outliers can still have a considerable impact on the model. Another 
possibility is to try to identify outliers automatically and remove them from 
consideration. For example, one could form a regression line and then remove 
from consideration those 10% of points that lie farthest from the line. However, 
in chapter 5 these points were seen to be very important in modelling the data. A 
third possibility is to minimize the median, rather than the mean, of the squares 
of the divergences from the regression line, which will be applied to the 
measurement data. 
 
Formally, the Least Median Squares (LMS) fit is determined by solving the 
following optimization problem: 
 

. 

 
Since LS (Least Squares) is based on minimizing the sample mean and means 
are sensitive to extreme values, it makes sense that LMS, which replaces the 
mean by the much less sensitive median, will generate a more robust estimator. 
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Unlike LS, there is no closed form solution, or formula, with which to easily 
calculate the LMS line. Since the median is an order rank statistic, it is not 
amenable to calculation via derivatives or other calculations that rely on 
continuous functions. For each intercept and slope, the squared residuals have to 
be calculated and sorted in order to determine the middle, or median, value [4]. 
 
 

6.2 Results 
 
 
(Confidential) 
 
 

6.3 Summary 
 
 
(Confidential) 
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7 Comparing results 
 
 
Finally the outcomes of the M5P and LMS algorithm were provided with a 
quality label. These results were then compared to the results of the currently 
used models to study whether the two Data Mining tasks lead to better results. 
This chapter will describe these results and all steps taken in comparing these 
results. For the thirteen sensors, the quality labels on the basis of the currently 
used models have been provided by Elke Ottenhoff. 
 
The data of the precipitation has been downloaded from the web-site of the 
KNMI, so this is not data of the city of (Confidential). Therefore, the quality 
labels of the precipitation data as assigned by the current models are not 
available. It takes a significant amount of time to apply the current models and 
the quality labels. Since my colleagues are busy enough with their own work, I 
did not ask them to apply the models to the precipitation data I used. Especially 
since the results are quite clear and conclusions can thus be drawn based on 
these. 
 
 

7.1 Quality labels 
 
 
(Confidential) 
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7.2 Labelling 
 
 
(Confidential) 
 
 

7.3 Conclusions 
 
 
(Confidential) 
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8 Identifying faulty sensors 
 
 
During this chapter a technique will be examined to try and identify faulty 
sensors. As has been concluded from the results of the previous chapters, there 
are two sensors that most probably are faulty. These sensors (WL_sewer1 and 
WL_surface1) have been seen to measure a constant water level. If the 
technique, which will be explained in the following paragraph, works in 
practice, these two sensors should be identified. This chapter will describe all 
steps taken and all results during the next paragraphs. 
 
 

8.1 Technique 
 
 
(Confidential) 
 
 

8.2 Steps 
 
 
(Confidential) 
 
 

8.3 Results 
 
 
(Confidential) 
 
 

8.4 Conclusions 
 
 
(Confidential) 
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Part IV Conclusions 



Internship end report 

 
 

Page 63 
 



Internship end report 

 
 

Page 64 
 

9 Conclusions and recommendations 
 
 
(Confidential) 
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11 Appendices 
 

11.1 Appendix A 
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11.2 Appendix B 
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11.3 Appendix C 
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11.4 Appendix D 
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