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Abstract

This thesis explores the optimization of large language models (LLMs) for the

structured extraction of Environmental, Social, and Governance (ESG) data from

unstructured texts, particularly annual reports. Given the increasing importance

of ESG factors in assessing a company’s value and performance, the study focuses

on developing and fine-tuning domain-specific models to automate the extraction

of relevant information, which has traditionally been a manual and labor-intensive

process.

The research involves the evaluation of various open-source LLMs, such as Meta’s

LLaMA and Mistral models, as well as a commercial model (GPT-4o-mini) for bench-

marking. A dataset containing ESG data from 30 annual reports was created using

a Retrieval-Augmented Generation (RAG) method, enhanced by manual verification

to ensure accuracy. The study’s key contributions include the development of an

automated framework that streamlines the ESG data extraction process, requiring

only the input of a PDF document. The thesis also examines the impact of fine-

tuning models with domain-specific knowledge, comparing their performance to base

versions.

Experimental results show that fine-tuning significantly improves the models’ abil-

ity to extract structured ESG information, with open-source models demonstrating

competitive performance against commercial alternatives. Techniques such as Param-

eter Efficient Fine-Tuning (PEFT) and Quantized Low-Rank Adaptation (QLoRA)

were employed to optimize resource usage during the fine-tuning process. The findings

suggest that with appropriate adaptation, LLMs can effectively automate the extrac-

tion of ESG data, offering a scalable solution for businesses and analysts seeking to

analyze large volumes of annual reports.

1



Contents

1 Introduction 1

2 Objective and Related Works 3

2.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Methods 6

3.1 Deep learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.1 Vector Embeddings . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.2 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.3 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.4 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.5 Fully Connected Feed-Forward Neural Network . . . . . . . . 14

3.5 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.1 Open Source LLMs . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.2 Parameter Efficient Fine-Tuning (PEFT) . . . . . . . . . . . . 17

3.6.2.1 Low Rank Adaptation (LoRA) . . . . . . . . . . . . 17

3.6.2.2 Quantized Low-Rank Adaptation (QLoRA) . . . . . 18

3.6.3 Supervised Fine-Tuning . . . . . . . . . . . . . . . . . . . . . 19

3.6.4 Unsupervised Fine-Tuning . . . . . . . . . . . . . . . . . . . . 19

4 Data 21

4.1 Original Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



4.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Dataset Generation Diagram . . . . . . . . . . . . . . . . . . . 29

5 Approach 30

5.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Input Data Pre-Processing Pipeline . . . . . . . . . . . . . . . . . . . 30

5.3 Base Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Fine-Tuning Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5.1 Llama 3.1 Instruct . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5.2 CodeLlama Instruct . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.3 Mistral 7B Instruct . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.4 OpenChat 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.5 Models Paramaters . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.6 GPT-4o Mini . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Results 46

6.1 Fine-Tuning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Policy Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Name Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Discussion 61

A Prompts 64

Bibliography 68

ii



List of Figures

3.1 Feedforward Neural Network with Four Layers . . . . . . . . . . . . . 7

3.2 Transformer Architecture: Encoder on the left and Decoder on the

right (Source Vaswani et al. [62]) . . . . . . . . . . . . . . . . . . . . 11

3.3 Scaled Dot-Product Attention on the left and Multi-Head Attention

on the right (Source Vaswani et al. [62]) . . . . . . . . . . . . . . . . 13

3.4 Low-Rank Decomposition of Weight Matrix into Matrices A and B

(Source: Hu et al. [21]) . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Schematic representation of dataset generation. . . . . . . . . . . . . 29

5.1 Schematic representation of the extraction process . . . . . . . . . . . 35

5.2 Schematic representation of the fine-tuning method . . . . . . . . . . 39

6.1 Training and evaluation losses over 3 epochs during fine-tuning for all

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Comparison of all models, base and fine-tuned versions, on average

percentage of relevant policies with 90% confidence intervals.. . . . . 55

6.3 Comparison of all models, base and fine-tuned versions, on average

number of total policies with 90% confidence intervals. . . . . . . . . 56

6.4 Comparison of all models, base and fine-tuned versions, on the F1 score. 60

iii



Chapter 1

Introduction

.

Annual reports have long been a crucial part of a company’s public relations

strategy. These reports not only showcase the company’s past achievements but

also communicate its future goals. In addition, they include comprehensive financial

statements that enhance transparency and accountability. Through the annual report,

readers gain a holistic understanding of the company, enabling them to form well-

informed opinions. Therefore, it is essential for companies to present themselves

effectively, as this shapes the perceptions of both investors and the general public.

In recent years, the scope of annual reports has expanded significantly. Beyond

traditional financial statements and operational reviews, modern reports often include

detailed discussions of a company’s environmental, social, and governance (ESG)

initiatives, risk management strategies, and long-term sustainability plans [35, 23].

This expansion highlights the growing importance of non-financial factors in assessing

a company’s value and overall performance. As a result, financial analysts have begun

incorporating ESG factors into models for determining stock prices. Research has

shown that, on average, a company’s ESG performance can impact stock prices by

as much as 5% [52]. Given the valuable information contained in annual reports,

performing a detailed analysis is critical.

A significant challenge stems from the lack of a standardized format for annual

reports. Since the content and structure of these reports are determined by manage-

ment, regulations allow for considerable flexibility in their organization and presen-

tation. As a result, automating the analysis of annual reports is difficult, which is

why it is often still done manually. This presents an opportunity to develop methods

that can overcome these challenges, enabling automated analysis of a large volume of

reports more efficiently and accurately.
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One promising approach is to extract key ESG information from annual reports.

Since annual reports are considered unstructured text, the process of extracting this

information is categorized under Information Extraction (IE). IE is a subfield of Natu-

ral Language Processing (NLP) that includes tasks such as Named Entity Recognition

(NER), Event Extraction (EE), and Relation Extraction (RE).

NLP is inherently complex. However, recent advancements in the field, partic-

ularly with the development of large language models (LLMs), have significantly

improved many tasks, including IE. LLMs are primarily designed for text generation,

but they have shown potential for IE tasks, even though they are not specifically built

for tagging tasks like NER. As a result, there is growing interest in leveraging LLMs

to generate structured data, moving beyond traditional IE methods.

One of the key advantages of LLMs is their ability to perform a wide range of IE

tasks without the need for task-specific training data. By providing a well-defined

task description, LLMs can extract entities, relationships, and events from text by

utilizing their broad language understanding capabilities. This makes them highly

efficient for extracting information from documents like annual reports, which contain

large volumes of text. However, there is a wide variety of LLMs available, each

with different capabilities. For instance, open-source models like Meta’s Llama-3 1

are available for free, while commercial models like OpenAI’s GPT-4 2 require paid

access. Although commercial models tend to perform better, open-source alternatives

show promising results and are being developed at a rapid pace. Open-source models

benefit from the contributions of the research community, and many of these models

are hosted on platforms like Hugging Face 3, which currently hosts more than 700,000

models [34].

Given the growing number of available models, choosing the most suitable one for

specific IE tasks, such as summarizing and analyzing text, becomes important. It is

therefore valuable to evaluate the performance of different models on these tasks and

select the most appropriate one. However, there are currently no models specifically

designed for extracting ESG-related data from annual reports. This creates an inter-

esting opportunity to explore the development of an improved model by fine-tuning

an existing model on ESG data from annual reports. Fine-tuning would equip the

model with enhanced domain knowledge, potentially yielding better performance on

ESG-specific tasks compared to using base models alone.

1https://about.meta.com
2https://openai.com
3https://huggingface.co
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Chapter 2

Objective and Related Works

The focus of this thesis is to test and compare the performance of open-source LLMs

on the task of extracting structured information from unstructured text. Specifically,

we focus on extracting ESG data from annual reports. Additionally, we examine

how these models perform on the same tasks when fine-tuned on annual report data,

providing them with the necessary domain knowledge, and compare their performance

to base versions. We also use a commercial model, gpt-4o-mini, as a benchmark for

comparison.

One of the key contributions of this study is the creation of a dataset containing

extracted ESG data from 30 annual reports, which was constructed using an LLM

enhanced with the Retrieval Augmented Generation (RAG) [27] method and manually

verified for accuracy. However, the main contributions are the empirical evaluation

of these models alongside their fine-tuned counterparts, as well as the development

of a fully automated framework that streamlines the ESG data extraction process,

requiring only the annual report PDF as input.

2.1 Related works

There have been many attempts to automate IE in the past. However, most research

papers focus on only one specific task within IE, such as NER or RE. This is largely

due to the inherent complexity of IE and the need for traditional rule-based methods

to be highly specialized for each task and tailored to specific document types to be

successful [37].

With the introduction of LLMs, it has become possible to combine multiple IE

tasks within a single framework. Despite this advancement, most papers utilizing

LLMs still focus on a single task, with NER being the most common. A notable
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domain in which LLMs have been applied is materials science, where the goal is to

extract materials data from scientific papers [15, 41, 56, 72, 67].

In this domain, both Dunn et al. [15] and Song et al. [56] employed fine-tuning

of LLMs to create efficient and high-performing models. In [15], the authors used a

GPT-3 [6] model and fine-tuned it on 500 prompts and completion pairs. Their ap-

proach focused on extracting information from both sentences and entire paragraphs,

demonstrating that their method performs NER in combination with RE with high

accuracy. The extracted information was provided in the form of a JSON object,

which is also the approach adopted in this study.

On the other hand, Song et al. [56] used the open-source LLaMA [59] model. They

developed a two-step approach, where in the first step they used Chat-GPT1 to create

instruction-based data in the materials science domain, and in the second step, this

data was used to fine-tune the LLaMA model. This allowed the model to acquire

the necessary domain knowledge to perform a wide array of materials science-based

tasks.

Another approach for extracting materials data from scientific papers was pro-

posed by Polak et al. [42]. Instead of fine-tuning, they employed a simple zero-shot

prompting technique, where the model is tasked with extracting information without

any prior examples or task-specific training. They enhanced this framework by vali-

dating responses through a series of follow-up questions, which significantly improved

the results. The best-performing model was GPT-4 [39], which outperformed both

GPT-3.5 [6] and the LLaMA-2 [60] 70B version.

LLMs have also been applied to IE tasks in the medical domain. In the work

by Li et al. [28], a framework was proposed using Google’s open-source PaLM-2 [2]

model. To enhance the model with clinical domain knowledge, they employed in-

context learning (ICL) using two knowledge bases. ICL refers to a method where the

model’s parameters remain frozen, and the LLM performs the task solely based on

the prompt text. One knowledge base was generated internally using an LLM with

a small labeled training set, while the other was externally curated by experts. Li et

al. focused on extracting lung lesion information from clinical and medical imaging

reports, with their approach outperforming techniques such as few-shot learning [6],

chain-of-thought (CoT) [66], and RAG [27] in terms of F1-score [55].

Prompt-based methods have also been explored for structured extraction from un-

structured text in other domains. For instance, Vijayan [63] developed a method to

extract trip information from unstructured text such as emails. They used Google’s

1https://platform.openai.com/docs/api-reference/chat
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BARD [18] model, structuring the extracted information in the form of custom SQL

queries. The authors compared four prompting techniques: standard prompting, per-

sona pattern prompting, CoT prompting, and few-shot prompting [6]. Persona pat-

tern prompting involves providing the LLM with a persona to follow while performing

a task. Their findings indicated that few-shot prompting significantly outperformed

the other techniques, achieving an F1-score of 0.86.

As the importance of ESG has grown, so too has the research surrounding it.

Most of the research has focused on predicting price changes in equities based on

ESG ratings using machine learning techniques [10, 61]. However, research focused

specifically on extracting ESG data remains scarce [33]. Raman et al. [46] classify

text in earnings calls as either ESG-relevant or not. Their two-fold approach involved

first creating a classification model to categorize text in Corporate Sustainability

Reports (CSRs) into three categories: irrelevant, quasi-relevant, and relevant. This

was done in an unsupervised manner, combining a model with human annotators who

corrected errors. They then fine-tuned BERT [13], XLNet [69], RoBERTa [29], and

DistilBERT [51] on the constructed dataset and tested the models on a hold-out set.

Similarly, Fischbach et al. [16] developed a method that automatically classifies

news media data as ESG-related or not, and further performed sentiment analysis

to classify relevant news as positive or negative. They compared several traditional

machine learning models to a deep-learning model, BERT, which predictably outper-

formed the others.

The research most similar to our study was conducted by Zou et al. [73], who

combined an LLM with RAG to extract ESG-related data from ESG reports. They

required the model’s output to be in a predefined JSON format. The preprocessing

of the reports was extensive, employing advanced computer vision tools to extract

paragraphs, tables, and headers, and performing structural analysis. Their framework

also included a metadata module to ensure the model’s output complied with interna-

tional ESG standards. They compared four models: GPT-4, GPT-3, ChatGLM [14],

and QWEN [4], with GPT-4 achieving the highest accuracy at 83.7%, outperforming

QWEN, which achieved 61.4%.
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Chapter 3

Methods

In this chapter, we present the key concepts and methods used in the implementation

and optimization of LLMs for information extraction. First, we begin by discussing

the deep learning models that served as precursors to modern LLMs. Then, we explain

the fundamentals of language modeling. Next, we introduce the core components of

LLMs and their functionality. Finally, we explore how LLMs can be adapted to spe-

cific tasks through fine-tuning techniques, with a focus on addressing computational

resource limitations.

3.1 Deep learning models

The core of all deep learning architectures is the feedforward neural network (FNN),

which is a specific type of general neural networks (NNs), also referred to as artificial

neural networks (ANNs). The inspiration for NNs came from modeling how the

human brain works, and the invention of the perceptron by Rosenblatt [48] in 1958

marks the beginning of NN research. The next major breakthrough occurred in 1986

when Rumelhart et al. [50] applied the backpropagation algorithm to NNs, enabling

the training of more complex and deeper models compared to the earlier, more limited

perceptrons.

A significant factor in the resurgence and overall success of NNs, particularly in

deep learning models, is the availability of large datasets for training, along with

advancements in computational power. A general NN architecture consists of an

input layer, one or more hidden layers, and an output layer. The number of nodes

in each hidden layer is flexible, while the number of nodes in the input layer depends

on the size of the input data, and the number of nodes in the output layer depends

on the specific task (e.g., regression or binary classification). Connections between

nodes, representing the weights, are also flexible. However, in FNNs, the layers are

6



fully connected, meaning that each node in one layer is connected to all nodes in the

subsequent layer.

A simple example of an FNN is presented in Figure 3.1. It consists of an input

layer with four nodes, two hidden layers with six and five nodes, respectively, and

an output layer with three nodes. The network processes the input data, denoted as

x1, x2, x3, and x4. These input values are propagated forward through the network

via multiplication with the weight matrix, and at each node, a non-linear activation

function is applied.

To train such networks, the backpropagation algorithm is used to adjust the

weights based on the error between the predicted output and the actual target.

Backpropagation works by propagating this error backward through the network and

updating the weights using gradient descent to minimize the loss function.

This architecture has many impressive applications, including character recogni-

tion, speech recognition, text-to-speech transformation, process control, associative

memory, and more. However, FNNs require fixed-size input and lack memory ca-

pacity, making them less effective for tasks involving sequential data or tasks where

dependencies between input features must be modeled.

x1

x2

x3

x4

y1

y2

y3

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Figure 3.1: Feedforward Neural Network with Four Layers

In response to the fixed input size limitation of FNNs, recurrent neural networks
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(RNNs) were invented. RNNs were designed to handle sequential data of varying

lengths, such as text sentences or time series. Memory is retained through the hidden

state, which holds information about previous inputs. However, RNNs struggle to

capture long-range dependencies due to the vanishing gradient problem, where the

gradients used to update the model’s weights during training become extremely small.

This leads to earlier inputs having little to no influence on the model’s output in

lengthy sequences.

Long short-term memory networks (LSTMs) were developed to address this issue.

LSTMs are an improved type of RNN that use gates, which are mechanisms that con-

trol what information is allowed to pass through, what should be updated, and what

should be discarded, to regulate the flow of information. This allows them to retain

memory for longer periods, making them more effective for tasks such as language

modeling and text generation. However, LSTMs still have limitations. The first is

that the memory is presented as a fixed-sized vector, which limits the amount of

information that can be stored. Additionally, LSTMs require more data and compu-

tational power because they process inputs sequentially, making it difficult to leverage

parallel computation and utilize GPUs to speed up training. Furthermore, LSTMs

can only recall past information, leading to the development of bidirectional LSTMs

(BiLSTMs). BiLSTMs use two LSTMs: one processes the input from left to right,

while the other processes it from right to left. The outputs of both LSTMs are then

merged using a model or function (e.g., linear-chain conditional random field).

Another type of deep learning network is the convolutional neural network (CNN).

While primarily used for image processing, CNNs can also be applied to NLP tasks.

CNNs capture local patterns and model spatial relationships in input data, making

them effective for tasks like text classification. They can also leverage GPU paral-

lelism through their feedforward structure. However, CNNs cannot capture long-range

dependencies, limiting their usefulness in many NLP tasks.

In 2017, a new deep learning architecture called the transformer was introduced by

Vaswani et al. [62]. Transformers are highly parallelizable and can capture long-range

dependencies, solving the main challenges faced by RNNs and CNNs. The transformer

architecture revolutionized NLP and became the foundation for most state-of-the-

art (SOTA) models used today. More specifically, the introduction of Bidirectional

Encoder Representations from Transformers (BERT) by Devlin et al. [13] achieved

SOTA results on 11 different tasks, according to the benchmarks and datasets used

in the original paper.
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The models discussed in this thesis are all based on the transformer architec-

ture, which will be described in depth in Section 3.4. However, before delving into

transformers, we will define some core concepts of language modeling, beginning with

the definition of a language model in Section 3.2. Most of the notation used fol-

lows [62, 20].

3.2 Language Modeling

Language models are statistical models that try to learn to model the joint distribu-

tion of the sequence of words, based on the data [5]. A statistical language model can

be expressed as the conditional probability of the next word given the sequence of

preceding words, where the probability of a word sequence w = (w1, . . . , wn) is given

as:

P (w) =
n∏

i=1

P (wi | w1, . . . , wi−1). (3.1)

Models that use only the preceding words in a given sequence to predict the next

word are called autoregressive models [71]. These are the kind of models we use in

this work and more specifically they work on the level of substrings of words, which

we define in Section 3.3.

3.3 Tokenization

In natural language processing tasks, the input is naturally provided as a string

of characters. However, the models described in the following chapters require a

numerical representation of the input data. Therefore the input data is converted from

a long string of characters to the sequences of precisely defined substrings of characters

to which the model assigns a precise numerical representation. This process is called

tokenization [53]. The result of tokenization is the breaking down of a string into

shorter substrings, called tokens. The set of all allowed tokens is called a vocabulary.

A sequence of tokens is assigned a sequence of natural numbers such that each token

is assigned a token identifier from the set V = {1, . . . , v}, where v = |V| is the size

of the vocabulary. In the following sections we will use the term token as both the

string of characters it consists of and the number it is represented by.

A simple choice for tokenization is to break the string at the character or byte

level. In this case, each token corresponds to exactly one symbol. The advantage of

9



such a representation is the ability to encode arbitrary strings, but the drawback is

the need for a large number of tokens to represent longer strings.

An alternative option for tokenization would be at the word level, where each token

corresponds to a word. The problem with this is the need for a large vocabulary and

the limitation to only pre-determined words. The advantage of such a representation

is the use of fewer tokens to represent the input data.

A method that combines the advantages of character level and word level tokeniza-

tion is subword tokenization [44]. Subword tokenization represents frequent sequences

of characters with individual tokens and rare occurrences of sequences with multiple

tokens. The Byte Pair Encoding (BPE) algorithm [53] builds the vocabulary from

the input training corpus by starting with a vocabulary composed of all the different

bytes or symbols in the training corpus. Then it calculates the number of occur-

rences of all two consecutive symbols in the data and the pair with highest number

is represented with another symbol and the vocabulary is expanded by 1. This is

repeated until it cannot be compressed anymore or by the predetermined number of

final tokens, which is a hyperparameter of the algorithm.

3.4 Transformer Architecture

The transformer neural network architecture [62] has revolutionized the field of natu-

ral language processing with its architecture that enables efficient parallel learning on

sequential data GPUs. A key component of the architecture is the attention mecha-

nism, which allows the model to consider the interactions between input tokens and

is described in Section 3.4.2.

The transformer architecture consists of an encoder and a decoder, as shown in

Figure 3.2. On the left side of the image we have a encoder and on the right we

have an decoder. The encoder maps the sequence of tokens x = (x1, . . . , xn) ∈ Vn

into a sequence of continuous representations z = (z1, . . . , zn), where zi ∈ Rd for

i = 1, . . . , n, is a hyperparameter of dimension d ∈ N. The decoder then uses z and,

in an autoregressive manner, produces the output sequence of tokens y = (y1, . . . , ym)

or probabilities for each token yi ∈ R|V| for i = 1, . . . ,m. The input sequence x is

also referred to as the input context of the model.

3.4.1 Vector Embeddings

The input to the transformer is a sequence of tokens x ∈ Vn, which is first mapped

into a sequence of continuous representations called token embeddings. This is done

10



Figure 3.2: Transformer Architecture: Encoder on the left and Decoder on the right
(Source Vaswani et al. [62])

in the Input Embedding layer of the transformer, as shown in Figure 3.2. Each token

xi ∈ V is mapped to a vector x̂i ∈ Rd using a mapping table. The mapping table

can be represented by a matrix U ∈ R|V|×d, where the i-th row contains the vector

embedding of the i-th token from the vocabulary V . The weights of the mapping

table U are learned through neural network training.

Within the layers of the encoder and decoder, the transformer operates with token

embeddings of dimension d, and the output of the last decoder layer is also a vector of

dimension d. The output vector from the last decoder layer is mapped linearly with

V ∈ Rd×|V| into a vector of dimension |V|, and then the softmax operation softmax :

R|V| → (0, 1)|V| is applied to obtain probabilities for the next token. The softmax

output ensures that the probabilities sum to one, which is crucial for stability, as it

guarantees a valid probability distribution. Comparable results can be obtained by

sharing weights between the input and output mapping tables, setting U = V [43, 62],

which also has the added benefit of reducing the number of parameters.

Before using the token embeddings in the encoder and decoder, they are en-

hanced with positional information within the sequence. This is important because

transformers lack a built-in mechanism to model the order of tokens in a sequence.

Positional encoding enables the model to incorporate the relative or absolute posi-
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tions of tokens, which is essential for understanding the sequence’s structure. This

can be done using either absolute or relative positions [58], and the positions can be

fixed [62] or learned [17]. In the paper by Vaswani et al. [62], they propose using sine

and cosine functions to compute the positional encoding with the following formula:

PEpos,2i = sin

(
pos

10000
2i
d

)
,

PEpos,2i+1 = cos

(
pos

10000
2i
d

)
,

(3.2)

where pos is the position, and i is the dimension of the token. The positional vector

of dimension d is then added to the token embedding vector xi before the resulting

continuous representation is used for processing within the encoder and decoder.

3.4.2 Attention

A key component of the transformer architecture is the attention mechanism, which

allows the model to consider the interactions between tokens in the input sequence.

Attention enhances the representations of tokens by incorporating information from

other tokens in the sequence. Greater weight, or attention, is given to tokens that

provide useful information for predicting the next token.

The attention mechanism first linearly maps the token embeddings X ∈ Rn×d into

queries Q = XWQ, keys K = XWK , and values V = XWV , using learned weight

matrices WQ ∈ Rd×dk , WK ∈ Rd×dk , and WV ∈ Rd×dv for given dimensions of keys

and queries dk, and output values dv. Based on the match between queries and keys,

a weighted sum of the value vectors is calculated. The version of attention that uses

scaled dot-product for matching queries and keys is written as:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (3.3)

where KT is the transposed matrix of K, and the softmax operation normalizes

the match between queries and keys to compute the weighted sum of the value vectors

for each query.

The attention mechanism is extended to multi-head attention, which allows each

attention head to focus on different learned representations of queries, keys, and

values [62]. Multi-head attention operates by performing attention on h different

linear projections of the query, key, and value vectors, where each head is computed

as:
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Figure 3.3: Scaled Dot-Product Attention on the left and Multi-Head Attention on
the right (Source Vaswani et al. [62])

headi = Attention(QWQ
i ,KWK

i ,VWV
i ), (3.4)

where WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , and WV
i ∈ Rd×dv are linear projections learned

during training. The outputs of each attention head are then concatenated into

vectors of dimension h ·dv and mapped with a learned linear projection WO ∈ Rhdv×d

back to the original dimension d. Therefore, multi-head attention is defined as:

MultiHead(Q,K,V) = Concat(head1, head2, . . . , headh). (3.5)

In Figure 3.3, we can see a graphical representation of how these methods are

combined.

3.4.3 Encoder

The encoder is composed of a sequence of N identically structured layers. Each

encoder layer contains a multi-head self-attention mechanism and a fully connected

feed-forward neural network. Additionally, for learning stability, layer normaliza-

tion [68] and residual connections [19] are included. The dimension of the individual

input and output vectors from each layer is equal to the hyperparameter d. Attention

within the encoder receives queries, keys, and values from the output of the previ-

ous encoder layer, with each position focusing attention on all other positions. Since

queries, keys, and values originate from the same source in the attention calculation,

such attention is called self-attention.
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3.4.4 Decoder

Similar to the encoder, the decoder is composed of a sequence of N identically struc-

tured layers. Unlike the encoder, each decoder layer includes two attention mecha-

nisms. The first self-attention mechanism operates on the outputs of the previous

decoder layer, but the attention of each position is directed only to itself and previ-

ous positions, ensuring autoregressive properties. The second attention mechanism is

cross-attention between the encoder and decoder, hence called cross-attention. Cross-

attention receives queries from the previous decoder layer, while values and keys come

from the encoder outputs, allowing each position to focus attention on the entire en-

coder output.

3.4.5 Fully Connected Feed-Forward Neural Network

Each layer of the encoder and decoder contains a fully connected feed-forward neural

network (FFN), which is applied to each position independently and simultaneously.

An example of an FFN used in transformers is expressed by equation 3.6, which

includes two linear transformations with a ReLU activation function in between:

FFN(x) = max (0,xW1 + b1)W2 + b2, (3.6)

where W1 and W2 are matrices of learned weights, and b1 and b2 are learned bias

vectors. The ReLU function is defined as ReLU(x) = max(0,x), where max is applied

component-wise. In transformers, the dimension of the input vector x ∈ Rd is equal to

the dimension of the output vector FFN(x), while the intermediate dimension within

the network is typically 4d [62], denoted as dff . In modern architectures [60, 8], other

non-linear functions, such as SwiGLU [54], are also used instead of ReLU.

3.5 Large Language Models

Building on the foundation of the transformer architecture discussed in the previous

section, this design has proven to be versatile and applicable to a wide range of tasks

in natural language processing (NLP) [3]. By making specific modifications to the

architecture, models can be tailored to perform better on particular tasks. For in-

stance, architectures that use only a decoder are well-suited for autoregressive text

generation tasks, where each word or token is generated sequentially based on the pre-

viously generated content. Examples of decoder-only models include the Generative
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Pre-trained Transformers (GPT) series developed by OpenAI, such as GPT-1 [70],

GPT-2 [44], GPT-3 [6], and GPT-4 [39].

Conversely, the encoder is responsible for converting raw input into a contextual

representation, and architectures that rely solely on the encoder are used for text

understanding tasks. These models can compute vector embeddings for multiple

words or sentences, and are also effective in tasks such as sentence classification

and named entity recognition (NER). Examples of such models include BERT [13],

RoBERTa [29], and ELECTRA [9].

Encoder-decoder architectures, on the other hand, are ideal for tasks that re-

quire both text understanding and generation, such as translation or summarization.

Models with this architecture include T5 [65] and BART [26].

It is important to note that the use of the transformer architecture in any encoder-

decoder configuration does not automatically classify a model as a large language

model (LLM). What distinguishes LLMs is the sheer number of parameters, ranging

from several billion to over a trillion. Additionally, LLMs have the ability to perform

a wide range of NLP tasks without requiring task-specific fine-tuning. This capability

eliminates the need for large labeled datasets and reduces the computational cost, as

LLMs can be guided to perform tasks via prompting. One of the most well-known

examples of an LLM is the GPT series by OpenAI, particularly ChatGPT. ChatGPT

is based on InstructGPT [40], with additional safety features. InstructGPT itself

evolved from GPT-3 by using Reinforcement Learning with Human Feedback (RLHF)

to fine-tune it for more human-like writing. While GPT-3 has 175 billion parameters,

InstructGPT has only 1.3 billion parameters.

3.5.1 Open Source LLMs

While OpenAI’s models, such as GPT-4, are among the leading general-purpose lan-

guage models available today, they are not open-source. Access to these models

requires payment for API usage, and using them often involves sharing data with

OpenAI, which can pose challenges for organizations with strict data privacy re-

quirements. To address these concerns, several high-quality open-source models have

been developed, offering competitive performance while allowing for local deployment,

thereby reducing the need for external data sharing.

A notable example is Meta’s LLaMA (Large Language Model Meta AI) series,

which offers impressive performance and can be used locally, mitigating data privacy

concerns. One of the newest models in this series, LLaMA-3 [1], was introduced on
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April 18th, 2024, and comes in three sizes. The smallest version has 8 billion param-

eters, the middle has 70 billion, and the largest has 405 billion. All of these models

achieve state-of-the-art (SOTA) performance across multiple tasks when compared to

similarly sized models.

Hugging Face is another key player in the NLP and machine learning commu-

nity, providing a platform with a wide range of open-source models, including those

developed by organizations like Meta and MistralAI1, as well as contributions from

researchers and individuals. In this thesis, we will use the Hugging Face API to down-

load the models and datasets required for our project, leveraging this rich ecosystem

of open-source tools.

3.6 Fine-Tuning

There are several ways to improve the performance of LLMs on specific tasks. One of

the simplest methods is prompt engineering, which involves refining the input prompt

given to the model. Techniques such as one-shot learning and few-shot learning

have emerged as promising approaches within prompt engineering, allowing models

to adapt to new tasks with minimal training data [36]. In these approaches, one

or a few solved examples of the task are included in the prompt. Another form of

prompt engineering is providing a highly detailed description of the task. For instance,

techniques like Chain-of-Thought (CoT) prompting have been shown to significantly

improve performance on NLP tasks [22, 32].

Fine-tuning, by contrast, involves updating the model’s parameters to specialize

it for a particular task or domain. While this approach is more complex, it typically

yields the best results when executed correctly, which is why we have chosen it for

this study. However, fine-tuning requires substantial computational resources and a

large dataset, making it resource-intensive and less accessible for all applications.

3.6.1 Quantization

While fine-tuning can yield highly accurate models, it often requires substantial com-

putational resources, which may not always be available. To address this issue, several

techniques have been developed to reduce the computational load, one of the most

common being model quantization. Quantization reduces the size of the model by

lowering the precision of the model’s weights, switching from full 32-bit floating point

precision to a more compact, discrete set of values [24].

1https://mistral.ai
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Typically, open-source LLMs are trained using 32-bit precision, which allows for

highly accurate representations of weights. However, by reducing this precision to

lower bit-widths (e.g., 16-bit, 8-bit, or even 4-bit), the model’s memory require-

ments and computational demands are significantly reduced. Importantly, research

has shown that quantization does not substantially degrade model performance, even

though the precision of the weights is lowered [11]. This makes quantization a popular

method for deploying large models more efficiently, especially in environments with

limited computational power.

As a result, many open-source models available on platforms like Hugging Face

are provided in quantized forms, allowing users to download and use models that are

much smaller in size while maintaining high performance.

3.6.2 Parameter Efficient Fine-Tuning (PEFT)

While quantization helps reduce the size and computational load of large language

models (LLMs), further optimizations can be made when fine-tuning these models.

To additionally save computational power during the fine-tuning process, Parameter

Efficient Fine-Tuning (PEFT) methods have been introduced. These methods offer an

alternative to traditional fine-tuning, where all of a model’s parameters are updated.

In the case of LLMs, traditional fine-tuning can be extremely resource-intensive. In

contrast, PEFT methods reduce the number of parameters involved in fine-tuning,

leading to faster and more efficient adaptation.

There are several PEFT methods, including Adapter, LoRA, QLoRA, and Prompt

Tuning [24]. In this study, we focus on LoRA and QLoRA, as these are the methods

used in our approach. Both techniques are explained in detail in Section 3.6.2.1.

3.6.2.1 Low Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA) represents a significant advancement in the fine-tuning

of LLMs. Instead of modifying the entire large weight matrix of a pre-trained model,

often denoted as W ∈ Rd×d, LoRA modifies smaller, compact matrices of lower rank.

The changes to the parameters of W that occur during fine-tuning are represented

by two matrices: A and B. Matrix A reduces the dimensionality from d to r, while

matrix B expands it back to d. Specifically, A ∈ Rr×d and B ∈ Rd×r, and when r

is much smaller than d, the total number of parameters for A and B is significantly

smaller than in the original W matrix.

During fine-tuning, the original large matrix W is frozen. Matrix A is initialized

with random values sampled from a Gaussian distribution with a mean of 0 and small
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Figure 3.4: Low-Rank Decomposition of Weight Matrix into Matrices A and B
(Source: Hu et al. [21])

variance, while matrix B is initialized to zeros. The LoRA adapter, denoted by ∆W,

is defined as ∆W = BA. A forward pass is then computed as:

h = Wx + ∆Wx = Wx + BAx, (3.7)

where x ∈ Rd is the input vector. Initially, because B is zero, the LoRA adapter

does not affect the model’s output. However, as training progresses, the values in B

evolve from zero, and the random values in A adjust through backpropagation. This

leads to an increasingly effective contribution from ∆W on top of the original W.

LoRA can be applied to any weight matrix within a transformer model to reduce

the number of trainable parameters. Additionally, using small values of r, even as low

as 4, has been shown to yield better fine-tuning results than fine-tuning the entire W

matrix. This suggests that pre-trained models may be over-parameterized, and their

essential features can be captured more efficiently in a reduced form.

3.6.2.2 Quantized Low-Rank Adaptation (QLoRA)

Quantized Low-Rank Adaptation (QLoRA) combines the principles of LoRA with

quantization. In this method, the precision of the model’s weights is reduced to 4-bit

precision, further lowering computational requirements during fine-tuning. This ad-

ditional reduction in precision, when combined with LoRA’s low-rank approximation,

results in even more efficient fine-tuning. Due to its computational efficiency, QLoRA

is implemented in this thesis as a key part of our model fine-tuning strategy.
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3.6.3 Supervised Fine-Tuning

The PEFT methods discussed earlier can be applied to various types of fine-tuning,

which are typically distinguished by the nature of the data available. The two primary

types of fine-tuning are supervised and unsupervised, with a third hybrid approach

called semi-supervised fine-tuning, which combines elements of both.

Supervised fine-tuning is a method where the model learns from a dataset con-

taining specific input-output pairs, such as question-and-answer datasets. In this

approach, the model is given an input, such as a question, and is trained to produce

the corresponding correct output, or answer. The model’s predictions are compared

with the actual answers, and its parameters are adjusted to minimize the difference,

or loss, between them. This targeted approach is highly effective for training mod-

els to focus on specific tasks, as it ensures the model learns the exact relationship

between input and output.

A key component of supervised fine-tuning is the use of attention and loss masks.

The attention mask helps the model focus on relevant parts of the input sequence

while ignoring irrelevant information, such as padding tokens used to standardize

sequence lengths. The loss mask ensures that the model is only penalized for incorrect

predictions related to the answer portion, rather than the question. This focused

learning process is crucial for training the model to produce accurate and relevant

outputs without being distracted by extraneous input details.

Another important aspect of supervised fine-tuning is teaching the model when to

stop generating text. This is typically achieved by training the model to predict an

”end of sequence” (EOS) token after the correct answer, preventing it from generating

unnecessary information beyond the intended output.

During supervised fine-tuning, the model is typically exposed to the entire dataset

multiple times, a process known as training epochs. More than three epochs are

generally required to ensure the model adequately learns from the data. However,

care must be taken to avoid overfitting, where the model becomes overly specialized to

the training data, reducing its ability to generalize to new, unseen inputs. Achieving

the right balance in the number of training epochs is key to developing a model that

performs well both on the training set and in real-world applications.

3.6.4 Unsupervised Fine-Tuning

In contrast to supervised fine-tuning, unsupervised fine-tuning does not rely on paired

input-output datasets. Instead, the model learns by predicting the next word in a
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sequence of text, which is then compared to the actual next word in the sequence.

The model’s parameters are adjusted based on the accuracy of these predictions.

Like supervised fine-tuning, unsupervised fine-tuning employs an attention mech-

anism, enabling the model to consider the entire sequence of preceding words when

making its predictions. This ensures that the model effectively uses the context pro-

vided by the input text. The key difference lies in how the loss is calculated. In

unsupervised fine-tuning, loss is calculated for every word in the sequence, rather

than just for specific output portions as in supervised fine-tuning. As a result, every

word contributes to the model’s learning, making this process more generalized.

One of the main advantages of unsupervised fine-tuning is its flexibility. It does not

require the data to be in any specific format, allowing large, unstructured collections

of text, such as annual reports, to be used for training. However, this flexibility also

presents a challenge: without the structure provided by explicit input-output pairs,

the model may struggle with tasks that require structured outputs, such as generating

JSON-formatted answers or conversational responses in a chat format.

Despite these challenges, unsupervised fine-tuning is used in this study due to the

lack of access to a structured dataset. By fine-tuning the model on a large corpus of

annual reports, the model is expected to learn the tone and style of these documents.

We hypothesize that this will improve the model’s ability to extract relevant ESG

information and enhance the quality of the generated responses.
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Chapter 4

Data

In this chapter, we provide a comprehensive overview of the data utilized in this

thesis. We begin by detailing the acquisition and pre-processing of the initial raw

data. Next, we explain the methodology employed to transform the raw data into

a structured dataset, which plays a crucial role in evaluating our models. Finally,

we offer a detailed description of the dataset and present an overview of the entire

process, illustrated with a diagram for clarity.

4.1 Original Data

In real-world applications, data is frequently unstructured and lacks a consistent for-

mat. Therefore, to make this project as realistic and useful as possible, our starting

point was a collection of annual reports in PDF format, as they are commonly pub-

lished by companies. These reports were sourced from either the companies’ websites

or from AnnualReports.com We selected annual reports from different companies

for the year 2023, while ensuring variability across industries. This diversity in the

dataset allows us to better simulate real-world conditions and assess how the models

would perform in practical applications.

Annual reports are generally extensive documents, with lengths ranging from

around 100 to several hundred pages. Although they follow an overall structured

format, there is considerable flexibility in how specific sections are organized. Typ-

ically, annual reports provide a comprehensive overview of a company’s financial

performance, operations, and future prospects. They usually begin with a letter to

shareholders from the CEO or board chair, summarizing the year’s achievements and

challenges. This is followed by a detailed management discussion and analysis, where

key financial results are interpreted, including performance indicators, market con-

ditions, and strategic goals. The core of the report consists of financial statements,
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such as the balance sheet, income statement, and cash flow statement, supplemented

by detailed notes.

In recent years, an Environmental, Social, and Governance (ESG) section has

become a common feature of annual reports. This section outlines the company’s

commitments to sustainability, ethical practices, and corporate governance. It often

addresses topics such as environmental impact, diversity and inclusion efforts, as well

as ethical business conduct.

Given the increasing interest from both the public and investors in ESG issues,

we decided to focus on extracting data that would be most relevant to investors and

researchers. As a result, we set our goal to answer the following two key questions:

• What are the key elements of the company’s ESG (Environmental, Social, and

Governance) or sustainability policy, including specific commitments or initia-

tives?

• What is the full name of the senior executive, board member, or employee explic-

itly identified as responsible for overseeing the company’s ESG or sustainability

initiatives?

These questions were chosen after consultations with ESG experts and by draw-

ing from reputable sources, such as the report on ESG boardroom questions [7], to

determine the information most valuable to investors. Identifying the individual re-

sponsible for overseeing ESG efforts is crucial, as it not only provides a clear point

of accountability but also allows investors to evaluate the individual’s expertise and

track record in driving ESG initiatives. Furthermore, providing a detailed breakdown

of the key components of the company’s ESG policy, including specific commitments

or initiatives, such as governance, environmental goals, or alignment with the Sus-

tainable Development Goals (SDGs), is essential. For example, the report encourages

companies to assess whether they are providing robust sustainability information and

whether their boards have the skills necessary to guide ESG efforts effectively [7].

We compiled a collection of 30 annual reports from companies across various

industries and countries, all published in the year 2023. This dataset includes reports

from global financial institutions such as Citigroup (CITI) 1, Goldman Sachs (GS) 2,

and JPMorgan Chase (JPM) 3, as well as numerous companies listed on the London

1https://www.citi.com
2https://www.goldmansachs.com
3https://www.jpmorganchase.com
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Stock Exchange (LSE) 4. These reports are stored in PDF format and vary in size

from 3.2 MB to over 33 MB, which reflects the complexity and depth of information

they contain. This dataset provides a comprehensive foundation for in-depth analysis

across different sectors and regions.

In addition to answering the two key questions outlined above, we aimed to struc-

ture the extracted information in a format that is useful for further analysis and

database creation. We have chosen the JSON format for this purpose, as it allows

us to organize the data in a clear and hierarchical manner. Specifically, the JSON

structure we require from our models consists of an answer to each of the two ques-

tion as well as the page number from where the answer came from. This is crucial

because it enables individuals seeking to extract ESG information to link each answer

to its source within the document, providing the ability to double-check the extracted

information. To this end, we also decided to create a dataset for testing the perfor-

mance with the same structure. Hence, each answer in our dataset has that same

JSON form. However, the annual reports are extensive documents with on average

230 pages, therefore we decided to create this dataset in a semi automated way, with

the help of an LLM. This requires us to have a pre-processing step, which is described

in Section 4.2, that enhances the performance of the LLM.

4.2 Data Pre-Processing

The pre-processing step is crucial for improving the LLM’s ability to accurately iden-

tify the page where the relevant information is located. Although all annual reports

include page numbers, these are sometimes unclear or obscured during the conver-

sion from PDF to TXT format. This happens because page numbers get combined

with other text or numbers during the conversion process, which makes it difficult to

determine the exact page number.

To address this issue, our pre-processing step involves two steps. In the first step,

we convert the PDF into TXT format using the PyPDF2.PdfReader function from the

PyPDF2 library. This function iterates through each page of the document, extracting

the text and appending it to a string variable.

In the second step, we insert clear page markers to indicate the start and end

of each page. Specifically, we add markers such as ”START OF PAGE“ and ”END

OF PAGE“ (e.g. ”START OF PAGE 46“ and ”END OF PAGE 46“). The page

numbers correspond to where a specific page appears in the PDF document. Since

4https://www.londonstockexchange.com
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page numbering in the report may not always start at PDF page one, these numbers

can differ. However, because the answers are manually verified, this method allows

for faster navigation when searching for a particular page to assess the accuracy of

the extracted information.

Additionally, we use regular expressions to correct misplaced newline characters

that may be improperly attached to words, ensuring that the text is formatted cor-

rectly and consistently.

4.3 Dataset Creation

After obtaining a cleaned and improved version of the annual report in TXT format,

the next step is to extract the answers to the key questions along with the correspond-

ing page numbers. We decided to use the OpenAI API, specifically its gpt-4o-mini 5

model, in combination with the Retrieval Augmented Generation (RAG) method to

extract the data. We chose this approach because OpenAI provides some of the best

LLMs currently available, and gpt-4o-mini is relatively cost-effective to use. Fur-

thermore, given the size of the annual reports, it is impossible to input the entire

document as part of the prompt, making RAG an ideal solution.

The RAG method enhances the LLM’s ability to generate answers by supplying

it with specific external documents not included in its training data. This allows

the LLM, which has the ability to perform tasks based on a user query, to use ex-

ternal information to answer detailed questions about the document. This approach

is especially valuable for real-world applications, such as equipping chatbots with

comprehensive knowledge about a company. To make the document usable by the

LLM, we employ a technique known as embedding a language model. First, we to-

kenize the data and create vector representations of it. When the LLM receives a

query, the query is also converted into a vector representation, which is then matched

against the vector database of the document. This process retrieves relevant chunks

of the document using a ranking algorithm such as BM25 Okapi [47], which the LLM

incorporates into its answer.

For data extraction, we developed two scripts. The first script, prepare.py, is de-

signed to prepare the data by segmenting it into chunks and generating corresponding

embeddings using the OpenAI API. This chunking is necessary to manage the input

size limitations during embedding generation, with each chunk set to a size of 500

5https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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tokens. Parallel processing is used to generate the embeddings for each chunk effi-

ciently, optimizing the creation of the vector database. The embeddings and text

chunks are then saved in the data folder.

The second script, app.py, loads the created embeddings (or vector database)

and text chunks. It tokenizes the query, creates a vector embedding of it, and re-

trieves the relevant chunks using two ranking algorithms: BM25 Okapi [47] and cosine

similarity [57]. We employ both algorithms because each excels in different scenar-

ios, depending on the query and data, one may produce more relevant results than

the other. By using both algorithms, we ensure that the most relevant chunks are

retrieved. Specifically, we select the two most relevant chunks from each ranking

algorithm, resulting in four chunks being used by the LLM to generate an answer.

Additionally, we have two queries corresponding to the key questions we aim to ad-

dress, as shown in Listing 4.1.

query_1 = """ What are the key elements of the company 's ESG
(Environmental , Social , and Governance) or
sustainability policy , including specific
commitments or initiatives? """

query_2 = """ What is the name of the senior executive or board
member or employee responsible for overseeing the
company 's ESG (Environmental , Social , and Governance)
initiatives?"""

Listing 4.1: Queries for ESG data extraction.

Since we are creating a dataset to assess the performance of the models, it is

crucial to ensure that the data is absolutely accurate. For this reason, we require

the model to output the exact text snippets from the relevant chunks, as well as the

corresponding page numbers from the annual report where the snippets originate.

Additionally, we want the model to provide the output in JSON format, as this

makes it easier to read and subsequently correct if necessary. All of these instructions

have been incorporated into the prompt, as shown in Listing 4.2.

system_prompt = f"""You are a research assistant. You are tasked
with answering questions based on the information provided in
the document excerpts. Please follow the JSON response
structure below:

<response format >
{{

"response ": "Your response here.",
"citations ": [

{{
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"page_number ": "Page number",
"snippet ": "Exact snippet from the document"

}}
]

}}
</response format >

CRITICAL RULES FOR CITATIONS:

1. Each citation MUST be a word -for -word extract from the original
text.

2. Citations MUST reflect the full sentence or phrase exactly as
it appears.

3. Avoid using ellipses (...) or any form of abbreviation in
citations.

4. DO NOT paraphrase or alter the original text for citations.
5. If your answer relies on multiple sentences , cite all necessary

sentences fully.
6. Use as many citations as needed to ensure that your response

is fully backed by the text.
7. Make sure each citation explicitly supports the specific part

of your response.
8. Verify the page number associated with each citation. If unsure

of the correct page , leave it blank.
9. If the provided documents do not contain relevant information ,

leave the page number and quote fields empty.

Example of a correct response:
{{

"response ": "John Doe",
"citations ": [

{{
"page_number ": "12",
"snippet ": "John Doe is the senior executive overseeing the
company 's ESG strategy ."

}}
]

}}

Here are the relevant documents for your query:
<documents >
<Document Title: {Path(chunks_file ).stem}>
"""
for i, chunk in enumerate(top_chunks ):

system_prompt += f"\n{chunk}\n"

system_prompt += f"""\n</ Document Title: {Path(chunks_file ).stem}
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>\n </documents >"""

system_prompt += """
Remember:
1. Citations MUST use the exact wording from the source text.
2. Never modify , shorten , or paraphrase the original text.
3. Use several citations if needed to fully support your answer.
4. Ensure each citation is clearly relevant to its corresponding

part of the response.
5. Be certain the page number is accurate.
6. Leave fields blank if the relevant information cannot be found

in the provided texts.

Now , use the provided excerpts to answer the query , following
these guidelines , and format your response in JSON.
"""

Listing 4.2: Dataset creation system prompt with instructions and relevant document
chunks.

In the prompt, we also include an example of a correct response, making this a

one-shot learning task. This approach significantly improves the model’s performance.

Additionally, we provide the models with detailed rules on how to properly cite the

text. These rules are listed at the beginning of the prompt and then repeated after

the provided chunks. Since LLMs tend to focus more on the beginning and end of the

prompt, therefore including the citation rules twice ensures that the model follows

them correctly.

Finally, the prompt, along with the query, is passed to the gpt-4o-mini model.

The model then generates a response, and to ensure the citations are accurate, we

created a function called verify citations. This function extracts the citations from

the response, normalizes them, and matches them to the normalized chunks to check

for exact matches. Additionally, we verify that the response is in the correct JSON

format, as it is possible for the model to omit or misplace brackets or commas. For

this, we use the json.JSONDecodeError function, which detects formatting errors.

However, the gpt-4o-mini model consistently performed well, producing the correct

JSON format in every case.

After the extraction process, we are left with two JSON objects, one for each

query. An inspection is then conducted to verify whether the information is correct.

Since the citations and page numbers are included, it is relatively easy to check the

accuracy of the extracted information. However, the answers generated using the

RAG method are not always complete. As a result, we often need to review most of

the annual report to ensure the answers are thorough and comprehensive.
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The biggest shortcoming of the RAG method was noticeable when extracting the

relevant person’s name. This is because, in annual reports, it often happens that

the relevant person is mentioned by their title, e.g., CEO, CTO, or chair of the ESG

committee, without explicitly mentioning their name. Therefore, when providing

relevant chunks, the information about the name of the CEO, CTO, or chair of the

committee is not included, which is why the model sometimes outputs only the title.

On three occasions, it also happened that the name of the person was incorrect, and

six times there was not a specific person but instead a committee, which the model

was able to identify. However, it did not leave an empty string in the answer.

On the other hand, when extracting the ESG policies, the model performed very

well. The information was correct and relevant every time. However, sometimes the

model only focused on one part of the ESG policy, and in those cases, we had to

complement the answer manually. While the citations were always correct, due to

the verification process, the page numbers were accurate only around 60% of the time.

Even though the method we used is very successful in extracting information,

there are possibilities for improvement. The first improvement would be to create

better chunks that overlap with each other, ensuring no knowledge is lost, as well as

experimenting with the optimal size of the chunks. Additionally, we could include

more relevant chunks in the prompt, rather than just four. However, the biggest

improvement to the method would be to input the model’s answer back into the

model and ask it to verify whether its answer is correct or makes sense, and to

improve it if necessary. This, of course, adds additional costs, as it requires running

the model again. We believe this could be a big improvement in the quality of the

answer, because this would give the model or method the ability to reason on the

initial answer.

We also have to note that in the first selection of the annual reports, we included

the reports from ING 6 and Deutsche Bank 7, but we could not include them because

their PDF reports were encrypted, and therefore the PyPDF2.PdfReader function was

unable to process them. We also did not include the annual report from BlackRock 8

because their annual report had a very different structure and did not include the

table of contents.

6https://www.ing.nl
7https://www.db.com
8https://www.blackrock.com
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4.3.1 Dataset

After these exclusions, the final dataset includes three columns, each with 30 rows: re-

port id, ESG policy, and ESG person. The average number of policies for each annual

report is six. This also translates to the answer on average having four sentences and

80 words. After manually examining the answers, we also realized that the policies

are on average described on six pages.

The person responsible for ESG policies is identified in 24 annual reports. In three

cases, there was neither a responsible person nor a relevant committee. Additionally,

we determined that when the responsibility is distributed across various departments

rather than assigned to a specific individual, we consider that as having no ESG

responsible person. In the remaining three cases, although no specific name or title

was mentioned, there was an ESG committee. However, we still categorized these

instances as lacking a specific ESG responsible person.

4.3.2 Dataset Generation Diagram

The following diagram 4.1 illustrates the process of generating the dataset, highlight-

ing each step from data collection to final inclusion in the dataset.

Figure 4.1: Schematic representation of dataset generation.
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Chapter 5

Approach

In this chapter, we present the approach taken for the structured extraction of ESG

data. First, we introduce the hardware used to run the models. We then describe

the necessary data preparation steps required before inputting the text data into the

model for extraction. Following this, we outline the base method, in which we use

non-fine-tuned models to perform the extraction. Subsequently, we detail the steps

involved in fine-tuning a model, including dataset generation and the parameters

employed during the fine-tuning process. Additionally, we provide an overview of

the models used in the study, covering both open-source models and the commercial

model used as a benchmark. Finally, a crucial part of our approach involves the

evaluation of the models, for which we develop a custom metrics tailored to our

specific problem.

5.1 Hardware

Models used in this study are relatively large, which means that it would be difficult

for a laptop’s graphical processing unit (GPU) to handle. Therefore, we need a better

GPU and for that we make use of the Google Colab 1, where you can upload a Jupyter

Notebook and connect to the GPU that they offer. We chose the A100 GPU from

NVIDIA, which has 40GB of GPU memory. The cost of using the A100 is 11.76

compute units per hour, which translates to around 1.2 euros per hour.

5.2 Input Data Pre-Processing Pipeline

As mentioned earlier, our computational resources are limited, which means we need

to be efficient in both how many times we run the model and how much data we

1https://colab.research.google.com
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input into it for extraction. For this reason, we pre-process the data before inputting

it into the model. Since annual reports are elaborate documents and we are only

interested in extracting ESG-related information, it is not necessary to process the

entire report. Instead, we focus on extracting only the relevant pages. These relevant

pages are identified by an open-source LLM based on the table of contents, after

which they are extracted for further processing.

Before we perform the extraction of relevant pages, we again input the ”[START

OF PAGE]“ and ”[END OF PAGE]“ markers. However, some annual reports do not

start counting the pages from the first page of the PDF, but sometimes begin counting

after the first three pages, which may contain logos or pictures of the company. This

creates a problem since the table of contents references the numbered pages and not

the PDF pages. Therefore, we need to input the page markers with the correct page

numbers according to the table of contents. We achieve this by using the PDF’s

metadata, which contains information on where the actual page numbering begins.

To ensures that we include the page with the table of contents, we take all the

pages of the report before the numbering starts, and then also the next three pages.

Then, we input the pages into the OpenChat 3.5 [64] model, which is described in

Section 5.5.4. We chose an open-source model because we want our framework to have

the ability to run locally, without sharing any information with third parties. The

goal of this pre-processing is to get the list of pages where the relevant information is

located. However, asking the model to output the pages in a list has been unsuccessful.

Therefore, we demand that the model again provides the answer as a JSON object.

More specifically, because in the table of contents the chapters are marked with only

the starting page, we achieved the best results by extracting the starting page of the

relevant chapter and the starting page of the next chapter. In the prompt, included

in Appendix A as Listing A.3, we give detailed instructions on how to do this task,

along with an example output, which makes this a one-shot learning technique. An

example of the outputted JSON object is given in Listing 5.1.

{
"esg_related_sections": [

{
"start_page": 50,
"next_section_start_page": 56

},
{

"start_page": 62,
"next_section_start_page": 64

}
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]
}

Listing 5.1: Example of the output JSON object for relevant page extraction.

From the JSON object, we then create a list of pages using the json to list func-

tion. This approach yielded excellent results, as the page list included all the pages

containing relevant information based on the table of contents. Additionally, all the

pages where we found the relevant information to create the dataset in Section 4.3.1

were also included in the page list.

In the final step of pre-processing, we use this list of pages to retrieve the actual

relevant pages from the document in TXT format. However, the pages are not com-

bined into one large text file. Instead, we group them in pairs. This is because LLMs

have a limited context length, meaning there is a limit on how much text can be

input into the model at once. While commercial models generally allow for a longer

context, open-source models like Llama 2 have a maximum context length of 4096

tokens, which translates to about three to four pages of an annual report. However,

models tend to perform best when the input is significantly less than the maximum

context length, which is why we input only two pages at a time. Another reason for

this is that LLMs often focus on either the beginning or the end of the input text.

If the input is too long, the model might only extract information from the start or

end, ignoring the middle. Therefore, inputting two pages strikes a balance between

extraction quality and the time required to perform the task, as this method involves

several separate extractions.

5.3 Base Method

The main part of this study is the extraction of the data with the open-source models,

which are presented in Section 5.5. First, we only use the base model versions to

perform the task and then we fine-tune them with text data from annual reports.

Besides the open-source models we also use a commercial model, gpt-4o-mini, from

OpenAI as the benchmark.

The extraction process using the base models is performed with the Jupyter note-

book base model extraction, which is uploaded to Google Colab. The process begins

by connecting to the Hugging Face ecosystem using our personal access token. This

step is necessary because certain models on Hugging Face, such as the LLaMA collec-

tion from Meta, are gated and require prior approval from Meta to access and down-

load. After establishing the connection, we install two key libraries, transformers
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and bitsandbytes. The transformers library provides functions for downloading

models, while bitsandbytes enables model quantization. To download the entire

model repository to the local directory, we use the snapshot download function from

the huggingface hub library.

The subsequent step involves setting up the quantization configuration, which is

kept uniform across all models to ensure a fair comparison. Consistency in quanti-

zation configuration is crucial because altering the configuration of the base model

parameters can directly impact performance. For instance, higher precision typically

leads to improved model performance but at the cost of increased memory usage. We

adopt 4-bit quantization. This is a common choice when fine-tuning with QLoRA,

as it reduces the memory footprint by a factor of four. Specifically, we use the Nor-

mal Float 4 (NF4) data type, as recommended in the QLoRA paper [12]. Moreover,

to conserve additional memory we apply the nested quantization technique, which

performs a second quantization of the weights without any additional performance

loss.

After that, we proceed by loading the model along with its corresponding to-

kenizer. Next, we configure the model’s parameters. We have two parameters to

consider: temperature and top p (nucleus sampling). The temperature controls the

level of randomness in selecting the next word during text generation, while top p

defines the range of possible words the model can choose from. In both cases the pos-

sible values lie between 0 and 1, where value closer to 1 translates to more randomness

in the answer and vice versa. In this study we do not want randomness, because we

want to have concrete answers that closely resemble the exact text from the annual

report. Hence, we set the values for both parameters at 0.1, because we observed

that the output of the models was not very sensitive to the parameter values, as long

as they were close to 0.

Ultimately, we perform the extraction using the model by inputting the two an-

nual report pages into the user-prompt prompt. For each query, we developed a

separate prompt, both of which are included in Appendix A. Similar to the approach

described in Section 4.3, we provide detailed instructions on how to extract the rel-

evant information. Additionally, we supply an example of the desired JSON object

output to guide the model’s response. Specifically, for the extraction of the name of

the person responsible for ESG policies, we require the output to follow the JSON

format shown in Listing 5.2.

{
"response": "Your_response_here.",
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"page_number": "Page_number"
}

Listing 5.2: The JSON format to extract the name of the individual responsible for
overseeing ESG policies.

and for the relevant ESG policies, we demand the JSON form given in Listing 5.3.

{
"response": {

"key_elements": [
"Element_1",
"Element_2",
"Element_3",
"Element_4",
"Element_5"

],
"specific_policies": [

"Policy_1",
"Policy_2",
"Policy_3",
"Policy_4",
"Policy_5"

]
},
"page_number": "Page_number"

}

Listing 5.3: The JSON format for extracting relevant ESG policies.

The reason why we decided to output a JSON object, like the one in Listing 5.3,

for the extraction of policies, is because it is easier to evaluate the extraction. This

is because we can check for each policy separately, if it is relevant or not. The

key elements, however, serve as indicators of which class of environmental, social or

governance the policy falls under.

To give a clearer understanding of what we ask the models to extract, below is an

example of a policy that falls under the environmental category:

• ”Implement sustainable water management practices across all manufacturing

sites, with a goal of reducing water usage by 30% by 2028. Additionally, wastew-

ater recycling technologies will be deployed to minimize environmental contam-

ination.“

Post-Processing

While the model is instructed to output the specified JSON format, it frequently

includes additional text outside the desired JSON object. To address this, we perform
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a post-processing step where we clean the output by removing unnecessary text. This

is done using a script called extract JSON.py, which utilizes regular expressions to

isolate the correct JSON object from the rest of the text.

Once we have extracted all the JSON objects from the relevant page pairs, we

proceed with combining the results. We use two functions, combine json name and

combine json policy, to aggregate the extracted JSON objects into an output for

further evaluation. The entire extraction process is displayed on Figure 5.1.

Figure 5.1: Schematic representation of the extraction process

5.4 Fine-Tuning Method

After the base method, we have a more advanced method that includes fine-tuning the

base models. It requires several steps in between the downloading of the model and

the final extraction. Besides the Hugging Face we also need to connect to another AI

developer platform called Weights&Biases 2 with our personal token. This provides

us with packages for tracking and visualizing the fine-tuning process, which enables

us to determine the right fine-tuning parameters and model.

The first step that is specific to the fine-tuning of the model is to determine the

LoRA parameters. The main goal of the fine-tuning process is to teach the models

the language used in the annual reports. We do not want the models to learn the

exact details and information from the reports, because this is not our objective since

we want the model to perform well on extracting the data from the reports it has not

seen before.

2https://wandb.ai/site
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To avoid overfitting on the training data, we carefully selected the model parame-

ters. Additionally, we do not have a large amount of data to fine-tune with, compared

to the amount of data the models were pre-trained on. This limits how many layers of

the model we can fine-tune, as well as the value of the rank. More layers and higher

rank translate to more parameters to fine-tune, which can contribute to overfitting,

if there is not enough data. Therefore, we chose suitable parameters for our study

and they are found in Listing 5.4.

config = LoraConfig(
r=8,
lora_alpha =32,
target_modules =[

"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],

modules_to_save =["embed_tokens","lm_head"],
lora_dropout =0.1,
bias="none",
task_type="CAUSAL_LM"

)

Listing 5.4: LoRA parameters

We selected a rank of eight and the parameter alpha to be equal to 32. The

parameter alpha influences the learning rate, which controls the step size during

optimization, determining how quickly or slowly the model updates its parameters.

Since LoRA adapters have fewer parameters, this allows for a higher learning rate.

Therefore, it is common to set alpha = 4r, where r is the rank of the LoRA. The

formula for calculating the LoRA adapter learning rate is presented in Equation 5.1.

adapter learning rate = base learning rate · alpha

r
. (5.1)

An important parameter in our fine-tuning process is lora dropout, which helps

prevent overfitting by randomly setting a fraction of activations in the LoRA layers

to zero during training. This regularization technique reduces the model’s reliance

on specific features in the training data, thereby improving its generalization ability.

Selecting the right layers to fine-tune is equally crucial, as this choice directly impacts

both the efficiency of fine-tuning and the model’s ability to generalize to unseen
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data. Although layer names can vary across models and can be viewed by using

print(model), all the models in our case share the same structure and layer names,

which are listed in Listing 5.4.

We chose to fine-tune all the linear layers and apply LoRA adapters to them,

with the layer names specified in the target modules list. In addition, we decided

to fine-tune both the embedding layer (embed tokens) and the final output layer

(lm head), which are responsible for converting input tokens into vector representa-

tions and mapping the model’s final hidden states to a probability distribution over

the vocabulary, respectively. However, we opted not to apply LoRA adapters to these

two layers, as avoiding them generally yields better performance when fine-tuning for

a specific writing style, which is the focus of our study. Additionally, we did not

train the bias terms, setting bias to "none". Finally, since our task is causal lan-

guage modeling, which involves predicting the next word in a sequence based solely

on preceding words, we set the task type to "CAUSAL LM".

We also need to adjust the tokenizer of the model. More specifically, we need to

ensure we have a padding (PAD) token, which is crucial for handling input sequences

of varying lengths during training. This token allows the model to process batches

efficiently by aligning sequences to the same length, which prevents errors and ensures

seamless training. We set the PAD token to <unk>, which is an unknown token (UNK)

and is reserved for words that are not in the vocabulary.

Fine-Tuning Dataset

Next, we load the fine-tuning dataset from Hugging Face, which we created through

a series of steps. We begin with ten annual reports, distinct from those discussed

in Section 4.1. After selecting the reports, we merge them into a single PDF file

named train.pdf. Our data pre-processing workflow begins by converting the doc-

ument into plain text using the pdf to text.py script, which generates a file named

rawtrain.txt. We use the PyPDF2 function to extract all the text from each page of

the reports. However, since these reports include graphs, tables, and scattered text,

the extracted text is often poorly formatted. Using such unprocessed text as a fine-

tuning dataset could degrade the model’s performance, leading to a poorly structured

output.

To address this, we first chunk the data into segments of 4000 tokens and use

GPT-4o-mini to clean the text, to remove unwanted characters and ensure well-formed

sentences. Next, we split the data into training and testing sets, with 10% of the

chunks randomly selected for testing and the remaining chunks selected for training.
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The train dataset has 411 rows, while the test dataset has 46 rows. Finally, we convert

the datasets into CSV format and upload them onto Hugging Face platform.

Fine-Tuning

With the dataset prepared, the next step is to set the fine-tuning or training param-

eters. We use the Trainer class from the transformers library and the SFTTrainer

class from the trl library. The selection of parameters was constrained by the

GPU. The parameters per device train batch size, per device eval batch size

and max seq len were configured as high as possible without exceeding the avail-

able GPU memory. With this approach we utilize the parallelization capabilities of

the GPU, leading to more efficient fine-tuning. Specifically, we set these parame-

ters to 512, 2, and 2, respectively. The parameter max seq len defines the number

of tokens in each input row fed into the model, while per device train batch size

and per device eval batch size control the number of rows from the training and

evaluation datasets that are processed in each fine-tuning step or iteration during

fine-tuning.

To mitigate the limitations imposed by GPU memory and to ensure smoother and

more generalized learning, we set a higher gradient accumulation steps parameter.

This parameter determines how many fine-tuning steps the model processes and ac-

cumulates losses before updating the gradients. Averaging losses over multiple steps

reduces the model’s tendency to overfit to the intricate details of individual batches,

thereby improving generalization. Given our goal of producing a more generalized

model, we set this parameter to four.

The learning rate was chosen based on the point at which fine-tuning remained

stable, where the training loss did not have erratic fluctuations and evaluation loss

consistently decreased. Accordingly, we set the learning rate to 2 · 10−4. Addition-

ally, we set the warmup ratio to 0.1, which ensures that the learning rate gradually

increases from zero to its initial value over the first 10 percent of the training process.

We opted to use a cosine learning rate scheduler [30]. After the warmup period,

this scheduler starts at the initial learning rate of 2 · 10−4 and gradually decreases it

towards zero, following the shape of a cosine function. An alternative approach would

be to use a constant learning rate, which would result in quicker fine-tuning since the

learning rate remains steady. However, by using the cosine schedule, we allow for

potentially better model performance, as the lower learning rate towards the end of

fine-tuning helps reduce the evaluation loss.
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For optimization, we employed the AdamW optimizer [31], specifically choosing

"paged adamw 8bit", which is a common choice when fine-tuning quantized models

due to its memory efficiency and compatibility with lower-precision computations.

Finally, we set the number of epochs, controlled by the num train epochs pa-

rameter, to three, meaning the model completes three full passes through the entire

training dataset. Although this may seem relatively high, we saved model parame-

ters at 10 percent intervals throughout the fine-tuning process. Therefore, even if the

model overfits the data at the end of the third epoch, we can still choose a model

somewhere in between, where the evaluation loss is the lowest.

Figure 5.2 provides a detailed illustration of the complete fine-tuning framework,

which highlights each step of the fine-tuning process.

Figure 5.2: Schematic representation of the fine-tuning method

5.5 Models

The models used in this study are all available on the Hugging Face ecosystem, and

each is identified by its specific Hugging Face path, which is provided in the model’s

description. Most of the selected models are instruct models, designed to follow

instructions provided in the prompt, which makes them well-suited for our task.

Additionally, we chose a code model, trained to generate code from natural language

descriptions. These models excel at extracting specific information, such as names,

and are proficient at responding in structured formats like JSON.

Our primary criterion for model selection was size. All the models we selected

have approximately seven to eight billion parameters, making them comparable in
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terms of performance. Generally, newer models tend to outperform older ones, as

companies typically release updated versions that improve upon their predecessors.

The decision to use smaller models stems from the fact that fine-tuning large language

models is computationally intensive, and our available resources are limited.

When describing the models, it is essential to note their size, as this significantly

impacts their performance. The size of a model is typically measured in billions of

parameters, and for conciseness, the word ”billions“ is often replaced by the letter

”B“, which we will use in the subsequent sections.

5.5.1 Llama 3.1 Instruct

The series of models Llama 3.1 were released by Meta on July 23, 2024. They are

an improved version of the Llama 3 [1], which were released on April 18, 2024. The

main improvement was on mathematical reasoning and more complex tasks, which

comes with a drawback of slightly slower inference. Overall, the models perform

well on wide variety of task and sometimes outperform commercial models of bigger

size. It comes in three sizes, 8B, 70B and 405B parameters. We chose the smallest

8B model, which outperforms Llama 2 13B on all measured tasks by Meta and for

most tasks comes close to the 70B model. We selected the instruction fine-tuned

model, which was developed with supervised fine-tuning and reinforcement learning

with human feedback (RLHF) [40] to better capture the human preferences. The

fine-tuning process incorporated both publicly available instruction datasets and over

25 million synthetically generated examples. In the Hugging Face ecosystem it is

identified by the following path: meta-llama/Meta-Llama-3.1-8B-Instruct.

bos token eos token unk token pad token

<|begin of text|> <|eot id|> <|eot id|> <unk>

Table 5.1: Special token map for Llama 3.1.

Setting up special tokens correctly is crucial for both training and inference, as

these tokens play an essential role in guiding the model’s behavior. For example when

the model gives an output, we want it to stop the inference on its own by predicting

the end of sequence (EOS) token and not just continue the inference until it reaches

the output tokens limit. Therefore, we provided a special tokens map for every model,

which includes the EOS token, beginning of sequence token (BOS), unknown token

(UNK) and padding token (PAD). The special token map for Llama 3.1 is displayed

in Table 5.1.
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5.5.2 CodeLlama Instruct

Code Llama [49] is a special series of models developed by Meta, which perform well

on code synthesis and understanding. They are built on the basis of the Llama 2

series and come in four sizes: 7B, 13B, 34B and 70B. The weights were initialized

with the Llama 2 model weights and then further trained on 500B tokens of code

data, except for the 70B version which was trained on 1 trillion tokens. Besides

that, they were also fine-tuned for long context usage. Meta has also released the

instruction version, where they used 5B tokens to fine-tune the model to better fol-

low human instruction, and a special Python version, which is specialized for the

Python programming language. We again used the smallest instruction model with

7B parameters, which is identified in the Hugging Face ecosystem by the following

path: meta-llama/CodeLlama-7b-Instruct-hf. Furthermore, the special token map

for CodeLlama is displayed in Table 5.2.

bos token eos token unk token pad token

<s> </s> <unk> <unk>

Table 5.2: Special token map for CodeLlama.

5.5.3 Mistral 7B Instruct

The next open-source model selected for this work was developed by MistralAI, which

is a company specializing in the creation of LLMs. Specifically, the Mistral 7B Instruct

model, introduced by Jiang et al. [25]. It outperforms the Llama 2 13B on both human

and automated benchmarks. Additionally, it demonstrates strong performance in

code generation tasks, coming close to the Code Llama 7B model, despite not being

fine-tuned on code-specific data. For this project, we employed version three of the

Mistral 7B Instruct model, the latest iteration, which includes several improvements

such as an expanded vocabulary and support for function calling. The model can be

accessed via Hugging Face at mistralai/Mistral-7B-Instruct-v0.3 and its special

token map can be found in Table 5.3.

bos token eos token unk token pad token

<s> </s> <unk> <unk>

Table 5.3: Special token map for Mistral 7B.
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5.5.4 OpenChat 3.5

The OpenChat 3.5 model is built on the Mistral 7B architecture and has been fur-

ther fine-tuned for enhanced performance. It leverages the OpenChat framework, as

proposed by Wang et al. [64]. The framework utilizes a technique called Conditioned-

RLHF (C-RLHF). This approach significantly enhances the model’s performance on

certain tasks, with even the 13B version outperforming ChatGPT in specific areas.

C-RLHF extends traditional fine-tuning by making use of non-pairwise, non-ranking-

based supervised fine-tuning training data. This data consists of a small amount of

expert annotated data combined with a large proportion of easily accessible, sub-

optimal data that does not include any preference labels. C-RLFH is then able to

leverage this by applying roughly estimated labels to the data. For our purposes, we

chose the 7B version, although no instruction-tuned variant is available. The Hug-

ging Face path for this model is openchat/openchat 3.5 and the special token map

is shown in Table 5.4.

bos token eos token unk token pad token

<s> <|end of turn|> <unk> <unk>

Table 5.4: Special token map for OpenChat 3.5.

5.5.5 Models Paramaters

Parameters Llama 3 CodeLlama Mistral OpenChat3.5

hidden size 4096 4096 4096 4096
num hidden layers 32 32 32 32
intermediate size 14336 11008 14336 14336
num attention heads 32 32 32 32
max position embeddings 131072 16384 32768 8192
vocab size 128256 32016 32768 32002

Table 5.5: Comparison of model parameters for Llama 3.1 8B, CodeLlama 7B, Mistral
7B, and OpenChat 3.5.

As explained in Section 3.4, several key parameters characterize the transformer

architecture, and some of these are presented in Table 5.5. The parameters were

obtained from the model’s config attribute, and therefore, the parameter names
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in the table reflect this attribute. The hidden size parameter refers to the di-

mension of the hidden layers, which is represented as d in Section 3.4. Next, the

num hidden layers parameter indicates the number of layers in the model’s encoder

and decoder, corresponding to N as described in Section 3.4.4 and Section 3.4.3. The

intermediate size refers to the size of the intermediate dimension within the FFN

layers of each transformer block, denoted by dff in Section 3.4.5. Another crucial

parameter is num attention heads, which corresponds to h in Section 3.4.2 and rep-

resents the number of attention heads used in multi-head attention. The final two

parameters, max position embeddings and vocab size, differ slightly from those pre-

sented in the original papers of the models, as these values can change with each new

version and improvement of the models. The max position embeddings parameter

defines the maximum sequence length the model can process, which limits the in-

put length that the model can attend to at once. Finally, the vocab size parameter

indicates the number of tokens in the vocabulary, which is denoted by v in Section 3.3.

5.5.6 GPT-4o Mini

We selected the GPT-4o-mini model [38] from OpenAI as a benchmark model for

our study. Although the specific details of this commercial model have not been

disclosed, it is widely speculated to be comparable in size to the Llama 3 model,

making it a reasonable and relevant choice for our comparative analysis. Despite

its similar size to open-source models, GPT-4o-mini consistently outperforms them

on most benchmarks. Therefore, our objective is to achieve performance as close as

possible to that of GPT-4o-mini.

5.6 Evaluation Methods

Evaluating models that generate text, especially from language models, can be chal-

lenging because correct answers may be phrased in multiple ways, and there can be

various valid responses, such as is the case with the ESG policies. Therefore, most

of the time evaluation of an LLM has been done manually, usually by experts in the

field. However, in our case it is relatively easy to classify which answer is correct and

falls under the ESG policy criteria and which does not. Therefore we decided that

each of the extracted policies will be given a 1, if it is relevant and 0, if it is not. Then

the relevant metric will be the proportion of correct answers given all the extracted

policies. We will also provide the number of extracted policies, which puts the metric

into perspective.
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Furthermore, extraction of the name does have a unique answer, which makes

evaluating the performance of the model on extracting the name of the responsible

person for ESG commitments easier. In the following sections, such a person will be

referred only as the ”ESG person“, to make the explanations more concise and easier

to understand. We decided that the accuracy metric does not capture the ”goodness“

of the model completely. Therefore, we will use a confusion matrix and consequently

the F1 score. The confusion matrix, which is commonly used in binary classification

tasks, illustrates the model’s predictions by categorizing them into true positives,

true negatives, false positives, and false negatives. Nevertheless, we can still use this

metric by defining the criteria for the previously mentioned categories as follows:

• True Positive (TP): An answer is classified into TP, if the answer includes

the correct name of the ESG person, given that an ESG person exists.

• False Positive (FP): An answer is classified into FP, if a model does not

clearly indicate or explicitly say that an ESG person does not exist, given that

an ESG person does not exist.

• False Negative (FN): An answer is classified into FN, if the answer includes

an incorrect name, just a title of a person or it indicates that such a person

does not exist, given that an ESG person does exist.

• True Negative (TN): An answer is classified into TN, if the answer explicitly

says or indicates that an ESG person does not exist, given that such a person

indeed does not exist.

It is important to note that we do several extractions for each annual report, as

explained in Section 5.3 and each of the extractions is classified in one of the classes

above. This means that we classify one extraction based on the two pages that we

gave to the model as an input. Therefore, it is very common to get an extraction

classified as TN, because the ESG person is usually only mentioned once on only one

page in the whole annual report. For this reason, we need to establish additional rules

to classify all combined extractions from a single annual report into a single category:

1. If we obtain one or more TPs and the rest are TNs, then the answer for the

whole annual report is classified as TP.

2. If we obtain one or more TPs and one or more FNs/FPs, then the answer is

classified as FN.

44



3. If all the obtained answers are TNs, then the answer is TN.

4. If we obtain one or more TNs and one or more FPs, then the answer is classified

as FP.

The reason for defining the first and the third rule is obvious, because it is the only

correct way for positive and negative class. The reason for defining the second rule in

that way, is because we take into account the whole annual report. Therefore, if the

annual report has an ESG person, then if one of the answers of extractions provides

a wrong name, just a title or does not provide a name, then the whole answer is

incorrect, which means it is FN. The fourth rule is defined this way, because if the

model hallucinates an answer in at least one of the extractions, then the whole answer

is classified as FP.

With answers classified into those groups, we can define several metrics, the first

two being precision and recall :

Precision =
TP

TP + FP
Recall =

TP

TP +FN
,

from which we can define the F1 -score:

F1 = 2 · Precision · Recall

Precision + Recall
.

The F1 metric is a harmonic mean of the precision and recall, therefore it is a

perfect metric of our task, since we consider both precision and recall to be equally

important.
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Chapter 6

Results

In this chapter, we present the results of our study. We begin by evaluating the

effectiveness of the fine-tuning process for each model. Following this, we examine

the results of the policy extraction task, discussing the structure and format of the

models’ outputs in the process, and provide a comparative analysis of the models’

performances. Finally, we assess the results of the name extraction task, once again

addressing the structure and format of the models’ outputs alongside the performance

evaluation.

6.1 Fine-Tuning Results

Before evaluating the performance of the models on the extraction task, it is crucial

to present the fine-tuning results and explain which model versions were ultimately

selected. As outlined in Section 5.4, each model was fine-tuned for three epochs,

which corresponds to 150 steps based on our chosen fine-tuning parameters.

Figure 6.1 illustrates the training and evaluation losses for all the models across

these epochs. Immediately, we observe similar patterns between the Llama 3.1 model

and CodeLlama, as well as between the Mistral 7B and OpenChat 3.5 models. This

can be explained by the fact that Llama 3.1 and CodeLlama are both based on the

LLaMA architecture. Although CodeLlama is built upon Llama 2, Meta reused much

of the same data that was used to pre-train Llama 3, which explains the similar loss

trajectories.

Furthermore, the resemblance between Mistral 7B and OpenChat 3.5 is even less

surprising, as OpenChat 3.5 is essentially a fine-tuned version of Mistral 7B. The loss

patterns are almost identical across these models, which underscores their connection.

It is also evident from the Figures 6.1 that the Mistral 7B and OpenChat 3.5 mod-

els reached their minimum evaluation loss quicker than the Llama 3.1 and CodeL-
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lama models. Specifically, Mistral 7B and OpenChat 3.5 reached their minimum after

roughly the first epoch, while Llama 3.1 and CodeLlama required until the second

epoch. After hitting their lowest evaluation loss, all models exhibited a jump in

evaluation loss and a sharp drop in training loss, which is indicative of overfitting.

As shown in Figure 6.1a, the evaluation loss for Llama 3.1 8B started at approxi-

mately 2.24 and reached its lowest point of 1.98 around step 104, which corresponds

to just over two epochs. Similarly, Figure 6.1b indicates that CodeLlama 7B began

with a loss of 2.17, and the lowest evaluation loss achieved was 1.93 at step 102. In

the case of Mistral 7B, as seen in Figure 6.1c, the model started with a loss of 1.98

and reached its minimum evaluation loss of 1.74 by step 54. Finally, Figure 6.1d

shows that OpenChat 3.5 started with a loss of 2.03 and reached its lowest evaluation

loss of 1.76 by step 52.

It is worth noting that all the models achieved around a 0.25 reduction in evalu-

ation loss, which might seem modest, but is still significant given the nature of our

training data. Since the annual reports use a type of technical text that is also in-

cluded in the pre-training dataset for the models with the exception of domain specific

knowledge such as ESG-related terms. Hence, it is expected that the models would

have relatively low evaluation losses from the start. Nevertheless, a 0.25 reduction

indicates that the models were able to improve their understanding of the content

and writing style used in the annual reports.

We can also infer that the Mistral-based models likely included more technical

text during pre-training compared to the Llama-based models. This is evident from

the fact that the evaluation loss for the Mistral models started at around 2, whereas

the Llama models began with a higher loss of around 2.2.
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(a) Training and evaluation loss over 3 epochs
for the Llama 3.1 8B Instruct model.

(b) Training and evaluation loss over 3 epochs
for the CodeLlama 7B Instruct model.

(c) Training and evaluation loss over 3 epochs
for the Mistral 7B Instruct model.

(d) Training and evaluation loss over 3 epochs
for the OpenChat 3.5 model.

Figure 6.1: Training and evaluation losses over 3 epochs during fine-tuning for all
models.

6.2 Policy Extraction

After examining the fine-tuning results we first look into the performance of the mod-

els on the policy extraction task. The process of extraction is described in Section 5.3,

where we also explain that the desired output format is the JSON object, presented

in Listing 5.3. We also provided the prompt we used for this task in the Appendix,

Listing A.1. The evaluation of performance for this model is described in Section 5.6.

We focus on two main metrics, which are: average percentage of relevant policies and

average number of extracted policies. We also include important information about
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those metrics, such as, minimum, maximum and standard deviation. This gives us a

more in depth understanding of the performance of the models.

Given that we are interested in examining the effectiveness of the fine-tuning

process, we will first compare the metrics of the base version against the fine-tuned

version for each model separately. After that we will also compare the models to each

other and examine the overall quality of the output.

Llama 3.1 8B Instruct

Metric Llama 3.1 Base Llama 3.1 Fine-Tuned

Avg. % Relevant Policies 85.84% 89.22%
Max. % Relevant Policies 100.00% 100.00%
Min. % Relevant Policies 35.71% 31.00%
Std. Dev. % Relevant Policies 14.44% 15.55%
Avg. Total Policies 16.63 19.60
Max. Total Policies 38 38
Min. Total Policies 5 3
Std. Dev. Total Policies 7.94 9.05

Table 6.1: Model performance metrics for ESG policy extraction for Llama 3.1 In-
struct base and fine-tuned version.

The first model we will examine is the Llama 3.1, and immediately we can see in

Table 6.1 that the fine-tuned version performs better on both key metrics. It achieves

a 3.38 percentage point increase in the average percentage of relevant extracted poli-

cies. Furthermore, it also extracts, on average, 2.97 more policies. This is a relatively

significant improvement in performance, given that the base version already performs

well. However, the fine-tuned version does have some drawbacks, as the minimum for

both metrics is lower and the standard deviation is higher than for the base version.

Ideally, the model would score high on both key metrics while maintaining a low stan-

dard deviation, indicating consistency. Nevertheless, the differences in minimums and

standard deviations are not substantial. Therefore, we still consider the fine-tuned

version to be superior.

In terms of outputting a correct JSON format, both versions performed excellently,

consistently producing a valid JSON format. However, it was also common for both

versions to output unnecessary text alongside the JSON object, but this is not an

issue as we have a post-processing step to handle it. It is also worth noting that both

versions sometimes struggled with page number extraction. It often occurred that
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only one page number was provided for each JSON object, which was incorrect, as

the extracted policies were typically present on both provided pages.

CodeLlama 7B Instruct

Metric CodeLlama Base CodeLlama Fine-Tuned

Avg. % Relevant Policies 67.30% 55.76%
Max. % Relevant Policies 100.00% 100.00%
Min. % Relevant Policies 28.57% 0.00%
Std. Dev. % Relevant Policies 19.51% 32.34%
Avg. Total Policies 13.33 10.97
Max. Total Policies 31 29
Min. Total Policies 5 1
Std. Dev. Total Policies 5.13 5.82

Table 6.2: Model performance metrics for ESG policy extraction for CodeLlama 7B
Instruct base and fine-tuned version.

Next, we examine another LLaMA architecture-based model, CodeLlama 7B Instruct.

We chose to test the performance of this model because we required the output to be

in JSON format, and given that CodeLlama is designed to output code, we believed

it would excel in this regard. We were proven right, as the output was a correct JSON

format every time. However, the model generally struggled with generating text. It

frequently happened that specific policies were written in bullet points and contained

numerous spelling mistakes. This problem was even exacerbated by fine-tuning the

model. The poor performance is reflected in the values of the metrics, presented in

Table 6.2. Overall, the base CodeLlama model performed poorly compared to Llama

3.1. However, it outperformed the fine-tuned version on all metrics by a considerable

margin. In the average percentage of relevant policies, it outscored the fine-tuned

version by an impressive 11.54 percentage points.

We believe that the reason for such poor performance of the fine-tuned model is

due to the fact that we used unstructured text for fine-tuning, which is the opposite

of what the model was fine-tuned on during its development.
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Mistral 7B Instruct

Metric Mistral Base Mistral Fine-Tuned

Avg. % Relevant Policies 82.38% 86.15%
Max. % Relevant Policies 100.00% 100.00%
Min. % Relevant Policies 33.33% 50.00%
Std. Dev. % Relevant Policies 16.68% 12.84%
Avg. Total Policies 16.53 16.97
Max. Total Policies 42 46
Min. Total Policies 5 5
Std. Dev. Total Policies 8.29 8.56

Table 6.3: Model performance metrics for ESG policy extraction for Mistral 7B In-
struct base and fine-tuned version.

Moving on from the LLaMA architectures, we assessed the performance of the Mistral

7B Instruct. As visible from Table 6.3, it performed this task excellently. In addition

to the high values for key metrics in both versions, it is remarkable that the maxi-

mum number of extracted policies exceeded 40 for both. Furthermore, the fine-tuned

version outperformed the base version on almost all metrics. Beyond the significant

increase in the average percentage of relevant policies, it maintained a minimum of

50%, while the base version had a minimum of 33%. This is an important criterion,

as it indicates that the fine-tuned model better understands the distinction between

relevant and non-relevant policies. This stems from the fact that, at times, the pro-

vided pages contain very little information on ESG policies. When the model better

understands the text, it outputs fewer policies, resulting in a higher minimum score.

Another notable achievement for both versions is that they consistently produced

correct JSON formats without adding unnecessary text. Additionally, they both

performed impressively in extracting the correct page numbers. If the information was

found on both provided pages, the models accurately identified both page numbers.

Similarly, when the information was found on only one page, the models were able to

identify that correctly as well.
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OpenChat 3.5

Metric OpenChat 3.5 OpenChat 3.5 Fine-Tuned

Avg. % Relevant Policies 76.71% 81.54%
Max. % Relevant Policies 100.00% 100.00%
Min. % Relevant Policies 36.36% 45.16%
Std. Dev. % Relevant Policies 16.51% 15.68%
Avg. Total Policies 20.80 24.83
Max. Total Policies 55 65
Min. Total Policies 5 5
Std. Dev. Total Policies 10.45 13.26

Table 6.4: Model performance metrics for ESG policy extraction for OpenChat 3.5
base and fine-tuned version.

The last of the open-source models is OpenChat 3.5, which overall achieved good

results. Additionally, the fine-tuned version surpassed the base version by a consid-

erable margin on most metrics, as seen in Table 6.4. Most notably, it was able to

achieve a score of 81.54% on the average percentage of relevant policies, representing

a 4.83 percentage point increase over the base model.

Moreover, both versions achieved impressive results in terms of the total number

of extracted policies, with 55 for the base version and 65 for the fine-tuned version.

This translated into a high average number of extracted policies, with the base version

averaging 20.80 and the fine-tuned version 24.83.

In addition to the sheer number of extracted policies, OpenChat 3.5, particularly

the fine-tuned version, had a tendency to output very long policies. It frequently

happened that a single policy was written over multiple sentences, sometimes taking

up the length of an entire paragraph. Nevertheless, these lengthy policies were usually

highly accurate. Both models also usually returned answers in proper JSON format,

though they often included unnecessary text. They were also able to extract policies

from the correct pages in most cases. However, sometimes they would extract both

relevant pages, and occasionally, they extracted none.
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GPT-4o-mini

Metric Value

Avg. % Relevant Policies 94.32%
Max. % Relevant Policies 100.00%
Min. % Relevant Policies 54.55%
Std. Dev. % Relevant Policies 10.70%
Avg. Total Policies 13.40
Max. Total Policies 25
Min. Total Policies 6
Std. Dev. Total Policies 3.69

Table 6.5: Model performance metrics for ESG policy extraction for GPT-4o-mini.

In order to put the performance of the open-source models into perspective, we se-

lected the GPT-4o-mini model as a benchmark. Given that GPT-4o-mini is a com-

mercial model with likely more parameters, trained on a larger dataset, and not in a

quantized form, we expected it to outperform all other models. Therefore, the objec-

tive was to develop a model that could come as close as possible to its results, which

are shown in Table 6.5.

GPT-4o-mini achieved a remarkable average percentage of relevant policies at

94.32%, along with a very high minimum percentage, which resulted in a low stan-

dard deviation. However, the average number of total policies extracted was not

outstanding, standing at only 13.40. This is due to the fact that the model adhered

strictly to the JSON template, shown in Listing 5.3, which includes five policies, and

this is generally how many the model output. Furthermore, it is evident that the

model’s strategy was to output fewer policies, but ensure they were of higher quality.

Surprisingly, however, the model had trouble generating a correct JSON format

and often simplified it by outputting only two lists and a page number. Additionally,

it never provided both page numbers, even when it found the information across

multiple locations.

Comparison

Following our investigation into the performance of individual models and their fine-

tuned counterparts, we now compare all the models against one another. This com-

parison is illustrated through two figures, each showcasing one of the key metrics.

We also included confidence intervals (CIs), which offer a more comprehensive under-

standing of the models’ performance on each specific metric.

53



Given the computed metrics for each model, we have all the necessary values to

construct the confidence intervals. In this case, the sample size is 30, denoted by n.

We also have x̄, which represents the sample mean—namely, the average percentage

of relevant policies and the average number of total policies. Finally, we use the

parameter σ, which is the standard deviation corresponding to each metric. Due to

the relatively small sample size, we determined that a 90% confidence interval would

be most appropriate. This choice corresponds to a Z-value of 1.645, derived from the

standard normal distribution. The formula for computing the confidence interval is:

CI = x̄± Z · σ√
n

Here, σ√
n

represents the standard error of the mean (SEM), providing an estimate of

the uncertainty associated with the sample mean.

For example, to compute the confidence interval for the average percentage of

relevant policies for the Llama 3.1 base model, we use a mean of 85.84%, a standard

deviation of 14.44%, and a sample size of 30. The standard error is calculated as
14.44√

30
≈ 2.635, and the confidence interval is 85.84 ± 1.645 · 2.635, resulting in a range

of approximately 81.51% to 90.17%. Similarly, confidence intervals for other metrics

are calculated using the same method, ensuring we account for variability in the data.

The comparison of the models on the average percentage of relevant policies is

presented in Figure 6.2. From the graph, it is evident that GPT-4o-mini stands

out as the top-performing model, achieving the highest scores. Next, we have the

fine-tuned version of Llama 3.1, followed by the fine-tuned version of Mistral 7B in

third place. This demonstrates the effectiveness of fine-tuning on the performance

of policy extraction, as fine-tuning improved the Mistral 7B model to such a degree

that it outperformed the base version of the superior Llama 3.1 model. However, the

biggest improvement with fine-tuning was seen in the OpenChat 3.5 model, with a

4.83 percentage point increase, compared to Llama 3.1 and Mistral 7B, which saw

gains of 3.38 and 3.77 percentage points, respectively.

On the other hand, while CodeLlama performs the worst from the start, fine-

tuning further degrades its performance. This results in a performance difference of

33.46 percentage points between the worst model and the best open-source model,

and 38.56 points against the benchmark.

Overall, the graph highlights Llama 3.1, Mistral 7B, and OpenChat 3.5 as the

most promising models for extracting relevant policies, with consistent improvements

observed after fine-tuning.
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Average percentage of relevant policies, however, does not present the whole pic-

ture, if we want find the model. As explained before, the model could choose to output

very few policies and therefore keep the percentage high. This is why in Figure 6.3 we

present the average number of total extracted policies, along with the corresponding

confidence intervals. Surprisingly, the benchmark model, was only able to outperform

the CodeLlama model, which was again the only model where fine-tuning worsened

the performance. However, the GPT-4o-mini does have the smallest confidence in-

terval, which indicates the lowest standard deviation for this metric.

By far, the best-performing model is OpenChat 3.5, as even the base version

outperforms all the other models. The fine-tuned version managed to output an

average of 24.83 policies, while the third-best model, Llama 3.1 fine-tuned, managed

to extract 19.60.

In addition, OpenChat 3.5 is the model that showed the greatest improvement

with fine-tuning, increasing its average by 4.03 policies. In comparison, Llama 3.1

improved by 2.97, and Mistral 7B by only 0.44. However, it is important to note that

OpenChat 3.5 has the largest confidence intervals, and therefore the highest standard

deviation. Furthermore, fine-tuning contributed to a higher standard deviation over

the base model, which can be seen as a negative effect of outputting more policies.

Figure 6.2: Comparison of all models, base and fine-tuned versions, on average per-
centage of relevant policies with 90% confidence intervals..
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Figure 6.3: Comparison of all models, base and fine-tuned versions, on average number
of total policies with 90% confidence intervals.

6.3 Name Extraction

The second task we focused on was name extraction, as outlined in Section 5.3.

To accomplish this, we utilized a prompt, provided in Listing A.1 in the appendix.

Furthermore, the evaluation process for this task is detailed in Section 5.6. Each

response was categorized into one of four classes: true positive, false negative, true

negative, or false positive. Based on the number of instances in each class for each

model, we computed the F1 score, which serves as the primary metric for evaluating

model performance.

Predicted
Actual Negative Positive
Negative TN = 5 FP = 1
Positive FN = 5 TP = 19

Precision: 0.9500 Recall: 0.7917
F1 Score: 0.8637

Table 6.6: Confusion Matrix, Preci-
sion, Recall and F1 score for Llama 3.1
8B Instruct.

Predicted
Actual Negative Positive

Negative TN = 5 FP = 1
Positive FN = 5 TP = 19

Precision: 0.9500 Recall: 0.7917
F1 Score: 0.8637

Table 6.7: Confusion Matrix, Preci-
sion, Recall and F1 score for Llama 3.1
8B Instruct Fine-Tuned.
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For Llama 3.1, the performances of the base model and the fine-tuned version

are identical, with both achieving a high F1 score, shown in Table 6.6 and Table 6.7.

The models made six mistakes, five of which were false negatives. These errors mostly

occurred when extracting incorrect names, particularly in cases where multiple people

were mentioned as part of the ESG committee. Additionally, the models generally

succeeded in recognizing when there was no main ESG person, correctly classifying

true negatives five out of six times. This is significant because it demonstrates that

the models do not simply extract a random name from the text.

Similar to the policy extraction task, both models consistently produced a correct

JSON format. However, the outputs often contained additional, unnecessary text

outside the JSON object. Notably, the fine-tuned version tended to include more

irrelevant text compared to the base model. Furthermore, instead of leaving the

JSON template empty or indicating the lack of an ESG person in the text, both

models just printed out the template.

Predicted
Actual Negative Positive

Negative TN = 4 FP = 2
Positive FN = 13 TP = 11

Precision: 0.8462 Recall: 0.4583
F1 Score: 0.5946

Table 6.8: Confusion Matrix, Preci-
sion, Recall, and F1 Score for CodeL-
lama Base.

Predicted
Actual Negative Positive

Negative TN = 3 FP = 3
Positive FN = 11 TP = 13

Precision: 0.8125 Recall: 0.5417
F1 Score: 0.65

Table 6.9: Confusion Matrix, Preci-
sion, Recall, and F1 Score for CodeL-
lama Fine-Tuned.

CodeLlama, on the other hand, performed poorly in terms of F1 scores, as shown

in Table 6.8 and Table 6.9. However, unlike in the policy extraction task, fine-tuning

led to a noticeable improvement in performance, with the fine-tuned model achieving

an F1 score of 0.65, compared to 0.5946 for the base version. Notably, the fine-tuned

version had three false positive cases, indicating the model’s tendency to output a

name regardless of its relevance to ESG. This also contributed to the high number of

false negatives, as the model would frequently output a correct name but would also

extract an additional, irrelevant name, leading to the entire answer being classified

as a false negative.

As expected, both versions of CodeLlama consistently output a correct JSON

object, although they included a significant amount of unnecessary text outside of

the JSON structure. Additionally, the model occasionally inserted the name of the

57



company instead of leaving the field empty or simply returning the template. Despite

these issues, it was generally able to identify the correct page number.

Predicted
Actual Negative Positive

Negative TN = 6 FP = 0
Positive FN = 4 TP = 20

Precision: 1.000 Recall: 0.8333
F1 Score: 0.9091

Table 6.10: Confusion Matrix, Preci-
sion, Recall, and F1 Score for Mistral
7B Base.

Predicted
Actual Negative Positive

Negative TN = 5 FP = 1
Positive FN = 3 TP = 21

Precision: 0.9545 Recall: 0.8750
F1 Score: 0.9130

Table 6.11: Confusion Matrix, Preci-
sion, Recall, and F1 Score for Mistral
7B Fine-Tuned.

Next, we examine the performance of the Mistral 7B model, where, once again,

the fine-tuned version outperformed the base model. This improvement was not due

to the number of mistakes but rather because the errors were more evenly distributed

between false positives and false negatives. As seen in Table 6.11, the fine-tuned

model registered one false positive and three false negatives, leading to an impressive

F1 score of 0.9130. In contrast, the base version had four false negatives, resulting in

a lower F1 score.

The output quality for both models remained consistently high. The models

produced correctly formatted JSON objects without unnecessary text outside the

JSON structure. Furthermore, both models reliably identified the correct page from

the two provided, demonstrating accuracy in locating the relevant information.

Predicted
Actual Negative Positive

Negative TN = 5 FP = 1
Positive FN = 5 TP = 19

Precision: 0.9500 Recall: 0.7917
F1 Score: 0.8637

Table 6.12: Confusion Matrix, Preci-
sion, Recall, and F1 Score for Open-
Chat 3.5 Base.

Predicted
Actual Negative Positive

Negative TN = 5 FP = 1
Positive FN = 4 TP = 20

Precision: 0.9524 Recall: 0.8333
F1 Score: 0.8889

Table 6.13: Confusion Matrix, Preci-
sion, Recall, and F1 Score for Open-
Chat 3.5 Fine-Tuned.

Lastly, the OpenChat 3.5 model demonstrated strong performance, achieving a

high F1 score. The fine-tuned version was able to correctly identify one additional

true positive, resulting in an F1 score of 0.8889, as shown in Table 6.13.
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Moreover, the model consistently produced a correct JSON format in most cases,

while accurately detecting the relevant page number. However, instead of indicating

when an ESG responsible person was not present, the model would occasionally return

the company name in place of an individual.

Predicted
Actual Negative Positive

Negative TN = 6 FP = 0
Positive FN = 2 TP = 22

Precision: 1.000 Recall: 0.9167
F1 Score: 0.9565

Table 6.14: Confusion Matrix, Precision, Recall, and F1 Score for GPT-4o-mini.

The performance of GPT-4o-mini was nearly flawless, making only two errors,

both of which occurred because it extracted an additional name that was relevant to

ESG but not the primary one. This demonstrates the model’s strong understanding

of the text, resulting in an impressive F1 score of 0.9565, as shown in Table 6.14.

However, the model struggled with consistently outputting the information in the

required JSON format. It frequently produced the correct name without wrapping it

in a JSON object and also failed to include the page number. This is a significant

drawback, as the structured format is essential for our extraction task, and GPT-4o-

mini fell short in meeting this requirement.

Comparison

Comparing all the models, we can immediately see in Figure 6.4 that there is only

a small difference in performance among the top three models: Llama 3.1, Mistral

7B, and OpenChat 3.5. The slight improvement in the fine-tuned versions suggests

that these models might have already reached their upper performance limit, and the

enhancements in text understanding from fine-tuning were not substantial enough to

dramatically increase their ability to perform this task.

Additionally, we observe that while both OpenChat 3.5 and Llama 3.1 achieved

the same F1 score with their base versions, OpenChat 3.5 showed improvement after

fine-tuning, whereas Llama 3.1 did not.

Furthermore, the benchmark model, GPT-4o-mini, outperformed the rest of the

models by a considerable margin, achieving an impressive F1 score of 0.9565. In

comparison, the best open-source model, the fine-tuned version of Mistral 7B, attained

an F1 score of 0.9130.
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Interestingly, the models made mistakes on different cases, suggesting that each

model has distinct preferences for language type and text structure, further indicating

variation in how they process and interpret the data.

Figure 6.4: Comparison of all models, base and fine-tuned versions, on the F1 score.
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Chapter 7

Discussion

Considering all the performance metrics presented, choosing the best overall model

is not a straightforward decision, because we have a different top performing model

for each task. In the case we did not have a severely limited computational power,

we could use different models for different tasks. This would naturally lead to the

best possible result in extracting the ESG data from annual reports. In this case we

would choose the fine-tuned LLama 3.1 8B Instruct model for the policy extraction

and the fine-tuned Mistral 7B Instruct for the name extraction.

However, if we must choose only one model and consider both tasks equally im-

portant, we need to evaluate the differences between the two models and assess the

percentage difference for each specific metric. We consider an average percentage of

relevant polices as the most important metric regarding the policy extraction task.

To this end, Llama 3.1 fine-tuned version achieved a score of 89.22% which means

that it is 3.5% better than the Mistral 7B fine- tuned, with the score of 86.15%. On

the other hand, the Mistral model is 5.7% better in terms of the F1 score compared

to the Llama 3.1, for the name extraction task.

Taking both tasks into account, the fine-tuned Mistral 7B Instruct emerges as the

more favorable model overall. In addition to its performance, it consistently produced

the best-structured output.

Limitations

Overall, we are satisfied with the performance of the models on this task, though

there were some constraints related to time and computational resources that limited

our ability to further refine and evaluate the models.

One key limitation was that our evaluation approach for policy extraction did not

fully capture the quality of each response. While we assessed whether the extracted
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policies were relevant, we did not measure the completeness or depth of the answers. A

policy could be accurate and pertinent but still differ in the level of detail it provided.

We observed that fine-tuned models generally produced more thorough and complete

responses. However, assessing the quality of these answers would have required a

more sophisticated scoring system and considerably more time, which was beyond

the scope of this study.

Another constraint was the relatively small size of the testing dataset, which

consisted of a limited number of annual reports. A larger and more diverse dataset

might have yielded different insights, offering a better understanding of the models’

performance across various contexts.

Additionally, the uniformity of prompts used across all models posed a challenge.

Applying the same prompt to each model is not ideal, as different models may re-

spond better to differently structured instructions. Tailoring prompts to align with

each model could have potentially enhanced performance, but this approach was not

feasible within the scope of this study.

The process of fine-tuning the models also faced challenges related to the dataset’s

size and quality. The dataset was derived from a limited selection of annual reports,

which restricted the variety of text patterns and contexts available for the models to

learn from. This limitation may have contributed to inconsistencies in the models’

performance across different tasks, indicating difficulties with generalization.

Moreover, issues with data cleanliness were a significant concern. Extracting text

from annual reports often resulted in poorly formatted content, particularly due to the

presence of tables, graphs, and other elements that introduced noise. While our pre-

processing pipeline included steps to improve data quality, such as inserting clear page

markers and correcting misplaced characters, some inconsistencies persisted. These

issues likely impacted the models’ ability to learn effectively and generate structured

outputs.

Future Work

Several opportunities exist for improving our framework, which presents exciting di-

rections for future research.

One area of improvement is to experiment with larger models and re-examine

the impact of fine-tuning on performance. This would require significantly more

computational resources, particularly for models like Llama 3.1, where the next size

up contains 70B parameters, which is nearly nine times larger than the models we

used. Additionally, it would be beneficial to explore newer models of similar size,
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as approximately every six months, a new model is released that outperforms its

predecessors.

Improving our fine-tuning dataset is another area of potential enhancement. This

could involve further cleaning the dataset or focusing exclusively on the ESG-related

pages of the annual reports. It would also be interesting to study how different

fine-tuning datasets affect model’s performance.

A more advanced approach would be to create a labeled dataset with input and

output features to perform supervised fine-tuning. This would allow us to create a

model specialized in a specific task or question, likely resulting in better performance

for that task. Supervised fine-tuning is generally more effective for task-specific prob-

lems, and applying it here would likely lead to significant performance improvements.

Moreover, integrating Direct Preference Optimization (DPO) [45] offers a promis-

ing path for improving adaptability. DPO focuses on directly optimizing for prefer-

ences, such as user feedback or specific outcomes. This could enhance the model’s

ability to prioritize and learn from feedback, improving its understanding of subtle

differences in ESG policies across various reports. For instance, DPO could adjust

the model’s focus to emphasize nuanced components of sustainability or governance

practices.

Additionally, DPO could tailor model outputs to meet specific industry require-

ments. By integrating feedback from domain experts or end-users, DPO could guide

the models to prioritize extracting elements most valuable to stakeholders, increasing

the relevance and accuracy of the extracted data.

Finally, we observed that the models’ output is relatively sensitive to the instruc-

tions provided in the prompt. While considerable thought went into designing the

prompts, exploring different prompt structures and further refining them could yield

better results. Given more time, this would be a promising area for further experi-

mentation.
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Appendix A

Prompts

Policy Extraction Prompt

user_prompt = f"""
What are the key elements of the companys ESG (Environmental ,
Social , and Governance) or sustainability policyincluding
specific commitments or initiatives? Please answer in the
following JSON format.

<response format >
{{

"response ": {{
"key_elements ": [

"Element_1",
"Element_2",
"Element_3",
"Element_4",
"Element_5",

],
"specific_policies ": [

"Policy_1",
"Policy_2",
"Policy_3",
"Policy_4",
"Policy_5"

]
}},
"page_number ": "Page number"

}}
</response format >

IMPORTANT RULES:
1. The "specific_policies" field MUST include DETAILED

descriptions of any explicit promises , initiatives , or
actions the company has committed to under its ESG policy.
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2. The "key_elements" field MUST include SHORT
descriptions of the major components of the companys
ESG policy.

3. If relevant information is not found , leave fields empty.

<document >

{text}

</document >

Remember:
1. Ensure each page number is directly relevant to the

information provided.
2. If you cannot find relevant information , clearly state

this in your response.
3. Provide short descriptions for "key_elements" and detailed

ones for "specific_policies ".

Now , please answer the given query using the provided
information and following these guidelines. Answer in ONLY
JSON format!
"""

Listing A.1: The user prompt used for relevant policies extraction.

Name Extraction Prompt

user_prompt = f"""
What is the NAME of the senior executive , board member ,
or employee responsible for overseeing the company 's ESG
(Environmental , Social , and Governance) or sustainability
initiatives in the provided document?

<response format >
{{

"response ": "The name of the employee",
"page_number ": "Page number"

}}
</response format >

IMPORTANT RULES:
1. Extract only the name that is explicitly mentioned in the

provided document text.
2. Do not infer or add any name that is not directly stated.
3. There is only ONE possible name.
4. Adhere strictly to the specified JSON format.
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5. Ensure that the response format does not include any extra
spaces or text outside the schema.

6. If the name of the responsible person is not found in the
text , leave the space empty.

Here are the relevant documents for your query:

<document >

{text}

</document >

Remember:
1. Do not include any information that is not explicitly

mentioned in the text.
2. Analyze the text carefully to ensure the correct name is

extracted.
3. There is only ONE possible name.
4. Adhere strictly to the response format without adding extra

spaces or text.
5. Answer with only the filled -in template.

Now , please answer the given query using the provided
information and following these guidelines. Answer ONLY in
the specified JSON format!
"""

Listing A.2: The user prompt used for ESG person name extraction.

Page Extraction Prompt

user_prompt = f"""
You are a research assistant. Your task is to analyze the table
of contents of an annual report and identify the relevant
sections that contain information related to the company 's ESG
(Environmental , Social , and Governance) or sustainability
policy , as well as details regarding the senior executive , board
member , or employee responsible for these areas.

IMPORTANT INSTRUCTIONS:
1. For each relevant section , provide the starting page number.
2. Additionally , provide the starting page number of the

following section , so that the range of pages covered by the
ESG or sustainability section can be clearly identified.

3. Ensure that your response is accurate and includes only
the relevant sections.
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Please provide the following information in JSON format:
A list of the starting pages of all sections likely to contain
information about ESG or sustainability policies or about the
employees responsible for these policies , along with the
starting page of the next section.

Format the response as shown below:

{{
"esg_related_sections ": [

{{
"start_page ": starting_page_of_section ,
"next_section_start_page ": starting_page_of_next_section

}},
...

]
}}

For example:

{{
"esg_related_sections ": [

{{
"start_page ": 45,
"next_section_start_page ": 59

}},
{{

"start_page ": 121,
"next_section_start_page ": 204

}}
]

}}

<FIRST 5 PAGES OF THE ANNUAL REPORT >
"""

system_prompt += f"{pages}"

system_prompt += """

Remember:
For each relevant section , provide the starting page and the
starting page of the next section. This will help identify the
range of pages covered by the ESG or sustainability section.
"""

Listing A.3: The user prompt for relevant ESG pages extraction.
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