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Executive summary

Problem definition - Hedging is a way to reduce financial risk exposure. Traditional
hedging models are often based on unrealistic assumptions, such as continuous trading.
These assumptions enable the construction of a portfolio that replicates a risk exposure
perfectly at each point in time. However, the realistic setting of discrete trading and market
frictions introduces hedging errors and transaction costs. To construct an appropriate port-
folio, a trade-off has to be made at each point in time between both the error and the costs.
Hence, the hedging task involves a sequential decision-making process and is amenable to
reinforcement learning (RL). The goal of this research is to investigate to what extent RL
can be used to hedge a plain vanilla call option, a digital option, and several types of the
barrier call option under the Heston model.

Methodology - A separate RL agent is trained on a plain vanilla, digital, and differ-
ent types of the barrier call option. The agents are trained on simulated data, as learning
requires a lot of data. For this, it is assumed that the asset price is driven by a stochastic
volatility process, described by the Heston model. To reflect realistic trading, time is dis-
cretized. The hedging objective is defined as a mean-variance optimization problem, which
includes a risk aversion parameter and captures the trade-off between the expected wealth
and the variance (i.e. risk) resulting from hedging. The hedging problem is embedded in a
Markov Decision Process to recast it as an RL problem. The actor-critic Deep-Deterministic-
Policy-Gradient algorithm is used to train the agents. As the agents must hedge the options
by only taking positions in the underlying asset, the hedging problem comes down to delta
hedging and the performance of the RL approach is compared with this strategy. The
terminal portfolio values of both strategies are compared based on 10,000 (almost surely)
out-of-sample simulated stock price paths. The performance of the RL agent is evaluated
for each option type in the absence of transaction costs, in an environment with costs, and
for some modified input parameters.

Results - The results show that it is possible to use RL to hedge a plain vanilla, dig-
ital, up-and-in, and down-and-out barrier call option. Both in the absence and presence of
transaction costs, the agent is able to hedge these options more optimally than the delta
hedging strategy. In this research setting, RL is less effective in hedging an up-and-out
barrier call option and the agent did not learn how to hedge a down-and-in barrier option.

Recommendation - The application of RL to option hedging seems to be very promising.
A key strength of this approach is that it is more flexible compared to traditional hedging
models since the RL agent does not make any assumptions about the environment. For
further research, it is recommended to improve the practicability and generality of the RL
approach. It would for example be useful to investigate the application of RL to the hedging
of more complicated option types, a portfolio of options, and using historical data.
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Mathematical Notations and Abbreviations

E(·) Expected value
V(·) Variance
P(·) Probability
minx Minimum over variable x
maxx Maximum over variable x
argmin f(x) The value of x for which the value of the function f(·) is minimized
argmax f(x) The value of x for which the value of the function f(·) is maximized
log(x) Logarithm of x
R Set of real numbers
∇ Gradient, differential operator∑
x Sum over values of x∫

x
Integral over values of x

∈ Is an element of
N(µ, σ2) Normal distribution with mean µ and variance σ2

α Learning rate
ε Small value
θ, w Model parameters
γ Discount factor
µ Mean
σ Standard deviation

RL Reinforcement learning
MDP Markov Decision Process
S State space
A Action space
T Transition function
R Reward function
s, s′ States
a Action
r Reward
t Discrete time step
dt Infinitesimal change in time
∆t Change in time
T Final time step of an episode, option’s maturity
st State at time t
rt Reward at time t
at Action at time t
R(s, a, s′) Instantaneous reward for taking action a in state s and ending up in state s′

T (s, a, s′) The probability of ending up in state s′ when taking action a in state s
π Policy
π∗ Optimal policy
π(s) Action a taken in state s under deterministic policy
π(a|s) Probability of taking action a in state s under stochastic policy π
πθ(a|s) Probability of taking action a in state s under parameterized stochastic policy π
µθ(s) Action a taken in state s under parameterized deterministic policy
V π(s) Value of state s under policy π
V ∗(s) Value of state s under optimal policy
Qπ(s, a) Value of taking action a in state s under policy π
Q∗(s, a) Value of taking action a in state s under optimal policy
Q(s, a) Estimate of the value of action a in state s
Qw(s, a) Estimate of the value of taking action a in state s given parameters w
J(πθ) Performance objective
ρπ(s) Discounted state distribution in the limit
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D Replay memory
C Capacity

P Real-world (physical) probability measure
Q Risk-neutral probability measure
W Wiener process
S Price of a risky asset
B Price of a riskless asset
K Strike price
h(ST ) Payoff function
Ct(St) Option value

∆ Delta, ∂C(t,St)
∂S

(Xt, Yt) Portfolio consisting of Xt units of the risky asset and Yt units of the riskless asset
T − t Remaining time until the option expires (time to maturity)
κ Risk-aversion parameter
Ht Value of hedging strategy
ct Transaction costs
PnLt Profit or loss of hedging from time t− 1 to t
Πt Portfolio value at time t, Ct(St)−Ht

UAI Up-and-in barrier call option
UAO Up-and-out barrier call option
DAI Down-and-in barrier call option
DAO Down-and-out barrier call option
OTM Out-the-money
ATM At-the-money
ITM In-the-money
BM Brownian Motion
GBM Geometric Brownian Motion
BS Black-Scholes
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1 Introduction

Due to instability and variability in the financial market, firms are exposed to a variety of
risks, such as market risk (including currency risk, interest rate risk, and price risk), credit
risk, and liquidity risk. Managing these risks is a critical factor in company success, as they
can negatively impact the financial performance of a firm [87]. Financial risk exposure can
be reduced by hedging, which uses financial instruments that properly offset changes in the
fair value or cash flows of the hedged item. Hedging typically involves the use of financial
derivatives, which are financial contracts whose values are derived from other financial as-
sets, like forwards, futures, swaps, and options [70].

Since the price of financial assets changes over time, frequent rebalancing of the hedged
positions may be required. This is called dynamic hedging. Most derivative pricing models,
such as the well-known Black-Scholes model [9], are complete market models. In a complete
market, there are no transaction costs and there is a price for every derivative security in ev-
ery possible state of the world. Option pricing models also generally require the assumption
of continuous time trading1. However, the presence of market frictions, such as transaction
costs, liquidity constraints, and inseparable positions and risks, is much more realistic [72].
In this setting, continuous trading of arbitrarily small amounts of the underlying asset is
not possible or can be costly. As a result, the hedged portfolio is only rebalanced at discrete
times. This creates a replication error since the hedged position does not always perfectly
replicate the financial contract. Therefore, a trade-off has to be made at each point in time
between the replication error costs and the transaction costs. The optimal hedging strategy
involves thus a dynamic multi-stage decision-making, taking the possible future states of
the world and the corresponding actions in these states into account. Considering hedging
as a sequential decision-making process makes it amenable to reinforcement learning (RL).

RL is an area of machine learning concerned with how an intelligent agent should take
actions in an environment to maximize its expected rewards. This research focuses on the
application of RL to the hedging of equity options. These are option contracts that give the
holder the right, but not the obligation, to buy or sell an underlying stock at an agreed-upon
price and date. At each point in time, the RL agent should take a position in the underlying
stock to properly offset the changes in the option value. The advantage of the RL approach
is that the agent does not need any prior information about the option characteristics or
stock price dynamics. It learns what positions to take by interacting with an environment:
at each point in time, the agent takes an action that is applied to an environment, which in
turn provides feedback to the agent on how good or bad the action taken is. Starting with
random actions, the agent improves his policy based on this feedback.

Research about reinforcement learning for option hedging is quite novel. Previous research,
such as [13][14][65][80], has mainly focused on vanilla options, which are options without
any additional features. It is known that options with a more complicated structure or
additional terms, such as a digital call option2 and a barrier call option3, can be harder to
hedge. Reinforcement learning may be useful for such options. In addition, some of the
earlier studies such as [36][80] modelled the stock prices with constant volatility. Stochastic
volatility is more representative of the real market and can be modelled using e.g. the He-
ston model [37]. Because of the potential and novelty, this research aims to investigate to
what extent reinforcement learning can be used to hedge a plain vanilla, digital and different
types of a barrier call option under the Heston model.

1A market in which traders can trade at any time when the market is open.
2An option type that pays out a fixed amount of cash if the underlying asset price ends above or on the

option’s strike price.
3An option type that can only be exercised if the underlying asset price has reached or has not reached

some level.
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The remainder of this paper is structured as follows. Chapter 2 gives a brief introduction to
reinforcement learning and discusses some of the relevant algorithms in more detail. Chap-
ter 3 explains the concepts of options and hedging and introduces the relevant financial
models to model asset prices and price options. Chapter 4 discusses related work that ap-
plied reinforcement learning to option hedging. Chapter 5 explains how the option hedging
problem is recast as a reinforcement learning problem and outlines the methodology for
constructing the reinforcement learning algorithm, as well as the evaluation of the model.
The experimental setup is described in Chapter 6. The results are shown and discussed in
Chapter 7. Finally, Chapter 8 concludes this research and Chapter 9 provides a discussion
of the paper.
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2 Reinforcement Learning

Humans make thousands of decisions per day to choose e.g. products, services, careers,
and to survive as species. Typically, more than one decision is involved in decision-making.
These situations are called sequential decision-making. The decisions have long-term effects,
but might not all encompass an immediate reward. For example, when cooking a cake, the
ingredients are added after each other to the dough. However, one does not know whether
too much or too little is added until the cake is out of the oven [77]. Sequential decision
tasks are often hard to solve because it might be difficult to infer each action’s outcome
and/or the set of actions might be too large to be presented to the decision-maker. Here,
tools can help the decision-maker to differentiate between the possible actions and to focus
on the preferred ones. Reinforcement learning is one of these ways.

Reinforcement learning (RL) is a subset of machine learning that enables an artificial agent
to learn how to behave in a (stochastic) environment. The goal of the agent is to perform
actions that maximize a numerical reward over time [43]. The agent should discover which
actions yield the most reward by interacting with its environment. This is a trial and error
process, where the agent performs a number of actions in the environment and receives
feedback on the amount of reward that these actions yield. Actions may affect not only
the immediate reward but also the opportunities available to the agent at later times and
hence the subsequent rewards. As a consequence, an agent might choose an action that
maximizes future rewards, although the immediate reward associated with this might look
sub-optimal. To take the right action, the indirect, delayed consequences of actions should
thus be taken into account which might require foresight or planning [75]. Here, the agent
uses its experience to improve its performance over time.

Reinforcement learning is different from the other two machine learning paradigms: su-
pervised learning and unsupervised learning. In contrast to supervised learning, an RL
agent is not trained on a training set of labeled examples. Although unsupervised learning
and RL both involve the training on unlabeled data, their goals are different. Unsupervised
learning intends to discover hidden patterns in the data. Although uncovering patterns in
an agent’s experience can be useful in RL, it does not necessarily lead to an optimal policy
that maximizes the long-term reward [75].

This chapter gives a brief introduction to RL. First, the formal framework of a Markov
Decision Process (MDP) is defined, which provides a mathematical framework for model-
ing decision-making, accompanied by the definition of value functions and policies. Several
relevant RL algorithms are then discussed.

2.1 Formulation via Markov Decision Process (MDP)

In reinforcement learning (RL), an agent observes a state st of the environment and takes an
action at at each point in time. This action changes the environment. The agent observes
then a new state st+1 and receives a reward rt from the resulting environment. In general, it
is expected that the environment is stochastic, i.e. taking the same action in a given state on
two separate occasions may yield a different subsequent state or reward. A representation
of the agent-environment interaction is shown in Figure 1.
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Figure 1: Representation of the agent-environment interaction in reinforcement learning, adapted
from [75].

The reinforcement learning problem can be modelled as a Markov decision process (MDP).
An MDP is defined as a tuple (S,A, T ,R, γ), consisting of [84]

• The state space S. It defines the set of possible states which can be discrete or
continuous.

• The action space A. It defines the set of possible actions which can be discrete or
continuous.

• The transition function T : S × A × S → [0, 1]. It probabilistically specifies the
next state of the environment s′ ∈ S after taking action a ∈ A in state s ∈ S. The
probability is represented by T (s, a, s′).

• The reward function R : S × A × S → R. It specifies the instantaneous reward
for taking action a ∈ A in state s ∈ S and ending up in state s′ ∈ S. The reward is
represented by R(s, a, s′).

• The discount factor γ ∈ [0, 1]. This value indicates the importance of future rewards.
The agent prioritizes rewards in the immediate future if this value is close to zero. If γ
approaches 1, future rewards are more strongly taken into account than with a lower γ.
If the time horizon is finite and the rewards bounded, γ = 1 is theoretically possible.
If the time horizon is infinite, γ < 1 ensures convergence of the sum of future rewards
[75].

The model is Markovian if the state transitions only depend on the current state and not
on any previous actions or states, i.e. P

(
st+1

∣∣st, at, st−1, at−1, ..., s0, a0

)
= P

(
st+1

∣∣st, at) =
T (st, at, st+1). This means that the current state contains all relevant information that is
important to make a decision [84].

2.1.1 Solving Markov Decision Processes

Solving a Markov Decision Process (MDP) means computing an optimal policy π∗. A
policy π ∈ Π represents the strategy of which action a ∈ A to take in state s ∈ S. A policy
can either be deterministic or stochastic. A deterministic policy is a function defined as
π : S → A and outputs an action for a particular state. A stochastic policy is defined as
π : S ×A → [0, 1] and outputs a probability distribution over actions for a particular state.
Deterministic policies, as well as a finite action and state space, are considered first.
The optimal policy is often computed by learning value functions. There are two types of
value functions:

• The state value function V π(s) : S → R represents an estimate of how good it is
for an agent to be in a given state. The discounted expected return when starting in

10



state s ∈ S and following policy π ∈ Π thereafter can be defined as

V π(s) = E
[ ∞∑
k=0

γirt+k|st = s, π
]
, γ ∈ [0, 1). (1)

• The state-action value function Q : S × A → R represents an estimate of how
good it is for an agent to take a certain action in a certain state. The discounted
expected return when taking an action a ∈ A in state s ∈ S and following policy
π ∈ Π thereafter can be defined as

Qπ(s, a) = E
[ ∞∑
k=0

γirt+k|st = s, at = a, π
]
, γ ∈ [0, 1). (2)

Value functions satisfy certain recursive properties that can be expressed in terms of the
so-called Bellman Equation [6]. For example for the state-value function, the expected value
of a state can be decomposed into the instantaneous reward and the weighted discounted
rewards of the possible subsequent states:

V π(s) = E
[
rt + γrt+1 + γ2rt+2 + ... |st = s, π

]
= E

[
rt + γV π(st+1)|st = s, π

]
=
∑
s′∈S

T (s, π(s), s′)
(
R(s, π(s), s′) + γV π(s′)

)
.

(3)

The optimal value function is unique and can be expressed in the Bellman optimality equa-
tion. This equation states that the value of a state under an optimal policy must be equal
to the expected return for the best action in that state:

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
. (4)

Using the optimal value function, the optimal policy selects the action that has the highest
expected return based on the successor states:

π∗(s) = argmax
π∈Π

V π(s) = argmax
a∈A

∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
. (5)

For the state-action value function, the optimal value and policy can be derived in the same
way and these are defined as:

Q∗(s, a) =
∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γ max

a′∈A
Q∗(s′, a′)

)
, (6)

π∗(s) = argmax
a∈A

Q∗(s, a). (7)

Q∗ and V ∗ are related in the following way:

Q∗(s, a) =
∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γ max

a′∈A
V ∗(s′)

)
, (8)

V ∗(s) = max
a′∈A

Q∗(s, a). (9)

An important difference between both value functions is that the Q-function does not sum
over the transition probabilities to select an optimal action as in Equation 5. This makes
the access to the transition function unnecessary; (an estimate of) the Q-function suffices.
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Different algorithms have been developed to find the optimal policy π∗. An important
difference between these is the distinction between model-based and model-free algorithms.
This difference is visually shown in Figure 2. Model-based techniques aim to find the op-
timal strategy in the presence of a model of the MDP. This model consists of knowledge
about the transition function and the reward function. It may be known in advance or can
be learnt by interacting with the environment. The existence of a model allows an agent to
explicitly plan ahead by considering the long-term outcomes of the possible actions and to
more carefully select actions. In this way, planning can be used to construct a value function
or policy. However, in practice, the planning can be computationally expensive and it is
often not possible to find an exact model of the environment [62]. Model-free algorithms do
not use such a model. Instead, they rely only on the interaction with the environment. As
model-free methods are more popular and have been more extensively developed and tested
than model-based methods, the next section discusses some model-free algorithms.

Figure 2: Representation of model-based and model-free reinforcement learning, adapted from
[75].

2.2 Model-free Methods

Reinforcement learning is mainly concerned with approaches that do not rely on learning a
model: model-free methods. Because a model of the Markov Decision Process (MDP) is un-
known, the agent must try out different actions to obtain information from the environment
and to be able to produce an optimal policy. This results in an exploration-exploitation
trade-off. To maximize the reward, the agent must prefer actions that it has tried in the
past and led to high rewards (exploitation). At the same time, it should discover actions
that it has not selected (often) before which may result in making better decisions in the
future (exploration) [47]. By balancing the trade-off, the agent tries to learn or estimate
the value functions (value-based) or policy (policy-based) directly. Here, the transition and
reward functions are captured implicitly. The following subsections discuss some of the
value-based en policy-based algorithms in more detail.

2.2.1 Value-based

2.2.1.1 Temporal Difference: Q-learning

Value-based methods are exemplified by the temporal difference (TD) method [34]. Tempo-
ral difference was developed by Richard Sutton in 1988 [76]. It is based on bootstrapping:
the value of a state (V (s)) can be learnt based on the estimates of other values. Using the
Bellman equation (see Equation 3), V (s) can be expressed in the immediate reward and the
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current estimate of the value function of the next state [75]:

V (s) = r + γV (s′). (10)

As shown in the previous subsection, computing an optimal action in a state based on the
learnt V-function requires a weighted summation of all successor states using the transition
function. As this function is often unknown in model-free algorithms, the Q-function is
learnt instead. Combining Equation 10 with the relationship between Q∗(s, a) and V ∗(s)
as presented in Equation 9 gives a similar expression for the Q-function:

Q(s, a) = r + γ max
a′∈A

Q(s′, a′). (11)

The updates are performed iteratively after experiencing a transition from state s to s′,
based on the action a, while receiving reward r. This transition can be summarized into the
experience tuple (s, a, r, s′). Using the update rule in Equation 11, the estimate of Q(s, a)
is each step fully updated. The use of a learning rate α < 1 creates a ”smoother” update.
This rate determines to what extent the estimate is updated. Including the learning rate in
Equation 11 gives the update rule used by the Watkins’ Q-learning algorithm [82]:

Q(s, a) = Q(s, a) + α
(
r + γ max

a′∈A
Q(s′, a′)−Q(s, a)

)
. (12)

The pseudocode of the Q-learning algorithm is presented in Algorithm 1. If the states and
actions are respectively visited and performed frequently enough and if the learning rate is
adjusted properly, Q(s, a) is guaranteed to converge to Q∗(s, a).

Algorithm 1 Q-learning [82]

Initialise action-value function Q(s, a) arbitrarily
for each episode=1,..,M do

Initialise state s
for each step of episode t=1,..,T do

With probability ε select a random action a, otherwise select a = maxaQ(s, a)
Execute action a and observe reward r and state s′

Set Q(s, a) = Q(s, a) + α
(
r + γmaxa′∈AQ(s′, a′)−Q(s, a)

)
Set s = s′

until s is terminal

2.2.1.2 Q-learning with Function Approximator: Deep Q-learning

Q-learning uses a tabular representation (vector or matrix) to store the Q-values for each
state-action pair and to estimate the optimal Q-function. Such a representation is infeasible
if a reinforcement learning problem has a large action space and/or a large or continuous
state space. The state-action value function Qπ(s, a) can then be approximated by repre-
senting it with a parameterized function Qw(s, a) such that

Qw(s, a) ≈ Qπ(s, a), (13)

where w represents the set of parameters of the function approximator.

Deep Q-learning uses a deep4 neural network Qw(s, a) as a parameterized estimate of the

4”Deep” means that the artificial neural network (ANN) has multiple layers between the input and output
layers.
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state-action value function, where w are the weights of the neural network. This network is
called a Deep Q-network (DQN) and maps states to Q-values for all possible actions. The
Q-network can be trained by minimizing the error between the estimated Qw(s, a) and the
true Q-function Q(s, a). Since the true Q-function is not known, an estimate for Q(s, a)
via Q(s′, a′) as shown in Equation 11 can be used as target value. However, the target,
r + γmaxa′∈AQ

w(s′, a′), and the prediction, Qw(s, a), are dependent as they both rely on
w. To make the training more stable, a separate network is used to estimate the target:
Qw̃. This network has the same architecture as the main Q-network, but different weights.
The weights of the main Q-network are updated by minimizing the loss:

L =
(
r + γmax

a′∈A
Qw̃(s′, a′)−Qw(s, a)

)2
. (14)

The Q-network’s weights are copied to the target network every N iterations. The target
network’s weights are held fixed between the updates. The architecture of this algorithm is
depicted in Figure 3 and the pseudocode is presented in Algorithm 2.

Figure 3: A flowchart of the Deep Q-network (DQN) algorithm with a replay buffer and a target
network, adapted from [58].

A second technique applied by deep Q-learning to enhance the learning stability is the
experience replay mechanism [50]. Subsequent experiences (s, a, r, s′) are highly correlated,
as the environment changes slowly over time. Learning from each of these experience tuples
in sequential order violates the assumption that the data are independent and identically
distributed (i.i.d.), made by the optimization algorithm which is used to train the networks.
With experience replay, experience tuples are stored in a first-in-first-out (FIFO) buffer D
with finite capacity C. Mini-batches of tuples are sampled uniformly at random from the
buffer when training the neural network. This does not only remove correlations among the
observations, but also increases the sample efficiency, as it allows to learn multiple times
from individual experience tuples.
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Algorithm 2 Deep Q-learning with Experience Replay and Target Network [56]

Initialise replay memory D to capacity C
Initialise action-value network Qw(s, a) with random weights w
Initialise target action-value network Qw̃ with weights w̃ = w
for each step of episode t=1,..,M do

Initialise state st
for each step of episode t=1,..,T do

With probability ε select a random action at, otherwise select at = maxaQ
w(st, a)

Execute action at and observe reward rt and state st+1

Store transition (st, at, rt, st+1) in D
Set st+1 = st
Sample a random mini-batch of N transitions (sj , aj , rj , sj+1) from D

Set yj =

{
rj for terminal state sj+1

rj + γmaxa′ Q
w̃(sj+1, a

′) for non-terminal state sj+1

Update the Q-function by minimizing the loss: L = 1
N

∑
j

(
yj −Q(sj , aj)

)2

2.2.2 Policy-based

The algorithms described so far can only learn a single deterministic action from a discrete
set of actions, i.e. a deterministic policy in discrete action space. In problems with a
continuous action space, policy-based algorithms have proven more practical [67]. Instead of
deriving the policy from a value function, policy-based methods directly model and optimize
the policy. The policy is usually modelled with a parameterized function with respect to
a n-dimensional vector θ: Π = {πθ : θ ∈ Rn}. The goal is to find policy parameters that
maximize a performance objective J(πθ) which calculates the expected reward of a policy.
The parameters are learnt by performing a policy search or gradient ascent. The class
of algorithms that perform a policy search is exemplified by the evolutionary algorithm
(EA) approach [34]. The remainder of this section focuses on the class of algorithms that
performs gradient ascent, also known as policy gradient methods. The stochastic policy
gradient theorem is discussed first, followed by the deterministic one.

2.2.2.1 Stochastic Policy Gradient

In gradient policy methods, the traditional approach to handling continuous action spaces
has been to use a parameterized stochastic policy

πθ(a|s) = P(a|s; θ) (15)

that describes a probability distribution of taking an action given a state associated with the
policy. At each time step, a policy distribution πθ(a|st) is constructed from which an action
at is sampled, i.e. at ∼ πθ(·|st). Here, the policy distribution is often represented with a
normal distribution N(µθ(s), σθ(s)). Starting from an initial state, an agent follows a policy
to generate a sequence (trajectory) of states, actions and rewards s0, a0, r0, .., sT , aT , rT . The
goal is to learn a policy that maximizes the expected return from the start distribution[74]:

J(πθ) =

∫
S
ρπ(s)

∫
A
πθ(a|s)r(s, a)dads = Es∼ρπ,a∼πθ

[
r(s, a)

]
, (16)

where

ρπ(s) =
∞∑
t=0

γtP(st = s|s0, π) (17)
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is the discounted state distribution (state visitation frequency) in the limit and

r(s, a) =

∫
s′∈S

T (s, a, s′)R(s, a, s′). (18)

The policy parameters that maximize this objective function can be found using gradient as-
cent. Here, the parameters are moved in the direction of the performance gradient ∇θJ(πθ),
i.e. the direction that leads to a greater cumulative reward:

θk+1 = θk + α∇θJ(πθk), (19)

where k is the iteration number. Computing the performance gradient is hard, as it depends
on the state distribution. This distribution is difficult to estimate due to uncertainty in the
environment. The Policy Gradient Theorem (see [74] for a proof) simplifies this computation
by changing r(s, a) to Qπ(s, a) and moving the gradient operator inside the integral:

∇θJ(πθ) =

∫
S

ρπ(s)

∫
A

∇θπθ(a|s)Qπ(s, a)dads. (20)

In this way, the policy gradient (∇θπθ(s, a)) does not depend on the gradient of the state
distribution and can be estimated from experience. For this, the likelihood ratio trick can
be applied to estimate gradients from expectations:

∇θπθ(a|s) = πθ(a|s)
∇θπθ(a|s)
πθ(a|s)

= πθ(a|s)∇θ log πθ(a|s). (21)

Combining Equation 20 and 21 gives:

∇θJ(πθ) =

∫
S
ρπ(s)

∫
A
πθ(a|s)∇θ log πθ(a|s)Qπ(s, a)dads

= Es∼ρπ,a∼πθ
[
∇θ log πθ(a|s)Qπ(s, a)

]
.

(22)

2.2.2.2 Deterministic Policy Gradient

Contrary to prior beliefs, Silver et al. [71] showed that policy gradient for deterministic
policies

a = µθ(s) (23)

exists. Using the discounted state distribution ρµ analogously to the stochastic one, the
performance objective J(µθ) can again be written as an expectation:

J(µθ) =

∫
S
ρµ(s)r

(
s, µθ(s)

)
ds = Es∼ρµ

[
r
(
s, µθ(s)

)]
. (24)

Silver et al. provided a Deterministic Policy Gradient Theorem analogously to the Policy
Gradient Theorem to derive the deterministic policy gradient:

∇θJ(µθ) =

∫
S
ρµ(s)∇θµθ(s)∇aQµ(s, a)

∣∣
a=µθ(s)

ds

= Es∼ρµ
[
∇θµθ(s)Qµ(s, a)

∣∣
a=µθ(s)

]
.

(25)

Expanding the gradient of the Q-value using the chain rule gives:

∇θJ(µθ) = Es∼ρµ
[
∇θµθ(s)∇aQµ(s, a)

∣∣
a=µθ(s)

]
. (26)

It can be observed that the deterministic policy gradient integrates over the state space only,
rather than over both the action and state space as the stochastic policy gradient does. As

16



a result, calculating the deterministic policy gradient may require fewer samples compared
to the stochastic policy gradient.
Based on the Stochastic and Deterministic Policy Gradient Theorems, several policy gradient
algorithms have been developed that estimate the expectation of the policy gradient by
sampling [20]. These algorithms consist of a policy evaluation step and a policy improvement
step. The former concerns the estimation of the Qπ(s, a). The policy improvement step
of the algorithm takes then a gradient step to optimize the policy with respect to this
estimation. The estimation of Qπ(s, a) should be bias-free and have a low variance to
ensure convergence and a stable gradient [16]. A ”simple” approach is to estimate it from
the trajectories’ returns while following policy πθ. The REINFORCE algorithm [86] relies on
this approach. A particular limitation of this algorithm is that it requires many trajectories
and that it can exhibit high variance. A more efficient approach is to use a value-based
approach to estimating Qπ, which is applied in actor-critic methods.

2.2.3 Actor-Critic

Actor-critic algorithms combine elements of value-based and policy-based methods [35].
They consist of two models which are learnt simultaneously. An actor (policy-based) learns
a parameterized policy πθ(a|s) or µθ(s) and a critic (value-based) learns a parameterized
value function Qw(s, a) The critic evaluates the actor’s current policy and provides feedback
(a reinforcing signal) to the actor. The policy evaluation can be done by e.g. temporal dif-
ference (TD) learning as described in Section 2.2.1. The actor updates its policy based on
this signal, in the direction of performance improvement. This framework is visualized in
Figure 4.

Figure 4: Representation of an actor-critic model, adapted from [81].

Several actor-critic methods have been developed for deterministic and stochastic policies.
Among these, the Deep Deterministic Policy Gradient (DDPG) algorithm is discussed in
the next paragraph.

2.2.3.1 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) [49] is an actor-critic, model-free algorithm
that can handle continuous state and action spaces. DDPG combines Deep Q-Network
(DQN) and Determistic Policy Gradient (DPG). It consists of an actor network µθ(s),
which learns a parameterized deterministic policy using DPG, and a critic network Qw(s, a)
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which is learnt using deep Q-learning. As in DQN, DDPG employs the use of a replay buffer
and a separate target network to improve the stability of the learning. Next to the target

Q-network (Qw̃(s, a)), DDPG also has a target policy network (µθ̃(s)).

Compared to DQN and DPG, DDPG has two major adjustments. First, it applies soft
updates on the parameters of the target network to the learnt networks:

w̃ = τw + (1− τ)w̃, (27)

θ̃ = τθ + (1− τ)θ̃ (28)

for some τ << 1. In this way, the parameters change slowly, rather than being temporarily
frozen as in DQN. This has proven to improve the learning stability.5 Secondly, it adds a
noise sampled from a noise process N to the deterministic policy:

a = µθ(s) +N. (29)

This is to ensure exploration, as the deterministic policy gradient might not explore the full
state and action space. The pseudocode is presented in Algorithm 3. The DDPG algorithm
has been extended in several ways, such as the algorithms introduced in [4][29][52].

Algorithm 3 Deep Deterministic Policy Gradient (DDPG) [49]

Initialise replay memory D to capacity C
Initialise actor network µθ(s) and critic network Qw(s, a) with random weights θ and w

Initialise target actor network µθ̃(s) and target critic network Qw̃(s, a) with weights θ̃ = θ
and w̃ = w
for each episode t=1,..,M do

Initialise a random process N for action exploration
Receive initial state s1

for each step of episode t=1,..,T do
Select action at = µθ(st)+Nt according to the current policy and exploration noise
Execute action at and observe reward rt and state st+1

Store transition (st, at, rt, st+1) in D
Set st+1 = st
Sample a random mini-batch of N transitions (sj , aj , rj , sj+1) from D

Set yj =

{
rj for terminal state sj+1

rj + γQw̃
(
sj+1, µ

θ̃(sj+1)
)

for non-terminal state sj+1

Update the critic by minimizing the loss:

L =
1

N

∑
j

(
yj −Qw(sj , aj)

)2
Update the actor policy using the sampled policy gradient:

∇θJ ≈
1

N

∑
j

∇aQw(s, a)
∣∣
s=sj ,a=µ(sj)

∇θµθ(s)
∣∣
s=sj

Update the target networks:

w̃ = τw + (1− τ)w̃

θ̃ = τθ + (1− τ)θ̃

5This is because the learning task becomes more similar to a supervised learning problem, for which
robust solutions exist.
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3 Option Pricing and Hedging

This section explains the concepts of options and hedging. As these rely on the prices of
financial assets, some approaches to model asset prices are introduced first in Section 3.1.
The concept of an option is introduced in Section 3.2, as well as the characteristics of some
option types. Section 3.3 discusses some methods to value options. Finally, the principle of
hedging is explained in Section 3.4. As this research focuses on equity options, all parameters
in these sections are positive real numbers (defined on R+), unless stated otherwise6.

3.1 Asset Price Dynamics

Future prices of financial assets are uncertain and fluctuate over time. Their behavior can
be modelled using a stochastic process X, which is a set of random variables that are time-
dependent. Important classes of stochastic processes are Markov processes, in which the
future development of the process only depends on the current realizations and not on the
past history, i.e. [19]

P
(
Xt = xt

∣∣Xt−1 = xt−1, .., X0 = x0

)
= P

(
Xt = xt

∣∣Xt−1 = xt−1

)
. (30)

Other important classes are the Martingales, which are processes in which the expectation
of Xt given the past is equal to the most recent observation i.e.

E
[
Xt

∣∣Xt−1, .., X0

]
= Xt−1. (31)

The following subsections introduce some stochastic processes to model the dynamics of the
asset price.

3.1.1 Brownian Motion

One of the fundamental building blocks of a stochastic processes is the Brownian Motion
(BM). A BM, also called a Wiener process, is a real-valued stochastic process W with the
following properties [22]:

• W0 = 0.

• Independent increments: Wt−Ws and Wv −Wu are independent for any 0 ≤ s < t ≤
u < v.

• Stationary increments: Wt−Ws has the same distribution as Wt−s for any 0 ≤ s < t.

• Gaussian increments: Wt −Ws ∼ N(0, t− s) for any 0 ≤ s < t.

• Continuity: Wt is continuous in t.

Because of the stationary and independent increments property, the BM is a Markov process.
It is also a martingale, since

E
[
Wt

∣∣Ws

]
= E

[
Ws

∣∣Ws

]
+ E

[
Wt −Ws

∣∣Ws

]
= Ws. (32)

The BM cannot be used to describe the dynamics of a financial asset directly, as it allows
for negative values. Instead, the non-negative variation of the BM, called the Geometric
Brownian motion, is widely used.

6Note that in recent times, negative strike S and spot prices K have been observed for some commodities
and derivatives, as well as a negative interest rate r. The models described in the following sections are in
these cases still feasible, but adjustments may be required.
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3.1.2 Geometric Brownian Motion

A Geometric Brownian Motion (GBM) with drift (mean) µ and volatility σ is a stochastic
process S with intial value S0 that can be described by the following SDE [22]:

dSt = µStdt+ σStdWt, (33)

where St is the asset price at time t, µ is the drift (mean), σ is the volatility and Wt is a
Wiener process. Using stochastic calculus7, the logarithm of the asset price given an initial
value S0 can be described as

ln(St) = ln(S0) + (µ− 1

2
σ2)t+ σWt, (34)

which is normally distributed: ln(St) ∼ N
(

lnS0 + (µ − 1
2σ

2)t, σ2t
)
. This yields the closed

form solution for St:
St = S0e

(µ− 1
2σ

2)t+σWt . (35)

The future asset price only depends on the current price and random noise. Hence, the future
price is independent of the past, making the GBM a Markov Process. St is log-normally
distributed with

• E[St] = S0e
µt.

• V[St] = S2
0e

2µt(eσ
2t − 1).

St is not a martingale except for µ = 0, as E[St|Ss] 6= Ss. Classical option pricing models
assume that the price of a financial asset behaves as a GBM. However, empirical studies
show that the GBM is not suitable to model the dynamics of the price of assets adequately
[73]. This is because GBM assumes constant volatility. This is not representative of the real
market, where heteroscedastic volatility can be observed.

3.1.3 Stochastic Volatility

As the constant volatility assumption may lead to modelled prices that are not representative
of the real market, several approaches have been proposed to capture the uncertainty in the
behavior of the volatility of the asset’s price [61]. The most well-known one is the Heston
model introduced by Steven Heston in 1993 [37]. This model uses a GBM to describe the
dynamics of the price of a financial asset:

dSt = µStdt+
√
νtStdW

S
t , (36)

but the SDE involves a non-constant instantaneous variance νt. This instantaneous variance
is modelled as a mean-reverting Cox-Ingersoll-Ross (CIR) process [1] in which the variance
reverts to the long-time average θ with rate κ as defined in the following SDE:

dνt = κ(θ − νt)dt+ ε
√
νtdW

ν
t , (37)

where ε is the volatility of the instantaneous variance and dWS
t and dW ν

t are two correlated
Wiener processes with correlation coefficient ρ ∈ [−1, 1] such that

dWS
t dW

ν
t = ρdt. (38)

In continuous time, the parameters have to satisfy the so-called Feller constraint to ensure
that the instantaneous variance does not become negative [1]:

2κθ > ε2. (39)

7By applying Itô’s lemma, see Equation 80, on x = ln(S).
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Contrary to the GBM, a solution for St cannot directly be obtained, as the SDE for the
asset price depends on a second SDE. Instead, the asset price can be obtained by applying
a numerical approximation. This requires simulating discretized versions of the SDEs where
the instantaneous variance is simulated first and used to simulate the asset price. Both
paths are discretised using a discretization step size ∆t resulting in m =

⌊
T
∆t

⌋
discretization

steps. The most simple and common discretization scheme is the Euler scheme [25][54].
Applying this scheme to the variance process yields

νt+1 = νt + κ(θ − |νt|)∆t+ ε
√
|νt|dW ν

t+1, (40)

where dW ν
t+1 is the Brownian increment W ν

t+1 −W ν
t . As this increment is normally dis-

tributed with mean 0 and standard deviation
√

∆t, one can simulate the increment by
generating a standard normal random variable and multiplying it by

√
∆t. Note that this

scheme involves the absolute value of the instantaneous variance νt to avoid negative values.
It was shown in [85] that the asset price St+1 is lognormally distributed, i.e. behaves as a
GBM, conditional on the values of St and νt. Hence, the Heston process is a Markov process
and the exact solution of the conditional asset price dynamics can be used to simulate the
value of St [11]:

St+1 = Ste
(µ−0.5|νt|)∆t+

√
|νt|dWS

t+1 , (41)

where
dWS

t+1 = ρ dW ν
t+1 +

√
1− ρ2 dWt+1 (42)

and dW ν
t+1 and dWt+1 are independent. The Heston model has been extended in several

ways, such as the addition of jumps to the stock price process (stochastic volatility jump
diffusion model [5]) or a state-dependent stochastic volatility (stochastic local volatility
model [2]).

3.2 Option types

After having explained the concept of asset price modelling, this section continues with the
principles of options. Options are contracts that give the holder the right to buy (call op-
tion) or sell (put option) an underlying asset for a certain price at or before a specific date
[40]. The price of the underlying asset in the contract is called the exercise price or strike
price, denoted by K. The date in the contract is called the expiration date or maturity date.
The remaining time until the contract expires is denoted by T−t, where t = 0 is at inception
and t = T at maturity. An investor can take a long position or a short position in an option.
The former involves buying the option and the latter selling it. Options can be traded on
an exchange (exchange-traded options) or directly between two parties (over-the-counter).
The market price of an option is called the option value.

There exists many different option types. A call/put option is often referred to as a vanilla
option due to the lack of additional features. Any option with a more complicated payoff
structure or additional terms or conditions is called an exotic option. Within these option
types, a distinction can be made between European-style and American-style options. The
former class consists of options that can only be exercised at maturity, whereas the options
belonging to the latter can be exercised at any time before or at maturity. In theory, there
exists an unlimited number of possible exotic options, but in practice, there are only a few
that are often used [28]. Two of these are the digital option and the barrier option. The next
subsections describe the characteristics of these options, next to these of the plain vanilla
option. Here, the focus is on European-style call options.

3.2.1 Plain Vanilla Call Option

The European-style plain vanilla option has a single expiration date, exercise price, and no
additional features [40]. As the holder of a plain vanilla call option has the right to buy the

21



underlying asset for price K at time T , it is profitable to exercise the option if the price of
the underlying asset is above the strike price. If this is not the case, the option will not be
exercised, as it is more profitable to buy the underlying asset at the current market price.
The profit resulting from taking a position in an option is captured in the payoff function.
For the plain vanilla call option, the payoff function, denoted by h(ST ), is defined as:

h(ST ) =

{
ST −K if ST ≥ K
0 if ST < K

(43)

The corresponding payoff diagram for a call option with strike K = 100 is shown in Figure
5. The possible gain of a vanilla call option is unlimited and the possible loss is limited by
the option value as paid when entered into the contract.

Figure 5: The value (left) and delta (right) of the plain vanilla call option as a function of the
underlying asset price S, different maturities T − t and a strike price of K = 100.

The sensitivity of the option value Ct(St) with respect to the input parameters is measured
by financial measures which are known as the Greeks [45]. The most important ones are
the delta, gamma and vega, which are defined as:

• Delta: ∆t = ∂Ct(St)
∂S .

• Gamma: Γt = ∂2Ct(St)
∂S2 .

• Vega: νt = ∂Ct(St)
∂σ .

Given a certain change in the input parameter, the option price changes by this small
amount multiplied with the respective Greek. For example, if the stock price changes by
dS, the call price changes by (approximately) dS∆. As will be motivated in Section 3.4, the
remainder of these subsections will focus on the delta, which measures the sensitivity of the
option value with respect to a price change in the underlying asset.
For a vanilla call option, the delta ranges between 0 and 1. Its behaviour is shown in Figure
5. The delta is closely related to moneyness, which is defined as S

K . An option is [40]:

• In-the-money (ITM) if the option would be exercised (positive intrinsic value; S > K).

• At-the-money (ATM) if the option holder is indifferent between exercising and not
exercising the option (S = K).

• Out-the-money (OTM) if the option would not be exercised (zero intrinsic value;
S < K).

Call options that are far OTM have a delta near 0; the option value is not sensitive to
changes in the underlying asset price, as it is very unlikely that the option will end up in the
money. As the OTM option moves further away ITM, the option becomes more sensitive
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to changes in the underlying asset, and the delta value increases. The delta of an ATM call
option is close to 0.5 because there is approximately a 50% chance of the underlying asset
going up and hence ending up ITM and a 50% chance of going down and ending up OTM.
The more ITM the call option is, i.e. St is sufficiently greater than K, the more the option
behaves like the underlying asset and hence the closer the delta becomes to 1, reflecting a
one-to-one reaction to price changes in the underlying asset.

3.2.2 Digital Call Option

The digital call option is an exotic option which pays out a fixed amount of cash Q if the
underlying asset price ends above or on the option’s strike price at maturity [66]:

h(ST ) =

{
Q if ST ≥ K
Q if ST < K

(44)

As the payoff can only take two potential values, the digital call option is also called a
binary option; the digital option is basically a binary bet on the direction of the underlying
asset price. The payoff diagram of a digital call option with a payout of Q = 1 and strike
K = 100 is shown in Figure 6. It can be observed that the payoff is discontinuous in the
underlying asset price. In addition, the payoff is equal to the delta of the vanilla call option.
In other words, a digital option is an option on the delta of a vanilla call option and its delta
is equivalent to the gamma of a vanilla call option. Furthermore, the payoff of the option
remains the same once it expires ITM, irrespective of how deep ITM the option is. These
particularities are also reflected in the behaviour of the option delta.

Figure 6: The value (left) and delta (right) of the digital call option as a function of the underlying
asset price S, different maturities T − t, payout of Q = 1 and a strike price of K = 100.

The delta behaviour of the digital call option is illustrated in Figure 6. Just like for the
plain vanilla call option, the delta of an OTM digital call option moves closer to zero as
the option approaches maturity since the probability to end up ITM decreases. Contrary to
the plain vanilla call option, the delta of the digital option also moves closer to zero when
the option is (deep) ITM, rather than converging to 1. This is because once the underlying
asset price is sufficiently greater than the strike, the trader is indifferent to a further price
increase due to the fixed payoff. As the payoff function has a discontinuity point in S = K,
the derivative of the present value of this payoff with respect to the asset price (i.e. the
digital’s delta) is infinite at this point. As time passes, the delta can take high values that
change extremely fast as the asset price approaches the strike; a tiny move in the underlying
asset price has a large impact on the price of the option. This may lead to high replication
errors in discrete trading [78]. This, next to the fact that it is impossible to hold an infinite
amount of the underlying asset in practice, makes the delta-hedging not a very appealing
strategy to replicate the digital call option. In practice, the digital call option is often hedged
as a call spread, more specifically a bull spread. This spread consists of a long position in

23



a European call option with an exercise price of K − ε and a short position in a European
call option with an exercise price of K + ε. The option value and delta of this strategy are
calculated as follows:

Cspread =
C(t,K − ε)− C(t,K + ε)

2ε
, (45)

∆spread =
∆(t,K − ε)−∆(t,K + ε)

2ε
. (46)

If ε → 0, the call spread’s delta behaves as the digital call option’s delta. For ε > 0, the
delta is smoother than that of a digital call.

3.2.3 Barrier Call Option

A barrier option is an exotic, path-dependent option [40]. The payoff is the same as that
for a vanilla call, but only if the underlying asset price has reached or has not reached
some predetermined barrier (trigger-level) during the option’s lifetime. Barrier options can
be divided into knock-out and knock-in options. A knock-out option is an option that is
cancelled, i.e. becomes worthless, as soon as the barrier is reached. A knock-in option is
an option that becomes activated as soon as, i.e. is worthless until, the barrier is reached.
When initialising the option, the barrier can be set above or below the underlying asset
price, meaning that the underlying asset price has to respectively rise above or fall below
the barrier. The former is indicated by up and the latter by down. The four basic forms of
the barrier option are down-and-out (DAO), down-and-in (DAI), up-and-out (UAO) and up-
and-in (UAI). Denoting the barrier by B, the minimum and maximum asset price during
the option’s lifetime by Smin = min{S0, .., ST } and Smax = max{S0, .., ST }, the payoff
structures of these options are [83]:

h(ST )DAO =

{
ST −K if ST ≥ K and Smin > B
0 if ST < K or Smin ≤ B

(47)

h(ST )DAI =

{
ST −K if ST ≥ K and Smin ≤ B
0 if ST < K or Smin > B

(48)

h(ST )UAO =

{
ST −K if ST ≥ K and Smax < B
0 if ST < K or Smax ≥ B

(49)

h(ST )UAI =

{
ST −K if ST ≥ K and Smax ≥ B
0 if ST < K or Smax < B

(50)

Barrier options are cheaper than the corresponding plain vanilla call option because of the
higher probability of expiring worthless. The closer the barrier is set to the asset price
at initiation, the higher the probability that the barrier is knocked out (knocked in) and
thus the cheaper (more expensive) the option. This behaviour is also reflected in the in-out
parity, which states that the sum of the prices of a European-style knock-in and knock-out
barrier option with the same barrier and strike is equal to the price of the European vanilla
option with that same strike price [55]. This means that before the barrier has been reached
and prior to maturity, both knock-in and knock-out options have a positive value which is
strictly below that of the corresponding plain vanilla call option. After reaching the bar-
rier, the knock-out option is worthless (i.e. its value and delta are zero) and the knock-in
option behaves (i.e. has the same delta and value) as the plain vanilla call option. If the
plain vanilla call option has a positive payoff at maturity, either the knock-in option or the
knock-out option has the same payoff, depending on whether or not the barrier has been
reached during the lifetime of the options.

Although barrier options are attractive because of their lower price compared to vanilla
options, they are more complicated to hedge. The payoff diagram of the UAO barrier call
option with a barrier of B = 105 and strike K = 100 is shown in Figure 7. It can be
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observed that the payoff function has a discontinuity point in S = B. This leads to a delta
being very sensitive to changes in the underlying asset price around the barrier (i.e. the
discontinuity point) near maturity. Whenever the barrier has not been hit, the delta of a
DAI/UAO barrier call option can take both positive and negative values, which is visible in
Figure 7. This is because an increase in the underlying asset price has two competing effects:
it increases the probability of ending ITM, but decreases/increases the knock-in/knock-out
probability. It can also be explained by the fact that the barrier options can be decomposed
into vanilla call options and a digital call option. For example, a UAO barrier call option
can be broken down into a long vanilla call option with strike K, a short vanilla call option
with strike B, and a short digital call option with strike B. If the stock price is just below
the barrier B, the digital call option is near-the-money, which translates into a negative
delta spike. Changes from a positive to a negative delta at/before the barrier makes the
hedging of respectively the DAI and UAO option even more difficult, as it would require
an investor to take alternating long and short positions in the underlying asset. This is not
the case for the UAI/DAO barrier call option, where a change in the underlying asset price
increases both the chance of getting kicked in/out and ending up ITM/OTM. However,
these options have a higher delta before/below the barrier compared to the corresponding
vanilla call option because of their discontinuity in the payoff. This can also be explained by
decomposing the payoff of these options into vanilla call options and digital call options. For
example, a UAI barrier call option can be broken down into a long call option and digital
call option, both with strike B. If the stock price is just below the barrier B, the digital
call option is near-the-money, which translates into a positive delta spike.

Figure 7: The value (left) and delta (right) of the up-and-out (UAO) barrier call option as a
function of the underlying asset price S, different maturities T − t, barrier B = 105 and a strike
price of K = 100.

3.3 Option Pricing

The value of an option depends on several factors, such as the underlying asset price, strike
price, volatility, and remaining time to maturity. Hence, the precise value can be difficult
to establish. Different pricing models have been developed aimed at incorporating these
variables [69]. These methods use a model to describe the dynamics of the underlying asset
price and a model to calculate the option value as a function of the assumed asset price
behavior. The latter is based on risk-neutral valuation. This valuation states that under
the risk-neutral measure Q, the price of an option equals the expected value of its future
payoffs, discounted by the risk-free rate [42]:

Ct(St) = e−r(T−t)EQ
[
h(ST )

]
, (51)

where Ct(St) is the value of the call option at time t, r the risk-free rate, T −t the remaining
maturity and h(ST ) the option payoff. Calculating an option price under the real-world
(physical) probability measure P involves the likelihood of outcomes of an underlying asset
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price and risk premia to compensate investors for bearing different types of market risk,
which differ per investor. The latter is avoided in the risk-neutral valuation. The risk-
neutral measure Q is constructed based on the model of the underlying asset price in such
a way that it earns the risk-free rate in expectation. Option pricing models that are based
on this valuation can be divided into analytical methods and numerical methods. These are
described in more detail in the following subsections.

3.3.1 Analytic Methods

Analytical models aim to obtain a closed-form solution for the option value by evaluating
the expression in Equation 51. For example, the value of a plain vanilla call option with
strike K and maturity T at time t is given by [17]:

Ct(St) = e−r(T−t)
∫ ∞
−∞

max{ST −K}q(ST )dST , (52)

where q(ST ) is the risk-neutral density for the underlying asset St at T . One of the most
widely known option pricing models that solved this equation analytically is the Black-
Scholes (BS) model, introduced by Fischer Black and Myron Scholes in 1973 [40]. This
model assumes that the underlying asset behaves as a GBM. Under this model, a risk-
neutral probability measure Q is obtained by applying the following change of probability:

Wt = W̃t − κt,

where W̃t is a Brownian Motion under the new probability measure Q and κ = µ−r
σ [24].

Under this measure, the dynamics of St can be written as:

dSt = µStdt+ σStdWt

= µStdt+ σStdW̃t − σ
µ− r
σ

Stdt

= rStdt+ σStdW̃t.

(53)

Applying the properties of the GBM gives ln(St) ∼ N
(

lnS0 + (r − 1
2σ

2)t, σ2t
)
. Using this

distribution and solving the integral in Equation 52 yields the following price for a European
plain vanilla call option with maturity T , strike price K, constant risk-free interest rate r
and volatility σ:

Ct(St) = Φ(d1)St − Φ(d2)Ke−r(T−t), (54)

where Φ(·) is the cumulative distribution function of the standard normal distribution and

d1 =
ln S

K + (r + 1
2σ

2)T

σ
√
T

, (55)

d2 =
ln S

K + (r − 1
2σ

2)T

σ
√
T

= d1 − σ
√
T . (56)

A full derivation can be found in for example [30]. Based on this option price, a closed-form
solution for the Greeks can be obtained by taking the respective derivatives. For example,
the delta for a plain vanilla call under the Black-Scholes model is given by:

∆ =
∂Ct(St)

∂S
= N(d1). (57)

The option value and delta of other option types can be derived in the same spirit, by using
the obtained risk-neutral probability measure and by changing the option payoff in Equation
52.
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3.3.2 Numerical Methods

This subsection reviews some approaches to obtain the option value and corresponding
Greeks numerically.

3.3.2.1 Option Value

There are several price processes for St and payoff structures for which a closed-form solution
for the option value is difficult to obtain. For example in the Heston model, a semi-closed
form solution is derived for the plain vanilla call option and digital call option in [37] and [48],
but such a formula does not exist for the barrier option. In that case, numerical methods can
be applied to obtain an estimation of the option value. The most common ones for option
pricing are Monte Carlo methods, finite difference methods, and tree models (such as the
well-known binomial tree). The remainder of this paragraph focuses on Monte Carlo pricing.

Monte Carlo methods are a class of computational techniques that rely on repeated ran-
dom sampling to estimate the possible outcomes of an uncertain event. A numerical result,
such as the sample mean, can be obtained based on these outcomes. These algorithms are
mainly used for numerical integration and optimization. Monte Carlo pricing is based on
the former, as the determination of the option value involves an expectation (hence integral,
see Equation 52). It combines the Monte Carlo method with the risk-neutral valuation.
This technique generates N random paths St+∆t, ..., ST of the underlying asset price. This
is done according to the risk-neutral asset price dynamics using a discretization step size
of ∆t. An estimate of the option price is obtained by calculating the discounted payoff on
each path and taking the average over the paths [10]:

Ct(St) ≈
1

N
e−r(T−t)

N∑
i=1

hi(ST ). (58)

The Monte Carlo pricing approach is outlined in Algorithm 4 for the plain vanilla call option
under the Heston model.

Algorithm 4 Monte Carlo pricing for plain vanilla call under Heston model

Initialise the initial stock price S0, instantaneous variance ν0, discretization step ∆t and
the parameters κ, θ, ε, ρ of the Heston model
for each simulation n = 1, .., N do

for each discretization step t = ∆t, .., T do . Simulate a random path St+∆t, ..., ST

Zν , ZS
i.i.d.∼ N(0, 1)

ZS = ρZν +
√

1− ρ2ZS

νt = νt + κ(θ − |νt|)∆t+ ε
√
|νt|Zν

St = Ste
(µ−0.5|νt|)∆t+

√
|νt|ZS

Calculate the payoff of each path: hi(ST ) = max{SiT −K, 0}
Estimate option value: Ct(St) ≈ 1

N e
−r(T−t)∑N

i=1 h
i(ST )

The accuracy of the Monte Carlo estimator can be described by the standard error, i.e. the
standard deviation of the estimator: σCt(St)√

N
. (59)

The accuracy increases in
√
N : the accuracy can be doubled by quadrupling the number of

simulations. The latter may be computationally expensive. Fortunately, there exist meth-
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ods that increase the accuracy without increasing N . These are called variance reduction
techniques. One of them is the Antithetic Variable Technique [46]. Simulating the under-
lying asset prices S1

t , S
2
t , .., S

N
t at a discretized time step t requires generating the random

variables W1,W2, ...,WN . The Antithetic Variable Technique also takes the antitheses of
these variables, resulting in the sequence −W1,−W2, ...,−WN and prices S1−

t , S2−
t , .., SN−t .

In this way, each number is used twice, hence increasing efficiency. Compared to doubling
the number of simulations, the Antithetic Variable Technique also leads to an increase in

precision. Applying this technique results in a standard error being ≤ Ct(St)√
2N

, which is less

than or in the worst case equal to the standard error if the number of simulations would
have been doubled. The gain in precision is due to the fact that the covariance of simulated
values is often negative, resulting in a lower variance of the estimator [46].8

3.3.2.2 Greeks

If a closed-form solution does not exist for the option value, a numerical differentiation is
required to compute the Greeks. A natural approach to this numerical problem is to use
the Monte Carlo finite difference method as approximation of the derivative [33]. In case of
the delta, i.e. the first order derivative of the option value with respect to the underlying
asset’s price, the Monte Carlo estimator can be calculated using forward finite difference

∆ ≈ Ct(St + ε)− Ct(St)
ε

, (60)

for some small ε > 0, or by central finite difference

∆ ≈ Ct(St + ε)− Ct(St − ε)
2ε

. (61)

Here, Ct(St), Ct(St + ε) and Ct(St + ε) are determined using Monte Carlo pricing. With

forward difference, the best possible convergence rate is M−
1
4 . Central difference leads to a

rate of M−
1
3 , and M−

1
2 if the same random numbers are used for both Monte Carlo estima-

tors. The latter is the best possible rate that can be achieved for a Monte Carlo method [31].

An important drawback of the finite difference method is that it may perform very poorly
when there is a discontinuity in the payoff function, as is the case for e.g. a barrier option
and digital option [26]. For these options, it has been shown that the use of stochastic
calculus of variations, also known as the Malliavin calculus, resulted in a lower variance and
faster convergence and hence outperformed the finite difference method [7][26]. A reason
for this is the slow mean square convergence of Ct(St + ε) to Ct(St) in the finite difference
method, which is linear in ε for discontinuous payoff functions. Secondly, the Malliavin
technique uses a smoothened payoff and circumvents in this way the computation of deriva-
tives. However, for options with a continuous payoff function, the finite difference method
outperformed the Malliavin simulation, as their mean-square convergence of Ct(St + ε) to
Ct(St) is quadratic in ε [7].

The Malliavin technique performs an integration by parts formula and obtains a weight
function π which is independent of the payoff function. In this way, the Greeks can be
expressed numerically as [88]

∂Ct(St)

∂α
≈ e−r(T−t)EQ

[
h(St)π

]
, (62)

where α is the corresponding input parameter. The Malliavin weight differs per Greek and
option model. For example, Fournié [26] showed that under the Black-Scholes model, the

8V(X1 +X2 + ..+Xn) =
∑n
i=1 V(Xi) +

∑n
j=1

∑n
k=1 Cov(Xj , Xk).
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Malliavin weight of Delta is ∆MV = WT

S0σT
and that the delta can be computed by

∆BS ≈ e−r(T−t)EQ
[
h(ST )

∫ T

t

1

SuσT
dWu

]
= e−r(T−t)EQ

[
h(St)

WT

StσT

]
. (63)

As described in [79], the delta under the Heston model using Malliavin calculus is given by

∆Heston ≈ e−r(T−t)EQ
[
h(St)

∫ T

t

1

SuT
√

1− ρ2
√
νu
dWu

]
. (64)

3.4 Hedging

As previously described, the option value changes as the values of its input parameters
change. Hedging aims to offset these changes and hence reduce the associated risk. The
hedging strategy consists of the construction of a replicating portfolio that has the same
cash flows (static replication) or the same Greeks (dynamic replication) as the to be hedged
derivative. Every derivative can be replicated perfectly if the market is complete, i.e. if [40]

• There are no transaction costs, i.e. there is no difference between the sell and buy
price and there are no additional costs.

• Long and short positions are allowed for all assets.

• Fractional holdings are allowed for all assets.

• The market is completely liquid, i.e. it is possible to buy/sell unlimited amounts on
the market.

This section describes the hedging strategy under the Black-Scholes model and the Heston
model.

3.4.1 Black-Scholes model

In the Black-Scholes model [9], there is just one source of risk, i.e. the dynamics of the risky
asset, driving the randomness in the market. In this model, any derivative can be replicated
(the market is complete) with two primary assets: a risky asset (the option’s underlying
asset) and a riskless asset (such as a bond or a saving account). It is assumed that the risky
asset behaves as a GBM, following the SDE as described in Equation 33. The dynamics of
the riskless asset are described by the ordinary differential equation (ODE):

dBt = rBtdt, (65)

where r is the interest rate. By convention, B0 = 1 such that Bt = ert and the relative
profit is constant (r). In this market, a trading strategy is the construction of a portfolio
(Xt, Yt) consisting of Xt ∈ R units of the option’s underlying asset and Yt ∈ R units of the
riskless asset. Xt and Yt can be positive (long position) or negative (short position) [24].
They are adapted processes, called Ft measurable. This means that at time t, they only
depend on the information available before time t. At time t, the value of the portfolio is
denoted by Vt:

Vt = XtSt + YtBt. (66)

The value of the portfolio over an infinitesimal time interval changes by:

dVt = Vt+1 − Vt = dXt+1St + dYt+1Bt +Xt+1dSt + Yt+1dBt, (67)

where dXt+1 = Xt+1 − Xt and dYt+1 = Yt+1 − Yt. The portfolio is self-financing if the
construction at time zero is financed by the sale of the option and if there is no further cash
flowing in or out the strategy. For example, if an investor buys an additional amount of
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Xt+1 − Xt shares of the risky asset at time t, costing (Xt+1 − Xt)St, the position in the
riskless asset changes by [44]

(Yt+1 − Yt)Bt = −(Xt+1 −Xt)St. (68)

In other words:
dXt+1St + dYt+1Bt = 0, (69)

such that
dVt = Xt+1dSt + Yt+1dBt. (70)

To hedge an option, the payoff of the trading strategy should be exactly equal to the payoff
of the option:

VT = XTST + YTBT = h(ST ). (71)

The portfolio that satisfies this condition is called a hedging strategy. To find the corre-
sponding portfolio (Xt, Yt), it is convenient to work with martingales. As described in
Section 3.1.2, St is not a martingale under the P-measure. The discounted asset price is
a martingale under both the P and Q-measure, when discounted by the correct discount
factor. As previously described, the former involves the incorporation of risk premia which
differ per investor. Hence, the Q-measure is often used and considered in the remainder of
this subsection.
Define the discounted value of the risky asset and the portfolio by respectively S̃t = e−rtSt
and Ṽt = e−rtVt. The dynamics of the discounted portfolio can be described as follows:

dṼt = d(e−rt)Vt + e−rtdVt

= −re−rtVtdt+ e−rt(YtdBt +XtdSt)

= −re−rt(YtBt +XtSt)dt+ e−rt(YtrBtdt+XtdSt)

= Xt(−re−rtStdt+ e−rtdSt)

= XtdS̃t.

(72)

Hence, the discounted value of the self-financing portfolio at time t can be written as

Ṽt = Ṽ0 +

∫ t

0

XudS̃u = V0 +

∫ t

0

XudS̃u. (73)

The self-financing hedging portfolio can be determined by 1) finding a Q measure under
which the discounted asset price S̃t is a martingale and 2) finding a process Xt that satisfies
the equation [24]

VT = V0 +

∫ T

0

XudS̃u = h(ST ). (74)

The position in the riskless asset Yt can then be determined using the relationship described
in Equation 66.

A unique hedging portfolio exists in the Black-Scholes framework. Based on the dynamics
of St under the Q-measure presented in Equation 53, the dynamics of the discounted value
of the underlying asset under this measure are described by the following SDE:

dS̃t = d(e−rt)St + e−rtdSt

= −re−rtStdt+ e−rt(rStdt+ σStdW̃t)

= e−rtStσdW̃t

= σS̃tdW̃t.

(75)
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As this SDE does not have a drift term (there is no dt-term), S̃t is a martingale under Q.
Using this expression, the value of discounted value of Ṽt in Equation 73 can be written as

Ṽt = V0 +

∫ t

0

XudS̃u = V0 +

∫ t

0

XuσS̃udW̃u. (76)

As this is an integral with respect to a Brownian motion, the discounted value of a self-
financing portfolio is also martingale [19]. Combining this property with the fact that
VT = h(ST ) gives

Ṽt = EQ
[
VT e

−rT
∣∣∣Ft] = EQ

[
h(ST )e−rT

∣∣∣FT ] (77)

and
V0 = EQ

[
h(ST )e−rT

]
. (78)

This means that the value of the self-financing portfolio at initiation is equal to the condi-
tional expectation of the discounted terminal value under Q with respect to the information
at time t [24]. The value of the hedging portfolio can be written as a function of t and St in
the form H(t, St) and Itô’s lemma can be used to derive the unique hedging portfolio. This
lemma states that the dynamics of process Xt that satisfies the SDE [19]

dXt = µtdt+ σtdWt (79)

can be approximated by:

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
dx2 + .. (80)

Applying this lemma to the self-financing portfolio gives

dVt =
∂H

∂t
(t, St)dt+

∂H

∂S
(t, St)dS +

1

2

∂2H

∂S2
(t, St)(dS)2

=
∂H

∂t
(t, St)dt+

∂H

∂S
(t, St)(rStdt+ σStdW̃

)
t +

1

2

∂2H

∂S2
(t, St)σ

2S2
t dt,

(81)

and for the discounted portfolio value

dṼt = −re−rtVtdt+ e−rtdVt

= e−rt
(∂H
∂t

(t, St) + rSt
∂H

∂S
(t, St) +

1

2
σ2 ∂

2H

∂S2
(t, St)− rH

)
dt+ e−rtσSt

∂H

∂S
(t, St)dW̃t.

(82)

As Ṽt is a martingale, the drift term is equal to 0, i.e.

∂H

∂t
(t, St) + rSt

∂H

∂S
(t, St) +

1

2
σ2 ∂

2H

∂S2
(t, St)− rH = 0 (83)

resulting in

dṼt = e−rtσSt
∂H

∂S
dW̃t = σS̃t

∂H

∂S
dW̃t (84)

or in the integrated form

Ṽt = V0 +

∫ t

0

∂H

∂S
σS̃udW̃u. (85)

Combining Equation 76 and 85 yields

Xt =
∂H

∂S
(t, St). (86)

In the case of the plain vanilla call option, H = C and the number of shares of the risky
asset is equal to the ∆:

Xt =
∂H

∂S
(t, St) =

∂C

∂S
(t, St) = N(d1). (87)

This means that in the Black-Scholes model, the delta at time t is the number of shares
required to replicate a vanilla call option at that time.
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3.4.2 Heston Model

In the Heston model, there are two sources of risk driving the randomness in the market
due to stochastic volatility. As volatility is not a tradeable asset, the market described by
this model is not complete: an option cannot be replicated with the assets available in this
market [3]. The market can become complete by adding a volatility-dependent asset, such
as a European option. The self-financing hedging portfolio corresponding to such a market
can be derived in the same spirit of the replication approach applied in the Black-Scholes
model. One of such derivations is given in [15]. This derivation is more complicated, as it
contains an additional asset, and is not included in this thesis.
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4 Prior Works on Reinforcement Learning for Option
Hedging

The idea to optimize financial objective functions via reinforcement learning (RL) was al-
ready proposed in 1998 by Moody et al. [57]. The first attempts to apply RL to hedge
options modelled the problem with a discrete state space and action space. Among these,
Watts introduced a basis risk hedging strategy using R in 2015L. It used the SARSA algo-
rithm9 to find an optimal strategy for hedging a non-traded asset. The hedging objective
was to maximize the utility of the terminal payoff of the hedging strategy, called the cash
flow formulation. This approach used an exponential objective (utility) function with a risk
tolerance value to capture the variance of the hedging costs
Q-learning was applied to the hedging problem in 2017 by Halperin [36]. This research
assumed that the complete market assumptions held, neglected transaction costs, and as-
sumed that the agent had an exponential utility. The accounting approach was applied,
which evaluates the hedging strategy at each point in time.

A continuous state space was addressed by Ritter and Kolm in 2018 [65]. They consid-
ered a discrete action space, quadratic transaction costs, accounting formulation and used
the SARSA algorithm to train the agent. They assumed that the agent had a quadratic
utility: their objective function was equal to the mean hedging cost plus a constant times
the variance of the hedging cost10.

The allowance for a continuous action space was proposed by Buehler et al. in 2019 [13].
They used the deep Q-learning algorithm. Contrary to the previous approaches, which con-
sidered the Black-Scholes (BS) model and hence assumed that the stock price behaved as
a Geometric Brownian Motion (GBM), they assumed that the market was driven by the
Heston model. In addition, trading was allowed in both stock and a variance swap11 and
the hedging strategy was only valued at maturity using the cash flow approach. Several
risk measures were considered and embedded in a neural network environment. Their work
was extended in 2019 [12]. Here, they presented an approach to calculating the price and
optimal hedging strategies for portfolios of derivatives. They tried different neural network
architectures and considered both a market driven by the Heston model and the Black-
Scholes model in the presence of trading costs and liquidity constraints. The Conditional
Value at Risk (CVaR) coherent risk measure12 was used as the objective function.
In the same year, Cao et al. [14] proposed another objective function. To better estimate
the variance of the hedging costs, they considered two Q-functions, one for the first moment
(mean) of the costs and another for the second moment (variance). Their research assumed
that the volatility of the underlying asset price was stochastic and the transaction costs
proportional. They applied the Deep Deterministic Policy Gradient (DDPG) algorithm,
formulated two ways to define the hedger’s problem, and considered both the accounting
formulation and cash flow formulation, as well as a hybrid form.
A different actor-critic algorithm was applied by Vittori et al. in 2020 [80]: the Trust
Region Volatility Optimization (TRVO)13 algorithm. Using this algorithm, the variance
of the hedging costs was automatically bounded, as the algorithm’s constraint guaranteed
improvement in a risk-averse manner. They considered quadratic transaction costs and the

9In contrast to Q-learning[82], which only selects the action at and estimates the largest value of
Q(st+1, at+1) to update Q(st, at), SARSA selects two actions at and at+1 and uses Q(st+1, at+1) to update
Q(st, at).

10This objective is a mean-variance optimization problem with a risk aversion parameter.
11An over-the-counter derivative that exchanges payments related to future realized price variance against

fixed rates.
12A risk measure, also called the expected shortfall, that quantifies the average value of a loss in an

investment if the loss exceeds a given confidence level.
13A risk-averse variant of the TRPO actor-critic algorithm that is similar to DDPG, but aims to maximize

a specific objective function subject to a constraint on the difference between the old and new policies.
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Black-Scholes model, and applied the accounting formulation.

In summary, the application of RL to option hedging is quite novel. Although the im-
plementation of the hedging problem is not identical for the aforementioned papers, these
studies had a similar goal, setting, and overall conclusions. Among these studies, a transition
is visible from the modelling of the hedging problem using discrete state and action space
towards continuous ones (in line with the timeline of RL). In addition, the RL algorithms
have become more sophisticated. Starting with constant volatility in the Black-Scholes
model, more papers considered stochastic volatility. In addition, the transaction costs were
initially excluded and later modelled in a proportional or quadratic way. All papers included
the variance, i.e. risk, of the hedging costs using one of the following different measures:
CVAR, an exponential, or a quadratic utility function. Most studies considered one single
vanilla call option, except [12] which extended the range of hedging instruments available in
the market and aimed at hedging a portfolio of options. All papers showed that RL could
effectively be used for the defined option hedging problem.
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5 Methodology

In this research, the goal of the reinforcement learning (RL) agent is to replicate an option
with certain characteristics and a stock as the underlying asset. The options chosen and
assumptions made regarding these options are described in Section 5.1. To recast the option
hedging problem as an RL problem, the framework is embedded in a Markov Decision
Process (MDP). Recall the representation of the agent-environment interaction in the RL
setting: at each time step, the agent receives a state from the environment st, takes an
action at that is applied to the environment, and receives a reward rt plus a new state st+1

from the environment. In the option hedging problem, the action is the position to take in
the underlying asset. To be able to take this action, the agent must know the current stock
price, the time left until the option expires, and its previous position in the stock. These
variables are captured in the state. The reward represents how well the hedging portfolio
replicates the option and includes possible transaction costs. The exact determination of
the environment is described in Section 5.2. Section 5.3 describes the RL algorithm chosen
to learn the option hedging problem. Finally, the approach to evaluating the performance
of the RL agent is described in Section 5.4. The implementation of these approaches is
presented in Chapter 6.

5.1 Options

As options, the plain vanilla, digital and barrier call option are chosen to be trained on.
The latter two are chosen due to their discontinuity in the payoff, which makes the hedging
more complicated compared to the former, see Section 3.2.2 and 3.2.3.
As in [65], the options have a maturity of 10 trading days (T = 10) with 5 periods per day
(D = 5). The latter means that the state transitions are defined in discrete steps, reflecting
realistic trading. As a result, an episode consists of 51 (T ×D +1 at expiration) time steps.
The episode ends when the option expires; the environment is then reset.
The options are initialised at-the-money (ATM), as these are the most interesting. ATM
plain vanilla and digital call options can get in-the-money (ITM) or out-of-the-money (OTM)
in a short period of time if the stock price moves up or down. For an ATM barrier call option,
the trigger level has not been hit yet, but can be reached during the option’s lifetime.
For simplicity, it is assumed that the to be hedged options cannot be traded, i.e. are held
until maturity. As the contract size of most stock option contracts is standardized at 100
shares, it is assumed that the agent should hedge one single call option that represents an
option to buy 100 shares of the underlying stock.
As in earlier studies, except [13] and [12], the agent must hedge the option by only taking
positions in the underlying asset and a riskless asset. Hence, the agent cannot hedge any
volatility exposure and the hedging problem comes down to delta hedging.
To calculate the rewards and to compare the agent’s performance with that of a delta hedging
strategy, the value and the delta of the to be hedged option are calculated at each time step.
As the stock price is simulated according to the Heston model, as will be motivated in
Section 5.2.3, a closed-form solution is not available for all the option types. Hence, the
option value and delta are determined using Monte Carlo pricing.

5.2 Environment

To define the environment and recast the option hedging problem as an RL problem, the
problem is embedded in a Markov Decision Process (MDP), defined as the tuple (S,A, T ,R, γ)
as explained in Section 2.1. The following subsections cover the implementation of each of
these variables.
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5.2.1 State S

As described in Section 2.1, the state should contain all information that is important for the
agent to make a decision. As this research uses an RL algorithm that uses neural networks,
the state is scaled since feature scaling improves the convergence of such algorithm [23].
The following variables are chosen as state components and scaled in the following way:

1. The stock price St. This variable is required to determine the expected payoff of the
option, where the option value and hence appropriate action depend on. The stock
price St depends on the initial stock price S0. To adjust for this dependency, the
logarithmic return with respect to the initial stock price is calculated: log( StS0

). This
is a commonly used normalization technique applied in finance and represents the
percentage change in price [39]. Furthermore, the change in the stock price depends
on the time interval between two trading points. It is known that the variance of
price changes increases as time increases. If the stock price is modelled as a GBM like
in the Black-Scholes model, see Section 3.1.2, the logarithmic returns are normally
distributed and their variance increase with the square root of time. This is also
known as the square root of time rule. In that case, the scaled state component
log( StS0

)/(σ
√

∆t) adjusts for the time interval length. As the stock prices are simulated

according to the Heston model, log( StS0
)/
√
νt∆t yields an approximate scaling, as the

distribution of logarithmic returns is normal only for small returns under this model,
see Section 3.1.3 and [21]. 14

2. The time to maturity T − t. Since the hedging problem has a finite horizon, the
remaining time until the option expires is required to be able to take an appropriate
action. This value impacts the option value, hence the appropriate hedging portfolio,
as well as the number of subsequent steps for which the agent should maximize the
expected reward. The time to maturity is scaled between 0 and 1, where the value 1
is at initiation (t = 0) and 0 is at expiration (t = T ).

3. The previous position in the underlying asset at−1. This variable is required to de-
termine the amount of the underlying asset bought or sold at time t. This amount is
defined as the difference between at and at−1 and important to take into account when
taking an action in the presence of transaction costs, as this yields a negative reward.
The previous position is divided by the contract size such that the value is represented
per one underlying share and between the option’s minimum and maximum action,
see section 5.2.2.

In other words, the state can be denoted by st = (log( StS0
)/
√
νt∆t, at−1, T − t). In this way,

the state transitions only depend on the current state and not on any previous actions or
states, hence satisfying the Markov property.
Note that the state does not need to contain the option delta or option parameters such as the
strike, as the agent should infer these from the state variables and the reward provided by the
environment. When training on different option types simultaneously, it is necessary to add
an option-specific feature. The agent would otherwise not be able to infer what option type
it should hedge. In this setting, the intrinsic value is added as a state variable. This value
represents the value of the option if it would be exercised now. The intrinsic value is scaled
in the same spirit of the stock price scaling: the logarithmic return of this value is calculated
with respect to the strike price and adjusted for the fact that the logarithm of zero (if the
intrinsic value is zero) is undefined. The square root of time rule is applied to adjust for the
time interval length. This gives the scaled intrinsic value: log(K+ intrinsic payoff

K )/
√
νt∆t.

14Note that a min-max scaling could have been applied as well, but this would require the computation
of a time-dependent mean and variance prior to the training or the computation of a running average and
variance throughout an episode and through training. Next to the fact that this is more computationally
expensive, this scaling would be less generic, as it is parameter-specific and might not hold when e.g. the
initial stock price changes.

36



5.2.2 Action A

The action represents the position to take in the underlying asset. This action is represented
per one underlying share. The action space is continuous: the underlying can be bought
and sold in any fractions (at ∈ [amin, amax]). To define the action space, the minimum and
maximum action are determined for each of the option types. In the Black-Scholes model,
the optimal action in a given state should be equal to the option’s delta, see Section 3.4.1.
In discrete time, the presence of transaction costs and/or under the Heston model, a pure
delta hedge strategy might not be optimal. However, a similar tracking is to be expected
in this research since the hedging task comes down to delta hedging. Hence, the action
boundaries are determined based on the delta distribution of the options. As discussed in
Section 3.2, the delta of a plain vanilla call is always between 0 and 1, but might take more
extreme values in the case of a digital or barrier call option. However, a larger action space
requires longer exploration and hardens the training. Also from a risk perspective, it might
be better to bound the minimum and maximum action to avoid large positions and hence
to limit the risk. Therefore, extreme possible values that rarely occur are discarded for
the digital and barrier call option. This is done by extracting the deltas at each time step
for 10,000 episodes and taking the 1st or 99th percentile as respectively the minimum or
maximum action value.

5.2.3 Transition Function T

The full state vector is part of the transition from state st to state st+1 when taking action
at. In this research, the remaining time to maturity T − t and previous position at−1 are
deterministic. The time between two trading points (∆t) is chosen to be fixed and the
action taken at time t (at) flows directly in the new state that the agent will observe as
at−1. The stochastic transition factor is the newly observed (scaled) stock price St. The
stock price transition can be modelled implicitly by providing samples from the transition
distributions. For this, real historical stock price data or simulated data can be used. As
the RL agent needs to see a large amount of data to learn, the former approach is less
suitable. It requires either market data up to several years ago or the use of overlapping
windows to divide the time series in trajectories. The former may not be representative of
the current market and introduce high variability, and the latter may introduce correlation
and the chance of overfitting 15. Hence, the RL agent is trained on simulated data in this
research. This approach can produce an infinite amount of data and avoids overfitting due
to its stochastic nature. To simulate the stock prices, it is assumed that the market follows
the Heston dynamics; the stock price is simulated according to Equation 40, 41 and 42.

5.2.4 Reward Function R

With continuous trading and in the absence of market frictions such as transaction costs,
it is possible to set up a dynamic hedge portfolio that replicates the option perfectly at
each point in time. In that case, there is no risk involved as the portfolio value Π, i.e. the
option value minus the offsetting hedge value, is always zero and thus has no variance. The
more realistic setting of discrete trading introduces a hedging error, as portfolio rebalancing
takes place at discrete times while asset prices move in continuous time [60]. Most investors
proved to have a risk aversion, meaning that they want to reduce the amount of risk they
take for a level of return [18]. Hence, the hedging objective should not solely aim at finding
the strategy that maximizes the expected rewards, but it should also take the risks arising
from the hedging strategy into account. The investor’s attitude towards risk is subjective
and can be hardly justified by economic reasoning.16 The degree of risk aversion can be

15When a model tries to predict a trend in a training data set that is too noisy, the model corresponds
too closely to the training data set but has a poor fit with new data set.

16The regulatory authority cannot change the investors’ risk aversion degree, but it can control it. To
protect financial institutions, their investors, clients, and the economy as a whole, regulators control the
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captured in a utility function. Here, the investor seeks to maximize the expected utility of
the final wealth E[u(wT )], where wT is the final wealth including the trading costs and u
the investor’s utility function. Ritter argued that this optimization problem can be hard to
solve for some nonlinear utility functions, but that the optimal policy π17 is also optimal
for the simpler mean-variance optimization problem [64]:

max
π

E[wT ]− κ

2
V[wT ]. (88)

Here, κ denotes the risk-aversion parameter18. Cao et al. [14] defined two alternative
formulations to represent the final wealth: the accounting formulation and the cash flow
formulation [14]. Both approaches are implemented as described in the following two para-
graphs.

5.2.4.1 Accounting Formulation

In the accounting formulation, the hedged position is valued at each time step. Here, the
final wealth is decomposed as a sum of period-by-period hedging costs which are provided to
the RL agent at each time step in the form of a reward. This gradual feedback incorporates
domain knowledge (i.e. a pricing model) and eases the learning of the hedging problem.
Hence, this formulation can be seen as reward shaping. This approach reflects real trading;
calculating the option price and delta is often standard and already implemented in the
trading environment. An investor would likely rebalance its portfolio on e.g. a daily basis
and evaluate his performance frequently, not only when the option expires.

According to the accounting formulation [14], the profit or loss (PnL) of hedging from time
t− 1 to t is defined as the change in the portfolio value Πt −Πt−1 plus the trading costs ct
resulting from the portfolio rebalancing:

PnLt = Πt −Πt−1 − ct. (89)

Denoting the option value by Ct(St) and the value of the hedging strategy by Ht, Πt can
be written as:

Πt = Ct(St)−Ht. (90)

It is assumed that the hedging strategy is self-financing, see Equation 73, such that the
hedge value at time t is equal to:

Ht =
∑t−1
k=0 ak(Sk+1 − Sk) = Ht−1 + at−1(St − St−1), 0 < t ≤ T,

H0 = C0(S0)
(91)

where at is the position in the stock at time t. The transaction costs are defined in the same
way as proposed in [65]:

ct = Ticksize×
(
|at − at−1|+ 0.01(at − at−1)2

)
, 0 < t < T,

c0 = Ticksize×
(
|a0|+ 0.01(a0)2

)
.

(92)

Here, at − at−1 represents the amount of the underlying that is bought or sold at time
t and the tick size is the smallest amount that the price of a financial instrument can

capital requirements, i.e. the capital that financial institutions need to maintain solvent. The required
capital is expressed as a percentage of the institutions’ risk-weighted assets, which makes it unattractive to
take very high risk. Investors with a lower risk aversion could still be willing to take on risk, but the cost of
the associated capital is such that it is not worth it.

17The optimal sequence of positions taken in the underlying asset.
18The risk aversion parameter is positive for risk-averse investors (additional risk reduces the utility), 0

for risk-neutral investors (a change in risk does not affect the utility) and negative for risk-seeking investors
(additional risk increases the utility).
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move. The cost function is convex: the transaction costs do not grow proportionally to the
number of traded shares. By expressing the final wealth as a sum of individual profit or
losses resulting from hedging and assuming that these are independent, the mean-variance
optimization problem can be rewritten as a sum:

max
π

T∑
t=0

(
E[PnLt]−

κ

2
V[PnLt]

)
. (93)

To transition the mean-variance problem into a reinforcement learning problem, the follow-
ing approximate reward function proposed by [65] is used:

Rt ≈ PnLt −
κ

2

(
PnLt

)2
. (94)

Maximizing the sum of the expected rewards using this function approximates the mean-
variance problem in Equation 88 and is the same as maximizing the discounted expected
return in the general RL setting presented in Equation 4 with γ = 1. This reward function
has a quadratic shape and the maximum is obtained at PnLt = 1

κ , since ∂
∂PnLt

Rt = 1 −
κPnLt. As the hedge portfolio should replicate the option as good as possible, a portfolio
change of zero is optimal. Hence, the maximum reward should be obtained at this point.
To correct for this, the PnLs are shifted in this research:

PnLt = PnLt +
1

κ
(95)

such that ∂
∂PnLt

Rt = −κPnLt and the maximum is attained at PnLt = 0. This adjustment
shifts the reward function, but does not impact its quadratic shape nor the hedging objective.
Furthermore, the absolute value and the standard deviation of the portfolio, and hence of the
PnLs which flow into the rewards, increase over time (within an episode). With a discount
factor close to 1, large negative rewards are accumulated, making the learning difficult. To
ease the learning, the PnLs are scaled on a per time step basis. As the PnL is defined on
t−1 to t, its standard deviation is approximated by the standard deviation of the stock price
over this time interval.19 Under the Heston model, St conditioned on St−1 and νt−1 behaves
as a GBM, see Section 3.1.3. Using the variance of this distribution yields the scaled value

PnLt
/√

S2
t−1e

2r∆t(eνt−1∆t − 1) with r the risk-free rate and ∆t the time interval between

two trading points.

5.2.4.2 Cash Flow Formulation

In the cash flow formulation, only the cash inflows and outflows resulting from trading in
the underlying stock and a potential final cash flow if the option is exercised at maturity are
used. The final wealth wT can thus be defined as the option value minus the hedge value
at maturity plus the total cost of trading in the underlying stock up to maturity:

wT = CT (ST )−HT −
T−1∑
t=0

ct, (96)

where CT (ST ) is the payoff of the option at maturity, HT the value of the hedge portfolio at
maturity and ct the transaction costs at time t as defined in respectively Equation 90 and

19Normalizing based on the entire history of the PnLs would yield an on an average good result, but
does not take the time dependency into account. Hence, an approximate, time-varying scaling based on
the distribution of the portfolio is applied. The variance of the portfolio Π consists of the variance of the
option, the variance of the hedge, and the covariance between the two. The latter is difficult to determine
analytically but can be computed empirically. This involves the computation of a running average, which
is computationally expensive. Instead, an approximate scaling is applied based on the variance of the
underlying stock, on which both the variance of the option and the hedge value depend. This scaling takes
the time-dependency into account.
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92. In this way, the mean-variance problem as defined in Equation 88 can directly be used
as a reward function. The final wealth is again shifted by 1

κ to ensure that the maximum is
attained at wT = 0. The wealth is scaled in a similar way as in the accounting formulation.
The cash flow formulation does not require any domain knowledge and may avoid biases
introduced by such. However, the resulting sparse rewards may harden the learning of the
hedging problem.

5.2.5 Discount factor γ

To train the RL agent, a discount factor of 0 was initially used. As the agent’s goal is to
maximize the sum of expected future rewards, the discount factor was then increased to take
future rewards into account. A higher discount factor better reflects the real-world setting,
but also leads to the propagation of errors and instabilities during training. As proposed
in [27], the discount factor was increased through learning as an attempt to reduce these
instabilities. Starting with an initial discount factor of γ0 = 0.9, the increased discount
factor is calculated using the inverse time decay schedule according to:

γ = 1− 0.1

1 + decay rate× step
decay step

, (97)

where the step is the current training step (iteration) and the decay step is the number of
training steps after which a full decay rate is applied. As this procedure requires longer
training, a trade-off was considered between the performance of the policy, and the stability
and speed of the learning process. Here, the goal was to find a discount factor that is close
to one, but which does not hurt the hedging performance too much. To achieve this, a
validation step was performed every 200 iterations. This step compared the performance of
the policy under the current γ with the policy under the previous best γ. The average return
and standard deviation of both policies were calculated based on 350 simulated episodes.20

The best policy was then chosen based on the following approximated one-sided t-test: if
the agent’s average performance was worse than the previous best average performance with
95% confidence, i.e. if

zscore =
µcurrent return − µprevious best return

σcurrent return
≤ −1.96, (98)

the best agent was not updated.

5.3 Reinforcement Learning Algorithm

The critical RL aspect left is the algorithm to train the agent. An actor-critic algorithm is
appropriate, as it allows for the continuous state space involved in this option hedging prob-
lem. Within this class, the Deep Deterministic Policy Gradient (DDPG) algorithm is chosen,
because it can also handle the hedging problem’s continuous action space. As described in
Section 2.2.3.1, this algorithm uses neural networks as function approximators. The model
parameters of this algorithm are updated based on mini-batches which are sampled from
the replay buffer and by applying gradient descent. Several gradient descent variants exist.
Initializing the algorithm requires the choice of this optimization technique algorithm, the
design of the neural networks, and the determination of several hyperparameters, such as
the learning rate and exploration rate. These settings are described in Section 6.3.

5.4 Evaluation

This section describes the approach to evaluating the performance of the RL agent, i.e. to
measure the agent by how well it does at the hedging task. As the option hedging problem

20Taking the standard error into account, this number seemed to be an appropriate representation of the
population and at the same time not too computationally expensive.
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comes down to delta hedging in this research, the performance of the RL agent is compared
with a pure delta hedge strategy. This strategy takes the delta of the option as the position
in the underlying stock at each point in time to replicate the option. This strategy is chosen
as a benchmark, as it is more realistic and suitable compared to a random acting reinforce-
ment learning agent. After training the agent, 10,000 stock price paths are simulated and
the profit and losses (PnLs) of both strategies are tracked on these paths. These paths
are almost surely out-of-sample due to the random seeds and associated stochasticity used
in the training. The distribution of the PnLs over time and the terminal portfolio value,
i.e. accumulated PnL within an episode, of the strategies are compared. The two-sample
Kolmogorov-Smirnov test is used to test whether the distributions come from the same
distribution. This test is nonparametric, i.e. does not assume that the data are sampled
from a prescribed distribution, and compares the cumulative distributions of two data sets
[8]. To test if the sample means and the average standard deviation within an episode of
both strategies are significantly different or if one is significantly lower/higher, a two-sample
t-test is performed. This test assumes normality for small samples but is also valid for
large samples from non-normal distributions [8]. Since the PnL values of both strategies are
tracked on the same stock price paths, the samples are dependent and a paired two-sample
t-test is performed. The tests are conducted for each of the option types separately.

For each option type, a separate RL agent is trained in an environment with and with-
out transaction costs. The hedging performance of the RL agent compared to that of a
delta hedge is analysed in these two environments and also compared between the two dif-
ferent settings. To test the generalizability of the RL agent, its performance is evaluated on
similar options with a modified strike price, initial stock price, initial instantaneous variance,
or initial barrier level compared to the option on which the agent had been trained. Here,
the RL agent is not retrained. As the option price at inception differs for an option with a
modified characteristic, so does its PnLs. To adjust for this, the results are analysed based
on the ratio of the RL agent’s performance to delta hedge performance, rather than com-
paring the absolute differences. Furthermore, to determine whether a single RL agent can
be used to hedge different option types, a separate RL agent is trained on different option
types simultaneously by adding the scaled intrinsic value as state component as described
in Section 5.2.1. As the inclusion of different option types makes the hedging problem more
complex, it is decided to add the digital call option and the UAI barrier call option, instead
of all the barrier option types. As the UAI behaves as a vanilla call option once the barrier
has been hit, the agent sees the vanilla call feature more often. To adjust for this, the
training environments are divided over the options using a ratio of 1:2:2 for the digital call,
plain vanilla, and UAI barrier call option respectively. This means that the RL agent sees
the digital call option twice as much compared to the other two option types. Finally, the
possible impact of design choices related to the neural network on the performance of the RL
agent is investigated. For this, the RL agent is trained and evaluated on a grid of different
values of the following hyperparameters/functions: the random seed when initializing the
neural networks, the learning rate for the actor/critic network, the discount factor, and the
optimization algorithm to update the model parameters.

Next to comparing the performance of the RL agent with that of delta hedging, the value
function is plotted for a simulated episode to visualise the performance of the agent. For
this, the state is observed at each time step within the episode. Given this state, the critic’s
estimate of the value function is extracted for a range of actions, as well as the actor’s se-
lected action. The value function is then visually shown using a contour plot, which shows
for each time step how the state-action value changes as a function of the action given the
observed state.
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6 Experimental Setup

As previously described, the option hedging problem is embedded in a Markov Decision
Process (MDP) to recast it as a reinforcement learning (RL) problem. To implement the
corresponding financial environment and the Deep Deterministic Policy Gradient (DDPG)
algorithm to train the agent, the library TensorFlow Agents is used in Python. This is a
library for reinforcement learning. Implementing an environment in Python requires the
construction of a step(action) and a reset() method. The former applies an action to the
environment and returns the state, reward, and discount factor for the next time step.
The latter starts a new episode and provides an initial time step. These methods are
implemented according to the MDP described in Section 5.2. The corresponding pseudocode
is presented in Algorithm 5. The parameters chosen to implement the environment are
described in Section 6.2. To return the state and reward for the next step, the class Option
is implemented. This class implements the Heston model to simulate the stock price (paths).
It also contains a subclass for each option type which includes the parameters specific for
that option type, as well as the method for calculating the option’s delta and fair value. The
subclass for the barrier option is divided into four sub-subclasses for the up-and-in (UAI),
up-and-out (UAO), down-and-in (DAI), and down-and-out (DAO) barrier option type. The
chosen option parameters and the approach to calculating the option delta and value are
described in Section 6.1. The initialisation of the DDPG agent and the neural networks
requires the determination of certain hyperparameters. These are presented in Section 6.3.

Algorithm 5 Reset and Step function

Ct(St) = 1
10,000

e−r(T−t)
∑10,000
i=1 hi(ST ) . Option value

∆ =
∂Ct(St)
∂S

. Estimate using finite difference or Malliavin
if Reset then

at = ∆
ct = Ticksize× (|at|+ 0.01(at)2) . Transaction costs
Ht = Ct(St) . Hedge value
Πt = Ct(St)−Ht . Portfolio value
PnLt = −ct

else
ct = Ticksize× (|at|+ 0.01(at − at−1)2) . Transaction costs
Ht = Ht−1 + at(St − St−1) . Hedge value
Πt = Ct(St)−Ht . Portfolio value
PnLt = Πt −Πt−1 − ct
rt = PnLt − κ

2
(PnLt)2 . Reward

νt+1 = νt + κ(θ − |νt|)∆t+ ε
√
|νt|dW ν

t+1 . Instantaneous variance

dWS
t+1 = ρ dW ν

t+1 +
√

1− ρ2 dWt+1

St+1 = Ste
(µ−0.5|νt|)dt+

√
|νt|dWS

t+1 . Stock price

st+1 =
(

log
(St+∆t

S0

)
/
√
νt∆t, at, T − t−∆t

)
. Next state

if Reset then
return st+1

else
return st+1, rt

6.1 Options

This section presents the parameters chosen to define the options and the approach to
calculating their value and delta.

6.1.1 Option Parameters

As mentioned before, the options are initialised at-the-money (ATM) and have a maturity
of 10 trading days. Their minimum and maximum action are determined as described in
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Section 5.2.2. Apart from these parameters, the fixed payoff of the digital call option is set
at Q = 1. Furthermore, the barrier option requires the determination of its trigger level
which is critical for the learning of the agent. For the knock-in barrier options, a barrier
that is too low (UAI)/high (DAI) would reduce the hedging problem to a plain vanilla call
option hedging task. At the same time, a value that is too high (UAI)/low (DAI) means
that the option is rarely kicked in and hence expires worthless most of the time. As a result,
the agent would learn to not take any position at all. The opposite holds for the knock-out
barrier option. The option would behave like a plain vanilla call option if the barrier is too
high (UAO)/too low (DAO). If the value is too low (UAO)/high (DAO), the option would
often be kicked out and hence expiring worthless most of the time. For this reason, barrier
values that are knocked in (knock-in option being activated) or not knocked out (knock-
out option being alive) in approximately 62% of the times seemed to be reasonable. The
corresponding barrier values are determined by simulating 10,000 episodes and tracking the
fraction of time that the barrier is hit for a range of values. The resulting barriers as well
as the other options’ input parameters and the initial value are presented in Table 1.21

Table 1: The hyperparameters used for the option types.

Option Min action Max action K T (days) Additional feature Initial value
Vanilla 0 1 100 10 - 1.58
Digital 0 1 100 10 Fixed payoff = 1 0.4922

UAI 0 1 100 10 Barrier = 101.5 1.55
UAO -0.25 0.5 100 10 Barrier = 103.2 0.25
DAI 0 1 100 10 Barrier = 98.3 0.22
DAO 0 1 100 10 Barrier = 96.7 1.55

Furthermore, the portfolio value is 0 for the knock-out barrier options once their barrier is
hit. At the same time, the hedge value (Ht = Ht−1 + at−1(St − St−1), 0 < t ≤ T ) is likely
to be positive due to the self-financing property. To match the option value after the option
is kicked out, the agent will take negative positions in the underlying stock if the stock price
increases or positive positions if the stock price decreases. This is not desirable; one should
not invest in the underlying stock anymore when the barrier is hit, as the option is then
worthless. To avoid the agent taking any position in the stock after hitting the barrier, the
episode is terminated at this moment.

6.1.2 Option Pricing

The option value and delta are determined using Monte Carlo simulations. For this, 10,000
stock price paths (from the current time t until maturity T ) are simulated at each time step
according to Equation 40, 41 and 42 and by applying the Antithetic Variable Technique
as described in Section 3.3.2. As the training requires many simulated episodes, a larger
discretization step is chosen than ∆t to reduce the computation time when calculating the
fair value. To minimize the noise due to simulation, a relative discretization is applied: for
each time step, the remaining time to maturity is divided into 10 equally spaced intervals.
As the estimated option price and delta of the barrier call option depend on respectively
the minimum (DAI and DAO) or maximum (UAI and UAO) stock price, these values are
monitored when simulating the stock price paths. The option price is then estimated by

21It can be observed that the minimum and maximum action is different for the UAO barrier call option.
This is because the delta of this option type can take negative and positive values, as explained in Section
3.2.3. Although this is theoretically also the case for the DAI barrier option, the extracted delta values of
this option were between 0 and 1 in this research setting. It is also visible that the initial values of the
knock-in and knock-out barrier option do not sum up to the price of the vanilla call option as stated by the
in-out parity. This is because the options have different barrier levels.

22This value reflects the fact that the digital’s payoff is equal to the delta of the plain vanilla call option
(see Section 3.2.2), which is close to 0.5 ATM.
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calculating the average discounted payoff of the simulated stock price paths based on the
option’s payoff structure as described in Section 3.2. This is summarized in Table 2.

Based on the simulated stock price paths, the option’s delta is approximated using cen-
tral finite difference method or Malliavin calculus. As described in Section 3.3.2, the former
approach outperforms the latter when the payoff function is continuous and the reverse
holds when there is a discontinuity in the payoff function. This is supported by Figure 8,
which shows the convergence of the delta of a plain vanilla and a digital call option as a
function of the sample size n using the two different approaches. Hence, the central finite
difference method is applied to estimate the plain vanilla call option’s delta and Malliavin
calculus is used for the digital and knock-out barrier call option. As the knock-in barrier
call options behave like a plain vanilla call option once the barrier is hit, their delta is de-
termined using Malliavin calculus when the barrier has not been hit yet and using central
finite difference after it has been hit. This is summarized in Table 2. The central difference
approximation to the delta is calculated according to Equation 61. Here, ε is set to 0.01.
The stock price paths of St + 0.01 and St − 0.01 are calculated using the same simulated
random standard normal variables as used for St. The delta approximation using Malliavin
calculus is calculated according to Equation 64.

Table 2: The formula and approach used to estimate the option value and delta per call option
type.23

Option Option value Delta

Vanilla e−r(T−t) 1
M

∑M
i=1 max{SiT −K, 0} Central finite difference

Digital e−r(T−t) 1
M

∑M
i=1 1SiT≥K Malliavin calculus

UAI Inactivated: e−r(T−t) 1
M

∑M
i=1 max{SiT −K, 0}1Simax≥B Malliavin calculus

Activated: e−r(T−t) 1
M

∑M
i=1 max{SiT −K, 0} Central finite difference

UAO Alive: e−r(T−t) 1
M

∑M
i=1 max{SiT −K, 0}1Simax<B

Malliavin calculus

Kicked out: 0 0

DAI Inactivated: e−r(T−t) 1
M

∑M
i=1 max{SiT −K, 0}1Simin≤B Malliavin calculus

Activated: e−r(T−t) 1
M

∑M
i=1 max{SiT −K, 0} Central finite difference

DAO Alive: e−r(T−t) 1
M

∑M
i=1 max{SiT −K, 0}1Simin>B

Malliavin calculus

Kicked out: 0 0

Figure 8: Convergence of the delta of a plain vanilla call option (left) and a digital call option
(right) as a function of sample size n when using finite difference and Malliavin calculus.

23The indicator function 1 of an event is a random variable that takes value 1 when the event happens
and value 0 when the event does not happen
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6.2 Environment

To implement the reward function as described in Section 5.2.4, a value of 2 is used for the
risk aversion parameter κ. This parameter is based on [80], which showed that the optimum
of the efficient frontier, representing the PnL gain over the reward volatility, is attained close
to this value. For the transaction costs defined in Equation 92, a tick size of 0.1 is used, as
in [65]. To represent the final wealth, the accounting formulation is used, as the RL agent
did not learn using the cash flow formulation given the trained set of parameters.
The Heston model is implemented to simulate the stock price and hence to define the
transition function, as well as the stock price paths to calculate the option’s value and delta.
For practical applicability, the model parameters are based on [41]. These parameters are
shown in Table 3 and are not calibrated to the real market. Calibration involves choosing
the model parameters such that the stock price predictions are close to the observed market
data. This is a task on its own and the focus of this research is on the general useability of
RL to hedging, rather than fitting the RL agent to market data.

Table 3: The hyperparameters used in the Heston model.

Hyperparameter Value
θ 0.1
ρ -0.2
κ 1.5
ε 0.2
r 0
ν0 0.22

S0 100.0

The RL agent was first trained on the following grid of fixed discount factors:
γ ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.95, 0.99]. A discount factor of γ = 0.9
seemed to work for most option types. The discount factor was then increased through
training in combination with the validation step as described in Section 5.2.5. Using a
decay rate of 0.1, the following grid was tested for the decay step: [100, 150, 180, 200].
A higher discount value could be obtained in this way for the plain vanilla option, but it
resulted in instabilities for the other option types. Finding an appropriate set of hyper-
parameters that would avoid these instabilities would require training on different grids or
extending the learning cycle (i.e. more training steps). As a fixed discount factor of γ = 0.9
seemed to work for most option types, the analyses performed in this research are based on
this value. The impact of the discount factor is visually shown in Section 7.4.3.

To speed up the training, 32 training environments run in parallel. An additional environ-
ment is created for the evaluation of the RL agent during the training. This environment
uses a fixed seed, such that the evaluation takes place on a fixed stock price path to ensure
that the improved hedging performance cannot be attributed to stochasticity. As training
the RL agent requires intensive computational work, access to the GPU usage on a VU
BAZIS HPC cluster is granted to train multiple RL agents in parallel and to speed up the
training runs.

6.3 Reinforcement Learning Model

The initialisation and training of the DDPG algorithm require the determination of certain
parameters. These values are shown in Table 4. This section describes and motivates the
choice of the most important ones.

Recall that the DDPG algorithm has four neural networks: an actor network, which proposes
an action given an observed state, a critic network, which predicts the expected Q-function
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Table 4: The hyperparameter values used in the DDPG algorithm.

Hyperparameter Value

Replay memory size 8192

Mini-batch size 128

Warmup episodes 64

Time steps/episode 50

Total iterations 5000

Train episodes/iteration 32

Test episodes/iteration 1

Train steps/iteration 1

Test steps/iteration 1

Exploration Time inverse decay with initial value 0.5, decay rate 1.0, decay step 250.

Minimum value clipped at 0.05

TD error loss Element-wise Huber loss

Target update rate 0.999

Target update period 1 episode

Actor learning rate Time inverse decay with initial value 0.005, decay rate 1.0 and decay step

250, Rectified Adam optimizer

Critic learning rate Time inverse decay with initial value 0.05, decay rate 1.0 and decay step

50, Rectified Adam optimizer

Actor network [Dense(256), Dense(256), Dense(1)]
[”relu”, ”relu”, ”tanh”]

Critic network
State: [Dense(256), Dense(256)]

[”relu”, ”relu”]
Action: -

 Joint: [Dense(256), Dense(256), Dense(1)]
[”relu”, ”relu”, ”linear”]

Gamma 0.9

for a state-action pair, and two target networks which are updated slowly to keep the esti-
mated targets stable. For these networks, there are several structures and depths possible.
Adding more layers allows for efficient representations of the interactions within the input
data [32]. However, very deep neural networks or complicated structures require a lot of
hyperparameters that need to be tuned, as well as a lot of data to be trained on which
can become very challenging and costly. The most basic deep neural network, which is
the multi-layered perceptron (MLP), seemed to be sufficient for this research and is hence
chosen. An MLP consists of interconnected neurons and can be divided into three main
layers: an input layer, the hidden layers that perform computations on the input data, and
the output layer that returns an output. The number of hidden layers of neurons to use
per layer cannot be calculated analytically and has to be determined e.g. using a grid of
values. For the actor, two hidden layers are chosen. To output one single action, the output
layer consists of one neuron. To bound the actions, the hyperbolic tangent (tanh) is used
as an activation function, which takes any real value as input and outputs values in the
range -1 to 1. The last layer is initialised between -0.003 and 0.003, to prevent getting 1
or -1 output values in the initial stages, which would squash the gradients to zero due to
the tanh function. As the critic outputs a single estimated Q-value for a state-action pair,
it has both the state as input as well as the action. The state is passed through the same
layers as in the actor network, but instead of returning an action, it is concatenated with
the action. Two hidden layers are added on top of the concatenated ones to let the MLP
extract more abstract features. To output a single real value, the output layer of the critic
consists of one neuron with a linear activation function. The hidden layers of the actor and
critic network consist of 256 neurons. The Rectified Linear Unit (ReLu) function is used
as an activation function for these layers, which is the default activation for MLPs [63] and
outputs the input directly if it is positive and zero otherwise.24

24Note that no dropout activation is applied after the non-linear activation functions in this research.
This technique randomly drops out neurons during trading to reduce overfitting and improve generalization
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The weights of the networks are updated based on mini-batches which are sampled from
the replay buffer and by applying gradient descent. The stochastic gradient descent (SGD)
method has been widely used [51] as an optimizer. It calculates the gradient, based on a
single sample or mini-batch instead of the entire training data as in gradient descent. The
RL agent was tested on this optimizer, as well as on two of its variants: the Adam and Rec-
tified Adam (RAdam) optimizer. A disadvantage of SGD is that due to frequent updates,
the steps taken towards the minima are noisy. This may lead to a slower convergence and a
gradient descent into the wrong direction. The Adam optimizer circumvents these problems
by using an adaptive learning rate for each parameter: it accelerates the SGD in the relevant
direction. A disadvantage of this optimizer is the fact that the adaptive learning rate can
be quite large in the early stage of the training, leading to a bad convergence. The rectified
Adam (RAdam) adjusts for this by rectifying the variance of the adaptive learning rate.
Based on the other hyperparameters and a grid of learning rates, the RAdam seemed to
perform best and is hence chosen in this research.

Regarding the exploration, recall that the DDPG algorithm adds a noise term to the action
generated by the actor network to ensure the exploration. In the early stage of the training,
the agent has not learnt yet and the standard deviation of this noise term is set at 0.5 to
let the agent explore and learn more about the environment. As the training progresses,
the agent learns more about the environment and the standard deviation decays using an
inverse time decay schedule so that the likelihood of exploration becomes less probable and
such that the agent exploits the environment more and more.

One of the most critical hyperparameters left is the learning rate of the networks. A rate
that is too high may result in large gradients and divergent behaviour, whereas a value that
is too small will slow down the training and may get stuck with a high training error [32].
In this research, the commonly employed technique learning rate annealing is applied [59].
Here, the training starts with a relatively high learning rate to move away from the ran-
domly intialised parameters towards a range of appropriate parameters, and lowers during
the training to explore a more optimal set of weights. The learning rate of the critic is set
higher than the actor’s rate because if the actor changes faster than the critic, the estimated
Q-value is based on past policies and does not truly represent the current action. For the
initial value of the time inverse decay schedule, a grid of [0.001, 0.005, 0.01] and [0.01, 0.05,
0.1] for respectively the actor and critic was tested. A step size grid of respectively [100,
250, 500] and [10, 50, 100] was tested. For the actor/critic, a rate of 0.005/0.05 that decays

1
250/ 1

50 iterations with a rate of 1.0 seemed to work best. Using this schedule, these rates
have a value of 2e-4 and 5e-4 in the final stage of the training.25 The impact of the learning
rate on the RL agent’s performance is discussed in more detail in the Section 7.4.1.

error [38]. As the networks are trained on simulated data with a random seed, the chance of overfitting is
negligible.

25It should be noted that the RAdam optimizer allows for a less sensitive configuration due to its adaptive
learning rate.
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7 Results

This chapter presents and evaluates the empirical performance of the reinforcement learning
(RL) agents trained on the plain vanilla, digital, and barrier call option. The analyses are
conducted based on 10,000 (almost surely) out-of-sample simulated episodes. The results
of the RL agents are compared to those of the delta hedging strategy. For this, statistical
tests are performed at a significance level of 1%.26 The performance of the agents in the
absence of transaction costs is discussed in Section 7.1. Section 7.2 discusses the impact
of transaction costs. The robustness and flexibility of the agents are tested in Section 7.3.
Finally, the impact of some of the hyperparameters chosen to train the agents is analysed
in Section 7.4.

7.1 Results Without Transaction Costs

This section analyses the performance of the RL agents in a cost-free environment. Table
527 shows a summary of the performance of the RL agents and the corresponding delta
hedging strategies per option type in terms of the final portfolio value ΠT . This table shows
the average portfolio value (the mean hedging error µ), the average of the absolute portfolio
value (the mean absolute hedging error MAE), the standard deviation (σ), and the 5th and
95th percentile of the portfolio values. µ indicates whether the strategies are on average good
at hedging the options. For example, if the hedging errors reveal a symmetrical distribution
closely centered near zero, the hedging strategy results in both gains and losses, but the
hedging error is on average zero. The mean absolute hedging error does not consider the
cancelling out of gains and losses, but concerns whether or not the strategy can offset any
potential loss or gain. Based on this table, it seems that reinforcement learning is quite
effective in hedging a plain vanilla call, digital, UAI barrier, and DAO barrier option. The
performance on the UAO barrier and DAI barrier call option seems to be worse. The
following subsections show and discuss the results per option type in more detail.

Table 5: The performance of the reinforcement learning agent versus delta hedging in terms of
the terminal portfolio value per call option type in the absence of transaction costs.

RL hedging Delta hedging
Option µ MAE σ 5thpct 95thpct µ MAE σ 5thpct 95thpct
Vanilla -80.81 80.85 36.27 -145.12 -25.78 -157.10 157.10 61.69 -258.23 -62.89
Digital 1.68 32.25 37.68 -56.17 57.69 -2.79 43.28 55.06 -75.90 106.60

UAI -113.39 113.44 42.77 -180.87 -50.23 -156.61 156.61 64.07 -265.82 -62.22
UAO 24.30 37.40 48.00 -44.53 110.75 0.54 34.57 60.79 -58.60 127.06
DAI 13.32 50.94 111.30 -24.82 252.10 -28.57 38.74 46.35 -124.19 37.66
DAO -69.06 69.36 40.16 -133.89 -8.35 -149.35 149.35 62.37 -259.77 -69.59

7.1.1 Plain Vanilla Call Option

This subsection considers the simple European call option in the absence of transaction
costs. An out-of-sample simulated episode of the trained RL agent is shown in Figure 9. It
seems that the agent learnt how to hedge the option. Due to the discretization error, the
option value and hedge value, presented in the lower right subplot, do not and will likely

26The probability of rejecting the null hypothesis given that the null hypothesis was assumed to be true.
The null hypothesis is rejected if the p-value, i.e. the probability of obtaining a result at least as extreme as
the observed one, is lower than this threshold. The result of an experiment is then said to have statistical
significance.

27It is difficult to compare the results between the different call option types. This is because the hedging
problem, scale of the portfolio value, and hence hedging error are different for each option due to the different
option characteristics.

48



not coincide. Nevertheless, it is clearly visible that the hedge value tracks the value of the
option and picks up its spikes. In addition, it learnt to replicate the delta: its position tracks
the delta position, even though this value was not provided to the agent.

Figure 9: A single simulated episode of an RL agent trained on a plain vanilla call option. The
stock price evolution is presented in the upper-left plot. The delta (blue) and agent’s position
(grey) are presented in the upper-right plot. The lower-left plot shows the portfolio value and the
difference between the hedge value and option value is presented in the lower-right plot.

The fact that the agent learnt how to hedge the vanilla call option is confirmed by the
value function, which is shown in Figure 10. This figure is based on the same simulated
episode as in Figure 9. The figure shows the critic’s estimated Q-values based on the scaled
rewards (rather than the absolute hedging errors) per time step and action. For each time
step, the actions that result in the highest rewards are displayed in green and the ones that
obtain the lowest rewards are displayed in red. During the learning, the actor and critic
interplay. At the beginning of the training, the critic is still inaccurate. This results in the
actor taking quite random actions. As the training progresses, the accuracy of the critic
increases. As a result, the actor is better able to select the best action which maximizes
the value function. Destabilizing of the learning is in the same way visible in the value
function. A wrong step by the actor or critic might adversely affect the other, resulting in
a less accurate value function. In the case of an accurate critic and actor, one would expect
a value function with distinct contour levels in which the actions taken by the agent have
the highest values and where the estimated Q-values decrease as one moves away from the
optimal actions. This is the case for the plotted value function. In addition, the estimated
Q-values are accurate. As the option is initialised at-the-money (ATM), the option can go
either in-the-money (ITM) or out-of-the-money (OTM). Due to this uncertainty, both a full
investment and no investment at all in the underlying stock are then not optimal. As time
passes, the green area, i.e. actions with the highest values, converges to the top. This is
in line with the stock price movements because from step ∼35 onwards, the stock price is
sufficiently high that the option is likely to end up ITM. To hedge the option then correctly,
one should fully invest in the underlying stock. Smaller positions are less optimal, which is
reflected in the value function showing a lower estimated Q-value for these actions.
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Figure 10: Value function of the single simulated episode per one share of the vanilla call option’s
underlying stock.

To further analyse the performance of the trained RL agent, the distribution of the agent’s
terminal portfolio value and that of the delta hedging strategy are shown in Figure 11. It
can be observed that both distributions mostly take negative values. They seem to have a
normal shape, which is left-skewed for the delta hedge strategy. The distribution of the RL
agent is more shifted and centered towards the right, i.e. towards zero, compared to the
delta hedging one. In addition, the average terminal portfolio value of the RL agent is higher
than that of the delta hedge. This result is statistically significant, supported by the paired
two-sample t-test. The RL agent’s average absolute portfolio value is significantly lower
than that of the delta hedge. Besides, the two-sample Kolmogorov-Smirnov test rejects the
null hypothesis that both samples come from a population with the same distribution.

Figure 11: Distributions of the terminal portfolio value of the RL agent and delta hedge (left)
and their relationship on a per episode basis (right) for the vanilla call option.

The hexbin plot in Figure 11 (on the right) shows the relationship between the terminal
portfolio value of the delta hedging strategy (Y-axis) and the corresponding value of the RL
agent (X-axis) on a per episode basis. A clustering of most points along the 45-degree line
would indicate a similar performance for both strategies. The plot shows that the higher
concentration of points, represented by the darker areas, is located on the center-right, un-
der the diagonal. As a portfolio value of zero would be optimal, i.e. no hedging error, this
confirms that the RL agent results in lower hedging errors than the delta-hedging strategy
on a per episode basis. Furthermore, the darker areas are quite centered; there are no high
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concentrations of points located far away from the center. This indicates that there are no
clusters of outliers, i.e. episodes in which one of the strategies is doing much better than
the other.

To compare the performance of both strategies throughout the episode, the standard de-
viation of the PnL (individual profit and losses) within an episode is depicted for both
strategies in Figure 12. The distribution of the RL agent is narrower than that of the delta
hedging strategy. This is confirmed by the Kolmogorov-Smirnov test, which indicates that
the distributions are from different populations. In addition, the RL agent has a significantly
lower volatility than the delta hedging one. Furthermore, the distributions of the strate-
gies are skewed to the right, i.e. encompass a right tail with larger values of the standard
deviation. To investigate where the larger values come from, the episodic portfolio values
of the RL agent and delta hedge are binned into gridded hexagons in the right subplot of
Figure 12. Here, the bin colours represent the bin’s average episodic standard deviation of
the PnLs, rather than the number of points in the bin as in the hexbin in Figure 11. The
darker the colour, the higher the standard deviation of the bin. It can be observed that
the lightest bins are located in the upper right corner of the plot, i.e. near the point (0,
0). The corresponding episodes result in a low terminal portfolio value, have thus smaller
hedging errors, and have a smaller standard deviation of the PnLs within the episode. It
is likely that these paths end far ITM or OTM and are hence easier to hedge; they entail
less uncertainty and the optimal position in the underlying stock fluctuates less. Therefore,
paths that are harder to hedge are expected to create greater hedging errors and a bigger
standard deviation of the PnLs within an episode. The latter is supported by the hexbin,
as the bin colour is darker if one moves below the diagonal.

Figure 12: Distributions of the standard deviation of the PnL within an episode (left) for the RL
agent and delta hedge, and the binned portfolio values of both strategies coloured by the average
standard deviation within the bins’ episodes (right) for the vanilla call option.

To take a closer look at the distribution of the PnL through the option’s lifetime, a density
plot of the RL agent’s distribution over time is shown in Figure 13. This plot also shows
a density plot of the difference of the PnL between the two strategies over time on a per
episode basis. It follows that the average performance of the delta hedge strategy is quite
stable throughout the episode. For the RL agent, the median and 45-55th percentile are
at the beginning close to zero, decrease and show more dispersion over time, and increase
again halfway to maturity. A possible explanation for this behaviour is that as time passes,
there is often less uncertainty whether the option will end up OTM or ITM. As a result,
the agent might be better able to know what action results in the highest reward. However,
this is not the case if near maturity, the stock price is near-the-money. Hedging is harder
in this case; more extreme PnLs and a less distinct value function can then be observed.
The average difference in the absolute value of the PnL between the RL agent and delta
hedging strategy on a per episode basis, depicted in the right subplot, is negative. This
means that the RL agent also results in a lower hedging error and hence outperforms the
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delta hedging strategy on a per time step basis. The two-sample paired t-test indicates that
this outperformance is statistically significant, except for the last two time steps. The latter
is supported by the figure, which shows that the distribution of the difference disperses in
the last ∼ 10 time steps and that the average difference converges towards zero in these
time steps.

Figure 13: Distribution of the PnL of the RL agent (left) and the difference between the absolute
portfolio of the RL agent and delta hedging on a per episode basis (right) through the plain vanilla
call option’s lifetime. The colours show the corresponding percentiles.

The results show that the RL agent is able to hedge the plain vanilla call in the absence of
transaction costs. It outperforms the delta hedge strategy with a lower average (absolute)
hedging error and a lower variance.

7.1.2 Digital Call Option

Following the vanilla call, the tests described in the previous subsection are also conducted
on the digital call option. It seems that the RL agent is also able to hedge this option type.
Overall, the hedge value seems to track the option value and the value function is accurate.
For a digital option, the most complex decision to take is when the stock moves near the
strike just before maturity. Near maturity, the delta of the option is zero, except near the
strike. As a result, one should invest a large amount in the stock if its price is equal or close
to the strike, sell everything if it moves away from the strike, and so on. The large positions
are very risky, as the stock can end up just OTM, resulting in no payoff and making the
investment worthless. An example of such a pin risk is shown in Figure 14, along with the
corresponding value function in Figure 15. Around time step 43, the stock price reaches the
strike, decreases then, and approaches the strike again. This leads to a delta spike in the
upper right plot and a value function being less distinct and showing lower Q-values from
this time step onwards. It becomes especially problematic when the stock price decreases in
the last time steps. Although a large position is required to match the option value, buying
shares of the underlying stock results in a decreased hedge value (= Ht−1 + at(St − St−1)).
This is because the stock price difference between two time steps is negative in that case.
As a result, the portfolio value also decreases, leading to a high loss at maturity. The agent
might need to see more often these events to understand that it should not do anything.
But even then, the stock price might end up just ITM, resulting in a high loss. The agent
would not encounter this problem when the stock price is near the strike, but increases just
before maturity. Although a large investment in the underlying stock is still risky in that
case, investing in the underlying stock results in a higher hedge value and a smaller hedging
error since the stock price difference is then positive. This highlights the particularity of
the digital option: the fact that the payoff doesn’t depend on the direction of the movement
in price. This makes hedging complicated. Although the overall behaviour of the agent is
good, actions in such events remain difficult to take and may result in high losses.

52



Figure 14: A single episode of a digital call option with an example of a pin risk.

Figure 15: Value function of the single simulated episode per one share of the digital option’s
underlying stock.

To compare the performance of the RL agent with that of the delta hedging strategy, the
distributions of the terminal portfolio value of both strategies are shown in Figure 16. The
distribution of the RL agent shows two lumps below and above zero and is more centered
around zero compared to the distribution of the RL agent trained on the plain vanilla call
option. The distribution of the delta hedging strategy has a similar negative lump but has
a longer right tail instead of a second positive lump. The two-sample Kolmogorov-Smirnov
test rejects the null hypothesis that both samples come from a population with the same
distribution. On average, the RL agent and delta hedge have respectively a negative and
positive terminal portfolio value. The t-test confirms that the RL agent’s average portfolio
value is significantly higher than that of the delta hedge. In addition, the RL agent results
in a significantly lower average of the absolute portfolio values (MAE) compared to the
hedging strategy. The hexbin plot in Figure 16 shows one clear cluster of points that lies
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more or less on the diagonal. This suggests a similar performance for both strategies. A
second, less concentrated cluster can be observed on the right, which is also centered around
the diagonal. Compared to the plain vanilla’s hexbin, the points are less spread out.

Figure 16: Distributions of the terminal portfolio value of the RL agent and delta hedge (left)
and their relationship on a per episode basis (right) for the digital call option.

When looking at the PnLs within an episode obtained by both strategies, the RL agent
has a lower standard deviation whose distribution is narrower compared to the delta hedge.
These two observations are statistically significant, supported by the two-sample t-test and
the Kolmogorov-Smirnov test, and illustrated in the left subplot of Figure 17. The binned
portfolio values of both strategies, coloured by the average standard deviation within the
bins’ episodes, are shown in the right subplot. A similar pattern can be observed as for the
vanilla call: the lightest bins are located in the center around (0,0), i.e. are likely to contain
episodes that are easier to hedge. Paths that result in higher portfolio values encompass a
higher standard deviation.

Figure 17: Distributions of the standard deviation of the PnL within an episode (left) for the RL
agent and delta hedge, and the binned portfolio values of both strategies coloured by the average
standard deviation within the bins’ episodes (right) for the digital call option.

The distribution of PnL through the option’s lifetime is presented in Figure 18 to further
analyse the agent’s performance on a per episode basis. The distribution of the RL agent as
well as the difference in the absolute portfolio value between the two strategies disperses as
time passes. The widths increase in particular in the last five time steps. Before this point,
the distributions are narrower and more concentrated around zero compared to the results
for the plain vanilla call option. Next to the fact that the initial digital option value is lower
compared to the plain vanilla one, the observed behaviour can be explained by the option’s
delta. The sensitivity of the option value, i.e. the delta, is fairly constant low, except near
expiration. As described in Section 3.2.2, the delta can take high values for near-the-money
options at this point and may change extremely fast, leading to high replication errors. This
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is reflected in the figure. When comparing the average PnL value of the RL agent and delta
hedge over time, the average of the former is slightly higher, except for the last few time
steps. The absolute PnL value is significantly lower for the delta strategy, except for the last
time step where it is significantly lower for the RL agent. There is no significant difference
at the 47th and 48th time step. This, combined with the fact that the greatest replicating
errors occur in the last few time steps explains the lower absolute terminal portfolio value
for the RL agent.

Figure 18: Distribution of the PnL of the RL agent (left) and the difference between the absolute
portfolio of the RL agent and delta hedging on a per episode basis (right) through the digital call
option’s lifetime.

The results show that the RL agent is able to hedge the digital call option in the absence
of transaction costs. It significantly outperforms the delta hedging strategy in terms of the
(average) absolute portfolio value and standard deviation.

7.1.3 Barrier Call Option

Finally, the tests are conducted on the barrier call option. Within this option type, it seems
that the RL agent is able to hedge the up-and-in (UAI) and down-and-out (DAO) barrier
call option. It picked up the dynamics of these option types and the delta spikes when the
stock price approaches the barrier near maturity. Similar to the digital call option, diffi-
culties arise when the stock moves close to the barrier (DAO)/just before maturity (UAI).
Compared to the delta hedging strategy, the average terminal portfolio value of both options
is significantly higher. In addition, the average absolute portfolio values are significantly
lower than that of the delta hedge. The standard deviation of the PnL within an episode
is for both also significantly lower than the delta hedging one. The distributions of the
terminal portfolio value have a similar shape as the plain vanilla call option, although the
DAO barrier option seems to take slightly more positive values and the UAI barrier option
slightly more negative values. However, the options’ distributions of the PnL’s standard
deviation within an episode deviate from that of the vanilla call option. These distribu-
tions are presented in Figure 19: the distribution is more shifted to the right/left for the
UAI/DAO barrier call option. For the options’ terminal portfolio value, as well as the stan-
dard deviation within the episode, the Kolmogorov-Smirnov test shows that the samples of
the RL agent and the delta hedge come from a population with a different distribution.
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Figure 19: Standard deviation of the PnL within an episode for the up-and-in (left) and down-
and-out (right) barrier call option.

Another striking aspect is the distribution of the PnL through the UAI barrier option’s
lifetime, illustrated in Figure 20. The average PnL of the delta hedging strategy is quite
stable again throughout time. The average value of the RL agent is at the beginning of the
episode lower compared to the plain vanilla call and increases towards zero as time passes.
At the same time, the PnL distribution is in the beginning quite wide but narrows and
converges towards zero over time. An explanation for this behaviour might be that in the
beginning of the episode, there is an additional uncertainty due to the barrier compared
to the plain vanilla call option. This uncertainty often decreases as time passes: the stock
moves either up, reaching the barrier or increasing the likelihood that it will be reached, or
down, making it less likely that the option will reach the barrier and end ITM. As a result,
the agent might be better able to take the correct action as time passes 28. This is also
visible in the right subplot: the difference in the absolute PnL decreases over time. Although
the RL agent’s average PnL value is significantly less negative (closer to zero) compared to
the delta hedge, except for the first 9 time steps, the absolute PnL is significantly lower for
only one time step.
The corresponding distribution for the DAO barrier option is similar to that of the plain
vanilla option. It seems to be narrower for the last time steps, but this is difficult to interpret
this chart as the episodes are terminated once the barrier is kicked out.

Figure 20: Distribution of the PnL of the RL agent (left) and the difference between the absolute
portfolio of the RL agent and delta hedging on a per episode basis (right) through the up-and-in
barrier call option’s lifetime.

The RL agent did not learn how to properly hedge the up-and-out (UAO) barrier option.
It learnt to pick up the extreme delta spikes, e.g. if the stock price approaches the barrier

28Note that this does not hold for the events where the barrier has not been kicked in yet and the stock
price moves up near the strike near maturity.
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near maturity. However, the RL agent systematically under- or over-hedges in the simulated
episodes. As a result, the hedge value shows a less accurate tracking of the option value.
In addition, due to the allowance of negative values, the agent occasionally takes negative
actions, even though the price is increasing without being too close to the barrier. This
is visually shown in Appendix A. The delta hedging strategy outperforms the RL agent.
This is visible in Figure 21, which shows that the average PnL of the former oscillates more
around zero except for the last few time steps. In addition, the (absolute) value of the
terminal value is significantly lower for the delta hedging strategy.

Figure 21: Distribution of the PnL of the RL agent (left) and the difference between the absolute
portfolio of the RL agent and delta hedging on a per episode basis (right) through the up-and-out
barrier call option’s lifetime.

The performance of the RL agent is even worse for the down-and-in (DAI) barrier call op-
tion. The agent learnt to rarely take a position in the underlying stock rather than the
dynamics of this option. As will be explained later in this subsection, the option ends often
OTM. Hence, small positions in the underlying stock do often not lead to high portfolio
values. However, the hedging behaviour itself is incorrect: the hedge value does not match
the option value throughout the option’s lifetime and the agent does not take a larger po-
sition in the underlying stock if the barrier has been kicked in and if the option ends ITM.
This is visible in Table 5: although the average portfolio value of the DAI option deviates
significantly less from zero than the delta hedging one, its standard deviation and average
absolute portfolio are significantly higher. The fact that the distribution of the DAO option
is more spread out is also reflected in the values of the 5-95th percentile. The inability of
the RL agent to hedge the DAI option correctly is also supported by the inaccurate value
function. This is blurred and does not show a converging path of optimal actions throughout
the episode. This is visually shown in Appendix B.

The fact that the agent is not able to hedge the UAO and DAI barrier option correctly
is in line with the more complicated delta behaviour of these options compared to those of
the DAO and UAI option as described in Section 3.2.3. In addition, these options have a
smaller payoff range or one that is more difficult to enable in this research setting.29 The
UAO barrier option only results in a payoff if the stock price ends between the strike price
and the barrier level, while the barrier has not been exceeded during the option’s lifetime.
The payoff range is even more difficult to enable for the DAI barrier option. Here, the stock
price has to move down to reach the barrier and then move above the strike to get a payoff.
Even though the barrier is reached and the option is kicked in in 66% of the simulated
episodes, it is less likely that the downward movement is followed by such an upward move-
ment within the option’s lifetime of only 10 trading days. These events might let the agent
learn to take small positions or no position at all in the underlying stock, hence incorrect
hedging. To validate the impact of the smaller payoff range on the hedge performance of

29This is reflected in a lower initial value compared to the other option types, as shown in Table 1.
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the UAO and DAI option, an adjusted version of the UAO barrier option was tested first.
In this setting, the option was knocked out if the price of the original UAO barrier value
was exceeded for more than x% during the option’s lifetime. Here, a threshold of 100%
represented the original barrier option and 0% the plain vanilla call option. However, these
tests did not show any conclusive results. This might be explained by the fact that the agent
must learn the additional impact of the threshold value, which makes the hedging problem
more complex.
A second attempt made to validate the impact of the smaller payoff range on the hedge
performance was to let the UAO barrier option end more often ITM by increasing the bar-
rier level. For this, four RL agents were trained on barriers that were respectively 25%,
50%, 75%, and 98% less often kicked out compared to the original UAO barrier call option.
The corresponding barrier values and minimum and maximum action of these options were
determined in the same way as described in Section 5.2.2. From a financial perspective, it is
to be expected that a higher barrier eases the hedging task, as the option is less often kicked
out and the delta behaviour is more similar to that of a plain vanilla call option. However,
no consistent pattern could be observed between the barrier level and hedge performance of
the RL agent. A possible explanation for this might be that as the option is less and less
often kicked out, the agent is seeing too few such events. It might be unable to correctly
approximate the dynamics that realise the rare behaviour, resulting in a great training loss
that is used when calculating the cumulative reward for other state-action pairs. This can
then in turn lead to accumulated errors and destabilization of the learning. A solution
might be to use a prioritised replay buffer, in which experiences that led to an important
difference between the expected reward and the obtained reward (i.e. the rare events) are
more frequently sampled.
For the UAO option, one could also argue that the incorrect hedging can be attributed to
the fact that the option is terminated once the barrier is hit. As a result, the agent sees the
states less often, as future states are no longer discovered after hitting the barrier. However,
this is also the case for the DAO option, but the RL agent is still able to hedge this option
correctly.
Finally, the hedging of a DAI barrier option has an additional complexity from an RL per-
spective. Based on the observed state, the agent cannot derive whether the barrier has been
hit during the option’s lifetime. This is not the case for the knock-out options, as these are
terminated once the barrier is hit. For the UAI barrier call, it may only be an issue when the
stock price is between the strike and the barrier. This price range is relatively small and the
agent might still be able to approximate the chance of being kicked in given the remaining
time to maturity, the previous position, and the scaled stock price. As this range is much
wider for the DAI barrier option, further research could investigate the impact of adding a
state component, indicating whether the barrier has already been hit, would improve the
hedging performance of this option.

The results indicate that RL can be used to correctly hedge a UAI and DAO barrier option
in the absence of transaction costs. Both RL agents outperformed the corresponding delta
hedging strategy. The performance is worse for the UAO option and the RL agent did not
learn how to hedge the DAI barrier option.

7.2 Impact of Transaction Costs

This section analyses the performance of the RL agents in a cost environment. A summary
of the performance of the RL agent and the delta hedging strategy in terms of the final port-
folio value ΠT is presented per option type in Table 6. Also in the presence of transaction
costs, the RL can be used to hedge a plain vanilla, digital, UAI barrier, and DAO barrier
option. For these options, the introduction of transaction costs reinforces the conclusions
regarding the outperformance of the RL agent over the delta hedging strategy. These agents
result in an average portfolio that deviates significantly less from zero, a significantly lower
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average absolute portfolio value, and a significantly lower standard deviation of the portfolio
value than the corresponding hedging strategy. The RL agents also outperform the delta
hedge in terms of the standard deviation of the PnL within an episode, whose distributions
are narrower and show a shorter right tail compared to the corresponding delta hedge strat-
egy. For the UAO barrier option, the RL agent picked up some of the delta spikes, but
the delta hedging strategy again outperformed the agent. The RL agent is still not able
to hedge the DAI option: it incorrectly learnt to take a full investment in the underlying
stock during the entire lifetime of the option. The remainder of this section focuses on the
options that the RL agent can hedge (the vanilla, digital, UAI and DAO barrier call option).

Except for the UAI barrier call option, the distributions of the options’ portfolio value
are negatively shifted. This is likely because the transaction costs flow directly into the
PnL, resulting in the terminal portfolio taking more negative values. The results of the
plain vanilla call option and digital call option are further analysed, as the results of the
UAI and DAO barrier option leverage on these.

Table 6: The performance of the reinforcement learning agent versus delta hedging in terms of
the terminal portfolio value per call option type in the presence of transaction costs.

RL hedging Delta hedging
Option µ MAE σ 5thpct 95thpct µ MAE σ 5thpct 95thpct
Vanilla -107.32 109.15 40.37 -164.41 -51.01 -190.18 190.18 72.24 -310.53 -79.62
Digital -18.50 29.80 31.82 -67.77 31.03 -19.29 45.09 52.40 -99.18 79.66

UAI -88.17 88.46 40.39 -155.70 -26.87 -188.78 188.78 73.94 -316.09 -80.62
UAO 32.76 47.91 63.45 -45.77 159.11 -9.29 35.62 54.48 -75.96 110.61
DAI 0.22 296.80 396.02 -698.68 642.33 -44.08 50.32 57.47 -164.82 26.99
DAO -77.37 77.65 42.87 -141.69 -7.65 -174.44 174.44 74.00 -305.45 -78.93

For the plain vanilla call option, the introduction of transaction costs introduces a delay
and reduction of the actions taken by the agent. As the trading of arbitrary small amounts
of the underlying stock is costly, the agent does not always act immediately when the delta
spikes up (down), but waits to see if the delta returns to the previous lower (higher) value
due to stock price movements. The agent hedges the position if the stock price increases
(decreases) even further. These results are in line with what is shown in [80] and supported
by Table 7. This table presents the average position and the average absolute change in
position within an episode for the agents that had been trained respectively in the absence
and presence of transaction costs. It follows that these average values are indeed lower for
the RL agent that had been trained in the presence of transaction costs. The paired t-test
indicates that these results are significant.

Table 7: The average position and average absolute change in position of two RL agents trained
in the absence/presence of transaction costs on a per episode basis for the vanilla call option.

Environment Mean Absolute change
No costs 48.91 3.08

Costs 48.57 2.97

To further analyse the performance between the agents in a cost-free and a cost environment,
the RL agent that had been trained in the absence of transaction costs is tested in an
environment with transaction costs. Similarly, the RL agent that had been trained in the
presence of transaction costs is tested in an environment without transaction costs. For both
agents, the resulting average portfolio value as well as the average absolute portfolio value is
presented in Table 8. The agent being trained without costs results in a significantly higher
average portfolio value and a significantly lower absolute portfolio value in both a cost and
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a cost-free environment. The former was to be expected: when employing a policy in the
same environment as it was learnt, the performance is expected to better than that of a
policy that was learnt in a different environment. For this reason, the results regarding the
cost environment are striking. To further analyse this, the difference in the average costs
between the two agents in the cost/cost-free environment is calculated for each episode,
accounting for the fact that the agents do not always start from the same position. For a
specific agent, the difference in its portfolio value between the cost-free and cost environment
can be explained solely by the transaction costs resulting from trading in the underlying
stock. This is because the agent is in each scenario tested on the same set of paths: an
agent sees the same states in the cost-free and cost environment and takes hence the same
actions in both. Therefore, if the difference in the average portfolio value between two agents
(trained in different environments) in a cost environment is equal to the adjusted average
transaction costs, the difference in performance can be attributed solely to the difference
in transaction costs resulting from different positions taken. However, this is not the case
for the two agents that were trained in different environments; the difference between their
average portfolio values may be explained by a better performance of the agent trained
without costs. As the introduction of transaction costs changes the hedging problem, the
agents might not have reached the same level of accuracy during training. By tuning the
hyperparameters of the RL algorithm and/or increasing the number of iterations, the agent
trained with costs should be able to discover the right actions. In this way, it should be
feasible to obtain a policy that is at least as good as a policy that is learnt in the absence
of costs.

Table 8: Results of the two RL agents (one being trained in the absence, the other in the presence
of transaction costs and both tested on a cost and cost-free environment) in terms of the average
portfolio value (µ, left) and the average absolute portfolio (MAE, right) for the vanilla call option.

Trained

Tested
No costs Costs

No costs -80.81 -104.93
Costs -84.21 -107.86

Trained

Tested
No costs Costs

No costs 80.85 104.93
Costs 87.73 109.78

The results for the digital option are at first sight striking. Although the average portfolio
value of this option is more negative in the presence of transaction costs, the average absolute
portfolio value is significantly lower. This might again be explained by the option’s delta.
As previously described and shown, the delta is fairly constant low, except near expiration
where the delta can change extremely fast. In the absence of transaction costs, the agent
learnt to track the delta: it took large investments if the stock price approached or exceeded
the strike price and sold it again if the stock price moved away from the strike in these last
time steps. In the presence of transaction costs, large moves in the agent’s position are very
costly. Due to the convexity of the cost function as defined in Equation 92, it is less costly
to build up a position over a longer period of time, rather than taking a large position at
once in the last time steps. The higher the fees, the less willing the agent is to take such
large positions in the underlying stock just before maturity. As a result, the presence of
transaction costs smooths out the actions taken by the agent. This is supported by Figure
22. It presents the behaviour of the RL agent on the same simulated episode as shown in
the absence of transaction costs in Figure 14. The positions and moves in the amount hold
are quite lower in the last few time steps compared to the situation without transaction
costs.
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Figure 22: A single episode of a digital call option with an example of a pin risk in the presence
of transaction costs.

The distribution of the agent’s position in the digital option’s underlying stock, presented
in Figure 23, supports the fact that the presence of transaction costs smooths out the action
space. It follows that distribution in the absence of transaction costs is narrower compared
to the situation with transaction costs, except for the last few time steps. The distribution
disperses earlier in the absence of transaction costs and takes higher values compared to
that in the presence of transaction costs. This is reflected in the mean of the position over
time: it is higher for the first ∼ 30 time steps in the presence of transaction costs, after
which it is higher for the environment without transaction costs. Furthermore, the average
position and the average absolute change in position on a per episode basis, presented in
Table 9, are significantly higher in the presence of transaction costs.

Figure 23: Distribution of the position in the underlying stock of the digital call option of the RL
agent in the absence of transaction costs (left) and the presence of transaction costs (right).

Table 9: The average position and average absolute change in position of two RL agents trained
in the absence/presence of transaction costs on a per episode basis for the digital call option.

Environment Mean Absolute change
No costs 9.66 1.43

Costs 10.09 1.52
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As the transaction costs might avoid large moves in the agent’s position in the last time
steps, it might also help to avoid large hedging errors in these steps. To validate this
assumption, the RL agent that had been trained in the absence/presence of transaction
costs is tested on an environment with/without transaction costs. The results in terms of
the average (absolute) portfolio value are shown in Table 10. On a per episode basis, the
average absolute portfolio value is significantly lower for the RL agent being trained in a cost
environment. This holds both when it is tested in the absence and presence of transaction
costs. So, the presence of transaction costs seems to lead to a smoother sequence of actions
taken by the agent. This seems to avoid large hedging errors near/at maturity and in this
way to an improved hedging performance of the digital call option. This is in line with the
call spread approach used in practice to hedge digital calls, see Section 3.2.2. Again, tuning
the hyperparameters and/or increasing the number of iterations should allow the agent that
is trained in a cost-free environment to learn the smoothed hedging strategy and hence to
obtain a policy that is at least as good as the one that is learnt in the presence of transaction
costs.

Table 10: Results of the two RL agents (one being trained in the absence, the other in the presence
of transaction costs and both tested on a cost and cost-free environment) in terms of the average
portfolio value (µ, left) and the average absolute portfolio (MAE, right) for the digital call option.

Trained

Tested
No costs Costs

No costs 1.68 -7.08
Costs -8.61 -17.77

Trained

Tested
No costs Costs

No costs 32.25 32.92
Costs 28.33 29.70

For the UAI barrier call option, the average portfolio value deviates significantly less from
zero and the average absolute portfolio value is significantly lower in the presence of transac-
tion costs compared to the environment without transaction costs. This might be explained
by the fact that the UAI barrier option acts as a digital option when the barrier has not
been hit. Following the same line reasoning as for the digital call option, the introduction of
transaction costs might avoid large moves in the agent’s position when the stock price moves
near the barrier. This might in turn avoid large hedging errors. Compared to the digital
option, the distribution of the position in the underlying stock over time shows different
behaviour. This is illustrated in Figure 24. The distribution starts earlier to disperse on
both sides in the absence of transaction costs. This might be explained by the additional
payoff uncertainty introduced by the barrier. As a result, the agent might keep a more
constant position at the beginning of the option’s lifetime in the presence of transaction
costs. As time passes, the uncertainty often decreases, resulting in the agent taking larger
positions to hedge the option correctly.

Figure 24: Distribution of the position in the underlying stock of the UAI barrier call option of
the RL agent in the absence of transaction costs (left) and the presence of transaction costs (right).
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7.3 Generalizability

This section analyses the generalizability of the RL agents. The robustness against changes
in some of the parameters of the option is evaluated in Section 7.3.1. Section 7.3.2 describes
the agent’s flexibility with respect to the learning of multiple option types simultaneously.

7.3.1 Modified Option Characteristics

The previous sections tested the performance of an RL agent on an option that had the
same characteristics as the one on which the agent had been trained. When changing one
of the option’s parameters, the option value and hence optimal hedging behaviour change.
This subsection tests the robustness of the agent against changes in the strike price, initial
value of the underlying stock, initial value of the instantaneous variance, and barrier level.
For this, the RL agent trained on the plain vanilla call is used to investigate the impact
of changes in the first three parameters, and the RL agent trained on the UAI barrier call
option is used for the latter. The agents are not re-trained and tested on environments
without transaction costs. As the option value changes the PnL scaling, the ratio of the RL
agent’s terminal value to the delta hedging one is presented on a per episode basis. This is
done to better compare the hedging performance of the two strategies across the modified
option parameters.

7.3.1.1 Modified Strike Price

The behavior of the RL agent in a test environment with a different strike price is shown in
Table 12. Recall that the agent had been trained on an option with strike K = 100. For the
delta hedging strategy, it follows that the average portfolio value decreases in absolute value
as the strike moves further away from K = 100 where the option is ATM. This was to be
expected, as an option that is initialised with a sufficiently low (ITM)/high (OTM) strike is
easier to hedge compared to an option that is initialised ATM. It involves less uncertainty,
because it is likely that the option will remain ITM/OTM, and the optimal position, hence
hedging error, will change less throughout an episode. The opposite pattern is visible for
the RL agent. Although its average portfolio value does not change drastically, the absolute
hedging error and standard deviation are the lowest for the strike on which the agent had
been trained and these increase as the strike moves away from this value. The diminishing
performance for the RL agent combined with an improving portfolio value for the delta
hedging results in an increasing ratio between both when one moves away from K = 100.
Based on these results, it follows that the RL agent is robust against small changes in the
strike price (2-3%) and still significantly outperforms the delta hedging strategy in these
cases. However, the agent’s performance gets worse for larger changes in the initial strike
price. This is visually shown in Appendix C. The delta hedging strategy is beneficial in
these cases. This can be explained by the fact that the strike price is not explicitly captured
in the state. When being trained on a fixed strike price, the agent was able to derive the
payoff structure and hence the strike from the obtained rewards. When the strike changes,
the initial position would be lower/higher compared to the trained environment in which the
option was ATM. Based on this, the agent may understand that the option is ITM/OTM
and hence adjust the current position accordingly. However, if the strike deviates too much,
without being captured in the state, the agent will likely under- or over-hedge at some point
in the episode, leading to an accumulation of hedging errors. Training on a range of strikes
simultaneously might improve the agent’s generalizability, although it may also average out
the payoff and result in learning instabilities. As the strike price is explicitly captured in the
option moneyness, capturing this variable in the state may also be considered to improve
the agent’s generalizability.
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Table 11: The mean and standard deviation of the RL agent’s and delta hedging’s terminal
portfolio value, and their ratio on a per episode basis for different strikes K. For these strategies,
as well as the ratio between both, the scenario with the lowest portfolio’s standard deviation is
highlighted in grey.

RL hedging Delta hedging Ratio RL/delta
K µ MAE σ µ MAE σ µ σ
95 -85.00 146.32 178.85 -68.30 68.31 64.24 13.28 346.30
96 -84.80 133.67 155.85 -92.83 92.83 68.72 2.27 4.09
97 -83.89 116.81 126.45 -117.00 117.00 69.50 1.18∗ 1.21
98 -82.85 98.38 92.48 -137.86 137.86 67.17 0.73 0.57
99 -81.60 84.52 57.11 -151.59 151.59 62.83 0.54 0.31
100 -80.81 80.85 36.27 -157.10 157.10 61.69 0.52 0.13
101 -80.04 81.88 56.03 -152.82 152.82 63.71 0.52 0.28
102 -79.35 91.97 89.76 -140.20 140.20 68.07 0.65 0.50
103 -79.14 108.81 122.29 -121.55 121.55 71.25 0.97 0.87
104 -78.99 124.86 150.01 -99.59 99.59 71.21 1.54 1.54
105 -78.89 137.22 172.27 -77.19 77.19 67.09 2.54 2.77

7.3.1.2 Modified Initial Stock Price

A similar is pattern is visible when changing the initial value of the underlying stock S0.
This is presented in Table 12. Recall that the RL agent had been trained on S0 = 100,
where the option is ATM. The option gets more OTM/ITM as S0 moves away from this
value. Following the same reasoning for the modified strike price, this results in a lower
average portfolio value for the delta hedging strategy. Just like for the modified strike,
the absolute hedging error and standard deviation of the RL agent are the lowest for the
initial stock price (S0 = 100) on which the agent had been trained. The performance in
terms of the absolute portfolio diminishes as S0 moves away from this value, resulting in an
increasing ratio between both strategies. It seems that the RL agent is robust against small
changes (2-3%) in the initial stock value. Although S0 is captured in the state to calculate
the logarithmic returns

(
log( StS0

)
)
, the delta hedging strategy significantly outperforms the

agent for a larger change in the initial stock price. The impact is similar to that what is
shown for the modified strike Appendix C. A reason might be that for two different values
of S0, an equal percentage change in the stock price outputs the same state variable, but
may not yield the same option moneyness and hence optimal action. Including the option
moneyness in the state might not only improve the agent’s generalizability with respect to
the strike but possibly also to the (initial) stock price.

Table 12: The mean and standard deviation of the RL agent’s and delta hedging’s terminal
portfolio value and their ratio on a per episode basis for different initial values of the underlying
stock S0.

RL hedging Delta hedging Ratio RL/delta
S0 µ MAE σ µ MAE σ µ σ
95 -74.92 132.84 168.36 -67.92 67.92 62.13 2.91 3.25
96 -75.79 122.09 147.91 -91.91 91.91 67.88 1.67 1.70
97 -76.77 107.13 121.36 -116.04 116.04 69.33 1.01 0.92
98 -77.75 90.74 89.33 -136.70 136.70 66.73 0.66 0.51
99 -79.23 81.10 55.78 -151.18 151.18 63.07 0.52 0.28
100 -80.81 80.85 36.27 -157.10 157.10 61.69 0.52 0.13
101 -82.40 85.28 57.35 -153.20 153.20 63.42 0.54 0.31
102 -84.45 99.63 92.90 -141.29 141.29 68.31 0.72 0.56
103 -86.33 118.67 127.36 -122.64 122.64 71.58 1.13 1.12
104 -88.11 136.59 157.83 -100.52 100.52 71.84 2.00 3.06
105 -89.23 150.88 182.63 -77.83 77.84 69.17 12.32 487.33
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7.3.1.3 Modified Initial Instantaneous Variance

Contrary to the modified strike and initial stock price, the RL agent shows the same be-
haviour as the delta hedging strategy when changing the initial value of the instantaneous
variance ν0. This is shown in Table 13. For both strategies, the terminal portfolio increases
in absolute value as ν0 increases. This can be explained by the fact that a lower ν0 makes
the hedging task easier since the expected stock price movements are smaller. As a result,
the option value and hence the optimal hedging position tend to be more steady. This gives
smaller hedging errors. Higher volatility leads to more sudden price jumps, which introduces
more uncertainty in the option value and creates more hedging errors in the discrete setting.
Based on these results, it seems that a single training may be sufficient to properly hedge a
call option with any realistic value of ν0: the RL agent is able to deal a volatility change of
around 30% (from

√
0.2 ≈ 0.44 to

√
0.075 ≈ 0.27 and to

√
0.375 ≈ 0.57). For this range, the

RL agent significantly outperforms the delta hedging strategy in terms of the (ratio of the)
average terminal portfolio value as well as its standard deviation. The RL agent is more
robust against changes in ν0 compared to a modified K or S0. A reason for this might be
that the instantaneous variance is explicitly captured in the state to calculate the variance
of the logarithmic returns (

√
νt∆t). This adjusts for the impact of a modified ν0, i.e. the ex-

pected stock price movement between two trading points due to the instantaneous variance.
Note that the instantaneous variance is modelled as a mean-reverting process, see Section
3.1.3. This means that the instantaneous eventually reverts to the long-time average θ,
regardless of the value of ν0. Hence, for options with a longer lifetime, it may be interesting
to investigate the impact of a modified θ or modified volatility of the instantaneous variance
ε.

Table 13: The mean and standard deviation of the RL agent’s and delta hedging’s terminal
portfolio value and their ratio on a per episode basis for different initial values of the instantaneous
variance ν0.

RL hedging Delta hedging Ratio RL/delta
ν0 µ MAE σ µ MAE σ µ σ

0.075 -36.06 36.12 16.05 -66.11 66.11 26.80 0.56 0.16
0.1 -44.11 44.16 19.75 -83.05 83.05 33.18 0.54 0.14

0.125 -52.81 52.85 23.71 -100.94 100.94 40.03 0.53 0.13
0.15 -61.92 61.96 27.82 -119.36 119.36 47.09 0.52 0.13
0.175 -71.28 71.32 32.02 -138.14 138.14 54.38 0.52 0.13
0.2 -80.81 80.85 36.27 -157.10 157.10 61.69 0.52 0.13

0.225 -90.46 90.50 40.56 -176.16 176.16 69.06 0.51 0.13
0.25 -100.19 100.23 44.89 -195.34 195.34 76.47 0.51 0.13
0.275 -109.98 110.02 49.23 -214.54 214.54 83.83 0.51 0.13
0.3 -119.82 119.87 53.59 -233.86 233.86 91.31 0.51 0.13

0.325 -128.79 128.92 58.43 -251.82 251.82 98.91 0.62 0.44

7.3.1.4 Modified Barrier Level

For the UAI barrier call option, the behaviour of the RL agent and delta hedging strategy
in a test environment with a different barrier level is shown in Table 14. From a financial
perspective, it is to be expected that a lower barrier level results in a lower absolute value
of the terminal portfolio value. A lower barrier means that the barrier is more frequently
kicked in. When the barrier is kicked in, the UAI barrier option behaves as a plain vanilla
call option and is easier to hedge. For both the RL agent as well as the delta hedging
strategy, it can be observed that the standard deviation of the terminal portfolio value is
indeed lower for lower barrier levels. For delta hedging strategy, the (absolute) average value
also gets worse as the barrier level increases, except for the first four barrier levels. Such a
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pattern is not visible for the RL agent. Here, a good performance on a lower barrier level
was also to be expected. The agent was able to hedge the option correctly when the barrier
on which the agent had been trained was hit. As the option behaves as a plain vanilla call
option from this moment onwards, the agent learnt the dynamics of the vanilla call option.
For the lower tested barriers, the RL agent significantly outperformed the delta hedging
strategy.30 This also holds for a barrier that is slightly higher than the one the agent had
been trained on. However, the delta hedging strategy seems to outperform the agent for a
larger barrier.

Table 14: The mean and standard deviation of the RL agent’s and delta hedging’s terminal
portfolio value and their ratio on a per episode basis for different UAI barrier levels B.

RL hedging Delta hedging Ratio RL/delta
B µ MAE σ µ MAE σ µ σ
95 -114.87 114.91 39.00 -157.10 157.10 61.69 0.83 0.39

100.5 -114.74 114.78 39.12 -157.07 157.07 61.64 0.83 0.39
101 -114.22 114.26 39.94 -156.76 156.76 61.98 0.82 0.38

101.5 -113.39 113.44 42.77 -156.61 156.61 64.07 0.82 0.37
102 -112.26 112.32 48.21 -156.60 156.60 68.59 0.80 0.36

102.5 -110.78 110.89 56.10 -157.18 157.18 76.33 0.79 0.36
103 -108.80 108.99 64.73 -158.55 158.55 86.91 0.77 0.36

103.5 -108.07 108.43 76.81 -161.65 161.65 101.47 0.76 0.47
104 -106.73 107.41 88.41 -162.93 162.98 113.10 0.76 1.25

104.5 -105.65 107.13 99.89 -163.34 163.64 123.17 0.77 2.04
105 -106.04 109.53 112.11 -163.68 164.59 134.36 0.84 2.12

105.5 -106.37 113.66 125.03 -161.25 163.31 141.79 3.24 49.30

7.3.2 RL Agent Trained On Different Option Types Simultaneously

In this research setting (given the fixed number of training iterations), the first attempts
seem to indicate that it is difficult to train the RL agent on the plain vanilla, digital, and
UAI barrier call option type simultaneously. For these options, the RL agent learnt to pick
up the extreme delta spikes/drops in the options’ dynamics during the training. However,
it systematically under- or over-hedges and the hedging performance is worse than that of
the RL agents trained on the options separately. This is supported by the fact that the
DDPG algorithm did not converge: the actor and critic loss increased at some point during
training. The fact that the RL agent has to learn multiple option dynamics and derive
what type to hedge in a specific test environment hardens the hedging task. It is likely
that it needs to see more training examples and requires a different set of hyperparameters
(such as a lower learning rate) to learn the correct hedging strategy. As the RL agent did
pick up some of the delta spikes/drops, additional runs using grids of hyperparameters,
division of the option types over the training environments and a different (scaling of the)
added scale component are required to conclude whether it can be used to hedge different
option types simultaneously. This question is especially important if one wants to hedge a
portfolio of options. Using different RL agents for each of the options separately would not
be appropriate in this case, since it would not capture the correlation between the different
options.

7.4 Impact of Hyperparameters

This section analyses the impact of the learning rate, optimization technique, discount
factor, and seeds chosen to initialise the weights of the neural networks on the hedging

30A barrier level of 99.5 means that the option is already kicked in at inception. This level is added as a
validation.

66



performance. The analyses are performed on the plain vanilla call option.

7.4.1 Learning Rate

This subsection investigates the impact of the learning rate on the hedging performance of
the RL agent. This is done for the actor learning rate, as the rate for the critic did not
seem to influence the performance that much. Using the time inverse decay scheme, nine
different agents are trained on a grid of the following decay initial rates and decay steps:
[0.001, 0.005, 0.01] and [100, 250, 500]. A higher value of the initial decay rate/decay step
means a larger/faster update of the learning rate. The values of the resulting learning rates
are shown per iteration in Figure 7.4.1. A log scale is applied for visualization purposes.

Figure 25: The learning rate of the actor (represented on a log scale) during training for different
initial decay rates (represented by the first number in the legend) and decay steps (represented by
the second number in the legend).

For each of these schemes, the results of the RL agent in terms of the portfolio value
are presented in Table 15. The average train return31, actor loss and learning rate during
training are visualized in Figure 26. It can be observed that the actor loss has not converged
for some of the decay schemes, in particular for the smallest initial learning rate (0.001) that
decays the fastest (decay step of 100). The small weight updates may result in getting stuck
for too long at a local minimum or saddle point, causing a high training error. The initial
learning rate of 0.001 combined with a decay step of 250 reflects the slow converge caused
by a small learning rate: the actor loss shows a downward trend, but takes higher values
during training compared to the other converged plots. The average (absolute) portfolio of
this scheme is also quite high. Extending the training cycle might lead to convergence and
hence similar results to these of the other converged schemes. The performance improves
when slower decaying this learning rate, by using a decay step value of 500. For the highest
initial learning rate (0.01), the algorithms have converged, except in combination with a
decay step of 100. The actor loss of this scheme shows a spike at the end of the training
together with a drop in the average train return. Despite the convergence of the other two
decay steps with the initial learning rate, the optimal average (absolute) portfolio value is
not achieved at these schemes. This may be explained by the fact that a higher learning
rate can cause the model to converge too quickly to a suboptimal solution. Although an
initial learning rate of 0.005 seems to result in a slightly increasing actor loss at the end of
the training when combined with a decay step of 100 or 500, this value seems to give an
on average good enough weights.32 It follows that the convergence of the algorithm and the
performance of the RL agent are quite sensitive to the learning rate for the actor. Extending
the grid of initial decay rates and decay steps might result in an even better convergence
and performance of the model.

31The average undiscounted reward of an episode.
32Note that an initial decay rate of 0.001 combined with a decay step of 500 seems to perform better in

terms of the portfolio value for the plain vanilla call option compared to a learning rate of 0.005 with a
decay step of 250. However, the latter performs better on average when considering all the option types.
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(a) 0.001-100 (b) 0.001-250 (c) 0.001-500

(d) 0.005-100 (e) 0.005-250 (f) 0.005-500

(g) 0.01-100 (h) 0.01-250 (i) 0.01-500

Figure 26: The average return, actor loss and actor learning rate for different inverse time decay schemes (initial decay rate - decay steps).
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Table 15: The performance of the RL agent in terms of the terminal portfolio value for different
initial decay rates and decay steps of the actor’s learning rate.

Initial decay rate - decay step µ MAE σ 5thpct 95thpct
0.001-100 -144.5 149.6 78.6 -246.8 15.8
0.001-250 -113.0 113.0 31.8 -168.1 -65.5
0.001-500 -79.0 79.1 30.9 -130.6 -29.3
0.005-100 -79.6 80.4 35.4 -136.4 -25.5
0.005-250 -80.8 80.8 36.2 -144.9 -24.8
0.005-500 4.1 98.5 123.0 -145.4 238.4
0.01-100 -133.5 134.4 46.2 -199.3 -63.5
0.01-250 -96.1 96.1 38.2 -160.3 -36.6
0.01-500 -88.0 88.1 33.8 -149.0 -37.4

7.4.2 Optimizer

This subsection investigates the impact of the optimization technique for minimizing the
expected loss of the actor and critic network. Next to the Rectified Adam (RAdam) opti-
mizer, which is chosen in this research as an optimization technique, the Stochastic Gradient
Descent (SGD) and Adam optimizer are tried. The results in terms of the terminal portfolio
value are shown in Table 16. It can be observed that the RAdam optimizer results in the
lowest average absolute portfolio value and the lowest standard deviation, followed by the
Adam optimizer. The SGD optimizer has the highest average hedging error, as well as the
highest standard deviation. The differences in the average portfolio values are statistically
significant. In addition, the distribution of the portfolio value is the most spread out for the
SGD optimizer and the least for the RAdam. These patterns are supported by Figure 27,
which shows the average actor loss and return for the different optimization techniques. It
can be observed that although the SGD optimizer has the lowest actor loss through train-
ing, it results in the lowest average train return. The average train return is the highest
throughout training for the RAdam optimizer. The same pattern is visible for the minimum
train return and the maximum train return, which are the highest for the RAdam optimizer
followed by the Adam technique. These results are in line with what is described in Section
6.3. They confirm the fact that the adaptive learning rate, applied by the Adam optimizer,
leads to gradient descent in a better direction of improvement compared to SGD. Further-
more, it is visible that the Adam optimizer results in an actor loss that is more oscillating
compared to the SGD and RAdam and that the average train return shows a slower conver-
gence. This confirms the fact that rectifying the variance of this rate, applied by RAdam,
leads to faster convergence. It follows that given the fixed number of training iterations, the
RL agent learnt how to hedge the call option for all three optimization techniques, but the
performance and speed of convergence are sensitive to the choice of the technique.

Table 16: The performance of the RL agent in terms of the terminal portfolio value for for the
Stochastic Gradient Descent (SGD), Adam and Rectified Adam (RAdam) optimizer.

Optimizer µ MAE σ 5thpct 95thpct
SGD -196.50 196.50 56.69 -291.77 -109.78
Adam -115.67 115.86 55.25 -219.36 -45.77

RAdam -80.79 80.83 36.24 -144.92 -24.83
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Figure 27: The average actor loss (left) and return (right) for the Stochastic Gradient Descent
(SGD), Adam and Rectified Adam (RAdam) optimizer.

7.4.3 Discount factor

This subsection investigates the impact of the discount factor on the hedging performance
of the RL agent. Eight different agents are tested on a grid of the following discount
factors: γ ∈ [0, 0.25, 0.5, 0.75, 0.9, 0.925, 0.975, 0.999].33 For each discount factor, the results
of the RL agent in terms of the portfolio value are presented in Table 17. Up to and
including a factor of 0.9, the agent is able to hedge the option correctly and outperforms
the delta hedging strategy. The average (absolute) portfolio value, as well as the standard
deviation, is similar for these tested discount factors, and a nonzero discount factor leads to
significantly lower absolute hedging errors. However, at some point, a discount factor higher
than 0.9 results in error propagation during training and higher hedging costs: the absolute
portfolio, as well as the standard deviation, increases significantly. These observations are
supported by Figure 28, which shows the average actor loss and return for a discount factor
γ ∈ [0, 0.9, 0.925, 0.999]. The agents that had been trained on a discount factor of 0 and 0.9
show a similar convergence of the actor loss. The average return is slightly higher for the
discount factor of 0.9 compared to the factor of 0. The actor loss for the discount factor of
0.925 starts to increase after approximately 2000 iterations. In addition, the corresponding
average return is lower than that of lower discount factors. Despite the higher actor loss and
lower average return, the RL agent that had been trained on this factor, as well as on 0.975,
was still able to pick up some of the delta and option spikes. This is also reflected in Figure
28, since the actor loss is significantly lower and the average train return is significantly
higher for this discount factor than that for a discount factor of 0.999. For the latter, the
RL agent incorrectly learnt to rarely take a position in the underlying stock, just like for the
down-and-in barrier call option. This results in extreme gains and losses, that cancel out
and hence lead to an on average ”good” portfolio value, but a very high average absolute
portfolio value. The corresponding actor loss shows diverging behaviour and the average
return initially decreases and then stabilizes at a level that is significantly lower than that
of the other discount factors.

33Recall that with a higher discount factor, future rewards are more strongly taken into account compared
to a lower discount factor.
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Table 17: The performance of the RL agent in terms of the terminal portfolio value for different
discount factors.

Discount factor µ MAE σ 5thpct 95thpct
0 -88.64 88.98 33.76 -148.13 -37.61

0.25 -81.16 81.16 28.12 -132.37 -39.72
0.5 -77.60 77.63 31.35 -131.40 -28.19
0.75 -85.47 86.40 36.06 -146.51 -32.12
0.9 -80.79 80.83 36.24 -144.92 -24.83

0.925 -157.42 157.44 62.25 -268.74 -64.36
0.975 -156.66 159.53 86.99 -281.16 7.01
0.999 -2.44 185.38 236.05 -160.67 494.42

Figure 28: The average actor loss (left) and return (right) for the different discount factors.

Based on these results, it follows that a nonzero discounted factor leads to a better perfor-
mance compared to a discount factor of zero. This factor can be stretched up to a point, after
which the training destabilizes. The discount factor can be pushed even further towards 1 by
softening the errors through training and tuning the hyperparameters. An example of this,
along with a representation of the sensitivity to the hyperparameters, is shown in Figure
29. This figure shows the average return, actor loss, and discount factor for two different
attempts aimed at increasing the discount factor through training. For the left subplot, the
discount factor was increased up to approximately 0.97. Using the corresponding inverse
time decay scheme, the actor loss and average return converged. The RL agent learnt to
effectively hedge the plain vanilla call. The right subplot shows a diverging behaviour: the
average actor starts to increase at an early stage of the training, leading to a propagation
of instabilities. At the same time, the average train return is quite oscillating and shows a
downward trend. This highlights the fact that the discount factor should not be increased
at a rate that is too high. The longer the planning horizon, i.e. modelled by a higher
discount factor, the more complex finding an optimal policy becomes and the greater the
computational expense [27].
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Figure 29: The average return, actor loss and discount factor for two different inverse time decay
schemes (initial rate = 0.1, decay rate = 0.1 and 0.3 and decay steps = 200 and 180), starting from
γ0 = 0.9.

7.4.4 Seeds for Neural Networks’ Weight initialisation

Weight initialisation is the procedure of setting the neural network’s weights, which define
the starting point for the training of the neural network. This subsection analyses the
impact of the seed used in this procedure. For this, five different RL agents are trained on
the plain vanilla call option using different seeds34 for initializing the critic (seed=0-4) and
actor (seed=6-10) network. All the trainings converged. The results in terms of the terminal
portfolio value are shown in Table 18 and the corresponding distributions of the terminal
portfolio value are presented in Figure 30. It follows that the distributions of the portfolio
value are quite overlapping and similar. Although the second setting shows a higher peak
and a slightly more concentrated distribution, none of the distributions show extreme values
or an extremely deviating center towards the right or left. Despite the average portfolio
values are significantly different for the tested seeds, they lie more or less in the same range
(around -85). The values of the standard deviation also lie in the same range (around 35). In
addition, the difference between the worst and best average portfolio value is less than half
of the standard deviation. Furthermore, the RL agent learnt to hedge the vanilla call option
and significantly outperformed the delta hedge for all tested combinations of seeds. Hence,
it seems that in this research setting, the choice of the seeds for the neural networks’ weight
initialisation does not impact the overall conclusion regarding the RL agent’s hedgeability
and results in similar distributions of the portfolio value. Some deviation in the portfolio
values was to be expected. As mentioned in [53], a neural network that is initialised with
a different set of weights results in different starting points for the optimization process
and might potentially result in a different final set of weights with different performance
characteristics. In addition, due to stochasticity during training, the agents were not trained
on the same stock price paths and/or order. This might also have led to some deviation in
the portfolio values between the different agents.

34Apart from the fact that a fixed seed is used to initialise the weights, the weights are initialised in the
same way as in the experimental setup: they are drawn from a uniform distribution within [-limit, limit],

with limit =
√

3× scale/n and n the number of input neurons.
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Table 18: The performance of the RL agent in terms of the terminal portfolio value for different
seeds used to initialise the neural network’s weights.

Seed (actor - critic) µ MAE σ 5thpct 95thpct
1 (6-0) -88.08 88.11 34.73 -149.85 -36.57
2 (7-1) -77.05 77.29 30.32 -128.59 -28.01
3 (8-2) -86.51 86.66 34.85 -147.15 -31.86
4 (9-3) -90.74 90.99 38.06 -155.40 -30.80
5 (10-4) -81.07 81.33 37.32 -141.37 -16.31

Figure 30: Distributions of the terminal portfolio value for different seeds used to initialise the
neural network’s weights.
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8 Conclusion

The goal of this research was to investigate to what extent reinforcement learning (RL) can
be used to hedge a plain vanilla, digital and different types of a barrier call option under
the Heston model. To answer this research question, the hedging problem was embedded
in a Markov Decision Process (MDP) and separate RL agents were trained on the different
option types, both in the absence and presence of transaction costs. To evaluate the perfor-
mance of the agents, the terminal portfolio values of 10,000 (almost surely) out-of-sample
simulated stock price paths were compared with these of the delta hedging strategy.

The results showed that reinforcement learning can be used to effectively hedge a plain
vanilla, a digital, an up-and-in (UAI), and a down-and-out (DAO) barrier call option under
the Heston model. The RL agents picked up the dynamics of these options and learnt to
replicate them. Both in the absence and presence of transaction costs, the agents were able
to hedge these options more optimally than the delta hedging strategy in terms of the av-
erage (absolute) portfolio value and its standard deviation. The introduction of transaction
costs led to more hedging errors in the case of the vanilla and DAO barrier call option, while
it resulted in an improved hedging performance for the digital and UAI barrier call option.
Except for the digital call option, the presence of transaction costs reduced the trading of
arbitrary small amounts of the underlying stock: the agents’ actions were smoother and
expressed a delay compared to the delta hedge. This is because these moves are very costly
and the risk aversion parameter, which is captured in the reward function, forces the agents
to control the volatility of the period-by-period hedging costs (that include the transaction
costs). For the digital call option, the introduction of transaction costs avoided large moves
in the agent’s position in the last time steps. Instead, the agent learnt to smooth out the
actions and to build up a position throughout the digital option’s lifetime. This seemed to
avoid high replication errors in these last time steps and to improve the hedging performance.

Furthermore, the plain vanilla call option is robust against (and still outperformed the
delta hedging strategy for) small changes in the underlying stock’s strike K and the initial
stock price S0, and for a large range of initial instantaneous variance values ν0. The RL
agent trained on the UAI barrier call option was also robust against lower barriers and a
slightly higher barrier than the one it had been trained on. In addition, the results showed
that the RL agent trained on the vanilla call option was sensitive to some of the hyper-
parameters chosen to train the agent. First of all, the (speed of) convergence of the RL
algorithm, as well as the hedging performance, is sensitive to the actor learning rate and the
optimization technique. A nonzero discount factor resulted in a significantly lower portfolio
value compared to a factor of zero, but the training of most option types destabilized when
it exceeded the value of 0.9. Finally, the choice of the seeds used for the neural networks’
weight initialization did not impact the overall conclusion regarding the RL agent’s hedge-
ability. Since the same state representation and option valuation approach is used for all
option types, similar results regarding the agent’s robustness and flexibility are expected for
the other option types that the agent learnt to hedge.

In this research setting, the performance of the RL agent was worse on the up-and-out
(UAO) barrier call option and the agent did not learn how to hedge the down-and-in (DAI)
barrier option. The RL systematically under- or over-hedges in the case of the former and
learnt to take a full investment or no investment at all in the underlying stock of the latter.
Next to the fact that the delta behaviour of these options is more complicated compared
to the DAO and UAI option, this might be explained by the fact that these options have a
payoff range that is more difficult to enable, which makes hedging harder.
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9 Discussion

This section provides the main contribution, advantages, limitations, and potential improve-
ments for further research in the field of option hedging using reinforcement learning (RL).

This study builds on earlier studies that investigated the application of RL to option hedg-
ing. These mainly focused on the plain vanilla call option. As their implementation details
are generic, it is difficult to compare the experimental results. Despite this fact, these stud-
ies drew the same discussion as this research: the RL agent outperformed delta hedging for
the plain vanilla call option in both a cost and a cost-free environment. To the best of my
knowledge, this is the first study that investigated the application of RL to the hedging of
a digital call option and four types of the barrier call option separately.

A major advantage of the RL approach is that an agent does not need any information
about the strike price, the stock price process, the volatility process of the stock price, the
option pricing formula, the payoff function, the option delta, and transaction cost function.
The agent does not make any assumptions about these: it learns to hedge an option as good
as possible by interacting with the environment. This means that RL can be used to hedge
any option with a specific payoff function.35 In this way, RL is way more flexible compared
to mathematical models aimed at providing pricing formulas and hedging strategies. These
models are often based on unrealistic assumptions, such as continuous trading, or do not
provide a closed-form solution for all option types. Further research on different option
types, such as options with a very complex payoff structure, may yield new insights and
improve the practical utility. Another valuable extension would be to investigate American-
style options36 and options on stocks that pay dividends37. RL is also more flexible in the
sense that additional constraints, e.g. related to the position in the underlying asset, can
easily be incorporated by modifying the available actions.

A limitation of this research is its practicability and generality. The agents were trained on
a specific hedging problem: on a specific option type and a specific environment with a fixed
set of parameters. For example, although the Heston assumption is reflective of the real
market, the RL agent might not be able to adapt properly to a new, possibly better stochas-
tic process that models the stock price differently. Changes in the parameters/environment
would probably require retraining the agent. The same holds for large changes in the option
input parameters. Furthermore, the first attempt made to train an RL agent on multiple
option types simultaneously did unfortunately not succeed. Further research on practica-
bility and generality, both in terms of the option/environment conditions and the number
of options that can be hedged, would be useful.
Another point regarding the practicability is that although RL is a promising approach in
option hedging and risk management in general, it might be considered as being riskier than
traditional models. Implementing an RL algorithm for option hedging involves the determi-
nation of e.g. what to include in the model inventory, how to measure the risks associated
with the hedging strategy, the degree of risk aversion, and the model validation. As a result,
an RL algorithm is often more complex compared to traditional models. More specialized
skills are required to be able to implement the algorithm, understand the actions taken by
the agent, and interpret the results. For example, many banks often operate in jurisdictions
with stringent regulatory requirements [68]. As RL may introduce potential regulatory risk
and model risk, traditional models are likely to be preferred. This might change if more
regulatory instructions arise so that model-risk management can be enhanced, the added

35However, the results of the RL agent on the DAI and UAO option showed that RL does not always
outperform delta hedging. Finding a good policy might require a more extensive hyperparameter search or
a modified state.

36Options which can be exercised at any time before and including the expiration date.
37A dividend is a share of a company’s profits distributed in a pro-rata distribution to the shareholders.
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risk can be mitigated and banks can benefit more from the use of machine learning. RL
could have an important role here.

This research can be extended and improved in a few other ways. First of all, it focused
on delta hedging, as the RL agent could only trade in the underlying asset and a riskless
asset. The hedging task can easily be changed by including other assets, such that the agent
cannot only hedge delta exposure but also e.g. volatility exposure. As the option can then
better be replicated, this may lead to an even better hedging performance of the option.
Further investigations could lead to valuable insights. Besides, the performance of the RL
agent in the presence of transaction costs was compared with that of delta hedging. This
strategy does not take the transaction costs into account. Further research could consider
a more advanced benchmark that accounts for this.

The accounting formulation used to define the hedging objective led to a stable learning.
However, a disadvantage of this formulation is the requirement of a pricing model and a
possible bias introduced by such. Further research could focus on the cash flow formulation,
which does not require a pricing model and might in this way be more flexible. Another
promising adjustment might be to use a pre-trained agent based on the accounting formula-
tion and to adjust this model under the cash flow formulation (known as transfer learning).
Another point regarding the agent’s flexibility is the time between two trading points. This
value was chosen to be fixed in this research. An extension of this research could be to make
these intervals stochastic, for example by adding some noise. In this way, the agent may be
better able to hedge options with different maturities and hence different values of the time
to maturity than the one it was trained on. It might also be interesting to investigate the
impact of restricting the agent to only trade if the stock reaches a specified price level or
after the occurrence of a certain price change.
A related extension would be to train the agents on a finer discretization of time. The
performance of the delta hedging strategy is expected to increase as the rebalancing fre-
quency increases because the discretization error decreases. Nevertheless, Cao et al. [14]
showed that the RL agent consistently outperformed delta hedging and that the difference
between both performances increased as the frequency of hedging increased. It would be in-
teresting to see if the same applies to call options with a discontinuity in the payoff function.

Another interesting line of research would be to train the RL agent on actual historical
stock price data instead of simulated data. This would allow the agent to exploit the model
free component of RL, as it will learn a hedging strategy independent of any simulated
stock price process. In this way, the agent might learn patterns in the stock prices that
are not captured by the stochastic process. However, as described earlier, training the RL
agent requires a lot of data. A solution would be to use intraday option/stock data, but
this can introduce a correlation between the samples. Another idea is to simulate the stock
prices according to a stochastic process that is calibrated to the real market and to test the
performance of the agent on market data.

To train the agent, a fixed discount factor of 0.9 was chosen in this research. To better
reflect the hedging objective, further research can focus on obtaining a higher discount fac-
tor without causing instabilities. For this, different parameter values, decaying schemes,
and scaling of the state features can be investigated. In addition, the DDPG algorithm
was used to train the agent and a grid of hyperparameters was conducted to tune the al-
gorithm. Further research could try an improved version of this algorithm and conduct a
more extensive grid search. In addition, the performance of the algorithm could be im-
proved by implementing recently proposed techniques, such as a prioritized replay buffer
and batch normalization. The impact of different neural network architectures would also
be interesting to investigate.
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Appendices
The following appendices provide some additional visualisations and explanations on the
performance of two reinforcement learning (RL) agents that had been trained on respectively
an up-and-out barrier and a down-and-in barrier. In addition, for the RL agent trained on
a vanilla call option, an additional analysis is included on the impact of a modified strike
and a different discount factor.

A Performance RL agent on the up-and-out-barrier call
option

Figure A.1 shows a single simulated episode of the trained RL agent on the up-and-out
(UAO) barrier call option. It follows that the agent picked up some of the option (delta)
spikes. This is also visible in the corresponding value function, which is presented in Figure
A.2 and shows distinct contour levels through the option’s lifetime. The value function also
reflects the particularity of the UAO option: if the stock price approaches the barrier around
the 42th time step, the delta as well as the action taken by the agent drops. In addition, the
value function is less distinct and shows lower Q-values around this point in time. Although
the agent picked up some of the option dynamics, the agent does not properly hedge the
option. It is visible that the agent under-hedges the option. In addition, it takes short
positions in the underlying stock (negative actions) while a long position is to be expected
(e.g. before time step 30).

Figure A.1: A single episode of an up-and-out (UAO) barrier call option.
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Figure A.2: Corresponding value function of the single simulated episode per one share of the
up-and-out (UAO) barrier call option’s underlying stock.

B Performance RL agent on the down-and-in-barrier
call option

Figure B.1 shows a single simulated episode of the trained RL agent on the down-and-in
(DAI) barrier call option. It can be observed that the agent did not learn how to properly
hedge this option. The agent does not invest in the underlying stock, except for the position
at initiation (due to the self-financing condition). As a result, the hedge value does not
track the option value throughout the option’s lifetime. The inability of the agent to hedge
the option is reflected in the corresponding value function, which is shown in Figure B.2. As
the option goes ITM, one would expect a green area of actions with the highest values that
converges towards the top of the value function. However, no distinct contour levels can
be observed through the option’s lifetime. The estimated Q-values are inaccurate, which
results in poor performance of the agent.

Figure B.1: A single episode of a down-and-in (DAI) barrier call option.
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Figure B.2: Corresponding value function of the single simulated episode per one share of the
down-and-in (DAI) barrier call option’s underlying stock.

C RL agent tested on vanilla call options with a modi-
fied strike

Figure C.1 visualises the impact of a modified strike price on the RL agent’s hedge per-
formance for a vanilla call option with a strike price of K = 95, K = 100 and K = 105.
For these strikes, it shows the delta behaviour and actions taken by the agent for a par-
ticular episode, as well as the distribution of the portfolio value based on 10,000 simulated
episodes. It can be observed that apart from the first time steps, the actions taken by the
agent are similar for all three call options. The former can be explained by the fact that
the position in the underlying stock is set equal to the option value at initiation due to the
self-financing property. The call option with K = 95/K = 105 starts and ends ITM/OTM.
As a result, the delta is higher/lower than for the call option with K = 100. Since the
agent employs a similar strategy in this episode for all three strikes, it respectively under-
hedges/over-hedges in the case of K = 95/K = 105. The other way around also holds: the
RL agent over-hedges/under-hedges a call option with K = 95/K = 105 that starts and
ends OTM/ITM. As a result, the agents’ average portfolio values, shown in Table 11, are
similar. However, the average absolute portfolio value is significantly higher for the vanilla
call options with a modified strike. In addition, the distribution of the strike on which the
agent had been trained is narrower than these of the modified strikes. The fact that the
agent employs a similar strategy in a particular episode for different strikes reflects the fact
that the RL agent is not robust against large changes in the strike price. This is also visible
in the value function, which is similar for the three tested call options.
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(a) K = 95

(b) K = 100

(c) K = 105

Figure C.1: A single episode (left) and distribution of the portfolio value (right) for a vanilla call
option with strike (a) K = 95, (b) K = 100 and (c) K = 105.
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D RL agent trained on a vanilla call option using dif-
ferent discount factors

Figure D.1 visualises the impact of the discount factor used to train the RL agent on the
agent’s performance for a vanilla call option. Contrary to Appendix C, a separate agent
is trained on each of the tested discount factors. Hence, the agents’ value functions are
different. It can be observed that the results of the agents trained on a discount factor of
γ = 0 and γ = 0.9 are similar: both value functions are accurate and show similar optimal
actions (represented by the black dots), and the portfolio distributions have a similar shape.
Note that the estimated Q-values have a different colour scaling, as the future rewards are
not taken into account in case of γ = 0. For γ = 0.999, the agent did not learn how to hedge
the call option properly. Instead, the RL agent incorrectly learnt to rarely take a position in
the underlying stock. This is visible in the value function, which is inaccurate and in which
the optimal action is achieved at an action of zero for the entire episode. This results in
extreme gains and losses, which is reflected in the wide distribution of the agent’s portfolio
value.

(a) γ = 0

(b) γ = 0.9
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(c) γ = 0.999

Figure D.1: The value function of a single episode (left) and distribution of the portfolio value
(right) for three RL agents trained on a vanilla call option and a discount factor of (a) γ = 0, (b)
γ = 0.9 and (c) γ = 0.999.
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