
Master thesis Business Analytics

Time series clustering

Pjotr Roelofsen

(2516177)

March 28, 2018

Supervisors:

prof. dr. S. Bhulai (VU supervisor)

dr. M. Hoogendoorn (VU co-reader)

MSc. M. Hoenderdos (PwC supervisor)

Vrije Universiteit Amsterdam
Faculty of Science

De Boelelaan 1081a
1081 HV Amsterdam

PricewaterhouseCoopers Advisory N.V.
Consulting - Data Analytics
Thomas R. Malthusstraat 5

1066 JR Amsterdam

Preface

This thesis is written for the final part of the Master’s program in Business Analytics at the Vrije
Universiteit in Amsterdam. This is a two-year multidisciplinary program, aimed at improving
business processes by applying a combination of methods based on mathematics, computer sci-
ence and business management. The Master’s degree is concluded with a six-month individual
internship at a company. My internship took place at the Data Analytics team of the consulting
department of PwC. The research that I conducted at PwC on time series clustering is presented
in this thesis.

Over the past six months I have had a great time at PwC and I would like to thank everyone
in the Data Analytics team for letting me feel at home. I want to thank Maurice Hoenderdos, my
supervisor at PwC, in particular for his guidance during my internship period. I found the meetings
and constructive feedback very helpful for determining which steps to take during this research.
Furthermore, I would like to thank Jop Daalmans for providing feedback on my thesis and helping
me find the data set that I used during my practical research.

From the VU, I would like to thank Sandjai Bhulai, my first supervisor, for thinking along with my
research and also for giving feedback on my thesis. I would also like to thank Mark Hoogendoorn
for being the second reader of my thesis.

Pjotr Roelofsen - Amsterdam, March 2018

ii

Executive summary

This thesis provides a comparative study between the different methods that are available for time
series clustering. We first perform a literature study in which we explain the different methods in
clustering and discuss their performance, time complexity and applicability. The different meth-
ods are then put into practice by applying them on an actual time series data set from one of PwC’s
clients.

Clustering is the practice of finding hidden patterns or similar groups in data. It is one of the
most common methods for unsupervised learning, where a classification is given to every data
entry without predefining the different classes. Cluster analysis can be divided into three differ-
ent parts: determining a measure to quantify the similarity between observations, choosing which
method to use for obtaining the clustering and selecting the desired number of clusters.

Many real-world applications nowadays generate and store time series data. Clustering can be
applied on these time series to gain insight into the data. However, as it appears from previous
research, general clustering methods, such as k-means, are not designed for time series data and
therefore may not perform well. This is mainly caused by the fact that most general clustering
methods are built around the Euclidean distance, which does not seem to be a good measure for
time series data.

The literature study in this thesis resulted in a comparison between time series distance measures,
a comparison of clustering algorithms and an evaluation on how to select the "optimal" number
of clusters. After putting these methods in practice, the differences between the theoretical and
practical results are discussed.

In the first part of our literature study (Section 2), we discuss and compare seven different distance
measures. An overview of the methods that we discuss can be found in Table 1. The seven dis-
tance measures can be divided into three different categories: lock-step, elastic and feature-based
distance measures. The two lock-step measures we discuss are often applied when clustering static
(non time series) data, however they are less suitable for time series data. This is because they are
limited in handling noise, time shifts and time warping. Elastic measures overcome these limita-
tions, but at the cost of a higher time complexity. If the time complexity of elastic (and lock-step)
measures becomes too high, feature-based measures can be applied. These measures decompose
the time series into different features (sine waves, wavelets and strings in our case), after which
features with a low significance are dropped. This causes a reduction in both dimensionality (and
thus time complexity) and noise. At the end of Section 2, we present a flow-chart on the steps to
take when determining which distance measure to use in time series clustering.

Table 1: Overview of the seven distance measures that are discussed in Section 2.

Lock-step Elastic Feature-based
Minkowski (∀p) Dynamic Time Warping (DTW) Discrete Fourier Transform (DFT)
Pearson correlation Longest Common SubSequence (LCSS) Discrete Wavelet Transform (DWT)

Symbolic Aggregate approXimation (SAX)

The second part of our literature study examines clustering methods (Section 3). While the dis-
tance measures we discuss in Section 2 are mainly focused on time series, the methods that are
discussed in Section 3 are applicable for any type of clustering. We discuss two types of clustering
methods: hierarchical clustering and partitional clustering.

iii

In hierarchical clustering, a nested hierarchy of clusters is built, which can be organized as a tree.
The advantage of hierarchical clustering is that it does not require the number of clusters to be pre-
defined. A disadvantage is, however, that hierarchical clustering requires the distance matrix of all
pairs of observations to be calculated, which can be a time-consuming operation for large data sets.

Partitional clustering is a type of clustering where all observations in the data are partitioned into
k different clusters. Here, the number k has to be specified beforehand. We discuss four different
partitional clustering algorithms: k-means, k-medoids, CLARA and CLARANS.

Both k-means and k-medoids create clusterings based on all observations in the data, where the
distance between cluster centers and the observations in clusters is minimized. The difference is
that in k-means, cluster centers are taken to be the mean of all observations in the cluster, while in
k-medoids the centers are actual observations in the data. This makes k-medoids more robust to
outliers and noise.

CLARA (Clustering LARge Applications) and CLARANS (Clustering Large Applications based
on RANdomized Search) are both variations of k-medoids that use sampling methods to handle
large data sets. According to the literature, CLARANS generally outperforms CLARA, but at the
cost of a higher time complexity.

The third part of our literature study, Section 4, discusses seven different indices that can be
used for determining the "optimal" number of clusters. These indices are all, in some way, built
around minimizing the within cluster distance and/or maximizing the between cluster distance. It
is advised to apply multiple indices and use the majority rule to determine the "optimal" number
of clusters in a cluster analysis. If there is no or barely any agreement between different indices,
this might indicate that there is no significant cluster structure in the data.

In the section about our practical research, Section 5, we compare the different measures, meth-
ods and indices that we discuss in the literature study by applying them on an actual client time
series data set. Quantifying the performance of distance measures and clustering methods is a
difficult task, since this performance highly depends on the data that is clustered and the goal of
the clustering. We therefore setup an experiment with a clear clustering goal: forecasting. In this
setup we cluster 2,381 different time series based on two years of weekly sales data, after which
we apply ARIMA forecasting on these clusters to forecast the sales of the next 1.5 years. This
is all performed in R. The total difference between the forecasted sales of each cluster and the
actual sales of the individual time series in each cluster is taken to be the benchmark to quantify
clustering quality in our experiment.

In our practical research, there appeared to be a significant difference in time complexity when
determining the distance matrices. While it took lock-step and feature-based methods only a few
seconds to compute the whole distance matrix, both elastic measures took an hour or more to
compute the corresponding distance matrix. Time complexity also played a role when determin-
ing the "optimal" number of clusters, as two out of the seven indices that we applied could not find
the number of clusters due to their running time being too long. The remaining five indices did
not tend to agree on an "optimal" number of clusters, indicating that there is no strong clustering
structure in the data. To still decide on a reasonable number of clusters, the clustering outcomes
for different numbers of clusters were visually compared.

The best clustering method, in our experiment, turns out to be the CLARANS algorithm in combi-

iv

nation with the Euclidean distance. The clustering and forecasting that resulted from this method
can be found in Figure 1. This result is surprising, since, according to the literature, it is expected
that the Euclidean distance is outperformed by the elastic distance measures. However, no general
conclusions can be drawn from this result, because we have only shown that this method performs
best in our setup with this particular data set.

In conclusion, choosing a distance measure is the most important step in time series clustering.
This decision is a trade-off between time complexity and performance and we propose to use the
flow-chart that is presented at the end of Section 2 when making this decision. There is no ‘best’
clustering algorithm, however we suggest trying sampling methods like CLARA or CLARANS
when clustering large data sets. At last, when determining the number of clusters, it is advised to
apply multiple different indices and apply the majority rule. This may be a difficult task, due to
time complexity and a possible lack of agreement between the indices.

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 1 - Size: 77

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 2 - Size: 384

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 3 - Size: 295

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 4 - Size: 384

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 5 - Size: 57

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 6 - Size: 570

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 7 - Size: 128

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 8 - Size: 486

Figure 1: Visualization of the eight clusters that are obtained when applying the CLARANS clus-
tering algorithm with Euclidean distance on our time series data set. This clustering assignment is
the best in our experiments, according to the benchmark value we defined. The black lines in the
background represent the time series within each cluster. The cyan line indicates the cluster mean
of the first 104 points in time, which is used to obtain the ARIMA forecast. The ARIMA forecast
is plotted by the yellow line. The size (number of time series) of each cluster is indicated above
the plots.

v

Contents

1 Introduction 1

2 Distance measures 3
2.1 Lock-step measures . 5

2.1.1 Minkowski distance . 5
2.1.2 Pearson correlation distance . 5

2.2 Elastic measures . 7
2.2.1 Dynamic Time Warping (DTW) . 7
2.2.2 Longest Common Subsequence (LCSS) 9

2.3 Feature-based distances . 11
2.3.1 Discrete Fourier Transform (DFT) . 11
2.3.2 Discrete Wavelet Transform (DWT) . 13
2.3.3 Symbolic Aggregate approXimation (SAX) 18

2.4 Ensemble schemes . 21
2.5 Comparing the distance measures . 22

3 Clustering methods 25
3.1 Hierarchical clustering . 26

3.1.1 Agglomerative clustering . 27
3.1.2 Divisive clustering . 28

3.2 Partitional clustering . 29
3.2.1 k-means . 29
3.2.2 k-medoids . 31
3.2.3 Clustering LARge Applications (CLARA) 32
3.2.4 Clustering Large Applications based on RANdomized Search (CLARANS) 33

3.3 Comparing the clustering methods . 35

4 Determining the number of clusters 36
4.1 Global methods . 37

4.1.1 Calinski-Harabasz index . 37
4.1.2 C index . 37
4.1.3 Gamma index . 38
4.1.4 Silhouette index . 38
4.1.5 Gap statistic . 39

4.2 Local methods . 40
4.2.1 Je(2)/Je(1) index . 40
4.2.2 Beale index . 41

4.3 Comparing the indices . 42

5 Practical research 44
5.1 Data . 45

5.1.1 Data description . 45
5.1.2 Data preprocessing . 45

5.2 Computing the distance matrices . 47
5.3 Determining the number of clusters . 50
5.4 Using forecasting to compare cluster quality . 52

6 Discussion 57

vi

A Appendix: List of abbreviations 58

B Appendix: Omitting high frequencies to approximate and denoise time series 59

C Appendix: Omitting different levels of detail coefficients to approximate and denoise
time series 61

D Appendix: Examples of the Gap statistic for determining the number of clusters 63

E Appendix: Visualizations of the clusterings that are obtained in the experiment 66

vii

1 Introduction

Clustering is the practice of finding hidden patterns or similar groups in data. It is one of the most
common methods for unsupervised learning, where a classification is given to every data entry
without predefining the different classes. There are many practical applications of clustering, for
example in the fields of pattern recognition, bioinformatics and marketing.

Cluster analysis can be divided into three different parts: determining a measure to quantify the
similarity between observations, choosing which method to use for obtaining the clustering and
selecting the desired number of clusters. The order in which these parts are executed depends on
the clustering method that is used. Some methods require the number of clusters as input, while
other methods allow the user to decide on this number after the clustering is generated.

The majority of clustering analyses in previous research is performed on static data, which is
data where the features do not change in time. However, with the increasing power of data storage
during the last decade(s), nowadays many real-world applications store and keep data for a long
time. As a consequence, time series data is generated in many different fields. Clustering can be
applied to these time series to gain insight into the data. For example, a retailer could cluster the
sales time series of its products to determine which products show similar sales behavior. How-
ever, as it appears from previous research, general clustering methods, such as k-means, are not
designed for time series data and therefore may not perform well.

To overcome the shortcomings of general clustering approaches when clustering time series, sev-
eral techniques are proposed in the literature. In this thesis, we present a comparative study be-
tween the different (time series) clustering techniques that are available. We compare these tech-
niques based on time complexity, applicability and effectiveness. Besides conducting a literature
study, we also apply the different techniques on an actual data set to test their performance. The
main research question of this master thesis is formulated as follows:

"Which clustering methods should be used for time series clustering and how do they perform
in practice?"

When comparing time series, there are two categories: whole sequence matching and subsequence
matching. In whole sequence matching, whole (complete) time series of equal length are com-
pared. In subsequence matching, one compares a given a subsequence with the subsequences of
other (whole) sequences. The remainder of this thesis will only focus on whole sequence cluster-
ing.

In Section 2, we discuss seven different distance measures. Here we address the limitations of
the Euclidean distance when comparing time series and present alternatives that overcome these
limitations. We also discuss dimensionality reduction methods for handling large numbers of time
series data.

Section 3 addresses the different methods that are available for clustering. We address two main
approaches: hierarchical clustering and partitional clustering. For both approaches we discuss
several algorithms for obtaining a clustering. These algorithms also include sampling methods,
which are built for handling large data sets.

When performing clustering analysis, at some point the number of clusters has to be determined.

1

This can be done by using prior knowledge of the data and by estimation indices that calculate the
"optimal" number of clusters based on a statistic. In Section 4, we discuss seven different indices
for determining the optimal number of clusters and compare them with each other.

In Section 5, we discuss the practical research that is conducted and present the results. Here
we apply several techniques from the literature on an actual sales time series data set. At last, a
discussion on both the theoretical and practical findings will be presented in Section 6.

2

2 Distance measures

Clustering is the practice of finding hidden patterns or similar groups in data. To determine
whether observations (i.e. time series) in the data are similar, however, one must first decide
on a measure to quantify this similarity. For this purpose, many different similarity (distance)
measures are proposed in the literature. This section will give an overview of the most commonly
used and most promising distance measures. First we introduce the notation we use and some
general background on distance measures, such as the different categories of distance measures
and the time complexity of applying them. In Sections 2.1, 2.2 and 2.3, we elaborate on a number
of distance measures from different categories. Ensemble schemes that combine different distance
measures are then examined in Section 2.4. At last, a comparison between the different distance
measures is given in Section 2.5.

Notation
We use the notation d(x, y) to represent the distance between time series (observations) x =
(x1, ..., xn) and y = (y1, ..., ym). Here, time series x and y can be seen as numerical vectors with
dimensions n and m, such that x ∈ Rn and y ∈ Rm. Note that m and n can thus differ in value.
The value of d(x, y) for every pair of x and y is a single non-negative number that depends on the
distance measure that is used. The lower the value of d(x, y), the closer the two observations are
according to the chosen distance measure. The total number of time series will be indicated by N .

Time complexity
Most clustering methods require computing the distance or dissimilarity matrix, which contains
the distance or (dis)similarity between each pair of observations. When determining the distance
matrix for N different observations, a total of N(N−1)

2 distances have to be calculated. The re-
quired calculation time for determining a distance matrix thus grows with O(N2) and this is with-
out taking into account the time complexity of the individual distance measures. These individual
time complexities will be discussed in the next subsections. Due to the quadratic time complexity,
determining the distance matrix for large sets of observations (� 1000) can be a time consuming
operation.

Different categories of distance measures
Esling and Agon (2012) divided the different distance measures for time series into four categories:

1. Shape-based distances

(a) Lock-step measures
(b) Elastic measures

2. Feature-based distances

3. Edit-based distances

4. Structure-based distances

The first type of distance measures, shape-based distances, compares the overall shape of time
series based on the actual (scaled) values of the time series. Two subcategories can be identified:
lock-step measures and elastic measures. Lock-step measures require both time series to be of
equal length (n = m) and compare time point i of time series x with time point i of time se-
ries y, whereas elastic measures are more flexible and allow one-to-many or one-to-none point
matchings (Wang et al. (2010)). The second type of distance measures, feature-based distances,
first extracts features from the time series and then measures the distance between these features.

3

Feature-based distances are often applied to obtain a reduction in both dimensionality and noise.
The third category, edit-based distances, expresses the dissimilarity of two time series based on
the minimum number of operations that are required to transform one series into the other series.
In the last category, structure-based distances, the dissimilarity between time series is obtained by
comparing higher level structures that are obtained by modelling or compressing the time series.

In this thesis, we only focus on shape-based and feature-based distance measures. This is be-
cause these measures occur the most in time series clustering literature and therefore we expect
these methods to be most promising. Also, we conducted tests on small time series sets (N = 500)
to get an idea of the performance of edit-based and structure-based distances. These tests indicate
that both the running time and the obtained clusters for edit-based and structure-based distances
tend to be similar or worse compared to shape-based and feature-based distance measures.

When clustering time series, it is demonstrated that lock-step distance measures, such as the ones
we discuss in Subsection 2.1, are often outperformed by special time series distance measures
(Aach and Church (2001), Bar-Joseph et al. (2002), Grabusts and Borisov (2009), Yi et al. (1998),
Xi et al. (2006)). This is mainly caused by the fact that lock-step distance measures are sensitive
to noise, scale and time shifts. Special elastic distance measures have been developed to overcome
these problems. To give an example: where the Euclidean distance (lock-step) only compares time
point xi with time point yi for every i, Dynamic Time Warping (elastic) also takes into account
the surrounding points in time to allow for shifts in time.

In the next subsections, we discuss seven different distance measures. An overview of the dif-
ferent distance measures that we consider in this section can be found in Table 2. This set of
distance measures is chosen to represent both a variety in distance measure categories as well as
the most commonly used (and effective) distance measures according to the literature (Wang et al.
(2010); Liao (2005); Mori et al. (2016a)). The distance measures are sorted by category and we
will also discuss them in this order. In Subsection 2.5, we compare the seven distance measures
based on time complexity, performance and other properties.

Table 2: Overview of the seven distance measures that we consider in this thesis.

Shape-based distances
Lock-step measures

Minkowski (∀p)
Pearson correlation

Elastic measures
Dynamic Time Warping
Longest Common Subsequence

Feature-based distances
Discrete Fourier Transform
Discrete Wavelet Transform
SAX representation

4

2.1 Lock-step measures

In this subsection we examine two lock-step distance measures: the Minkowski distance and the
Pearson correlation distance. As with all lock-step measures, these distance measures require both
time series to be of equal length (n = m) and compare time point i of time series x with the
same time point i of time series y. Note that we examine the lock-step distance measures from
a time series perspective, but that these measures can also be used for non-time series clustering
assignments. The only requirement is that all observations are numerical vectors of equal length.

2.1.1 Minkowski distance

The Minkowski distance is the Lp-norm of the difference between two vectors of equal length
(n = m). It is defined as follows:

dmin(x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

. (1)

It is the generalization of the commonly used Euclidean distance (p = 2), Manhattan distance
(p = 1) and Chebyshev distance (p = ∞). For clustering, usually only the Euclidean distance
and Manhattan distance are considered. The formulas for those distance measures can be found in
Equations (2) and (3). The time complexity of the Minkowski distance for all p is O(n) and thus
determining the distance matrix with this measure takes O(nN2) time.

Euclidean distance: deuc(x, y) =

√√√√ n∑
i=1

(xi − yi)2. (2)

Manhattan distance: dman(x, y) =
n∑
i=1

|(xi − yi)| . (3)

2.1.2 Pearson correlation distance

The Pearson correlation distance takes into account the linear association between two vectors of
variables. It does so by using the Pearson correlation coefficient, which is defined as follows:

ρ(x, y) =
Cov(x, y)

σxσy
=

E [(x− µx) (y − µy)]
σxσy

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (4)

where µx and µy are the means of x and y and σx and σy are the standard deviations of x and
y, respectively. Note that the coefficient requires n = m and that it is invariant for scaling. The
values of ρ lie within the range [−1, 1], where ρ = 1 indicates a perfect positive relationship
between x and y, ρ = −1 indicates a perfect negative relationship between x and y and ρ = 0
indicates no relationship between the two variables. For the other values that lie within this range,
the strength of the relationship varies based on the value of ρ, where values closer to −1 and 1
indicate a stronger negative or positive relationship, respectively.

For a distance measure that takes into account the correlation between two vectors, it is desired to

5

generate low distance values for positively correlated vectors, since these vectors are most similar.
The Pearson correlation distance is therefore defined as:

dcor(x, y) = 1− ρ(x, y). (5)

Note that this distance measure can take values in the range [0, 2]. The time complexity of the
Pearson correlation distance is O(n) and thus determining the distance matrix with this measure
takes O(nN2) time.

Alternative correlation measures include Spearman’s Rank and Kendall’s Tau correlation coef-
ficients. These coefficients indicate correlation based on rank, whereas the Pearson correlation
coefficient is based on a linear relationship between two vectors. This makes Spearman’s Rank
and Kendall’s Tau less sensitive to noise and outliers compared to the Pearson correlation coeffi-
cient (Fujita et al. (2009)). However, this comes with an increase in time complexity: O(n log n)
for Spearman’s Rank and O(n2) for Kendall’s Tau (Xu et al. (2013)). Another alternative is a
distance based on autocorrelation, which accounts for lags in time and has a time complexity of
O(n log n).
We will not consider the alternative correlation measures mentioned above, due to the increase
in time complexity and other lock-step (or elastic) distance measures generally outperforming
correlation distance measures in time series clustering (Iglesias and Kastner (2013)).

6

2.2 Elastic measures

In this subsection we discuss two elastic distance measures: Dynamic Time Warping and Longest
Common Subsequence. In contrast to lock-step distance measures, elastic distance measures allow
one-to-many or one-to-none point matching. This makes it possible for elastic distance measures
to warp in time and be more robust when it comes to, for example, handling outliers. A dis-
advantage, however, is that elastic distance measures generally come with an increase in time
complexity.

2.2.1 Dynamic Time Warping (DTW)

Dynamic Time Warping is a time series distance measure that is introduced in the field of data
mining to overcome some of the disadvantages of the Euclidean distance (Keogh and Ratanama-
hatana (2004)). It warps two sequences x and y non-linearly in time in order to cope with time
deformations and varying speeds in time dependent data.

When determining the DTW distance between two time series, first an (n × m) local cost ma-
trix (LCM) is calculated, where element (i, j) contains the distance between xi and yj . This
distance is usually defined as the quadratic difference: d(xi, yj) = (xi − yj)2. Next, a warping
pathW = w1, w2, ..., wK is determined, where max(n,m) ≤ K ≤ m+n−1. This path traverses
the LCM under three constraints:

1. Boundary condition: The path must start and end in the diagonal corners of the LCM:
w1 = (1, 1) and wK = (n,m).

2. Continuity: Only adjacent elements in the matrix are allowed for steps in the path. This
includes diagonal adjacent elements. So, if wq = (i, j), then wq+1 is either element (i +
1, j), (i, j+1) or (i+1, j+1) for q = 1, ...,K−1 and i = 1, ..., n−1 and j = 1, ...,m−1.

3. Monotonicity: Subsequent steps in the path must be monotonically spaced in time. In
the example at constraint 2 this can be observed by the fact that indices i and j must be
non-decreasing in subsequent steps.

The total distance for path W is obtained by summing the individual elements (distances) of the
LCM that the path traverses. To obtain the DTW distance, the path with minimum total distance
is required. This path can be obtained by an O(nm) algorithm that is based on dynamic program-
ming (DP). The following DP recurrence can be used to find the path with minimum cumulative
distance:

dcum(i, j) = d(xi, yj) + min {dcum(i− 1, j − 1), dcum(i− 1, j), dcum(i, j − 1)}. (6)

We now obtain the DTW distance by summing the elements of the path with minimum cumulative
distance. In the literature, different scales of this sum are taken to be the DTW distance. We will
use the definition from Gorecki (2017) and thus take the root of the sum:

dDTW (x, y) = min

√√√√ K∑
k=1

wk, (7)

where wk is the distance that corresponds to the kth element of warping path W . Note that this
distance is equal to the Euclidean distance for the case where n = m and only the diagonal of the
LCM is traversed. Furthermore, the DTW distance does not satisfy the triangle inequality, even

7

when the local distance measure is a metric (Mico and Oncina (1998)).

An example of DTW can be found in Figure 2, where for two time series the minimum warping
path through the LCM is shown together with the linked time points of the series.

(a) Time series C and Q and the linked points in time by
DTW.

(b) Minimum warping path W through the LCM of
time series C and Q.

Figure 2: Example of Dynamic Time Warping. Image taken from Keogh and Ratanamahatana
(2005) and recolored.

A number of modifications to the DTW distance are proposed in the literature. These include
Derivative Dynamic Time Warping (DDTW) and Weighted Dynamic Time Warping (WDTW).
DDTW is proposed by Keogh and Pazzani (2001) and converts the time series into a series of first
order differences. This avoids having a single point of one series to map to many points in another
series, which can negatively impact the DTW distance. WDTW is proposed by Jeong et al. (2011)
and uses a (logistic) weight function to add penalties to the LCM to favour reduced warping. This
brings more balance between shape matching and alignment in time.

The time and space complexity of finding the DTW distance between two time series is O(nm)
and thus determining the distance matrix with this measure takes O(nmN2) time. This quadratic
time complexity can make DTW a time consuming process, hence different methods are proposed
in the literature to speed up the distance measure. These methods fall into three categories: adding
constraints, abstracting the data and indexing.

Constraints are added by, for example, limiting the number of elements in the LCM that are eval-
uated. Two common constraints are the Sakoe-Chuba band (Sakoe and Chiba (1978)) and the
Itakura Parallelogram (Itakura (1975)). When abstracting the data, the DTW algorithm is only run
on a reduced representation of the data (Chu et al. (2002), Keogh and Pazzani (2000)). At last,
indexing uses lower bounds to reduce the number of times the DTW algorithm has to be executed
(Keogh and Ratanamahatana (2005), Kim et al. (2001)). We refer to the cited literature for further
explanation of the techniques mentioned above.

It must be noted that all three categories of methods that speed up DTW may cause the result-
ing distance to deviate from the true DTW distance. Also, all three categories increase the speed

8

of DTW by a constant factor, which still gives the process of determining the DTW distance a
time complexity of O(nm). To overcome this time complexity, Salvador and Chan (2007) in-
troduced an approximation algorithm for DTW, called FastDTW, that has a time complexity of
O(max {n,m}). This approximation algorithm first reduces the dimensions of a time series by
averaging adjacent pairs of points in time, then finds the minimum warping path on the reduced
time series and at last refines the warping path through local adjustments by considering neigh-
bouring cells in the original LCM.

Even though FastDTW has a linear time complexity, accurate approximations come with large
constant factors in time complexity. This makes computing the FastDTW distance still consider-
ably slower than, for example, computing the Euclidean distance. In the practical application of
the distance measures in Section 5, we will therefore not use any of the alternative DTW methods.

2.2.2 Longest Common Subsequence (LCSS)

The LCSS similarity measure is based on the longest common subsequence problem, which aims
at finding the longest subsequence that is common to two or more sequences. Here we define a
subsequence to be a sequence that appears in the same relative order, but where the individual
elements are not necessarily contiguous. Usually the problem is defined for discrete sequences,
such as strings, where it searches for exact matches between sequences. To give an example, we
consider two strings: S1 = ABCDGH and S2 = AEDFHR. Here the longest common subse-
quence is ADH with size 3.

LCSS can also be applied to measure the similarity between two (or more) time series. Since
time series usually contain real numbers, a match between two points in time is typically defined
if the absolute difference between the two points is less than ε. The LCSS distance between two
time series can be obtained by applying dynamic programming using the following recursion:

L(i, j) =

0 if i = 0 or j = 0

1 + L(i− 1, j − 1) for |xi − yj | < ε

max {L(i− 1, j), L(i, j − 1)} otherwise,

(8)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m. The distance itself is now obtained by solving L(n,m). We
consider the scaled version of this distance in Equation (9), which scales between 0 and 1 for two
time series of equal length. This scale is proposed by Ratanamahatana et al. (2005). Since the
LCSS distance only regards similar points, it is robust to noise and outliers. Furthermore, Vlachos
et al. (2002) have shown that LCSS does not satisfy the triangle inequality.

dLCSS(x, y) =
n+m− 2L(n,m)

n+m
. (9)

The time complexity of computing the LCSS distance isO(nm). However, often a warping thresh-
old δ is added to restrict the matching to a maximum difference in time (|i−j| ≤ δ). This improves
the time complexity to O((n+m)δ) (Cassisi et al. (2012)). The recursion now becomes:

L(i, j) =

0 if i = 0 or j = 0

1 + L(i− 1, j − 1) for |xi − yj | < ε and |i− j| ≤ δ
max {L(i− 1, j), L(i, j − 1)} otherwise.

(10)

9

To give an example of the effects of ε and δ, we refer to Figure 3. Here we observe a minimum
bounding envelope, which is created by the vertical boundaries of ε and the horizontal boundaries
of δ. Time series points outside this envelope cannot be matched and the value of L(n,m) is the
sum of the number of points in time where the red line (time series y) lies within this envelope.

Figure 3: Example of the effects of ε and δ on the LCSS matching, image taken from Gorecki
(2014).

10

2.3 Feature-based distances

In this subsection we discuss three different feature-based distances: the Discrete Fourier Trans-
form, the Discrete Wavelet Transform and the Symbolic Aggregate approXimation. Feature-based
distances first extract features from the time series and then measure the distance between these
features. The three measures that we consider decompose the time series into sine waves, wavelets
and strings, respectively. Feature-based distances are often applied to obtain a reduction in both
dimensionality and noise, hence they are used when dealing with large (noisy) data sets.

In general clustering, a commonly used method for extracting features from data is Principal Com-
ponent Analysis (PCA) (Jolliffe (2014)). This is a dimensionality reduction method that is used to
explain the variance-covariance structure of a set of variables through linear combinations. While
PCA appears to be an effective method in general clustering, where it reduces the number of di-
mensions while retaining most of the information, its performance appears to be less effective for
time series clustering. This is due to the fact that PCA does not take into account the ordering of
data, making it unable to capture time-evolving and time-shifted patterns (Li and Prakash (2011)).
For this reason, we do not consider PCA in this subsection on feature-based distances.

2.3.1 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform is a dimensionality reduction method that is introduced by Agrawal
et al. (1993). It transforms the time series from a "time-domain" x(t) to a "frequency-domain" rep-
resentation X(f). Here the collection of values of X(f) at frequencies f are called the spectrum
of x(t). In other words: the Fourier transform decomposes a time series into all different cycles
(consisting of amplitude, offset and rotation speed) that the series are composed off. The DFT is
obtained by calculating the inner product between the time series and a sine wave and is defined
as follows:

X(l) =

n−1∑
k=0

xke
− i2π

n
lk, (11)

for x = x0, ..., xn−1, l = 0, ..., n − 1 and i2 = −1. The resulting vector X(l) is a vector with
n complex numbers. It is also possible to transform a collection of frequencies X(f) back to the
"time-domain". This is done by the inverse DFT, which is defined as follows:

xk =
1

n

n−1∑
l=0

X(l)e
i2π
n
lk, (12)

for x = x0, ..., xn−1, l = 0, ..., n−1. Note that in Equations (11) and (12) we consider the indexes
of the time series from 0 to n − 1 instead of from 1 to n. This is done to be consistent with the
literature on Fourier transforms.

According to Parseval’s theorem, the DFT preserves the Euclidean distance between two time
series (Hughes (1965)). This means that when all frequencies from the frequency domain X(f)
are used, the Euclidean distance between two Fourier transforms is equal to the Euclidean distance
between the original time series of those transforms. This is caused by the fact that DFT is a linear
transformation.

As indicated by Agrawal et al. (1993), most of the energy in real-world signals (time series) is
concentrated in the low frequencies. This is where an advantage of the DFT arises: only a lim-
ited number of (low) frequencies are required to obtain a good approximation of the original time

11

series. The DFT can thus be used to reduce the number of dimensions of a time series by only
considering a limited number q (q ≤ n) of frequencies. According to the Nyquist–Shannon sam-
pling theorem, only the first n2 or fewer frequencies should be used (Strohmer and Tanner (2005)).
However, it must be noted that every frequency that is omitted causes the approximation to diverge
from the original time series. Therefore one does not want to approximate a time series with too
few frequencies and thus usually the upper bound q = n

2 is used.

The Fourier distance also exploits the property of dimensionality reduction. It determines the
DFT of both time series and then calculates the Euclidean distance only between the first q com-
plex numbers (frequencies) of the Fourier transforms to approximate the Euclidean distance be-
tween the original time series. Besides the advantage of dimensionality reduction, disregarding
the higher frequencies also denoises the time series in the approximation.

In Figure 4, the main idea behind the DFT is visualized. Here a time series (red line) is decom-
posed into the different sine waves (blue lines) that together form the original series. The brown
bars on the frequency axis indicate the significance of every frequency in recreating the original
time series. This plot on the magnitude-frequency axis is also called a periodogram. Observe that
also in this example it holds that the lower frequencies have the highest significance in recreating
the original series.

Frequency

Time

Magnitude

Figure 4: Example of a decomposition of a time series (red line) into the different sine waves (blue
lines) that together form the time series. The brown bars represent the corresponding periodogram.

To illustrate the effects of omitting high frequencies to approximate and denoise a time series, we
refer to Appendix B. Here an arbitrary time series (with n = 105) from our data set is detrended
(linear trend) and standardized and plotted in Figure 20. The periodogram for the correspond-
ing time series is plotted in Figure 21. By default, the periodogram function in R only considers
the first n2 frequencies. We observe that, as expected, the lower frequencies on the left have the
highest significance. We now use the inverse DFT to approximate the original time series using
different values of q. In Figure 22, the approximations of the original time series can be found for
q = 13, 26, 52 and 105. Observe that the original time series are obtained for q = 105, since all
frequencies from X(f) are used. For q = 13, 26 and 52, we observe that high frequency spikes
disappear as q decreases. According to the literature, for n = 105 we have to choose q around 52.
This seems reasonable for this example, since we observe for q = 52 that some of the noise from
the original series is removed while still retaining most of the general shape.

12

The time complexity of the DFT as defined in Equation (11) is O(n2) due to the matrix-vector
multiplication. This time complexity can be improved toO(n log(n)) by using Fast Fourier Trans-
form (FFT) algorithms. FFT algorithms compute the same results as obtained by Equation (11),
but by factorizing the DFT matrix into a product of sparse factors to avoid redundant calcula-
tions. The most commonly used FFT algorithm is the Cooley-Tukey algorithm (Cooley and Tukey
(1965)).
Calculating the distance between two time series based on the Fourier coefficients has time com-
plexity O(q) and thus the whole process of determining the Fourier distance has time complexity
O(n log(n)). Determining the distance matrix with this measure takesO(Nn log(n)+qN2) time.
Note that we here multiplied the calculation time of the FFT (O(n log n)) by N instead of N2, as
we only have to determine the Fourier transform of every time series once.

2.3.2 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform is, just like the DFT, a dimensionality reduction method that also
reduces noise. It decomposes a time series into a set of basis functions that are called wavelets.
A wavelet is a rapidly decaying, wave-like oscillation with mean zero. Unlike the sine waves that
are used in Fourier decomposition, wavelets only have a finite duration. Wavelets are defined by
two functions: the wavelet function ψ and the scaling function ϕ. These are also referred to as
the mother wavelet and father wavelet, respectively. The mother wavelet ψ characterizes the basic
shape of the wavelet. In Figure 5, a selection of commonly used mother wavelets can be found.
The father wavelet ϕ characterizes the scale of the wavelet. In Figure 6, a Morlet (mother) wavelet
is plotted for different scales. Observe that scale is the wavelet equivalent of frequency.

(a) Haar (Daubechies 1). (b) Daubechies 2. (c) Daubechies 10.

(d) Symlets. (e) Mexican hat (Morlet with
ω = 1).

(f) Morlet (ω = 5).

Figure 5: A selection of commonly used mother wavelet functions or function families.

13

Figure 6: Wavelet function Wave(τ, s) =
∑

t xt
1√
s
ψ∗
(
t−τ
s

)
with mother wavelet function

ψ(t) = π−1/4eiωte−t
2/2 using angular frequency ω = 5 plotted for different scales s (s = 1

for black, s = 2 for blue and s = 4 for red) and different centers τ .

The DWT is obtained by successively passing a time series through high-pass and low-pass filters.
This produces detail and approximation coefficients for different levels of decomposition. At each
level of decomposition, the time series is down sampled by a factor of two using a half-band filter.

To give an example of a wavelet decomposition, we consider the simplest kind of wavelet function:
the Haar wavelet (Haar (1910)). This example is taken from Chaovalit et al. (2011) and revised
for visual purposes. The Haar wavelet and scaling function are defined as follows:

ψ(t) =

1 if 0 < t ≤ 1

2

−1 if 1
2 < t ≤ 1

0 otherwise.

(13)

ϕ(t) =

{
1 if 0 ≤ t ≤ 1

0 otherwise.
(14)

The Haar (mother) wavelet is also plotted in Figure 5a. We consider a short time series S of
length 8: S = {82, 75, 55, 64, 50, 42, 69, 59}. By applying the Pyramid algorithm (Mallat (1989))
we can decompose this time series into different levels of approximation and detail coefficients.
These coefficients can be found in Table 3. The approximation coefficients (in bold) are indicated
by Ai,j , where i indicates the level of decomposition and j the index of the coefficient. The
detail coefficients are denoted by Di,j (in italic). The coefficient values are obtained by taking the
pairwise averages and differences of the approximation level or original time series that lie one
level lower:

Ai,j =

{
Ai−1,2j+Ai−1,2j−1

2 if i > 1
t2j+t2j−1

2 if i = 1
(15)

Di,j =

{
Ai−1,2j−Ai−1,2j−1

2 if i > 1
t2j−t2j−1

2 if i = 1,
(16)

where tj is the value of the original time series on the j-th index.

14

Observe that in Table 3, due to the half-band filter, the total number of coefficients is halved
for every level of decomposition. Also observe that the approximation coefficients of decompo-
sition level i can be obtained by adding and subtracting the detail coefficients of decomposition
level i+1 to and from the approximation coefficients of level i+1. Doing this in an iterative man-
ner, one can reconstruct the original time series S by using only the highest level approximation
coefficient (in our example: A3,1) and all detail coefficients Di,j . A vector of these coefficients
together has the same length as the original time series. It must be noted that the above only holds
if the dimension of the original time series is a power of 2. If this is not the case, equations (15)
and (16) will at some point be applied to odd series, where three values are taken together instead
of two. For example, when creating a decomposition of a time series with 105 points, the resulting
6 levels of decomposition have lengths 52, 26, 13, 6, 3 and 1. When reconstructing time series that
are not a power of 2, slight errors may occur when trying to reconstruct the original time series.

Table 3: Time series S with three levels of the Haar wavelet decomposition. The table on the
top contains the approximation and detail coefficients and the table on the bottom contains the
notation of the corresponding values.

S 82 75 55 64 50 42 69 59
Level 1 78.5 59.5 46 64 -3.5 4.5 -4 -5
Level 2 69 55 -9.5 9
Level 3 62 -7

S t1 t2 t3 t4 t5 t6 t7 t8
Level 1 A1,1 A1,2 A1,3 A1,4 D1,1 D1,2 D1,3 D1,4

Level 2 A2,1 A2,2 D2,1 D2,2

Level 3 A3,1 D3,1

Reduction of dimensionality can be achieved by omitting the detail coefficients of lower levels of
decomposition. Every time de detail coefficients of a level are omitted, the dimension is halved.
In Figures 7 and 8, the approximations of time series S can be found when omitting the first and
the first two detail levels of detail coefficients, respectively.

1 2 3 4 5 6 7 8

50
60

70
80

Time

Figure 7: Approximation (in red) of the original time series S (in black) when using only the
detail coefficients of decomposition levels 2 and 3 (and thus omitting D1,j). The approximation is
done with coefficients {A3,1, D3,1, D2,1, D2,2} and thus the dimension of the approximation is 4
(compared to 8 dimensions for the original series).

15

1 2 3 4 5 6 7 8

50
60

70
80

Time

Figure 8: Approximation (in red) of the original time series S (in black) when using only the
detail coefficients of decomposition level 3 (and thus omitting D1,j and D2,j). The approximation
is done with coefficients {A3,1, D3,1} and thus the dimension of the approximation is 2 (compared
to 8 dimensions for the original series).

In Appendix C, we applied wavelet decomposition to a time series from our data set. Here the
same time series is used as in Appendix B. Two types of wavelets are considered: Haar (as in
the example above) and Daubechies 10. As expected, we observe that when using all detail levels
the original time series is reconstructed. Note that omitting detail levels does not only reduce the
number of dimensions, but also the noise.

A main advantage DWT has over DFT is that it not only captures frequency information of a
time series but also information on the location in time. This advantage can be visualized by plot-
ting the power spectrum of a time series. In Figure 9, the wavelet power spectrum is plotted for the
time series that is used in Appendices B and C. This spectrum indicates the power (transformation
of the significance) of a set of periods for different locations in time. Observe that, in this case,
long periods (around 50) are significant for the whole time interval. However, the shorter periods
seem to only be significant for limited time intervals. While the DFT assigns sine waves over the
whole interval, the DWT can assign wavelets specifically to the locations in time where a given
period is significant, hence the advantage. For further explanation on how the significance in the
power spectrum is calculated, we refer to Torrence and Compo (1998).

16

0.0000 0.0005 0.0027 0.0071 0.0127 0.0230 0.0393 0.0742 0.1477 0.3284 0.7138

Power2

20 40 60 80 100

2

4

8

16

32

64

128

Time

P
er

io
d

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T
im

e
se

rie
s

(s
ca

le
d)

Figure 9: Wavelet power spectrum (bottom) for the time series (top)that is used in Appendices B
and C. Plotted using the wavelet.plot function from the dplR package in R (Bunn et al. (2017)).

When applying the DWT to obtain an approximation of a time series, the number of detail levels to
use and the chosen mother wavelet are both important factors. The number of detail levels to use
is a trade-off between the number of dimensions and the amount of detail in the resulting approx-
imation and thus this depends on the practical application of the wavelet transform. For choosing
the "optimal" mother wavelet (shape), a number of different qualitative and quantitative methods
have been applied in previous research (Ngui et al. (2013)). A common qualitative method is to
simply pick a mother wavelet that has a similar shape compared to the original time series. A
common quantitative method is to compute the maximum cross-correlation coefficient between a
selected mother wavelet and the original time series and to compare this value for different mother
wavelets. However, it is concluded by Ngui et al. (2013) that the mother wavelet that is most
similar to the original series is not always the optimal wavelet.

The time complexity of the DWT when using the Pyramid algorithm is O(n) (Nason (2008)).
Once the DWT is calculated, it takes b = n

2l
operations to calculate the Euclidean distance be-

tween two wavelet approximations. Here l is the number of detail levels that are omitted in the
approximation. Note that b ≤ n, as l cannot be negative.
When determining a distance matrix with DWT distances, determining the DWT for all time series
takes O(nN) time and calculating the distance matrix takes O(bN2) time. Together this process
thus has a time complexity of O(nN + bN2).

17

2.3.3 Symbolic Aggregate approXimation (SAX)

SAX is a symbolic representation of time series that is proposed by Lin et al. (2007). They ob-
served that most existing symbolic representations for time series suffer from two fatal flaws. The
first flaw is that the dimensionality of the representations is equal to the original time series. Data
mining algorithms often scale poorly with dimensionality and thus this is not desired. The second
flaw concerns distance measures that can be defined on the symbolic representations. Often these
distances have little correlation with the distance measures that are defined on the original data.
With SAX, Lin et al. (2007) introduced a new symbolic representation that overcomes these two
flaws.

The algorithm for obtaining the SAX representation consists of two steps: reducing the time series
using Piecewise Aggregate Approximation (PAA) and assigning a letter or discrete label to every
PAA element. But before running the SAX algorithm, first the time series are normalized, since se-
ries with different offsets and amplitudes are meaningless to compare (Keogh and Kasetty (2003)).

When converting the time series to the PAA representation, the series are reduced to aw-dimensional
space (w ≤ n). This is done by a vector X̄ = x̄1, ..., x̄w where the elements are calculated by:

x̄i =
w

n

n
w
i∑

j= n
w
(i−1)+1

xj . (17)

In other words, the dimension of the series is reduced from n to w by dividing the data into w
equally sized parts. The mean value of every part is calculated and these values form vector X̄ .
Examples of the PAA reductions of time series can be found in Figures 11 and 12. Here we have
taken two time series from our data set which we both normalized.

The first part of the SAX algorithm, reduction using PAA, divides the time series horizontally.
The second step assigns labels to all w parts by dividing the vertical axis into a regions. Note that
the time series are normalized and thus have a Gaussian distribution (Larsen and Marx (2001)).
Therefore B = β1, ..., βa−1 breakpoints are determined to divide the N(0, 1) Gaussian curve into
a equal-sized areas. β0 and βa are −∞ and∞, respectively. Next, a discrete label is assigned to
every region between the breakpoints with the following rule: x̂i = αj ⇔ βj−1 ≤ x̄i < βj . These
labels α are either from an alphabet or a set of binary numbers with cardinality a. For example, if
we choose an alphabet with cardinality 4, we obtain α1 = a, α2 = b, α3 = c and α4 = d. The set
of labels X̂ = x̂1, ..., x̂w forms the SAX representation of the original time series. In Figure 13 an
example of the SAX representation can be found. Here the two PAA reductions from Figures 11
and 12 are converted to the SAX representation with cardinality 8. Note that both time series are
now represented by strings of the letters a, b, ..., h.

To find the distance between two SAX representations, the following equation is used:

MINDIST (X̂, Ŷ) =

√
n

w

√√√√ w∑
i=1

(dist(x̂i, ŷi))
2, (18)

where the dist function uses a lookup table that is based on the breakpoints β. The values in this
lookup table are determined in the following way:

cellr,c =

{
0 if |r − c| ≤ 1

βmax {r,c}−1 − βmin {r,c} otherwise.
(19)

18

In Table 4, an example of a lookup table with cardinality 8 can be found. The breakpoints from
Figure 13 that are used to determine the values in this lookup table are also shown in Figure
10. Note that the distance between two adjacent regions is zero. The distance found by the
MINDIST function is a lower bound approximation to the Euclidean distance. Increasing the
number of SAX symbols w or the cardinality a makes this lower bound tighter, but at the cost of
an increase in calculation time.

-2
-1

0
1

2

b1 = - 1.15

b2 = - 0.67

b3 = - 0.32

b4 = 0

b5 = 0.32

b6 = 0.67

b7 = 1.15

a

b
c
d
e
f
g
h

Figure 10: Gaussian curve with
breakpoints for cardinality 8.

a b c d e f g h

a 0 0 0.48 0.83 1.15 1.47 1.82 2.30

b 0 0 0 0.36 0.67 0.99 1.35 1.82

c 0.48 0 0 0 0.32 0.64 0.99 1.47

d 0.83 0.36 0 0 0 0.32 0.67 1.15

e 1.15 0.67 0.32 0 0 0 0.36 0.83

f 1.47 0.99 0.64 0.32 0 0 0 0.48

g 1.82 1.35 0.99 0.67 0.36 0 0 0

h 2.30 1.82 1.47 1.15 0.83 0.48 0 0

Table 4: SAX lookup table for an alphabet with cardinality 8.

We now consider the time complexity of SAX by breaking up the different steps in the algo-
rithm. The first part is PAA reduction, which has a time complexity of O(w · nw) = O(n). The
second part, converting the PAA reductions to the SAX representation, has a time complexity of
O(w · log(a))). At last, calculating the MINDIST between two SAX representations has time
complexityO(w). The whole process of determining the SAX distance thus has a time complexity
of O(n + w log(a)). However, if the SAX representation of the time series is already available,
this time complexity is O(w). We can thus observe that the main advantage of SAX arises when
we have to use a single time series to determine multiple distances (e.g. when determining a dis-
tance matrix), since we only have to determine the SAX representation once. When determining a
distance matrix with SAX distances, determining the SAX representation for all time series takes
O(Nw log(a)) time and calculating the distance matrix takesO(wN2) time. Together this process
thus has a time complexity of O(Nw log(a) + wN2).

Shieh and Keogh (2009) have proposed a variation on SAX, called iSAX, that allows indexing
and mining of up to one hundred million time series. Later, Camerra et al. (2010) improved this
algorithm and introduced iSAX2.0, which allows indexing and mining of up to a billion time
series.

19

0 20 40 60 80 100

-1
0

1
2

3

PAA reduction of series x

Time

Figure 11: PAA reduction of series x. The dimension n = 105 is reduced to w = 15.

0 20 40 60 80 100

-2
-1

0
1

2
3

PAA reduction of series y

Time

Figure 12: PAA reduction of series y. The dimension n = 105 is reduced to w = 15.

-1
.5

-0
.5

0.
5

1.
5

0 20 40 60 80 100

MINDIST.SAX DISSIMILARITY IS: 7.57703979988749

d

a

f f

h h

d

c

a

e
d

c

e

d

e

g

c

d

b

d

e
e

h

f

d

c c

e

f

e

x
y

Figure 13: SAX representation of series x and y. n = 105, w = 15 and a = 8.

20

2.4 Ensemble schemes

In the previous subsections, different distance measures are considered individually. However,
previous research on time series classification indicates that ensemble schemes of different dis-
tance measures often outperform individual distance measures when it comes to grouping time
series (Zhou et al. (2015); Gorecki (2017); Lines and Bagnall (2015)). Only elastic distance mea-
sures are considered in these papers, since they "generally provide more accurate classification
accuracies compared to non-elastic measures" (Gorecki (2017)). While this is the case, it must
also be noted that elastic distance measures generally come with long computation times and thus
combinations of these will be time-consuming.

Due to the promising results in previous research, we will also consider an ensemble scheme
in this research. The ensemble scheme that we consider is referred to as the Linear Combination
Method in Zhou et al. (2015), which combines distance matrices in a linear way. The resulting
distance matrix Densemble can be formulated by:

Densemble =
1

p

∑
ms∈MS

Dms, (20)

where MS is the set of distance measures that are considered in the ensemble scheme and p is the
number of distance measures in MS. A variation to this approach is also considered in Gorecki
(2017), where a linear combination of DTW, DDTW and LCSS distance measures is proposed with
variable weights instead of equal weights. Besides elastic distance measures, we will also consider
feature-based distance measures in the ensemble schemes to investigate their performance when
being ensembled.

21

2.5 Comparing the distance measures

We now review and compare the different distance measures that are considered in this section,
based on their theoretical time complexity, performance and properties. An overview of the time
complexities for each distance measure can be found in Table 5.

Table 5: Overview of the time complexity of the different distance measures that are considered
in this section. It is assumed that n ≥ m. See the previous subsections for explanation on the
variables q, b, w and a.

Distance measure
time complexity

Distance matrix
time complexity

Shape-based distances
Lock-step measures

Minkowski (∀p) O(n) O(nN2)
Pearson correlation O(n) O(nN2)

Elastic measures
Dynamic Time Warping O(nm) O(nmN2)
Longest Common Subsequence O(nm) O(nmN2)

Feature-based distances
Discrete Fourier Transform1 O(n log(n)) O(Nn log(n) + qN2)
Discrete Wavelet Transform2 O(n) O(nN + bN2)
SAX representation3 O(n+ w log(a)) O(Nw log(a) + wN2)

In general clustering, often traditional lock-step distance measures are used, such as the Euclidean
distance or Pearson correlation distance. While these work fine for a wide variety of clustering
applications, when clustering time series they are often outperformed by other distance measures.
This is due to some limitations that lock-step measures possess: they do not account for shifts in
time and may not process noise and outliers in a desirable way.

To overcome the limitations of the lock-step measures, elastic measures are introduced, such as
DTW and LCSS. Both distance measures warp the time series to account for shifting in time.
LCSS also accounts for noise and outliers, depending on the threshold setting. This makes LCSS
more robust than DTW under noisy conditions (Vlachos et al. (2002)). Furthermore, it must be
noted that the local distance measure used in DTW is Euclidean, whereas LCSS uses the Manhat-
tan distance as local distance measure.

Although elastic distance measures generally outperform lock-step distance measures for measur-
ing similarity between time series, they also come with a significant increase in calculation time.
This may make elastic measures unsuitable, depending on the size of the data set and the length of
the time series. Furthermore, it is shown by Shieh and Keogh (2008) and Wang et al. (2010) that
the classification accuracy difference between the Euclidean distance and elastic distance mea-
sures converges to zero as the number of time series increase. The speed of this convergence also
depends on the time series data that is used.

1If the DFT representation is already available, the distance measure time complexity is O(q) and the distance
matrix time complexity is O(qN2).

2If the DWT representation is already available, the distance measure time complexity is O(b) and the distance
matrix time complexity is O(bN2).

3If the SAX representation is already available, the distance measure time complexity is O(w) and the distance
matrix time complexity is O(wN2).

22

Not only elastic measures may become inconvenient when the number of time series or the length
of the individual time series becomes too large. Even lock-step measures may at some point re-
quire too much calculation time for determining the distance matrix. To reduce this calculation
time, dimensionality reduction methods can be used. The three feature-based distance measures
that we described in this subsection (DFT, DWT and SAX) are all examples of dimensionality
reduction methods. Here the number of dimensions is reduced by decomposing the time series
into different features: sine waves for DFT, wavelets for DWT and string representations for SAX.
Both DFT and DWT are powerful in spotting periodicity in time series. Here DWT has an advan-
tage over DFT, as it not only captures frequency information of a time series, but also information
on the location in time. In addition, DWT is faster than DFT. However, it must be noted that
both measures compute quite different transforms. Also, DFT is less complex compared to DWT,
making it easier (faster) to interpret for new users compared to DWT.

Besides reducing the number of dimensions, all three feature-based distance measures also re-
duce noise by leaving out certain levels of detail in the approximations. Once time series are
decomposed by any of the three feature based measures mentioned above, the Euclidean distance
is used to approximate the distance between two time series. Out of the three distance measures,
SAX is the least expensive in terms of calculation time (Lin et al. (2007)). If even SAX is taking
too long, one could try faster variations of this algorithm, such as iSAX and iSAX2.0 (Shieh and
Keogh (2009); Camerra et al. (2010)). It must be noted that feature based distance measures can
also be relevant to use when calculation time (and thus dimensionality) is not an issue, as they then
still provide noise reduction.

In Figure 14, a flowchart can be found on which distance measures to try when one wants to
compute a distance matrix for the purpose of time series clustering. Here we only consider the
seven distance measures that we discussed in this section. At the start, we assume a user has a set
of time series data. This data should be preprocessed based on the goal of the clustering assign-
ment. We refer to Subsection 5.1.2 for more explanation on this topic. After preprocessing, we
suggest to always start by trying a lock-step distance measure such as the Euclidean distance or
the Pearson correlation distance. If the actual difference in values of attributes is important, the
Euclidean distance (or another Minkowski distance) should be tried. If general trend or shape sim-
ilarity is important, one should go with a correlation distance. Note that the Pearson correlation
distance and the Euclidean distance are essentially computing the same values when the data is
standardized in the preprocessing step. Based on the computation time of the lock-step distance
measure(s), we suggest to either try elastic measures (if the computation time is not taking too
long) or feature-based measures (if the computation time takes too long). If the individual elastic
measures, such as DTW or LCSS, are not taking too long for computing the distance matrix, it is
suggested to try ensemble schemes as well. However, if the individual elastic measures are taking
too long, we suggest the user to stop. Note that in this case the user still has a distance matrix from
a lock-step distance measure. For the feature-based measures, it is suggested to first try using
DWT or DFT and try SAX only if these measures do not compute the distance matrix within a
desired time frame.

To conclude, we can state that choosing a good distance measure is a trade-off between speed
and accuracy. Elastic measures tend to outperform lock-step measures, but for large data sets this
difference in performance becomes less significant. Feature-based measures are often used for
large data sets, as they provide dimensionality reduction and thereby reduce the calculation time.
If the calculation time is not an issue, one can try ensemble schemes of different distance mea-
sures. These generally outperform individual distance measures, but at the cost of an increase in

23

calculation time.

Start
Preprocess the

time series
Try Euclidean distance

(Pearson correlation distance)

Taking too long?

Try using DWT or DFT

End

Noisy data or
many outliers?

Still taking too long?

Try DTW

Try LCSS

Try SAX
(iSAX / iSAX2.0)

No

Yes

No

No

Yes

Yes

Are DTW/LCSS
taking too long?

Try ensemble schemes

No

Yes

Figure 14: Flowchart of which distance measures to try when one wants to compute a distance
matrix for the purpose of time series clustering. In this flowchart we only consider the seven
distance measures we discussed in this thesis.

24

3 Clustering methods

In this section, we discuss a selection of methods for obtaining a clustering. Many methods are
available in the literature and Sheikholeslami et al. (1998) classified the different clustering meth-
ods into four types: hierarchical clustering, partitional clustering, density-based clustering and
grid-based clustering. It is concluded by Liao (2005) that for time series clustering, many general-
purpose clustering methods can be applied and the choice of the distance measure is more impor-
tant than the choice of the clustering method. We therefore only consider hierarchical and parti-
tional clustering methods in this section, as these appear to be the most commonly used clustering
methods in literature on time series clustering (Liao (2005); Rani et al. (2012); Sarda-Espinosa
(2017); Aghabozorgi et al. (2015)). We first look into the two types of clustering methods indi-
vidually and discuss some of the algorithms that are available. Afterwards, in Section 3.3, we
compare the different methods.

Besides the four classes mentioned above, we can also make a distinction between hard clus-
tering (also known as crisp clustering) and soft clustering (also known as fuzzy clustering). In
hard clustering, we have non-overlapping clusters, where every observation belongs to exactly
one cluster. In soft clustering, observations can belong to multiple clusters, often accompanied by
probabilities of belonging to each cluster. For both types of clustering there are many different
algorithms. However, we will only focus on hard clustering algorithms in this section.

25

3.1 Hierarchical clustering

Hierarchical clustering is a method for obtaining a clustering by building a hierarchy of clusters.
This set of nested clusters is organized as a tree and can be visualized by a dendrogram. An exam-
ple of a dendrogram for a hierarchical clustering of eight observations can be found in Figure 15.
Here the numbers on the x-axis represent the eight different observations and the y-axis indicates
the distance between different clusters.

1 3 6 7 8 2 4 5

1

2

3

4

5

6

7

hclust (*, "complete")
dist(cbind(x, y))

D
is

ta
nc

e

Cut 1

Cut 2

Figure 15: Example of a dendrogram for a hierarchical clustering with eight observations. Two
examples of cuts are added for k = 2 (Cut 1) and k = 4 (Cut 2) clusters.

A clustering is obtained by making a cut in the dendrogram. In Figure 15, two cuts are added as an
example. Cut 1 results in two clusters: {1, 3, 6, 7} and {6, 2, 4, 5}. Cut 2 results in four clusters:
{1, 3}, {6, 7}, {8} and {2, 4, 5}.

There are two types of hierarchical clustering: agglomerative and divisive. Agglomerative cluster-
ing is a bottom-up approach that starts with all observations as individual clusters and, at each step,
merges the closest pair of clusters. Divisive clustering is a top-down approach that starts with one
cluster containing all observations and, at each step, splits a cluster until only singleton clusters of
individual observations remain. In practice, agglomerative clustering is much more common than
divisive clustering (Hastie et al. (2009)). In the next two subsections, we discuss both hierarchical
clustering approaches.

An advantage of hierarchical clustering is that it does not require the number of clusters k to
be predefined. Instead, one can obtain the clustering for any number of clusters k ∈ {1, ..., N} by
making a cut in the dendrogram at the corresponding number of clusters. Here N represents the
total number of observations. A disadvantage is, however, that hierarchical clustering requires the
distance matrix of all pairs of observations to be calculated. This can be computationally expen-
sive, as the number of elements in this matrix grows with O(N2) (as seen in Section 2). Another
disadvantage of hierarchical clustering is that it suffers from a lack of flexibility, since no adjust-
ments to the tree can be performed once a split (divisive clustering) or a merger (agglomerative
clustering) is done (Sarda-Espinosa (2017)).

26

3.1.1 Agglomerative clustering

Agglomerative clustering is a bottom-up approach that starts with all observations as individual
clusters and, at each step, merges the closest pair of clusters. The standard algorithm for agglomer-
ative clustering can be found in Algorithm 1. This algorithm starts with N clusters and iteratively
merges clusters until only a single cluster remains.

Algorithm 1 Standard algorithm for agglomerative clustering.
1: Compute the distance matrix.
2: Initialize all N observations to be the initial N clusters.
3: while there is more than one cluster do
4: Merge the closest two clusters.
5: Update the distance matrix to reflect the merge from the previous step.
6: end while
7: return set of nested clusters.

In step 1, a distance matrix is calculated that contains the distances between all pairs of observa-
tions in the data. To compute these pairwise distances, any distance measure can be used (see also
Section 2). The individual observations form the initial N different clusters.

Until only one cluster that contains all observations remains, the clusters are now iteratively
merged. In each iteration, the pair of clusters with minimum distance in the distance matrix is
merged. Once two clusters, cluster ci and cluster cj , are merged to form ci ∪ cj in step 4 of Algo-
rithm 1, the distance matrix is updated to reflect this merge. This is done by deleting the rows and
columns of clusters ci and cj from the distance matrix and by adding a row and column for the
new cluster ci ∪ cj to the distance matrix. The distances between cluster ci ∪ cj and all other clus-
ters are calculated using the Lance-Williams dissimilarity update formula (Murtagh and Contreras
(2011)), where the distance between cluster ci ∪ cj and cluster ck is defined by:

d(i ∪ j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ|d(i, k)− d(j, k)|. (21)

Here d(q, r) is the distance between clusters cq and cr, d(i ∪ j, k) the distance between clusters
ci ∪ cj and ck and αi, αj , β and γ are parameters that, together with the distance function, deter-
mine the method for agglomerative hierarchical clustering.

In this thesis we consider three (commonly used) methods for agglomerative hierarchical cluster-
ing: Single linkage, Complete linkage and Ward’s method. The difference between these methods
lies in the set of parameters that is chosen for the Lance-Williams dissimilarity update formula.
Each set of parameters has a bias towards a type of hierarchy, which has pros and cons. In the next
three paragraphs, the Lance-Williams update formula parameter values and the interpretations of
all three methods that we consider can be found. Other methods include average linkage, Mc-
Quitty’s method, the medoid method and the centroid method. For the Lance-Williams parameter
values and the interpretations of these methods, we refer to Murtagh and Contreras (2011).

Single linkage is a method where the distance between merged cluster ci ∪ cj and cluster ck
is defined by d(i∪ j, k) = min{d(i, k), d(j, k)}. The corresponding Lance-Williams dissimilarity
update formula parameters are αi = 0.5, β = 0 and γ = −0.5. The advantage of Single linkage
is its ability to find arbitrary shaped clusters (Jain and Dubes (1988)). A disadvantage is that it is
highly sensitive to noise and outliers.

27

Complete linkage is a method where the distance between merged cluster ci ∪ cj and cluster
ck is defined by d(i ∪ j, k) = max{d(i, k), d(j, k)}. The corresponding Lance-Williams dissim-
ilarity update formula parameters are αi = 0.5, β = 0 and γ = 0.5. The advantage of Complete
linkage is that it is less influenced by noise and outliers compared to Single linkage. This comes
at the cost, however, of being unable to deal with arbitrary shaped clusters. Furthermore, it tends
to break large clusters.

Ward’s method is an ANOVA based approach that is based on Ward’s criterion (Ward (1963)). It
defines the distance between two clusters ci and cj to be the increase in sum of squared error (SSE)
that results from merging the two clusters: d(i, j) = SSEi∪j−SSEi−SSEj . The corresponding
Lance-Williams dissimilarity update formula parameters are αi = |i|+|k|

|i|+|j|+|k| , β = − |k|
|i|+|j|+|k| and

γ = 0, where |i| represents the number of observations in cluster i. When using Ward’s method, it
is noted by Murtagh and Contreras (2011) that the initial distance matrix should be calculated us-
ing (a distance measure proportional to) the Euclidean distance. An advantage of Ward’s method
is that it minimizes the total within-cluster variance.

What we can conclude from the three methods above, is that it depends on the data and the criteria
for the clustering which method is most suitable. However, it is noted by Sarda-Espinosa (2017)
that if the data can "easily" be grouped, all methods should provide similar results.

To execute steps 2 to 7 of Algorithm 1, many different algorithms have been proposed. For a com-
parative study of a selection of these algorithms, we refer to (Kuchaki Rafsanjani et al. (2012)).
According to this study, the time complexity of steps 2 to 7 is O(N3), where N is the total num-
ber of observations in the data. This time complexity can be reduced to O(N2 logN) by using
priority queues. For Single linkage and Complete linkage, the time complexity can even be fur-
ther reduced to O(N2). If we also take into account step 1 of Algorithm 1, this time complexity
changes, based on the distance measure that is chosen. Note that generally the time complexity of
step 1 is significantly higher than the time complexity of steps 2 to 7. This has an advantage in
practice; once the distance matrix is computed, an agglomerative hierarchical clustering is often
quickly obtained. This last property also makes it easy to try different methods for defining the
linkage between clusters.

3.1.2 Divisive clustering

Divisive clustering is a top-down approach that starts with one cluster containing all observations
and, at each step, splits a cluster until only singleton clusters of individual observations remain.
Since the total number of possible splits is of O(2N), an exact algorithm for divisive clustering
quickly becomes too time expensive. Therefore, different heuristics have been developed, such
as DIANA (Kaufman and Rousseeuw (1990)) and Bisecting K-means (Cimiano et al. (2004)).
These heuristics have time complexities similar to agglomerative clustering algorithms. Since
divisive clustering is rarely used in practice and since we found no indication in the literature that
it outperforms agglomerative clustering, we do not further address these heuristics in this thesis.

28

3.2 Partitional clustering

Partitional clustering is a type of clustering where all observations in the data are partitioned into
k different clusters. Here, the number k has to be specified beforehand. It is stated by Sarda-
Espinosa (2017) that partitional procedures can be regarded as combinatorial optimization prob-
lems, which aim at minimizing intracluster distance while maximizing intercluster distance. Find-
ing a global optimum would require trying all possible clusterings, which is infeasible even for
small data sets. Therefore, several heuristics for finding local optima are developed. In this sub-
section, we discuss four of these heuristics. Two of them, k-means and k-medoids, are commonly
used partitional algorithms that build clusters around the means and medoids of observations, re-
spectively. We also discuss two variations on k-medoids that are built for handling large data sets:
CLARA and CLARANS.

3.2.1 k-means

k-means is a clustering method that aims to partition a set of numerical vectors (observations) into
k clusters. Even though it was first proposed in 1955, it is still one of the most commonly used
clustering methods (Steinhaus (1956); Jain (2010)). The general k-means algorithm can be found
in Algorithm 2. In the next paragraphs we discuss the different steps of this algorithm.

Algorithm 2 k-means clustering algorithm (Forgy/Lloyd).

1: Decide on a value k.
2: Initialize k cluster centers µ1, ..., µk.
3: while stopping condition not met do
4: for i = 1 : N do
5: ci := arg min

l
d(xi, µl)

6: end for
7: for j = 1 : k do
8: µj :=

∑N
i=1 1{ci=j}xi∑N
i=1 1{ci=j}

9: end for
10: end while
11: return c1, ..., cN and µ1, ..., µk.

The first step is to decide on a value k. For this we refer to Section 4.

Once the number k is decided, the next step is to initialize k cluster centers. Two commonly
used methods for this initialization are the Forgy method and the Random Partitioning method
(Hamerly and Elkan (2002)). The Forgy method randomly selects k vectors (observations) from
the set of observations and takes these as the initial centers. The Random Partitioning method ran-
domly assigns each observation to one of the k clusters and then takes the means of the individual
clusters as the initial centers. To avoid finding local optima when applying k-means, some imple-
mentations of the algorithm consider multiple (random) initializations. For an extensive overview
and comparison of initialization methods we refer to Celebi et al. (2013).

The third step in the k-means algorithm is the while-loop that runs until the stopping criteria is
met. Two commonly used stopping criteria are convergence and maximum number of iterations.
Convergence can take multiple forms, for example when no observations are assigned a different
cluster center (see step 5) or when the variance did not improve by at least a prespecified margin.
Within the while-loop in step three, two for-loops can be found. The first for-loop (steps 4-6)

29

assigns to each observation xi a label ci that indicates the cluster whose center has minimum dis-
tance to the observation. Here the distance is usually taken to be the Euclidean distance. Other
lock-step distance measures can be applied as well, however these generally do not give better re-
sults (Singh et al. (2013)). Furthermore, it is shown that elastic measures, such as DTW, generally
do not give meaningful results when they are applied in k-means clustering (Niennattrakul and
Ratanamahatana (2007)). This is caused by the fact that for these distance measures the triangle
inequality does not hold. Note that the distances are calculated within the algorithm and thus no
distance matrix has to be supplied for the k-means algorithm.
After the observations are assigned a cluster in the first for-loop, the second for-loop (steps 7-9)
determines the new cluster centers. Observe that the centers are obtained by taking the average of
all observations in a given cluster.
Once the stop condition for the while-loop is met, several sets of variables can be returned. We
only included the two most important sets, which are the final cluster assignment c1, ..., cN and
the cluster centers µ1, ..., µk.

We now consider the time complexity of Algorithm 2. Note that the first for-loop requiresO(Nkn)
calculation time, where N is the number of n-dimensional observations and k is the number of
clusters. The second for-loop has a time complexity of O(Nk). Both for-loops are repeated in
the while-loop for a number of iterations I , giving the whole algorithm a time complexity of
O(INkn). This time complexity is sometimes considered to be "linear", due to I, k, n � N . It
must be noted that Algorithm 2 does not guarantee finding the optimal k-means solution, due to
the possibility of local minima to be found. It is shown that if one does want to find the optimal
solution, that this problem is NP-hard in general Euclidean space even for two clusters (Garey
et al. (1982)). Therefore, heuristics are used instead.

Different variations of the heuristic in Algorithm 2 are proposed in the literature. Three com-
monly used k-means algorithms are the Hartigan-Wong algorithm (Hartigan and Wong (1979)),
the Forgy/Lloyd algorithm (Lloyd (1982); Forgy (1965)) and the MacQueen algorithm (Macqueen
(1967)). These are also the algorithms that are implemented in the kmeans function of the stats
package in R. We note that while this function makes a distinction between the Forgy algorithm
and the Lloyd algorithm, the same algorithm is applied when any of the two algorithms is called.

Algorithm 2 is the pseudo-code for the Forgy/Lloyd algorithm. This algorithm is a batch algo-
rithm, where in every iteration the closest cluster center is recomputed for every observation. This
property makes the Forgy/Lloyd algorithm well suited for large data sets. Two disadvantages of
the Forgy/Lloyd algorithm are that it converges slower compared to the other two algorithms and
that it has a possibility to create empty clusters (Morissette and Chartier (2013)).

The MacQueen algorithm is very similar to the Forgy/Lloyd algorithm. The main difference is
that the MacQueen algorithm updates the centers every time an observation is assigned a different
cluster, whereas the Forgy/Lloyd algorithm only updates the centers after all observations have
been assigned a cluster. If we look at Algorithm 2, this means that an additional step is added be-
tween steps 5 and 6 that recalculates the two centers that are impacted if ci changes in step 5. This
adjustment allows faster initial convergence and usually only needs to iterate over all observations
once to converge on a solution (Morissette and Chartier (2013)). It must be noted, though, that the
final solution is sensitive to the order of the observations. Similar to the Forgy/Lloyd algorithm,
the MacQueen algorithm (when using Euclidean distance) optimizes based on the total sum of
squares.

30

The Hartigan-Wong algorithm optimizes based on a different criteria, namely the within-cluster
sum of squares. This means that an observation may be assigned to a different cluster, even if it
already belongs to the cluster with the closest center. Within the while-loop, the Hartigan-Wong
algorithm iterates over the different observations and calculates for every observation the SSE
within its cluster. Next, for every other cluster the SSE is calculated for the case that the observa-
tion is added to that cluster. If the SSE for any of the clusters is lower than the SSE of the cluster
that the observation is currently in, the observation is swapped to the corresponding cluster. Just
like the MacQueen algorithm, the Hartigan-Wong algorithm has fast initial convergence and is
sensitive to the order of the observations.

A comparative research between the three algorithms in Slonim et al. (2013) concludes that all
three algorithms are trivial to implement and similar in time complexity. Furthermore, they con-
clude that the Hartigan-Wong algorithm performs better in general compared to the other two
algorithms. This is also stated in the kmeans function of the stats package in R, which is why the
Hartigan-Wong algorithm is the default algorithm used in this package.

3.2.2 k-medoids

k-medoids is a clustering method related to k-means in the sense that its objective is to partition
the data into k sets. The main difference between k-means and k-medoids is that in k-medoids
observations are taken as medoids (centers). k-medoids is an NP-hard optimization problem and
thus (just like for k-means) heuristics are used to obtain k-medoids partitions.

The most popular heuristic for k-medoids is the Partitioning Around Medoids (PAM) algorithm
(Kaufman and Rousseeuw (1987)). The pseudo-code for this algorithm can be found in Algorithm
3. Note that the initialization of the algorithm is similar to that of Algorithm 2. Within the while-
loop, however, the steps are different. Here swaps are considered in an iterative manner and if a
swap decreases the total sum of distances between all observations and their closest medoid, the
swap is made. While k-means may fail to converge for some distance measures, one can use k-
medoids with any distance measure. Also, only the distances between the observations are needed
for the algorithm (since the medoids are also observations). These can thus be determined prior to
running the algorithm.

Algorithm 3 Partitioning Around Medoids (PAM) algorithm.

1: Decide on a value k.
2: Randomly choose k observations as the initial medoids
3: while no change in the centroid assignment do
4: for each medoid c do
5: for each non-medoid observation o do
6: if swapping c and o improves the solution then
7: Swap c and o
8: end if
9: end for

10: end for
11: end while
12: return the k medoids and the cluster assignment.

We now examine the time complexity of the PAM algorithm. Observe that in every iteration, for
all k medoids, (n−k) swaps are considered. Calculating the swapping cost for any of these swaps

31

has time complexity O(n−k). This gives every iteration in the PAM algorithm a time complexity
of O(k(N − k)2) and thus the whole algorithm has a time complexity of O(Ik(N − k)2). Here I
is the number of iterations, k the number of medoids (clusters) and N the total number of obser-
vations. Note that this time complexity does not include the time complexity of determining the
distance matrix.

The main advantage k-medoids has over k-means is that it is more robust in the presence of noise
and outliers (Kaufman and Rousseeuw (2008)). Also, being able to use any distance measure
and calculate the distance matrix in advance is an advantage. A disadvantage k-medoids has over
k-means is that it comes with a higher time complexity, scaling even worse when N increases.

3.2.3 Clustering LARge Applications (CLARA)

In the previous subsection, we have seen that the PAM algorithm for k-medoids clustering does
not scale well for large data sets. To overcome this problem, Kaufman and Rousseeuw (1990)
proposed a sampling-based method called Clustering LARge Applications (CLARA). This algo-
rithm draws S random samples of observations of size z from the data set and applies PAM to
each sample. After PAM is applied to a sample, the N − z observations that are not in the sample
are assigned to their closest medoid to obtain a clustering. In total, this thus gives S different
clusterings. The best of these clusterings is returned by CLARA. The biggest strength of CLARA
is that it deals with larger data sets than PAM, while still sharing the robustness property of the
k-medoid framework. However, its solutions depend on the sampling, which is a trade-off be-
tween efficiency and clustering quality. The pseudo-code for the CLARA algorithm can be found
in Algorithm 4.

Algorithm 4 Clustering LARge Applications (CLARA) algorithm.

1: Decide on values for S, z and k.
2: for s = 1 : S do
3: Draw z random observations from the data set to create a sample.
4: Apply PAM on the sample.
5: Assign the N − z observations that are not in the sample to their closest medoid.
6: Calculate the total sum of distances between all observations and their closest medoid.
7: if total sum of distances is lowest found so far then
8: Update the best clustering assignment to be the current assignment.
9: end if

10: end for
11: return the best clustering assignment.

The time complexity for every iteration in Algorithm 4 is O(kz2 + k(N − k)) (Sagvekar et al.
(2013)). Since there are S samples and thus S iterations, the total time complexity is O(kSz2 +
kS(N − k)). The quality of a CLARA solution depends on the values that are chosen for S, z
and k. Decreasing the values for S and z allows faster computations, but at the cost of a decrease
in cluster quality. Experiments have reported that S = 5 and z = 40 + 2k give satisfactory
results, which is why in some literature these values are taken as default and the time complexity
of CLARA is only given in terms of k and N (Sagvekar et al. (2013), Hesabi et al. (2015)). Note
that it generally holds that k, S, z � N , making CLARA more efficient than PAM for large values
of N . Also, not all distances between the observations in the data set are required in CLARA. For
this reason, CLARA does not require the computation of a distance matrix of all observations in
the data set.

32

3.2.4 Clustering Large Applications based on RANdomized Search (CLARANS)

CLARANS is a clustering technique proposed by Ng and Han (1994) that is based on the PAM
and CLARA algorithms. Just like CLARA, it is a sampling-based method. However, instead of
sampling different sets of observations, CLARANS dynamically samples from the solution space.
This solution space contains

(
N
k

)
different solutions, where every solution is a set of k medoids.

To explain the CLARANS algorithm, we represent the solution space by a graph, where every
node is a potential solution (set of k medoids). Two nodes in the graph are adjacent if they differ
by one medoid. An example of this graph representation can be found in Figure 16. Note that
every medoid has n− k neighbours and thus every node (solution) has k(n− k) neighbours.

{𝑐1, 𝑐2, … , 𝑐𝑘}

{𝑐𝑘+1, 𝑐2, … , 𝑐𝑘} {𝑐𝑘+𝑁, 𝑐2, … , 𝑐𝑘}…

𝑁 − 𝑘 neighbours for one medoid

{𝑐1, 𝑐𝑘+1, … , 𝑐𝑘} {𝑐1, 𝑐𝑘+𝑁, … , 𝑐𝑘}…

𝑘(𝑁 − 𝑘) neighbours for one node

Figure 16: Example of the graph representation of the solution space that is used in the CLARANS
algorithm.

The main idea behind the CLARANS algorithm is that for h random sets of k medoids it applies
local search to find a local minimum for the costs, after which the best local minimum is returned.
Here the cost of a solution is defined by the total sum of distances between all observations and
their closest medoid.

The pseudo-code for the CLARANS algorithm can be found in Algorithm 5. As for PAM and
CLARA, a value for k has to be decided on in advance. Furthermore, one has to decide on values
for v and h. v is an integer that represents the maximum number of random neighbours with which
each solution is compared and h is an integer that represents the total number of solutions to be
sampled. Choosing the values for v and h is a trade-off between efficiency and clustering quality;
higher values increase the search space and thus potentially improve the solutions, but at the cost
of more computation time. Based on experiments, Ng and Han (1994) indicate that taking h = 2
and v = max{250, 0.0125k(N − k)} provides a good balance between running time and quality
of the solutions.

33

Algorithm 5 Pseudo-code for the CLARANS algorithm.

1: Decide on values for v, h and k.
2: for i = 1 : h do
3: Randomly select a node as the current node C in the graph.
4: Calculate the total sum of distances for current node C.
5: Set counter j to 1.
6: while j ≤ v do
7: Randomly select a neighbour W of C.
8: Calculate the total sum of distances for neighbour W .
9: if total sum of distances for W is lower than for C then

10: Assign W as the current node C.
11: Reset j to 1.
12: else
13: j = j + 1.
14: end if
15: end while
16: if total sum of distances for C is lowest cost found so far then
17: Update the best solution found so far.
18: end if
19: end for
20: return the best solution that is found.

If one takes h = 1 and v = k(N − k), essentially the PAM algorithm is obtained. However,
we have seen that the PAM algorithm scales poorly with N , which is not desirable for large data
sets. An advantage of CLARANS is that it is more scalable compared to PAM, as it allows v to be
reduced to decrease the computation time. Ng and Han (1994) have shown that reducing the value
of v makes CLARANS significantly faster compared to PAM, while still returning comparable
clustering quality.

Ng and Han (1994) also compared CLARANS to CLARA. They indicated that CLARANS has
an advantage over CLARA, as it does not confine the search space to a restricted area. In their
experiments, CLARANS always found clusterings of better quality compared to those found by
CLARA. In some cases, CLARANS took more time than CLARA. This is due to the time com-
plexity of CLARANS, which is quadratic in N : O(N2) (Swarndeep Saket J (2016)). However,
when the same calculation time is allowed for both algorithms, CLARANS is still better than
CLARA. If the data set becomes too large, CLARANS may fail to enable clustering due to its
quadratic time complexity (Hesabi et al. (2015)).

34

3.3 Comparing the clustering methods

We now compare the different hierarchical and partitional clustering methods that are discussed
in this section. We conclude that there is no clear consensus in the literature on which of the two
approaches produces better clusterings. However, there are some clear differences between the
two approaches, which we will now address.

The main advantage hierarchical clustering has over partitional clustering, is that it does not re-
quire the number of clusters k as an input parameter. Instead, it constructs a hierarchy (tree) of
clusters which can be cut to obtain clusterings for different values of k. Besides giving more free-
dom in choosing and adjusting the value of k, the hierarchical structure also gives more insight
into the data compared to the ’flat’ structure that is obtained in partitional clustering.

The main advantage partitional clustering has over hierarchical clustering, is that it does not (al-
ways) require the distance matrix to be computed. This advantage becomes more significant as the
number of observations N grows, since the number of elements in a distance matrix grows with
O(N2). If we do not consider the calculation time of the distance matrix, then still partitional clus-
tering methods tend to outperform hierarchical clustering methods in terms of time complexity, as
we can see in Table 6.

Table 6: Overview of the time complexities of the algorithms that are discussed in this section.

Time complexity
Hierarchical clustering

Agglomerative clustering1 O(N2 logN)
Divisive clustering1 O(N2 logN)

Partitional clustering
k-means O(INkn)
k-medoids O(Ik(N − k)2)
CLARA O(kSz2 + kS(N − k))
CLARANS O(N2)

For hierarchical clustering, one can choose between an agglomerative (bottom-up) approach or
a divisive (top-down) approach. Here the divisive approach is rarely used, even though both ap-
proaches have heuristics with similar time complexities.

For partitional clustering, two commonly used methods are k-means and k-medoids. An advan-
tage that k-means has over k-medoids is that it scales better with N . However, since it is designed
for minimizing variance, k-means cannot handle arbitrary distances (in order to give meaningful
results). For k-medoids, on the other hand, it is possible to use distance measures other than the
Euclidean distance. However, k-medoids may fail to converge for some distance measures. An-
other advantage k-medoids has over k-means, is that it is more robust to outliers and noise.

CLARA and CLARANS are both variations of the PAM algorithm that use sampling methods
to handle large data sets. According to the literature, CLARANS generally outperforms CLARA,
but at the cost of a higher time complexity.

1The time complexity of the hierarchical methods does not include the time complexity of determining the distance
matrix. Also, for Single linkage and Complete linkage in agglomerative clustering, the time complexity is only O(N2).

35

4 Determining the number of clusters

As we have seen in Section 3, many clustering methods require the number of clusters k as an
input parameter in order to return a clustering. Nonhierarchical methods usually require k to be
specified beforehand, whereas for hierarchical methods the value of k can be set afterwards. The
number of clusters k is usually an unknown parameter, which the user has to specify based on
prior knowledge (external cluster criterion, e.g. externally provided class labels) or based on an
estimation (internal cluster criterion). Many different methods have been proposed to estimate the
"optimal" number of clusters k∗ for a clustering assignment.

Milligan and Cooper (1985) carried out a comparative study of 30 methods that estimate the num-
ber of clusters. Based on Monte Carlo simulations, they evaluated the performance of each method
on artificial test data sets for which the optimal numbers of clusters are known in advance. The
five methods that correctly estimated the number of clusters most frequently are (in order):

1. Calinski & Harabasz index

2. Je(2)/Je(1)

3. C index

4. Gamma index

5. Beale

In this section, we discuss seven different methods for estimating the number of clusters. These
include the five methods above and two methods that we often encountered in implementations
and articles on estimation methods: the Silhouette index and the Gap statistic.

An overview of the seven estimation methods that we discuss in the next subsections can be
found in Table 7. Observe that for every method we indicate the category. The categories we
consider are based on Gordon (1999), who made a distinction between global and local methods
for determining the number of clusters. Global methods compare the criteria values for a range
of k-values to determine the "optimal" number of clusters. Local methods determine the number
of clusters by iteratively testing the hypothesis that a pair of clusters should be merged (or split).
The remainder of this section will discuss the seven methods that are presented in Table 7. We
first discuss the global methods, followed by the local methods. At last, a comparison between the
different methods will be made in Subsection 4.3.

Table 7: Overview of the seven methods for estimating the number of clusters that we discuss in
this section.

Estimation method Category
Calinski-Harabasz index Global
C index Global
Gamma index Global
Silhouette index Global
Gap statistic Global
Je(2)/Je(1) index Local
Beale index Local

36

4.1 Global methods

4.1.1 Calinski-Harabasz index

The Calinski-Harabasz index is proposed by Calinski and Harabasz (1974) and is calculated for
every value of k by:

CH(k) =
N − k
k − 1

BCSS(k)

WCSS(k)
, (22)

where N is the total number of observations, k the number of clusters, BCSS the between cluster
sum of squares and WCSS the within cluster sum of squares.
The BCSS is the weighted sum of differences between the cluster centroids and the overall cen-
troid of the observations. Here the weights are the number of elements in each cluster. In Equation
(23), the formula for the BCSS can be found, where |Cj | is the number of observations in cluster
Cj , n the length of the observations, c̄lj is the j-th index of the centroid of cluster l and x̄j is the
j-th index of the centroid of all observations.

BCSS(k) =

k∑
l=1

n∑
j=1

|Cl|(c̄lj − x̄j)2. (23)

The WCSS is the sum of the squared deviations from each observation and the cluster centroid
the observation is in. In Equation (24), the formula for the WCSS can be found, where Cl
represents cluster l, n the length (number of dimensions) of the observations, xij the j-th index of
observation i and c̄lj the j-th index of the centroid of cluster l.

WCSS(k) =
k∑
l=1

∑
i∈Cl

n∑
j=1

(xij − c̄lj)2. (24)

The value of CH(k) is analogue to the F -statistic in one-way ANOVA. For this F -statistic, it is
known thatBCSS(k) has k−1 degrees of freedom andWCSS(k) hasN−k degrees of freedom.
This means that when k grows, BCSS(k) should be proportional to k− 1 and WCSS(k) should
be proportional toN−k. By scaling for those degrees of freedom as k grows, we obtain a measure
for quantifying the effectiveness of the clustering where we minimize the distance within clusters
and maximize the distance between clusters. Therefore, when applying the Calinski-Harabasz
index, we want to find the value of k for which CH(k) is maximized. The time complexity for
computing the Calinski-Harabasz index is O(nN) (Vendramin et al. (2010)).

4.1.2 C index

The C index is proposed by Hubert and Levin (1975) and is computed by using Equation (25).

C =
Sw − Smin

Smax − Smin
, (25)

where Sw is the sum of the Nw distances between all the pairs of observations within each cluster.
For k clusters, the total number of pairs within each cluster is Nw =

∑k
j=1

Nj(Nj−1)
2 , where Nj

is the total number of observations in cluster j. Smin in Equation (25) is obtained by taking the
sum of the Nw smallest distances between all the pairs of observations in the data set. Note that
this also includes pairs that may not be within the same cluster. In total, there are NT = N(N−1)

2
different pairs between all observations. Smax is obtained by taking the sum of the Nw largest
distances between all the pairs of observations in the data set.

37

The "optimal" number of clusters is obtained by computing the C index for a range of values
for k. The k that minimizes C indicates the optimal number of clusters. In terms of time and
space complexity, it is indicated by Dimitriadou et al. (2002) that the C index can be prohibitive
for large data sets. This is due to the fact that all pairwise distances have to be computed and
stored. The total time complexity for determining the C index is O(N2(n+ log2N)) (Vendramin
et al. (2010)).

4.1.3 Gamma index

The Gamma index is proposed by Baker and Hubert (1975) and is an adaptation of the Gamma
correlation statistic by Goodman and Kruskal (1954). The Gamma index can be calculated by
Equation (26).

Γ =
S+ − S−
S+ + S−

, (26)

where S+ (S−) represents the number of times a pair of observations that belong to the same
cluster has a smaller (larger) distance than two observations that belong to different clusters. Note
that value of the Γ can only take values in the range [−1, 1]. The formal definitions of S+ and S−
can be found in Equations (27) and (28).

S+ =
1

2

k∑
l=1

∑
q,r∈Cl
q 6=r

1

2

k∑
h=1

∑
s∈Ch
t/∈Ch

δ(d(q, r) < d(s, t)) (27)

S− =
1

2

k∑
l=1

∑
q,r∈Cl
q 6=r

1

2

k∑
h=1

∑
s∈Ch
t/∈Ch

δ(d(q, r) > d(s, t)) (28)

where q, r, s and t are observations. Here q and r are assigned to the same cluster Cl and s and
t are both assigned to different clusters. Furthermore, δ(·) = 1 if the inequality is satisfied and
δ(·) = 0 otherwise. The factors 1

2 are added to avoid counting pairs twice. Note that both Equa-
tions (27) and (28) are strict; the cases where the distances between pairs (q, r) and (s, t) are equal
are not taken into account.

A good clustering (partitioning) is expected to have higher values of S+, lower values of S−
and thereby higher values of Γ in Equation (26) (Vendramin et al. (2010)). Therefore, to obtain
the "optimal" number of clusters according to the Gamma index, one should determine Γ for a
range of values of k and select the k that maximizes the index. The time complexity for determin-
ing the Gamma index is estimated to be O(nN2 + N4

k) by Vendramin et al. (2010), making it a
computationally expensive index for large values of N .

4.1.4 Silhouette index

The Silhouette index is proposed by Kaufman and Rousseeuw (1990) and is based on compactness
and separation of clusters. It starts by measuring the silhouette of every observation i:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (29)

where a(i) is the average distance of observation i to all other observations in the same cluster. To
calculate b(i), we first calculate for every cluster, except for the one i is in, the average distance

38

between observation i to all observations in the corresponding cluster. The value of b(i) is now
obtained by taking the minimum value of these average distances. The denominator in Equation
(29) serves as a normalization term, scaling the value of s(i) in the interval [−1, 1]. A silhouette
value close to 1 indicates that the observation is assigned to the appropriate cluster, whereas a
silhouette value near −1 indicates that the observation should be assigned to another cluster.

To obtain an index that describes the performance of a clustering, the overall average silhou-
ette width can be calculated by taking the average of all individual silhouette values: SWC =
1
N

∑N
j=1 s(j). The "optimal" value of k, according to the Silhouette index, is the k that max-

imizes the value of silhouette width criterion SWC. The time complexity for determining the
SWC is O(nN2) (Vendramin et al. (2010)).

4.1.5 Gap statistic

The Gap statistic is a measure that estimates the number of clusters by comparing the within-
cluster dispersion with the dispersion that is expected under an appropriate null distribution. It
is proposed by Tibshirani et al. (2000) and is designed to work for any clustering technique and
distance measure. Below we explain the Gap statistic and apply the measure in three different
examples that can be found in Appendix D.

The first step is to determine the within-cluster dispersion Wk for a range of values of k. The
definition of Wk can be found in Equation (30).

Wk =
k∑
l=1

1

2|Cl|
∑
q,r∈Cl

d(q, r), (30)

where |Cl| is the number of observations in cluster l and d(q, r) is the distance between observa-
tions q and r. One could use Wk to determine the number of clusters by plotting the value for
different numbers of clusters k. The "optimal" number of clusters is the k where after we were
to add another cluster, the explanatory power of the clustering barely improves. This k acts as an
‘elbow’ in the graph. Hence this method is also called the elbow method. While the elbow method
may indicate the correct optimal number of clusters, the k that acts as an "elbow" cannot always
be clearly identified (Ketchen and Shook (1996)). Therefore, the Gap statistic has some additional
steps to determine the number of clusters.

The second step is to generate B reference data sets from an appropriate reference null distri-
bution. Tibshirani et al. (2000) indicated that usually the uniform distribution on the interval of
the original data is an appropriate choice. The number of observations in every reference data set
should be equal to the number of observations in the original data set. The precision of the Gap
statistic improves as B increases, but implementations of the statistic suggest that usually 100 ref-
erence data sets are sufficient (Maechler et al. (2017)).

The third step is to determine the Gap statistic by using Equation (31).

Gapk =
1

B

B∑
b=1

log(Wkb)− log(Wk), (31)

whereWkb is the value ofWk when using the distances from reference data set b. One can plot the
values ofGapk for different values of k and look for a maximum in order to determine the number
of clusters. However, to add more certainty to this estimation, Tibshirani et al. (2000) included the

39

standard deviation of the reference data sets into the estimation.

The fourth step is to determine the standard deviation sdk of the values of log{Wkb}:

sdk =

√√√√ 1

B

B∑
b=1

(log(Wkb)− l̄), (32)

where l̄ = 1
B

∑B
b=1 log(Wkb). A scaled version of this standard deviation, sk =

√
1 + 1

B sdk, is
used in the final step for determining the number of clusters. In this final step, the "optimal" k
is determined by finding the smallest k such that Gapk ≥ Gapk+1 − sk+1. This last step is also
referred to as the 1-standard-error method.

In Appendix D, we apply the Gap statistic on instances with 3, 5 and 1 cluster(s), respectively.
From these examples we can confirm that the elbow method may not always be conclusive. This
especially holds for cases where clusters lay close to each other (see Figure 26) or where there
is no clear clustering structure (see Figure 27). We observe that the Gap statistic is still able to
identify the correct number of clusters in all three examples.

At last, we discuss the time complexity of the Gap statistic. As with the analysis that is pre-
sented by Vendramin et al. (2010), we assume that computing the centroids takes O(nN) time.
Note that this time complexity may differ, depending on the clustering method that is chosen.
Computing Wk has a time complexity of O(nN), which becomes O(BnN) when performed for
all reference data sets B. Calculating the Gapk value and its standard deviation both takes O(B)
time. In total, we can conclude that the Gap statistic has a time complexity of O(BnN) time.

4.2 Local methods

4.2.1 Je(2)/Je(1) index

The Je(2)/Je(1) index, also referred to as the Duda index or Duda-Hart index, is a local method
proposed by Duda and Hart (1973). It is an iterative method that determines the "optimal" number
of clusters for a given hierarchical clustering. It does so by following the dendrogram of the
hierarchical clustering (see Subsection 3.1), starting with all data in one cluster and increasing the
number of clusters by one during every iteration. In every iteration, the method determines which
cluster is the next cluster to be partitioned according to the dendrogram. For this cluster D, the
sum of squared errors is calculated, indicated by Je(1):

Je(1) =
∑
x∈D
‖ x− x̄ ‖2, (33)

where x̄ is the mean of all observations x in cluster D. It also calculates the sum of squared errors
of the two clusters D1 and D2 that would be created if cluster D were to be partitioned, indicated
by Je(2):

Je(2) =
2∑
i=1

∑
x∈Di

‖ x− x̄i ‖2, (34)

where x̄i is the mean of all observations x in cluster Di. The "optimal" number of clusters is now
determined by finding the smallest k such that

Je(2)

Je(1)
≥ 1− 2

πn
− z

√
2
(
1− 8

π2n

)
nND

= IDuda, (35)

40

where n is the number of dimensions of the data, ND is the number of observations in cluster
D and z is the cutoff value from a standard normal distribution specifying the significance level
(Yan (2005)). Previous research on the value of z indicate that the best results are obtained when
z = 3.20 (Milligan and Cooper (1985)).

At last we discuss the time complexity of the Je(2)/Je(1) index. We consider the case where the al-
gorithm terminates when a value for k is found that causes the Je(2)/Je(1) index to be greater than
or equal to IDuda. In the worst case scenario, the algorithm has to determine Je(2)/Je(1) for N dif-
ferent clusters, where at every j-th partition there are k = j clusters and N −k observations in the
cluster that has to be partitioned. Both Je(1) and Je(2) have a time complexity ofO(nNi), where
Ni is the number of observations in the cluster that has to be partitioned in the i-th iteration. Ob-
serve that in the worst case scenario we have thatN1 = N,N2 = N−1, N3 = N−2, ..., NN = 1,
where all the values of Ni sum up to N(N+1)

2 . The total algorithm for determining the Je(2)/Je(1)
index thus has a time complexity of O(nN2).

Some implementations of the Je(2)/Je(1) index do not run until a value k is found for which
Je(2)
Je(1) ≥ IDuda, but instead calculate the index for a range of values k (Charrad et al. (2014)). This
approach resembles the way in which global methods work. In this case it improves the time com-
plexity to O(knN) (or O(nN) for every value of k that is considered), but it does not guarantee
that an index value is found that is greater than or equal to IDuda.

4.2.2 Beale index

The Beale index, proposed by Beale (1969), determines the "optimal" number of clusters very
similarly to the Je(2)/Je(1) index. It is also defined only for hierarchical clustering and it follows
the partitions in the order in which they occur in the dendrogram of the clustering. The only
difference is the index that is considered at every partitioning in the algorithm. The index that is
used for the Beale index is an F -statistic that is defined in Equation (36). This index uses Je(1),
Je(2) and ND as they are defined in Subsection 4.2.1.

F ≡
(
Je(1)− Je(2)

Je(2)

)/((
ND − 1

ND − 2

)
2

2
n − 1

)
. (36)

The "optimal" number of clusters is obtained by comparing F with an Fn,(ND−2)n distribution.
The null distribution that the cluster should not be partitioned is rejected is F is significantly large.
Milligan and Cooper (1985) indicated that a significance level of 0.005 gives the best results. The
time complexity of the Beale index is similar to the time complexity of the Je(2)/Je(1) index.

41

4.3 Comparing the indices

We now compare the different indices that we discussed in this section based on applicability,
computation time and other properties. In Table 8, an overview can be found on for which distance
measure(s) and clustering method(s) the seven methods that we discussed are applicable. Note
that both local methods are limited to only the Euclidean distance and hierarchical clustering,
while most global methods are applicable for any distance measure or clustering method. The
only exception is the Calinski-Harabasz index, which is limited to using the Euclidean distance.
Furthermore, we must note that the Calinski-Harabasz index, the C index and the Gamma index
are not defined for k = 1.

Table 8: Overview of the distance measures and clustering methods that are applicable for all
seven methods for estimating the number of clusters that we discuss in this section.

Estimation method Category Distance measure(s) Clustering method(s)
Calinski-Harabasz index Global Euclidean Any
C index Global Any Any
Gamma index Global Any Any
Silhouette index Global Any Any
Gap statistic Global Any Any
Je(2)/Je(1) Local Euclidean Hierarchical
Beale Local Euclidean Hierarchical

Even though the Calinski-Harabasz index has some limitations (see above), it is still one of the
most widely used indices. This is due to its good performance according to previous research
(e.g. Milligan and Cooper (1985)) and also its time complexity. In Table 9, an overview of the
time complexities and criteria of the seven indices that we discussed can be found. The time
complexities of the global methods do not account for the number of values of k for which the
index has to be determined. We note that in most clustering assignments n, k � N . Observe
that while most indices have a quadratic (or worse) time complexity in terms of the number of
observations N , the Calinski-Harabasz index and Gap statistic both have a time complexity that is
linear in N . However, the time complexity of the Gap statistic may still be proportional due to the
choice of B. Also, we recall that the local methods can also be used in a global manner, making
the time complexity of every iteration linear in N : O(nN). The time complexity of the Gamma
index appears to be the worst, as it has a term N4 in it.

Table 9: Overview of the time complexity and criteria for all seven methods for estimating the
number of clusters that we discuss in this section. n is the number of dimensions of the obser-
vations, N is the total number of observations, k is the number of clusters for which the Gamma
index has to be calculated and B is the number of reference data sets that are generated for the
Gap statistic.

Estimation method Time Complexity Criteria
Calinski-Harabasz index O(nN) Maximum value of index CH(k)
C index O(N2(n+ log2N)) Minimizing value of index C
Gamma index O(nN2 + N4

k) Maximizing value of index Γ
Silhouette index O(nN2) Maximizing value of index SWC
Gap statistic O(BnN) arg mink{Gapk ≥ Gapk+1 − sk+1}
Je(2)/Je(1) index O(nN2) arg mink{Je(2)/Je(1) ≥ IDuda}
Beale index O(nN2) Smallest k for which H0 not rejected

42

If we look at the criteria for the different indices, we can conclude that all indices that we discussed
are built, in some way, around minimizing the within cluster distance and/or maximizing the be-
tween cluster distance. While this kind of similarities between indices can be found, Milligan and
Cooper (1985) concluded that no general statement of cause can be given behind the performance
of the different indices. They also concluded that the performance of an index depends on the data
which it is used for.

In order to obtain a reliable estimation of the "optimal" number of clusters, it is suggested by
Yan (2005) to apply several different indices instead of a single one. Charrad et al. (2014) used
this idea to built a method that applies up to 30 different indices, after which the majority rule is
applied to determine the "optimal" number of clusters. If most methods agree on a certain number
of clusters, there is a good indication of a clear clustering structure in the data. If there is no or
barely any agreement between the indices, Milligan (1996) commented that this might indicate
that there is no significant cluster structure in the data. Note that while using multiple indices
improves the reliability, the total computation time of the indices may become a problem for large
data sets.

For time series clustering, we have seen in Section 2 that lock-step distance measures, such as
the Euclidean distance, are often outperformed by elastic distance measures. To obtain a good es-
timation of the "optimal" number of clusters for time series clustering, we can thus conclude that
indices that allow elastic distance measures are more reliable. This favours the C index, Gamma
index, Silhouette method and Gap statistic over the other three indices that we discussed in this
section.

43

5 Practical research

In the previous sections, we discussed and compared several methods for measuring similarity,
obtaining clusterings and determining the number of clusters. In this section, we put a selection
of these methods to the test by applying them to an actual time series data set. We do this in R
(R Core Team (2016)), where we implement a selection of methods and compare them based on
computation time and performance.

While it is easy to measure the performance of supervised learning algorithms, such as algo-
rithms for classification problems, it is often hard to measure the performance of unsupervised
learning algorithms, such as clustering algorithms. The reason for this, is that it is subjective what
makes a clustering ‘good’. The performance of a clustering depends on the goal and criteria of the
clustering and may therefore differ per application.

Our initial approach was to quantify clustering quality by using classification data sets. For this, a
selection of time series data sets were taken from the repositories of Dheeru and Karra Taniskidou
(2017) and Anthony Bagnall and Keogh (2016). Here the idea was to compare the classification
labels in the obtained clusters to see to what extent the clustering algorithms could create clusters
of similarly labeled data. However, this approach appeared not to be feasible. First of all, it turned
out to be a hard task to determine which label belongs to which cluster, as most clusters did not
appear to have a dominant (common) label. Furthermore, overlaying the similarly labeled time se-
ries did not visually show logical groupings, whereas overlaying the time series within the clusters
did. This result emphasizes the power of clustering, as it indicates that clustering can find better
groupings compared to the groupings that are predefined by the labels. However, it also shows
that our approach is not feasible for quantifying the quality of clustering algorithms.

To still be able to test clustering algorithms and quantify their performance, we set up an ex-
periment with a clear clustering goal. This goal is to use clustering to obtain clusters that can be
used for forecasting. Instead of making forecasts for all individual time series, only one forecast
will be made for each cluster. This forecast is then applied to all time series in the corresponding
cluster. To measure the quality of the clusterings, we take the error between the forecasts and the
actual time series.

A practical example of the setup above could be a supplier who wants to determine future stock-
ing levels. Making forecasts for all individual time series (products) may then be infeasible, as it
could induce noise or require too much computation time. Using clustering instead could over-
come these problems.

In the upcoming subsections, we further explain the setup of our experiment and present our
findings. We start with Subsection 5.1, where we discuss the time series data set that is used for
our experiment. Here we also discuss the preprocessing that is applied to our data set. Next, in
Subsection 5.2, we discuss the R implementations and running times of all seven distance mea-
sures that we discussed in Section 2. These measures are applied to the time series data set in
order to obtain the corresponding distance matrices, which are used in some of the clustering al-
gorithms in this experiment. To determine the number of clusters in which the data should be
partitioned, in Subsection 5.3 we apply the seven indices that we discussed in Section 4. At last,
in Subsection 5.4, we further explain our setup to quantify clustering quality based on forecasting.
We also present our results on the computation times and performance of the different algorithms
for obtaining clusterings.

44

5.1 Data

In this subsection we discuss the time series data set that we use in our practical research. We
start by giving some general background on the data in Subsection 5.1.1. Note that due to the
confidentiality of the data, we can only provide limited information. In Subsection 5.1.2 we discuss
how we filtered and preprocessed the data in order to obtain a suitable subset for our experiment.

5.1.1 Data description

The data that we use in this practical research originates from a large retailer, who is a client of
PwC. The data has been used for a previous project PwC did for this client, however no (time
series) clustering is performed during this project. Due to confidentiality, we cannot mention the
name of the client and also we are limited in the information we can share on this data set.

The data set contains over one million rows of sales data, where each row represents one product
in a given week. The unique key in the data is therefore formed by the article number in combina-
tion with the week number. The data in each row contains, among other things, information on the
total number of sales, revenue and gross profit of the product during a specific week. In total, the
data includes over 10,000 different products. The data ranges from week one of 2012 until week
29 of 2015, having a total time span of 185 weeks. There is thus a maximum of 185 rows of data
available for each product.

5.1.2 Data preprocessing

As mentioned in Subsection 5.1.1, the data contains weekly time series data on three variables:
sales, revenue and gross profit. Based on a data analysis on these variables, we conclude that the
variable sales is the ‘cleanest’ out of the three variables. The reason for this is that the revenue and
gross profit variables in some weeks contain negative values, while there is a positive number of
sales. This is presumably caused by items that are returned during the corresponding week. For
this experiment we therefore choose to only consider the weekly sales data of each product.

Initial tests on the data indicate that using the sales time series of all products comes with a large
time complexity, where it could take hours up to even days to compute some distance matrices.
Also, we observe that there are many products with zero or barely any sales during most of the
weeks. Due to the time complexity and the fact that clusters of time series around zero are not
very meaningful, we decided to only work with a subset of the data. In this subset we only take all
products that have a positive number of sales in all 185 weeks. The subset that results from this
filtering contains 2,381 sales time series. All analyses in the next subsections are applied only to
this subset.

Before moving on to the actual clustering analysis, it is important to decide on which prepro-
cessing should be applied to the data. Depending on the goal of the clustering, it may be desired
to, for example, scale, detrend or deseasonalize the data in advance. In our case, we decided not
to detrend or deseasonalize the data, since we want the clusters to capture this behavior instead.
However, we do have to apply scaling, as the sales time series have a variety of ranges. Two com-
mon ways of scaling are normalization and standardization. In normalization, the data is scaled
into a range of [0, 1] by using the following formula:

Xnorm =
X −Xmin

Xmax −Xmin
.

45

In standardization, the data is scaled to have mean 0 and a standard deviation of 1. This is done by
using the following formula:

Xstd =
X − µ
σ

,

where µ represents the mean and σ the standard deviation of all values in vector X . Both nor-
malization and standardization have some drawbacks. In normalization, if there are outliers in the
data, the ‘normal’ part of the data will be scaled to a small interval. In standardization, a drawback
is that the scaled data is unbounded (unlike normalization). A suitable scaling should therefore be
chosen depending on the goal of the clustering and the structure of the time series data. In our
case, we choose to apply normalization on the data. This is because we want to cluster based on
similar shapes in the time series rather than similar variances (which is the case for standardiza-
tion). Therefore, each of the 2,381 individual time series is scaled to the interval [0, 1].

Since our goal is to quantify clustering quality by comparing cluster forecasts with the actual
sales data, we need to split the data into a training set and a test set. The training set will be used
to obtain the clusterings and also to train the forecasting model on. The test set will be used to
compare the actual sales values with the forecasted sales values. We decided to split our data at
two years, which results in the training set containing the first 104 weeks (years 2012 and 2013)
of each time series and the test set containing the remaining 81 weeks (2014 and a part of 2015).
This enables the clusters to capture yearly trends and seasonality, while still having a large time
span to forecast on.

46

5.2 Computing the distance matrices

In this subsection we discuss the R implementations of all seven distance measures that we dis-
cussed in Section 2. For each of the distance measures, we calculate the corresponding distance
matrix of the time series data and measure the required computation time. We then compare the
distance measures based on their computation times, to see whether these times are in line with
the time complexities discussed in Section 2 and also to get a general idea on how the computa-
tion times scale with the number of time series N . All computations are performed on a Lenovo
ThinkPad with a 2.1 GHz Intel Core i7 processor and 12GB of RAM.

We compute the distance matrices for two data sets: one containing all the data (N = 2, 381)
and one containing only a random subset of N = 500 observations from the data set. For both
data sets it holds that only the training set is considered, so both sets contain n = 104 points in
time. In Section 2 we have seen that a distance matrix requires N(N−1)

2 distances to be calculated.
In our case, this means that the data set with all time series requires 2,833,390 distances to be
calculated and the subset requires 124,750 distances to be calculated. The expected scaling in cal-
culation times for computing the distance matrices for the two data sets is thus 2,833,390

124,750 ≈ 22.7.
Below we first discuss the implementations of all distance measures in R, after which we present
the computation times of all measures in Table 10.

Euclidean distance: Implemented using the dist function from the stats package. This function
uses underlying C code to calculate the distance matrix, which makes it very time efficient.

Pearson correlation distance: Different variations of this distance measure are present in the
literature and in packages that have implemented the Pearson correlation distance. However, these
variations all come down to scaling the distance measure. For example, the pearson.dist func-
tion in the hyperSpec package (Beleites and Sergo (2017)) divides the measure by 2 to scale the
distances in the interval [0,1] and the diss function in the TSclust package (Montero and Vilar
(2014)) scales the distance to dcor(x, y) =

√
2(1− ρ(x, y)). This last modification makes the

Pearson correlation distance equal to the Euclidean distance for the case where x and y are stan-
dardized (Borg and Groenen (2003)). Both the pearson.dist function and the diss function are
applied to compute the distance matrix using the Pearson correlation distance. While essentially
computing the same distance, there is a significant difference in calculation times for the two func-
tions: pearson.dist calculated the distance matrix for the whole set in 0.44 seconds, while it took
the diss function 202.30 seconds.

Dynamic Time Warping (DTW): Two different implementations of DTW are examined: using
the dist function from the proxy package (Meyer and Buchta (2017)) and using the diss function
from the TSclust package (Montero and Vilar (2014)). Due to the time complexity, a comparison
between the two functions is performed on the subset of 500 observations. Here it took the dist
function 206.69 seconds to obtain the distance matrix, while it took the diss function 332.81 sec-
onds. We therefore used the dist function for computing the distance matrix for the data set with
all observations.

Longest Common SubSequence (LCSS): For LCSS only one implementation is found, which
is the TSDatabaseDistances function from the TSdist package (Mori et al. (2016b)). For the
parameters we chose ε = 0.05 and δ = 5, meaning that the horizontal band is 5 time points and
the vertical band is 0.05. These values seemed reasonable to us for our data set, as it requires time
series to be relatively close in order to be considered similar by the measure.

47

Ensemble scheme: As discussed in Subsection 2.4, we only consider a linear ensemble scheme
in this thesis. This ensemble scheme is obtained by adding the DTW distance to the LCSS dis-
tance. However, since both distances have different scales, the distances are first scaled to the
interval [0, 1] before being added to each other. The computation time of the addition is negligible
compared to the computation times of DTW and LCSS and therefore the computation times of
the ensemble scheme in Table 10 are simply obtained by adding the two individual computation
times.

Discrete Fourier Transform (DFT): For the DFT we examined the TSDatabaseDistances func-
tion from the TSdist package. This function uses the Cooley-Tukey algorithm for calculating the
Fast Fourier Transform, which increases the computation speed (see also Subsection 2.3.1). For
the value of q, the number of (low) frequencies that are used for the approximation, we decided to
use q = 52. This is based on the Nyquist-Shannon sampling theorem and the findings in Subsec-
tion 2.3.1.
While it is expected for the DFT to run faster compared to the Euclidean distance, it took the TS-
DatabaseDistances function 211.78 seconds to compute the distance matrix for the whole data set
(compared to 1.55 seconds for the Euclidean distance). The cause of this difference became appar-
ent when diving into the source code of the TSDatabaseDistances function; instead of computing
the DFT for each time series once and then compute the distance matrix based on these transforms,
the DFT is recalculated for every distance that is calculated in the distance matrix. To solve this
inefficiency, we programmed our own implementation of the DFT. This implementation only took
20.95 seconds for computing the distance matrix for the whole data set. Note that the factor with
which our function is faster compared to the TSDatabaseDistances function grows with N and
thus increases for larger data sets. The fact that the Euclidean distance is still faster compared to
the DFT distance can be explained by the differences in implementation, as for the DFT we could
not use C code for computing the distance matrix (as is the case for the Euclidean distance).

Discrete Wavelet Transform (DWT): For the DWT, we examined the diss function from the
TSclust package. This function has the option to compute the DWT, however the only wavelet
that can be chosen is the Haar wavelet. Furthermore, the function does not provide the option
to choose the number of decomposition levels to use, but instead decides on this number itself.
We have rewritten the code of the diss function to enable choosing different wavelets and also to
enable the user to choose the number of decomposition levels to use. Our tests indicate that this
addition does not influence the computation time of the function.
To utilize the extra options that we programmed, we apply the DWT for two different wavelets:
Haar and Daubechies 10. For both transforms we use decomposition level 2, which comes down
to a reduction from 104 dimensions to 32 dimensions.

Symbolic Aggregate approXimation (SAX): For SAX, we examined the diss function of the
TSclust package. Since initial tests indicated that the function is not programmed efficiently,
we investigated the source code to find the cause. The reason why the function is inefficient for
determining the SAX distance is similar to the cause we found at the DFT implementation dis-
cussed above; the decomposition is performed for every calculation of the distance matrix instead
of decomposing all time series once and then using the decomposed series for determining the
distance matrix. To overcome this inefficiency, we programmed our own implementation of the
SAX distance. This implementation yields the same distances as the diss function, but uses sig-
nificantly less computation time. For the subset of 500 time series, our own implementation took
0.56 seconds for computing the distance matrix, while the diss function took 35.65 seconds. This
difference becomes more significant asN grows. For the parameters of the SAX distance, w = 13

48

and a = 8 are chosen. These values seem reasonable to us, based on the examples we provided in
Subsection 2.3.3.

Table 10: Overview of the computation times of the different distance measures for determining
the distance matrix. Time is given in seconds.

Distance measure Whole data set (N = 2, 381) Subset (N = 500)

Euclidean 1,55 0,08
Pearson correlation 0,44 0,02

DTW 4330,91 206,69
LCSS 3876,05 171,67

Ensemble scheme 8206,96 378,36
DFT 20,95 0,85

DWT (Haar) 6,09 1,57
DWT (Daubechies 10) 6,20 1,09

SAX 10,23 0,56

In Table 10, an overview of the computation times of the different distance measures can be found
for determining the distance matrices of the whole data set and the subset. We begin by observ-
ing that the expected scale of 22.7 between the two columns seems to hold. For DWT this scale
appears to be less, we expect this difference to be caused by the start-up time of the DWT func-
tion. While the pearson correlation distance is the fastest out of all distances that we consider,
we cannot be conclusive on whether this is always the case, due to the variation in computation
times that we observed. However, what we can conclude, is that DTW and LCSS are significantly
slower compared to the other distance measures, taking over 2,000 times longer compared to the
Euclidean distance for our data set. Furthermore, we conclude that while being faster in theory, the
dimensionality reduction methods that we considered are slower compared to the Euclidean dis-
tance in the current R implementations. However, this does not mean that these methods become
irrelevant, since their noise reduction properties are still in effect.

49

5.3 Determining the number of clusters

In this subsection, we determine the number of clusters to choose for our data set of 2,381 time
series. We do this by applying all seven indices from Section 4 on the data. For the indices that
allow any distance measure as input, we determine the ‘optimal’ number of clusters for all distance
measures from the previous subsection. Furthermore, based on the implementations that are avail-
able in R, we apply all indices for k-means clustering and agglomerative hierarchical clustering.
For the hierarchical clustering, we apply both Complete linkage and Ward’s method.

Below we first discuss the R implementations of the different indices, after which we present
Table 11, which contains the optimal number of clusters as suggested by the different indices.

Calinski-Harabasz index, C index, Je(2)/Je(1) index & Beale index: All four obtained by
using the NbClust function of the NbClust package (Charrad et al. (2014)). All four indices
were calculated relatively fast (only a few seconds). The Je(2)/Je(1) index failed to converge
to a solution when using hierarchical clustering with Ward’s method. The Beale index failed to
converge to a solution for the two hierarchical clusterings and could only find a solution for k-
means clustering by using a significance level of 0.0005.

Gamma index: Implementation available in the NbClust function of the NbClust package.
However, as also indicated by the NbClust function description, the index takes a long time to
compute. In our case, we terminated the computation of the index, since it had not found the
index value for a single number of clusters after running for over 20 minutes. We therefore do not
consider the Gamma index in Table 11.

Silhouette index: We applied the Silhouette index by using the silhouette function of the cluster
package (Maechler et al. (2017)). Calculating the index for our data only took a few seconds.

Gap statistic: Two implementations are examined: the index.Gap function from the clusterSim
package (Walesiak and Dudek (2017)) and the NbClust function of the NbClust package. Both
functions appear to be slow for computing the Gap statistic, taking tens of minutes even for low
values of B (we used B = 10). We therefore decided not to include the Gap statistic in Table 11.

50

Table 11: Overview of the ’optimal’ number of clusters for each combination of index, distance
measure and clustering method that we considered. The range of possible k values was 5 to 30
clusters. An x indicates that the method was not applicable for the combination of methods and a
minus sign indicates that the index did not converge to an optimal number of clusters.

Index Distance measure Ward’s method Complete linkage K-means
Calinski-Harabasz Euclidean 5 5 5

Beale Euclidean - - 5
Je(2)/Je(1) Euclidean - 11 5

Euclidean 5 5 7
Pearson correlation 30 23 x

DTW 6 5 x
LCSS 5 5 x

C Ensemble scheme 8 5 x
DFT 5 5 x

DWT (Haar) 30 7 x
DWT (Daubechies 10) 26 5 x

SAX 17 8 x
Euclidean 5 6 5

Pearson correlation 5 5 x
DTW 6 5 x
LCSS 5 5 x

Silhouette Ensemble scheme 6 5 x
DFT 5 5 x

DWT (Haar) 5 8 x
DWT (Daubechies 10) 5 6 x

SAX 5 5 x

In Table 11, the ‘optimal’ number of clusters can be found for each combination of index, distance
measure and clustering method that we considered. For the Silhouette method and the C index, all
distance measures from the previous subsection are applied. The Calinski-Harabasz index, Beale
index and Je(2)/Je(1) index are all only applicable for the Euclidean distance measure. While we
did apply hierarchical clustering with Ward’s method for every distance measure, we again have
to mention that Ward’s method is built around (a distance measure proportional to) the Euclidean
distance.

By visual inspection, we decided that at least five clusters should be obtained from the cluster-
ing. We therefore set the range of k values for the different indices from 5 to 30 clusters. Note that
many methods return five, the minimum number of k, as the ‘optimal’ number of clusters. Six,
seven and eight clusters are also returned by a few indices, however no clear agreement between
the indices can be detected. Even though five is returned by the majority of indices, the fact that
the lowest possible k value is returned does not necessarily mean that this is the optimal k, but
rather that no clear clustering structure is present in the data. Since no clear agreement between
the indices is found, we decided to visually inspect the obtained clusters to pick the number of
clusters (while keeping Table 11 in mind). Based on visual inspection of the obtained clusters, we
decided to work with eight clusters in the remaining clustering analysis. We refer to Subsection
5.4 for visualizations of the eight clusters.

51

5.4 Using forecasting to compare cluster quality

In this last part of the practical research, we use forecasting to compare the quality of clusterings.
To clarify how this is done, below an overview of the overall setup of this experiment can be found.

1. Normalize the time series data (all 185 weeks).

2. Decide on a distance measure.

3. Decide on the number of clusters.

4. Cluster the time series based on the first 104 weeks of time points.

5. Calculate the mean sales of each cluster.

6. For every cluster, make a forecast on the sales pattern of the last 81 weeks based on the
cluster mean of the first 104 weeks.

7. Calculate the total difference between the cluster forecasts and the true sales patterns of the
individual products.

Steps 1, 2 and 3 are discussed in the previous subsections. Note that in step 1, normalization is ap-
plied based on all 185 weeks instead of only applying it to the first 104 weeks. It could be argued
that we here use ‘information from the future’, as the normalization of the first 104 time points
could be influenced by the last 85 points in time. However, we still decided to normalize in this
way, since it reduces the influence of outliers in the last 85 points in time on the error function in
step 7. Furthermore, it allows us to limit the influence of clusters with a decreasing and increasing
trend (see also step 6).

For step 4, we apply the following clustering methods to generate eight clusters:

Agglomerative hierarchical clustering: Implemented using the hclust function from the stats
package. Based on tests on the linkage methods, Complete linkage and Ward’s method seem to
generate the best clustering and thus we only consider these two methods. Since hierarchical
clustering is applicable on all distance measures, we apply it using all distance measures that are
discussed in Subsection 5.2.

k-medoids: Implemented using the pam function from the cluster package (Maechler et al.
(2017)). This function allows distance matrices to be given as input and thus we applied k-medoids
on all distance measures that are discussed in Subsection 5.2.

k-means: Implemented using the kmeans function from the stats package. The algorithm that
is used is the Hartigan-Wong algorithm, which is also chosen by default by the function. For
the stopping condition, a maximum of 100 iterations is taken. Also, 100 random initializations
are used to lower the probability of finding a local optimum. This does, however, increase the
computation time, but this time is still in line with the other clustering methods, as we can also see
in Table 12. As we have seen in Subsection 3.2.1, k-means is only applicable for the Euclidean
distance.

52

CLARA: Implemented using the clara function from the cluster package (Maechler et al. (2017)).
The sample size is taken to be z = 40 + 2k = 56, which is based on the literature study in Sub-
section 3.2.4. Since the method appeared to have fast computation times, the default number of
samples of five is increased to S = 1, 000. This is done to reduce the chance of finding local
optima. While CLARA is applicable for all distance measures in theory, the implementation in
the cluster package only supports the Euclidean distance. We therefore only apply this method
for the Euclidean distance.

CLARANS: No implementations of CLARANS were found and thus we programmed this
method ourselves. Based on the literature, the maximum number of neighbours v to compare
each solution with is taken to be 250. The total number of solutions to be sampled is 10. The
CLARANS function we implemented only supports the Euclidean distance, since it is expected to
be slow for other distances.

In step 6, we use ARIMA for forecasting. Since forecasting is not within the scope of this thesis
and since we only use it as a tool for quantifying clustering quality, we will not go into depth on
how ARIMA works. To obtain the forecasts, we use the auto.arima function from the forecast
package. This functions returns the best ARIMA model according to the AICc value. The only
parameter we adjusted for the auto.arima function is the value of D, for which we take D = 1.
This adjustment ensures that strong seasonality is taken into account in the forecasting, as we
will also see in plots later on. For further explanation on ARIMA forecasting and the auto.arima
function in R, we refer to Hyndman and Khandakar (2008). Since we known from step 1 that the
normalized true sales patterns lie within the interval [0, 1], any forecast above 1 is scaled down
to 1 and any forecast below 0 is scaled up to 0. This avoids forecasts of decreasing or increasing
clusters to dominate the error function in step 7.

To quantify the clustering quality in step 7, we compute the total error between the forecast mean
of each cluster and the true sales pattern of the individual products. This error is taken to be the
absolute difference (Manhattan distance) between the forecast and the true series. Note that we
here take the forecast and the true sales patterns from the normalized range of values, rather than
taking the actual sales values. This is done to give each product equal weight.

A visualization of steps 5, 6 and 7 can be found in Figures 17, 18 and 19. Here one of the clusters
obtained by the CLARANS algorithms is taken in Figure 17 and the corresponding ARIMA fore-
cast can be found in Figure 18. In Figure 19, the mean of the forecast is plotted together with the
normalized sales data of the forecasted period. The difference between these time series and the
mean forecast yields us the total error for the given cluster.

53

0 20 40 60 80 100

0.
0

0.
4

0.
8

Cluster: 3 - Size: 295

Figure 17: Example of step 5 of the experiment: determining the mean of all sales time series
within a cluster. Only the first 104 time points are considered. The cluster is one of the clusters
that is obtained when using CLARANS.

auto.arima for cluster 3

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
4

0.
8

Figure 18: Example of step 6 of the experiment: using ARIMA to forecast 81 weeks. The cluster
is one of the clusters that is obtained when using CLARANS.

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 3 - Size: 295

Figure 19: Example of step 7 of the experiment: comparing the forecast of the last 81 points in
time (yellow line) with the true normalized time series. The cyan line on the left is the mean of
the original cluster. The cluster is one of the clusters that is obtained when using CLARANS.

54

In Table 12, we present the computation times of each method for obtaining eight clusters using
the parameters we discussed in this section. This table serves as an indication as to what one could
expect when using these methods in practice. The hierarchical methods tend to be the fastest in
generating the clustering, however we must note that these computation times do not include the
computation of the individual distance matrices. This also holds for the k-medoids computation
times. For the methods that are only applicable (in the implementations) when using the Euclidean
distance, we observe that CLARANS is clearly slower compared to k-means and CLARA.

In Table 13, the total error (as defined above) for each method can be found. We note that all errors
lie relatively close to each other. What is interesting, is that k-means, CLARA and CLARANS,
which are based on the Euclidean distance, outperform most of the hierarchical clustering meth-
ods and k-medoids combinations that use more sophisticated distance measures. The hierarchical
clustering appeared to perform best when using the DFT distance. The method that performs best
in our experiment is CLARANS, followed by hierarchical agglomerative clustering using Ward’s
method and the DFT distance. The third best performing method in our experiment is k-means.
The method that performs worst in our experiment is hierarchical clustering using Complete link-
age and the DWT distance with the Daubechies 10 wavelet.

Table 12: Overview of the calculation times for obtaining eight clusters of all combinations of
methods that we applied. Computation times are given in seconds.

Dist. measure
Hierarchical

Agglomerative
Complete linkage

Hierarchical
Agglomerative
Ward’s method

k-medoids k-means CLARA CLARANS

Euclidean 0.25 0.20 2.31 6.76 3.56 173.36
Pearson 0.24 0.19 2.48

DTW 0.22 0.19 3.98
LCSS 0.75 0.30 1.26

Ensemble 0.46 0.26 1.22
DFT 0.35 0.17 1.16

DWT (Haar) 0.34 0.22 1.72
DWT (Db 10) 0.22 0.19 1.76

SAX 0.63 0.15 2.75

Table 13: Total error between the cluster forecasts and the actual normalized sales patterns, given
for all combinations of methods that we applied. The lowest error in each of the first three columns
is underlined and the lowest error overall is shown in bold.

Dist. measure
Hierarchical

Agglomerative
Complete linkage

Hierarchical
Agglomerative
Ward’s method

k-medoids k-means CLARA CLARANS

Euclidean 29174 29143 28791 28531 28606 28313
Pearson 31884 30774 31858

DTW 29762 29168 28534
LCSS 32581 32574 29638

Ensemble 32584 32278 30849
DFT 29064 28420 28584

DWT (Haar) 31946 31454 31611
DWT (Db 10) 32625 31690 31614

SAX 32081 31637 31306

55

Besides comparing the computation times and the forecasting errors of different clustering as-
signments, we now investigate the obtained clusterings visually. For this, we plotted the obtained
clusterings of the three methods that gave the lowest forecasting error in our experiment. We also
plotted the clustering that is obtained by the method that gave the highest forecasting error. The
plots of all four clusterings can be found in Appendix E.

When visually comparing the three best performing clustering assignments with the assignment
that performed worst in our experiment in Appendix E, we observe three main differences. The
first main difference lies in the cluster sizes. The three best performing clusterings mostly have
clusters with sizes around 300-400, while the worst performing clustering has two large clusters
that account for over 70% of the observations and other clusters with only a few (4, 12 and 23)
observations. The second main difference is that, judging by the black lines in the background,
more variance appears to be present between the time series of the clusters in the worst cluster-
ing. The third main difference is the ability of the clusterings to capture seasonality. In all three
best performing clusterings, we clearly observe seasonality being captured. They all contain two
or three clusters that contain seasonal peaks during the spring or summer. Furthermore, they all
contain a small-sized cluster that has seasonal peaks during the winter months. This cluster with
peaks during the winter is not present in the worst clustering. The other clusters with peaks during
the spring and summer months are present, but with more moderate peaks.

56

6 Discussion

One of the most important factors in time series clustering is the distance measure that is chosen.
Elastic measures such as DTW and LCSS outperform traditional lock-step measures, according to
the literature, due to their ability to, for example, capture time warping and time shifting. However,
time complexity plays a big role in time series clustering and therefore elastic distance measures
quickly become infeasible as the number of time series grows. This also became apparent in our
practical research, where for 2,381 time series it already took more than one hour to compute each
of the distance matrices for the elastic measures. For large data sets, even traditional lock-step
measures, such as the Euclidean distance, may become too time expensive.

To handle large data sets, two main approaches are suggested in this paper. The first approach
is to use dimensionality reduction methods in order to reduce the number of dimensions (and
noise) of the time series that are clustered. The second approach is to use sampling methods, such
as CLARA and CLARANS, when constructing clusters. The first approach seems to be most ef-
fective when dealing with time series that have a large number of dimensions, whereas the second
approach seems to be most effective when one deals with a large number of individual time series.

It appeared to be a difficult task to determine the optimal number of clusters for our experiment.
The different indices that we considered did not agree on a certain number of clusters, indicating
that our data might not be so suitable for a clustering analysis. Besides the indices that we con-
sidered in this thesis for determining the optimal number of clusters, there is still a wide variety
of other indices available. We mainly based the choice of our indices on the article of Milligan
and Cooper (1985), who based their results on experiments with 2, 3, 4 and 5 clusters. Since we
were dealing with more clusters in our practical research, we cannot be sure that the indices that
we used are the best to apply.

The results of our practical research indicate that the CLARANS algorithm using the Euclidean
distance performs best for our clustering goal. However, we cannot make general conclusions
based on this result on which clustering method performs best. What we can conclude, however,
is that sampling methods show the potential of obtaining good clusterings in a reasonable amount
of time. Further research could investigate whether the performance of sampling methods can be
improved when they are applied in combination with elastic distance measures.

Since we included many different distance measures and clustering methods in our practical re-
search, we were unable to discover the effects of all parameters that can be tweaked for these meth-
ods. For example, only one set of parameters is used for LCSS and only two different wavelets
are tried when applying the DWT. We expect that further analysis on the parameters of the dif-
ferent distance measures could improve the results for these measures in our practical research.
Also, in our analysis on distance measures, only shape-based and feature-based distance measures
are considered. While these methods appear to be the most dominant in literature on time series
clustering, further research could investigate the performance of other types of distance measures,
such as edit-based and structure based distance measures.

To conclude, it depends on the size of the data set and the goal of the clustering assignment which
distance measure, index for determining the number of clusters and clustering method are most
suitable. We advise to always start by applying general clustering methods, like k-means, and
decide based on the computation time and performance of these methods which distance measures
or clustering methods could be applied to improve the results or computation time.

57

A Appendix: List of abbreviations

CLARANS Clustering Large Applications based on RANdomized Search

CLARA Clustering LARge Applications

DDTW Derivative Dynamic Time Warping

DFT Discrete Fourier Transform

DTW Dynamic Time Warping

DWT Discrete Wavelet Transform

ED Euclidean Distance

FFT Fast Fourier Transform

LCM Local Cost Matrix

LCSS Longes Common SubSequence

PAM Partitioning Around Medoids

PCA Principal Component Analysis

SAX Symbolic Aggregate approXimation

WDWT Weighted Dynamic Time Warping

58

B Appendix: Omitting high frequencies to approximate and denoise
time series

0 20 40 60 80 100

-1
0

1
2

3

Time

S
al

es
 (

sc
al

ed
)

Figure 20: Plot of the scaled sales time series of an arbitrary product from our data set. For the
scaling, the linear trend is removed and the series are standardized.

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

20
25

30

Frequency

M
ag
ni
tu
de

Figure 21: Periodogram for the time series in Figure 20.

59

-4
-2

0
2

4
q = 13

time

S
al

es
 (

sc
al

ed
)

10 20 30 40 50 60 70 80 90 100

-3
-1

1
2

3

q = 26

time

S
al

es
 (

sc
al

ed
)

10 20 30 40 50 60 70 80 90 100

-2
-1

0
1

2

q = 52

time

S
al

es
 (

sc
al

ed
)

10 20 30 40 50 60 70 80 90 100

-1
0

1
2

3

q = 105

time

S
al

es
 (

sc
al

ed
)

10 20 30 40 50 60 70 80 90 100

Figure 22: Approximations of the time series from Figure 20 when considering only the first
13, 26, 52 and 105 frequencies from X(f).

60

C Appendix: Omitting different levels of detail coefficients to ap-
proximate and denoise time series

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 1 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 2 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 3 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 4 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 5 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 6 and 7

Time

S
al

es
 (

sc
al

ed
)

Figure 23: Approximation of a time series based on different levels of wavelet decomposition.
In this example a time series of length 105 is used which has been supplemented with 23 dummy
values (zeros) to obtain 27 = 128 dimensions. This is done for visual purposes, as it allows perfect
recreation of the original time series (using all detail levels). The dimensions of the approximations
are, from left to right and from top to bottom, 128, 64, 32, 16, 8 and 4. Only the approximations
for the first 105 values are plotted. The Haar mother wavelet is used for this example.

61

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 1 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 2 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 3 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100
0.

0
0.

4
0.

8

Using detail levels 4 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 5 to 7

Time

S
al

es
 (

sc
al

ed
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Using detail levels 6 and 7

Time

S
al

es
 (

sc
al

ed
)

Figure 24: Approximation of a time series based on different levels of wavelet decomposition.
In this example a time series of length 105 is used which has been supplemented with 23 dummy
values (zeros) to obtain 27 = 128 dimensions. This is done for visual purposes, as it allows perfect
recreation of the original time series (using all detail levels). The dimensions of the approximations
are, from left to right and from top to bottom, 128, 64, 32, 16, 8 and 4. Only the approximations
for the first 105 values are plotted. The Daubechies 10 mother wavelet is used for this example.

62

D Appendix: Examples of the Gap statistic for determining the num-
ber of clusters

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

x1

x 2

(a) 150 random Gaussian points gener-
ated around three different means ((0.3,0.3),
(0.6,0.9) and (0.8,0.1)). The standard devia-
tion for all points is 0.1. For every mean, 50
points are generated.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

x1

x 2

(b) 150 random Gaussian points from part
(a) (blue) together with 150 random uniform
points (red) within the range (green box) of
the blue points.

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

k

W
k

(c) Plot of Wk for different numbers of clus-
ters k.

1 2 3 4 5 6 7 8 9 10

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

k

(d) Plots of log(Wk) (blue) and
1
B

∑B
b=1 log(Wkb) (red) for different

numbers of clusters k.

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k

G
ap

k

(e) Value of Gapk plotted for different num-
bers of clusters k.

1 2 3 4 5 6 7 8 9

k

G
ap
(k
)-
(G
ap
(k
+
1)
-
s k

+1
)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

(f) Barplot of the values that follow from the
1-standard-error method.

Figure 25: Example 1 of the different steps that are involved when determining the optimal number
of clusters using the Gap statistic. Clustering is performed using K-means and B = 100 is used.
Observe that the plots of Wk, Gapk and the 1-standard-error method in parts (c), (e) and (f) all
indicate that, indeed, three is the optimal number of clusters.

63

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x 2

(a) 400 random Gaussian points generated around
five different means ((0.1,0.2), (0.2,0.9), (0.8,0.1),
(0.9,0.6) and (0.6,0.9)). The standard deviation for
all points is 0.07. For every mean, 80 points are
generated.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x 2

(b) 400 random Gaussian points from part (a)
(blue) together with 400 random uniform points
(red) within the range (green box) of the blue
points.

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

k

W
k

(c) Plot of Wk for different numbers of clusters k.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

k

(d) Plots of log(Wk) (blue) and
1
B

∑B
b=1 log(Wkb) (red) for different

numbers of clusters k.

1 2 3 4 5 6 7 8 9 10

0.5

1.0

1.5

k

G
ap

k

(e) Value of Gapk plotted for different numbers of
clusters k.

1 2 3 4 5 6 7 8 9

k

G
ap
(k
)-
(G
ap
(k
+
1)
-
s k

+1
)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

(f) Barplot of the values that follow from the 1-
standard-error method.

Figure 26: Example 2 of the different steps that are involved when determining the optimal number
of clusters using the Gap statistic. Clustering is performed using K-means and B = 100 is used.
Plots (e) and (f) indicate 5 to be the "optimal" number of clusters, while there is no clear "elbow"
in (c).

64

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

x1

x 2

(a) 400 random Gaussian points generated around
mean (0.5,0.5) with standard deviation 0.2.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

x1

x 2

(b) 400 random Gaussian points from part (a) (blue)
together with 400 random uniform points (red) within
the range (green box) of the blue points.

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

k

W
k

(c) Plot of Wk for different numbers of clusters k.

1 2 3 4 5 6 7 8 9 10

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k

(d) Plots of log(Wk) (blue) and
1
B

∑B
b=1 log(Wkb) (red) for different num-

bers of clusters k.

1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1.0

1.1

k

G
ap

k

(e) Value of Gapk plotted for different numbers of
clusters k.

1 2 3 4 5 6 7 8 9

k

G
ap
(k
)-
(G
ap
(k
+
1)
-
s k

+1
)

0.00

0.05

0.10

0.15

0.20

(f) Barplot of the values that follow from the 1-
standard-error method.

Figure 27: Example 3 of the different steps that are involved when determining the optimal number
of clusters using the Gap statistic. Clustering is performed using K-means and B = 100 is used.
There is no clear elbow in (c). Plots (e) and (f) both indicate the right number of clusters, which is
one.

65

E Appendix: Visualizations of the clusterings that are obtained in
the experiment

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 1 - Size: 77

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 2 - Size: 384

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 3 - Size: 295

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 4 - Size: 384

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 5 - Size: 57

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 6 - Size: 570

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 7 - Size: 128

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 8 - Size: 486

Figure 28: Visualization of the eight clusters that are obtained when applying the CLARANS clus-
tering algorithm with Euclidean distance on our time series data set. This clustering assignment
is the best in our experiments. The black lines in the background represent the time series within
each cluster. The cyan line indicates the cluster mean of the first 104 points in time, which is
used to obtain the ARIMA forecast. The ARIMA forecast is plotted by the yellow line. The size
(number of time series) of each cluster is indicated above the plots.

66

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 1 - Size: 168

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 2 - Size: 80

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 3 - Size: 468

0 50 100 150
0.
0

0.
4

0.
8

Cluster: 4 - Size: 316

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 5 - Size: 380

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 6 - Size: 367

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 7 - Size: 386

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 8 - Size: 216

Figure 29: Visualization of the eight clusters that are obtained when applying the hierarchical
agglomerative clustering algorithm using Ward’s method with the DFT distance on our time series
data set. This clustering assignment is the second best in our experiments. The black lines in the
background represent the time series within each cluster. The cyan line indicates the cluster mean
of the first 104 points in time, which is used to obtain the ARIMA forecast. The ARIMA forecast
is plotted by the yellow line. The size (number of time series) of each cluster is indicated above
the plots.

67

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 1 - Size: 72

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 2 - Size: 416

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 3 - Size: 198

0 50 100 150
0.
0

0.
4

0.
8

Cluster: 4 - Size: 377

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 5 - Size: 367

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 6 - Size: 334

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 7 - Size: 307

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 8 - Size: 310

Figure 30: Visualization of the eight clusters that are obtained when applying the k-means clus-
tering algorithm with Euclidean distance on our time series data set. This clustering assignment
is the third best in our experiments. The black lines in the background represent the time series
within each cluster. The cyan line indicates the cluster mean of the first 104 points in time, which
is used to obtain the ARIMA forecast. The ARIMA forecast is plotted by the yellow line. The size
(number of time series) of each cluster is indicated above the plots.

68

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 1 - Size: 1059

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 2 - Size: 172

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 3 - Size: 647

0 50 100 150
0.
0

0.
4

0.
8

Cluster: 4 - Size: 161

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 5 - Size: 303

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 6 - Size: 23

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 7 - Size: 12

0 50 100 150

0.
0

0.
4

0.
8

Cluster: 8 - Size: 4

Figure 31: Visualization of the eight clusters that are obtained when applying the hierarchical clus-
tering algorithm using Complete linkage and the DWT distance with the Daubechies 10 wavelet on
our time series data set. This clustering assignment performed the worst in our experiments. The
black lines in the background represent the time series within each cluster. The cyan line indicates
the cluster mean of the first 104 points in time, which is used to obtain the ARIMA forecast. The
ARIMA forecast is plotted by the yellow line. The size (number of time series) of each cluster is
indicated above the plots.

69

References

Aach, J. and G. M. Church (2001). Aligning gene expression time series with time warping
algorithms. Bioinformatics 17 6, 495–508.

Aghabozorgi, S., A. S. Shirkhorshidi, and T. Y. Wah (2015). Time-series clustering – a decade
review. Information Systems 53, 16 – 38.

Agrawal, R., C. Faloutsos, and A. N. Swami (1993). Efficient similarity search in sequence
databases. In Proceedings of the 4th International Conference on Foundations of Data Or-
ganization and Algorithms, FODO ’93, London, UK, UK, pp. 69–84. Springer-Verlag.

Anthony Bagnall, Jason Lines, W. V. and E. Keogh (2016). The uea
& ucr time series classification repository. www.timeseriesclassification.com.

Baker, F. B. and L. J. Hubert (1975). Measuring the power of hierarchical cluster analysis. Journal
of the American Statistical Association 70(349), 31–38.

Bar-Joseph, Z., G. Gerber, D. K. Gifford, T. S. Jaakkola, and I. Simon (2002). A new approach
to analyzing gene expression time series data. In Proceedings of the Sixth Annual International
Conference on Computational Biology, RECOMB ’02, New York, NY, USA, pp. 39–48. ACM.

Beale, E. (1969). Euclidean Cluster Analysis. Scientific Control Systems Limited.

Beleites, C. and V. Sergo (2017). hyperSpec: a package to handle hyperspectral data sets in R.
hyperSpec. R package version 0.99-20171005.

Borg, I. and P. Groenen (2003). Modern multidimensional scaling: Theory and applications.
Journal of Educational Measurement 40(3), 130.

Bunn, A., M. Korpela, F. Biondi, F. Campelo, P. Mérian, F. Qeadan, and C. Zang (2017). dplR:
Dendrochronology Program Library in R. . R package version 1.6.6.

Calinski, T. and J. Harabasz (1974). A dendrite method for cluster analysis. Communications in
Statistics 3(1), 1–27.

Camerra, A., T. Palpanas, J. Shieh, and E. Keogh (2010, Dec). isax 2.0: Indexing and mining one
billion time series. In 2010 IEEE International Conference on Data Mining, pp. 58–67.

Cassisi, C., P. Montalto, M. Aliotta, A. Cannata, and A. Pulvirenti (2012). Similarity measures
and dimensionality reduction techniques for time series data mining. In A. Karahoca (Ed.),
Advances in Data Mining Knowledge Discovery and Applications, Chapter 03, pp. 71 – 96.
Rijeka: InTech.

Celebi, M. E., H. A. Kingravi, and P. A. Vela (2013, January). A comparative study of efficient
initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210.

Chaovalit, P., A. Gangopadhyay, G. Karabatis, and Z. Chen (2011, February). Discrete wavelet
transform-based time series analysis and mining. ACM Comput. Surv. 43(2), 6:1–6:37.

Charrad, M., N. Ghazzali, V. Boiteau, and A. Niknafs (2014). NbClust: An R package for de-
termining the relevant number of clusters in a data set. Journal of Statistical Software 61(6),
1–36.

Chu, S., E. Keogh, D. Hart, M. Pazzani, and Michael (2002). Iterative deepening dynamic time
warping for time series. In In Proc 2 nd SIAM International Conference on Data Mining.

70

Cimiano, P., A. Hotho, and S. Staab (2004). Comparing conceptual, divisive and agglomerative
clustering for learning taxonomies from text. In Proceedings of the 16th European Conference
on Artificial Intelligence, pp. 435–439. IOS Press.

Cooley, J. W. and J. W. Tukey (1965). An Algorithm for the Machine Calculation of Complex
Fourier Series. Math. Comput. 19, 297–301.

Dheeru, D. and E. Karra Taniskidou (2017). UCI machine learning repository.

Dimitriadou, E., S. Dolničar, and A. Weingessel (2002, Mar). An examination of indexes for
determining the number of clusters in binary data sets. Psychometrika 67(1), 137–159.

Duda, R. O. and P. E. Hart (1973). Pattern Classification and Scene Analysis. A Wiley Interscience
Publication. Wiley.

Esling, P. and C. Agon (2012, December). Time-series data mining. ACM Comput. Surv. 45(1),
12:1–12:34.

Forgy, E. (1965). Cluster analysis of multivariate data: Efficiency versus interpretability of classi-
fication. Biometrics 21(3), 768–769.

Fujita, A., J. R. Sato, M. A. A. Demasi, M. C. Sogayar, C. E. Ferreira, and S. Miyano (2009). Com-
paring pearson, spearman and hoeffding’s d measure for gene expression association analysis.
J. Bioinformatics and Computational Biology 7(4), 663–684.

Garey, M., D. Johnson, and H. Witsenhausen (1982, Mar). The complexity of the generalized
lloyd - max problem (corresp.). IEEE Transactions on Information Theory 28(2), 255–256.

Goodman, L. A. and W. H. Kruskal (1954, dec). Measures of association for cross classifications.
Journal of the American Statistical Association 49(268), 732–764.

Gordon, A. (1999). Classification, 2nd Edition. Chapman & Hall/CRC Monographs on Statistics
& Applied Probability. CRC Press.

Gorecki, T. (2014). Using derivatives in a longest common subsequence dissimilarity measure for
time series classification. Pattern Recognition Letters 45(Supplement C), 99 – 105.

Gorecki, T. (2017). Classification of time series using combination of dtw and lcss dissimilarity
measures. Communications in Statistics - Simulation and Computation 0(0), 1–14.

Grabusts, P. and A. Borisov (2009). Clustering methodology for time series mining. J. Riga
Technical University 40, 81–86.

Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme. Mathematische An-
nalen 69(3), 331–371.

Hamerly, G. and C. Elkan (2002). Alternatives to the k-means algorithm that find better cluster-
ings. In Proceedings of the Eleventh International Conference on Information and Knowledge
Management, CIKM ’02, New York, NY, USA, pp. 600–607. ACM.

Hartigan, J. A. and M. A. Wong (1979). A K-means clustering algorithm. Applied Statistics 28,
100–108.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The elements of statistical learning: data mining,
inference and prediction (2 ed.). Springer.

71

Hesabi, Z. R., Z. Tari, A. M. Goscinski, A. Fahad, I. Khalil, and C. Queiroz (2015). Data sum-
marization techniques for big data - A survey. In Handbook on Data Centers, pp. 1109–1152.
Springer.

Hubert, L. and J. Levin (1975). A General Statistical Framework for Assessing Categorical Clus-
tering in Free Recall. Theoretical papers. Wisconsin Research and Development Center for
Cognitive Learning.

Hughes, H. K. (1965). The physical meaning of parseval’s theorem. American Journal of
Physics 33(2), 99–101.

Hyndman, R. and Y. Khandakar (2008). Automatic time series forecasting: The forecast package
for r. Journal of Statistical Software, Articles 27(3), 1–22.

Iglesias, F. and W. Kastner (2013). Analysis of similarity measures in times series clustering for
the discovery of building energy patterns. Energies 6(2), 579–597.

Itakura, F. (1975, Feb). Minimum prediction residual principle applied to speech recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing 23(1), 67–72.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters 31(8),
651 – 666. Award winning papers from the 19th International Conference on Pattern Recogni-
tion (ICPR).

Jain, A. K. and R. C. Dubes (1988). Algorithms for Clustering Data. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc.

Jeong, Y.-S., M. K. Jeong, and O. A. Omitaomu (2011). Weighted dynamic time warping for time
series classification. Pattern Recognition 44(9), 2231 – 2240. Computer Analysis of Images
and Patterns.

Jolliffe, I. (2014). Principal Component Analysis, Chapter 1 – 14, pp. 1 – 405. John Wiley &
Sons, Ltd.

Kaufman, L. and P. Rousseeuw (1987, 01). Clustering by means of medoids. PLOS Computational
Biology 1, 405–416.

Kaufman, L. and P. Rousseeuw (1990, 01). Finding Groups in Data: An Introduction To Cluster
Analysis. John Wiley & Sons, Inc.

Kaufman, L. and P. J. Rousseeuw (2008). Introduction, pp. 1–67. John Wiley & Sons, Inc.

Keogh, E. and S. Kasetty (2003, Oct). On the need for time series data mining benchmarks: A
survey and empirical demonstration. Data Mining and Knowledge Discovery 7(4), 349–371.

Keogh, E. and A. Ratanamahatana (2004). Everything you know about dynamic time warping is
wrong. 3rd Workshop on Mining Temporal and Sequential Data, in conjunction with 10th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD-2004), Seattle, WA 1, 1 – 11.

Keogh, E. and C. A. Ratanamahatana (2005, March). Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3), 358–386.

Keogh, E. J. and M. J. Pazzani (2000). Scaling up dynamic time warping for datamining appli-
cations. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’00, New York, NY, USA, pp. 285–289. ACM.

72

Keogh, E. J. and M. J. Pazzani (2001). Derivative dynamic time warping. In In First SIAM
International Conference on Data Mining (SDM’2001).

Ketchen, D. J. and C. L. Shook (1996). The application of cluster analysis in strategic management
research: An analysis and critique. Strategic Management Journal 17(6), 441–458.

Kim, S.-W., S. Park, and W. W. Chu (2001). An index-based approach for similarity search
supporting time warping in large sequence databases. In Proceedings 17th International Con-
ference on Data Engineering, pp. 607–614.

Kuchaki Rafsanjani, M., Z. Asghari, and N. Emami (2012, 01). A survey of hierarchical clustering
algorithms. The Journal of Mathematics and Computer Science 5, 229–240.

Larsen, R. and M. Marx (2001). An Introduction to Mathematical Statistics and Its Applications.
Number v. 1 in 1. Prentice Hall.

Li, L. and B. A. Prakash (2011). Time series clustering: Complex is simpler! In Proceedings of the
28th International Conference on International Conference on Machine Learning, ICML’11,
USA, pp. 185–192. Omnipress.

Liao, T. W. (2005). Clustering of time series data - a survey. Pattern Recognition 38(11), 1857 –
1874.

Lin, J., E. Keogh, L. Wei, and S. Lonardi (2007, Oct). Experiencing sax: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery 15(2), 107–144.

Lines, J. and A. Bagnall (2015, May). Time series classification with ensembles of elastic distance
measures. Data Mining and Knowledge Discovery 29(3), 565–592.

Lloyd, S. P. (1982). Least squares quantization in pcm. IEEE Transactions on Information The-
ory 28, 129–137.

Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations.
In In 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297.

Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik (2017). cluster: Cluster Analy-
sis Basics and Extensions. R. R package version 2.0.6 — For new features, see the ’Changelog’
file (in the package source).

Mallat, S. G. (1989, Jul). A theory for multiresolution signal decomposition: the wavelet repre-
sentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 674–693.

Meyer, D. and C. Buchta (2017). proxy: Distance and Similarity Measures. . R package version
0.4-19.

Mico, L. and J. Oncina (1998). Comparison of fast nearest neighbour classifiers for handwritten
character recognition1work partially supported by the spanish grant cicyt tic97-0941.1. Pattern
Recognition Letters 19(3), 351 – 356.

Milligan, G. (1996). Clustering Validation: Results and Implications for Applied Analyses.
Reprint series. Max M. Fisher College of Business, Ohio State University.

Milligan, G. W. and M. C. Cooper (1985, Jun). An examination of procedures for determining the
number of clusters in a data set. Psychometrika 50(2), 159–179.

73

Montero, P. and J. A. Vilar (2014). TSclust: An R package for time series clustering. Journal of
Statistical Software 62(1), 1–43.

Mori, U., A. Mendiburu, and J. A. Lozano (2016a). Distance measures for time series in r: The
TSdist package. R journal 8(2), 451–459.

Mori, U., A. Mendiburu, and J. A. Lozano (2016b). Distance measures for time series in r: The
TSdist package. R journal 8(2), 451–459.

Morissette, L. and S. Chartier (2013, 02). The k-means clustering technique: General considera-
tions and implementation in mathematica. Tutorials in Quantitative Methods for Psychology 9,
15–24.

Murtagh, F. and P. Contreras (2011). Methods of hierarchical clustering. CoRR abs/1105.0121,
61–64.

Nason, G. (2008). Wavelet Methods in Statistics with R (1 ed.). Springer Publishing Company,
Incorporated. Page 26.

Ng, R. T. and J. Han (1994). Efficient and effective clustering methods for spatial data mining. In
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, San
Francisco, CA, USA, pp. 144–155. Morgan Kaufmann Publishers Inc.

Ngui, W. K., M. S. Leong, L. M. Hee, and A. M. Abdelrhman (2013, 11). Wavelet analysis:
Mother wavelet selection methods. In Advances in Manufacturing and Mechanical Engineer-
ing, Volume 393 of Applied Mechanics and Materials, pp. 953–958. Trans Tech Publications.

Niennattrakul, V. and C. A. Ratanamahatana (2007). On clustering multimedia time series data
using k-means and dynamic time warping. In Proceedings of the 2007 International Conference
on Multimedia and Ubiquitous Engineering, MUE ’07, Washington, DC, USA, pp. 733–738.
IEEE Computer Society.

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing.

Rani, S., G. Sikka, and T. W. Liao (2012). Recent techniques of clustering of time series data: A
survey. In International Journal of Computer Applications, Volume 52.

Ratanamahatana, C. A., J. Lin, D. Gunopulos, E. Keogh, M. Vlachos, and G. Das (2005). Mining
Time Series Data, pp. 1069–1103. Boston, MA: Springer US.

Sagvekar, V., V. Sagvekar, and K. Deorukhkar (2013, nov). Performance assessment of clarans:
A method for clustering objects for spatial data mining. Global journal of engineering, design
and technology 2(6), 1–8.

Sakoe, H. and S. Chiba (1978, Feb). Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing 26(1), 43–
49.

Salvador, S. and P. Chan (2007, October). Toward accurate dynamic time warping in linear time
and space. Intell. Data Anal. 11(5), 561–580.

Sarda-Espinosa, A. (2017). Comparing time-series clustering algorithms in r using the dtwclust
package. In Manual of the R package dtwclust.

74

Sheikholeslami, G., S. Chatterjee, and A. Zhang (1998). Wavecluster: A multi-resolution cluster-
ing approach for very large spatial databases. In ., pp. 428–439.

Shieh, J. and E. Keogh (2008). isax: Indexing and mining terabyte sized time series. In Proceed-
ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’08, New York, NY, USA, pp. 623–631. ACM.

Shieh, J. and E. Keogh (2009, Aug). isax: disk-aware mining and indexing of massive time series
datasets. Data Mining and Knowledge Discovery 19(1), 24–57.

Singh, A., A. Yadav, and A. Rana (2013). K-means with three different distance metrics. In
International Journal of Computer Applications 67(10), pp. 13–17.

Slonim, N., E. Aharoni, and K. Crammer (2013). Hartigan’s k-means versus lloyd’s k-means: Is
it time for a change? In Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence, IJCAI ’13, pp. 1677–1684. AAAI Press.

Steinhaus, H. (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci 1,
801–804.

Strohmer, T. and J. Tanner (2005, 02). Implementations of shannon’s sampling theorem: A time-
frequency approach. Sampl. Theory Signal Image Process 4, 1–17.

Swarndeep Saket J, D. S. P. (2016, jun). An overview of partitioning algorithms in clustering tech-
niques. International Journal of Advanced Research in Computer Engineering & Technology
(IJARCET) 5(6), 1943–1946.

Tibshirani, R., G. Walther, and T. Hastie (2000). Estimating the number of clusters in a dataset via
the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63,
411–423.

Torrence, C. and G. P. Compo (1998). A practical guide to wavelet analysis. Bulletin of the
American Meteorological Society 79(1), 61–78.

Vendramin, L., R. J. G. B. Campello, and E. R. Hruschka (2010, August). Relative clustering
validity criteria: A comparative overview. Stat. Anal. Data Min. 3(4), 209–235.

Vlachos, M., G. Kollios, and D. Gunopulos (2002). Discovering similar multidimensional trajec-
tories. In Proceedings 18th International Conference on Data Engineering, pp. 673–684.

Walesiak, M. and A. Dudek (2017). clusterSim: Searching for Optimal Clustering Procedure for
a Data Set. . R package version 0.47-1.

Wang, X., H. Ding, G. Trajcevski, P. Scheuermann, and E. J. Keogh (2010). Experi-
mental comparison of representation methods and distance measures for time series data.
CoRR abs/1012.2789, 1 – 56.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the
American Statistical Association 58(301), 236–244.

Xi, X., E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana (2006). Fast time series classifi-
cation using numerosity reduction. In In ICML’06, pp. 1033–1040.

Xu, W., Y. Hou, Y. S. Hung, and Y. Zou (2013, January). A comparative analysis of spearman’s rho
and kendall’s tau in normal and contaminated normal models. Signal Process. 93(1), 261–276.

75

Yan, M. (2005, 01). Methods of determining the number of clusters in a data set and a new
clustering criterion. Virginia Polytechnic Institute and State University 1, 1–120.

Yi, B.-K., H. V. Jagadish, and C. Faloutsos (1998, Feb). Efficient retrieval of similar time se-
quences under time warping. In Proceedings 14th International Conference on Data Engineer-
ing, pp. 201–208.

Zhou, J., S.-F. Zhu, X. Huang, and Y. Zhang (2015, Jul). Enhancing time series clustering by
incorporating multiple distance measures with semi-supervised learning. Journal of Computer
Science and Technology 30(4), 859–873.

76

