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1 Introduction

In this chapter, the problem that this work aims to solve is stated. The background of the problem

within the company is also explained, and the structure of the rest of this work is laid out.

1.1 Company background

Experience Fruit Quality (EFQ) is a company that focuses on predicting fruit quality (currently

mainly avocados and mangos) with its assistant AVOS, using a physical machine in combination

with a machine learning model. The unique selling point of AVOS is the ability to perform fruit

quality assessment on the basis of pictures (Red-Green-Blue (RGB) and Near Infrared (NIR)) and

pressure measurements quickly, without producing waste by having to cut open any fruit (the way

quality assessment is normally done). This work focuses on avocado quality prediction, as models

for the quality of other fruits are still in development.

1.1.1 Avocado supply chain

A condensed version of the avocado supply-chain process from farming to consumer is as fol-

lows:

� Growth and harvest

� Shipping to ripening facility

� Cold storage to slow fruit changes

� Ripening (controlling the metabolic process of fruit ripening)

� Sorting and shipment to clients

The role of AVOS in this process is at the ripening facilities, where it can be used to assess the

quality of avocados both before and after cold storage or ripening.

1.1.2 EFQ Machines

EFQ currently has two different machines in use: the AVOS Mini and the AVOS Maxi.

Figure 1: A technical drawing of the AVOS

Mini machine.

Figure 2: A technical drawing of the AVOS Maxi machine.

The AVOS Mini (see Figure 1) is a small portable machine that allows avocado quality inspectors

to put an avocado in, after which the pressure is measured by tapping the avocado and the RGB

and NIR photos are taken from four different sides. This allows the quality inspector to assess the

quality of a sample of avocados from a pallet.
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The AVOS Maxi (see Figure 2) is a large sorting machine that allows for the sorting of full pallets

of avocados. The avocados are put on an assembly line, after which their RGB and NIR photos

are taken and their pressures are measured by tapping them. The quality model then predicts

whether the avocado is of good quality (’a-quality’, also known as class I) or if it has one or more

defects (internally, externally or both). Avocados with external defects might still be sellable, while

avocados with internal defects are not. The avocados are then sorted into different exits based on

their predicted quality. This works focuses on the AVOS Maxi exclusively.

Both machines also predict avocado color and ripening stage with seperate machine learning mod-

els. This work focuses on the quality model exclusively, as this is the main focus of EFQ.

1.2 Problem statement

The problem that this work aims to solve is stated as follows:

� How can pretraining with self-supervised learning methods, using unlabeled data, result in

an improvement over the existing avocado quality prediction model?

To expand upon this problem we formulate the following research questions:

� Which self-supervised pretraining method is most promising for the EFQ context?

� What does the labeled dataset look like, and how does this influence the existing supervised

model?

� What are the quality prediction results per type of avocado defect using the existing model

and how can these be explained?

� Which data augmentations perform best in the chosen self-supervised pretraining method?

� What do a well performing pretraining and/or fine-tuning dataset look like?

1.3 Motivation

REDACTED
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1.4 Outline

The rest of this work is structured as follows:

� Chapter 2 discusses the background and literature on self-supervised learning and any other

methods that we will touch upon in this work.

� Chapter 3 focuses on choosing the methods that will be used in our research, keeping in

mind any practical restrictions.

� Chapter 4 analyses the particulars of the avocado data: how it was gathered and which

defects exist. We also construct our datasets here.

� Chapter 5 shows the results of our research for both the baseline model and the self-

supervised learning methods.

� Chapter 6 will discuss the conclusions and recommendations.
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2 Background

This chapter first briefly discusses supervised learning in computer vision, after which we will

discuss the existing literature on self-supervised learning and any other methods that we will

touch upon in this work.

2.1 Supervised Learning in computer vision

The most common form of machine learning is supervised learning. Supervised learning in com-

puter vision is generally done by collecting a large dataset of images, each labeled with the category

that the model should learn to recognize (LeCun, Bengio, & Hinton, 2015). In supervised learning,

given a dataset {Xi}Ni=0 and corresponding labels {Yi}Ni=0, the general training loss function for a

model with parameters θ is defined as in Formula 1 (Jing & Tian, 2020).

min
θ

1

N

N∑
i=1

loss(Xi, Yi). (1)

In practice, the loss function is used to optimize the weights of the network using stochastic gradient

descent (SGD) (LeCun et al., 2015).

One of the most common deep learning network structures is the Convolutional Neural Network

(CNN). Since the early 2000s, CNNs have been applied with great success to the detection, seg-

mentation and recognition of objects and regions in images (LeCun et al., 2015). The main feature

of CNN architectures is the convolutional layer, which aims to learn feature representations of the

inputs.

A schematic representation of a convolutional layer is shown in Figure 3. Such a layer is composed

of several convolution kernels, each of which is used to compute a different feature map. Each

neuron of a feature map is connected to a region of neighboring neurons in the previous layer (the

input). The new feature map can be obtained by first convolving the input with a learned kernel

and then applying an element-wise non-linear activation function (usually the ReLu function) on

the results. Mathematically, the feature value at location (i, j) in the k-th feature map of the l-th

layer (assuming a ReLu activation function) is calculated using Formula 2 (Gu et al., 2018).

ali,j,k = ReLu
(
zli,j,k

)
= ReLu

(
(wl

k)
Txl

i,j + blk
)
. (2)

Where large amounts of images with accurate human-annotated labels are available, supervised

learning methods have achieved break-through results on different computer vision applications

(Jing & Tian, 2020). However, obtaining large volumes of high-quality data often is quite costly,

time-consuming, or both (Liu et al., 2021).

Figure 3: In a convolutional layer, each neuron of a feature map (orange) is calculated using the values of a region

of neighboring neurons in the previous layer (blue).
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Figure 4: The general pipeline of self-supervised learning, adapted from Jing and Tian (2020). After training on

unlabeled data using a self-supervised pretext task (pretraining), the learned weights of the CNN are transferred

for training on labeled data in a supervised downstream task (fine-tuning).

2.2 Self-Supervised Learning in computer vision

Self-supervised learning (SSL) is a subset of unsupervised learning (Jing & Tian, 2020). SSL refers

to learning methods in which neural networks are explicitly trained with automatically generated

labels. The general pipeline of SSL in computer vision is schematically shown in Figure 4. This

pipeline consists of first solving a pre-defined so-called pretext task on unlabeled data, where

general visual features are learned by a convolutional neural network. After this, the learned

model parameters (sometimes only those of the first several convolutional layers) are transferred to

the actual task at hand, called the downstream task (Jing & Tian, 2020). Then, the downstream

task is solved using ’regular’ supervised learning. SSL, in this way, is a form of transfer learning.

Solving the pretext and downstream task is also known by the terms pretraining and fine-tuning,

respectively (Jaiswal, Babu, Zadeh, Banerjee, & Makedon, 2021).

In Formula 3, the general training loss function for a model with parameters θ is defined for SSL,

given an unlabeled dataset {Xi}Mi=0 and pseudo-labels {Pi}Mi=0.

min
θ

1

M

M∑
i=1

loss(Xi, Pi). (3)

The pseudo-labels Pi are automatically generated for a predefined pretext task, without involving

any human annotation (Jing & Tian, 2020). It is important to note that these pseudo-labels can

take many different forms. For instance, in generative SSL approaches all or parts of the training

data are part of the model’s produced output, and the pseudo-labels are typically in the same

feature space as the training data (Mao, 2020).

Models pretrained with SSL methods are able to learn with less labeled data (Newell & Deng,

2020), and are more stable and robust to adversarial examples and input or label corruptions

(Hendrycks, Mazeika, Kadavath, & Song, 2019).

2.2.1 A note on semi-supervised learning

A term that is closely related to SSL is semi-supervised learning. Just like SSL, semi-supervised

learning uses large amounts of unlabeled data during training, but also uses labeled data at the

same time (Zhu, 2005). Given a small labeled dataset {Xi}Ni=0, corresponding labels {Yi}Ni=0 and

a large unlabeled dataset {Zi}Mi=0, its general training loss function for a model with parameters θ

6



is defined as in Formula 4.

min
θ

1

N

N∑
i=1

loss(Xi, Yi) +
1

M

∑
j=1

Mloss(Zj , R(Zj , X)), (4)

where R(Zj , X) is a task-specific function to represent the relation between each unlabeled training

data point Zj with the labeled datasetX (Jing & Tian, 2020). As semi-supervised learning methods

result in more hardware requirements than self-supervised pretraining methods, this work will not

look further into semi-supervised learning methods.

2.3 SSL methods

Many variations of self-supervised learning methods exist, ranging from the Masked Language

Model pretraining objective used in BERT training (Devlin, Chang, Lee, & Toutanova, 2018) to

the image reconstruction objective used in training Variational Auto-Encoders (VAEs) (Kingma &

Welling, 2013). Liu et al. (2021) use the following three categories to divide existing SSL methods

for representation learning. A conceptual comparison between these categories is shown in Figure

5.

� Generative methods train an encoder to encode input x into an explicit vector z and a

decoder to reconstruct x from z.

� Contrastive methods train an encoder to encode input x into an explicit vector z to measure

similarity.

� Generative-Contrastive (Adversarial) methods train an encoder-decoder to generate fake

samples and a discriminator to distinguish them from real samples.

Generative SSL methods, such as the VAE (Kingma & Welling, 2013), are able to recover the

original data from the learned representations without assumptions for downstream tasks (Liu et

al., 2021). However, pixel-level generation in the decoder is computationally expensive (T. Chen,

Kornblith, Norouzi, & Hinton, 2020). Additionally, generative SSL methods have recently been

found far less competitive than contrastive SSL methods in some classification scenarios (Liu et

al., 2021).

Generative-Contrastive SSL methods, such as Generative Adversarial Networks (GANs) (Radford,

Metz, & Chintala, 2015), are particularly successful in image generation, transformation and ma-

Figure 5: Conceptual comparison between Generative, Contrastive, and Generative-Contrastive self-supervised

methods, from Liu et al. (2021).
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nipulation, but do not output an explicit learned representation, and are therefore not as suitable

for transfer learning as contrastive SSL methods (Liu et al., 2021).

Contrastive methods aim to group similar samples close to and diverse samples far from each

other. To achieve this, a similarity metric is used to measure how close two embeddings (also called

representations), extracted from an encoder network, are. This encoder network is trained in such

a way that it learns to differentiate augmented versions of the same image (positive samples) from

the augmented versions of different images (negative samples). In this way, the encoder network

learns good representations of the samples, which can later be used for transferring to downstream

tasks. Recent self-supervised contrastive methods have produced results comparable to state-of-

the-art supervised methods on the ImageNet (Russakovsky et al., 2015) dataset (Jaiswal et al.,

2021).

Research into the limits of contrastive SSL indicates that these methods do not seem to be able to

improve accuracy past supervised methods (Newell & Deng, 2020), though note that as mentioned

in Chapter 2.2, pretrained SSL models are able to learn better with less labeled data.

Five recent well-performing contrastive SSL methods are explained in the following subchapters.

A summary of their properties is shown in Table 1.

Table 1: Summary of the properties of five recent well-performing contrastive SSL methods.

Method Date Low b.s. Datasets CNN Structure Augmentations

MoCo (v2)
Nov 2019

256 ImageNet ResNet
Resized crop, Horiz. flip, Color

(v2: Mar 2020) distortion, (v2: plus Gaussian blur)

SimCLR Feb 2020 512
ImageNet,

ResNet
Resized crop, Horiz. flip, Color

CIFAR-10 distortion, Gaussian blur

BYOL Jun 2020 256 ImageNet ResNet
Resized crop, Horiz. flip, Color

distortion, Gaussian blur, Solarization

SimSiam Nov 2020 128 ImageNet ResNet
Resized crop, Horiz. flip, Color

distortion, Gaussian blur

Barlow Twins Mar 2021 256 ImageNet ResNet
Resized crop, Horiz. flip, Color

distortion, Gaussian blur, Solarization

Low b.s. = Lowest well-performing batch size, Horiz. = Horizontal

2.3.1 SimCLR

T. Chen et al. (2020) introduced a simple framework for contrastive learning of visual representa-

tions (SimCLR). A visual representation of this method is shown in Figure 6. In SimCLR, each

image x is augmented stochastically from a family of augmentations T , resulting in two correlated

images x̃i and x̃j . An encoder network f(·) is then used to encode both images into vectors in

representation space (hi and hj). The encoder network used is ResNet from He, Zhang, Ren, and

Sun (2016). An MLP g(·) with one hidden layer, called the projection head, is then used to get

zi = g(hi) and zj = g(hj).

SimCLR then uses a contrastive loss function to identify x̃j in {x̃k}k ̸=i for a given x̃i (using their

corresponding zi and zj). The loss function for a positive pair of examples (i, j) is defined as in

Formula 5.

li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1k ̸=i exp(sim(zi, zk)/τ)
, (5)

8



Figure 6: Schematic representation of the structure of

the SimCLR method (T. Chen et al., 2020).

Figure 7: Schematic representation of the structure of

the MoCo method (He et al., 2020).

where τ is a temperature parameter (a value of 0.1 has the best performance in the original paper)

and N is the mini-batch size before augmentation. Using Formula 6, the final loss is computed

across all positive pairs in a mini-batch, twice for each pair (i, j).

L =
1

2N

N∑
k=1

[l(2k − 1, 2k) + l(2k, 2k − 1)] (6)

Due to the importance of negative samples in the loss function, the lowest batch size that performs

well in the paper introducing SimCLR is 512.

2.3.2 MoCo

He et al. (2020) introduced Momentum Contrast (MoCo), of which the structure is shown visually

in Figure 7. Using this SSL method, each image x is again augmented stochastically to arrive

at xi and xj . Each augmented image in a mini-batch is then put through two different encoder

networks (ResNets), a query network q = fq(x) and a key network k = fk(x). The final loss for

one resulting query (q) is then defined as in Formula 7.

Lq = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

, (7)

where k+ is the key k that resulted from the same (non-augmented) image as q, τ is a temperature

parameter (set to 0.07) and K is the number of negative augmented images used. This loss function

is called InfoNCE (Van den Oord, Li, & Vinyals, 2018).

The keys outside of the mini-batch currently being processed are not calculated every time, but

come from a dictionary that remembers the keys from a certain previous number of batches. The

weights θq of the query network are updated using a normal optimizer. To avoid collapse, the

weights θk of the key network are calculated from θq with a momentum update, using Formula

8. Thanks to this momentum encoder, the encoding of all negative samples does not have to be

calculated each batch, resulting in lower hardware requirements.

θk ← mθk + (1−m)θq. (8)

X. Chen, Fan, Girshick, and He (2020) show that MoCo’s performance improves when adopting

some aspects of SimCLR; namely, the projection head and better data augmentation (see Chapter

2.5). They call this improved method MoCo v2.
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Due to the importance of negative samples in the loss function, the lowest batch size that performs

well in the papers introducing both MoCo and MoCo v2 is 256.

2.3.3 BYOL

Grill et al. (2020), in their method Bootstrap Your Own Latent (BYOL), do away with the negative

samples, and only use positive samples to calculate the loss. A schematic representation of its

structure is shown in Figure 8. BYOL uses two networks: one online network consisting of a

backbone (fθ, a ResNet), projector (gθ) and predictor (qθ), while the target network only consists

of a backbone (fξ) and projector (gξ), with the same structure as (but different weights than) their

counterparts in the online network.

Figure 8: Schematic representation of the structure of the BYOL method (Grill et al., 2020). sg = stop-gradient.

Each image x is again augmented stochastically to arrive at the two augmentations ν and ν′. One

of these is put through the online network, while the other is put through the target network. The

resulting prediction pθ = qθ(gθ(fθ(ν))) and projection zξ = gξ(fξ(ν
′)) are used in the loss function

(Formula 9), which is a negative cosine similarity metric.

l(ν, ν′) = 2− 2
pθ · zξ

||pθ||2 · ||zξ||2
, (9)

where zξ is seen as a constant, and is therefore not backpropagated through (also known as stop-

gradient: sg(zξ)). This loss function is calculated twice for each augmented image pair in the final

loss function using Formula 10.

L = l(ν, ν′) + l(ν′, ν). (10)

Only the weights θ of the online network are updated using a normal optimizer and the final loss

function. The weights ξ of the target network are an exponential moving average of θ to avoid

collapse, calculated with Formula 11.

ξ ← τξ + (1− τ)θ, (11)

where τ is a target decay rate ∈ [0, 1], with a value of 0.99 performing best.

Although BYOL only uses positive examples in its loss calculation, the lowest batch size that

performs well in the paper introducing the method is 256. 128 is tried as well, but resulted in a

decrease in fine-tuned classification accuracy on ImageNet of 2.6 percentage points.

2.3.4 SimSiam

X. Chen and He (2021) go even further, and reduce the SSL contrastive learning problem to

a simple Siamese network (SimSiam). A schematic representation of this structure is shown in
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Figure 9: Schematic representation of the struc-

ture of the SimSiam method (X. Chen & He,

2021).

Figure 10: Schematic representation of the structure of the

Barlow Twins method (Zbontar et al., 2021).

Figure 9. Two stochatically augmented images x1 and x2 originating from the same base image

x are put through the same encoder network f consisting of a backbone (ResNet) and projection

MLP, resulting in the representations z1 and z2. These representations are then separately used

as input for a prediction MLP h with a bottleneck structure, resulting in the predictions p1 and

p2. The representations and the predictions are used in the negative cosine similarity loss, as in

Formula 12.

l(p1, z2) = −
p1
||p1||2

· z2
||z2||2

. (12)

The final loss is then symmetrized using Formula 13.

L =
1

2
l(p1, stop-grad(z2)) +

1

2
l(p2, stop-grad(z1)), (13)

where stop-grad stands for stop-gradient, meaning the representations z1 and z2 are treated as

constants in the loss and are therefore not backpropagated through.

The authors show that this structure in combination with the stop-gradient and batch normal-

ization of projection and prediction layers is enough to avoid collapse and to allow the network

to learn meaningful representations. Furthermore, the authors show that SimSiam performs well

with a batch size of 128, and even works reasonably well with a batch size of 64 (-2 percentage

points in ImageNet linear evaluation accuracy).

2.3.5 Barlow Twins

The method called Barlow Twins was introduced by Zbontar et al. (2021). A schematic representa-

tion of this method’s structure is shown in Figure 10. In Barlow Twins, all images in a mini-batch

are stochastically augmented twice (resulting in two mini-batches Y A and Y B) and put through a

siamese encoder network (a ResNet plus a projector MLP) with identical weights, resulting in the

batches of embeddings ZA and ZB . The loss function (Formula 14) directly uses the correlation

between the outputs of the two networks along the batch dimension.

Cij =

∑
b z

A
b,iz

B
b,j√∑

b(z
A
b,i)

2
√∑

b(z
B
b,j)

2
, (14)

where b indexes batch samples and i, j index the vector dimension of the network’s outputs.

The resulting matrix C is the cross-correlation matrix between the two output batches. The final

loss (Formula 15) is constructed as follows to push the matrix to being as close to the identity
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matrix as possible, indicating perfect correlation between representations resulting from the same

image, and no correlation between representations resulting from different images.

LBT =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij . (15)

The authors show that Barlow Twins is robust to small batch sizes, with a performance almost

unaffected for a batch as small as 256, and -2 percentage points in Top-1 accuracy on ImageNet

for batches of size 128.

2.4 Datasets used in SSL

Most literature uses balanced datasets for self-supervised pretraining purposes. All methods men-

tioned in Subchapter 2.3.1-2.3.5 use ImageNet (Russakovsky et al., 2015) as their pretraining

dataset. The paper introducing SimCLR (T. Chen et al., 2020) also performed some testing on

the CIFAR-10 dataset (Krizhevsky, Hinton, et al., 2009).

Practical applications of self-supervised learning generally use datasets with less balanced classes.

In the medical domain for example, Azizi et al. (2021) use SSL pretraining on two medical datasets.

Both these datasets contain some classes that occur in less than 1% of images. One of the datasets

contains only images that contain just one class, while the other dataset can contain images with

multiple labels. Both datasets contain at least 100 images per class with only that class. H. Li et

al. (2021) also use two imbalanced datasets, but the authors use an SSL method that constructs

balanced mini-batches during pretraining, which requires a well-labeled pretraining dataset.

In the fruit quality domain, Choi, Would, Salazar-Gomez, and Cielniak (2021) use a dataset of

strawberry images. The anomalous class in this dataset is just 4.3% of the data, though the image

augmentation method during SSL pretraining is based on color channel randomization, which can

be seen as creating new anomalous examples of strawberry images.

2.5 SSL image augmentation

As found by T. Chen et al. (2020), the composition of multiple image augmentation operations

is crucial to yield effective representations in the SimCLR method. Furthermore, they found that

contrastive SSL needs stronger data augmentation than supervised learning. The best combination

of data augmentations that these authors found was a combination of random crop and resize, hor-

izontal flip, color distortion and Gaussian blur. Examples of some of the augmentations discussed

in the text below are shown in Figure 11, the letters of the particular augmentations in this Figure

are referenced in the text using brackets.

In random cropping and resizing (a), a crop of random size is made, and resized to the original

image size. Color distortion is the random application of color jitter (b) (multiplying the brightness,

contrast, saturation and hue of an image by a random factor) and/or color drop (c) (converting

the image to grayscale using the formula 0.3 ∗ Red + 0.59 ∗ Green + 0.11 ∗ Blue (Padmavathi &

Thangadurai, 2016)). Gaussian blur (d) is applied to 50% of the images, using a 2-dimensional

Gaussian kernel with a random σ ∈ [0.1, 2.0] to convolve over the original image.

Other image augmentations that were tried by the authors of SimCLR (T. Chen et al., 2020)

include random image rotations (e) and Gaussian noise (f). Gaussian noise means adding a random

number to each pixel, according to a Gaussian distribution centered around 0. Other contrastive

SSL methods use the same image augmentations as SimCLR. BYOL (Grill et al., 2020) and Barlow
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(a) Crop + resize (b) Color jitter (c) Color drop (d) Gaussian blur (e) Rotation

(f) Gaussian noise (g) Solarization (h) Jigsaw (i) CH-Rand

Figure 11: Examples of the image augmentations discussed, from T. Chen et al. (2020), Y. Li et al. (2021), Jaiswal

et al. (2021) and Choi et al. (2021)

Twins (Zbontar et al., 2021) additionally use solarization (g), where pixels above a threshold are

inverted (with a threshold of 0.5: x 7→ x · 1{x<0.5} + (1 − x) · 1{x≥0.5}). PIRL (Misra & Maaten,

2020) uses a jigsaw augmentation (h), where the original image is divided in a number of blocks,

which are then shuffled.

According to Kolesnikov, Zhai, and Beyer (2019), the optimal combination of augmentations is

dependent on which CNN structure is used in training. Additionally, the optimal augmentations

for contrastive SSL seem to be task-dependent (Tian et al., 2020). For example, Choi et al. (2021)

construct their own image augmentation CH-Rand (i), based on color channel randomization, to

push their SSL pretraining towards detecting color anomalies in strawberries.

2.6 Matthew’s Correlation Coefficient

When dealing with imbalanced multiclass datasets, using accuracy as an evaluation metric does not

properly represent the true performance of the models, as it tends to hide strong classification errors

for classes with few units (Grandini, Bagli, & Visani, 2020). A solution to this problem comes from

Matthews Correlation Coefficient (MCC). Starting in the 2000s, MCC and its multiclass extension

became widely employed metrics for machine learning (Chicco & Jurman, 2020).

MCC expresses the degree of correlation between two categorical random variables (predicted and

true classification). It has a range of [−1,+1] and is calculated for the multiclass case by Formula

16.

MCC =
cs−

∑K
k pktk√

(s2 −
∑K

k p2k)(s
2 −

∑K
k t2k)

, (16)

where the following intermediate variables are used:

� K = the total number of classes

� c = the total number of elements correctly predicted

� s = the total number of elements

� pk = the number of times that class k was predicted

� tk = the number of times that class k truly occurred
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In contrast to accuracy and F1-score, MCC includes all entries of the confusion matrix, and is

therefore generally regarded as a balanced measure which can be used in multiclass classification

even if the classes are very different in size (Grandini et al., 2020).

2.7 Grad-CAM

While CNN-based models enable good performance in computer vision, their lack of decompos-

ability into individually intuitive components makes them hard to interpret (Lipton, 2018). This

generally makes it very hard to link the output of such a network to specific pixels of its input

image. There have been a lot of methods proposed to visually attribute the predicted classes of a

CNN to the pixels of an input image. In a comparison between many of these methods, Adebayo et

al. (2018) show that the method Grad-CAM is very sensitive to randomization of both the model

weights and the image labels, which indicates that this method is a good way to visually represent

the areas of input images that are most responsible for model predictions.

Selvaraju et al. (2017) introduced the method called Gradient-weighted Class Activation Map-

ping (Grad-CAM), a generalization of an earlier visual attribution method called Class Activation

Mapping (CAM) (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016). Where CAM could only

be used on neural networks that have no fully-connected layers, Grad-CAM can be used on any

CNN-based network. The method is based around the idea that the last convolutional layer of a

network both retains the spatial information of the original input image (as any convolutional layer

does) and captures high-level concepts (as opposed to early layers that capture more fine-grained

details).

Grad-CAM works by setting the prediction output of the class c that is to be visualized to 1. We

then backpropagate up to the activated values Ak
ij of each channel k in the last convolutional layer,

and average these values in each channel (as in Formula 17).

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

, (17)

where Z is equal to the total number of values in one channel of the last convolutional layer. We

use these weights α in Formula 18 to obtain a linear combination of all feature maps, then use

a ReLU on the resulting values (since we are only interested in the features that have a positive

influence on the class of interest):

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
. (18)

Thus, we obtain a heatmap of the same size of the channels of the final convolutional layer. To

obtain a heatmap of the same size of the input image, bilinear interpolation is used. Examples of

resulting heatmaps for a particular image are shown in Figure 12.

2.8 t-SNE

T-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten & Hinton, 2008) is a

method to visualize high-dimensional data by giving each data point a location in a 2- or 3-

dimensional map. It does so by minimizing the Kullback-Leibner divergence in Formula 19 (using

gradient descent) between two probability distributions, one in high-dimensional space (P ), and

one in the target low-dimensional space (Q):

L = KL(P ||Q) =
∑
i̸=j

pij log
pij
qij

. (19)
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(a) Original (b) Grad-CAM for Cat class (c) Grad-CAM for Dog class

Figure 12: Support for classes ’Tiger cat’ (Cat) and ’Boxer’ (Dog) for a particular image according to Grad-CAM

visualizations (Selvaraju et al., 2017).

Here, qij is calculated using Formula 20 and pij is calculated using Formula 21, which itself uses

the variables pj|i as calculated by Formula 22.

qij =
(1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

. (20)

pij =
pj|i + pi|j

2n
. (21)

pj|i =
exp(−||xi − xj ||2/2σ2

i )∑
k ̸=i exp(−||xi − xk||2/2σ2

i )
. (22)

In these formulas, xi are the data points in high-dimensional space, yi are the corresponding data

points in low-dimensional spance, n is the number of data points, and σi is set in such a way that

it produces a fixed perplexity (see Formula 23) that is specified by the user.

Perplexity = 2−
∑

j pj|i log2 pj|i . (23)

Typical values of the perplexity parameter are between 5 and 50.

An example of a 2-dimensional t-SNE visualization of the MNIST dataset is shown in Figure

13.
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Figure 13: Example of a 2-dimensional t-SNE visualization of the MNIST dataset, with each of the 10 different

numbers having a different color (Chan et al., 2018).
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