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Summary

Abstract This paper investigates replenishment process models in the so-
called (s,Q) setting and compares performance of different policies found
in the literature. The analysis is done in a restricted setting where limited
amount of data is available, that is, when a new item has been introduced to
the assortment. Additionally, we investigate the stabilization of the demand
distribution in time.

Slimstock The current thesis was written as part of an internship car-
ried out at Slimstock B.V.. The company is a market leader in inventory
optimization in the Netherlands. Slimstock develops forecasting, demand
planning and inventory optimization software, and additionally provides con-
sultancy services linked to their software. In order to improve their software,
Slimstock wanted to know more about the early stages of product demand;
more specifically, what is the best approach when little data is available, and
also, when the information about demand stabilizes.

Data Slimstock delivered an anonymized database of sales transactions of
an unknown B2B company in the Netherlands. The company has a web
shop, physical stores, a central distribution center and sells climate control
systems. All items in the data set had a maximum of seven months of sales
history. After pre-processing and filtering the dataset contained 456 items
and 12743 corresponding sales transactions.

Model In our comparison we used order, holding and lost sales costs to
measure performance of each replenishment policy. Daily demand was mod-
eled as comprising three components: items bought by first time buyers,
items bought by returning buyers and returned goods. To model daily de-
mand components, we used Poisson and negative binomial distributions. We
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used Bayesian inference to estimate the distribution of the parameters of the
probability distributions based on the historical data.

Simulation In total, we compared six different replenishment policies found
in literature. For each item, replenishment policy and demand distribution
type combination, we ran a simulation over the history of the item sales
data. For each of the days we created a model based on the historical data,
simulated the future demand using the model and then used the simulated
data in the replenishment model to make a decision about how large re-
plenishment order should be placed. At the end of the simulation, we were
able to calculate cost statistics, and the point where the demand distribution
stabilized.
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Chapter 1

Introduction

1.1 Setting the stage

Structure of the thesis In order to make reading the thesis easier, we
will now lay out the structure of the paper. In the current chapter, we will
talk about general setting where replenishment models are used. We will also
state our research problems and hint about what techniques we used to come
to a solution. In Chapter 2, we introduce basic terminology and concepts.
We will also talk about notation that will be used throughout the paper.
Most importantly, we will cover different policies found in literature. We will
later include these policies in the comparison. In Chapter 3, we will describe
the data that was used in the research. Next, we will explain in detail how we
modeled demand, and how the model was used in the simulation. We will also
explain how we analyzed the question of demand distribution stabilization.
In Chapter 4, we will show the results of the research and provide an analysis
of the winning replenishment policy. We will conclude with Chapter 5, where
we talk about some problems with the current research and possible future
improvements.

About the company Current thesis was written as part of an internship
carried out at Slimstock B.V.. The company was established in 1993 and
has become a market leader in inventory optimization, with more than 650
customers globally. Slimstock develops forecasting, demand planning and in-
ventory optimization software and also provides consultancy services related
to their software. In order to improve their software, Slimstock wanted to
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10 CHAPTER 1. INTRODUCTION

know more about the early stages of product demand, more specifically what
the best approach is when little data is available, and also when the infor-
mation about demand stabilizes. This was the starting point for research.

Basics In every business that deals with goods, it is important to keep
sufficient stock on hand to support the business. In simple inventory models,
the stock on hand is analytically split into base stock and safety stock. Base
stock is the expected demand. Safety stock is the amount of inventory kept
on hand to protect against uncertainties in customers’ demand and supply
of items [7].

Forecasting When goods are ordered to replenish the warehouse or store,
the ordered goods do not arrive immediately. Due to these lead times from
the point of ordering to the delivery of goods, forecasts are used to plan ahead.
During the lead time, customers will still be purchasing goods; the quantity
that is ordered by the customers can be modeled as a random variable. In
order to have a good forecast, it is important to estimate the probability
distribution of demand in lead time. Using the distribution, it is possible to
obtain more insight into expected demand as well as the uncertainty of it.
The lack of a good forecast can lead to overstock or out-of-stock situation.

Costs There are several types of costs associated with keeping items in
stock. Goods have to be purchased, which results in ordering costs. There
are also costs related to keeping the stock in the warehouse or store, the
so-called holding costs. From the perspective of keeping these costs low, it
makes sense to have as little inventory as possible. On the other hand, if
a customer wants to buy an item and it is not available, this results in lost
sales and possible negative reputation. Lost sales can easily be calculated as
potential profit that could have been made, whereas negative reputation is
difficult to quantify. From the perspective of minimizing lost sales, it makes
sense to have as large an inventory as possible. The optimal solution lies
somewhere in between these two perspectives.

1.2 Goals of the research

Policy Given a demand forecast/distribution, replenishment policy deter-
mines how the orders will be placed. One common policy type is the so-called
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(s, S) policy that orders enough to reach inventory level S as soon as inven-
tory level s is reached. Another common type of policy is usually referred
to as (s,Q) policy, which orders a quantity of Q as soon as inventory level
s is reached. In the current study, we focus on different variations of (s,Q)
policies. We look at daily data and also place replenishment orders according
to the policy at the daily rate. The exact policies will be covered later in
Section 3.3. We want to find the replenishment policy which best allows to
lower costs and reduce out-of-stock situations.

Scarce data As demand forecasting is such an important topic in business,
there is research available about it [12, 20]. As far as we know, all the research
so far focuses on the situation where sufficient data is available to have a good
estimate of the demand distribution. Our research is focused on the situation
where a limited amount of data is available about the demand: the item has
just been introduced to the assortment. This makes the estimation process
of the demand distribution, and thus forecasting procedure as well, more
complicated.

Stabilization As we are dealing with a situation where we have very little
data available, it makes sense that in the beginning, the forecast might have
considerable uncertainty to it. The best policy to use in such a situation
might not be the same as when enough data is available to estimate demand
distribution more accurately. Therefore, it is also interesting to investigate
when do we have sufficient data to have more stable forecasts. Stability of a
distribution of demand is an ambiguous term, so, we have defined a metric
to measure when the stabilization takes place.

Research problem The aim of the research is to compare replenishment
policies that could be used in the setting where a limited amount of data is
available. We will compare the policies with regards to their order, holding
and lost sales costs. We will also provide an estimate of the time period after
which the demand distribution stabilizes.

Simulation process In order to find answers to our research problem, we
built software that simulated using replenishment policies. This meant that
for each of the days we created a model based on the historical data, simu-
lated the future demand using the model, and then used the simulated data
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in the replenishment model to make a decision about how large a replenish-
ment order should be placed. At the end of the simulation, we were able to
calculate cost statistics and when the demand distribution stabilized. Later,
we aggregated costs across policies, and the stabilization metrics across de-
mand distribution type. The detailed structure of the model is laid out in
Sections 3.3 and 3.4.



Chapter 2

Mathematical foundation of the
problem

Chapter flow In this chapter, we will cover general concepts of mathe-
matical modeling, giving the reader an idea of how probability theory is used
to solve problems. We will continue by introducing the the types of distribu-
tion functions that will be used in this research. We will also explain why we
opted to use a Bayesian approach in our modeling process. In Section 2.2 we
will give detailed explanations of replenishment models found in literature.
Additional important topics which are not covered here will be mentioned in
Section 2.3.

2.1 General concepts

Research problem As already stated, the aim of the research is to com-
pare replenishment policies that could be used in a setting where a limited
amount of data is available. We also want to provide an estimate of the time
period after which the demand distribution stabilizes. We will use mathe-
matical modeling in order to describe the demand process and analyze the
problem.

Modeling and probability Inherently, the process of customers buying
and returning products depends on so many factors that are beyond our con-
trol that it is virtually a random process. Yet, the fact that the process is ran-
dom does not mean that the process has no structure at all. That structure
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14CHAPTER 2. MATHEMATICAL FOUNDATION OF THE PROBLEM

in probability theory is described by probability distribution, which maps
the possible outcomes to the probability of the outcome actually happening.
There are many probability distributions that have been investigated in the
past and have well-known properties. For an overview, the reader should re-
fer to any textbook on probability theory. For instance, Walpole et al. have
covered introductory topics on statistics and probability theory [10]. Given
the data, a modeler thinks of the data generating process, uses the probabil-
ity distributions as building blocks, and builds a mathematical model. That
process is called modeling. The mathematical model can then be used to
analyze the behavior of the system, in our case customers’ demand. We will
explain our models in detail in Section 3.3.

Demand distributions In modeling the demand, one of the most impor-
tant decisions is the choice of underlying probability distribution. Poisson
and negative binomial distributions are the most common choices for discrete
demand as they both support only non-negative integer values. Negative bi-
nomial distribution could be viewed as an extension to Poisson distribution
with the variance not being equal to the mean. Given the parameter λ, the
probability that a Poisson distributed random variable takes the value k is
calculated with (2.1). Given the parameters r and p, the probability that a
negative binomial distributed random variable takes the value k is calculated
with (2.2). Normal distribution could be used if demand per period is large
because the modeled demand should be non-negative [7, 18]. This means
that normal distribution could be used when the location of the distribution
is high enough and the scale is small enough, so that the negative values have
virtually zero probability. However, in the current research we will not focus
on normal distribution.

Pr(XPoisson = k) =
λke−λ

k!
(2.1)

Pr(XNegative binomial = k) =

(
k + r − 1

k

)
· (1− p)rpk (2.2)

Bayesian inference The selection of demand distribution function intro-
duces a new problem: the choice of parameters of the selected distribution.
One option is to use the so-called point estimates of parameters to forecast
future demand. Another option is to use Bayesian inference to estimate the
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distribution of the parameters themselves. This approach gives a more mul-
tidimensional result, and although computationally more intensive, it allows
one to have insight into the variation of demand related to the uncertainty
of the parameter values. For that insight, we opted to go for the Bayesian
approach. Bayesian inference requires one to have a prior belief in the out-
come which gets updated when evidence is taken into account, that is, prior
distribution gets updated with data to obtain posterior distribution.

Bayes’ theorem Bayes’ theorem (2.3) links probabilities of events A and
B with the conditional probabilities of events A | B and B | A. For instance,
Pr(A | B) denotes the probability of event A, given that event B is true. In
our case, we will be interested in the probability distribution of parameter θ,
given the data, which can be calculated with (2.4).

Pr(A | B) =
Pr(B | A) Pr(A)

Pr(B)
(2.3)

Pr(θ | data) =
Pr(data | θ) Pr(θ)

Pr(data)
(2.4)

Notation As different authors that we refer to have opted for different
notations, we have reviewed and unified it in order to be consistent and
clear. In the current work, notation, described in Table 2.1, will be used. It
is important to explain the difference in the notation between F−1

t (q) and
Dt,q, including the reason why different notations are used. In the current
chapter, we review literature and the formulas that use F−1

t (q), which denotes
the inverse distribution function also known as the quantile function. The
formulas that are used assume that the exact distribution is known. On the
other hand, in the current study we use simulations to generate samples of
total demand and use sample quantiles as proxies for the theoretical quantiles.
We will use Dt,q to denote sample quantiles.

2.2 Review of various policies

Different policies We will now continue by introducing different approaches
to replenishment policies. It is important to mention at this point that each
replenishment policy assumes that demand distribution is known: probabil-
ity distribution function and its parameters. In principle, any replenishment
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Type Notation Description

Model z Demand component
R Length of the review period
Dt Demand during t days
Dt,q q quantile of demand distribution during t days
F−1
t (q) Inverse distribution function of demand within t

time units
Data x Current stock position

dz Observed data
yt Arriving order on day t
n Length of observed data
L Lead time

Costs ch Holding costs per item per unit of time
cls Lost sale cost
co Fixed cost of ordering

Policy
dependent s Reorder level

Q Order quantity
S Order-up-to level

Table 2.1: Notation used throughout the paper.

policy must determine a replenishment order quantity at any point in time.
The way the order quantity is determined divides policies into different cat-
egories. Also, the recalibration of the policy and ordering might occur either
after a certain review period or continuously. Bijvank summarizes different
possible approaches to replenishment policies as shown in Figure 2.1 [7]. Al-
though different policies seem to calculate different values S and Q, in simple
models there is a relationship between S and Q , which simply means that
the order size should lead to the order-up-to level, taking into account the
current stock position and the previous orders arriving within the lead time
(2.5).

Q = max

{
S − x−

L−1∑
i=1

yi, 0

}
(2.5)

The intuition behind the formula is that if you know your target inventory
level, then you will place an order that will take you to the target level. In
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other policies, the relationship might not be as straightforward.

Figure 2.1: Different types of replenishment policies according to Bijvank [7].

Order-up-to level As seen from equation (2.5), if we know S, then we
can easily calculate Q. Koole and others show that, with equation (2.6)1, it
is possible to calculate optimal order-up-to level S [7, 20, 13, 21, 17]. The
intuition behind this formula is that the optimal order-up-to level is related to
the probability of running out of stock during the lead time. The probability
is determined by the relationship of the lost sales costs to the total costs and
the probability distribution of demand in lead time. The ratio of the cost
of lost sales to the total costs, cls

cls+ch
, should be equal to the probability of

the demand not exceeding the optimal order-up-to level. In other words, S
is determined using the quantile function of the demand distribution in the
lead time (2.6). If lost sale costs are relatively low compared to the total
costs, then S will also be low.

S = F−1
L

(
cls

cls + ch

)
. (2.6)

Restricted policies Naturally, research has been done into the extensions
to the classical order-up-to level policies. One example is the so-called re-
stricted model where an order is always at most of size q̄. The idea is that
the classical order size S − x−

∑L−1
i=1 yi is restricted by some value q̄.

Q = min

{
S − x−

L−1∑
i=1

yi, q̄

}
(2.7)

1In literature also F−1
L+1 is found. This is due to the ambiguity in defining lead time.

The extra day of handling goods might already be included in L or not.
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In his work, Morton proposes to restrict the order size Q by the daily demand
quantile [17].

q̄ = F−1
1

(
cls − co

cls − co + ch

)
(2.8)

Johansen and Thorstenson et al. propose a very similar formula 2 [20].

q̄ =
S

L
(2.9)

In both restricted policies the value of q̄ is determined based on the daily
demand. In (2.8) the ratio of lost sales costs to the total costs (corrected for
fixed order costs) should be equal to the probability of the daily demand not
exceeding q̄. In (2.9), it is assumed that the optimal-up-to level order will be
evenly sold in the lead-time, hence the formula.

Ordering decision Koole, in his work [13], presents another extension to
the classical model. For a given order size Q, it is possible to make a decision
if it makes sense, in terms of costs, to place the order. According to this
decision rule, one should only place an order of size Q if the cost of staying
at the current inventory level is higher than the cost of placing the order.
That is, if the condition in (2.10) is met, where C(S) is defined in (2.11).

C

(
x+Q+

L−1∑
i=1

yi

)
< C

(
x+

L−1∑
i=1

yi

)
− co (2.10)

C(S) = co + ch E(S −DL)+ + cls E(DL − S)+ (2.11)

The function C(S) can be understood in the following way: if the order-up-to
level exceeds the demand in the lead time, the costs are co+ch(S−DL), since
not everything will be sold, and the surplus will induce additional holding
costs. On the other hand, if the demand is higher than the order-up-to level,
it will result in lost sales, and the costs are co + cls(DL − S).

Iterative method Additionally, Koole mentions formulas (2.12), (2.13),
where Q and s are calculated with an iterative method until convergence.
The method is iterative because s depends on Q and vice versa. Expected
lost sales in the lead time function b(s) are calculated with (2.14). Koole

2Also here L + 1 could be used due to the ambiguity in defining lead time.
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derives these formulas by minimizing order, inventory and lost sales costs.
Koole writes about this approach in the section about multi-order models,
whereas previous models were described as being appropriate for single-order
settings.

Q =

√
2E (DL

L
)(co + clsb(s))

ch
(2.12)

s = F−1
L

(
1− 2chQ

2cls E (DL

L
) + chQ

)
(2.13)

b(s) = E (DL − s)+ (2.14)

2.3 Additional topics

Unobserved demand One important topic related to demand forecasting
is the so-called unobserved demand. If one looks at sales data and specifically
the moments when the inventory level reaches zero, one sees that orders could
have been made at those moments, if the inventory had been there. For ex-
ample, imagine a retail store where, if an item is not available, the customer
will not make the purchase and will leave the store. If these potential orders
are not recorded, then information about demand is lost. According to Bi-
jvank demand estimation, although difficult to obtain, should appropriately
account for any unobserved demand when sales data is used. Otherwise,
the demand is underestimated [7]. The same topic is also covered by others
[9, 12, 16, 21]. Chen has derived heuristics to deal with the computational
issues of estimating unobserved lost sales [8]. In the current study, the un-
observed demand data are not used due to the fact that in the given data
set we only had sales data per date and not the true inventory levels. This
meant that we did not know if or when the inventory level reached zero.

Additional research In addition to the aforementioned topics, we will
now refer to other related issues. Bijvank et al. have investigated models
with varying lead times and derived optimal policies for specific cases using
Markov chains and dynamic programming [15]. Perishable inventory prob-
lems are covered by Chen [8]. Liyanage et al. show how to use operational
statistics to optimize order quantities and compare their methodology to oth-
ers that use point estimates for model parameters [14]. A book by Graves et
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al. covers a wide range of topics related to inventory control systems and is
a great source for general understanding [19].



Chapter 3

Attacking unknown demand

Chapter flow In this chapter, we will explain how the process of research
was carried out. We will introduce the technical tools that we used, the
given data and the pre-processing that we applied to it. We will continue by
explaining the process of simulation in detail, including the models that we
used and the analysis we executed before and after simulations.

3.1 Technical tools

Python During this study, Python programming language [11] was used
for the data analysis. Most notably, Python package Pandas [4] was used
for pre-processing, data visualization and exporting results to LaTeX. For
Bayesian analysis, we used Python MCMC implementation package pymc[6]
which implements the Metropolis-Hastings algorithm to estimate posterior
distributions[3]. In addition, Eclipse [2], in combination with pydev [5], was
used for parallel processing during number crunching as well as for debugging
coding issues.

3.2 Data preparation

Given data Our research was based on an anonymized database of sales
transactions of a B2B company in the Netherlands. The company sells cli-
mate control systems, has a web shop, physical stores, and a central distri-
bution center. All items in the database had less than seven months of sales
history and were sold in discrete quantities. The database was split into two

21
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tables: master data and transactions data. In the master data table, we had
item-specific information: lead time in calendar days, cost price, sales price,
holding cost and starting inventory. In the transactions table, we had infor-
mation about sales transactions and returns per date. Specifically, we knew
per date and customer the quantity of a product bought or returned. The
transactions database started with the first sales date. As seen in Table 3.1,
the initial master data table contained 1,927 items in 11 warehouses. There,
CDC stands for central distribution center. An example of master data can
be seen in Table 3.3. The transactions table contained 26,005 entries. The
split between different transaction types is shown in Table 3.2. An example
of transaction data can be seen in Table 3.4. It should be noted that in our
analysis, it is assumed that the replenishment orders are placed at the end
of day, and that the orders arrive in the morning, after which, additional
processing is needed. This means that the goods effectively become available
for selling the day after. For that reason, an adjustment of one day is added
to the original lead time.

Transaction types In the current study, we decided to split the total
demand of the day into three sub-components: first-time buyers, returning
buyers and returns. The motivation for doing this was the intuition that
the three processes are in reality intrinsically distinct. First-time buyers are
related to the process of knowledge about the product spreading in the total
population of buyers. Returning buyers relate to more mature product de-
mand when customers already are familiar with the product. Finally, returns
are related to the product quality and customer satisfaction. Modeling the
three processes separately should give more accurate forecasts.

Filtering In order to obtain a meaningful result from the research, we had
to ensure that the quality of our data was appropriate. We will now give a
list of checks that we ran, along with the reason why.

• Check that the first transaction of a customer is not a return; otherwise
something would be returned that has not been sold yet.

• Check that the first issue is less than the initial position; this would
result in negative inventory.

• Check that we have at least 2 lead times of history; an arbitrary thresh-
old to ensure that we have a certain length of data available.
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warehouse #items

CDC 1124
Shop10 147
Shop1 99
Shop2 112
Shop3 119
Shop4 49
Shop5 35
Shop6 68
Shop7 102
Shop8 58
Shop9 14
Total 1927

Table 3.1: Number of items per warehouse in the initial data set of master
data.

Transaction type Count

Buying first time 12174
Buying returning 12780
Return 1051
Total 26005

Table 3.2: Number transactions per transaction type in the initial data set
of transactions data.

warehouse code leadtime in days FirstSalesDate CostPrice SalesPrice HoldingCostPercOfCostPrice startPosition

CDC 10602333 7 2015-03-16 23.17 30.1442 20 8
CDC 10602359 7 2014-08-12 26.46 34.9740 20 1
CDC 10608542 10 2015-02-23 2.74 3.8242 20 11
CDC 10608599 7 2015-05-28 9.87 11.7177 20 111
CDC 10614712 10 2014-08-22 24.01 28.4640 20 1

Table 3.3: Master data example.

• Check that lead time, cost price, holding cost and sales price would be
positive; by definition these values should be positive.

• Check that the sales price exceeds the cost price; according to the
models that are studied in this paper, items making a loss should not
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warehouse code issueDate CustomerID issueQuantity isReturn isFirstTimeCustomer

CDC 10602333 2015-03-16 7828 2 False True
CDC 10602333 2015-03-17 7828 1 False False
CDC 10602333 2015-03-23 52755 1 False True
CDC 10602333 2015-03-30 52755 2 False False
CDC 10602333 2015-04-01 7828 2 False False

Table 3.4: Transaction data example.

be sold at all.

• Check that the initial stock position would be positive; negative stock
does not make sense in the current context.

Resulting data All items that did not meet the requirements described
in the previous paragraph were removed from the data set. Table 3.5 shows
that we were left with 456 items, and Table 3.6 shows that there were 12,743
corresponding transactions. In Table 3.7, we can see some statistics of the
counts of transactions per transaction type in the remaining data. Table
3.8 shows the average time between orders. In Figures 3.1 and 3.2 we have
displayed some histograms of sales and returns data. The histograms show
the number of orders per order size for a selection of items.

warehouse #items

CDC 396
Shop10 4
Shop1 12
Shop2 12
Shop3 14
Shop4 4
Shop5 1
Shop6 4
Shop7 7
Shop8 2
Total 456

Table 3.5: Filtered master data data set: number of items per warehouse.
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Figure 3.1: Example histograms of sales data: daily sales figures and their
counts in the history of an item.

3.3 The model and its updating

Model Our main goal of modeling the demand was to get a probability
distribution of the demand within lead time. In order to achieve this, we
split the model into sub-components: demand in lead time is a sum of de-
mands in each day and daily demands are distributed according to some
assumed parameterized distribution. The so-called hyperparameters of the
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Figure 3.2: Example histograms of returns data. Daily return figures and
their counts in the history of an item.

daily demand distribution also have a distribution for which we use our prior
belief. Using the observed data, our prior distributions were updated to get
posterior distributions of the hyperparameters. We could then draw many
realizations from the distributions of hyperparameters and use them as in-
puts to the daily demand distribution to simulate daily demands. The sum
of those daily demands gave us the simulated demands in lead time which
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Transaction type Count

Buying first time 5963
Buying returning 6325
Return 455
Total 12743

Table 3.6: Filtered transactions data set: number of items per transaction
type.

TransactionCountTotal TransactionCountReturn TransactionCountBuyingFirstTime TransactionCountBuyingReturning

mean 27.95 1.00 13.08 13.87
std 153.99 3.64 30.51 123.59
min 3.00 0.00 1.00 0.00
25% 5.00 0.00 4.00 0.00
50% 8.00 0.00 6.00 2.00
75% 18.00 1.00 12.00 6.00
max 3182.00 66.00 521.00 2595.00

Table 3.7: Overview of statistics of transaction counts per transaction type.

AverageTimeBetweenTransactions

count 456
mean 27 days 08:56:16.782458
std 22 days 13:03:57.422526
min 0 days 02:44:46.702294
25% 10 days 09:04:00.973630
50% 21 days 00:00:00
75% 39 days 11:08:34.285714
max 109 days 08:00:00

Table 3.8: Overview of statistics of average time between transactions.

we could use as a proxy for the true distribution. These simulations were
later used by the replenishment policies to make decisions about how to place
orders. It is important to mention here that the updating of the model took
place with daily frequency; per day we used the historical data to estimate
the parameters of the probability distributions of the daily demand.

Demand components Additionally, as already mentioned in Section 3.2,
we decided to split demand in each day into three components: first time
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buyers, buyers who are returning to buy the same item and returns. There-
fore, total demand in each day D is calculated with the following formula:

D1 = Dbuying first time +Dbuying returning −Dreturning. (3.1)

Poisson demand The first demand distribution that we investigated was
Poisson distribution. We used Gamma distribution as prior on the parameter
of Poisson distribution. This was convenient as prior and posterior distribu-
tion of parameter λ are then in the same family, and we could use an explicit
form of posterior distribution [1].

z ∈ {returning, buying first time, buying returning} (3.2)

λz ∼ Γ(1, 1)

Dz ∼ Poiss(λz)

λz|dz ∼ Γ

(
1 +

n∑
i=1

dz,i, 1 + n

)
For simulating daily demands, at least 5,000 independent realizations of λz
were drawn from the posterior distribution. The sample size topic is discussed
further in Section 3.5. The realizations were then used as inputs for the
Poisson distribution to draw daily demand values. Daily demands were then
used to calculate demand within lead time with formula (3.3). As a result,
we had an array of simulated total demands in lead time.

DL =
L∑
i=0

[Poiss(λbuying first time|d)

+ Poiss(λbuying returning|d)− Poiss(λreturning|d)]

(3.3)

Negative binomial demand The second demand distribution that we
investigated was negative binomial distribution. Due to the fact that we did
not want to fix either of the parameters of negative binomial distribution,
there was no explicit form for the posterior distribution of the parameters.
This meant that we had to resort to an MCMC approach. We used the r and
p parametrization, where r denotes the number of failed trials in a sequence
of experiments and p denotes the probability of success of each experiment.
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In our model, the prior Poisson distribution of rz was shifted in order to
ensure strictly positive values of r.

rz ∼ Poiss(1) + 1

pz ∼ U(0, 1)

Dz ∼ NB(rz, pz)

In this case, in order to simulate demand in lead time, the whole model was
inserted into the MCMC software. The whole model consisted of observed
data, priors, daily demand split, daily demand having negative binomial
distribution, and summing of the daily demands to get demand in lead time.
The array of simulated total demands in lead time was the output of the
so-called trace of the MCMC run.

Costs In our simulations of using different replenishment policies, there
were three types of costs involved: holding costs, lost sales costs and order
costs.

total costs = ch + co + cls (3.4)

where cls = sales price − cost price, co is defined globally and ch is defined
per item and warehouse combination.

Policies In Table 3.9 we present all the policies that were implemented
during the research. Here, q is defined by equation (3.5) and b(s) is defined
in (2.14). For each of the policies, both Poisson and negative binomial dis-
tributions were used when modeling demand. One exception is the random
policy which does not use any information from the observed data; thus,
modeling was skipped. The random policy is used as a baseline to compare
against.

q =
cls

cls + ch
(3.5)

Main flow In order to compare different policies, we had to simulate the
policy being used. For each combination of item, warehouse, policy and
underlying demand distribution type, we ran through the history of the item.
For each date in the history of the item, we initialized policy using the history
of demand until that point in time and let the policy place an order. The
policy then used the simulated demand in lead time to make a decision to
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Name s Q Order decision

Random U(5, 30) U(5, 20) None

Fixed quantile DL,0.95 S − x−
∑L−1

i=1 yi See (2.10)

Dynamic quantile DL,q S − x−
∑L−1

i=1 yi See (2.10)
Dynamic quantile

restricted DL,q min{S − x−
∑L−1

i=1 yi,
S
L
} See (2.10)

Dynamic quantile
Q=S DL,q S See (2.10)
Dynamic quantile
Q=halfS DL,q

S
2

See (2.10)

Multi order D
L,

(
1− 2chQ

2cls E (
DL
L

)+chQ

)
√

2E (
DL
L

)(co+clsb(s))

ch
None

Table 3.9: Implemented policies.

order. We recorded the decision and kept track of the orders in transit. Once
the loop over dates was completed, we calculated lost sales, average inventory
for holding costs and number of placed orders for order costs. Figure 3.3
shows a flow diagram of the process of simulation. In Figure 3.4 we show an
example of a simulation run.

3.4 Demand distribution stabilization

Necessity As already discussed in Chapter 2, the current study focuses on
the setting where a very limited amount of data is available. In this setting,
initially inaccurate and fluctuating forecasts must be expected. The reason
for such inaccuracy is the lack of information. The reason for fluctuations is
that each data point will have a strong impact on the demand model. It is
thus interesting to investigate at which point we could say that enough data
is available to have more stable forecasts.

Metric As part of the simulation process, per day, using the demand avail-
able until that moment in time, we estimated the distribution of the demand
within lead time. We then stored the 0.05, 0.5 and 0.95 quantiles of the
demand distribution. Later, using this information, we were looking for the
first day during the simulation run when for all the following days the median
of the distribution lay in between the 0.05 and 0.95 quantiles of that partic-
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Figure 3.3: Flow diagram of the simulation process.

Figure 3.4: Example of a simulation run where the first three columns are
the given data and the rest is gradually filled in during the simulation run.

ular day. We set two minimum limits to the metric. Firstly, we required this
metric to be at least 14 days, as the demand distributions during the first
days of the simulation are always very wide but, obviously, the stabilization



32 CHAPTER 3. ATTACKING UNKNOWN DEMAND

has not yet taken place. Additionally, in order to limit the spread of the
distribution, we required that the rolling coefficient of variation of 14 days
of the median of the distribution should be below 0.8. We should emphasize
here that the metric assumes that the demand has no trend and no season-
ality. With our data, the assumption seems to be appropriate because only
two of 356 items never stabilized.

We define the metric of stabilization to be the smallest t such that
• DL,0.05,t ≤ DL,0.5,u ≤ DL,0.95,t, u ≥ t and
• σd

d̄
≤ 0.8, d ∈ {DL,0.5,t−s : s ∈ {0, . . . , 14}} and

• t ≥ 14.

3.5 MCMC burn-in and sample size analysis

Necessity During the research, we noticed that, on average, Poisson dis-
tribution was far superior to negative binomial distribution. After some
investigation, it appeared that the reason was the stability of the MCMC
algorithm. During some runs it would result in reasonable forecasts, while
during other runs wildly varying results were shown. For instance, if during
the first ten days of sales history only a few items were sold, it is unreason-
able to forecast that tens of thousands of items will be sold in the coming
week. In MCMC algorithms, the two important parameters are the sample
size and the burn-in percentage: the number of samples discarded as not
being representative for the stable distribution. We needed to analyze the
effect of the two variables on the result of the MCMC algorithm.

Analysis We decided to run a test to find appropriate values. We took
a single policy and a single item, and ran simulations 10 times for each
combination of sample size and burn-in values. For the burn-in, we chose
values 0.1, 0.25 and 0.5. For the sample size analysis, we chose 500, 2,000
and 5,000.

Results In Table 3.10, we present the results of the analysis. We show the
mean total costs per sample size and burn-in percentage. We saw that 5,000
should be an appropriate value for sample size and 10 percent for burn-in.
Larger sample sizes would be preferred for accuracy of distribution estima-
tion; however, that results in penalty in computation time. For that reason,
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we decided to go for a trade-off where we would use larger sample sizes at
the beginning of the simulation and used smaller values later on. Specifi-
cally, from the first day in the simulation to the 14th day, we exponentially
decreased sample size from 20,000 to 5,000 and keep it at 5,000 afterwords.
A burn-in value of 10% was used throughout the simulation.

Samples\Burn-in % 0.1 0.25 0.5

500 4068.59 485.09 1549.49
2000 228.21 36484.68 195.42
5000 215.93 220.02 203.57

Table 3.10: Mean total cost per sample size and burn-in percentage.
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Chapter 4

Results and recommendations

Chapter flow In this chapter, we will describe how we executed the sim-
ulation of using the particular replenishment policies and how we used the
simulations to compare the policies. We will continue with some typical and
interesting examples of simulation runs. Next, we will present the results
and an analysis of the winning policy. We will conclude with a paragraph
containing advice to Slimstock.

4.1 Simulation process and examples

Process The whole research process took place over the period from Jan-
uary 2016 until September 2016. Most of the time was consumed by analysis
and preparation for the final calculation. For each item, replenishment pol-
icy and demand distribution type combination, we ran a simulation over the
history of the item sales data. As already described in Section 3.3, for each
of the days we created a model based on the historical data, simulated the
future demand using the model and then used the simulated data in the re-
plenishment model to make a decision about how large a replenishment order
should be placed. At the end of the simulation, we were able to calculate
cost statistics and the point where the demand distribution stabilized. Later,
we aggregated costs across policies, and aggregated the stabilization metrics
across demand distribution type. After months of preparation, it took ten
nights of computing to calculate for each of the 456 items the simulations of
13 policies. The simulations resulted in 5,928 files containing daily informa-
tion about forecasted demand, decisions of the policy and stock positions.

35
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Examples Next, we will present some examples of the simulations. We
start with the extreme, the highest cost case, which is shown in Figure 4.1.
Here we deal with a 95% quantile policy with negative binomial demand dis-
tribution. The reason why this particular simulation has such a high cost is
that, at some point during the simulation, the demand forecast apparently
returns ridiculous values. This is most likely due to an issue already discussed
in Section 3.5 - the stability of the MCMC algorithm. Next, lowest-cost sim-
ulation is shown in Figure 4.2. Here, we deal with a multi-order policy and
also with negative binomial demand distribution. In this case, we have an
initial stock that is large enough to last until the end of the simulation. No
replenishment orders are placed during the simulation. This means that there
are no lost sales costs, no order costs and minimal holding costs. Lastly, in
Figure 4.3, we show a typical run that we encountered frequently. This par-
ticular simulation is an example of multi-order policy with negative binomial
demand. In these sorts of simulations, an unrestricted policy initially over-
estimates the demand and thus suffers from high holding costs. As already
discussed in earlier sections, this sort of behavior is caused by the fact that
estimated demand distributions in the beginning of the simulations are very
wide, due to a great deal of uncertainty.

Figure 4.1: Worst-case simulation showing the stock position during the
simulation run. One huge order is placed.
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Figure 4.2: Best-case simulation showing the stock position during the sim-
ulation run. No orders are placed.

Figure 4.3: Example of simulation where unrestricted policy overestimates
demand. Figure shows the stock position during the simulation run.
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4.2 Results and analysis of winning policy

Results of simulation Table 4.1 shows final results of the simulations
per policy and demand distribution. Figures 4.4 and 4.5 show the same
information in graph form. We can see that the winning policy is the multi-
order policy, independent of the demand distribution. A restricted policy
using Poisson distribution is in an honorable third place. It is also notable
that several of the policies using negative binomial distribution have higher
costs than the baseline policy taking random decisions.

Holding cost(std) Holding cost(Mean) Lost sales cost(std) Lost sales cost(Mean) Order cost(std) Order cost(Mean) Total cost(Mean)

Multi order NegBin 486.07 136.83 792.06 171.99 0.61 0.27 309.09
Multi order Poisson 474.45 133.18 1017.95 184.29 1.02 0.43 317.90
OrderUpTo dynamic quantile restricted Poisson 502.01 113.20 865.39 227.43 1.06 0.26 340.89
OrderUpTo dynamic quantile Q=halfS Poisson 739.00 185.82 804.69 164.19 0.33 0.16 350.17
OrderUpTo dynamic quantile Poisson 1129.22 288.63 630.41 132.36 0.44 0.17 421.16
OrderUpTo dynamic quantile restricted NegBin 2011.54 207.01 926.39 227.74 0.95 0.23 434.98
OrderUpTo dynamic quantile Q=S Poisson 1122.63 286.95 936.08 154.05 0.20 0.12 441.12
OrderUpTo fixed quantile Poisson 1305.03 299.21 641.52 150.54 0.24 0.11 449.86
Random None 1378.27 556.64 1662.74 153.99 0.64 0.63 711.26
OrderUpTo dynamic quantile Q=halfS NegBin 7851.61 587.59 811.11 161.37 0.30 0.15 749.11
OrderUpTo dynamic quantile NegBin 15677.93 1093.71 700.00 138.99 0.36 0.15 1232.85
OrderUpTo dynamic quantile Q=S NegBin 15678.89 1094.67 948.43 153.73 0.20 0.13 1248.53
OrderUpTo fixed quantile NegBin 21637.01 1169.43 1025.89 225.25 0.12 0.04 1394.72

Table 4.1: Costs per policy.

Figure 4.4: Mean cost per policy

Demand distribution The fact that the winning policy took two of the
top positions was slightly surprising. We could see that in general, per pol-
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Figure 4.5: Standard deviation of cost components per policy

icy, Poisson distribution outperformed negative binomial distribution. We
suspected that this is related to the instability of the MCMC algorithm and
not because that Poisson distribution would fit the data better. In general,
although the winner of our test was negative binomial distribution, Pois-
son distribution should be preferred because using the multi-order policy, it
delivers equivalent results and is computationally far cheaper.

Analysis of multi-order policy So, how could negative binomial distri-
bution outperform Poisson distribution with multi-order policy if, in general,
Poisson distribution is superior? We ran a test on 153 random items and
checked what quantiles were used during the simulations. Multi-order policy
used on average 0.12 quantile with 0.07 standard deviation, whereas dynamic
quantile cls

cls+ch
from (3.5) would have used 0.51 quantile with 0.18 standard

deviation. Multi-order policy uses a significantly lower quantile than the
other policies. This also makes sense as multi-order policy calculates s, re-
order level and other policies calculate S, order-up-to level. Using lower
quantile makes multi-order policy less sensitive to the extreme forecasts that
the MCMC algorithm occasionally produces.

Stabilization Table 4.2 shows the results of the analysis of stabilization.
With negative binomial distribution, stabilization occurs approximately on
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the 21st day and with Poisson distribution on the 28th day. Only two of
all the simulations never stabilized. According to Slimstock, the demand
distribution stabilization period was the most useful result of the research.

Mean std

NegBin 21.37 20.56
Poisson 27.53 36.90

Table 4.2: First day of stabilization of demand distribution.

4.3 Advice

Advice The sponsor of this research project was Slimtock B.V., which pro-
vided the database as well as guidance, and posed the research question. Our
advice to Slimstock would be to consider implementing multi-order policy in
their software, as the implementation should be relatively straightforward
and its usage could be beneficial during the early phases of a product life
cycle. Multi-order policy could be used until the end of the period when
demand is estimated to be stable. For computational reasons, Poisson dis-
tribution should be used for modeling of the demand. Also, the framework
that has been built for the research could be used to compare any policies
that Slimstock might consider using.



Chapter 5

Conclusions and future work

Chapter flow In this final chapter, we will first present the potential rel-
evance of this research for the scientific and business community. Next, we
will discuss several issues with the current research, as well as possible solu-
tions. Additionally, we will describe several topics that could be included in
future research on the same topic.

5.1 Relevance and problems

Relevance The results are applicable to the business community as the
methodology used for testing the policies is clearly described and could be
easily implemented. Numerical comparison of replenishment policies can also
be interesting from a scientific point of view, as it provides an empirical study
of the policies based on theoretical models. The sponsor of the research, Slim-
stock, found the results useful and has adjusted the development roadmap
to include the winning policy in their software.

Order costs As could be seen from the results of the simulations, order
costs were negligible compared to holding and lost sales costs. This fact
makes us question whether the fixed value of order cost used in the current
research was correct. In future research, this constant should be considered
carefully.

MCMC One of the greatest problems we faced during the research was
the stability of the MCMC algorithm that was used to estimate the poste-
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rior distribution of the parameters of negative binomial demand. We tried
to overcome the stability issues by increasing the number of samples of the
MCMC algorithm, but still, negative binomial distribution was inferior to
Poisson distribution in most cases. We are unsure whether this sort of insta-
bility was caused by a bug in the package that was used in computations or
because it is inherent to the methodology that we used.

5.2 Future work

Unobserved lost sales One of the criticisms to the current research would
be not taking into account the unobserved lost sales when estimating demand.
In this study, this was purely the result of the given data set which did
not include any information about the true stock position, thus, making it
impossible to know when the shop ran out of stock. In the future, appropriate
data should be obtained in order to allow such analysis.

Loss items During the filtering of the initial data set, the items whose
sales price was less than their cost price were removed. The reason was that
the formulas that were used did not support such items. In accordance with
the policies, such items should not be sold. In reality, of course, such items
are being sold. Motivation behind such intentional loss making can vary. For
instance, such items can be sold for promotional reasons. Additionally, an
item could have to be included with another profit-making item. Replen-
ishment models presented in the current paper do not cover such items and
future research could investigate the topic.

Improvements When checking the simulations, we ran into an example in
which even the winning strategy could be improved. As seen from Figure 5.1,
at some point multi-order policy using Poisson demand, makes an obviously
unreasonable order for an amount that will never be consumed. In future
research, it would be interesting to see if a modified multi-order policy would
outperform vanilla multi-order policy. One possible way would be to restrict
it by some value as described in (2.7). Another way would be to introduce
an ordering decision as described in (2.10).
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Figure 5.1: Multi-order policy fails by placing a huge order. Figure shows
stock position during simulation run.
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