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Preface

The report before you is written as the graduation project for the Master in Business Analytics

at the Vrije Universiteit in Amsterdam. Business Analytics is a multidisciplinary program with

a focus on computational intelligence, business process optimization, and financial mathematics.

This report is written during a six-month internship between January and June 2020 at Ynformed,

a data science consulting company operating in the public sector.

In this thesis, I will investigate the application of planning and reinforcement learning methods

to control the amount of water entering a wastewater purification facility. We aim to create an

agent that makes this stream as constant as possible using methods like buffering, anticipation,

and coordination. This problem is based on a case from waterschap Rijnland, who we thank for

providing us the case.

This thesis would not have been possible without the help from a number of people. First of all,

I would like to thank dr. René Bekker of the Vrije Universiteit for all the ideas we came up with

during our monthly meetings and his extensive and detailed feedback on draft versions of this

thesis. Furthermore, I would like to thank Bart van der Lugt, my supervisor at Ynformed, for

all the insights and support he provided during the process of writing this thesis. This support

continued even when meeting in person was not possible, for which I am grateful. Finally, I would

like to thank all my other colleges at Ynformed both for their kind and welcoming attitude as well

as their extensive domain knowledge on which I could rely for the past six months.
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Management summary

The adaptation of AI and digitization are trends that are changing both the public and private

sector at a rapid pace. Waterschappen are no exception to this and are looking into AI-driven

solutions to increase the efficiency of their operations. One example of this is the use of planning

and reinforcement learning methods to control the inflow of water at their wastewater purification

facilities.

Currently, a set of simple rules manages the influent of wastewater into these facilities. However,

with a desire to have the influent as constant as possible, there are several inefficiencies under the

current system. The inefficiencies that we address in this thesis are a lack of buffering to counter

the daily pattern in wastewater, a lack of anticipation on future high influent periods, and a lack

of coordination between the different entry points these wastewater purification facilities have. By

creating an environment that incentives these characteristics we are able to train agents that show

behavior more in line with the desires of the waterschap.

Although the data available to us covers a large period, planning and reinforcement learning meth-

ods require an amount of samples that are near impossible to obtain in the real world. To cope

with this we create a simulator that produces data with characteristics comparable to what we

would observe in the real world. An additional advantage of using a simulator is that it allows us to

start with a simple problem and add layers of complexity in every subsequent environment. Four

environments are introduced, each with their specific purpose. The first environment focuses on

creating a realistic wastewater and rainwater influent pattern. The parameters of this environment

are estimated based on the observed data to ensure our simulator closely resembles reality. This

environment allows us to establish buffering behavior in our agents, which is the process of coun-

tering the daily pattern we see in wastewater through the use of the storage tank. After this, we

introduce environments that include a forecast of future influent or that consist of multiple agents.

These two new environments allow us to observe anticipating behavior in the case of the influent

forecast or coordination in the multi-agent environment. Finally, an environment is created that

combines all of these features into a single realistic environment.

The agents that we create are the decision making entities that interact with our environment.

Along with the currently used rule-based agent, two different types of agents are used. A planning

algorithm called value iteration is used because of its guaranteed optimal performance in simple, low

dimensional problems. Due to the high complexity of our environments, the necessary adaptations

are made to this algorithm. Along with this, four different deep reinforcement learning algorithms

are used. These algorithms are general-purpose algorithms, but require some tweaking of the

parameters in order to function optimally.

ii



When we test our agents we find that our adaptation of the value iteration algorithm outperforms

the rule-based and reinforcement learning methods by a quite significant margin. The value itera-

tion agent showcases all of the three desired characteristics and does so with the added benefits of

high transparency of its policy and near deterministic training to guarantee high performance in

every run. When we perform a sensitivity analysis on various environment parameters we conclude

that this good performance is maintained in circumstances slightly different from what the agent

was designed for.

The deep reinforcement learning agents perform at a level that is about halfway between the rule-

based agent and the value iteration agent. The downside of this class of algorithms is that finding

good parameter settings is a process that takes a lot of time and the outcome can differ quite

substantially between successive runs. In the sensitivity analysis, the deep reinforcement learning

algorithms showed mixed results with the drop in performance being quite substantial in certain

scenarios. However, it has to be noted that these results were obtained using the optimal parameter

settings from our main analysis, and that performance is likely better after a full parameter analysis

is performed.

In future research, the environments can be made slightly more realistic in several ways. An

example of this is to add a multivariate simulation model for multi-agent settings. Another im-

provement of our simulator is to incorporate the lag between rainfall and the arrival of influent at

the wastewater purification facility.

Overall, we are confident to conclude that the adaptation of value iteration is the best algorithm

to cope with this type of problem. The value iteration agent showed all the desired characteristics,

has a transparent policy, and shows a very stable learning trajectory, making it the ideal agent for

our problem. The main weakness of this method is its lack of scalability, which becomes a problem

when more state components need to be added.
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1 INTRODUCTION

1 Introduction

In recent years organizations are starting to adopt artificial intelligence (AI) to automate processes

and increase efficiency. The public sector is no exception to this trend and it is believed that AI can

have a significant impact on public services and policies. The importance of this is acknowledged

by institutions like the OECD (2019) who outline how AI can be of value in the public sector.

In the Netherlands, one type of public institution that has embraced AI are the waterschappen

(”water boards” would be the English term for ”waterschappen”, but due to the ambiguous nature

of the term ”water boards” we opt to go with the Dutch term instead).

In this thesis, we look into a specific problem these waterschappen face and try to improve on the

current solution using planning and reinforcement learning methods. However, before we look into

the problem we will first look at the business context of both the waterschap and Ynformed, the

host company. This helps us in understanding the problem and some of the terminology that is

used throughout the thesis.

1.1 Business context

Waterschappen are a Dutch type of public institution that are in charge of managing bodies of

water, water protection measures, and the sewage system / purification facilities. There are 21 of

these waterschappen throughout the Netherlands, all with their own challenges depending on the

area that they serve. The problem that we discuss in this thesis is based on a case from waterschap

Rijnland. This waterschap serves an area of approximately 1100 km2 in North- and South Holland.

The case that we are working on revolves around a wastewater purification facility that is managed

by waterschap Rijnland. These purification facilities receive water from the sewage system, which

we call influent. This influent can come from one or multiple entry points, depending on the facility.

In our case, the influent is made up of two main sources; influent from wastewater and influent

from rainwater. In some newer neighborhoods, these two sources do not share the same sewage

system, with wastewater going to the wastewater purification facility and rainwater flowing back

into a natural source without purification.

Water that arrives at the facility first reaches a storage tank before it is pumped into the facility.

This gives the purification facility some control over the amount of influent entering the facility.

The pumps that transfer water from the storage tank into the wastewater purification facility have

a minimum and maximum possible speed, with all speeds in between being available to choose

from. Unfiltered water can be stored in the sewage system, albeit at a limited capacity. For

simplicity reasons we use the term storage tank when talking about water that has not yet entered

the facility, however, when we use this term we mean the combination of the storage tank and

storage capacity of the sewage system. When the maximum capacity of the storage tank is reached
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1 INTRODUCTION

the unfiltered water flows directly into a natural water source, which is called overflow. This is of

course undesirable and should be avoided at all costs.

The thesis is carried out on behalf of Ynformed, a data science consulting company located in

Utrecht. Ynformed is specialized in data sciences projects in the public sector. Ynformed is

part of Royal HaskoningDHV, a Dutch advisory and engineering company. Waterschappen are

organizations that Ynformed works for regularly which is very useful since domain knowledge is

often required when working for these clients. As mentioned in the preface, this domain knowledge

was of considerable help during this thesis.

1.2 Problem statement and research objective

In the business context, we briefly explained the general setup of a wastewater purification facility.

In this subsection, we discuss the specifics of our problem, which are broken down in a number of

research questions.

It was already touched upon that the waterschap has some control over the amount of water that

enters the wastewater purification facility. We can use this control to improve the efficiency of

the wastewater purification plant, which is optimal if the stream of influent into the facility is as

constant as possible. Under the current method, this is far from optimal, which is why we are

looking into the use of planning and reinforcement learning algorithms to see if we can improve on

this. Specifically, we can break this down into three research questions.

1. Can we learn the agent to spread out wastewater as evenly as possible over the day?

2. Can the agent learn to anticipate on future influent, mainly coming from rain events?

3. Can we achieve coordination between multiple agents?

Note that we use the term agent to refer to the decision making entity, something that is common

in planning and reinforcement learning research. Each of the research questions highlights a char-

acteristic that is lacking in the currently used method but would help to smooth out the influent

into the water purification facility. We will see in Section 3.1 that wastewater shows a strong daily

pattern with high influent during the day and low influent during the night. Countering this daily

pattern using buffering in the storage tank can help to make influent into the facility smoother.

Rain showers are events that affect a limited amount of time periods but can have a high impact

when they occur. Increasing influent in the periods leading up to a rain shower reduces the need

to overcompensate when the rain shower occurs, smoothing out influent. Coordination between

agents can be of use to counter some of the variation in the actions of individual agents.

In order to find answers to these research questions, we create a number of simulation environments.

Each of these environments adds an element of interest that we can use to answer the research

questions that are stated above. For example, the first environment creates a realistic influent

2



1 INTRODUCTION

pattern for wastewater and rainwater. This influent pattern allows us to look at the first research

question in isolation since there is a single agent and no forecast for future influent, ruling out the

ability to anticipate on future influent. We then proceed to create environments that have multiple

agents or enable the single agent to anticipate on future influent. This allows us to test the second

and third research questions independent of each other. Finally, we combine all environments into

a single environment that closely resembles reality. In this final environment, we can assess if our

agents showcase the three desired characteristics of buffering, anticipation, and coordination.

The remainder of this thesis is organized in the following way. In Section 2 we will cover all

literature related to our planning and reinforcement learning methods, as well as literature related

to the design of our environments. In Section 3 we will discuss how the four different environments

are designed and which behavioral characteristics they stimulate. Section 4 covers the design of

our agents. The results are discussed in Section 6. Finally, we will discuss the conclusions of our

research in Section 7 and give recommendations for future research in Section 8.

3



2 PRELIMINARIES AND RELATED LITERATURE

2 Preliminaries and related literature

In this section, we take a look at literature related to our own research. The reason to do so is two-

fold. First of all, work by other authors is a great source of inspiration for models, techniques, and

concepts that we could use in our own work. A lot of problems similar to ours have already been

studied, so it only makes sense to draw inspiration from this. Secondly, diving into related literature

gives us a good understanding of where we can make a contribution and what the significance is

of our findings.

The organization of this section is as follows. First, we look into dynamic programming and plan-

ning methods. These relatively simple techniques are the foundation of reinforcement learning

and can even be applied to simplified versions of our problem. After this, we move on to tradi-

tional reinforcement learning methods like Q-learning. We also discuss several concepts that were

introduced in traditional reinforcement learning literature, but which have become key in deep

reinforcement learning. This gives us a good basis for the next subsection, which is about deep

reinforcement learning. Finally, we look at a completely different topic, which is the simulation of

influent. We use this to create our own simulation model in Section 3.

2.1 Dynamic programming and planning methods

As already stated in the introduction of this section, dynamic programming and planning are the

foundation of reinforcement learning. The concept of dynamic programming was introduced in the

1950s by Richard Bellman (1954). It was designed to analyze multi-stage decision processes and

finding an optimal policy, where a policy is defined as a sequence of decisions.

The central idea in solving these multi-stage decision processes through the method of Bellman

(1954) is that we do not require a full overview of the whole decision sequence. Rather, we base

our decision at every point in time on a set of quantities called the state variables. These state

variables contain all relevant information, taking away the need to know past or future actions.

This greatly reduces the dimensionality of the problem, especially in cases where the effect of our

actions is stochastic.

Although dynamic programming can be applied to a wide range of problems, we are mainly inter-

ested in its use for solving Markov Decision Processes (MDPs). In the definition given by Watkins

(1989), the MDP has four main components; a state-space S, an action-space A, a transition func-

tion T (s, a, s′) = p(s′|s, a), and a reward function R(s, a, s′) = E[r|s, a, s′]. The set of available

actions can be dependent on the state. If this is the case, A(s) denotes the set of available actions

in state s. The transitions and rewards may be stochastic, which is why p(s′|s, a) denotes the

probability of ending in state s′, given our initial state s and action a. E[r|s, a, s′] denotes the

expected reward given that our initial state is s, we take action a and end up in a new state s′.
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In an MDP, the Markov property should hold. This property implies that only the current state

and action are relevant to the dynamics of the transition and reward function. In other words, we

do not need to know the previous states and actions as these do not have any influence on the

environment. We can represent this as

p(st+1 | st, at) = p(st+1 | st, at, st−1, at−1, . . . , s0, a0) (2.1)

It can easily be seen that the Markov property matches well with the requirement that all infor-

mation should be contained in the state from dynamic programming. A key distinction between

the two is the type of objective function that we work with. When dynamic programming was first

introduced by Bellman (1954), the goal was to maximize the expected total reward in a multi-stage

decision process of finite length. If our decision process ends at time T , our target at the current

time t is written as follows.

Gt = Rt+1 +Rt+2 +Rt+3 + · · ·+RT =
T−t−1∑
k=0

Rt+k+1 (2.2)

The problem with this expected total reward Gt is that for multi-stage decision problems of infinite

length, Gt can be infinite as well, as Sutton and Barto (2018) argue. To adjust for this, discounting

was introduced. Under discounting, we value immediate rewards more than rewards we receive in

the future. Our expected total reward Gt changes to an expected discounted reward, being defined

as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1 (2.3)

where γ ∈ [0, 1) denotes our discount factor. Under the formulation in Equation 2.3, we are certain

that Gt is finite as long as all rewards are finite. What the definition of Gt does not capture is

that the expected discounted reward depends on the current state we are in and the policy that

we follow. For this reason, we need a state-value function. Sutton and Barto (2018) define the

state-value function in the infinite horizon setting Vπ(s) as the expected discounted reward under

policy π if we are currently in state s.

Vπ(s) = Eπ
[
Gt
∣∣St = s

]
= Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣∣St = s

]
(2.4)
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This can be easily extended to a state-action value function Qπ(s, a)

Qπ(s, a) = Eπ
[
Gt
∣∣St = s,At = a

]
= Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣∣St = s,At = a

]
(2.5)

What makes these state-value function and state-action value function so useful is that they can

be written as recursive functions. After we have selected our action we end up in a new state with

its own state-value. This takes away the need to estimate all future rewards, as long as we have

estimates of the state-values. In Equation 2.6 we can see these recursive versions of the state-value

function and state-action value function. Here, we assume a deterministic policy (i.e. we always

select the same action a in state s).

Vπ(s) =
∑
s′,r

p(s′, r | s, a)
[
r + γVπ(s′)

]
Qπ(s, a) =

∑
s′,r

p(s′, r | s, a)
[
r + γQπ(s′, a′)

] (2.6)

Bellman (1957) showed that under an optimal policy π∗ there is a specific relationship between

these state-values and state-action values. This relationship is known as the Bellman Optimal-

ity Equations and can be seen in Equations 2.7 and 2.8 for state-values and state-action values

respectively.

Vπ∗(s) = max
a

E
[
r + γVπ∗(S

′)
∣∣St = s,At = a

]
= max

a

∑
s′,r

p(s′, r | s, a)
[
r + Vπ∗(s

′)
] (2.7)

Qπ∗(s, a) = E
[
r + γmax

a′
Qπ∗(s

′, a′)
∣∣St = s,At = a

]
=
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′
Qπ∗(s

′, a′)
] (2.8)

We can use planning methods to derive the optimal policy from these Bellman Optimality Equa-

tions. Sutton and Barto (2018) describe the two most important planning methods that can be

used. The first method is policy iteration. Under policy iteration, we start off with some random

deterministic policy. By iteratively finding the state-values and improving the policy, we are guar-

anteed to converge to the optimal policy. The other popular planning method is value iteration.

This method combines the policy evaluation and policy improvement into a single algorithm. Both

methods converge to the same optimal policy and state-values, but value iteration is often more

efficient in doing so. For that reason, we use value iteration in the remainder of this thesis.

6
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2.1.1 Value iteration

Value iteration is a method that was first introduced by Bellman (1957). This method makes direct

use of the Bellman optimality equations for state and state-action values, as shown in Equations 2.7

and 2.8. We convert these optimality equations into an update rule for state-values and state-action

values. These equations are proven to converge to the exact state-values in the limit. In practice,

we stop updating when the maximum difference of two subsequent sets of state-values falls below

a threshold. The value iteration update rules can be seen in Equations 2.9 and 2.10.

Vk+1(s) = max
a

E
[
rt+1 + γVk(s′)

∣∣St = s,At = a
]

= max
a

∑
s′,r

p(s′, r|s, a)
[
r + Vk(s′)

] (2.9)

Qk+1(s, a) = E
[
Rt+1 + γmax

a′
Qk(St+1, a

′)|St = s,At = a
]

=
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
Qk(s′, a′)

] (2.10)

In these equations, we have added a subscript k to the state and state-action values to denote

the current iteration number. Furthermore, we have dropped the policy subscript as we no longer

follow a single policy. Rather, we constantly update the policies in order to find the best one.

Pseudocode for the value iteration algorithm can be seen below. In this algorithm, θ determines the

threshold value for convergence of the state-values. We find the optimal policy after the algorithm

has converged by checking which action attains the maximum state value for every state. This

optimal policy is again denoted by π∗.

Algorithm 1: Value iteration

Initialize V arbitrarily, e.g. V (s) = 0 ∀ s ∈ S

while ∆ > θ do

∆← 0

for each s ∈ S do

v ← V (s)

V (s)← maxa
∑
s′,r p(s

′, r | s, a)
[
r + γV (s′)

]
∆← max(∆, |v − V (s)|)

Choose a policy π∗ such that:

π∗(s) = argmaxa
∑
s′,r p(s

′, r | s, a)
[
r + γV (s′)

]
In a situation where we know the exact transition and reward functions, this algorithm is guaranteed

to give us the optimal policy. However, in reality, these transition and reward functions are often

unknown. Reinforcement learning does not assume these functions to be known, which is one of

the main differences it has with planning methods.
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2.2 Traditional reinforcement learning methods

In this subsection of the literature study, we are going to look at Q-learning, one of the most

popular traditional reinforcement learning methods. Furthermore, we discuss several concepts like

experience replay and function approximation which are key in deep reinforcement learning.

In our discussion of dynamic programming and planning methods we already mentioned that

reinforcement learning does not assume the transition and reward functions to be known. The idea

behind these methods is that we directly learn the state-values or state-action values, capturing

the transition and reward functions implicitly in our estimates.

The way the state-values or state-action values are estimated is through incremental updating.

These methods (called temporal difference methods) make use of the recursive nature of the state-

values, as they update values based on the observed reward and estimated next state-value. The

first to formalize this idea was Sutton (1988), but the concept itself has been around for much

longer. Samuel (1959) used a technique which he called ”rote learning” to teach an algorithm

to play checkers. This technique stored estimates of board positions and used these estimates to

evaluate a move of sequences. Furthermore, in the Adaptive Heuristic Critic algorithm by Sutton

(1984) a similar update rule was used for the predicted reward signal.

Under regular temporal difference learning, we follow some policy π to select our actions. For

every point in time, we execute our action and observe the reward r and next state s′. Using

these observations, we update our estimate of the state value Vπ(s) through the update rule in

Equation 2.11. The parameter α is the learning rate, which determines the size of the adjustment

we make to our state-value estimate. The term
[
r+γVπ(s′)−Vπ(s)

]
is called the temporal difference

(TD) error.

Vπ(s)← Vπ(s) + α
[
r + γVπ(s′)− Vπ(s)

]
(2.11)

The idea behind this update rule is that if we make α small enough, the state-values contain

information on a large number of experiences. This is similar to using the transition function as

we did under planning methods, with the advantage that we do not need a specific representation

of this transition function.

2.2.1 Q-learning

The temporal difference update rule gives us a method to estimate the state-values of a given

policy. However, what is still lacking is a method to find the optimal policy. This is what was

addressed by Watkins (1989), who introduced Q-learning. The idea behind Q-learning is similar

to the idea behind value iteration. Instead of evaluating a static policy, we adapt our policy to the

8
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current estimates of the Q-values. We update our estimates for the state-values and state-action

values according to Equation 2.12.

V (s)← max
a

Q(s, a)

Q(s, a)← Q(s, a) + α
[
r + γV (s′)−Q(s, a)

] (2.12)

To find the optimal policy there are two requirements. The first requirement is that the policy

that we are executing depends on the current state-action values. The second requirement is that

all state-action combinations have a non-zero probability of being selected during training. The

reason for this comes from the work by Watkins and Dayan (1992), who showed that this is a

required condition to prove convergence to the true state-action values.

There are several popular methods to select actions during Q-learning. One of the most popular

mechanisms to do this is ε-greedy. Under this method, we take a random action with probability ε

and take the best action based on the current state-action value estimates with probability 1−ε. It

can easily be seen that under this method all actions have a non-zero probability of being selected.

Another popular method is the soft-max method, where the selection probability is proportional

to the estimated Q-value. Under this method, we can calculate the probability of selecting action

a in state s using Equation 2.13. This method has a parameter τ , which determines how strongly

we prefer actions with high Q-values over actions with low Q-values.

π(a|s) =
eQ(s,a)/τ∑
a′ e

Q(s,a′)/τ
(2.13)

The action-selection methods described above are guaranteed to converge to the true state-action

values in the limit. In practice, it can still take a long time before this convergence occurs. To boost

exploration in the early stages of the algorithm optimistic initialization is often used. Optimistic

initialization means that all state-action values are set at a value that is likely to be above their

true value. During training, the state-action values are adjusted downwards, causing a change in

what the greedy action is. When this greedy action is selected, its respective state-action value is

adjusted downwards as well, causing a different action to become the greedy action. This process

repeats itself until the state-value estimates start to approximate the true state-values, having a

higher degree of exploration in the meantime.

The Q-learning algorithm as described above can be seen in Algorithm 2. The algorithm is again

based on the version from Sutton and Barto (2018), but it has been adapted to work with infinite

horizon problems.
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Algorithm 2: Q-learning for infinite horizon problems

Initialize V arbitrarily, e.g. V (s) = 0 ∀ s ∈ S
Initialize Q arbitrarily, e.g. Q(s, a) = 0 ∀ s ∈ S, a ∈ A

for i = 1 : n do

Choose a from s using policy derived from Q (e.g. ε-greedy)

Take action a, observe r, s′

Q(s, a)← Q(s, a) + α[r + γV (s′)−Q(s, a)]

V (s)← maxaQ(s, a)

s← s′

Choose a policy π∗ such that:

π∗(s) = argmaxaQ(s, a)

2.2.2 Sample efficiency

One of the main critiques of the basic Q-learning algorithm is that it is very sample inefficient.

When an experience is generated (i.e. a sequence of (s, a, r, s′)) we only use it once to update a

state-value, after which we forget the experience. Lin (1992) noted this lack of sample efficiency in

his review of the Adaptive Heuristic Critic algorithm by Sutton (1984) and Q-learning algorithm

by Watkins (1989) and proposed three extensions to improve the sample efficiency. Of these three

extensions, experience replay turned out to speed up learning a lot without the need to learn a

model of the environment. This makes it an easy solution to speed up learning.

The way experience replay works in a tabular setting is explained by Adam et al. (2011). An

experience buffer is set up of some fixed size. Observed experiences are stored in this buffer,

where the oldest experiences are dropped if the buffer is full. After a pre-determined number of

experiences, we sample experiences from our experience buffer and use these to update the state-

action values. Since we can use the same experience multiple times to update the state-action

values, this algorithm is generally more efficient than regular Q-learning.

The most obvious benefit of using experience replay is increased sample efficiency. However, Adam

et al. (2011) found another benefit of using it. In environments where rewards are only received in a

small number of states (e.g. maze problems), experience replay can help to propagate information

from the goal states to all other states. Under normal Q-learning, only the state leading up to

the goal state is adjusted the first time we reach this goal state. If we want to propagate this

information further back, we need to sample the same path again. It can easily be seen that

this method does not use all available information in states leading up to the goal states. Under

experience replay, this path leading up to the goal state is in our experience buffer. If we then

sample steps from this path during the replay stage, we help to propagate the reward from the

goal state backward. This helps to give the agent an idea about the direction it should move to.
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This exact idea is key in another sample efficiency-related concept called eligibility traces. This

concept comes from traditional animal learning theory and was, for example, discussed by Sutton

and Barto (1981). Furthermore, the concept was applied in a control problem setting by Barto

et al. (1983). The concept was first applied in a temporal difference setting by Sutton (1988), who

discussed its advantageous effect on learning speed. Under eligibility traces, we do not only update

the last visited state but all recently visited states. This makes learning more stable and faster to

converge, especially in environments with sparse rewards. 1

The final sample efficiency concept we discuss is called Dyna. Just like the other sample efficiency

concepts discussed here, Dyna was introduced very early in the development of reinforcement

learning methods. Sutton (1991) came up with the idea to integrate planning and reinforcement

learning into a single algorithm. After each interaction with the environment, the agent uses

the gained experience for two causes. Firstly, it updates the state-values like it would under a

normal Q-learning algorithm. Secondly, it uses the experience to update its action model. The

action model captures the agent’s belief about how he transitions between states and the expected

reward given the selected action. This action model is used to sample hypothetical experiences,

which are used to update the state-values or state-action values of the model after each recorded

experience.

In a way, Dyna can be seen as an extended version of experience replay. Where experience replay

stores the experiences and samples from these, Dyna uses the experiences to create a model of the

environment and samples from this model. While this approach could be more efficient in terms of

memory use, it does assume that we can find and represent a realistic model of the environment.

2.2.3 Function approximation

While most traditional planning and reinforcement learning methods assume a tabular form of the

state-values (or state-action values), the idea to represent them by some function is far from new.

Early reinforcement learning work often discussed how reinforcement learning was different from

supervised learning, see for example Sutton (1988). Most supervised learning methods at the time

made use of neural networks or other function approximators, so the idea to use function approx-

imators to represent the state-values or policy was proposed almost instantaneously. Examples of

this can be found in the aforementioned work by Sutton (1988) when he introduced the concept

of temporal difference methods, the introduction of Q-learning by Watkins (1989), and the work

by Lin (1992) when he discussed the concept of experience replay.

Generally, there are two ways in which we can use function approximators in reinforcement learning.

The first way is to use a function approximator to map states to actions, which is a representation

of the policy. If θ is the vector of policy parameters, we can represent the probability of selecting

action a in state s as π(a | s,θ). We update our parameter vector based on the derived gradient ∇θ.

1For a full specification and explanation of the algorithm, we refer to Sutton and Barto (2018).
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One of the first to use this type of function approximator is Williams (1992) when he introduced

his REINFORCE algorithm. This algorithm first simulates a full episode given the current policy

π(a | s,θ), after which updates are performed proportionally to their action-selection probability

and observed return. This lets the network converge towards actions with higher observed rewards,

hence finding a better policy. The downside of this method is that it is episode-based, which is

due to the absence of a value function in this algorithm.

The second way we can use a function approximator is to estimate the value function instead of

the policy. This is the type of function approximator that was used in the work by Sutton (1988).

A similar idea was introduced by Watkins (1989) when he discussed function representation of the

state-action values. Under tabular methods, having a large state or action space gives rise to what

Bellman and Dreyfus (1962) calls the curse of dimensionality. This curse of dimensionality means

that the number of state-action pairs is too large to represent in a tabular form due to the large

number of combinations. Using a function, for example a neural network, to represent the relation

between state-action pairs and their respective value could lead to a large decrease in the number

of required parameters, overcoming this curse of dimensionality.

Finally, it is possible to combine these two types of function approximators into a single framework.

In the literature, this is known as the actor-critic framework where the policy function approximator

is the actor and the value function approximator is the critic. While it is a popular concept in (deep)

reinforcement learning, actor-critic methods were introduced in the field of control theory by Witten

(1977). Konda and Tsitsiklis (2000) explain that the idea behind the actor-critic architecture is

that we can use the critic to bootstrap the action of the actor. This takes away the need to

work with episodic problems like we had during the discussion of the REINFORCE algorithm.

The temporal difference error is calculated using the observed reward, estimated state value, and

estimated next state value. This error can be used to update both the actor and the critic, letting

them converge to the optimal policy and value function respectively.

The advantage of actor-critic methods is that it allows for multiple agents training in parallel.

These agents then share the same critic which is updated based on the results of all agents.

Having multiple agents working on the same problem increases both the speed of convergence and

stability during learning.

2.3 Deep reinforcement learning methods

Now that we have covered the foundations of reinforcement learning methods and have introduced

some of the key concepts, we can dive deeper into deep reinforcement learning methods. This

section starts with a general introduction on deep reinforcement learning, answering questions like

how deep reinforcement learning is different from function approximation, in which cases deep

reinforcement learning has been successfully applied, and what advantages deep reinforcement

learning has over methods discussed in the previous subsection. After this, we look deeper into
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three specific deep reinforcement learning models. These models are used in Section 4 to act as

the agents in our environment, so it is key that we understand these models properly.

The first paper to introduce methods that we now know as deep reinforcement learning was the

paper by Mnih et al. (2013). In this paper, the authors identified that ”learning to control agents

directly from high-dimensional sensory inputs like vision and speech is one of the long-standing

challenges of reinforcement learning” (p. 1). By then, all successful reinforcement learning appli-

cations had a value function based on features created by the user. Failing to produce good features

also meant poor performance of the reinforcement learning algorithm. To circumvent this problem,

Mnih et al. (2013) created a model that directly mapped high-dimensional inputs (pixel values in

this case) to actions and showed its performance on seven different video games. The absence of

feature engineering is the main difference between what we call deep reinforcement learning and

function approximation. It was found that the new method was state-of-the-art at that time on

six out of seven tested games, beating human performance on three of those games.

To achieve this level of performance the authors combined a convolutional neural network with

experience replay. The reason a convolutional neural network was used was to deal with the high-

dimensional input data. This type of neural network can automatically extract features from this

type of input data, taking away the need to do manual feature extraction. Experience replay

was used to avoid having highly correlated samples, as subsequent states are often closely related.

Furthermore, experience replay helps to overcome local optima by also remembering off-policy

actions.

These results were extended in the 2015 paper by Mnih et al.. In this paper, the algorithm was

tested on 49 different classic video games. In 29 of these games, the algorithm beat human-

level performance or came close to human-level performance. The only change that was made

to the algorithm compared to the 2013 version of the algorithm is that the next state-value is

approximated based on an old version of the parameter vector that is updated periodically, helping

to further reduce the correlation between samples.

To improve convergence and stability, van Hasselt et al. (2016) applied double Q-learning in a deep

reinforcement learning setting. The central concept is the same as in standard double Q-learning;

avoid over-estimations of the next state-action value through the use of a double estimator (van

Hasselt, 2010). Applying double Q-learning in a deep reinforcement learning setting only requires

small changes to be made. Instead of using a single parameter vector θ, we now use two parameter

vectors denoted by θa and θb. Working with two parameter vectors takes away the need to use an old

version of the parameter vector during updating. Rather, we update one of the parameter vectors

based on the bootstrapped state-action value of the other parameter vector. This approach is tested

on the same set of video games as used by Mnih et al. (2015), where it is shown that the double

Q-learning approach consistently finds a better policy because it suffers less from overestimation.
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Further improvements were made by adjusting the experience replay implementation. Schaul

et al. (2016) noted that in neuroscience evidence for experience replay exists, but in a way different

than is used in reinforcement learning. Experiences that have high rewards or are very different

from what is expected (i.e. that have a high temporal difference error) are replayed more often.

Under regular experience replay, this is not the case. Prioritizing certain events during learning

was not new to reinforcement learning, exemplified by the concept of prioritized sweeping which

was introduced by Moore and Atkeson (1993). What Schaul et al. (2016) did was to combine the

concepts of experience replay and prioritized sweeping. Instead of giving every experience the same

probability of being selected during the replay stage, experiences are sampled proportional to their

observed TD error. This centers improvement of the policy around states where it performs poorly,

causing a quicker convergence. The prioritized experience replay algorithm beat the original deep

reinforcement learning algorithm of Mnih et al. (2015) on 41 out of the 49 tested games.

There are two main advantages that deep reinforcement learning has over planning and traditional

reinforcement learning methods. The first advantage is that deep reinforcement learning methods

can easily work with large state or action spaces. This is because the size of the state and action

space only influences the size of the first and last layer of the neural network, adding more neurons

when we increase the state or action space. The second advantage is that deep reinforcement

learning methods can easily work with continuous state and action spaces. This is unlike tabular

methods like value iteration or Q-learning which require a discrete number of actions and states.

In the next subsections, we discuss three different deep reinforcement learning models that are

used as agents later in this thesis. We discuss these methods in the same order that they were

introduced in, as they draw inspiration from one another.

2.3.1 Trust Region Policy Optimization (TRPO)

The first algorithm that we discuss is called Trust Region Policy Optimization and was introduced

by Schulman et al. (2015). The main advantage of this method is that it theoretically guarantees

improvement in every update of the policy as the algorithm trains itself. To do so, it makes use of

the advantage function A. The advantage function is the difference between a state-action value

Q and the state value V and can be written as

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.14)

where π represents the policy that is currently followed. The goal is to use the advantage function

to find a new policy π̃ that has a non-negative advantage for all states. However, in practice,

this is impossible in most cases. To circumvent this, Schulman et al. (2015) created a policy

iteration algorithm that does not improve all states at the same time but is guaranteed to give an

improvement in the overall policy in each update.
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This new algorithm is tested on two classical reinforcement learning tasks; robot locomotion tasks

and game playing. These games overlapped with the ones used by Mnih et al. (2013) to make

comparisons easier between the newly introduced algorithm and the then state of the art. The

results that the algorithm achieved were somewhat mixed. On the locomotion tasks, the method

was generic enough to create a good controller for all tasks, something that had not been achieved

by then. In the game playing it outperformed the algorithm by Mnih et al. (2013) in about half of

the games, so no clear improvement was found there. Duan et al. (2016) confirms that TRPO is

one of the best available algorithms on locomotion tasks at the time in a benchmark study using

28 different problems and 9 different algorithms to solve these problems.

2.3.2 Advantage Actor Critic (A2C)

The second deep reinforcement learning algorithm that we use is called Advantage Actor Critic

(A2C). As the name already suggests, it makes use of the actor-critic concept that was introduced

in the previous subsection. The concept was introduced by Mnih et al. (2016) and builds on the

deep reinforcement learning paper by Mnih et al. (2015). The reason why the actor-critic concept

is of added value is twofold. First of all, it improves the speed at which we can train the agents

since this type of agent can be trained in parallel. Secondly, having multiple instances of the agents

running at the same type improves training stability, potentially leading to better overall solutions.

The key idea in this paper is that there are two types of parameter vectors; the global parameter

vector and the individual parameter vector. Each agent selects his actions based on the global

parameter vector. These actions are evaluated using the individual parameter vector of the agent

and gradients are calculated based on these evaluations. After every nindividual time steps the

agent updates his version of the global parameter vector through copying the global version. This

is needed because this global parameter vector might have changed due to other agents performing

updates. After every nglobal time steps the agent uses the computed gradients to stepwise update

the global parameter vector.

When we look at the results we can see improvements in both the training speed and performance

of the algorithms, as was to be expected. The A2C algorithm was training in half the time it took

to train all the benchmark models while using CPU’s instead of GPU’s. Furthermore, the new

A2C algorithm was able to beat the state of the art in most of the games that it faced.

2.3.3 Proximal Policy Optimization (PPO)

The final algorithm that we consider was introduced by Schulman et al. (2017), the same author who

introduced the TRPO algorithm. The idea behind this algorithm is fairly simple, as it combines the

policy iteration algorithm from TRPO with the actor-critic element from A2C. The introduction

of A2C already showed great improvement over the traditional deep reinforcement algorithm, so

combining these two methods seems like a sensible next step.
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When looking at the results, we can conclude that this concept works well, especially on the

previously mentioned locomotion tasks. On these tasks, PPO is both successful in obtaining the

highest average score and showing the fastest convergence speed. On the Atari games that were

used in the original paper by Mnih et al. (2015) it beats the A2C algorithm in 41 of the 49 games.

2.4 Influent simulation

So far we have focused on the different optimization methods that serve as agents in our reinforce-

ment learning setting. However, setting up the environment itself is a challenging task as well.

In Section 3 we describe this task in-depth, but before we do so we first look into the relevant

literature in this field. Specifically, we look into the literature on precipitation simulation, as this

is one of the main sources of influent in our model.

Weather simulation is a tool commonly used in hydrological research. It can serve as an input for,

among others, climate change scenarios (Kilsby et al., 2007; Semenov and Barrow, 1997), flood

risk analysis (Blazkova and Beven, 1997) or soil erosion models (Favis-Mortlock and Boardman,

1995; Williams, 1990). Under a typical weather simulation model multiple variables are estimated

which are dependent on each other and/or other locations. The relation between variables can be

modeled as a full multi-variate process or using a two-stage model where the variables from the

second stage are conditioned on the variables from the first stage. This two-stage model is, for

example, used by Richardson (1981).

There are several different reasons why one would prefer simulated data over the observed data. The

first reason is that we can generate an arbitrarily large number of observations with a simulation

model, whereas we cannot using only the observed data. Certain applications like extreme-event

analysis and training deep reinforcement learning models require more samples than the observed

data can provide. Using simulation models is a way to work around this. Another advantage of

simulation models is the control the user can exert over the properties of the data it generates.

This is, for example, useful in scenario analysis. Making rainfall more intense, drought periods

longer, or raising average temperatures produces data different from what is observed in reality.

The main downside of using simulation models is that it may not be a perfect representation of

reality, so bias could be introduced into the simulated data.

In this section, we look into the simulation of precipitation data as this affects the amount of

influent at the purification facility. Variables like minimum- and maximum temperature or solar

radiation are often included in the model as well, they are not relevant for our environment so we

choose to neglect these.

One of the first weather models to be introduced was made by Richardson (1981). He recognized

that hydrological models often need weather data as input and that using only the observed

data gives an incomplete picture. In this weather model, four variables (precipitation, minimum
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temperature, maximum temperature, and solar radiation) are modeled at a daily scale. Of these

variables, precipitation is modeled independently of all other variables. The probability of rainfall

on a given day is conditioned on yesterday’s weather since days with rainfall often cluster together.

The amount of rain given rainfall occurs on a given day is modeled by an exponential distribution

and is independent of the amount of precipitation on the previous day. Seasonal effects are added

to both the probability of rainfall and the amount of rainfall.

The model by Richardson (1981) works well for daily data, but extending it to higher frequency

data causes a few problems. The first problem is that the authors assume that the probability of

rainfall on a given day only depends on yesterday’s rainfall, the so-called Markov property. This

property is unlikely to hold when we work with 5-minute data, as observations from an hour ago

can still hold information on whether more rain is expected. We could solve this by including more

past observations in the state space, but it is far from ideal. The second, more severe problem is

the assumed independence between the amount of rain in successive periods. When working on

a 5-minute level, the amount of rain that has been registered in the current period is likely to be

close to the amount of rain that is registered in the next period. Modeling these events as being

independent underestimates the probability of long intense rain showers.

For this reason, we turn to the paper by Acreman (1990). In this paper, hourly data is used

which is modeled in a different way than was done by Richardson (1981). Under this approach,

rainfall is modeled in three different steps. The first step is to model the event durations (i.e. the

length of a dry or rain spell). To do this, three different distributions are fitted on the observed

event durations. These distributions are the exponential distribution, log-normal distribution, and

gamma distribution. The one with the best fit (as measured by the χ2 goodness of fit measure) is

selected and is used to sample from during the simulation process.

The second step is to model the event depths. The event depth is defined as the amount of rain

that is observed during the event. Similarly, we define the intensity of an event as the average

rainfall during the event. Since there is a strong relationship between the depth and duration of an

event, Acreman (1990) decided to model the depth within different duration buckets, each bucket

containing 1 or multiple event lengths. Then within each bucket, the same fitting procedure as for

the event durations can be used. This time, the distributions that were considered are the log-

normal distribution and the gamma distribution. An alternative approach is to model the event

intensities instead of the event depths, which is the approach we use.

The final step is to model the event profiles. The event profile is how the event depth is distributed

over the duration of the event. The author observed that individual profiles differed a lot, but the

average over all profiles follows a smooth shape. This observation holds over all different durations

tested, so it seems that there is some underlying structure in the event profiles. The fraction of rain

fallen within an event is bounded between 0 and 1, so the author chooses to model this with a beta
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distribution. The density of the beta distribution can be seen in Equation 2.15. In this density,

B(·, ·) is the beta function, Γ(·) is the gamma function and α and β are the model parameters.

f(x) =
xα−1(1− x)β−1

B(α, β)

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

(2.15)

However, there is a problem with modeling the fraction of rain fallen using a beta distribution.

The simulated fractions may show a decrease between subsequent periods, which would correspond

to a negative amount of rain. To circumvent this problem, the author notes that it is possible to

simulate the proportion of rain still to fall in the remaining time periods using the same beta

distribution. This quantity decreases over time depending on how much rain has already been

registered in previous time periods and the total rainfall of that specific rain shower. Under this

approach, simulated rain quantities are always positive which is of course a desired feature to have.

The parameters of the beta distribution are determined based on the observed events of equal

length.

The approach by Acreman (1990) is in many aspects suitable to handle datasets with a higher

frequency as well. Specifically, the approach to model event durations and intensities can be

directly applied to such datasets. The approach to model event profiles is harder to extend to

high-frequency data. During the simulation of an event, the approach by Acreman (1990) makes

use of observed events with the same length. This approach implicitly assumes that such events

are available in the dataset. When high-frequency data is used, it can occur that the length of a

simulated event does not match with any observed event, meaning that it is not possible to extract

the required information for the simulation.

To solve this problem, we have to look at approaches that are independent of the time scale of the

event. Brigandi and Aronica (2019) applies one such approach through the use of dimensionless

hyetographs, also called mass curves. The concept of mass curves has been studied for an extensive

period of time, for example by Huff (1967) and Garcia-Guzman and Aranda-Oliver (1993). The

idea here is that we model the normalized cumulative event depth versus the normalized time,

which we can transform based on the simulated event duration and intensity. To do this, all events

are transformed into the same number of periods, which is 25 in this case. For every time step,

the α and β parameters are estimated based on all observed events. These parameters are used to

simulate new mass curves, which are rescaled such that they match the simulated event duration

and intensity.

These methods to simulate event durations, event intensities, and event profiles are the basis for

our simulation model for rainfall. This model is discussed extensively in Section 3.2.
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3 Environment Design

In this section, we start with the methodological aspects of our research. The first major aspect

is the design of our environment, which is of course essential in every reinforcement learning task.

In the introduction we have already discussed the context of our problem. Through the design of

the environment, we aim to make a virtual representation of this context which closely matches

reality.

As argued before, we take a step-wise approach in designing our environment such that we can see

the effect of every added element. This idea is also reflected in the organization of this chapter. We

start by introducing the two main influent streams at every water purification facility, wastewater

and rainwater in Sections 3.1 and 3.2. Next, we show how we can create a forecast for these

influent steams in Section 3.3, information that will improve the efficiency of our agents. Finally,

in Section 3.4 we explain how we can scale our environments to a multi-agent setting and what

the various components of the reward function are in Section 3.5.

3.1 Simulation of wastewater

The first influent stream we consider is wastewater coming from households and companies. Before

we can start with setting up the simulation environment for wastewater, we first need to discuss

the desired properties of a wastewater simulator according to domain experts.

The first property is that during the night the influent is below the minimum pump capacity. This

means that the agent is not able to let the pump run at some fixed level. This creates the need to

either turn off the pump in some time periods or to use the storage tank as some kind of buffer.

This buffer would be filled during the day and be depleted during the night.

The second property is that there is a clear daily pattern visible in the influent of wastewater.

According to domain experts from waterschap Rijnland, we see two peaks during the day. The

largest peak occurs in the morning with a slightly smaller peak present during the early evening.

In between those peaks, water consumption falls as most people are at work or at school. During

the night we see a large dip in water consumption as most people are asleep. We extract this

pattern from influent data later in this section.

The final property is that the noise of the wastewater influent is not independent between succes-

sive time periods. It takes a number of time periods for water to reach the purification facility,

depending on the distance that it has to cover. This means that a peak in water consumption

gets spread out over several time periods, leading to correlated influent values after taking into

account the daily pattern. It is important to take this into account, as it influences the amount of

information an agent can extract from the current observation.
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Now that we have discussed the required properties, we can continue with the simulation model.

However, before we do this, it seems like a good idea to first take a look at the dataset to see if

this matches our expectations. The dataset that has been provided to us by waterschap Rijnland

contains influent values at a 5-minute interval between the 16th of January 2017 and the 21st of

June 2019. We can see an example of an influent series over a time span of 3 days in Figure 1.

To eliminate the effect of rain, we have taken a sample of days on which no rain has occurred.

Filtering out these days has been done using an open dataset from the Koninklijk Nederlands

Meteorologisch Instituut (2020).

Figure 1: Observed influent on dry days

In the figure above, we can see the observed influent in m3 per 5 minutes on three subsequent dry days, as observed
at one of the water purification facilities of waterschap Rijnland.

In Figure 1 we can indeed observe the double-peaked pattern that was described by domain experts.

There is some noise around this pattern, but from this plot it is not visible if this noise has any

sequential dependence. We assess this later in this subsection.

The first step in modeling this influent pattern is to extract the underlying daily cycle on days

without rainfall. To improve the data quality, we first take some simple preprocessing steps. The

first step is to drop all observations without an influent value since we are certain that this is a

measurement error. The next step is to get rid of the outliers. This is needed because the dataset

contains values that are unrealistically high or low from the perspective of a domain expert. We

get rid of these observations by dropping the top and bottom 1% of all influent values.

Using the filtered dataset, we can now extract the daily pattern on dry days. We do this by taking

the mean influent at every time point. As expected, there is a clear daily pattern with a period of

low influent during the night and two large peaks during the day. To filter out the noise that is

still remaining in this pattern we perform a simple smoothing step. We can see the extracted and

smoothed pattern in Figure 2.
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Figure 2: Daily influent pattern on dry days

In the figure above, we can see the average observed influent in m3 per 5 minutes on dry days. This pattern is
extracted on the dataset as provided to us by waterschap Rijnland, which contains influent data between the 16th
of January 2017 and the 21st of June 2019.

One thing that we did not consider while extracting this daily pattern is the effect of rain on the

previous day. If we have a large amount of rain just before midnight, this rain affects influent

values just after midnight. If there is no more rain the next day, these influent values end up in

our dataset while they are still affected by rain. The effect of this would be that the decrease in

influent between 23:55 and 00:00 is much smaller than the decrease in influent in the time periods

right before and after midnight. However, we find no evidence that this is the case, as the decrease

in influent between 23:55 and 00:00 (-0.288) was almost similar to the average decrease in adjacent

periods (-0.292 between 23:45 and 00:15).

The next step in modeling wastewater influent is to consider the relation between the noise in

subsequent samples. To do this, we first have to normalize all observations, which can be done in

two ways. The first option is to subtract the expectation from all observations, centering them

around 0. The second option is to divide all observations by their expectation, centering all

observations around 1. The option that we choose impacts the kind of noise we generate. If we

use the subtraction method we create noise by adding a noise series to the baseline, assuming that

the variance remains fixed over the day. Using the method where we divide observations by their

expectation allows us to add noise that scales linearly with the expected influent. Since the data

tells us that variance is generally higher for time periods where the influent is high, we choose to

normalize all observations by dividing them by their expected value according to the daily pattern.

We refer to this ratio as the scaling factor of an observation. We have plotted this for a single day

in Figure 3.
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Figure 3: Observed scaling factor example

In the figure above we can observe the scaling factor on the 19th of January 2017. It is extracted based on the
dataset as provided to us by waterschap Rijnland. Observations are centered around 1 to account for long-term
trends present in the data.

In Figure 3 we can see the scaling factor that we have just described. We observe that the

autocorrelation is high and that the process shows signs of mean-reversion. These are properties

that we have to consider while modeling this process. Furthermore, it is important to note that the

scaling factor can never become negative since this would imply that influent is negative as well.

To model these properties, we make use of the Ornstein-Uhlenbeck process on the logarithm of the

scaling factor. The process introduced by Uhlenbeck and Ornstein (1930) has a mean-reversion

property and normally distributed noise. Fitting this process on the logarithm of the scaling factor

ensures that influent cannot become negative. Furthermore, typical values of this scaling factor

lie between 0.7 and 1.3, so taking the logarithm of this is a near-linear transformation of what is

shown in Figure 3. The full model specification can be seen in Equation 3.1.

Yt = eXtDt

dXt = −θXt + σdWt

(3.1)

In Equation 3.1, Yt denotes the influent value at time t. This influent value is determined by the

value of the daily influent pattern Dt and the scaling factor eXt . The logarithm of the scaling factor

Xt is modeled as an Ornstein-Uhlenbeck process where dWt denotes the increment of a Brownian

motion. A Brownian motion is a simple stochastic process with mean 0 and standard deviation

σ. The Ornstein-Uhlenbeck process has two parameters: θ and σ. The θ parameter determines

the degree of mean-reversion per time step, whereas σ determines the standard deviation of the

random noise.
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To estimate the parameters of the Ornstein-Uhlenbeck process, we use the method described by

Tang and Chen (2009). In this paper, a method to estimate the parameters for the Vasicek model

is described using closed-form Maximum Likelihood Estimators. We can use this method since

the Vasicek model is just the Ornstein-Uhlenbeck process with an additional parameter for the

long-term mean. Since our long-term mean is 0 by definition, we can use this to simplify the

formulas.

To find the closed-form Maximum Likelihood Estimators, we first have to define the likelihood

function of the parameter vector (θ, σ). If we define φ(x) as the density function of a standard

normal distribution N(0, 1), we have

L(θ, σ2) = φ

(
1

σ

√
2θX0

) n∏
t=1

φ

(
1

σ

√
2θ(1− e−2θ)−1{Xt −Xt−1e

−θ}
)

(3.2)

Using this density, we can derive the Maximum Likelihood Estimators. 2

θ̂ = ln(β̂1)

σ̂2 =
2θ̂β̂2

(1− β̂2
1)

(3.3)

Where we have

β̂1 =
1
n

∑n
i=1XiXi−1 − 1

n2

∑n
i=1Xi

∑n
i=1Xi−1

1
n

∑n
i=1X

2
i−1 − 1

n2 (
∑n
i=1Xi−1)2

β̂2 =
1

n

n∑
i=1

{Xi − β̂1Xi−1}2
(3.4)

Using these estimates, it is straightforward to first generate a time series of scaling factors, after

which these are converted into influent values using Equation 3.1. Examples of the generated

scaling factors and influent values can be found in Section 6.1.

3.2 Simulation of rainwater

The second influent stream that we consider is the simulation of rainwater. Of course, the effect

of rainwater on influent is vastly different from the effect of wastewater. As we have seen in the

previous subsection, wastewater causes a constant stream of influent to the purification facility.

Rainwater on the other hand is only relevant for brief periods of time, as it only rains a small

fraction of the time. However, when it rains, this has a large impact on influent, which leads us to

the required property of rainwater modeling.

2For a full derivation, we refer to Tang and Chen (2009).
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This rainwater property is that although rain does not occur very often, it can have a large impact

on influent. Most rain showers lead to an average influent below or around the maximum pump

capacity, so it is no problem to cope with these. However, some intense rain showers generate

more water than the pump can handle, up to 10 times the maximum capacity in the most extreme

case. This means that in some cases, overflow of the system is unavoidable, but we want to limit

the number of occurrences. This can be achieved by emptying the storage tanks before a long and

intense rain shower.

To make our rainfall simulator, we draw inspiration from Acreman (1990). However, there are a few

key differences between our situation and the situation from the paper by Acreman (1990). The first

and most prominent one is that we work with data at a 5-minute level, whereas the original paper

works with hourly data. This affects how strong subsequent observations are related, the duration

of dry and rain spells, and potentially which distributions are most suitable during modeling.

The second difference is that whereas the paper by Acreman (1990) had the aim to make a model

as realistic as possible, our aim is to create a model with all the desired properties. This implies

for example that we do not take into account seasonal effects, as this is not of importance in our

desired outcome. The seasonal effects will for example shift the daily pattern on weekends since

people wake up at a later time. However, the general shape of the daily pattern does not change,

and it is this general shape that we are interested in. In our agents can cope with the daily pattern

we observe on weekdays the same is true for the daily pattern on weekends, so there is no need to

model them both.

What is similar to the paper by Acreman (1990) is the general structure of our rainfall simulation.

We make use of the alternating renewal model, which sees the rainfall process as alternating dry

and rainy periods of varying duration. When modeling event intensities we divert somewhat from

the approach in the paper, as the approach used there does not extend well to high-frequency data.

The same holds for modeling event profiles.

In the coming subsections, we look into these aspects in more detail to see how we can adequately

model them. When these three steps are combined, we have a full rainfall model with the desired

properties that are stated at the beginning of this subsection.

3.2.1 Modelling event durations

The first step in simulating rainwater is to model the alternating pattern between dry and rain

spells. We define a rain spell as one or more consecutive time periods with non-zero precipitation.

Of course, dry spells are defined as one or more consecutive time periods without precipitation.

To be able to model the event durations of dry and rain spells, we first need to find out which

durations are common. To do this, we extract precipitation data at a 5 minute level for the years
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2018 and 2019. This data is available through the Nationale Regenradar. From this dataset, we

can extract the length of dry and rain spells, as well as the amount of rain per rain spell which we

need in Section 3.2.2. For now, we are mainly interested in the duration of the dry and rain spells.

Figure 4: Histograms of dry and rain spell durations

In the figures above we can see histograms of the dry and rain spell durations. These durations are derived from
the precipitation dataset at a 5 minute level, using data between the 1st of January 2018 and the 31st of December
2019.

In Figure 4, we can observe histograms for the duration of dry and rainy periods. We have cut off

the graph at a spell duration of 100 time periods, which is roughly 8 hours. However, especially

for dry spells, spells longer than 100 time periods occur as well with the longest being 4562 periods

(nearly 16 days). When we look at the plots we can see that dry spells are usually longer than rain

spells. Given that it does not rain most of the time, this makes sense. Dry spells generally last

longer than rain spells, with their average durations being equal to 78.13 and 4.98 time periods

respectively.

Another observation that can be made is that we see a lot of dry and rain spells with durations

close to 0. Because the data that we use has a relatively high frequency, a short break within

a rain shower is seen as a new dry spell. It could be the case that we see a high number of

short dry spells right after each other, interrupted by long dry spells. If this is the case, the

length of the previous dry (and/or rain) spell contains information about the expected length of

the next spell and hence, should be taken into account. We investigate this by looking at the

first-lag autocorrelation of the durations using two different correlation coefficients, for both the

dry and rain spells. These two correlation coefficients are the Pearson correlation coefficient and

Spearman’s rank correlation coefficient. We find that for both correlation coefficients and weather

types, correlations are significant but weak with all four correlation coefficients ranging between

0.05 and 0.15. For this reason, it is decided to treat the event durations as independent of one

another.

The next step in modeling event durations is to fit a distribution that we can later use to simulate

from. Just like the paper by Acreman (1990), we consider three distributions for this. These
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distributions are the exponential, gamma, and log-normal distribution. All distributions have the

property that they are non-negative, so they seem like good candidates to simulate durations.

The only drawback is that these distributions are continuous, while the durations are discrete. To

solve this problem, we can just round up all numbers during our simulation. This works, but it

means that on average our simulated event length is 0.5 higher than the original event length3.

To account for this, we subtract 0.5 from all observed durations. This in turn lowers the average

duration from our simulations by 0.5, hence canceling out the bias we introduce by rounding up.

The first distribution we consider is the exponential distribution, which has a single parameter λ.

We use the Maximum Likelihood Estimator of this parameter to fit this distribution. Full deriva-

tions of the Maximum Likelihood Estimators of all three distributions can be found in Appendix A.

The Maximum Likelihood Estimator of λ can be seen in Equation 3.5.

λ̂ =
n∑n
i=1 xi

(3.5)

Where xi is the duration of event i and n is the number of events in our dataset. The second

distribution that we consider is the gamma distribution. This distribution has two parameters; a

shape parameter κ and a scale parameter θ. We can see the Maximum Likelihood Estimator of

these parameters in Equation 3.6.

κ̂ =
n
∑n
i=1 xi

n
∑n
i=1 xi ln(xi)−

∑n
i=1 ln(xi)

∑n
i=1 xi

θ̂ =
1

n2

(
n

n∑
i=1

xi ln(xi)−
n∑
i=1

ln(xi)
n∑
i=1

xi

) (3.6)

The final distribution to consider is the log-normal distribution. Just like the gamma distribution,

this distribution has two parameters. The parameter µ determines the mean of the distribution,

whereas σ determines the standard deviation of the distribution. We can see the Maximum Like-

lihood Estimators of this distribution in Equation 3.7

µ̂ =
1

n

∑
k

ln(xk)

σ̂2 =
1

n

∑
k

(ln(xk)− µ̂)2
(3.7)

We fit these distributions on the extracted dry and rain spells. For every distribution, we can

calculate goodness of fit measures like the Akaike Information Criterion (AIC) and Bayesian In-

formation Criterion (BIC). These measures of fit can be seen in Equation 3.8. In these equations,

3The effect of the rounding is uniform between 0 and 1, so on average the simulated event is 0.5 time units longer
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k denotes the number of model parameters, n represents the number of observations, and L(X|θ̂)

denotes the log-likelihood of the observation vector X given parameter vector θ̂.

AIC = 2k − 2L(X|θ̂)

BIC = ln(n)k − 2L(X|θ̂)
(3.8)

For the selection of the distribution, we choose the one with the best score on these performance

measures. We do this independently for both dry spells and wet spells to have the best possible

overall fit. In both cases the log-normal distribution performs best, so this is the distribution that

is used to simulate our event lengths.

3.2.2 Modelling event intensities

Now that we have a framework to simulate event durations, we can move on to modeling event

intensities. The rain intensity is defined as the average precipitation during a rain shower, measured

in millimeters per 5 minutes. Defining rain intensity in this way makes it independent of the

duration of the rain event, in contrary to the total rainfall of a rain event.

The strategy required to model event intensities is similar to the strategy to model event durations.

We start with inspecting the intensities from the Nationale Regenradar dataset which was also used

to extract the event durations. The calculated intensities are shown in Figure 5. From this figure,

we can see that most rain events have a low intensity. Furthermore, we see a shape similar to the

histograms in Section 3.2.1.

Figure 5: Histogram of rain event intensities

In the figure above we can see a histogram of the observed rain intensity. These intensities are derived from the
precipitation dataset at a 5 minute level, using data between the 1st of January 2018 and the 31st of December
2019.
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More interesting is the relation between rain spell duration and rain intensity. In Figure 6 we

can see the relation between these two variables. What is noteworthy in this plot is that all the

extremely intense rain events have a low duration. This can be explained by the following. During

events with a high duration, it is much more likely to see both periods of high and periods of low

intensity. When we calculate the average intensity throughout the whole rain shower, the periods

of high intensity are offset by periods with low intensity, hence creating an event that is overall

less extreme. The same reasoning could be applied to events with a low intensity. It is unlikely for

high duration events to only have very light rain. Such events are typically broken up by periods

of no rain, or periods of higher rain intensity. This idea is supported by the right-hand side of

Figure 6, which shows the duration versus intensity relation after the natural logarithm has been

applied. The fitted intensity is just the average over all observations. We can clearly see that the

variance of the intensities is a lot bigger at low duration events compared to high duration events.

Figure 6: Relation between rain event duration and intensity

In the figures above we can see scatter plots of the observed rain duration versus intensity. On the left-hand side
we see the actual values, while on the right-hand side the values have been transformed by applying the natural
logarithm. These durations and intensities are derived from the precipitation dataset at a 5 minute level, using data
between the 1st of January 2018 and the 31st of December 2019.

The observed relation between the variance of the intensity and the duration of the event is

something that could be taken into account during modeling. However, there is no clear benefit in

doing so. Ignoring this fact increases the probability of an event with a high duration/intensity.

This type of event learns the algorithm to anticipate rain showers since it wants to avoid overflow

of the system at all costs. Making them more rare means that we need more training steps to

encounter these situations, slowing down learning. Making these events more common (through

modeling durations and intensities independent) speeds up learning, so we use this in our research.

Since we model the rain intensity independent of the rain event duration we can just apply the

same methodology as in Section 3.2.1. This means that we consider the exponential, gamma,

and log-normal distributions and choose the one with the best fit. Since the rain intensity is a

continuous variable, we do not have to make the adjustment we previously made to account for

rounding. Again, the log-normal distribution performs best, so we use this distribution to simulate

rain intensities in the remainder of this thesis.
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3.2.3 Modelling event profiles

To model the event profiles, we base our methodology on the approach as taken by Brigandi and

Aronica (2019). Under this approach, mass curves are simulated based on a fitted beta distribution

for every point of the curve.

The first step of the approach by Brigandi and Aronica (2019) is to extract all rain events and

convert them to mass curves of equal length. To be in line with the work by Brigandi and Aronica

(2019), we choose to work with 25 steps. This converting step is just a linear transformation of the

original rain shower, which is the rainfall amount per time step. If the original event is shorter than

25 time periods, each intensity is spread out over multiple steps. If the original event is longer than

25 time periods multiple intensities are merged into a single step. We can see this transformation

into mass curves in Equation 3.9. In this equation, r is the original rain event and x is the steps

for which we calculate the fraction of total rain fallen. The length of event r is denoted by |r|
and the amount of rainfall in period i is written as ri, starting from index 0. This formula sums

the rainfall until a given fraction of time, assuming constant rainfall within each time period. For

example, if we calculate the amount of rain fallen at 50% of time passed in an event of 3 time

periods, we would sum the first time period and half of the second time period and then divide

this by the total amount of rainfall in the event.

fr(x) =

|r|−1∑
0=1

max(0,min(1, |r| ∗ x
25
− i) ∗ ri

/ |r|−1∑
j=0

rj ∀ x ∈ (1, 2, . . . , 24, 25) (3.9)

This converting step gives the observed dimensionless mass curves. The mass curves show how the

rainfall is increasing as a function of time. In Figure 7 a collection of these mass curves is shown.

From this graph, we can see that there is some variation in rain intensities within rain events. It

can for example be seen that after 40% of the event duration has passed, the fraction of total rain

fallen lies somewhere between 10% and 70%. We further observe that we generally have less than

20% of all rainfall in the first/last 20% of the time. This indicates that most rain events have

a relatively slow start and end, with a more intense period in between. The goal is to produce

similar behavior with our simulation engine.

The next step is to calculate the fraction between the precipitation registered in a period and the

remaining precipitation from that time period. This gives the desired quantities to estimate the

parameters of the beta distribution. In Figure 8 we have plotted the average of these proportions

for every time point. We can see that in the early stages of a rain event, each time period only

represents a small fraction of all the remaining precipitation. As time progresses, this average

proportion gets closer to 1 because of the decreasing number of time periods that are left in the

event. The final proportion is equal to 1 since there is no precipitation remaining after this time

period.
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Figure 7: Sample of 50 observed mass curves

In the plot above we can observe 50 observed mass curves along with the average mass curve, as calculated over all
observed events. Events are derived from the precipitation dataset at a 5 minute level, using data between the 1st
of January 2018 and the 31st of December 2019.

Using the proportions between the precipitation registered in a period and the remaining precipi-

tation from that time period we can estimate the beta distribution parameters. We do this using

a method of moments estimator, given that there are no closed-form formulas for the Maximum

Likelihood Estimator of the beta distribution (Owen, 2008). These estimators are derived from the

analytical equations for the mean and variance of the beta distribution, which are in turn approx-

imated by the sample mean and variance. We can see the parameter estimates in Equation 3.10.

A full derivation of these parameter estimates can be found in Appendix B.

Figure 8: Average proportion of remaining event depth fallen

In the figure above, the average proportion of remaining event depth, registered in a specific time period is shown.
These proportions are derived from the precipitation dataset at a 5 minute level, using data between the 1st of
January 2018 and the 31st of December 2019.
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α̂ = x̄

(
x̄(1− x̄)

s2
− 1

)
β̂ = (1− x̄)

(
x̄(1− x̄)

s2
− 1

) (3.10)

In the equations above we make use of the sample mean x̄ = 1
n

∑n
i=1 xi and sample variance

s2 = 1
n−1

∑n
i=1(xi − x̄)2. The parameter estimates are calculated for all 25 steps. An overview of

the parameter estimates per time period can be seen in Appendix C.

Using these parameter estimates, we can now simulate standardized mass curves. However, in our

simulation framework we want to be able to simulate mass curves for all possible event durations

and intensities. To do this, we use the following steps during simulation. The first step is to

calculate the total rainfall of the event as the product of the duration and intensity. Next, we use

the parameter estimates to generate the fraction of remaining precipitation fallen in each of the

25 steps, which are then converted to millimeters using the calculated total rainfall. Finally, we

adjust the number of time periods in our simulated event using the same linear transformation as

before. This gives a simulated event with the desired length and intensity and whose event profile

is based on all observed event profiles.

Figure 9: Relation between daily influent and precipitation

In the figure above we can see two time series; the daily influent and the daily precipitation. Daily influent values
are calculated by aggregating the 5 minute influent dataset. Precipitation values are taken from the KNMI dataset.

Now that we have our rain event, we still need to convert this into influent values. Based on

Figure 9, we can see that there is a strong relation between daily influent and daily precipitation.

The reason that we work with daily data instead of 5-minute data is that rainwater does not arrive

at the purification facility immediately. This makes it difficult to find the relation between rainfall

and influent at a 5-minute level since the precipitation affects multiple future influent values.

Working with daily data circumvents this problem, as most of the additional influent caused by
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precipitation is registered on the same day. Finding this relation is done by means of a simple

linear regression, for which the formula is given in Equation 3.11, where a represents the intercept

and b the slope of the regression line.

Influentt = a+ b Raint (3.11)

3.2.4 Simulation process

In subsection 3.1 and the previous part of this subsection we have described all the elements

needed for our simulation framework. All that is left to do to create our single-agent, stochastic

environment is to combine these elements into a single algorithm. We can see the pseudocode

of this in Algorithm 3. In this algorithm, we can see that we generate dry and rain events in

an alternating fashion. We do this until we reached our desired simulation length, which can be

reached in somewhere between 1 and desired length iterations due to the stochastic duration of

our events. Of course, when we generate a rain event, we also need to simulate the intensity and

profile.

Algorithm 3: Influent simulation

initialization

while simulation length < desired length do

if next rain = false then
simulate dry event duration

next rain = true
else

simulate rain event duration

simulate rain event intensity

simulate rain profile

next rain = false
simulation length += event duration

store event

During our simulation, we make use of some assumptions. Some of these assumptions have already

been mentioned, like the fact that we model event durations and intensities independently of each

other. Furthermore, an additional assumption is made that the influent from rainwater arrives

at the purification facility in the same time period that we register the precipitation. While this

assumption does not hold in practice, it helps us to train more efficiently. The reason for this is

that under the assumed situation, rain arrives at the purification facility faster. This requires the

algorithm to show more anticipating behavior in order to get a high reward, which is something

that we want to stimulate.
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3.3 Influent forecast approximation

The next step in creating a realistic simulation environment is adding a forecast of the two influent

streams that we just described. As mentioned in the introduction, having a forecast of future

influent helps to anticipate on future high influent events. To do this, we split the influent forecast

into two parts. The first part concerns the forecast of the wastewater, whereas the second part

looks at the forecast of the rainfall. This makes sense as these two influent streams are unrelated,

so modeling them as one would make the process unnecessarily complex. These two forecasts are

joined together to make an overall forecast for total influent.

For this thesis, we work with a forecast window of one hour. There are several reasons to do so.

The first one is the amount of water that can be processed in that time window. As we will see in

Section 3.5, agents are encouraged to keep water levels below 10% of their maximum capacity. In

times without rainfall, agents should be able to keep water levels below this threshold. In case a

rain spell is approaching, the one hour time window is enough for the agent to completely empty

the storage tank and hence build up capacity for future influent. The second reason is that having

a longer forecast window would decrease the precision of our forecast. This would make it harder

for agents to select good actions based on the forecasted influent as the forecast contains more

noise.

3.3.1 Wastewater forecast approximation

As mentioned in the introduction of this subsection, we first focus on the approximation of wastew-

ater. We know from Section 3.1 that this process is simulated using an Ornstein-Uhlenbeck process

with a mean reversion parameter θ and a noise parameter σ2. We use this knowledge to make a

forecast for the wastewater influent.

To find the forecasted influent in the next hour, we go back to the model definition as stated in

Equation 3.1. By taking the expectation of this definition and doing some rewriting, we can find

the expected value of the next observation in terms of known quantities. This can be seen in the

equation below.

E(Yt+1) = E(eXt+1Dt+1)

= E(eXt+dXtDt+1)

= E(eXt−θXt+σdWtDt+1)

= E(e(1−θ)Xt+σdWtDt+1)

= E(e(1−θ)XtDt+1) + E(eσdWtDt+1)

= e(1−θ)XtDt+1

(3.12)
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It can easily be seen that this formula can be extended to an n-step ahead forecast by adjusting

the baseline rate Dt+1 by Dt+n and raising the (1− θ) to the power n. This gives us the following

generic formula for an n-step ahead forecast.

E(Yt+n) = e(1−θ)
nXtDt+n (3.13)

We can take this generalized formula to make a forecast for the next 12 time periods. These 12

forecasts are aggregated to create a single overall wastewater influent forecast for the next hour.

3.3.2 Rainwater forecast approximation

In the next subsection, we focus on approximating influent from rain events. We saw in the previous

subsection that forecasting wastewater was fairly straightforward due to the high dependence on

a known daily pattern and the relatively low level of noise in the observations. It is evident that

the influent of rainwater has neither of these properties, so we have to look at alternative methods

to make a forecast.

When we look at the literature of precipitation forecasting (or nowcasting as it is often called for

time windows < 24 hours), we see that all methods rely on geospatial information. This makes

sense, as observing whether it rains in areas closeby seems like a good predictor of rainfall in the

area of interest. Most of the forecasting models make use of pixel data, on which they then use

some type of predictive model to make the precipitation forecast. The predictive model that is

used can for example be a Lagrangian dynamic model (Zahraei et al., 2012), a standard neural

network (Rivolta et al., 2006) or an LSTM network (Shi et al., 2015, 2017).

In our case, we have to work without pixel data since this type of data is not available to us. To

correct for this, we have downloaded precipitation data from 9 different weather stations over a

period of 10 years. The station of interest is located in the center, while all the other stations

are spread in a circle around the station of interest. This allows us to have information similar

to that in the pixel data without actually using that specific data source. We complement the

dataset by adding hourly observations of weather variables like humidity, wind speed/direction,

atmospheric pressure, and temperature. This gives us a dataset that should be able to produce a

good predictive model for our simulation.

However, before we can proceed to create such a predictive model, we still have to impute the

weather variables (since these are hourly) and create some features for the model to use. For

the weather variables, there are two types of imputation that we use. The first type is linear

interpolation, which is used for numeric features where this option makes sense. Examples of

these features are temperature and atmospheric pressure. The other type of imputation is simply

taking the last known observation. This is used for categorical variables and variables where linear
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interpolation does not always make sense. An example of this last type is the wind direction, which

is in degrees and can produce weird behavior if the wind direction is around the 0 / 360-degree

mark. For the feature engineering, we have mainly focused on the precipitation dataset. For all

locations, features are made for the average rainfall in the last n time periods, where several values

for n are used ranging between 2 and 24 time periods (equivalent to 10 to 120 minutes). To account

for the lack of a forecast in the locations not directly of interest, the same features are made looking

forward several time periods. This should give the predictive model enough information to make

a decent precipitation forecast.

As our predictive model, we make use of a gradient boosting regressor. This method was introduced

by Friedman (2001) as a way to increase the performance of ordinary regression trees. It works by

fitting several trees in sequential order, each one fitted on the model residuals created by all the

trees before it. The reason why this method is chosen is because it often achieves good performance

without the need to optimize the model parameters a lot. Given that it is merely a modeling step

of our environment, using such a model is more favorable than developing a complex method with

slightly better performance and features. The result of this gradient boosting regressor can be seen

in Figure 10.

Figure 10: Actual versus forecasted rainwater

In the figure above we can observe the actual and forecasted rainwater influent over a one hour time window, based
on the gradient boosting regressor. On the horizontal axis, the time period can be seen whereas the vertical axis
shows the rainfall in millimeter over the next hour.

In order to make a realistic simulation environment, we have to produce forecasts with character-

istics similar to the one shown in Figure 10. Since we do not have the same dataset available for

simulated rainfall events, we have to come up with an alternative method to create such a forecast.

From the results in Figure 10 we can deduce several desired characteristics. The first one is that

the precision of the model is dependent on the total rainfall in the next hour. From the plot, we

can easily see that the error is often much smaller in periods of low expected rainfall compared
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to periods of high expected rainfall. The second characteristic is that our prediction shows some

kind of autoregressive behavior. This means that when our forecast is too low at a given moment

in time, we are likely to see a low forecast in the next time period as well. This makes sense as the

windows of two successive time periods overlap for more than 90%.

The first characteristic we deal with is the dependence between model accuracy and rainfall in

the next hour. To cope with this feature we split our dataset into several buckets based on the

actual amount of rainfall in the next hour. Bucket boundaries are determined in such a way that

each bucket is guaranteed to have at least 1000 observations. Grouping observations based on the

actual amount of rainfall gives us a good understanding of the typical forecast the gradient boosting

regressor would make. Examples of the forecasts made for two buckets are shown in Figure 11.

We can see that the shape of the distribution is dependent on the actual amount of rainfall. In

the case where we do not observe a lot of rain in the next hour (visible in the left pane), most of

our forecasts are centered around 0. In cases where a little bit more rain is expected in the next

hour (approximately 0.6 millimeters, shown in the right pane) the distribution looks more like a

normal distribution centered around the actual rainfall amount.

Figure 11: Rainfall forecast distribution for 2 different buckets

In the figures above we observe histograms of the rainfall forecast in the next hour for two different buckets. On the
left-hand side, we see a bucket with a low amount of rainfall whereas the bucket on the right has a higher amount
of rainfall in the next hour. These forecasts were made by the gradient boosting regressor using data between the
1st of January 2011 and the 31st of December 2019.

For every bucket that is created we estimate the parameters of the log-normal distribution. We

use this distribution since it only takes on positive values, works with different shapes of the

distribution, and since it works best to model rainfall, as we have seen in Section 3.2. As discussed

before, the log-normal distribution has two parameters: µ and σ. The µ parameter determines the

mean of the distribution, which helps to make higher forecasts in buckets where more rainfall is

registered. The σ parameter determines the variance of the distribution and is able to capture the

fact that we see larger errors in situations where more rain is expected in the next hour.

Using the estimated distribution per bucket, we can already make a first version of the rainwater

forecast simulator. To do this, we start by taking the simulated rainwater influent using our
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approach as described in Section 3.2. Using these simulated values we can calculate the rainfall

in the next hour for every time period and match this with the correct bucket. A forecast can be

simulated using the parameters of that respective bucket. The problem with this approach is that

it does not have the autoregressive characteristic that we have described before.

To incorporate the autoregressive characteristic of the rainwater forecast we introduce one final

step. The forecast as described in the previous paragraph is taken as a baseline forecast. To this

baseline forecast, simple exponential smoothing is applied to achieve the desired autoregressive

characteristic. The formula for this can be seen below where Xt is our smoothed forecast at time

t, λ is the smoothing parameter, and Yt is the baseline forecast at time t. The λ parameter is

estimated by minimizing the mean squared error of the forecast and is approximately equal to 0.4

in our case.

Xt = λYt + (1− λ)Xt−1 (3.14)

To summarize, simulating our precipitation forecast consists of four steps. The first step is to create

a rainfall series using the methodology from Section 3.2. After this, we calculate the amount of

rainfall in the next hour for every time period. Based on the rainfall in the next hour, we determine

the bucket and simulate our forecast using the fitted log-normal distribution. Finally, we apply

exponential smoothing to our forecast series to add the autocorrelation property.

3.4 Multi-agent modelling

In the previous subsections, we have introduced environments that stimulate behaviors like buffer-

ing (to cope with the daily influent pattern) and anticipation (to deal with future influent peaks).

This leaves us with one goal remaining, which is coordination between different agents. In this

section, we describe which adjustments are made to the environment in order to create a realistic

multi-agent setting.

First of all, all agents have their own set of location parameters. These parameters control the pump

and storage tank of each location, as well as the baseline wastewater pattern and the amount of

influent each millimeter of rain produces. All these factors are based on input given by waterschap

Rijnland and differ for each agent. The advantage of this approach is that we can easily add more

agents to our problem. All it requires to do this is a new set of parameters which we estimate

based on input from the waterschap.

What the agents share is the scaling of the wastewater pattern, the rainfall simulator, and the

forecast of the wastewater and rainwater. When we combine these shared components of our

simulator with the agent specific parameters we get an influent series that is unique to every agent.
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3.5 Reward function

The final element of our environment is the reward function. The environment that we have created

so far will not produce any desired behavior without a good reward function since this element

determines which policy is deemed optimal. It is often hard to reason what the optimal behavior

is under a given reward function, so the reward function presented here is based on trial and error.

Since we have multiple characteristics that we would like to see from our agents, our reward function

consists of a few elements that are joined together. Some of these parts are based on the behavior

of single agents, while other parts are based on the joint action of all agents. Of course, the joint

action is only of importance when we are dealing with two or more agents.

The first element of the reward function is based on the volume in the storage tank. This element

is awarded to each agent individually. The goal is to keep the volume in the storage tank relatively

low, so the agent receives a reward of 3 if the volume is above 0 and below 10% of the maximum

volume4. Of course, it is not desirable to let the pump running if the tank is already empty, so no

volume at all is penalized with a negative reward (so a penalty) of -3. For storage tank volumes

over 10 % of the maximum capacity, a penalty is given which increases linearly between 0 and -3

depending on the volume present in the tank. The reason that this penalty increases linearly is to

motivate the agent to reduce the tank volume even if it exceeds the 10 % threshold.

The second element is given both to each agent individually as well as to the joint action of all

agents and depends on the chosen action. We reward the agent(s) if an action is taken other

than turning the pump(s) completely off. Furthermore, the reward is largest when the minimum

possible action is taken and decreases quadratically to 0 between the minimum and maximum

possible action the agent(s) can take. This reward structure is shown in Figure 12.

The reason why such a reward structure is chosen is to stimulate the spreading of influent through-

out the day. As mentioned in the introduction, spreading influent over the day as much as possible

is desirable from the perspective of the waterschap. This type of reward stimulates actions that

are as constant as possible due to the concave shape of the reward function. Together with the

flexibility incorporated in the first element of the reward function (the reward is constant between

0 and 10% of the maximum storage capacity), this should lead to some buffering by the agents.

Letting the pumps running during the night at a low rate ensures that the agent is getting rewards

from the second element of the reward function while staying within the margin provided by the

first element. This buffer can be replenished during the day when influent is higher.

4Please note that it is not the absolute values of the reward function that are of importance. It is the proportions
between the different elements in the reward function that are of relevance (i.e. multiplying all rewards by some
constant does not change the optimal behavior of the agent).
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Figure 12: Reward when chosen action > 0

In the figure above we can see the reward the agent(s) receives if it chooses an action other than turning the pump
completely off. On the horizontal axis the (joint) action can be seen where 0 corresponds to the minimum possible
action and 1 corresponds to the maximum possible action. On the vertical axis the reward is shown.

When we look at the other desired behavioral characteristics we can see that these are covered by

this reward structure as well. It can easily be seen that overflow of one of the storage tanks is

sub-optimal since this yields the lowest possible reward in the first element of the reward function.

Anticipation on rain showers is rewarded under this reward function in two different ways. First

of all, agents try to avoid going over 10 % of their storage tank capacity since this prevents them

from getting the reward of 3. Secondly, it is beneficial for the agent to spread all influent as evenly

as possible. When the agent recognizes a rain shower is approaching the best action is to start

processing more water before the rain shower arrives.
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4 Agent Design

In the previous section we have discussed the environment, which was the first major methodolog-

ical aspect. The second major methodological aspect that we discuss are the agents that operate

in the environment.

In this section, we discuss several different agents with varying degrees of complexity. Each of the

following subsections discusses a different type of agent. We start with an agent that follows the

current rule-based policy. This gives us a good indication of the required performance level to

be an improvement over the rule-based method. We can see this agent as some kind of baseline

performance. After this, we look into value iteration which was discussed in Section 2. Finally, we

make use of several deep reinforcement learning methods to see if these give an improvement over

the other methods.

The agent that makes use of tabular methods (i.e. the agent that uses value iteration) is not able

to cope with large state spaces. This becomes a problem when we introduce the influent forecast

or multi-agent scenarios into our environment. For this agent, adaptations are made to enable the

agent to work with scenarios like these.

4.1 Rule-based agent

The first agent that is created follows the policy that is currently used at the purification facility.

This policy is not based on any kind of optimization, rather, it is based on a simple heuristic

to determine the action in the next step. The advantage of this method is that it works with

continuous state and action spaces and only needs three parameters to set up. This combination

of flexibility and simplicity is probably the reason why it is used by waterschap Rijnland.

The three parameters that need to be set are the minimum initiation level (denoted Imin), maxi-

mum initiation level (denoted Imax), and termination level (denoted T ). The initiation levels are

the fractions of tank capacity at which the pump is activated at minimum and maximum capacity.

The termination level is the fraction of the tank’s capacity at which the pump is turned off. The

model assumes that T ≤ Imin ≤ Imax.

The policy of the pump can be formulated as follows. When the water level in the tank is below

the termination level T , the pump is off. Water then flows in, increasing the water level. When

the minimum initiation level is reached, the pump is activated at minimum capacity. For water

levels between the minimum and maximum initiation level, the action is increased linearly with

the water level. Furthermore, we never decrease our action compared to the previous time period,

unless we reach the termination level when the pump is turned off.
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We can also represent this behavior more formally, which is done in Equation 4.1. In this equation,

at represents the action of the pump at time t, which is scaled between 0 and 1. wt is the water

level at time t and amin is the minimum action the pump can execute.

at(wt, at−1) =



0, if 0 ≤ wt < T

at−1, if T ≤ wt < Imin

max

(
amin + (1− amin) wt−Imin

Imax−Imin
, at−1

)
if Imin ≤ wt < Imax

1 if Imax ≤ wt

(4.1)

While the policy as described above is nice in terms of flexibility and simplicity, it can lead to some

undesired behavior. First of all, the policy can overreact to small peaks in influent if these happen

around the minimum initiation level. This small peak pushes up the action that is chosen due to

the increased water level, which is then executed until the termination level is reached again. This

is not ideal when we want to spread out influent as much as possible.

Another type of undesired behavior is the lack of anticipation this agent shows, for example when

a rain shower is expected. It could be that the water level in the tank is right below the minimum

initiation level. Under an anticipating policy, we would see that the tank is emptied in order to

make room for the influent caused by the rain shower. This agent does not produce such behavior,

leading to a higher risk of overflow of the system.

The same lack of anticipation comes into play when we want to correct for the daily influent

pattern. In the ideal situation, we would spread out the influent as much as possible by building

up a buffer during the day, which is released during the night. The rule-based agent is not able to

produce such behavior.

4.2 Value iteration

In order to overcome the undesired properties the rule-based agent has, we make use of planning

and reinforcement learning methods. As already outlined in Section 2, the difference between

planning and reinforcement learning is that a planning model assumes that the dynamics of the

environment are known, whereas a reinforcement learning model learns these dynamics during

optimization. For this reason, value iteration falls into the class of planning methods.

In this subsection, we look at how value iteration can be applied to the different environments that

have been created. Key in this is to model the dynamics of the environment and the expected

reward the agent receives. Furthermore, we need to address the curse of dimensionality in a multi-

agent setting. As already argued, the number of state-action combinations grows rapidly when we

add more agents. Since we want our solution to be scalable, we have to adjust our method such

that it can handle these larger state-spaces.
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However, before we address this issue we first look into approximating the transition probabilities

and rewards p(s, r | s, a). To keep matters simple, we focus on a single agent first. We know that

this water level depends on a number of factors. These factors are the water level in the previous

period (state information, known), the desired effluent in the current period (action, known), and

the influent in the current period (coming from our simulation model, unknown). Luckily, we can

approximate the influent distribution using our simulation model from Section 3. To do this, we

simulate a large number of observations from this model and convert this into probabilities. The

result of this can be seen in Figure 13.

Figure 13: Approximated influent distribution

In the figure above we can observe an approximation of the influent distribution coming from our simulation model.
The distribution is based on 2.5 million simulated observations, where every observation is rounded down to the
nearest integer value. The daily cycle is not taken into account, so the shown distribution is averaged over the whole
day.

Using this approximation, we can just calculate the transition probabilities for every given state,

action, and next state. Furthermore, we can calculate the reward for every (s, a, s′) combination

so we store these as well. With this information, we can execute Algorithm 1 which gives us the

optimal state-values and policy. One of the downsides of this approach is that it does not take into

account information regarding the time of the day or expected influent in the next periods. Leaving

out this information leads to sub-optimal actions when the expected influent is much different from

what is shown in Figure 13.

To adapt this for the influent forecast version of the environment we have to make a few changes.

We could just take the expected influent and use this as an additional state variable. However, this

would increase the state space by such a large amount that we can no longer find the optimal policy

within a reasonable time. This means we have to look for a method that still has the benefits of

adding the influent forecast to the model, without making the problem computationally infeasible.

It is recognized that the influent forecast is most useful in cases where future influent is high, often

caused by rainwater.
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The solution that is used is to make 10 buckets for the influent forecast and to apply standard

value iteration (as we would without the influent forecast) on each bucket. These buckets are made

based on the tail of the influent forecast distribution. The influent forecasts are collected in the

same way as is done in Figure 13. The first nine buckets are created by taking 0.3 % of the right

tail per bucket. So the 10th bucket runs between 99.7 % and 100 %, the bucket before that from

99.4 % and 99.7 % etc. The first bucket takes on all other forecast values and is therefore larger

than all the other buckets. The reason why almost all time steps fall in the first bucket is that

the agent does not need to change its behavior when there is no or little rainfall. Given that high

rainfall events are rare, we only want to change our policy in the tail of the forecast distribution.

Now that we have calculated the boundaries of all the buckets, we are one step away from a

working algorithm. We run the value iteration algorithm we have created for environments without

a forecast on each bucket to give us a set of optimal policies. One of these policies is carried out,

dependent on the influent forecast that is given to the agent.

4.2.1 Multi-agent adaptation

As argued in the introduction on value iteration, adding more agents quickly makes the problem

intractable due to the large number of state-action combinations. We already discussed in Section 2

that using function approximation is one way to solve this problem, which is what we use in

Section 4.3. For now, we make use of the separable nature of the reward function and state-space

to find a good joint action.

We described in Section 3.5 that the total reward function is a combination of several smaller

rewards. Some of these smaller rewards only look at individual agents, whereas other rewards

look at all agents jointly. In this section, we make use of this reward structure to make a scalable

multi-agent model based on value iteration.

The central idea is as follows: for every agent, we can look at his individual contribution to the

total reward (i.e. the part of the reward function that only depends on that specific agent). Using

this individual part of the reward function and the part of the state space the agent controls, we can

do regular value iteration. This is no different than doing value iteration in the single-agent case.

This results in a set of state-action values for every agent, which tells us each agent’s preference

for a given action in each state. At any point in time, we can observe the state and retrieve the

accompanying state-action values for every agent.

We could just take the action that maximizes each agent’s individual state-action value and use this

as an approximation for a good joint action. However, this would neglect the potentially conflicting

interests between individual and joint rewards. Hence, we need to find a balance between these two

reward sources to guarantee good performance. We do this through a steepest ascent algorithm

that is explained in the remainder of this section.
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We start with the best action for each agent individually, which we call the greedy action. Since we

have calculated the state-action values for every agent it is straightforward to find these actions.

With this initial action, we can calculate the reward coming from the joint action. From this point,

we look for joint actions that improve the collective reward without losing too much individual

reward. To do this, we can calculate the total reward for every combination of actions. However,

the action space grows exponentially with the number of agents so this option quickly becomes

infeasible. To circumvent this problem we make two adjustments to our considered action space.

The first adjustment we make to our action space is to only consider changes to a single agent at a

time. This limits the number of potential actions to consider from |A|n to n · |A| where |A| is the

number of actions each agent can take and n is the number of agents. The second adjustment is to

only consider actions with a lower effluent than the greedy action. The reason for this is based on

the shape of the collective reward function. In Section 3.5 we explained that the reward decreases

quadratically as the total effluent goes up. When we take the greedy actions as our reference point,

it can easily be seen that all actions with a higher effluent both decrease the state-action values

and collective reward. Hence, these actions can never be better than the greedy actions and are

therefore sub-optimal.

For all the actions in our action set we can calculate the change in total reward it would cause. This

change in reward is shown in Equation 4.2. In this equation, ∇Rk(n, a) represents the difference in

reward if agent n changes to action a. Furthermore, Ak(n) is the action of agent n in iteration k of

our action selection algorithm. Qn(s, a) is the state-action value of agent n in state s under action

a and Rcol(Ak) is the collective reward when the joint action Ak is selected, which is a vector of

all the individual actions Ak(n).

∇Rk(n, a) =
[
Qn(s, a)−Qn(s,Ak(n))

]
+
[
Rcol(Ãk)−Rcol(Ak)

]
where

Ãk(i) = a if i = n

Ãk(i) = Ak−1(i) otherwise

(4.2)

As already mentioned earlier in this section, we make use of a steepest ascent method in order to

find a good joint action. This means that we normalize the differences in overall return by the

change in effluent it causes, which is defined as |Ak(n) − a|. The reason for this is that without

normalization, the algorithm is incentivized to decrease the total effluent quickly (because this is

most beneficial to the collective reward). Without normalization, we would see that after a few

iterations, some agents have low effluent values whereas others are still at their greedy action. Due

to the concave shape of the collective reward function, there is a point where there is no single

agent that can change its action in order to improve the total reward function. If this point is

reached before all agents have adjusted their action, we end up with large differences in actions

between agents (which is in most cases sub-optimal).
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If we use the normalized differences in reward, we take away the incentive to drastically alter

actions. Rather, due to the concave nature of the collective reward function, we even stimulate

small steps. This causes the algorithm to pick the actions that cause a relatively low change in

state-action values and creates the opportunity to gradually lower all actions instead of drastically

lowering just a few. However, the algorithm is still able to lower an action with 2 or more steps if

this is beneficial for the individual Q-values.

Combining the initialization with greedy actions, reward difference calculations, and normalization

results in the following algorithm. In this algorithm, N represents the number of agents. It can be

seen that we iteratively calculate the differences in reward and change the action of a single agent

until there is no agent that can cause an increase in overall performance.

Algorithm 4: Action-selection algorithm

Observe s ∀ N
A0(n) = argmaxaQn(s, a)∀n

while Ak <> Ak−1 do
Ak−1 = Ak
for each n ∈ N do

for each a < A0(n) do

Ãk(i) = a if i = n, Ãk(i) = Ak−1(i) otherwise

∇Rk(n, a) =
[
Qn(s, a)−Qn(s,Ak(n))

]
+
[
Rcol(Ãk)−Rcol(Ak)

]
∇Rk(n, a) = ∇Rk(n, a) / |Ak(n)− a|

if maxn,a∇Rk(n, a) > 0 then
n̄, ā = argmaxn,a∇Rk(n, a)

Ak(n̄) = ā

It is important to note that the algorithm as described is not guaranteed to be optimal. There are

two main reasons for this. The first reason is that while searching the algorithm can get stuck in

local optima. Since we only consider changes in one action at a time, there are some joint actions

that will never be evaluated, leaving open the possibility of a sub-optimal action being selected

after convergence. The second reason is that we only take into account the direct effect of the

collective reward function. Taking the best possible action in the current time step could lead to

lower future collective rewards. However, since the collective reward only depends on the action

(and not on the state) and we do take into account future rewards at an individual agent level, the

negative effect of this is limited.

Finally, we consider how this approach scales with the number of agents. We first have to calculate

the state-action values for every agent individually, which scales linearly with the number of agents.

When looking at the action-selection mechanism, we can see two places where the number of agents

is relevant. First of all the number of actions that are considered scales linearly with the number of

agents. Secondly, having more agents is likely to increase the number of iterations of the algorithm.
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Assuming that every agent needs on average the same number of updates in the action-selection

algorithm, this scales linearly with the number of agents as well. Combined, the duration action-

selection mechanism scales quadratically with the number of agents, which is an improvement

compared to the exponential scaling we would see if we would perform value iteration on the joint

state and action space.

4.3 Deep reinforcement learning

In this final subsection, we discuss how we have set up the deep reinforcement learning agents. In

Section 2 we already discussed the different algorithms that are used and gave a general overview

of how they work. All these algorithms are implemented in the Stable Baselines python package,

which is based on research by OpenAI. This takes away the need to implement the algorithms

from scratch, so in this subsection, we mainly focus on the parameter settings we use for each of

these algorithms. In the ideal situation, we would try a lot of different parameter settings for each

algorithm, however, this is computationally not feasible. Trying 2 or 3 different values for about

5 different parameters gives us anywhere between 32 and 243 different parameter combinations.

Combining this with the 4 different environments, multiple runs for each parameter/environment

combination, and several different deep reinforcement learning methods it would take months to

complete. We therefore only focus on the most important parameters for each algorithm.

For all the algorithms that we discuss one parameter is fixed. This is the γ parameter, better

known as the discount rate. We fix this parameter at 0.995 for all algorithms. The reason why

this parameter is so high is that we put a lot of emphasis on the long run. It could be argued that

we put as much emphasis on the long run as we do on the short run. However, most algorithms

cannot cope with a discount factor equal to 1, so a value just below 1 is chosen.

4.3.1 Trust Region Policy Optimization (TRPO)

For the TRPO algorithm, there are 2 parameters that we tune in the search for good model

performance. The first of these parameters is the number of time steps per batch. This batch size

determines how often we update our network based on the advantage values we have calculated.

The default setting for this parameter is to update every 500 time steps, which was used in the

original paper by Schulman et al. (2015). For our agent, we try three different values; 5000, 10,000,

and 20,000. The reason why these values are much higher than for the default agent is the large

role of stochasticity in our environment. We want every update to be a good representation of all

the situations an agent can encounter in our environment to make learning as stable as possible.

Given that 500 time steps corresponds to a little under two days, we can easily see that such a

batch size leads to batches that are far from being a fair representation of the actual environment.

The second parameter that we tune is related to the step size of the policy, denoted by λ. The reason

why we choose this parameter is that taking smaller steps helps to average out the stochasticity
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of the environment. For this parameter we use the values 0.98 and 0.99, creating a total of 6

parameter settings for this algorithm.

4.3.2 Advantage Actor Critic (A2C)

For the Advantage Actor Critic agent, we again have two parameters that are tuned. The first

parameter is, just like with the TRPO algorithm, related to the number of steps before each policy

update. However, in this model, the number of steps before each update is a lot smaller with a

default value of 5. This is because the stochasticity that is normally averaged out by the batch

size is now averaged out by having multiple agents. To stay in line with the TRPO algorithm, our

batch sizes are around 10 times the normal size with parameter values of 25, 50, and 100 being

tested.

The second parameter we adjust is called the entropy coefficient, which slows down the speed of

convergence. This helps to avoid local optima during training, resulting in an overall better agent.

The default value for this parameter is equal to 0.1. Given that we are more vulnerable to being

stuck in a local optimum due to the high stochasticity in our environment we try a value of 0.1

and 0.2 for this parameter. Overall, we again have 6 total parameter settings that are tested for

this algorithm.

4.3.3 Proximal Policy Optimization (PPO)

For the final algorithm we consider there are three parameters to be tuned. Furthermore, there are

two different implementations of this algorithm in Stable Baselines, so we consider both of these

versions. The parameters that are tuned are the same for both of these implementations.

Like in all the other algorithms, we again start with a parameter for the batch size. Based on some

quick trial and error, it is found that the batch sizes we need to consider are 500, 1000, and 2000.

This is again about the same order of magnitude bigger than the default value, which is 128.

The second parameter is called the clipping parameter. This parameter influences the step size of

the algorithm and should help us to avoid being stuck in local optima. It is somewhat similar to

the entropy coefficient parameter in the A2C agent and it takes the same values of 0.1 and 0.2.

The final parameter is the same λ parameter we had in the TRPO algorithm. However, in the

PPO algorithm, it often takes a lower value, so we test values of 0.95 and 0.98. This gives us a

total of 12 parameter combinations to test for this algorithm.

47



5 AGENT EVALUATION

5 Agent Evaluation

The final methodological aspect that is discussed is a framework to evaluate the performance of

the agents consistently and reliably. In this section, we first talk about the experimental setup

that is created to test agents, after which we discuss the various performance measures that are

used along with a motivation of why these measures are relevant.

The experimental setup that is created consists of several steps. The first step is to set up the

agent and the environment based on the parameters that we are testing. The next step is to set a

seed that is used during training. This serves two purposes; to denote the run that we are doing

and to make the outcome of the run reproducible. Denoting the run number is needed since we

evaluate each agent/environment/parameter setup a total of 10 times. We do this to limit the

impact of chance on the outcomes of our experiments. When this is all done, the next step is to

train the agent either until convergence (for the value iteration agent) or until a fixed number of

time steps is reached.

After training is completed, we can move on to evaluate our agents during test runs. We use

a total of 1000 test runs which all last 1000 time periods (approximately 4 days) to get a good

overview of how well our agent performs. We track the performance of the agents based on the

seven performance measures that are discussed below. These test runs are the same for all agents

to rule out the possibility that one agent performs better merely because it was evaluated based

on easier runs. Doing 1000 runs of about 4 days each gives us a diversified set of scenarios for our

agent to deal with, ranging from long dry spells to intense rain periods.

Agents are evaluated based on seven different measures that are all related to different aspects

of the agent’s behavior. Performing well on a single measure does not automatically imply that

the agent shows desired behavior. Rather, to assess the performance of an agent all the measures

should be evaluated simultaneously.

The first two measures are the mean and standard deviation of the rewards that are obtained

during the 1000 evaluation episodes. The mean reward indicates how well the agent is able to

align himself with the reward function we have created and could be seen as the most important

measure we have. The standard deviation of the reward indicates if the agent can consistently

achieve a high reward, or if it is designed to do well in certain situations. Of course, a low standard

deviation is desirable since we want the agent to perform well in any given situation.

The third and fourth measures are related to the 10% threshold we have set in the first part of the

reward function. It is explained in Section 3.5 that the agent receives a large positive reward if

the volume in the storage tank is above 0 and below 10% of the maximum capacity. The measures

compute the average number of times these thresholds are exceeded per run. We have split this
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into two measures since having a tank volume which is too low has different consequences than

having a tank volume which is too high.

The next measure is the standard deviation of the actions (ranging between 0 and 1) chosen by the

agent. This measure shows us how well the agent is able to consistently choose the same action

over the course of a run. While this is implicitly captured in the reward function (and therefore

in the first measure), differences in the achieved reward can also be caused by other factors like

exceeding the storage tank threshold. This measure allows us to isolate the agent’s ability to choose

the same action over and over again.

The final two measures relate to the agent’s ability to use the storage tank as its buffer. We have

previously discussed that an agent that performs as desired uses the storage tank to build up water

during the day and deplete this buffer during the night. To measure this, we calculate the lower

and upper 5% quantile of the storage tank after each evaluation run. If the agent does a good job

of using the storage tank as its buffer, we will see that the lower quantile has a low value (since

the tank is nearly empty towards the end of the night) and the upper quantile has a value close to

the 10% threshold.

49



6 RESULTS

6 Results

In this section, we move on to discussing the results of our research. We do this in three differ-

ent subsections that all serve their distinct purposes. We start by discussing the quality of our

simulation environment in Section 6.1. We do this by making comparisons with real-world data

and showing some examples of the data generated by our simulators. Section 6.2 evaluates the

performance of our agents in these environments using the performance measures discussed in Sec-

tion 5. Finally, we finish this section by performing a sensitivity analysis on some key environment

parameters to show the generalizability of our method in Section 6.3.

6.1 Environment Design

In this section, we discuss the outcome of our simulation environment following the same structure

as we did in Section 3. This means that we start by discussing the simulation of wastewater,

after which we move on to rainwater. Finally, we discuss making a forecast for these two influent

streams.

Figure 14: Observed versus simulated scaling factor

In the figures above we can see two different scaling factors. On the left-hand side we can see a sample of the
observed scaling factor, extracted from the influent dataset. On the right we can see the scaling factor that is
produced by our simulator.

In Figure 14 we can see two different examples of scaling factors. The figure on the left was

already shown in Section 3.1 and is the scaling factor as observed in the dataset. We have fitted

this process using the Ornstein-Uhlenbeck process and used the parameter estimates to simulate

the graph that is shown on the right. We can see that there are some differences between the two

graphs. On the left-hand side, the process is often stable for a number of time periods after which

we often see a large jump in the scaling factor. This is caused by the way the influent is calculated

for the wastewater dataset and this does not always accurately represent reality. In the graph on

the right, we do not see this jumping behavior since the process has the same variance in every

time step. However, this is a more accurate representation of reality so we are comfortable with

using this simulator. Furthermore, both figures show the same characteristics (large dependence
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on the previous time step and scaling factors in the same range), albeit in a somewhat different

way, so we are confident that our simulator produces a good wastewater influent pattern.

To validate the fitted distributions of the event durations and rain intensity a two-sample Kolmogorov-

Smirnov test is performed. This test calculates the probability that two independent samples are

drawn from the same continuous distribution. In other words, it tests whether the observed event

durations and rain intensities come from the same log-normal distribution that we use in the sim-

ulator. When we test this over a simulated period of 2 years (to match the real data) and 10

different runs (since the simulation process is stochastic) we find that in all cases the null hypothe-

sis of different distributions cannot be rejected. In other words, there are no clear indications that

the observed data does not follow the log-normal distribution.

For the simulation of mass curves, we cannot apply a distributional test like the Kolmogorov-

Smirnov test. To assess the quality of these mass curves we have to rely on visual comparisons.

For this reason, we have plotted two different sets of mass curves in Figure 15.

Figure 15: Observed versus simulated mass curves

In the figure above we can observe two different sets of mass curves. On the left-hand side we can see examples of
the observed mass curves, extracted from the influent dataset. On the right we can see the mass curves that are
produced by our simulator.

On the left-hand side of the figure, we have the mass curves like they are calculated based on the

precipitation dataset along with the averaged observed mass curve. We can recall from Section 3.2

(where the same plot is shown) that the average event starts off slowly, has a period of high

intensity, and ends with a low-intensity period again. Furthermore, individual events can differ

quite a lot regarding when most of the rain falls within the event. When we look at our simulated

events (shown on the right) we see a similar behavior for the average event profile. It can be noted

that this average simulated mass curve is less smooth than for the observed mass curves, but this

is due to the smaller sample size. When we look at the individual mass curves, we can see that

these are a bit more volatile in our simulated events compared to the observed events. However,

this can be explained by the fact that a lot of observed events are rescaled from relatively short

events (e.g. 10 time periods) to the standard 25 steps that we use for our mass curves. Since we
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do not know how the rain is distributed during a single time period, it was assumed that rain was

constant during this time period, leading to smoother mass curves. If we would convert the mass

curves on the right to shorter time windows and then rescale them to the 25 time period scale this

would smooth the mass curves, leading to an outcome more similar to the observed mass curves.

In practice, this difference is not of importance since all mass curves are converted to the duration

that was simulated by the event duration simulator.

Figure 16: Simulated wastewater and rainwater influent series

In the plots above we can see examples of simulated wastewater and rainwater. These samples are generated over
a periods of 3 days using the simulation process as described in Section 3.

The final outcome of our wastewater and rainwater simulators can be seen in Figure 16. On the

left-hand side, we can see the influent of the wastewater simulator. In this graph, we can clearly

see the daily pattern over a time span of 3 days with added noise coming from the scaling factor.

This is most visible during the third day which shows a much larger dip between the morning and

afternoon peaks. When we look at the influent caused by rainwater we can see a combination of

short but intense rain spells mixed with rain spells with a longer duration, but lower intensity.

If we join the two influent streams we get the total influent that is shown in Figure 17. In this

graph, the dotted orange and green lines represent the minimum and maximum capacity of the

pumps respectively. We can see that during the nights the total influent dips below the minimum

capacity of the pump. This means that the agent will either have to use its buffer or turn the

pump off during some time periods. We can also see that during times of intense rainfall the total

influent is higher than the maximum capacity of the pump. In scenarios like these the influent

forecast can be of help in order to stay below the 10 % threshold we have set.
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Figure 17: Combined influent series

In the figure above we can observe the aggregated influent of the wastewater and rainwater series that are shown
in Figure 16. The orange dotted line corresponds to the minimum available action of the agent, whereas the green
dotted line corresponds to the maximum available action of the agent.

The next part of the environment we focus on is the forecast of future influent. Again, we start off

with influent coming from wastewater for which we have created a simple forecasting model. The

result of this can be seen in Figure 18. In this figure, we can see that our forecast closely follows

the actual rainfall in the next hour. The reason for this is that most variance in the wastewater

influent comes from the daily pattern, which is known to us. On top of that, the simulated noise

is mean reverting, so observing whether we have less or more influent than expected in the current

time period tells us a lot about future time periods.
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Figure 18: Actual versus forecasted wastewater influent in the next hour

In the figure above we can see influent coming from wastewater in the next hour. The blue series denotes the actual
wastewater influent in the next hour, which is generated by our simulator. The orange series is the forecast of this
influent using the methodology as described in Section 3.3.

The final part of the environment is to make a forecast for rainwater. In Figure 19 we can see

two versions of a simulated forecast. The version on the left shows the forecast that is created

without any exponential smoothing. We can see that this forecast produces a lot of outliers and

does not show any time dependence. To solve these problems we have introduced the version with

exponential smoothing, of which the results can be seen in the graph on the right. This version of

the rainfall forecast is much closer to the actual rainfall and does not produce large outliers as we

had in the figure on the left. Furthermore, we can see signs of autocorrelation since the forecast

usually produces an over/underestimation multiple time periods in a row. Overall the figure on

the right is a lot closer to the actual forecasting model we saw in Figure 10 so we use this version

of the forecasting model in the remainder of this thesis.
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Figure 19: Actual versus forecasted rainwater influent in the next hour

In the figures above we can observe the influent coming from rainwater in the next hour, along with two different
forecasts. The blue series denotes the actual amount of rainfall in the next hour. The orange series corresponds to
the unsmoothed forecast in the left plot and the smoothed forecast in the right plot.

6.2 Agent Evaluation

The next part of the results discusses how our agents have performed in the four different envi-

ronments we have created. These are the agents from Section 4 along with a random agent for

comparison purposes. For the deep reinforcement learning agents we show the results for those

parameter settings that worked best, with results for all the parameter combinations available in

Appendix D. After that, we take the best agent for every environment and analyze how the agent

is able to obtain its good performance and if it shows all the characteristics we were looking for.

We start with the single agent, no influent forecast environment. Of all the environments that we

discuss, this environment is the least complicated. In Table 1 we can see the performance of our

seven different agents on the seven different performance metrics that we have defined. When we

look at this table, a few things stand out. First of all, we can see that the random agent performs

much worse than all the other agents. This is hardly a surprise given that this agent does not take

into consideration any state information to make its decision. When we look at the other agents,

we can see that most of them are performing at a reasonable level with the exception of the A2C

algorithm.

From the five agents that perform at a high level, we see that in terms of average reward the value

iteration algorithm performs best, followed by both implementations of the PPO algorithm. These

algorithms, as well as the rule-based agent, are also doing a good job of constantly obtaining a high

reward, indicated by their low standard deviation of the rewards. We can see that all of these five

agents do a good job staying between the lower and upper threshold we have set, making an error

anywhere between 0.15 % and 2.5 % of the time. The rule-based agent performs particularly well

in this aspect since it starts taking action long before the upper threshold is reached and stops in

time to avoid the lower threshold. Where this agent is less effective is choosing the same action over
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Table 1: Results single agent, without influent forecast

This table shows the performance of our seven different agents in the single agent environment without an
influent forecast. The performance on seven different performance measures is shown, which are defined in
Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the standard
deviation of these rewards. The > thres and < thres columns denote the number of violations of the upper
and lower threshold respectively over a 1000 time step run. The standard deviation of the actions of the agent is
denoted by σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.
The best score for each performance measure is shown in bold.

Reward σReward > thres < thres σActions Q0.05 Q0.95

Random -989.70 209.52 3.63 814.30 5.382 0.000 0.098

Rule-based 3665.80 38.78 1.66 0.00 8.037 0.224 0.645

VI 3793.86 46.89 6.48 0.00 4.994 0.023 0.912

TRPO 3665.49 128.47 24.64 0.76 6.408 0.314 0.688

A2C 2008.01 346.04 274.38 33.35 4.953 0.385 2.722

PPO1 3756.00 105.45 9.75 0.00 5.473 0.034 0.638

PPO2 3740.88 121.93 8.67 0.21 5.738 0.061 0.516

and over again, indicated by the high standard deviation of the actions. We see that value iteration

and A2C do well in this aspect, but judging by the number of times the A2C algorithm passes

the threshold it seems like this algorithm fails to take action when needed (which also explains

the low average reward). Finally, when we look at the quantiles, we can see that value iteration

does a good job of making use of the margin between the threshold values. We see that TRPO

and PPO tend to stay away from the upper threshold value much more, which likely explains

why value iteration outperforms these algorithms. Using this flexibility less also means that these

agents need to turn off the pumps in some time periods, explaining their higher action standard

deviation. Our suspicion that the A2C algorithm fails to take action when needed is confirmed

since the upper quantile indicates that this algorithm often passes the upper threshold.

The next environment we look at is the single agent with influent forecast environment. This

environment is exactly the same as we have discussed above, but agents now have new information

about the influent forecast. This should enable them to obtain better performance. When we

compare Tables 1 and 2 we see that this is indeed the case for most agents (ignoring the random

and rule-based since these do not use the additional information). When we look at the performance

metrics, we see similar results as we saw above. The random agent is still by far the worst, which

was expected due to its simplicity. The A2C agent has improved somewhat, but it is still far worse

than all the other agents that use the state information since it often passes the upper threshold

(visible in the third and seventh performance metrics).

When we look at the deep reinforcement learning algorithms, we see that the TRPO agent has

outperformed the rule-based agent and shows similar performance to the PPO2 algorithm. If we

look at the average reward, we can see that the value iteration algorithm is again the best algorithm.

It achieves its good performance by having a low standard deviation in its actions and using the

margin between the two thresholds better than all other algorithms. All of the five algorithms
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Table 2: Results single agent, with influent forecast

This table shows the performance of our seven different agents in the single agent environment with an influent
forecast. The performance on seven different performance measures is shown, which are defined in Section 5.
The average reward over all runs is denoted by Reward, with σReward denoting the standard deviation of
these rewards. The > r thres and < thres columns denote the number of violations of the upper and lower
threshold respectively over a 1000 time step run. The standard deviation of the actions of the agent is denoted
by σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively. The
best score for each performance measure is shown in bold.

Reward σReward > thres < thres σActions Q0.05 Q0.95

Random -988.47 209.20 3.63 814.10 5.381 0.000 0.098

Rule-based 3665.80 38.78 1.66 0.00 8.037 0.224 0.645

VI 3806.69 29.31 1.69 0.12 5.128 0.023 0.878

TRPO 3729.27 67.76 7.68 0.78 6.535 0.074 0.694

A2C 3212.48 580.19 166.63 1.46 4.614 0.062 1.328

PPO1 3764.26 55.73 3.79 0.05 5.960 0.036 0.510

PPO2 3730.33 103.41 10.31 0.21 5.923 0.069 0.634

that perform well manage to avoid the threshold boundaries. More importantly, they are able to

do this a lot better than they were without the influent forecast. For the value iteration, TRPO,

and PPO1 algorithms the number of errors dropped by about 70 %. This is a clear indication that

adding the influent forecast to the state space helps agents in their decision making.

A somewhat surprising result is that the PPO2 algorithm is not able to improve with the additional

information it is provided with. There is no clear reason for this, but given that these results are

based on 10 runs, we cannot rule out that this result is just a coincidence.

The next environment that we discuss is the multi-agent environment without the influent forecast.

For this environment, most of the metrics are on the exact same scale as they were for the first

two environments. This is not the case for the average reward and the standard deviation of the

reward. The reason for this is that the maximum achievable reward per time step increases from

4 in the single-agent case to 10 in the multi-agent case. We can therefore expect to see higher

rewards and standard deviations for the multi-agent environments. However, the scaling between

the single and multi-agent rewards should be around a factor of 2.5 (10 / 4). A threshold violation

is counted if at least one of the storage tanks is above its threshold value, the action standard

deviation is calculated over the total action the quantiles are calculated as the average of the two

storage tanks.

The results of this environment can be seen in Table 3 and are quite similar to what we have seen for

the single-agent environments. Like in all cases, the random agent still performs far worse than all

other agents. Similarly, the A2C algorithm is still the worst of all the deep reinforcement learning

algorithms. What is different this run is that TRPO is now the best deep reinforcement learning

algorithm, slightly outperforming both versions of the PPO algorithm. Upon further inspection

of the results, we see that this is due to a few bad runs in both the PPO algorithms which lower

the average performance of the algorithm. For the PPO1 algorithm, 8 out of 10 runs obtain an
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average reward above the TRPO score of 9024. Since the TRPO algorithm does not show any

negative outliers, it is highly likely that PPO1 is still the better algorithm for this environment,

even though this is not reflected in these results.

Table 3: Results multi agent, without influent forecast

This table shows the performance of our seven different agents in the multi agent environment without an
influent forecast. The performance on seven different performance measures is shown, which are defined in
Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the standard
deviation of these rewards. The > thres and < thres columns denote the number of violations of the upper
and lower threshold respectively over a 1000 time step run. The standard deviation of the actions of the agent is
denoted by σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.
The best score for each performance measure is shown in bold.

Reward σReward > thres < thres σActions Q0.05 Q0.95

Random 222.08 381.39 5.90 780.54 8.772 0.000 0.158

Rule-based 9022.40 129.59 2.43 0.00 12.223 0.227 0.659

VI 9452.17 150.25 12.71 0.04 6.887 0.058 0.953

TRPO 9024.52 1029.03 50.93 0.73 7.454 0.098 1.040

A2C 8150.40 472.52 64.73 17.65 13.215 0.080 0.850

PPO1 8979.62 872.06 67.22 0.23 6.679 0.052 0.963

PPO2 8892.67 910.48 67.28 0.08 7.617 0.136 1.022

Another surprising result in this environment is the good performance of the rule-based agent,

which is obtained by staying far away from the threshold values. However, it could very well be

that this performance stands merely because of the bad performance of the PPO algorithms. When

we compare the results of Tables 1 and 3 we see that in both cases the rule-based agent and the

TRPO agent perform at similar levels.

Finally, we can see that value iteration outperforms the other algorithms. This is in line with

what we saw in the single-agent environments. Again it obtains its good performance by using the

full range between the threshold values without making too many errors. Furthermore, when we

look at the standard deviation of the actions the algorithm does a good job of creating a constant

influent stream to the wastewater purification plant. These results are a clear indication that our

multi-agent adaptation works as intended since the algorithm outperforms the deep reinforcement

learning agents while still being faster in finding the optimal policy.

The final environment we look at is the multi-agent with the influent forecast. This environment

is the most realistic, so the agent that performs best in this environment is likely to do well in

real-world scenarios as well. The results for this environment can be seen in Table 4. When we

look at the results we see that these are completely in line with what we have seen in all other

environments. The random and rule-based agents did not change their behavior compared to the

previous environment, so the results for these agents are exactly the same as in Table 3.

When we go to the deep reinforcement learning methods we once again can see that the A2C

algorithm is worse than all other deep reinforcement learning agents. Compared to the single-

agent environments, the algorithm manages to make fewer errors regarding the lower and upper
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Table 4: Results multi agent, with influent forecast

This table shows the performance of our seven different agents in the multi agent environment with an influent
forecast. The performance on seven different performance measures is shown, which are defined in Section 5.
The average reward over all runs is denoted by Reward, with σReward denoting the standard deviation of
these rewards. The > thres and < thres columns denote the number of violations of the upper and lower
threshold respectively over a 1000 time step run. The standard deviation of the actions of the agent is denoted
by σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively. The
best score for each performance measure is shown in bold.

Reward σReward > thres < thres σActions Q0.05 Q0.95

Random 222.14 382.93 5.90 780.54 8.773 0.000 0.158

Rule-based 9022.40 129.59 2.43 0.00 12.223 0.227 0.659

VI 9500.74 95.47 5.18 0.07 7.079 0.060 0.952

TRPO 9202.37 366.82 22.11 0.77 8.734 0.109 0.819

A2C 8447.57 281.19 72.83 7.27 11.876 0.115 0.678

PPO1 9346.92 307.96 13.43 0.21 7.730 0.040 0.646

PPO2 9156.80 442.26 25.20 0.11 8.764 0.098 0.805

thresholds. However, the actions that are selected by the agent change a lot over time, which

results in the high action standard deviation. Like we see in most other environments, the PPO1

algorithm performs the best among the deep reinforcement learning methods both in terms of

staying within the thresholds and in minimizing the standard deviation of the actions.

However, value iteration is still the best method, a feat we have seen in all four environments.

To test if the average reward of the value iteration agent is significantly higher than the average

reward for all other agents, a mean comparison test with independent variances is performed. We

find that for almost all environments and agents value iteration performs significantly better at a

95% confidence level. The sole exception to this is the PPO1 agent in the multi-agent environment

without an influent forecast. While the difference in average reward is quite large between the

PPO1 and value iteration agents, the main cause of this was a single bad run for the PPO1 agent.

This increases the variance, leading to a mean comparison test with a p-value slightly above 0.05.

Overall we can conclude that value iteration is the best agent among those that have been tested.

Since value iteration performs best in all four environments, we use this algorithm to further analyze

the behavior of the agent. More specifically, we check if the agent shows the desired characteristics

like buffering, coordination between pumps, and anticipation of rain events. Furthermore, we

include some plots with actions produced by the rule-based agent as a comparison.

The first environment we consider is the single agent, no influent forecast environment. For this

environment, we discuss two scenarios; one without rainfall and one with rainfall. The first scenario

can be seen in Figure 20 and consists of 1000 time periods, which is roughly 4 days. We can see in

this figure that our scenario does not have any rain due to the lack of peaks in the influent pattern.

Furthermore, we can clearly see the daily pattern characterized by the double peak structure.
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Figure 20: Simulated influent in the single agent, no forecast environment (without rainfall)

In the figure above we can see an example of a simulated influent pattern in the single agent without influent
forecast environment. On the horizontal axis the time periods are shown, where 1000 time periods corresponds to
approximately 3.5 days. On the vertical axis the influent is shown in m3 per 5 minutes.

To see how the rule-based agent and value iteration agent copes with this scenario we need to go to

Figure 21. On the left-hand side, we can see the volume and actions of the rule-based agent. This

agent has a type of on/off behavior which can be seen in both the volume and action plots and is

explained in Section 4.1. The value iteration agent shows a different type of behavior. First of all,

the volume does not fluctuate as much as we see for the rule-based agent. Furthermore, the volume

that is registered approaches the upper threshold value closer (which is 350 in this case) and goes

closer to 0 as well. This is caused by choosing the minimum possible action when possible, with

the pump turned off in all the other time periods. Using the minimum possible action during the

day fills the storage tank, which is then depleted during the evening/night. We can see this as a

clear indication that the agent possesses the buffering characteristic we were looking for.

We can easily relate these plots to the results we saw in Table 1. In terms of reward, both

algorithms are able to collect the reward for staying between the threshold values in all time

periods. However, since value iteration only uses the minimum possible action to pump out water,

it receives the action-related part of the reward function more often (which is only given when

an action > 0 is chosen). This also explains how the algorithm is able to have a lower standard

deviation of its actions. The fact that value iteration uses buffering and gets closer to the threshold

value explains the results we saw for the volume quantiles.

The next scenario comes from the same single-agent, no influent forecast environment, but this

time it includes rainfall. We can see the influent pattern of this scenario in Figure 22. In this

scenario, there are several rain spells with the most noteworthy around the 500 time period mark.

However, given that the maximum capacity of the pump is 50 cubic meters of water per time

period, this should not pose a problem for both algorithms.
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Figure 21: Actions and volumes for the rule-based and value iteration agents (without rainfall)

In the four plots above can see the volume and actions of the rule-based and value iteration agents based on the
scenario shown in Figure 20. In the top left corner we can see the volume for the rule-based agent, with the actions
of this agent shown in the left bottom plot. On the right-hand side we can see the volume and actions for the value
iteration agent. In all plots the time step is shown on the horizontal axis, with the volume / action shown on the
vertical axis.

When we look at the behavior of the rule-based algorithm, we see that the rain spells cause longer

periods of non-zero actions by the agent. Some of these periods have a high, but brief peak. This

can be explained by the way the rule-based agent chooses its action. When the action reaches a

certain level, the agent does not lower the action until it stops the pump altogether. This can

be seen as a kind of overreaction by the agent since it still selects high actions after the peak in

influent has passed.

Value iteration takes a different approach to cope with rain spells. We can see that it uses the

extra influent to fill up the storage tank as long as it does not approach the upper threshold value.

This additional influent can be used during the night to keep the pump at minimum capacity for

a longer period of time. This is the more favorable approach since it results in an influent stream

to the wastewater treatment facility that is more evenly spread throughout the day. Furthermore,

it is another indication that the agent is able to use the storage tank as a buffer. Only when there

is rainfall and the storage tank is near the upper threshold value the action selected by the agent

goes up.
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Figure 22: Simulated influent in the single agent, no forecast environment (with rainfall)

In the figure above we can see an example of a simulated influent pattern in the single agent without influent
forecast environment. On the horizontal axis the time periods are shown, where 1000 time periods corresponds to
approximately 3.5 days. On the vertical axis the influent is shown in m3 per 5 minutes.

We can confirm this strategy by looking at the policy the value iteration agent follows, which is

shown in Figure 23. From this figure, it becomes clear that the value iteration agent selects the

minimum possible action (at 0.2 in this plot) as long as it stays below the 10% threshold. When the

threshold is violated, the optimal action goes up to lower the tank volume as quickly as possible.

Figure 23: Policy of the value iteration agent

In the figure above we can see the policy the value iteration agent uses in the single agent, no influent forecast
environment. On the horizontal axis we can see the volume in the storage tank in m3. On the vertical axis we can
see the optimal action, scaled between 0 (no action) and 1 (maximum possible action).
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Figure 24: Actions and volumes for the rule-based and value iteration agents (with rainfall)

In the four plots above can see the volume and actions of the rule-based and value iteration agents based on the
scenario shown in Figure 22. In the top left corner we can see the volume for the rule-based agent, with the actions
of this agent shown in the left bottom plot. On the right-hand side we can see the volume and actions for the value
iteration agent. In all plots the time step is shown on the horizontal axis, with the volume / action shown on the
vertical axis.

The next environment we look at is the single agent with influent forecast environment. Since the

rule-based agent does not use any of this additional information (and therefore does not change its

behavior), we only focus on the value iteration agent here. This environment allows us to check

whether the agent shows anticipating behavior when a large amount of influent is approaching.

To show this, we have selected a scenario with several rain spells, all with different characteristics.

We can see this scenario in Figure 25. In this figure we can see several rain spells. The first is in

the early stages of the scenario and is rather small. After that a brief, intense rain spell occurs,

followed by a longer intense rain event. The final noteworthy rain event occurs around time period

600.
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Figure 25: Simulated influent in the single agent, with forecast environment

In the figure above we can see an example of a simulated influent pattern in the single agent with influent fore-
cast environment. On the horizontal axis the time periods are shown, where 1000 time periods corresponds to
approximately 3.5 days. On the vertical axis the influent is shown in m3 per 5 minutes.

To see how the value iteration algorithm copes with this scenario we can look at Figure 26. We

can see that the first rain occurs when the storage tank is nearly empty. Given its low intensity the

agent processes this rain event by using the storage tank and letting the pump run at minimum

capacity. The second rain event occurs when the storage tank is around the 200 mark. We can

see a brief drop in the volume followed by a rapid increase. This drop indicated that the agent

anticipated the additional influent by increasing its action before the rain event arrived. We can

see the same more clearly in the longer intense rain spell. Before the rain event arrives there is a

drop in volume from around 300 to 150. This is followed by a spike to 800, but during this time

the pump is running at the maximum capacity of 50. This means that during this time the agent

cannot avoid going over the upper threshold of 350. Finally, we can see how the agent deals with

the rain event around time period 600. While this event is less intense than the two previously

discussed events, it still has influent values above the maximum action the agent can take. This

means that some anticipation is required to avoid going over the upper threshold. When we look

at the volume plot we see that this is indeed the strategy that the agent follows, indicated by the

brief dip and resurgence in volume around the 600 time period. These last three events are a clear

indication that our agent is able to anticipate based on the influent forecast it is provided with.

The next scenario we look at comes from the multi-agent with no influent forecast environment.

We are mainly interested if the agents can coordinate their individual actions to make the total

action as constant as possible. This is visible in times of low influent, as agents need to turn off

the pump at certain times. For this environment we use the same scenario as in Figure 20 but

rescaled for all agents. This scenario has no influent from rainwater, so we are able to see what

happens during the night where there is low influent. We see a scenario with rainwater later in

this subsection when we combine the multi-agent and influent forecast environments.
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Figure 26: Actions and volumes for the value iteration agent, single agent with influent forecast
environment

In the plots above can see the volume and actions of the value iteration agent based on the scenario shown in
Figure 25. On the left-hand side we can see the volume , whereas the right-hand side shows the actions taken by
the agent. In all plots the time step is shown on the horizontal axis, with the volume / action shown on the vertical
axis.

In Figure 27 we can see the actions taken by the individual agents on the left, as well as the

combined actions on the right. We can see that the first agent only uses the minimum possible

action along with no action, whereas the second agent uses the same combination in the beginning,

but switches between the lowest two actions later on. We can see that in the second part of our

scenario our agents are out of sync (i.e. only one of the agents is changing actions during a certain

time period). However, at the beginning of our sample we can see that both agents have to choose

between doing the minimum possible action and no action. If we were to see coordination between

agents agent 1 would do the minimum possible action when agent 2 does no action and vice versa.

When we look at the combined action of the two agents, this is indeed what we observe. Only

in the first time period when both storage tanks are at 0, we see that both agents choose to do

no action. After that the agents alternate between three options, only agent 1 does the minimum

action (resulting in a total action of 15), only agent 2 does the minimum action (resulting in a

total action of around 10), or they both do the minimum possible action (resulting in a total

action of around 25). The fact that the total action is always above 0 is a clear indication that the

agents coordinate their actions, meaning that our multi-agent adaptation of value iteration works

as intended.
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Figure 27: Individual and total action for the value iteration agent, multi agent without influent
forecast environment

In the two plots above we can see the actions per agent, as well as the joint action of the two agents. These actions
are selected in response to the influent pattern shown in Figure 20. In all the plots the time step is shown on the
horizontal axis, with the action shown in the vertical axis.

Finally, we move on to a multi-agent with influent forecast environment. So far we have seen

that our agent is able to show all the desired characteristics when tested in isolation, which were

buffering, anticipation, and coordination. This final environment allows us to test if this still holds

when we apply our agent to the most realistic environment.

In Figure 28 we can see four different types of graphs. In the top left corner we see the influent for

our two agents. These influent patterns are very similar and differ only in the scaling of the daily

pattern and the amount of influent each millimeter of rain generates. Given that these parameters

are close to each other in our case, the two influent patterns look very similar. In this pattern, we

see several rain events, the two most important of those in the middle of our scenario.

The first characteristic we are looking for is buffering. We can see clear evidence of this character-

istic in the right upper corner, which displays the volumes in both storage tanks. We can see for

both agents that they let the volume increase during the day to right under the threshold (350 and

250 for agents 1 and 2, respectively). During the night this buffer is used to choose the minimum

possible action for a longer time than otherwise would have been possible.

The second characteristic we are looking for is anticipation. To do this we once again look at the

volume plot in the top right corner. For the first large rain event we observe that agent 2 lowers

the volume in the storage tank before the event arrives. Agent 1 seems to do this but only to a

smaller degree, which can be explained by the margin between the volume and upper threshold

at that time. The influent coming from the rain event is processed with the maximum action

available to the agents as shown in the bottom left corner. When the second rain event arrives we

see that both agents anticipate this event by lowering their volumes, albeit to a lesser degree this

time. This is explained by the lower intensity of the second rain event. Overall, we still see clear

signs of anticipation in our agents.

66



6 RESULTS

Figure 28: Behaviour of the value iteration agent in the multi agent with influent forecast envi-
ronment.

In the four figures above we can see various aspects of the value iteration agents behaviour in the multi agent with
influent forecast environment. In the top left we see the influent the agents are faced with. In the top right the
volume of both agents is shown over time. In the bottom two plots we can see the actions of the individual agents
(left) and their collective actions (right).

The final characteristic we look for is coordination. To do this, we take the same approach as we

did in the multi-agent, no influent forecast environment. This time we see two parts in our sample

where both agents have to turn off the pumps in some time periods, which is at the beginning and

end of our scenario. When we look at the combined action of our two agents we see that other than

the very first time period, at least one of the two agents selects a non-zero action in every time

period. Given that this occurs quite often for each agent individually this is a clear indication that

coordination is still present between our agents in this final environment. To conclude, we have

clear evidence that our value iteration agent displays all the desired characteristics, both when

tested in isolation and combined into a single realistic environment.

6.3 Sensitivity analysis

The final part of this results section focuses on performing a sensitivity analysis. A sensitivity

analysis is defined as ”a local measure of the effect of a given input on a given output” (Saltelli et al.,

2004, p. 42). So far we have seen that the value iteration agents work very well in the environments

that were created. To improve the generalizability of these results we adjust the parameters that
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determine the environment and observe if our findings from the previous subsection still hold. We

do this by adjusting these environment parameters one at a time in both an upward as downward

direction. We have chosen to adjust these parameters by 25% since this gives a shock large enough

to change the environment in a meaningful way without creating unrealistic scenarios.

There are six different environment parameters we adjust in this sensitivity analysis. Three of

these parameters are related to the pumps the agents can control. These parameters are the

maximum volume of the storage tank, the minimum action the agent can take, and the maximum

action the agent can take. The volume of the storage tank also determines the upper threshold

value, since this is defined as 10% of the maximum capacity. The minimum and maximum possible

actions determine the range of actions each agent can take. Furthermore, since the value iteration

algorithm has a finite number of actions which are spaced linearly between 0 and the maximum

action this impacts the actions of the value iteration agent as well. Another parameter is the amount

of influent each millimeter of rain causes, which determines the balance between wastewater and

rainwater. The final two parameters are κ and σ, which play a role in simulating the scaling factor

of the wastewater. The mean reversion rate is determined by κ, whereas σ determines how much

variation this scaling factor has.

Along with the six parameters that were just discussed there is one other factor we include in this

sensitivity analysis. This is the number of agents in our multi-agent environments. The results of

Section 6.2 were based on a setting that had 2 agents. Since it is not unusual for a facility to have

more than 2 agents we test our algorithms in a setting with 5 agents. In this setting agents 1, 3,

and 5 share the same environment parameters and agents 2 and 4 share environment parameters.

This means that these agents get the same influent and use the same threshold values, but their

actions differ since these are independent.

To limit the size of this section we focus on three agents in this subsection; rule-based, value

iteration, and PPO1. The rule-based agent is selected to allow us to make a comparison with the

currently used method, value iteration due to its good performance and PPO1 since it was the best

deep reinforcement learning methods. Furthermore, we mainly discuss results for the multi-agent

with influent forecast environment. Results for other environments can be found in Appendix E. 5

We start with the results for the rule-based agent. In Table 5 we can see the results for each of the

13 parameter changes that we have tested. We can see that overall, this agent does a very good

job of obtaining results that are close to the baseline results from Section 6.2. In terms of rewards,

a few scenarios stand out. The first two that stand out are the minimum action going up and

the maximum action going down, which both show below-average rewards. These scenarios limit

the range of actions our agent can choose from, making it harder to generate a constant action.

Furthermore, for the minimum action going up this results in the agent selecting an action of 0

5Results for all other agents are available on request

68



6 RESULTS

Table 5: Sensitivity results rule-based, multi agent, with influent forecast

This table shows the performance of the rule-based agent in the sensitivity analysis for the multi agent envi-
ronment with an influent forecast. The performance on seven different performance measures is shown, which
are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the
standard deviation of these rewards. The > thres and < thres columns denote the number of violations of
the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 9026.66 126.61 2.11 0.00 12.155 0.230 0.657

Down 8995.52 132.78 2.91 0.00 12.457 0.222 0.662

Min. action Up 8713.16 122.37 2.28 0.00 14.144 0.214 0.627

Down 9157.64 129.22 2.53 0.00 11.977 0.239 0.694

Max. action Up 9132.67 103.87 1.43 0.00 12.724 0.224 0.637

Down 8748.42 193.47 5.10 0.00 11.600 0.231 0.714

Influent per mm Up 8984.39 167.46 4.11 0.00 12.917 0.227 0.678

Down 9052.05 95.11 1.20 0.00 11.599 0.227 0.646

κ Up 9029.47 130.99 2.43 0.00 12.123 0.227 0.657

Down 9015.43 128.81 2.42 0.00 12.342 0.227 0.662

σ Up 9002.03 131.34 2.44 0.00 12.502 0.226 0.664

Down 9035.22 126.91 2.43 0.00 12.040 0.227 0.655

Agents Up 22524.20 313.24 2.27 0.00 31.872 0.226 0.656

more often, which is not rewarded. The other scenario that stands out is the scenario with five

agents. However, this high reward is caused by the increased number of agents and disappears

when we scale the reward back to two agents (22, 500/5 ∗ 2 ≈ 9000).

Next, we look at the value iteration agent. When looking at this agent in isolation we see the

same patterns as we saw for the rule-based agent. It is therefore more interesting to compare the

value iteration agent with the rule-based agent to see which performs better. When looking at

the average reward, we see that the value iteration agent performs better in all the scenarios it

is provided with. It can obtain these higher rewards in the same way as we saw in Section 6.2,

which is by using the range between the threshold values more effective and choosing actions with

a lower standard deviation. This does come at the cost of surpassing both threshold values more

often, but the loss in reward because of this is marginal compared to the benefits this strategy has.

Finally, we look at the results of the best deep reinforcement learning algorithm we have, based on

the results from Section 6.2, which is PPO1. The results for this algorithm are shown in Table 7.

We again see that the model performs less well in the minimum action up and maximum action

down scenarios. Furthermore, we see a low average reward in the scenario with more noise around

the scaling factor. However, this is caused by a single run where the model for some reason was

not able to converge to a good policy. Without this run, the average reward would be around 9000,

which is in line with all the other scenarios. When we look at the scenario with 5 agents we see that

the deep reinforcement learning algorithm performs much worse than we would expect. It seems
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Table 6: Sensitivity results value iteration, multi agent, with influent forecast

This table shows the performance of the value iteration agent in the sensitivity analysis for the multi agent
environment with an influent forecast. The performance on seven different performance measures is shown,
which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting
the standard deviation of these rewards. The > thres and < thres columns denote the number of violations
of the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 9517.56 90.42 4.74 0.06 6.637 0.062 0.926

Down 9462.09 104.51 7.38 0.13 7.696 0.059 0.972

Min. action Up 9194.77 84.17 2.43 0.23 9.196 0.067 0.573

Down 9578.65 111.71 7.42 0.15 8.461 0.246 0.983

Max. action Up 9637.07 66.39 3.20 0.07 7.450 0.059 0.944

Down 9208.68 169.77 8.35 0.10 6.945 0.062 0.974

Influent per mm Up 9474.07 135.01 7.46 0.09 7.709 0.065 0.963

Down 9517.07 62.98 4.03 0.05 6.518 0.056 0.943

κ Up 9506.51 95.40 5.01 0.05 6.980 0.061 0.948

Down 9483.95 99.70 6.39 0.13 7.263 0.057 0.956

σ Up 9485.15 98.91 6.12 0.15 7.299 0.057 0.958

Down 9509.30 95.25 4.90 0.05 6.918 0.061 0.944

Agents Up 23744.70 212.06 3.04 0.10 17.985 0.043 0.929

like this is caused by the high standard deviation in the actions that are selected by the agent.

An explanation for this bad performance could be that this agent is trained using the optimal

parameters in a 2 agent setting. Testing different parameter settings as we did in Section 6.2 could

benefit the performance in this scenario for the PPO1 agent.

When we compare the results of the PPO1 agent with the two other agents we see that the rule-

based agent and the PPO1 agent often obtain similar rewards. This is in contrast to the results

in Section 6.2 where the PPO1 often outperformed the rule-based agent. However, it could very

well be that testing different parameters for the PPO1 agent in all scenario’s would improve the

results this agent obtains. The value iteration agent outperforms both the rule-based agent and

the PPO1 agent in all scenarios, strengthening our belief that the value iteration agent is the most

effective in finding the optimal policy.
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Table 7: Sensitivity results PPO1, multi agent, with influent forecast

This table shows the performance of the PPO1 agent in the sensitivity analysis for the multi agent environment
with an influent forecast. The performance on seven different performance measures is shown, which are defined
in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the standard
deviation of these rewards. The > thres and < thres columns denote the number of violations of the upper
and lower threshold respectively. The standard deviation of the actions of the agent is denoted by σActions.
Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 9095.73 304.22 15.23 0.01 11.405 0.080 0.631

Down 8955.25 196.45 10.55 0.05 13.632 0.138 0.684

Min. action Up 8416.17 166.54 7.21 0.42 17.403 0.099 0.525

Down 9156.31 285.95 30.04 0.00 10.766 0.123 0.729

Max. action Up 9158.19 206.09 16.46 0.01 13.503 0.115 0.707

Down 8324.36 196.95 7.08 0.42 12.993 0.094 0.480

Influent per mm Up 8756.84 203.37 9.21 0.04 16.358 0.102 0.569

Down 8956.35 181.68 8.98 0.07 13.408 0.094 0.573

κ Up 8922.27 214.77 27.25 0.00 12.609 0.112 0.693

Down 9036.36 258.09 20.45 0.00 11.709 0.103 0.669

σ Up 8418.48 298.33 75.79 3.65 12.721 0.121 1.213

Down 9092.35 275.23 14.96 0.00 11.564 0.103 0.678

Agents Up 17890.60 424.16 16.55 0.02 59.288 0.183 0.752
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7 Conclusion

In today’s rapidly digitizing world, waterschappen are faced with the challenge of making their

operations more efficient using new technologies. In this thesis, we have looked into the problem

of controlling the influent of water into a water purification plant through the use of planning and

reinforcement learning methods. These methods are compared to the method that is currently used

in four different environments. The environments build on one another adding more complexity

every time to create an environment that closely resembles reality.

In the design of the environments, a lot of emphasis is placed on basing our environment parameters

on real data. Furthermore, the design of every environment is based on several characteristics that

are present in the real dataset. For example, it was noted that the gradient boosting regressor

produced errors that were both dependent on time and the amount of rainfall in the next hour.

Our simulation environment was designed in such a way that it is able to produce the same type of

errors to make our simulator as realistic as possible. From the results in Section 6.2 we can conclude

that our simulator can match the same characteristics as the real data / predictive models.

The way the environments and reward function are set up stimulates three different types of

behavior. The daily pattern in the wastewater combined with the flexibility the agents are given

regarding the storage tank volume stimulates buffering behavior. This buffering behavior means

that agents fill up the storage tank throughout the day (when influent is high) and deplete this

during the night (when influent is low). The next characteristic is anticipation on periods with

high influent (i.e. rainy periods), which can be achieved through the influent forecast agents are

provided with. Finally, we stimulate coordination between agents by rewarding their collective

actions.

The agents that are used in this thesis have all been set up in such a way that they are close to

their best possible performance. The currently used rule-based agent is set up based on information

from the waterschap, where it is currently used. The value iteration agent is designed specifically

to function well in our environments. Finally, deep reinforcement learning methods are generic

methods to solve reinforcement learning problems. To optimize their performance these models

are tested using different parameter settings to adapt them to our problem.

When we tested our agents we saw very similar results in all four environments. The rule-based

agent did a good job to stay between the thresholds we have set on the volume in the storage tank.

However, this agent is less efficient is choosing constant actions due to a lack of buffering behavior.

Furthermore, the agent does not anticipate on future rainfall and lacks coordination between the

agents. We can conclude that this agent sets a decent baseline performance, especially in single-

agent settings. However, it lacks the three behavioral characteristics we were looking for in our

agent.
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The deep reinforcement learning methods were often able to obtain slightly better performance

than the rule-based agent. The downside of this agent is that it obtains these results without a

clear strategy. In some instances, the agent improves its performance by approaching the threshold

values more often, whereas in other instances it stays far away from these thresholds. The cause

of this is the stochastic nature of this class of algorithms, which implies that the agent does not

always come to the same strategy. Given that the performance difference between runs can be

quite substantial for this class of algorithms using these types of agents is not ideal.

In light of this, we can confidently conclude that our tailor-made value iteration agent was the best

in finding the optimal policy. The adaptations made to the value iteration algorithm are one of

the key contributions made in this thesis. It constantly outperformed all the other agents, giving

significantly higher rewards in nearly all cases. Additionally, our adaptation of the algorithm is

near deterministic with the only source of variance being the estimated distributions of influent

and forecasted influent. Since these distributions are estimated based on a large number of time

steps we see very little variation in the outcome of our algorithm, with average rewards within

a 0.2 point margin in our 10 test runs. Furthermore, the policy of this agent is easily visualized

using the state-action values which makes it more transparent than deep reinforcement learning.

When we analyzed the behavior of the value iteration agent we concluded that it shows all three

behavioral characteristics we were looking for in our agents, both when tested in isolation and

combined. We can explain this good performance by the fact that standard value iteration is

guaranteed to find the optimal policy. While we lost this guarantee through the discretization of

our actions, adding buckets for the influent forecast, and adding the multi-agent adaptation, the

loss in performance is relatively small.

The sensitivity analysis we conducted further confirmed the belief that value iteration is the best

agent. In the 13 different ways the environment was adjusted, value iteration performed best in

all of them. From this we can conclude that value iteration also works in scenarios where the

environment contains more/less noise, the agent has a different set of actions, the influent of rain

is larger/smaller, and the number of agents is higher. This makes our results promising for other

wastewater treatment plants given that these plants are facing a similar problem.

For Ynformed / waterschap Rijnland this thesis is of value in several different ways. First of all, this

thesis adds to the knowledge present within Ynformed in the field of planning and reinforcement

learning. This is a field in which Ynformed has shown a large interest, but a lack of projects makes

it hard to gain expertise. Second of all, the environments that are created can be of added value

in future projects in the water sector. Elements like the daily wastewater pattern or rainfall are

often of importance and having a simulator for this can be of help. For waterschap Rijnland this

thesis serves as a proof of concept that they can manage their wastewater purification plant more

efficiently than is currently done.
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8 Recommendations for Future Work

In the last section of this thesis, we discuss the shortcomings of our method, how to improve on

these shortcomings, and which elements of our method could benefit most from future research.

Naturally, some topics benefit from future research that are not discussed in this section. However,

based on our current knowledge of our method, these are the most natural extensions of the method

The first extension is related to the simulation of influent for multi-agent environments. Under

the current method, all agents receive influent based on the same scaling factor and precipitation.

This is converted to an influent series based on the environment parameters for each agent like the

scale of the daily wastewater pattern and the amount of influent per millimeter of rain. While it

is likely that that the scaling factors and rainfall are related for different agents, there are likely

differences present in the scaling factor/rainfall between agents that are currently neglected. The

same holds for the forecast that is created for the total rainfall in the next hour.

To improve this element of the simulation process we could adapt a multivariate model to simulate

the scaling factor, rainfall, and forecast of rainfall in the next hour. To do this the parameter

estimation would have to be adjusted to not only estimate the current model parameters but

also some measure of how the two (or more) agents are related. These parameters could be used

to simulate from a multivariate model. For rainfall, this process is even more complicated since

generating this series consists of three steps. All of these steps must be altered to have a full

multivariate model.

Another extension that can be made to the environment is related to the influent rainfall produces.

In the current setup, rainfall causes influent in the same time period that it is registered. In reality,

there is some lag between the time periods the rainfall is registered and the time period it arrives

at the wastewater purification facility. This time difference is related to the time it takes the

rainwater to flow from the point where it enters the sewage system to the wastewater purification

facility.

The third extension is to expand the parameter analysis step that was performed in Section 6.2.

The deep reinforcement learning models take a long time to train and evaluate, hence the amount

of parameter combinations that were evaluated in this step is limited. Testing more parameter

combinations could lead to better performance of the deep reinforcement learning models. Fur-

thermore, finding good parameter settings could also help with the high variability we see in the

strategy of these agents since a good parameter setting will consistently converge to the same

policy.

Another extension would be to adjust the reward function to avoid constant action switching. We

saw that the value iteration agent alternates between the minimum possible action and no action
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during the night. Doing so is not desired from a pump maintenance perspective, as parts wear out

quicker when actions alternate a lot. Adding an element to the reward function that penalizes this

type of behavior can help to solve this inefficiency of the value iteration agent.

Finally, the value iteration agent can be fine-tuned to improve its performance slightly. This

fine-tuning step is related to the bucket boundaries of the influent forecast. Currently, these

boundaries are based on the quantiles of the influent forecast distribution, using high quantiles to

realize different behavior in times of high expected influent. Setting these bucket boundaries in a

different way changes the behavior of our value iteration agent, potentially improving performance.
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A Deriving Maximum Likelihood Estimators

During the simulation of rainwater, we have fitted distributions on several aspects of the process.

Naturally, the shape of these distributions is determined by one or more parameters. To make

the simulation as realistic as possible, we fitted these parameters on the data using a Maximum

Likelihood approach. In this appendix, we derive the closed-form expressions for these estimators.

We do this for three different distributions; those being the exponential, gamma, and log-normal

distribution.

A.1 Exponential Distribution

The first Maximum Likelihood Estimator that we derive is for the exponential distribution. This

distribution has a single parameter λ. This parameter determines the average rate at which events

occur.

The starting point to derive the Maximum Likelihood Estimator is the density function of the

exponential distribution. This density function can be seen in Equation A.1.

f(x) = λe−λx (A.1)

We can use this equation to derive the likelihood function, which can be seen in Equation A.2.

L(λ) =
n∏
i=1

(
λe−λxi

)

= λn
n∏
i=1

e−λxi

(A.2)

This likelihood function is transformed into the log-likelihood function. Some simplification steps

are performed to make it easier to take the derivative of this function.

L(λ) = ln

(
λn

n∏
i=1

e−λxi

)

= n ln(λ) +
n∑
i=1

ln(e−λxi)

= n ln(λ)− λ
n∑
i=1

xi

(A.3)

If we take the derivative of the log-likelihood function with respect to λ and set this to 0, we can

find the Maximum Likelihood Estimator θ̂.
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∂L
∂λ

=
n

λ
−

n∑
i=1

xi

⇒n

λ̂
−

n∑
i=1

xi = 0

⇒n

λ̂
=

n∑
i=1

xi

⇒λ̂ =
n∑n
i=1 xi

(A.4)

A.2 Gamma Distribution

The second Maximum Likelihood Estimator that we derive is for the gamma distribution. This

distribution can be characterized in multiple ways. For this derivation, we use the version with a

shape parameter κ and a scale parameter θ. The density of this characterization can be seen in

Equation A.5.

f(x) =
1

Γ(κ)θκ
xκ−1e−x/θ (A.5)

In the density above, Γ(κ) represents the Gamma function. Again, we create a likelihood function

based on the density as stated above.

L(κ, θ) =
n∏
i=1

(
1

Γ(κ)θκ
xκ−1i e−xi/θ

)
(A.6)

We derive the log-likelihood function by taking the natural logarithm of this likelihood function.

We simplify the log-likelihood function by recognizing that the log of a product is equal to the sum

of the individual logarithms.

L(κ, θ) = ln

( n∏
i=1

1

Γ(κ)θκ
xκ−1i e−xi/θ

)

=
n∑
i=1

(
(κ− 1) ln(xi)−

xi
θ
− ln(Γ(κ))− κ ln(θ)

)

= (κ− 1)
n∑
i=1

ln(xi)−
n∑
i=1

xi
θ
− n ln(Γ(κ))− nκ ln(θ)

(A.7)

The problem with this log-likelihood function is that when we take the derivative with respect to κ,

it is impossible to find a closed-form solution for κ̂. To circumvent this, we use the approximation

from Zhi-Sheng and Chen (2017). Their method derives these estimators based on the generalized

gamma distribution using log-moment estimators. This method is not fully equivalent to Maximum
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Likelihood, but the authors show that the found approximations have similar performance and

efficiency. The parameter estimates are given by the following formulas.

κ̂ =
n
∑n
i=1 xi

n
∑n
i=1 xi ln(xi)−

∑n
i=1 ln(xi)

∑n
i=1 xi

θ̂ =
1

n2

(
n

n∑
i=1

xi ln(xi)−
n∑
i=1

ln(xi)
n∑
i=1

xi

) (A.8)

A.3 Log-normal Distribution

Finally, we derive the Maximum Likelihood Estimator for the log-normal distribution. This distri-

bution has two parameters, those being µ and σ. These parameters denote the mean and variance

of the distribution respectively. Again, we start off by writing down the density of the distribution

as shown in Equation A.9.

f(x) =
1

x
√

2πσ2
exp

[
− (ln(x)− µ)2

2σ2

]
(A.9)

This density is converted into a likelihood function. We simplify this equation slightly to make it

easier to take the logarithm in the next step.

L(µ, σ2) =
n∏
i=1

(
1

xi
√

2πσ2
exp

[
− (ln(xi)− µ)2

2σ2

])

= (2πσ2)−n/2
n∏
i=1

(
1

xi
exp

[
− (ln(xi)− µ)2

2σ2

]) (A.10)

We obtain the log-likelihood by taking the logarithm of Equation A.10. The result of this can be

seen below.

L(µ, σ2) = ln

(
(2πσ2)−n/2

n∏
i=1

(
1

xi
exp

[
− (ln(xi)− µ)2

2σ2

]))

= −n
2

ln(2πσ2)−
n∑
i=1

ln(xi)−
n∑
i=1

(ln(xi)− µ)2

2σ2

(A.11)

Using the log-likelihood function, we can now take the derivative with respect to the parameters

and set these derivatives to 0. When we solve for µ and σ, we get the Maximum Likelihood

Estimators. The result of this can be seen in Equations A.12 and A.13
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∂L
∂µ

=
n∑
i=1

2(ln(xi)− µ)

2σ2

⇒
n∑
i=1

(ln(xi)− µ̂)

σ2
= 0

⇒
n∑
i=1

ln(xi) =
n∑
i=1

µ̂

⇒
n∑
i=1

ln(xi) = nµ̂

⇒µ̂ =
1

n

n∑
i=1

ln(xi)

(A.12)

∂L
∂σ2

=− n

2

1

σ2
+

n∑
i=1

(ln(xi)− µ̂)2

2(σ2)2

⇒
n∑
i=1

(ln(xi)− µ̂)2

2 ˆ(σ2)
2 − n

2σ̂2
= 0

⇒
n∑
i=1

(ln(xi)− µ̂)2

σ̂2
= n

⇒σ̂2 =
1

n

n∑
i=1

(
ln(xi)− µ̂

)2
(A.13)

Which correspond to the Maximum Likelihood Estimators that were used in Section 3.
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B Deriving Method of Moments Estimators

To model the event profiles in Section 3.2 we made use of the beta distribution. The parameters of

this distribution were calculated on different points of the mass curve using a method of moments

estimator. In this appendix, we derive this estimator and show that the equations used (as stated

in Equation 3.10) are the correct ones.

B.1 Beta Distribution

Deriving the method of moments estimator for a given distribution involves taking the analytical

expressions for the first few moments and rewriting them into parameter estimates. Since the beta

distribution has two parameters, we need expressions for the mean and variance. As stated by

Owen (2008), these expressions are as follows.

E(x) =
α

α+ β

Var(X) =
αβ

(α+ β)2(α+ β + 1)

(B.1)

We approximate the mean and variance by the sample mean x̄ = 1
n

∑n
i=1 xi and sample variance

s2 = 1
n−1

∑n
i=1(xi − x̄)2. Using this approximation we can write one of the parameters (β) in

terms of the other parameter α and sample mean.

x̄ =
α

α+ β

⇒ α+ β =
α

x̄

⇒ β =
α

x̄
− α

(B.2)

Using this relation between the distribution parameters we can derive an expression for α in terms

of the sample mean and variance.
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s2 =
αβ

(α+ β)2(α+ β + 1)

⇒ (α+ β)2(α+ β + 1)s2 = αβ

⇒ (α+
α

x̄
− α)2(α+

α

x̄
− α+ 1)s2 = α

(
α

x̄
− α

)
⇒
(
α

x̄

)2(
α

x̄
+ 1

)
s2 =

α2

x̄
− α2

⇒ α2

(
1

x̄2

)(
α

x̄
+ 1

)
s2 = α2

(
1

x̄
− 1

)
⇒ α

x̄
+ 1 =

(
1

x̄
− 1

)(
x̄2

s2

)
⇒ α

x̄
+ 1 =

x̄− x̄2

s2

⇒ α

x̄
=
x̄(1− x̄)

s2
− 1

⇒ α = x̄

(
x̄(1− x̄)

s2
− 1

)

(B.3)

Substituting this into the found relation between α and β gives us an analytical expression for β

as well.

β =
α

x̄
− α

⇒ β =
α

x̄
− αx̄

x̄

⇒ β = α

(
1− x̄
x̄

)
⇒ β =

(
1− x̄
x̄

)
x̄

(
x̄(1− x̄)

s2
− 1

)
⇒ β = (1− x̄)

(
x̄(1− x̄)

s2
− 1

)
(B.4)

Which combined gives us the same parameter estimates as stated under Equation 3.10.

α̂ = x̄

(
x̄(1− x̄)

s2
− 1

)
β̂ = (1− x̄)

(
x̄(1− x̄)

s2
− 1

) (B.5)
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C Estimated parameter values for the event profiles

Table 8: Estimated parameter values for the dimensionless mass curves

In the table below we can observe the estimated parameter for the dimensionless mass curves at 24 linearly spaced
points along the curve. These parameter estimates are obtained using the method of moments estimators as derived
in Appendix B and are used to simulate event profiles in our influent simulator.

Percentile Alpha Beta

0.04 1.816 53.707

0.08 1.718 46.784

0.12 1.604 39.090

0.16 1.510 32.879

0.20 1.525 30.263

0.24 1.645 28.809

0.28 1.646 25.885

0.32 1.362 19.216

0.36 1.990 25.696

0.40 1.914 22.783

0.44 2.057 22.471

0.48 1.507 14.423

0.52 2.107 18.891

0.56 3.151 28.033

0.60 2.630 20.560

0.64 2.712 18.804

0.68 2.426 14.326

0.72 3.948 22.260

0.76 3.278 15.434

0.80 3.973 16.128

0.84 6.095 20.898

0.88 8.182 21.758

0.92 15.192 27.959

0.96 35.710 33.947
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D Parameter optimization results for deep reinforcement

learning algorithms

D.1 Trust Region Policy Optimization (TRPO)

Table 9: Results TRPO single agent, without influent forecast

This table shows the results of the parameter analysis for the TRPO agent in the single agent environment
without an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter.
The performance on seven different performance measures is shown, which are defined in Section 5. The average
reward over all runs is denoted by Reward, with σReward denoting the standard deviation of these rewards. The
> thres and < thres columns denote the number of violations of the upper and lower threshold respectively.
The standard deviation of the actions of the agent is denoted by σActions. Finally, the lower and upper 5%
quantile are represented by Q0.05 and Q0.95 respectively. The best score for each performance measure is shown
in bold.

Nbatch λ Reward σReward > thres < thres σActions Q0.05 Q0.95

5000 0.98 3548.37 254.18 67.23 0.22 5.499 0.170 0.892

5000 0.99 3665.49 128.47 24.64 0.76 6.408 0.314 0.688

10,000 0.98 3529.16 218.12 74.35 0.31 5.418 0.189 0.920

10,000 0.99 3068.07 108.17 114.94 0.25 5.650 0.365 1.637

20,000 0.98 3570.85 226.25 59.40 0.53 5.584 0.247 0.952

20,000 0.99 3030.13 183.38 128.7 0.55 5.355 0.341 1.717

Table 10: Results TRPO single agent, with influent forecast

This table shows the results of the parameter analysis for the TRPO agent in the single agent environment
with an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter. The
performance on seven different performance measures is shown, which are defined in Section 5. The average
reward over all runs is denoted by Reward, with σReward denoting the standard deviation of these rewards. The
> thres and < thres columns denote the number of violations of the upper and lower threshold respectively.
The standard deviation of the actions of the agent is denoted by σActions. Finally, the lower and upper 5%
quantile are represented by Q0.05 and Q0.95 respectively. The best score for each performance measure is shown
in bold.

Nbatch λ Reward σReward > thres < thres σActions Q0.05 Q0.95

5000 0.98 3713.02 73.83 9.96 0.72 6.566 0.059 0.643

5000 0.99 3055.28 194.28 122.24 0.65 5.779 0.204 1.731

10,000 0.98 3729.27 67.76 7.68 0.78 6.535 0.074 0.694

10,000 0.99 3554.08 97.11 55.71 0.73 6.699 0.141 0.754

20,000 0.98 3722.70 82.87 10.66 0.79 6.379 0.094 0.734

20,000 0.99 3724.99 83.91 8.73 0.78 6.480 0.072 0.676
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Table 11: Results TRPO multi agent, without influent forecast

This table shows the results of the parameter analysis for the TRPO agent in the multi agent environment
without an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter.
The performance on seven different performance measures is shown, which are defined in Section 5. The average
reward over all runs is denoted by Reward, with σReward denoting the standard deviation of these rewards. The
> thres and < thres columns denote the number of violations of the upper and lower threshold respectively.
The standard deviation of the actions of the agent is denoted by σActions. Finally, the lower and upper 5%
quantile are represented by Q0.05 and Q0.95 respectively. The best score for each performance measure is shown
in bold.

Nbatch λ Reward σReward > thres < thres σActions Q0.05 Q0.95

5000 0.98 7886.91 1743.11 187.99 6.47 7.083 0.103 1.764

5000 0.99 8693.79 1325.32 90.54 0.89 7.681 0.118 1.209

10,000 0.98 8591.04 1756.94 104.03 0.83 7.054 0.096 1.338

10,000 0.99 9014.11 830.36 49.94 0.84 7.958 0.105 1.018

20,000 0.98 9024.52 1029.03 50.93 0.73 7.454 0.098 1.040

20,000 0.99 8949.55 931.65 55.56 0.77 7.982 0.120 1.030

Table 12: Results TRPO multi agent, with influent forecast

This table shows the results of the parameter analysis for the TRPO agent in the multi agent environment
with an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter. The
performance on seven different performance measures is shown, which are defined in Section 5. The average
reward over all runs is denoted by Reward, with σReward denoting the standard deviation of these rewards. The
> thres and < thres columns denote the number of violations of the upper and lower threshold respectively.
The standard deviation of the actions of the agent is denoted by σActions. Finally, the lower and upper 5%
quantile are represented by Q0.05 and Q0.95 respectively. The best score for each performance measure is shown
in bold.

Nbatch λ Reward σReward > thres < thres σActions Q0.05 Q0.95

5000 0.98 9074.67 522.90 44.95 0.74 8.395 0.073 0.889

5000 0.99 9157.95 399.78 25.28 0.75 9.173 0.119 0.859

10,000 0.98 9196.81 365.16 25.61 0.75 8.572 0.071 0.817

10,000 0.99 9202.37 366.82 22.11 0.77 8.734 0.109 0.819

20,000 0.98 9191.97 463.62 27.40 0.73 8.256 0.075 0.854

20,000 0.99 9191.63 422.35 22.07 0.73 8.779 0.101 0.777
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D.2 Advantage Actor Critic (A2C)

Table 13: Results A2C single agent, without influent forecast

This table shows the results of the parameter analysis for the A2C agent in the single agent environment
without an influent forecast. The batch size is denoted by Nbatch whereas Ent.coef. denotes the entropy
coefficient. The performance on seven different performance measures is shown, which are defined in Section 5.
The average reward over all runs is denoted by Reward, with σReward denoting the standard deviation of these
rewards. The > thres and < thres columns denote the number of violations of the upper and lower threshold
respectively. The standard deviation of the actions of the agent is denoted by σActions. Finally, the lower
and upper 5% quantile are represented by Q0.05 and Q0.95 respectively. The best score for each performance
measure is shown in bold.

Nbatch Ent.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

25 0.01 877.56 400.09 497.05 4.31 2.754 0.725 4.875

25 0.02 2008.01 346.04 274.38 33.35 4.953 0.385 2.722

50 0.01 1676.93 140.87 335.97 0.49 5.348 0.589 3.386

50 0.02 -670.89 59.95 682.40 0.09 2.651 1.179 7.151

100 0.01 -662.70 84.72 682.42 0.57 2.808 1.160 7.118

100 0.02 -821.73 160.16 727.62 0.14 2.889 1.122 7.340

Table 14: Results A2C single agent, with influent forecast

This table shows the results of the parameter analysis for the A2C agent in the single agent environment with
an influent forecast. The batch size is denoted by Nbatch whereas Ent.coef. denotes the entropy coefficient. The
performance on seven different performance measures is shown, which are defined in Section 5. The average
reward over all runs is denoted by Reward, with σReward denoting the standard deviation of these rewards. The
> thres and < thres columns denote the number of violations of the upper and lower threshold respectively.
The standard deviation of the actions of the agent is denoted by σActions. Finally, the lower and upper 5%
quantile are represented by Q0.05 and Q0.95 respectively. The best score for each performance measure is shown
in bold.

Nbatch Ent.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

25 0.01 3171.68 707.63 177.29 3.45 4.279 0.041 1.462

25 0.02 3124.32 688.35 180.61 9.01 4.405 0.039 1.395

50 0.01 3212.48 580.19 166.63 1.46 4.614 0.062 1.328

50 0.02 2499.38 696.40 291.77 0.55 3.806 0.225 2.435

100 0.01 1202.27 61.75 390.99 6.18 4.114 0.676 4.228

100 0.02 2452.21 95.64 202.30 4.78 5.027 0.372 2.459
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Table 15: Results A2C multi agent, without influent forecast

This table shows the results of the parameter analysis for the A2C agent in the multi agent environment without
an influent forecast. The batch size is denoted by Nbatch whereas Ent.coef. denotes the entropy coefficient. The
performance on seven different performance measures is shown, which are defined in Section 5. The average
reward over all runs is denoted by Reward, with σReward denoting the standard deviation of these rewards. The
> thres and < thres columns denote the number of violations of the upper and lower threshold respectively.
The standard deviation of the actions of the agent is denoted by σActions. Finally, the lower and upper 5%
quantile are represented by Q0.05 and Q0.95 respectively. The best score for each performance measure is shown
in bold.

Nbatch Ent.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

25 0.01 -479.52 274.52 537.28 278.49 4.253 0.952 5.244

25 0.02 -7.99 361.66 743.70 63.79 6.564 1.002 6.224

50 0.01 1002.04 422.44 629.22 50.84 6.661 1.018 5.437

50 0.02 1371.49 345.53 630.52 59.88 8.000 0.874 5.247

100 0.01 5681.09 339.55 208.39 31.78 13.086 0.336 2.216

100 0.02 8150.40 472.52 64.73 17.65 13.215 0.080 0.850

Table 16: Results A2C multi agent, with influent forecast

This table shows the results of the parameter analysis for the A2C agent in the multi agent environment with
an influent forecast. The batch size is denoted by Nbatch whereas Ent.coef. denotes the entropy coefficient. The
performance on seven different performance measures is shown, which are defined in Section 5. The average
reward over all runs is denoted by Reward, with σReward denoting the standard deviation of these rewards. The
> thres and < thres columns denote the number of violations of the upper and lower threshold respectively.
The standard deviation of the actions of the agent is denoted by σActions. Finally, the lower and upper 5%
quantile are represented by Q0.05 and Q0.95 respectively. The best score for each performance measure is shown
in bold.

Nbatch Ent.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

25 0.01 2598.14 431.35 348.32 240.30 7.072 0.589 3.284

25 0.02 2098.07 407.23 447.24 171.21 7.462 0.706 3.948

50 0.01 5795.61 292.43 311.36 30.97 8.731 0.435 2.561

50 0.02 4817.10 388.32 426.73 2.40 9.385 0.573 3.634

100 0.01 8310.18 316.53 50.49 8.86 13.260 0.119 0.708

100 0.02 8447.57 281.19 72.83 7.27 11.876 0.115 0.678
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D.3 Proximal Policy Optimization 1 (PPO1)

Table 17: Results PPO1 single agent, without influent forecast

This table shows the results of the parameter analysis for the PPO1 agent in the single agent environment
without an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter
and Clip.coef. denotes the clipping coefficient. The performance on seven different performance measures is
shown, which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward

denoting the standard deviation of these rewards. The > thres and < thres columns denote the number of
violations of the upper and lower threshold respectively. The standard deviation of the actions of the agent is
denoted by σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.
The best score for each performance measure is shown in bold.

Nbatch λ Clip.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

500 0.10 0.95 3671.91 256.92 28.21 0.34 5.728 0.027 0.576

500 0.10 0.98 3671.94 330.27 31.07 0.06 5.440 0.044 0.760

500 0.20 0.95 3511.32 388.30 48.25 16.81 5.673 0.030 0.581

500 0.20 0.98 3707.41 189.19 17.46 0.27 6.008 0.029 0.467

1000 0.10 0.95 3631.21 248.00 33.90 6.35 5.452 0.029 0.676

1000 0.10 0.98 3680.83 293.98 26.98 0.30 5.549 0.045 0.690

1000 0.20 0.95 3611.37 313.17 51.51 0.10 5.191 0.027 0.850

1000 0.20 0.98 3674.75 339.58 28.76 0.01 5.510 0.035 0.702

2000 0.10 0.95 3756.00 105.45 9.75 0.00 5.473 0.034 0.638

2000 0.10 0.98 3696.31 236.06 17.39 0.00 6.166 0.081 0.661

2000 0.20 0.95 3443.86 455.13 102.56 0.04 4.816 0.043 1.094

2000 0.20 0.98 3690.99 332.30 25.92 0.02 5.451 0.061 0.766
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Table 18: Results PPO1 single agent, with influent forecast

This table shows the results of the parameter analysis for the PPO1 agent in the single agent environment
with an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter and
Clip.coef. denotes the clipping coefficient. The performance on seven different performance measures is shown,
which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting
the standard deviation of these rewards. The > thres and < thres columns denote the number of violations
of the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively. The best
score for each performance measure is shown in bold.

Nbatch λ Clip.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

500 0.10 0.95 3751.77 68.81 4.52 0.43 6.138 0.026 0.415

500 0.10 0.98 3743.38 95.64 5.56 0.44 6.211 0.043 0.426

500 0.20 0.95 3757.39 57.09 3.70 0.40 6.079 0.025 0.410

500 0.20 0.98 3749.15 52.22 3.10 0.62 6.392 0.032 0.349

1000 0.10 0.95 3766.81 69.28 5.46 0.04 5.672 0.022 0.583

1000 0.10 0.98 3764.26 55.73 3.79 0.05 5.960 0.036 0.510

1000 0.20 0.95 3766.88 58.37 4.77 0.07 5.766 0.027 0.571

1000 0.20 0.98 3762.50 54.62 3.68 0.04 6.021 0.035 0.491

2000 0.10 0.95 3761.82 54.42 4.51 0.01 5.827 0.034 0.546

2000 0.10 0.98 3628.25 50.27 3.67 0.00 9.541 0.172 0.530

2000 0.20 0.95 3755.59 58.62 5.75 0.13 5.847 0.024 0.493

2000 0.20 0.98 3747.17 61.75 7.19 0.00 6.201 0.090 0.678

Table 19: Results PPO1 multi agent, without influent forecast

This table shows the results of the parameter analysis for the PPO1 agent in the multi agent environment
without an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter
and Clip.coef. denotes the clipping coefficient. The performance on seven different performance measures is
shown, which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward

denoting the standard deviation of these rewards. The > thres and < thres columns denote the number of
violations of the upper and lower threshold respectively. The standard deviation of the actions of the agent is
denoted by σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.
The best score for each performance measure is shown in bold.

Nbatch λ Clip.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

500 0.10 0.95 8220.23 1666.81 165.73 1.35 6.233 0.079 1.481

500 0.10 0.98 6400.21 1511.96 240.58 6.98 13.038 0.277 2.598

500 0.20 0.95 8177.01 1599.16 169.90 0.78 6.174 0.080 1.546

500 0.20 0.98 6931.56 1366.57 245.31 3.52 10.914 0.165 2.449

1000 0.10 0.95 8361.82 1483.51 157.74 0.20 5.725 0.074 1.409

1000 0.10 0.98 7997.77 1077.25 64.17 0.05 16.382 0.168 1.032

1000 0.20 0.95 8979.62 872.06 67.22 0.23 6.679 0.052 0.963

1000 0.20 0.98 7394.86 1299.35 190.60 0.01 11.305 0.188 2.052

2000 0.10 0.95 6118.64 1224.50 285.33 0.00 13.330 0.314 2.853

2000 0.10 0.98 -2251.45 266.49 769.83 0.00 9.093 1.356 8.132

2000 0.20 0.95 8297.67 1009.76 78.62 0.00 13.042 0.151 1.244

2000 0.20 0.98 1604.15 758.18 494.06 0.00 23.736 0.781 5.478
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Table 20: Results PPO1 multi agent, with influent forecast

This table shows the results of the parameter analysis for the PPO1 agent in the multi agent environment
with an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter and
Clip.coef. denotes the clipping coefficient. The performance on seven different performance measures is shown,
which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting
the standard deviation of these rewards. The > thres and < thres columns denote the number of violations
of the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively. The best
score for each performance measure is shown in bold.

Nbatch λ Clip.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

500 0.10 0.95 9021.96 629.88 58.86 1.86 7.080 0.053 0.872

500 0.10 0.98 8135.95 819.40 111.63 5.93 14.838 0.137 1.281

500 0.20 0.95 9113.27 463.42 45.93 0.74 7.549 0.051 0.757

500 0.20 0.98 8859.93 687.45 61.26 0.68 9.803 0.090 1.072

1000 0.10 0.95 9250.20 453.01 28.18 0.18 7.283 0.040 0.803

1000 0.10 0.98 8135.38 235.03 11.73 0.07 17.826 0.126 0.611

1000 0.20 0.95 9346.92 307.96 13.43 0.21 7.730 0.040 0.646

1000 0.20 0.98 8598.87 581.84 78.65 4.58 10.066 0.099 1.282

2000 0.10 0.95 8019.61 169.57 7.87 0.20 20.031 0.145 0.603

2000 0.10 0.98 6748.81 180.17 20.28 0.00 28.631 0.214 0.781

2000 0.20 0.95 8937.08 227.29 11.20 0.02 13.281 0.109 0.652

2000 0.20 0.98 5832.08 152.18 107.81 0.05 24.293 0.220 1.654
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D.4 Proximal Policy Optimization 2 (PPO2)

Table 21: Results PPO2 single agent, without influent forecast

This table shows the results of the parameter analysis for the PPO2 agent in the single agent environment
without an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter
and Clip.coef. denotes the clipping coefficient. The performance on seven different performance measures is
shown, which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward

denoting the standard deviation of these rewards. The > thres and < thres columns denote the number of
violations of the upper and lower threshold respectively. The standard deviation of the actions of the agent is
denoted by σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.
The best score for each performance measure is shown in bold.

Nbatch λ Clip.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

500 0.10 0.95 3212.28 720.49 170.71 0.42 4.288 0.041 1.432

500 0.10 0.98 3450.79 486.16 99.08 0.00 4.864 0.097 1.115

500 0.20 0.95 3355.90 583.07 128.20 0.16 4.565 0.033 1.250

500 0.20 0.98 3689.85 252.30 25.22 0.06 5.485 0.052 0.711

1000 0.10 0.95 3304.57 654.52 142.28 0.35 4.513 0.036 1.305

1000 0.10 0.98 3644.88 276.99 38.93 0.00 5.404 0.117 0.807

1000 0.20 0.95 3578.94 346.99 61.10 0.30 5.043 0.037 0.931

1000 0.20 0.98 3631.28 218.21 41.23 0.11 5.592 0.091 0.692

2000 0.10 0.95 3648.95 247.56 38.64 0.21 5.327 0.042 0.757

2000 0.10 0.98 3730.18 148.18 13.68 0.15 5.581 0.104 0.679

2000 0.20 0.95 3740.88 121.93 8.67 0.21 5.738 0.061 0.516

2000 0.20 0.98 3696.67 202.18 20.45 0.19 5.829 0.138 0.654
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Table 22: Results PPO2 single agent, with influent forecast

This table shows the results of the parameter analysis for the PPO2 agent in the single agent environment
with an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter and
Clip.coef. denotes the clipping coefficient. The performance on seven different performance measures is shown,
which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting
the standard deviation of these rewards. The > thres and < thres columns denote the number of violations
of the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively. The best
score for each performance measure is shown in bold.

Nbatch λ Clip.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

500 0.10 0.95 3451.64 484.02 99.32 0.86 4.710 0.030 1.139

500 0.10 0.98 3647.38 262.78 42.34 0.11 5.116 0.038 0.952

500 0.20 0.95 3633.75 191.08 35.08 1.37 5.952 0.021 0.505

500 0.20 0.98 3542.05 320.61 66.88 0.84 5.377 0.030 0.863

1000 0.10 0.95 3382.94 492.63 121.29 0.32 4.596 0.036 1.222

1000 0.10 0.98 3670.83 168.63 29.08 0.17 5.790 0.080 0.749

1000 0.20 0.95 3405.66 458.24 104.04 3.71 4.968 0.036 1.058

1000 0.20 0.98 3725.56 103.19 9.30 0.21 6.121 0.074 0.579

2000 0.10 0.95 3612.10 237.94 48.65 0.47 5.375 0.039 0.803

2000 0.10 0.98 3730.33 103.41 10.31 0.21 5.923 0.069 0.634

2000 0.20 0.95 3626.94 224.00 42.57 0.29 5.549 0.063 0.817

2000 0.20 0.98 3705.19 96.17 10.82 0.28 6.601 0.131 0.640

Table 23: Results PPO2 multi agent, without influent forecast

This table shows the results of the parameter analysis for the PPO2 agent in the multi agent environment
without an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter
and Clip.coef. denotes the clipping coefficient. The performance on seven different performance measures is
shown, which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward

denoting the standard deviation of these rewards. The > thres and < thres columns denote the number of
violations of the upper and lower threshold respectively. The standard deviation of the actions of the agent is
denoted by σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.
The best score for each performance measure is shown in bold.

Nbatch λ Clip.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

500 0.10 0.95 7837.73 1426.63 219.40 0.88 5.950 0.083 1.731

500 0.10 0.98 8212.68 1146.84 117.08 0.03 8.947 0.157 1.259

500 0.20 0.95 8103.04 1207.39 179.18 0.42 6.552 0.061 1.527

500 0.20 0.98 7732.16 1374.99 217.79 0.11 7.435 0.167 1.747

1000 0.10 0.95 8664.64 1130.25 111.31 0.04 6.539 0.060 1.170

1000 0.10 0.98 8892.67 910.48 67.28 0.08 7.617 0.136 1.022

1000 0.20 0.95 8028.77 1405.16 186.53 0.66 6.711 0.104 1.535

1000 0.20 0.98 8617.69 937.71 102.80 0.44 8.166 0.098 1.091

2000 0.10 0.95 8580.90 1273.20 117.31 0.15 6.814 0.062 1.250

2000 0.10 0.98 8439.05 935.81 125.94 0.11 7.499 0.119 1.334

2000 0.20 0.95 8689.67 1113.24 103.95 0.11 6.830 0.082 1.174

2000 0.20 0.98 8860.15 913.09 69.82 0.18 7.875 0.131 1.032
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Table 24: Results PPO2 multi agent, with influent forecast

This table shows the results of the parameter analysis for the PPO2 agent in the multi agent environment
with an influent forecast. The batch size is denoted by Nbatch whereas λ denotes the step size parameter and
Clip.coef. denotes the clipping coefficient. The performance on seven different performance measures is shown,
which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting
the standard deviation of these rewards. The > thres and < thres columns denote the number of violations
of the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively. The best
score for each performance measure is shown in bold.

Nbatch λ Clip.coef. Reward σReward > thres < thres σActions Q0.05 Q0.95

500 0.10 0.95 8855.91 803.82 81.21 1.12 6.983 0.047 1.056

500 0.10 0.98 8781.88 421.92 59.96 0.01 10.531 0.165 0.959

500 0.20 0.95 8486.93 981.45 134.04 0.54 6.662 0.057 1.235

500 0.20 0.98 8949.71 429.43 54.86 0.11 8.705 0.119 0.905

1000 0.10 0.95 8505.51 933.91 137.69 0.25 6.392 0.069 1.269

1000 0.10 0.98 9037.83 448.65 39.31 0.11 8.844 0.114 0.921

1000 0.20 0.95 8693.23 677.89 103.62 0.14 7.393 0.086 1.140

1000 0.20 0.98 9076.05 346.76 36.04 0.22 8.830 0.111 0.773

2000 0.10 0.95 9151.65 549.49 36.21 0.10 7.608 0.054 0.918

2000 0.10 0.98 9156.80 442.26 25.20 0.11 8.764 0.098 0.805

2000 0.20 0.95 9119.41 424.83 38.97 0.17 8.056 0.067 0.797

2000 0.20 0.98 9071.37 404.49 36.02 0.42 8.918 0.128 0.874
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E Parameter optimization results for deep reinforcement

learning algorithms

E.1 Rule-based

Table 25: Sensitivity results rule-based, single agent, without influent forecast

This table shows the performance of the rule-based agent in the sensitivity analysis for the single agent environ-
ment without an influent forecast. The performance on seven different performance measures is shown, which
are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the
standard deviation of these rewards. The > thres and < thres columns denote the number of violations of
the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 3673.40 37.78 1.43 0.00 7.891 0.226 0.644

Down 3651.52 40.70 2.00 0.00 8.306 0.219 0.648

Min. action Up 3547.45 35.51 1.55 0.00 9.981 0.212 0.615

Down 3721.76 39.29 1.74 0.00 7.491 0.235 0.687

Max. action Up 3689.45 30.28 0.90 0.00 8.416 0.222 0.627

Down 3597.89 60.26 3.43 0.00 7.642 0.227 0.688

Influent per mm Up 3657.01 51.42 2.70 0.00 8.341 0.224 0.658

Down 3673.01 26.33 0.72 0.00 7.771 0.224 0.637

κ Up 3667.66 38.51 1.65 0.00 7.993 0.224 0.643

Down 3662.86 39.43 1.66 0.00 8.108 0.224 0.648

σ Up 3660.25 38.97 1.66 0.00 8.181 0.224 0.650

Down 3669.54 37.74 1.63 0.00 7.945 0.224 0.641
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Table 26: Sensitivity results rule-based, single agent, with influent forecast

This table shows the performance of the rule-based agent in the sensitivity analysis for the single agent envi-
ronment with an influent forecast. The performance on seven different performance measures is shown, which
are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the
standard deviation of these rewards. The > thres and < thres columns denote the number of violations of
the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 3673.40 37.78 1.43 0.00 7.891 0.226 0.644

Down 3651.52 40.70 2.00 0.00 8.306 0.219 0.648

Min. action Up 3547.45 35.51 1.55 0.00 9.981 0.212 0.615

Down 3721.76 39.29 1.74 0.00 7.491 0.235 0.687

Max. action Up 3689.45 30.28 0.90 0.00 8.416 0.222 0.627

Down 3597.89 60.26 3.43 0.00 7.642 0.227 0.688

Influent per mm Up 3657.01 51.42 2.70 0.00 8.341 0.224 0.658

Down 3673.01 26.33 0.72 0.00 7.771 0.224 0.637

κ Up 3667.66 38.51 1.65 0.00 7.993 0.224 0.643

Down 3662.86 39.43 1.66 0.00 8.108 0.224 0.648

σ Up 3660.25 38.97 1.66 0.00 8.181 0.224 0.650

Down 3669.54 37.74 1.63 0.00 7.945 0.224 0.641

Table 27: Sensitivity results rule-based, multi agent, without influent forecast

This table shows the performance of the rule-based agent in the sensitivity analysis for the multi agent environ-
ment without an influent forecast. The performance on seven different performance measures is shown, which
are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the
standard deviation of these rewards. The > thres and < thres columns denote the number of violations of
the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 9026.66 126.61 2.11 0.00 12.155 0.230 0.657

Down 8995.52 132.78 2.91 0.00 12.457 0.222 0.662

Min. action Up 8713.16 122.37 2.28 0.00 14.144 0.214 0.627

Down 9157.64 129.22 2.53 0.00 11.977 0.239 0.694

Max. action Up 9132.67 103.87 1.43 0.00 12.724 0.224 0.637

Down 8748.42 193.47 5.10 0.00 11.600 0.231 0.714

Influent per mm Up 8984.39 167.46 4.11 0.00 12.917 0.227 0.678

Down 9052.05 95.11 1.20 0.00 11.599 0.227 0.646

κ Up 9029.47 130.99 2.43 0.00 12.123 0.227 0.657

Down 9015.43 128.81 2.42 0.00 12.342 0.227 0.662

σ Up 9002.03 131.34 2.44 0.00 12.502 0.226 0.664

Down 9035.22 126.91 2.43 0.00 12.040 0.227 0.655

Agents Up 22524.20 313.24 2.27 0.00 31.872 0.226 0.656
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E.2 Value iteration

Table 28: Sensitivity results value iteration, single agent, without influent forecast

This table shows the performance of the value iteration agent in the sensitivity analysis for the single agent
environment without an influent forecast. The performance on seven different performance measures is shown,
which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting
the standard deviation of these rewards. The > thres and < thres columns denote the number of violations
of the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 3806.09 44.00 5.09 0.00 4.711 0.020 0.855

Down 3771.15 54.31 9.91 0.00 5.365 0.029 0.951

Min. action Up 3625.12 39.53 3.15 0.00 8.315 0.022 0.358

Down 3880.72 48.13 5.51 0.14 4.710 0.059 0.847

Max. action Up 3829.22 38.41 5.20 0.00 5.123 0.023 0.905

Down 3720.13 66.42 8.26 0.00 4.928 0.023 0.924

Influent per mm Up 3787.51 59.80 8.47 0.00 5.162 0.024 0.921

Down 3797.09 36.23 4.94 0.00 4.872 0.023 0.897

κ Up 3796.60 46.32 6.25 0.00 4.933 0.023 0.903

Down 3788.91 47.80 6.89 0.00 5.104 0.023 0.919

σ Up 3790.51 46.98 6.56 0.00 5.107 0.023 0.923

Down 3796.50 46.97 6.42 0.00 4.908 0.023 0.893
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Table 29: Sensitivity results value iteration, single agent, with influent forecast

This table shows the performance of the value iteration agent in the sensitivity analysis for the single agent
environment with an influent forecast. The performance on seven different performance measures is shown,
which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting
the standard deviation of these rewards. The > thres and < thres columns denote the number of violations
of the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 3815.15 28.37 1.19 0.12 4.853 0.019 0.807

Down 3792.40 32.33 2.86 0.13 5.499 0.029 0.936

Min. action Up 3630.65 29.27 0.78 0.11 8.369 0.022 0.309

Down 3895.29 28.61 1.36 0.14 4.983 0.072 0.889

Max. action Up 3840.77 24.19 1.17 0.11 5.198 0.023 0.883

Down 3735.27 46.34 2.75 0.14 5.052 0.023 0.890

Influent per mm Up 3804.60 39.59 2.55 0.15 5.324 0.024 0.901

Down 3807.81 21.57 1.04 0.06 4.961 0.023 0.866

κ Up 3808.99 28.46 1.63 0.11 5.061 0.023 0.868

Down 3802.78 30.75 2.08 0.11 5.228 0.023 0.902

σ Up 3803.03 30.27 2.14 0.11 5.232 0.023 0.905

Down 3809.48 28.31 1.67 0.10 5.033 0.023 0.858

Table 30: Sensitivity results value iteration, multi agent, without influent forecast

This table shows the performance of the value iteration agent in the sensitivity analysis for the multi agent
environment without an influent forecast. The performance on seven different performance measures is shown,
which are defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting
the standard deviation of these rewards. The > thres and < thres columns denote the number of violations
of the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 9473.39 143.69 11.65 0.04 6.454 0.062 0.927

Down 9403.68 165.39 16.33 0.08 7.486 0.056 0.973

Min. action Up 9163.13 121.12 7.45 0.21 9.138 0.063 0.603

Down 9512.17 176.76 18.03 0.14 7.912 0.253 0.984

Max. action Up 9595.22 115.30 9.58 0.06 7.287 0.056 0.941

Down 9147.21 224.96 18.12 0.04 6.749 0.061 0.985

Influent per mm Up 9416.96 193.44 16.31 0.07 7.439 0.061 0.968

Down 9480.57 110.72 9.69 0.04 6.389 0.054 0.942

κ Up 9458.73 150.58 12.42 0.03 6.784 0.058 0.949

Down 9438.55 151.37 13.42 0.11 7.065 0.055 0.958

σ Up 9440.11 150.18 13.13 0.13 7.097 0.056 0.96

Down 9458.64 151.95 12.76 0.02 6.730 0.059 0.944

Agents Up 23644.60 332.42 9.24 0.04 17.758 0.041 0.929
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E.3 Proximal Policy Optimization 1 (PPO1)

Table 31: Sensitivity results PPO1, single agent, without influent forecast

This table shows the performance of the PPO1 agent in the sensitivity analysis for the single agent environment
without an influent forecast. The performance on seven different performance measures is shown, which are
defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the
standard deviation of these rewards. The > thres and < thres columns denote the number of violations of
the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 3781.20 53.94 3.47 0.00 5.551 0.027 0.507

Down 3650.38 161.64 38.52 0.00 5.617 0.041 0.837

Min. action Up 3606.06 103.48 7.71 0.12 8.327 0.037 0.371

Down 3783.71 153.53 20.33 0.00 4.409 0.031 0.757

Max. action Up 3705.19 258.72 31.98 0.50 5.410 0.034 0.756

Down 3513.54 289.06 61.88 0.02 5.144 0.032 0.876

Influent per mm Up 3724.75 166.64 18.03 0.02 5.741 0.032 0.696

Down 3724.39 119.02 20.54 0.00 5.276 0.036 0.706

κ Up 3615.39 286.35 52.51 0.04 5.119 0.041 0.865

Down 3759.94 78.39 7.24 0.00 5.792 0.035 0.599

σ Up 3704.09 177.13 24.30 0.00 5.427 0.036 0.769

Down 3643.94 243.07 44.74 0.02 5.112 0.038 0.813
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Table 32: Sensitivity results PPO1, single agent, with influent forecast

This table shows the performance of the PPO1 agent in the sensitivity analysis for the single agent environment
with an influent forecast. The performance on seven different performance measures is shown, which are defined
in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the standard
deviation of these rewards. The > thres and < thres columns denote the number of violations of the upper
and lower threshold respectively. The standard deviation of the actions of the agent is denoted by σActions.
Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 3764.05 55.45 4.73 0.00 5.720 0.025 0.509

Down 3753.76 57.69 5.62 0.05 5.939 0.038 0.576

Min. action Up 3621.14 43.64 2.66 0.04 8.455 0.031 0.313

Down 3831.85 46.27 3.12 0.00 5.036 0.026 0.393

Max. action Up 3798.32 43.43 3.45 0.02 5.939 0.029 0.503

Down 3695.17 71.82 6.00 0.00 5.592 0.026 0.617

Influent per mm Up 3753.08 64.73 5.53 0.08 6.129 0.030 0.519

Down 3768.59 38.55 2.83 0.12 5.696 0.021 0.496

κ Up 3768.65 52.56 4.13 0.00 5.783 0.033 0.549

Down 3758.10 52.02 4.00 0.02 6.023 0.026 0.500

σ Up 3759.81 53.21 4.19 0.03 5.943 0.027 0.518

Down 3766.40 55.19 4.53 0.10 5.756 0.029 0.510

Agents Up

Table 33: Sensitivity results PPO1, multi agent, without influent forecast

This table shows the performance of the PPO1 agent in the sensitivity analysis for the multi agent environment
without an influent forecast. The performance on seven different performance measures is shown, which are
defined in Section 5. The average reward over all runs is denoted by Reward, with σReward denoting the
standard deviation of these rewards. The > thres and < thres columns denote the number of violations of
the upper and lower threshold respectively. The standard deviation of the actions of the agent is denoted by
σActions. Finally, the lower and upper 5% quantile are represented by Q0.05 and Q0.95 respectively.

Parameter Change Reward σReward > thres < thres σActions Q0.05 Q0.95

Max. volume Up 7646.66 1376.97 205.76 0.24 8.60 0.152 1.828

Down 8576.78 708.27 31.72 0.02 16.36 0.210 0.966

Min. action Up 8125.72 918.79 63.91 0.02 14.51 0.154 1.099

Down 8259.81 862.26 98.61 0.00 12.03 0.171 1.479

Max. action Up 6894.52 1203.66 287.08 0.72 10.29 0.277 2.672

Down 8246.36 924.26 45.20 0.00 10.57 0.109 0.797

Influent per mm Up 6597.93 1361.58 263.74 1.31 12.85 0.229 2.654

Down 6091.66 1219.43 323.48 2.23 11.82 0.318 3.180

κ Up 8096.26 966.14 116.05 0.00 13.46 0.159 1.337

Down 8207.51 740.16 109.79 0.00 13.87 0.170 1.198

σ Up 8927.90 770.54 38.31 0.00 10.54 0.173 0.890

Down 8160.18 1315.12 120.28 0.04 11.18 0.168 1.429

Agents Up 8902.47 2190.96 421.49 0.38 43.825 0.394 3.728
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