
Master Thesis
Business Analytics

Comparison of Deep Learning Product
Recommendation Engines in Different

Settings

Author:
Robin Opdam

Master Thesis
Business Analytics

Comparison of Deep Learning Product
Recommendation Engines in Different

Settings

Robin Opdam
2577474

August 2020

Vrije Universiteit
Amsterdam,
Faculty of Science

De Boelelaan 1081a
1081HV Amsterdam

Supervisor:
Prof. Dr. Guszti Eiben
Second Reader:
Prof. Dr. Ger Koole

Global Strategy,
Analytics and

Execution Firm

De Entree 69
1101BH Amsterdam

Supervisors:
Ashish Dang

Marcello Cacciato
Panayiotis Pantelides

Preface

This thesis has been written to fulfil the requirements for the master Business
Analytics at the Vrije Universiteit Amsterdam. The objective of the Business
Analytics programme is to enable us to recognise and solve in-company problems
by applying a combination of methods based on computer science, mathemat-
ics and business management. This master is a multidisciplinary programme
consisting of three tracks. This thesis belongs to the computational intelligence
component of the master programme. Next to combining academic research
with real-life problems, the objective of this thesis is to aid in the research of
the internship company and enrich my own understanding of the subject.

The internship has taken place at the Data Science department within YGroup.
This component of the company provides the data-driven insights needed in
business applications relevant for their clients. As recommender systems are
more a necessity than ever before, many of their clients face the production
and/or implementation of such systems. With the rise of deep learning and
this general desire for recommender systems, this thesis is used to provide the
company with insights on different algorithms in different settings. Thus, this
thesis focuses on the comparison of deep learning recommender systems and a
classic approach for differently structured datasets.

I would like to thank my university supervisor, Prof. Dr. Guszti Eiben, for the
support and guidance throughout this research. His setup in which he grouped
Business Analytics students provided great support and a different view on each
other’s work. I believe this contributed to the work of each student in this group.
In addition, I would like to thank Prof. Dr. Ger Koole for being the second
reader.

From YGroup, I would like to thank my external supervisors Ashish Dang,
Marcello Cacciato and Panayiotis Pantelides who have supported me during
the fulfilment of this work. The frequent meetings and discussions within the
internship period have proven very insightful and meaningful. Finally, having
access to YGroup’s Paperspace cloud computing services enabled me to explore,
build and learn more during this internship.

Executive Summary

Problem Definition: In the current decade of information overload, recom-
mender systems have shifted from being a nice-to-have to a necessity in many
industries. This shift together with the current boost of deep learning have led
to many novel recommender system algorithms, each with their own character-
istics. The challenge is to select the right algorithm in the right setting.
Academic/Practical Relevance: We show how two deep learning collabor-
ative filtering based recommender systems compare to each other in terms of
recommendation classification and ranking performance. In addition, we com-
pare the aforementioned systems to a matrix factorisation based approach, all
for differently structured datasets containing implicit feedback. This provides
more insight into the applicability of the two deep learning approaches and
highlights the advantages and shortcomings of each algorithm based on the un-
derlying dataset.
Methodology: Using the publicly available MovieLens 1M dataset and two
different subsets of an Amazon fashion dataset we observe the behaviour of
the different algorithms during training and in the results. The algorithms are
optimised using a grid search per dataset. The difference in performance is ana-
lysed based on recall@n and NDCG@n metrics, showing significantly different
results between each dataset and algorithm.
Results: We show our implementation of the algorithms results in similar be-
haviour on the MovieLens 1M dataset as observed in the literature, where the
deep learning algorithms clearly outperform the matrix factorisation approach.
However, on the fashion datasets we observe vastly different behaviour of the
deep learning algorithms. The matrix factorisation model exhibits robust per-
formance on each dataset, dominating the deep learning approaches on one out
of three datasets. Mixing the structural characteristics of fashion and movie
datasets exposes the potential drawbacks and advantages of each method.
Managerial Implications: With this comparison we reveal important differ-
ences between the performance of state-of-the-art recommender systems and a
classic approach. These insights can be utilised in attaining the optimal al-
gorithmic fit for differently structured practical applications.

Contents

1 Introduction 1
1.1 About YGroup . 1
1.2 Information Overload . 1
1.3 Recommender Systems . 2
1.4 Research Questions . 3

2 Related Work 5
2.1 Matrix Factorisation . 5
2.2 Deep Learning . 6

2.2.1 Multilayer Perceptron . 6
2.2.2 Autoencoders . 7
2.2.3 Convolutional Neural Networks 7
2.2.4 Recurrent Neural Networks 8

2.3 Summary . 9

3 Algorithm Description 11
3.1 Notation . 11
3.2 Singular Value Decomposition . 13
3.3 Bayesian Personalised Ranking 14

3.3.1 BPR-Opt & BPR Learning 15
3.4 Collaborative Filtering with Recurrent Neural Networks 18

3.4.1 Feedforward Neural Networks 18
3.4.2 Recurrent Neural Networks 20
3.4.3 Long Short Term Memory Units 23
3.4.4 RNN for Collaborative Filtering 26

3.5 Neural Collaborative Filtering . 29
3.5.1 NCF Framework . 29
3.5.2 Generalised Matrix Factorisation 30
3.5.3 Multilayer Perceptron . 31
3.5.4 Neural Matrix Factorisation 31

4 Experimental Setup 34
4.1 Data . 34

4.1.1 Amazon 20k Users . 35

4.1.2 MovieLens 1M . 36
4.1.3 Amazon like MovieLens 1M 37
4.1.4 Structural Differences . 38
4.1.5 Training, Validation and Test Split 39

4.2 Performance Metrics . 40
4.2.1 Classification: Recall@n 41
4.2.2 Ranking: NDCG@n . 41

4.3 Bayesian Personalised Ranking 42
4.4 Collaborative Filtering with Recurrent Neural Networks 44
4.5 Neural Collaborative Filtering . 46

5 Experimental Results 48
5.1 Implementation Setup . 48
5.2 Bayesian Personalised Ranking 50
5.3 Collaborative Filtering with Recurrent Neural Networks 51
5.4 Neural Matrix Factorisation . 52
5.5 Comparison . 53

6 Analysis and Discussion 55
6.1 Bayesian Personalised Ranking 55
6.2 Collaborative Filtering with Recurrent Neural Networks 57
6.3 Neural Matrix Factorisation . 58
6.4 Performance Comparison . 60

6.4.1 CFRNN vs. NeuMF . 60
6.4.2 BPR vs. CFRNN . 61
6.4.3 BPR vs. NeuMF . 62

7 Conclusions and Future Work 64
7.1 Research Questions . 64
7.2 Conclusions . 65
7.3 Future Work . 66

Bibliography 68

Appendix A Data Specifications 75
A.1 Full Data Characteristics . 75

A.1.1 MovieLens 25M . 75
A.1.2 Amazon 5-core Clothing Shoes and Jewellery 76
A.1.3 Comparison . 77

A.2 Ratings per User & Item . 78

Appendix B Grid Search 81
B.1 Parameters . 81
B.2 Grid Search Results . 82

Appendix C Technical Environment 84

List of Abbreviations

AdaGrad Adaptive Gradient Algorithm. 28, 32

Adam Adaptive Moment Estimation. 32

AE Autoencoders. 7

ALS Alternating Least Squares. 13

BPR Bayesian Personalised Ranking . 6–13, 15, 27, 29, 33, 34, 39–42, 46–48,
50–53, 55, 56, 58, 60–67, 82–84

BPR-Opt Bayesian Personalised Ranking Optimisation: a generic optimisa-
tion criterion for optimal personalised ranking . 15, 17

BPTT Back Propagation Through Time. 21, 25

CF Collaborative Filtering . 2–4, 7–9, 11, 29, 35, 65

CFRNN Collaborative Filtering with Recurrent Neural Networks. 3, 8–11, 26–
28, 34, 39–41, 44, 48, 51, 53, 57, 58, 60–67, 82–84

CG Cumulative Gain. 42

CNN Convolutional Neural Networks. 7, 8

ConvNCF Convolutional Neural Collaborative Filtering . 8

DCG Discounted Cumulative Gain. 42

DeepFM Deep Factorisation Machines. 6

DNN Deep Neural Networks. 19, 20, 25, 28, 29, 44

EDA Exploratory Data Analysis. 75, 76

FM Factorisation Machines. 5, 7, 8

GMF Generalised Matrix Factorisation. 12, 29–33, 46, 47, 58–61, 63, 65–67

5

GRU Gated Recurrent Units. 9, 25, 66

LSTM Long Short-Term Memory . 8, 9, 18, 23–27, 44, 57, 66

MF Matrix Factorisation. 3–9, 11–17, 26, 29, 30, 39, 40, 60, 62–65

MLP Multi-layer Perceptron. 6, 7, 9, 12, 29, 31–33, 46, 47, 58–63, 65–67

NCF Neural Network based Collaborative Filtering . 3, 6, 8, 9, 11, 29–31, 64

NDCG Normalised Discounted Cumulative Gain. 42, 48–50, 53, 57, 59–65, 67

NeuMF Neural Matrix Factorisation. 9–11, 29, 31–34, 39–41, 46, 48, 52, 53,
58–67, 82–84

RNN Recurrent Neural Networks. 8, 9, 18, 20, 21, 23–27, 44

SGD Stochastic Gradient Descent . 13, 14, 17, 27, 28, 30, 33, 56

SVD Singular Value Decomposition. 5, 11, 13

Y YGroup. 1, 3, 4, 9, 34, 64, 84

Chapter 1

Introduction

1.1 About YGroup

YGroup (Y) is a rapidly growing strategy consultancy firm with more than 300
employees and 8 offices in different countries around the world. The company
takes pride in transforming strategies from intuitive- and experience-driven to
insight- and data-driven. Two of its founders, previously employed at Pricewa-
terhouseCoopers, desire a different approach to strategy consultancy. Therefore,
they spend a significant amount of time and energy on creating a data-driven
decision environment. Furthermore, strategy implementation is a must for Y,
as it creates long-lasting changes within their client companies.

In order to stay ahead of its competition and offer state-of-the-art solutions
to their partners and clients, they conduct their own research. This thesis con-
tributes to Y’s in-house research on modern recommendation engines and their
applications in fashion recommendation.

1.2 Information Overload

In this decade of information overload, everyone has to cope with a tremendous
number of available choices. Within the e-commerce sector millions of options
are available per product category. The importance of e-commerce continues
to grow, with an estimated increase in worldwide e-commerce sales from $2.29
trillion in 2017 to $4.48 trillion by the end of 2021 (eMarketer, 2017). Now
that the COVID-19 pandemic has struck the world, this projection is already
an understatement of the accelerated growth of e-commerce. The sector is ex-
pected to grow 18% in the U.S. this year, compared to a 14.9% increase in 2019
(Samet, 2020). Recommender systems are an effective tool for businesses in
overcoming and utilising this information overload. An increasing number of
companies are employing recommender systems to capture the opportunities of
over-choice within their customers. Tech giant Amazon has been utilising these

1

Chapter 1 – Introduction

systems as an e-commerce strategy for their online retail since 1990 (Smith &
Linden, 2017). Even today, Amazon’s recommender system is partly respons-
ible for its continuous success and ever-growing customer base. Not only online
retailers but also media companies observe the benefits of implementing these
systems. The importance of recommender systems became clear in 2006, when
Netflix started a competition for improving their current algorithm, with a grand
prize of one million dollars (Hallinan & Striphas, 2016). Nowadays 80% of the
movies watched on Netflix were recommended by their algorithm (Gomez-Uribe
& Hunt, 2016). On the Google-owned video-sharing platform, Youtube, 60% of
its video clicks came from home page recommendations (Davidson et al., 2010).

In contrast, the fashion industry seems to fall behind on the recommender sys-
tems trend, but for good reason. With fashion, we imply clothing and accessor-
ies available at retailers and online e-commerce channels. The lifetime of items
within fashion is short compared to movies or music, which results in a short
amount of time for data collection on each item, creating an even more sparse
domain. With new daily releases, these algorithms have to be able to adapt
as quick as fashion changes. Furthermore, customer’s individual preference can
change rapidly, driven by changes in for example personality, style, and season.
However, with an increasing customer demand for personalised online experi-
ence, fashion retailers are now trying to incorporate these systems within their
e-commerce platforms.

1.3 Recommender Systems

There are two major paradigms of recommender systems which we cover briefly;
collaborative and content-based methods. Collaborative Filtering (CF) methods
base their predictions on past interactions between users and items to produce
new recommendations. We can further divide CF methods into memory-based
and model-based approaches, where the former does not assume a model and
is essentially based on nearest neighbours search. Model-based approaches, on
the other hand, assume a model underlying the interactions between users and
items and try to discover this model to make new recommendations. CF meth-
ods can make accurate predictions based solely on the user-item interaction
matrix, which is their main advantage. Their biggest drawback, however, is the
cold start problem: new users/items or users/items with little history in the
system cannot efficiently utilise the CF algorithms, as they base their recom-
mendations on historical data.

Naturally, the other set of models are content-based models that use additional
information about users and/or items, e.g., sex, age and category to make re-
commendations. The idea is to build a model that can explain the observed
user-item interactions based on the available features. These models suffer less
from the cold start problem as the additional information is available from the
start. They range from simple classification or regression models to much more

2

Chapter 1 – Introduction

complex deep learning variants.

Combining content-based and CF approaches in hybrid methods utilises more
of the available data and can alleviate problems like the cold start problem, as
discussed in (Burke, 2002).

Deep learning is a subfield within machine learning that has been gaining pop-
ularity, it uses multiple layers to progressively extract high-level features from
raw data. Over recent years, deep learning has been successfully applied in
many fields, such as natural language processing, computer vision, and inform-
ation retrieval (Deng, 2014). Recently, the application of deep learning has
penetrated the field of recommender systems. Its field of research is flourishing
as interests are high from both a business and an academic perspective. Several
existing deep learning models have been implemented to recommend products
or services (Zhang, Yao, Sun, & Tay, 2019), many of which are discussed in
Chapter 2.

1.4 Research Questions

YGroup (Y) desires to utilise recent research to build state-of-the-art fashion
recommender systems and to have the right approach for their clients. In par-
ticular, they are interested in the use of deep learning in fashion product recom-
mender systems. Therefore, we define the research questions as:

RQ1 How do Collaborative Filtering with Recurrent Neural Networks and Neural
Network based Collaborative Filtering compare to each other in terms of
recommendation performance on fashion and movie datasets?

RQ2 How do these deep learning models perform compared to a Matrix Fac-
torisation benchmark model in terms of recommendation performance on
fashion and movie datasets?

To answer these questions we consider the following sub-questions:

SQ1 What are the structural differences between fashion and movie data?

SQ2 How to measure model performance, and which metric is most suitable
for our research?

SQ3 How do the structural differences between the datasets affect model per-
formance?

Much of the existing research is evaluated on rich datasets, such as the MovieLens
one million ratings data (MovieLens 1M data, 2003). As one can imagine, there
exist many structural differences between a dataset of ratings per movie and
that of ratings per piece of clothing. We take these differences into account by
considering both a fashion rating dataset and a movie rating dataset within our
research. We focus solely on model-based CF algorithms for two reasons. First,

3

Chapter 1 – Introduction

based on data insights from the company’s clients, it becomes clear that often
there is only purchase history data available. This implies that we can only
observe which item a user bought and when. Secondly, to negate unfairness in
comparison, by only using model-based CF algorithms we keep the difference in
data utilisation by the models to a minimum.

Since the fashion e-commerce dataset from Y’s client is currently unavailable for
this research, we use an open-source dataset from Amazon. The 5-core Amazon
Clothing Shoes and Jewellery review dataset (Ni, Li, & McAuley, 2019; Amazon
Review data, 2018), where 5-core implies that all users and items have at least
five reviews each. This dataset consists of product ratings and reviews, which
does not coincide with the fashion purchase history data Y is currently working
with. Therefore, we interpret each rating of a user as a purchase, resulting in a
purchase history 5-core Amazon Clothing Shoes and Jewellery dataset. For the
movie dataset we take the MovieLens 1M dataset, as this is a widely known and
frequently used dataset for recommender systems. As this dataset also consists
of ratings we treat each rating in the same manner, thus, ending up with a
MovieLens 1M watch history dataset.

To the best of our knowledge, this research is the first to compare two deep
learning algorithms and a Matrix Factorisation (MF) benchmark for recom-
mendations on a fashion and a movie dataset. Besides, there is no consistent
representation in terms of the evaluation criteria used throughout the research
that introduces the aforementioned algorithms. Thus, this work also provides
metrics never obtained before for the algorithms considered.

After discussing related work in Chapter 2 we go into detail about the selec-
ted algorithms in Chapter 3. Next, the experimental setup in Chapter 4, this
chapter answers SQ1 by going into detail about the datasets and SQ2 explain-
ing why different performance metrics are used. In Chapter 5 we present the
experimental results. Afterwards, the analysis and discussion of the results in
Chapter 6 covers SQ3. Finally, Chapter 7 concludes this research by answering
both research questions and describes which extensions can be considered in
future research.

4

Chapter 2

Related Work

The algorithms utilised in this research are selected from a great body of liter-
ature on recommender systems. First, we discuss related Matrix Factorisation
(MF) techniques and some of their shortcomings for implicit feedback data.
Next, the various ways to apply deep learning in recommender systems. At
the end of this chapter we summarise the selected models and elaborate on our
choice.

2.1 Matrix Factorisation

MF is a class of methods, which involve the decomposition of one matrix into
the product of two new matrices. Singular Value Decomposition (SVD) is the
most popular MF algorithm for predicting ratings from historical data. SVD
for movie personal rating prediction came into existence during the Netflix chal-
lenge in 2006 (Bennett & Lanning, 2007; Bell, Koren, & Volinsky, 2010). Ever
since its creation, this model has been extensively researched and widely adop-
ted in practice. Many extensions, such as weighted ratings, time dependency,
implicit feedback, and large scale parallel processing have been introduced to
improve overall performance (H. Chen, 2017; Koren, Bell, & Volinsky, 2009;
Zhou, Wilkinson, Schreiber, & Pan, 2008). Furthermore, time-dependent pref-
erence of customers can be captured within SVD models as described in Koren
(2009). As already mentioned, fashion rating matrices tend to be extremely
sparse. Therefore, SVD is also used in combination with content-based filtering
to achieve better results in fashion recommendations (Kang & Yoo, 2007). A
more general class of models called Factorisation Machines (FM) can be used as
a general predictor, working with any real-valued feature vector. These models
combine the advantages of factorisation models and Support Vector Machines
(Rendle, 2010).

MF techniques rely heavily on the availability of ratings to model users and
items latent factors in a lower-dimensional space. However, in many cases rat-

5

Chapter 2 – Related Work

ings are not available and the model has to make use of implicit feedback. In
a movie rating dataset, the implicit feedback could be the fact that the user
has watched a movie or not, in e-commerce, whether a user has purchased an
item or not. To utilise this information Hu, Koren, and Volinsky (2008) pro-
posed Collaborative Filtering for Implicit Feedback Datasets. In addition to the
standard MF approach, they use a measure of confidence for each estimation.
This confidence can be any additional information that reflects the preference
of users. Even though their method resembles preferences better than plain
MF, they still have to consider every item for every user, instead of just the
observed items (rated items) as before. Bayesian Personalised Ranking (BPR)
from Implicit Feedback (Rendle, Freudenthaler, Gantner, & Schmidt-Thieme,
2012) uses stochastic gradient descent with bootstrap sampling and a pairwise
loss function to tackle this problem. This method is directly optimised for
ranking the recommendations and can be used together with MF and k-nearest
neighbours approaches.

2.2 Deep Learning

One of the reasons deep learning is revolutionising recommendation system ar-
chitectures is because of its ability to capture non-linear and non-trivial user-
item relationships. Furthermore, it captures the intricate relationships within
the data itself, being able to use visual, contextual and textual information
(Zhang et al., 2019). Within deep learning, many frameworks have already
been used for recommendation systems.

2.2.1 Multilayer Perceptron

In essence, a Multi-layer Perceptron (MLP) or feedforward deep neural network,
can be described as a mathematical function that maps a set of input values to
output values (Goodfellow, Bengio, & Courville, 2016). In more detail; the in-
put values are transformed in several hidden layers on the forward pass through
the network. On the backward pass, the weights within the network are changed
according to their gradients, calculated with respect to the loss (prediction er-
rors). These backwards and forward passes continue for several epochs until a
preset stopping condition is met. This can be seen as the general setup of deep
learning used in many different models.

MLP can be used together with MF techniques to replace the inner product
with neural network architecture as in, Neural Network based Collaborative Fil-
tering (NCF) (X. He et al., 2017) and Neural Network Matrix Factorisation
(Dziugaite & Roy, 2015). Google created Wide & Deep Learning for their play
store app recommendations (Cheng et al., 2016). This framework uses wide
linear models to capture the direct features from historical data, while the deep
neural network captures the abstract representation of the data. Similarly to
the intuition behind the Wide & Deep model, Deep Factorisation Machines

6

Chapter 2 – Related Work

(DeepFM) (Guo, Tang, Ye, Li, & He, 2017) integrate FM with MLP to model
both low- and high-order interactions respectively. He et al. extended the
DeepFM framework for sparse predictive analysis (X. He & Chua, 2017) and
showed improvement over Google’s Wide & Deep Learning model.

2.2.2 Autoencoders

A different way of using deep learning is through Autoencoders (AE), first in-
troduced for nonlinear principal component analysis in (Kramer, 1991). These
models attempt to reconstruct their input data in the output layer in an un-
supervised manner. Which leads to useful feature representations in the most-
middle layer of the network. I-AutoRec (Sedhain, Menon, Sanner, & Xie, 2015)
is an AE which makes use of a similar objective function as CF approaches to
predict item ratings. An extension of I-AutoRec is I-CFN (Strub, Gaudel, &
Mary, 2016) which is more robust due to using denoising techniques. Besides, it
can incorporate side information in a similar fashion as MF methods. Collabor-
ative Deep Learning is another example of the combination of deep learning with
MF. This model uses Stacked Denoising Autoencoders as its perception com-
ponent and Probabilistic Matrix Factorisation as the task-specific component
(Wang, Wang, & Yeung, 2015).

2.2.3 Convolutional Neural Networks

Recommendation data often includes unstructured multimedia data, e.g., im-
ages or text, Convolutional Neural Networks (CNN) can be used to process
such data effectively. In contrast to MLPs, CNNs are deep neural networks
that use convolution instead of general matrix multiplication in at least one
layer (Goodfellow et al., 2016). Visual Bayesian Personalised Ranking, cre-
ated and extended by He et al. (R. He & McAuley, 2016b, 2016a), uses a
CNN to extract visual features and incorporates them into MF. Important in
Bayesian Ranking algorithms for recommendation systems is that they often
assume user’s preferences are correctly reflected in their implicit feedback, i.e.,
purchase history, mouse activities, search patterns etc. This influences the way
these models are evaluated and does not take actual ratings into account. The
work of (Yu et al., 2018) uses CNNs for aesthetic-based clothing recommend-
ation, where the aesthetic features of the clothes are taken into account. This
framework also incorporates implicit feedback for optimisation and optimises
using BPR. A comparative deep learning model uses two CNNs and one MLP
to model the user’s image preferences, as explained in Lei, Liu, Li, Zha, and
Li (2016). The CNNs process the images, one image the user likes, one image
the user dislikes, whereas the MLP processes user information. Before the final
layer, the abstract user information is joined with the lower-dimensional image
features. Finally, the difference between the two lower-dimensional image and
user representations is fed to the cross-entropy loss function.

So far the deep learning frameworks have mostly utilised the rating, user and

7

Chapter 2 – Related Work

image data available, another important source of information is the written
review of each user. Deep Cooperative Neural Networks as described in Zheng,
Noroozi, and Yu (2017) use two parallel neural networks coupled in the last
layers. One network deals with user behaviour while the other learns item prop-
erties, all from the written review text per user-item combination. Their steps
include creating a review matrix (word embedding) per user, using a convo-
lutional layer to produce new features, and max-pooling to extract the most
important parts of the review. The output of the max-pooling layer is fed into
a fully connected layer which produces the final outputs for each user and item,
based on their text reviews. To bring both models together they concatenate
user and item vectors and apply a FM to estimate the corresponding rating. A
downside of this model, however, is the fact that review texts might not be avail-
able during test time. Also using review text but more similar to Collaborative
Deep Learning is the Convolutional Matrix Factorisation model which utilises
CNNs to capture the contextual information and integrates this in Probabilistic
Matrix Factorisation (Kim, Park, Oh, Lee, & Yu, 2016). A more straightforward
approach is using CNNs to improve NCF in Convolutional Neural Collaborative
Filtering (ConvNCF) (X. He et al., 2018). An important difference, however, is
that ConvNCF uses an outer product instead of the usual dot product for model-
ling the user-item interactions. Afterwards, CNNs are used to obtain high-order
correlations among embeddings dimensions. The ConvNCF is a model within
their proposed Outer Neural Collaborative Filtering framework, it has 6 convo-
lutional layers with embedding size 64 and follows the half-size tower structure.
This model also uses the BPR objective for optimisation.

2.2.4 Recurrent Neural Networks

These types of networks, allow output from previous layers to be used in the
current layer and share weights among time steps (Goodfellow et al., 2016). This
implies the network has a form of memory, which can be useful in processing
sequential data, e.g., speech or voice fragments. In fashion recommendation,
Recurrent Neural Networks (RNN) can be used to model sequential patterns,
e.g., user behaviour, fashion trends, and seasonal evolution of items. An ex-
ample of this approach is Collaborative Filtering with Recurrent Neural Networks
(CFRNN) (Devooght & Bersini, 2016), in which they view CF as a sequence
prediction problem. Here the authors take a similar approach as with lan-
guage modelling, using RNNs to learn sequences of words (Kombrink, Mikolov,
Karafiát, & Burget, 2011). The catalogue of items represents the vocabulary,
making each item similar to a word. Then naturally, the sequence of items
consumed by a user becomes a sentence and the model’s target is to predict
the next ‘word’. In C.-Y. Wu, Ahmed, Beutel, Smola, and Jing (2017), the
authors propose a Recurrent Recommender Network to predict future behavi-
oural trajectories. In addition to standard MF to learn latent user and item
attributes, they make use of a Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997) autoregressive model to capture dynamics. Jing and
Smola (2017) tackle both the problem of when a user will return and what to

8

Chapter 2 – Related Work

recommend for an online music service. This model also utilises LSTM units,
but this time for recommending the right item at the right time. In Donkers,
Loepp, and Ziegler (2017) it is shown that using an RNN with specialised Gated
Recurrent Units (GRU) (Cho, van Merrienboer, Gülçehre, et al., 2014), allows
for seamless integration of user-related information into their model.

While the algorithms mentioned above assume the history of a user is known,
this is not always the case. Many websites do not log the user’s historical inform-
ation or are not allowed to, and have to recommend using their current session.
Since this is not within the scope of this research but significant in modern online
recommender systems, we briefly cover a number of examples. In most of these
session-based cases, an item-to-item recommender is used to still make relevant
recommendations. However, Hidasi, Karatzoglou, Baltrunas, and Tikk (2015)
argue that by modelling the whole session of a user with an RNN-based ap-
proach, they can provide more accurate recommendations. S. Wu et al. (2016)
use an RNN in which each hidden layer models how the combination of web
pages are accessed and their order. They propose a finite history in which the
old states collapse into a single history state. Additionally, there are two exten-
sions which elaborate on the inclusion of side information described in Hidasi,
Quadrana, Karatzoglou, and Tikk (2016) and Smirnova and Vasile (2017). In-
stead of only learning from the history or only using the session’s information,
the Behaviour-Intensive Neural Network for next-item recommendation incor-
porates the current session information together with the customers long term
preferences (Li et al., 2018). This neural network consists of discriminative
behaviours learning with LSTM units and a neural item embedding.

2.3 Summary

As mentioned in Chapter 1, YGroup is dealing with purchase history data in-
stead of rating data. Therefore, we cannot utilise the fact that user preferences
are reflected in their ratings for the Amazon Fashion and MovieLens data. Fur-
thermore, standard MF cannot deal with implicit feedback efficiently, leading us
to adopt the BPR framework (Rendle et al., 2012), which optimises for ranking.
Thus, we use MF with BPR optimisation as our non-deep learning CF bench-
mark. In the rest of this work we refer to BPR-MF as BPR.

The first deep learning recommendation algorithm we adopt is Collaborative
Filtering with Recurrent Neural Networks (CFRNN) as proposed by Devooght
and Bersini (2016). This algorithm treats CF as a sequence prediction problem.
We decided on CFRNN as it is still a form of CF and except for time, utilises
the same data features as the BPR algorithm.

Secondly, Neural Matrix Factorisation (NeuMF) as proposed by X. He et al.
(2017), this method combines the linearity of MF with the non-linearity of
MLP. It is based on their Neural Network based Collaborative Filtering (NCF)

9

Chapter 2 – Related Work

framework and is optimised using a point-wise probabilistic approach.

Note that many different approaches exist to evaluate recommender systems
and are used throughout the literature. In the selected research we already
observe a difference in training, validation and test splits. In addition, the eval-
uation metrics and the number of items considered during evaluation also differ.

Both BPR and CFRNN are implemented following the methodology as ex-
plained in their respective research. For NeuMF we partly utilise the available
implementation on NCF Framework (2018). We refer the curious reader to
Appendix C for more information on the implementation of each algorithm.

10

Chapter 3

Algorithm Description

This chapter explains the algorithms used, how they are optimised and how
they can be used to create recommendations. Before explaining the Bayesian
Personalised Ranking (BPR) benchmark we provide the formal notation used
throughout this chapter. Furthermore, since many CF algorithms are based on
Matrix Factorisation (MF) we first describe basic Singular Value Decomposi-
tion (SVD) for recommendations. After clarifying the basics, we go into the
benchmark, followed by Collaborative Filtering with Recurrent Neural Networks
(CFRNN) and finally Neural Matrix Factorisation (NeuMF) under the Neural
Network based Collaborative Filtering (NCF) framework.

3.1 Notation

Table 3.1 lists the general notation used throughout this chapter, followed by
specific notations belonging to each algorithm. Note that both BPR and a part
of NeuMF are based on MF, therefore, the overlapping notation is omitted for
Neural Matrix Factorisation (NeuMF).

11

Chapter 3 – Algorithm Description

Table 3.1: General and algorithm specific formal notation

Notation Explanation

General

U , I user and item set
M,N number of users |U|, number of items |I|
S observed implicit feedback, S ⊆ U × I
I+
u positive item set for user u, {i ∈ I : (u, i) ∈ S}
r user-item rating matrix
ru,i actual rating user u gives to item i
r̂u,i predicted rating user u gives to item i
P,V, T training set, validation set, test set

Matrix Factorisation & BPR

γ dimension of latent factors
p M× γ user latent factor matrix
q N × γ item latent factor matrix
λ regularisation parameter
Θ MF model used with BPR
L BPR-Opt loss function
α learning rate
λp L2 regularisation of p
λq L2 regularisation of q

Recurrent Neural Networks

U input-to-hidden weight matrix
W hidden-to-hidden weight matrix
V hidden-to-output weight matrix
t time step t ∈ T
h<t> sum of weighted inputs before activation
a<t> activation function at time t
bh, by input biases, output biases
o<t> output value
L<t> sum of losses of every time step up until t
α learning rate
Θ(t) weights and biases at time t
k user-item interaction sequence cut-off

Neural Collaborative Filtering

φout mapping function for the output layer
φX X-th neural collaborative filtering layer
L binary cross-entropy loss
� element-wise product of vectors
h edge weights of output layer in GMF
aout activation function of output layer in GMF
pG, qG user and item latent factor matrics in GMF
Wx x-th layer’s weight matrix in MLP
bx x-th layer’s bias vector MLP
ax x-th layer’s activation function MLP
pM , qM user ant item factor matrices in MLP

12

Chapter 3 – Algorithm Description

3.2 Singular Value Decomposition

This algorithm was developed for recommendation purposes during the Netflix
Prize in 2006, where the winning blend of methods included the so called Sin-
gular Value Decomposition++ algorithm together with Restricted Boltzmann
Machines. It is important to understand and know SVD’s limitations, as it
forms the foundation of the MF-based Bayesian Personalised Ranking (BPR)
benchmark.

SVD is a form of MF in which the M×N user-item rating matrix r is being
factorised by user and item latent factor matrices, p and q respectively. HereM
represents the number of users and N denotes the number of items2577474Y. .
Each row within p represents a single user’s latent factors, similarly, each row
in q represents an item’s latent factors. As r can be factorised by p and q the
original rating matrix can be rewritten as

r = qT p, [3.1]

where qT p is the dot product of qT and p. This means p and q are matrices
with dimensions M× γ and N × γ respectively. Here γ denotes the dimension
of latent factors. A visual representation of this decomposition is shown in
Figure 3.1. In general, the rating matrix r is very sparse, which rules out actual

Figure 3.1: Example representation of Matrix Factorisation, where M and N equal 4
and γ equals 2 (Liao, 2019)

Singular Value Decomposition as the eigenvectors of r rT , do not exist (Klema
& Laub, 1980). Therefore, we approximate each rating rui by optimising the
latent factor vectors pu and qi, resulting in

r̂ui = qTi pu. [3.2]

Following the algorithm as described in Koren et al. (2009) we can find pu
and qi through either Stochastic Gradient Descent (SGD) or Alternating Least
Squares (ALS). For this research we utilise the SGD approach as it combines
implementation ease and relatively fast running time. ALS could be beneficial in

13

Chapter 3 – Algorithm Description

cases where, for example, parallelization is an option. With the SGD approach,
we compute the associated prediction error eui using

eui = rui − qTi pu. [3.3]

To optimise pu and qi we write this as the following sum of squares minimisation,
penalising larger errors more severely

min
q,p

∑
(u,i)∈I+

(
rui − qTi pu

)2
, [3.4]

where I+ is the set of user-item pairs for which we know rui, also known as
the positive user-item set. Next, we update the parameters pu and qi by a
magnitude proportional to a learning rate α in the opposite direction of the
gradient (SGD), resulting in

qi ← qi + α · (eui · pu)

pu ← pu + α · (eui · qi) .
[3.5]

After several of these updates in which we move towards a minimum, we obtain
matrices p and qT of which the dot product approximates the actual ratings in
rating matrix r. Meaning the the dot product of p and qT can be used to fill the
missing ratings within r. Naturally, this method heavily overfits on the matrix
used for training. Hence, we define basic MF with regularisation as:

min
q,p

∑
(u,i)∈I+

(rui − qTi pu)2 + λ(‖qi‖2 + ‖pu‖2), [3.6]

where λ is the regularisation parameter. This method of regularisation is also
referred to as L2 regularisation as it uses the L2 norm of the vectors to penalise
the parameters. With this regularisation, the SGD updates are defined as

pu ← pu + α (eui · qi − λppu)

qi ← qi + α (eui · pu − λqqi).
[3.7]

With this mechanism in place the magnitudes of qi and pu are penalised resulting
in a more general model. As mentioned in Chapter 2, many extensions exist
which can increase this algorithm’s prediction accuracy. With this setup to
approximate the actual rating matrix r, we can recommend products to user u
for which qT pu results in a high rating.

3.3 Bayesian Personalised Ranking

Since we are dealing with purchase history data (binary) instead of ratings (or-
dinal) we require a different modelling approach. The fact that a user bought a
product or watched a movie does not guarantee a preference for that item. In

14

Chapter 3 – Algorithm Description

addition, items the user has not interacted with do not necessarily imply a dis-
liking towards that item. Thus the preference of a user towards non-interacted
(negative) items is unknown. Even if we do assume that a purchased item is
a preferred item, the standard MF now has to consider every item, the ob-
served and the non-observed. Standard MF becomes infeasible, considering the
average rating matrix as used in the literature, consists of millions of possible
user-item combinations. Examples of such datasets include the MovieLens 1M
data (2003) and the Netflix 100M data (2019).

Rendle et al. (2012) propose Bayesian Personalised Ranking (BPR) with Bayesian
Personalised Ranking Optimisation: a generic optimisation criterion for optimal
personalised ranking (BPR-Opt). This framework delegates the actual model-
ling of the user-item relationship to an MF or adaptive k-nearest neighbours
model. The way BPR-Opt differs from standard MF optimisation is that in-
stead of minimising the differences between predicted ratings and actual ratings,
it considers the ranking of item pairs per user. The goal is to find each user’s
total ranking >u⊂ I2, where >u has to meet the following properties of total
order:

∀i, j ∈ I : i 6= j ⇒ i >u j ∨ j >u i (totality)

∀i, j ∈ I : i >u j ∧ j >u i⇒ i = j (antisymmetry)

∀i, j, k ∈ I : i >u j ∧ j >u k ⇒ i >u k (transitivity)

[3.8]

Their model is based on the assumption that the user prefers a positive item
(observed) over a negative item (non-observed), resulting in the implicit feed-
back representation shown in Figure 3.2. For training we draw user-specific
triples from the data, consisting of user u, positive item i and negative item j.
Formally, we create the triples DS : U × I × I as

DS :=
{

(u, i, j)|i ∈ I+
u ∧ j ∈ I\I+

u

}
, [3.9]

where S is the set of observed implicit feedback, I is the set of all items and I+
u

is the set of positive items of user u (see Table 3.1 for notation).

3.3.1 BPR-Opt & BPR Learning

Now using a Bayesian analysis of the problem we can formulate the likelihood
function as p (i >u j|Θ) with prior p(Θ), where Θ is the utilised model. For
this research, we take standard MF as Θ, meaning MF is used to capture the
relationships between users and items. The goal is to maximise the posterior
probability, defined as

p (Θ| >u) ∝ p (>u |Θ) p(Θ), [3.10]

where >u is the desired latent preference structure for user u. To obtain a
general formulation for all users u ∈ U we assume users act independently
of each other. Furthermore, the ordering of each user-specific item pair (i, j)

15

Chapter 3 – Algorithm Description

Figure 3.2: BPR assumption on implicit feedback data per user. In the matrices on
the right side, (+) indicates users preference of item i over j and (−) indicates users
preference of j over i. (Rendle et al., 2012)

is independent of the ordering of every other pair. Using these assumptions
together with the totality and antisymmetry property (Equation 3.8) Rendle et
al. (2012) define the following Bayesian formulation∏

u∈U
p (>u |Θ) =

∏
(u,i,j)∈DS

p (i >u j|Θ) . [3.11]

The individual probability that user u prefers item i over item j can now be
defined as

p (i >u j|Θ) := σ (x̂uij(Θ)) , [3.12]

where x̂uij(Θ) is defined as the difference between x̂ui and x̂uj , calculated with
Θ being standard MF and σ denoting the logistic sigmoid function:

σ(x) :=
1

1 + e−x
. [3.13]

16

Chapter 3 – Algorithm Description

Finally BPR-Opt is derived as:

BPR−OPT := ln p (Θ| >u)

= ln p (>u |Θ) p(Θ)

= ln
∏

(u,i,j)∈DS

σ (x̂uij) p(Θ)

=
∑

(u,i,j)∈DS

lnσ (x̂uij) + ln p(Θ)

=
∑

(u,i,j)∈DS

lnσ (x̂uij)− λΘ‖Θ‖2.

[3.14]

For BPR learning, we use SGD similar to standard MF however, each update
is now calculated as follows:

Θ← Θ + α

(
e−x̂uij

1 + e−x̂uij
· ∂
∂Θ

x̂uij + λΘΘ

)
. [3.15]

To apply this update using MF, we have to take into account that x̂uij is defined
as x̂ui − x̂uj . Using the MF formula as shown in Section 3.2 we obtain

x̂uij = qTi pu − qTj pu. [3.16]

Meaning the partial derivatives needed for the SGD updates of Θ take the
following forms:

∂

∂θ
x̂uij =

(qi − qj) if θ = pu,
pu if θ = qi,
−pu if θ = qj ,
0 else

[3.17]

For the regularisation parameters used within the updates, we define λp for user
features p and λq for item features q.

Optimiser: Bold Driver

In addition to Rendle et al. (2012), we optimise the learning rate during training
for better performance using the bold-driver approach (Shepherd, 2012). This
simple yet effective method can be described as

αk+1 =

{
ραk, if Lk+1 < Lk,
σαk, if Lk+1 ≥ Lk,

[3.18]

where αk, ρ and σ are the learning rate at iteration k, rate of increase and rate
of decrease respectively. Furthermore, Lk is the BPR-Opt loss as defined in
3.14, at iteration k. This method increases the learning rate with ρ > 1 at the
end of an iteration if the current loss is smaller than the loss in the previous
iteration. If the current loss is smaller or equal to the previous loss we decrease
the learning rate with σ < 1.

17

Chapter 3 – Algorithm Description

Recommending

Recommendations for user u are made by taking the dot-product of trained
vector pu and matrix q, which results in predicted preference scores for all
items. Within these scores a larger score signifies more preference towards that
item. The top n items with the largest scores are the items we recommend to
user u.

3.4 Collaborative Filtering with Recurrent Neural
Networks

Recurrent Neural Networks (RNN) are already well known when it comes to
text generation, where the next word is predicted given the current sequence
of words (Kombrink et al., 2011; Sutskever, Martens, & Hinton, 2011). In a
similar fashion, we can treat product recommendation as a sequence prediction
problem. Now the past user-item interactions are modelled as chronologically
ordered sequences per user, i.e., their interaction history. Our recommendation
is then defined as the predicted interaction, given the user’s item sequence.
We adopt the approach of Devooght and Bersini (2016) in which they propose
implementing an RNN with one hidden Long Short-Term Memory (LSTM)
layer to model the recommendation problem as a sequence prediction problem.
Before elaborating on their approach we go into the basics of feedforward neural
networks followed by an in-depth description of RNNs and LSTMs, explaining
why these models are a good fit for sequence prediction.

3.4.1 Feedforward Neural Networks

In general, feedforward neural networks consist of an input layer, a number of
hidden layers and the output layer. Each layer consists of several neurons that
are connected with weights. The neurons in the hidden layers use activation
functions to transform the combined input and weights from the previous layer
in a non-linear way. This non-linear activation can be seen as a transformation
of a simple linear regression. As an example we take input vector X, bias b,
weight vector W and estimation of desired output vector y, ŷ, we create the
simple linear regression equation

ŷ = b+W>X. [3.19]

Here we optimise for the best fit of the line through the data by minimising a
loss function, such as the mean squared error. Now without optimal weights and
bias terms, there will be a significant difference between our estimation ŷ and
the real value(s) y. In other words, sub-optimal parameters lead to a larger loss
than optimal parameters. In a single-layered single neuron feedforward neural
network we have activation function a in place

ŷ = a(b+W>X). [3.20]

18

Chapter 3 – Algorithm Description

This model is also known as a perceptron model as introduced in Rosenblatt
(1957), visually represented in Figure 3.3. Compared to linear regression, the

Figure 3.3: A single neuron, single-layered neural network, also known as a perceptron
model

parameters of this non-linear variant do not act independently of each other
when it comes to influencing the loss function. By introducing this non-linearity
and allowing the model more flexibility, we trade the convex solution space of
linear regression for one with many local optima. For the model to still perform
well and be able to find a satisfying optimum we need multi-step optimisation
methods. The most effective method to date is known as gradient descent, which
is used in a similar fashion as in Section 3.3. However, with the non-trivial solu-
tion space at hand, Deep Neural Networks (DNN) usually perform mini-batch
stochastic gradient descent. This method splits the full training batch in smal-
ler mini-batches which enlarge the update frequency compared to batch (all
training samples) gradient descent. The stochastic component is introduced by
updating the parameters per mini-batch instead of after the full batch has gone
through the network.

Taking the single-layered single neuron example, the input with its randomly
initialised weights and bias go through Equation 3.20 to calculate estimation
ŷ. This forward step, where we move from left to right through Figure 3.3 is
known as forward propagation. Next, we update the parameters (weights and
bias) by a magnitude proportional to the learning rate α in the opposite direc-
tion of the partial derivatives of the loss function (gradient descent). Thus we
take a step backwards through the network, towards the inputs, which is known
as backward propagation. One forward and backward pass are defined as an
epoch, these propagation steps continue for several epochs or until a stopping
condition is met. Expanding this example to DNNs, we have several hidden
layers, consisting of multiple neurons, each with their own input and output
connections.

Sequence Prediction

A general representation of a feedforward neural network is shown in figure 3.4,
here the internal connections are omitted and the inputs and outputs are rep-
resented as sequences (as in our problem). In our case input data X consists

19

Chapter 3 – Algorithm Description

Figure 3.4: General representation of a Neural Network with a sequence as input data
and a sequence as output data (Bhulai, 2018)

of sequences, meaning every xu ∈ X is a sequence xu = x<1>
u , x<2>

u , ..., x<T>u ,
with time steps t = 1, 2, ..., T . Modelling the recommendation problem as a
sequence prediction problem means we assume the items in each sequence are
not independent observations. For each user, the previously bought items con-
tain information about the next item, similar to words in a sentence for text
generation problems. If we model this using standard feedforward DNNs where
each x<t>u is one input node, the model would have separate parameters for
each input node (Figure 3.4). This implies that the network needs to learn all
underlying rules of the sequence separately, for every position in the sequence
(Goodfellow et al., 2016). Even if this network would learn to identify the im-
portant parts of the sequence, it will be tailored towards the input sequence and
unable to generalise.

Thus, we need the network to remember inputs from previous time steps in-
stead of processing the full sequence all at once. This is achieved in RNNs by
sharing parameters across the time steps of the input sequence.

3.4.2 Recurrent Neural Networks

With RNNs, the input is fed into the network one time step at a time, while
retaining information from previous inputs. Therefore, we can produce a pre-
diction ŷ<t> at every time step given the current input x<t> and the previous
inputs as shown in Figure 3.5.
Note that every arrow in Figure 3.5b represents a weight matrix, one for each in-
put and one for the output per time step. Before going into the formal notation
of the forward and backward propagation we specify U , W and V as the weight
matrices for input-to-hidden, hidden-to-hidden and hidden-to-output layers re-
spectively.

In the case of a vanilla RNN unit as shown in Figure 3.6, the hyperbolic tangent
activation function is used (also known as tanh) (Nwankpa, Ijomah, Gachagan,
& Marshall, 2018). This differentiable function maps the input value to a value

20

Chapter 3 – Algorithm Description

(a) Folded (b) Unfolded

Figure 3.5: General Representation of a Recurrent Neural Network (Bhulai, 2018)

between minus one and one. With the tanh and the previously defined weight
matrices U , W and V , we define forward propagation at time step t as:

h<t> = bh + Wa<t−1> + Ux<t> [3.21]

a<t> = tanh(h<t>) [3.22]

o<t> = by + V a<t> [3.23]

ŷ<t> = softmax(o<t>) [3.24]

Where h<t> is the sum of the weighted inputs before activation in a<t>. Fur-
thermore, the input and output biases are represented by bh and by. To obtain
the output per time step we apply a softmax activation which maps the output
value o<t> to a value between zero and one. This value can be interpreted as
a probability, allowing us to calculate a loss value L<t> based on the negative
log-likelihood of ŷ<t> given x<1>, x<2>, ..., x<t>. Since every input produces
an output value here (Figure 3.5), the total loss is defined as the sum of losses
of every time step:∑

t

L(t) = L({x<1>, ..., x<t>}, {y<1>, ..., y<t>})

= −
∑
t

log pmodel (y<t>|{x<1>, . . . , x<t>})
[3.25]

Here pmodel is the loss of output value ŷ<t> on the actual observation y<t>,
given the inputs up until time t.

Equations 3.21-3.25 account for the forward pass of an RNN with vanilla hidden
units. Now for the back propagation we have to take time into account, result-
ing in Back Propagation Through Time (BPTT). Starting at the final time step
we move backwards to the initial time step, while calculating the gradients and
updating the parameters at every step. Calculating these gradients means tak-
ing the derivatives of the time dependent parameters x<t>,a<t>,o<t>, L<t>

and the shared parameters bh, by,W ,U ,V , with respect to the loss L. Using
Goodfellow et al. (2016) we show the formulas of the partial derivatives, starting

21

Chapter 3 – Algorithm Description

Figure 3.6: Vanilla RNN unit (Bhulai, 2018)

with ∂L
∂o<t>

i

(∇o<t>L)i =
∂L

∂o<t>i

=
∂L

∂L<t>
∂L<t>

∂o<t>i

= ŷ<t>i − 1i=y<t> , [3.26]

where ∂L
∂o<t>

i

is formulated given the softmax activation is used for obtaining ŷ.

Furthermore we assume the negative log-likelihood is used to calculate the loss
on the true targets y. In the first backward time step a<T> has only the final
output o<T> as its descendent, making the partial derivative relatively simple:

∇a<T>L = V >∇o<T>L [3.27]

For the other time steps we have to take both o<t> and a<t+1> into account:

∇a<t>L =

(
∂a<t+1>

∂a<t>

)>
(∇a<t+1>L) +

(
∂o<t>

∂a<t>

)>
(∇o<t>L)

= W> diag
(

1−
(
a<t+1>

)2)
(∇a<t+1>L) + V > (∇o<t>L)

[3.28]

Here diag
(

1−
(
a<t+1>

)2)
stands for the Jacobian of the tanh function asso-

ciated with the hidden unit i at time t+ 1.

Now for the shared parameters we refer to copies W<t> of W , instead of just
W . This is due to specifics of the ∇W f , which are omitted here (see subsection
6.5.4 of Goodfellow et al. (2016)). The important part is that ∇W<t> is used
to denote the contribution of the weights at time step t to the gradient. Using

22

Chapter 3 – Algorithm Description

this notation for all shared parameters, we obtain the following formulations:

∇byL =
∑
t

(
∂o<t>

∂by

)>
∇o<t>L =

∑
t

∇o<t>L [3.29]

∇bhL =
∑
t

(
∂a<t>

∂b<t>h

)>
∇a<t>L =

∑
t

diag
(

1−
(
a<t>

)2)∇a<t>L [3.30]

∇V L =
∑
t

∑
i

(
∂L

∂o<t>i

)
∇V <t>o<t>i =

∑
t

(∇o<t>L)a<t>
>

[3.31]

∇WL =
∑
t

∑
i

(
∂L

∂a<t>i

)
∇W<t>a<t>i

=
∑
t

diag
(

1−
(
a<t>

)2)
(∇a<t>L)a<t−1>>

[3.32]

∇UL =
∑
t

∑
i

(
∂L

∂a<t>i

)
∇U<t>a<t>i

=
∑
t

diag
(

1−
(
a<t>

)2)
(∇a<t>L)x<t>

>
[3.33]

This concludes the forward and backward propagation of an RNN with vanilla
units.

Vanishing or Exploding Gradients

Even though RNNs possess memory in terms of their shared parameters, the use
of this vanilla unit introduces an issue when it comes to long term dependencies.
We explain this problem using a simplified, linear form of Equation 3.21 without
inputs x<t>:

a<t>) =
(
W<t>

)>
a<0>. [3.34]

As one can imagine W<t> is unstable, meaning the term either vanishes or
explodes depending on the magnitude of W and the time step t. RNNs with
vanilla units build on this same principle, meaning we observe similar behaviour
of their gradients where they can either vanish or explode (Hochreiter, 1998). As
also discussed in Hochreiter (1998), replacing the vanilla RNN units with Long
Short-Term Memory (LSTM) can mitigate the vanishing/exploding gradients
issue.

3.4.3 Long Short Term Memory Units

Within the RNNs hidden layers, there exist different units to use for the model-
ling of each neuron. LSTM units were introduced as an alternative to the vanilla
RNN neurons, as the latter suffered from vanishing/exploding gradients. As the
name suggests, these Long Short-Term Memory (LSTM) units try to preserve
previously observed information while forgetting unnecessary information. This

23

Chapter 3 – Algorithm Description

subsection explains the mechanisms behind LSTM units, following Goodfellow
et al. (2016) and Olah (2015).

Next to the recurrence of RNNs, LSTM units introduce a loop within them-
selves. The information within this loop is regulated with gates, or “the weight
on this self-loop is conditioned on the context, rather than fixed” (Goodfellow et
al., 2016, p. 404). The architecture of a single LSTM unit is shown in Figure 3.7,
where each gate is based on the sigmoid function. Furthermore, every gate can
be thought of as a layer of its own, combining its own weights and bias with the
output. We observe similar inputs and outputs compared to the vanilla RNN

Figure 3.7: LSTM unit architecture (Bhulai, 2018)

unit in Figure 3.6. However, the key difference is the cell state c<t>, which runs
horizontally through the complete network, connecting the individual LSTM
steps throughout time. This cell state can be seen as the main information flow
throughout the network of which the gates decide what to keep. As with the
vanilla units, we receive the activated output of the previous time step a<t−1>

as input. Before going through the gates, a<t−1> is combined with the current
input variable(s) x<t>.

The Forget Gate (3.35) is the first gate we encounter, it consists of a sig-
moid activation function, meaning its outputs will be between zero and one.
This output f<t> is multiplied with the cell state; therefore, values closer to
zero will also lower their corresponding value in the cell state. Naturally, values
closer to one mean they have more importance and will be better preserved
within the cell state.

f<t> = σ
(
Wf ·

[
a<t−1>, x<t>

]
+ bf

)
[3.35]

Next, the Update Gate (3.36), which decides what new information to store in
the cell state. The sigmoid output i<t> is combined with a tanh transformation

24

Chapter 3 – Algorithm Description

of the input C̃<t>. Within this combination C̃<t> contains the new candidate
values that could be added to the cell state. The final decision as to how much
each value will be updated is done by scaling C̃<t> with i<t>. After multiplying
and adding the forget and update gates respectively, we obtain the final cell state
C<t> as is defined in Equation 3.37.

i<t> = σ
(
Wi ·

[
a<t−1>, x<t>

]
+ bi

)
C̃<t> = tanh

(
WC ·

[
a<t−1>, x<t>

]
+ bC

) [3.36]

C<t> = f<t><t−1> + i<t> · C̃<t> [3.37]

Finally, the Output Gate (3.38) combines the updated cell state with the
current inputs. We first apply a sigmoid function to the inputs, denoted as
o<t>, to decide what values to keep. Secondly, we squeeze the values of the
updated cell state between minus one and one with the tanh function. The
final output a<t> is the multiplication of the two, similar to the update gate
mechanism.

o<t> = σ
(
Wo

[
a<t−1>, x<t>

]
+ bo

)
a<t> = o<t> · tanh (C<t>)

[3.38]

Since each component is constructed using the well known differentiable sigmoid
and tanh functions, we can still upgrade the weights during BPTT. The additive
structure of the gradients concerning the cell state and the presence of the forget
gate make it less likely that gradients will vanish during BPTT. This additive
structure of the derivative of the cell state looks as follows:

∂C<t>

∂C<t−1>
=

∂

∂C<t−1>

[
C<t−1> · f<t> + C̃<t> · i<t>

]
=

∂

∂Ct−1

[
C<t−1> · f<t>

]
+

∂

∂C<t−1>

[
C̃<t> · i<t>

]
=
∂f<t>

∂Ct−1
· Ct−1 +

∂C<t−1>

∂C<t−1>
· f<t> +

∂i<t>

∂C<t−1>
· C̃<t> +

∂C̃<t>

∂C<t−1>
· i<t>

[3.39]
As the backward steps through the network are derived in the same manner
as with vanilla units, the backpropagation formulas are omitted. For the full
derivation we refer the curious reader to G. Chen (2016).

Another popular alternative for vanilla RNN units are Gated Recurrent Units
(GRU) (Cho, van Merrienboer, Bahdanau, & Bengio, 2014). Since no GRUs
have been utilised in this research we keep their explanation out of scope. How-
ever, we refer the curious reader to a comparison of the vanilla units, GRUs and
LSTMs in Chung, Gülçehre, Cho, and Bengio (2014).

Overview

Concluding this in-depth explanation of RNNs and LSTMs units, we note that
the memory introduced by sharing of parameters allowed DNNs to be used in

25

Chapter 3 – Algorithm Description

sequence modelling. However, in its early stages, this shared memory principle
through time faced several drawbacks including the vanishing and exploding
gradients problem. To mitigate these issues Hochreiter (1998) introduced the
LSTM unit, which is a more complex structured unit than the vanilla RNN unit.
LSTM units contain a cell-state which can be seen as the main information flow
of the network. The information within this cell-state is regulated by gates,
based on sigmoid and tanh functions.

3.4.4 RNN for Collaborative Filtering

Devooght and Bersini (2016) frame the recommendation problem as a sequence
prediction task in which the order of previous interactions is taken into account
when predicting the next interaction. With this approach comes the distinc-
tion between short-term and long-term predictions, where the former means the
very next item in the sequence. The order of user-item interactions can contain
valuable information that is neglected in common modelling of the problem,
i.e., standard MF. Their model is named Collaborative Filtering with Recurrent
Neural Networks (CFRNN).

Adopting this approach, we use an RNN to go through each time step of the
sequence of items consumed by a user. The input per time step consists of
the one-hot encoding of the current item, out of all items. As for the output
we use a softmax layer with a neuron for each item, meaning we treat this
as a multiclass-classification output. The loss is then calculated according to
Equation 3.40, also known as categorical cross-entropy loss or softmax loss.

L(y, ŷ) = − 1

M

M∑
u=0

N∑
i=0

(yui ∗ log (ŷui)) [3.40]

Where ŷ is the predicted value, M is the number of users and N is the total
number of items. As every time step produces an output, namely the pre-
dicted next item in the sequence, we calculate this loss at each time step. The
categorical cross-entropy loss function compares the softmax activated output
(probabilities) with the true one-hot encoded distribution. Put differently, the
closer the predicted probabilities per class (ŷui) are to the actual single next
value (yui) the lower the loss. This implies that the model is trained to predict
the very next item in the sequence, thus focusing on short-term rather than
long-term predictions. The loss of a single epoch is computed by taking the
average of Equation 3.40 for all time steps of all users. Furthermore, we utilise
LSTM units as the hidden neurons based on the difference in performance with
vanilla RNN units as explained in Section 3.4.

Important in this approach is that not all user-item interaction sequences are of
equal length. To still enable the LSTM units to learn from these sequences, we
use the k latest interactions together with padding and masking of the interac-
tions for users with less than k interactions. Thus, the time ordering per user

26

Chapter 3 – Algorithm Description

is relative, meaning users within each batch can have a variable time horizon
over which the interactions took place. Furthermore, the number of user-item
interactions is not equal for all users, meaning one batch can contain users with
different total time steps T .

Diversity Bias

When using multiclass-classification output we expose the model more to the
imbalanced implicit feedback dataset compared to BPR. The difference is that
the RNN does not build a representation per user and item to update at every
interaction encountered, as in BPR. It does, however, use the sequence informa-
tion per user to predict the next item. This implies that the frequent occurrence
of popular items in user-item sequences together with the model optimised to
predict the next item leads to the development of a bias towards these popular
items during training. In order to mitigate the effects of this popularity bias,
we utilise a diversity bias within the objective function, following Devooght and
Bersini (2016) we get

Lδ = − log (ocorrect)

eδpcorrect
, [3.41]

where δ ∈ [0, inf) is the diversity bias hyperparameter, ocorrect is the value
of the output neuron corresponding to the correct item and pcorrect denotes a
popularity measure associated with the correct item. To construct p we divide
the items into ten bins of logarithmic size in which the smaller bins contain the
most popular items in terms of the number of ratings. Naturally, the larger
bins contain the least popular items. Now we assign a p of 1 to the items in
the largest bin, p = 2 for items in the second-largest bin, up to p = 10 for
the smallest bin. Setting δ > 0 ensures the loss for mispredicting the most
popular items weighs less than mispredicting less popular items. This way the
SGD updates of the parameters with respect to the loss will be less focused on
getting the popular items correct and reduces the popularity bias.

Model Structure

Note that before the input is masked and fed into the LSTM layer, we use
an embedding layer to densely represent the items instead of using a sparse
representation. In other words, we obtain a similar matrix as q in 3.3 in terms of
an abstract representation of the item that is learned during training. However,
the embedding layer in CFRNN learns the position of an item within the vector
space from the sequences and the surrounding items observed during training,
which is different from the way BPR utilises the item latent factor matrix q.
Finally, the model has the following structure:

1. Embedding layer

2. Masking layer

3. LSTM layer

27

Chapter 3 – Algorithm Description

4. Dense layer (softmax)

5. Categorical Crossentropy Loss with Diversity Bias

Optimisation: AdaGrad

The standard SGD updates for the weights and biases θ at each epoch τ (or
each mini-batch) can be described as

θ(τ + 1) = θ(τ)− α∂L
∂θ

(τ), [3.42]

where α denotes the learning rate and L denotes the loss. Now we define the
difference in the weights per epoch number τ as

∆θ = −α∂L
∂θ

(τ), where ∆θ = θ(τ + 1)− θ(τ). [3.43]

One shortcoming of this approach is the fact that all parameters are updated
according to the same learning rate at each step. As seen in the Bold-Driver ap-
proach in Section 3.3.1 we decrease the learning rate when needed to slow down
learning and not overshoot the minimum. However, in DNN updates we observe
different frequencies by which each weight is updated while training, especially
when the gradients are sparse. If we decrease the learning rate at an equal pace
for each weight we might miss the optimal setting per weight. Therefore, we
utilise the Adaptive Gradient Algorithm (AdaGrad) (Duchi, Hazan, & Singer,
2011) as the learning optimisation algorithm. This approach assigns individual
learning rates to the parameters at each step θi(τ) and adapts these rates dur-
ing training based on each parameter’s update frequency. Or more formally, the
difference in weights is calculated using

∆θi(τ) = − α√
Gi(τ)+ε

∂L
∂θi

(τ)

Gi(τ) = Gi(τ − 1) +
(
∂L
∂θi

(τ)
)2

.
[3.44]

Recommending

Since the final layer is a softmax layer, we can interpret the scores for each item
as a probability of it being the next item in the sequence. Thus, for predicting
the next items of user u we feed his user-item interaction sequence into the
CFRNN and rank the top n probabilities for each item in descending order.
This means we only look at the final predictions instead of the predictions per
time step. The items within this ordered list are the top n recommendations
for user u.

28

Chapter 3 – Algorithm Description

3.5 Neural Collaborative Filtering

Combining the previously explained MF and MLP in a unique way is what
X. He et al. (2017) describe in their NCF framework. The MF component
operates similarly as explained in Section 3.2 but with a different approach to
calculating the loss. Instead of a pairwise loss function, like BPR, their General-
ised Matrix Factorisation (GMF) treats recommending as a binary classification
problem. Simultaneously, the MLP component is used to model the non-linear
user-item interaction function. The final output is then composed of their com-
bined output, which we discuss in subsection 3.5.4. The full model is named
Neural Matrix Factorisation (NeuMF), which is constructed under their pro-
posed Neural Network based Collaborative Filtering (NCF) framework. Since
this model is based on MF, we adopt the notation as specified in Table 3.1,
which differs from the author’s notation. The rest of this section will cover the
NCF framework followed by a description of each component and finally their
combination into NeuMF.

3.5.1 NCF Framework

In short, this framework allows the dot product of MF to be interchangeable with
a DNN to map the user and item latent feature factors to prediction scores. As
we are focused on comparing CF methods we take the binarised sparse vector
representation of user-item interactions as the inputs. However, the authors
state that different ways of modelling users and items can be adopted. The
binarised user inputs pass through an embedding layer to create their latent
feature vectors in a similar fashion as MF, the same goes for the item inputs.
With these embeddings we formulate the mapping to a prediction as

ŷui = f (pu, qi|p, q,Θf) , [3.45]

where pu ∈ RM×γ and qi ∈ RN×γ denote the latent factor vector for users
and items respectively. This is equivalent to the representation of pu and qi
within MF (Section 3.2). Furthermore, Θf denotes the parameters of the in-
teraction function f . The difference with standard MF is that the interaction
function under NCF is defined as a multi-layer neural network, meaning it can
be formulated as

f (pu, qi) = φout (φX (. . . φ2 (φ1 (pu, qi)) . . .)) , [3.46]

where φout and φX denote the mapping function for the output layer and the
X-th neural collaborative filtering layer respectively.

Instead of using pairwise loss or classic pointwise loss we adopt binary cross-
entropy loss, which is a special case of the previously explained categorical
cross-entropy loss (subsection 3.4.4). Adopting a probabilistic approach for cal-
culating ŷui fits both the binarised representation of implicit data, as well as
the use of binary cross-entropy loss. To interpret the output as a probability we

29

Chapter 3 – Algorithm Description

constrain ŷui in the range of [0, 1] using a sigmoid activation function (Equa-
tion 3.13) in the output layer φout. With this activation function in place we
then define the likelihood function as:

p
(
I+, I\I+|p, q,Θf

)
=

∏
(u,i)∈I+

ŷui
∏

(u,j)∈I\I+
(1− ŷuj) , [3.47]

where I+ is the set of positive items and I\I+ is the set of negative items,
which can be all or sampled from unobserved interactions per user. To obtain
the objective function we take the negative logarithm of the likelihood:

L = −
∑

(u,i)∈I+
log ŷui −

∑
(u,j)∈I\I+

log (1− ŷuj)

= −
∑

(u,i)∈I+∪I\I+
yui log ŷui + (1− yui) log (1− ŷui) .

[3.48]

To minimise L we perform mini-batch SGD as in the previously explained model
(Section 3.4). As for the negative samples I\I+, we uniformly sample them from
the unobserved interactions. This means we can control the ratio of negative
instances we feed into the network and treat this as a hyperparameter.

3.5.2 Generalised Matrix Factorisation

Taking just the embedding layer above the input layer of NCF we obtain user
and item latent feature vectors pu and qi. Now if we use only one NCF layer
in which the mapping is simply the element-wise product of vectors we end up
with the following form of standard MF:

φ1 (pu, qi) = pu � qi, [3.49]

where the element-wise product of vectors is denoted by �. Projecting this
vector to the output layer according to the NCF framework results in

ŷui = aout
(
h> (pu � qi)

)
, [3.50]

where h and aout denote the edge weights and activation function of the output
layer respectively. Taking h to be a uniform vector of 1 and for aout an identity
function, we recover the standard MF model under NCF.

Under NCF, X. He et al. (2017) define Generalised Matrix Factorisation (GMF)
as Equation 3.50 where aout is represented by the sigmoid function (Equa-
tion 3.13) and h is learned from the data using the binary cross-entropy loss
and SGD.

In this case the updates of pu and qi happen in a similar fashion as with stand-
ard MF. However, now we start from the binary cross-entropy loss and calculate
the gradient with respect to this loss. Next, using this gradient we update the
corresponding embedding layers in proportion to a learning rate α. Lastly, the
same L2 regularisation is used to lower overfitting on the training data.

30

Chapter 3 – Algorithm Description

3.5.3 Multilayer Perceptron

Instead of the straightforward approach of GMF, we first concatenate vectors
pu and qi to be able to use a standard Multi-layer Perceptron (MLP) to learn
the user item interactions. This allows for a large level of flexibility and non-
linearity compared to the GMF model. Formally this MLP approach under the
NCF framework can be defined as:

z1 = φ1 (pu, qi) =

[
pu
qi

]
φ2 (z1) = a2

(
W>

2 z1 + b2

)
. . .

φL (zL−1) = aL
(
W>

LzL−1 + bL
)

ŷui = σ
(
h>φL (zL−1)

)
[3.51]

where Wx, bx and ax denote the weight matrix, bias vector, and x-th layer’s
activation function. The author’s opt for ReLU as the activation function of the
MLP layers for multiple reasons. Next to their empirical results, in which ReLU
outperforms tanh and sigmoid, ReLU is proven to be non-saturated (Glorot,
Bordes, & Bengio, 2011) and well-suited for sparse data. The tower structure
is used as the MLP architecture, meaning we take half the size of the previous
layer for the next layer. This is done such that the layers with less hidden units
learn relatively more abstractive features of the users and item.

The steps specified in Equation 3.51, represent the forward propagation of the
MLP. This representation is rather standardised and therefore not further ex-
plained in X. He et al. (2017). Hence, instead of focusing on the specifics of the
back propagation in this work, we refer the curious reader to Algorithms 6.3
and 6.4 in subsection 6.5.4 of Goodfellow et al. (2016). The only addition to
this standardised format is that the final partial derivative of W>

2 with respect
to the loss guides the update direction of the components of vectors pu and qi.

3.5.4 Neural Matrix Factorisation

The goal of creating GMF and MLP is that they can mutually reinforce each
other when combined, this combination is defined as Neural Matrix Factorisa-
tion (NeuMF). To create NeuMF, both GMF and MLP components keep their
original structure, each with their own embedding layer. The final output of
NeuMF is then created by concatenating the last hidden layer of both compon-
ents, as shown in Figure 3.8. Formally we define NeuMF as

φGMF = pGu � qGi

φMLP = aL

(
W>

L

(
aL−1

(
. . . a2

(
W>

2

[
pMu
qMi

]
+ b2

)
. . .

))
+ bL

)
ŷui = σ

(
h>
[
φGMF

φMLP

])
,

[3.52]

31

Chapter 3 – Algorithm Description

where pGu and qGi are the latent feature vectors of user u and item i in GMF
respectively; and pMu and qMi similarly represent these vectors within the MLP’s
embedding layer. As stated by X. He et al. (2017), initialisation of the model

Figure 3.8: NeuMF architecture (X. He et al., 2017)

plays a key role in obtaining optimal performance. They note that initialising
the weights of NeuMF with pre-trained weights from the individual components
can lead to better convergence and performance of the combined model.

Note that the forward and backward passes through NeuMF equal the afore-
mentioned propagation steps for GMF and MLP. The only difference is that
there is an additional step before the sigmoid activation. Thus, we omit the
derivation of forward and backward propagation of NeuMF.

Optimisation: Adam, SGD

While training GMF, MLP and NeuMF we optimise using Adaptive Moment
Estimation (Adam) (Kingma & Ba, 2015). This method also adopts the in-
dividual learning rates per parameter like AdaGrad (3.4.4). However, it uses
the first and second moments of the gradients to adapt the learning rate per
parameter. More formally, using Kingma and Ba (2015), we can describe this

32

Chapter 3 – Algorithm Description

algorithm as:

mt = β1 ·mt−1 + (1− β1) · ∂L
∂w

(t)

vt = β2 · vt−1 + (1− β2) · (∂L
∂w

(t))2

m̂t =
mt

(1− βt1)

v̂t =
vt

(1− βt2)

∆θ = −α · m̂t

(
√
v̂t + ε)

[3.53]

Here β1 and β2 denote the decay rates for the first and second moment estim-
ates respectively. Furthermore, mt and vt denote the first and second biased
moment estimates at step t, in our case the steps are the mini-batches that we
feed in to the algorithm. m̂t is the bias corrected form of mt similarly for v̂t
and vt. Finally the difference in the parameters is defined as ∆θ and α is the
learning rate as defined before.

However, when initialising the weights of NeuMF using the pre-trained weights
from GMF and MLP we are unable to keep track of the previously obtained
momentum. Thus, in this case we use vanilla SGD as defined in Equation 3.43
to train NeuMF.

Recommending

The output of NeuMF is a probability based on the user-item pair, fed into
the network. Probabilities closer to one can be interpreted as a larger personal
preference towards an item than a probability closer to zero. Therefore, to
obtain the top n recommended items for user u we feed user-item pairs into the
network for all items and rank the resulting list of preference probabilities in
descending order. The recommendations for user u are then defined as the top
n items of this ranked list, similar to BPR.

33

Chapter 4

Experimental Setup

First, we elaborate on the structural differences between the Amazon Fashion
dataset and the MovieLens 1M data (2003). To obtain additional insights on
the difference in model performance we create a hybrid version of the Amazon
Fashion and MovieLens datasets. With the structural analysis of the aforemen-
tioned datasets, we answer SQ1: What are the structural differences between
fashion and movie data? Next, we adopt a similar training, validation and test
split as Devooght and Bersini (2016) for assessing recommendation perform-
ance. In addition, we analyse and select two performance metrics for measuring
recommendation performance, answering SQ2: How to measure model perform-
ance, and which metric is most suitable for our research? Finally, we provide a
detailed description of the setup for BPR, CFRNN and NeuMF.

4.1 Data

The 5-core Amazon Clothing Shoes and Jewellery dataset (Ni et al., 2019;
Amazon Review data, 2018) is a review dataset of a subset of products sold
by e-commerce giant Amazon. The item categories are similar to the dataset
YGroup (Y) is facing for the application of the models explored in this work.
As mentioned in Chapter 1, we ignore the ratings and consider each rating to be
a purchase, resulting in a purchase history dataset. This means the only values
utilised by the algorithms are user id, item id and datetime. The combination
of these three features stands for an interaction per user id on the specified
datetime, with the item id. Due to the full dataset consisting of 11 285 464 re-
views and limited resources we conduct this research on two different subsets of
the full Amazon data. Note that before taking a subset of the Amazon dataset,
many non-fashion items that were still present are removed, e.g., wallpapers
and books. As for the MovieLens 1M dataset, this is already a subset of the
MovieLens 25M dataset (MovieLens 25M data, 2019). Both characteristics of
the full Amazon and MovieLens dataset can be found in Appendix A.

34

Chapter 4 – Experimental Setup

This section elaborates on the specifications of the Amazon, MovieLens and
Amazon MovieLens hybrid datasets and their structural differences. Further-
more, we explain the reasoning behind the training, validation and test split
used to assess model performance. Finally, we motivate each model’s choice of
initialisation and hyperparameters.

4.1.1 Amazon 20k Users

The first subset obtained from the 5-core Amazon Clothing Shoes and Jew-
ellery dataset is the Amazon 20k Users subset. Since this research utilises CF
algorithms it is important for each user to have some interaction history in the
data, meaning each user needs a minimum number of interactions. Similar to
the 5-core dataset we take a minimum of five user-item interactions per user to
create the Amazon 20k Users subset. Naturally, when sampling users from the
full data the number of ratings (interactions) per item decreases. The specific-
ations of this subset can be found in Table 4.1. We observe a large number

Table 4.1: Characteristics of Amazon 20k Users subset

General Statistics Value

Total Interactions 180 809
Total Users 20 000
Total Items 90 395
Sparseness 99.999%
Average Rating 4.28/5

Interactions Per User

Average 9.04
Median 7.0

Interactions Per Item

Average 2
Median 1

of items compared to the number of users, together with an average number of
ratings per user of 9.04. This combination produces the low number of ratings
per item in Figure 4.1. Furthermore the average rating for all items is heavily
left-skewed, meaning most items are highly rated between 4 and 5 on a scale
from 1-5. This skewness reinforces the implicit feedback assumption that an
interaction implies a user’s preference for the rated item.

35

Chapter 4 – Experimental Setup

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Ratings per User

1000
2000
3000
4000
5000
6000
7000
8000
9000

Co
un

t

Number of Ratings per User

0 10 20 30 40 50
Ratings per Item

10000
20000
30000
40000
50000
60000
70000
80000

Co
un

t

Number of Ratings per Item

1 2 3 4 5
Rating

0

20000

40000

60000

80000

100000

Co
un

t

Rating Distribution

Figure 4.1: Distributions of the number of ratings, the number of ratings per item and
the rating scores for the Amazon 20k users dataset (see Appendix A.2 for a long-tailed
focused representation)

4.1.2 MovieLens 1M

Within the literature reviewed in Chapter 2, the MovieLens 1M ratings dataset is
often used to assess performance of recommender algorithms. The characterist-
ics of this dataset are shown in Table 4.2. With 3 706 movies and 1 000 209around
one million ratings we observe a minimum of 20 ratings per user with a long tail
of larger ratings (Figure 4.2). A difference with the Amazon 20k users dataset,

Table 4.2: Characteristics of MovieLens 1M

General Statistics Value

Total Interactions 1 000 209
Total Users 6 040
Total Items 3 706
Sparseness 99.9553%
Average Rating 3.58/5

Interactions Per User

Average 165.6
Median 96.0

Interactions Per Item

Average 269.89
Median 123.5

36

Chapter 4 – Experimental Setup

however, is the fact that the rating distribution is less left-skewed. Here, most
items are actually rated between 3 and 4 out of 5.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Ratings per User

50
100
150
200
250
300
350
400

Co
un

t
Number of Ratings per User

0 50 100 150 200 250 300
Ratings per Item

50
100
150
200
250
300
350
400

Co
un

t

Number of Ratings per Item

1 2 3 4 5
Rating

0

100000

200000

300000

Co
un

t

Rating Distribution

Figure 4.2: Distributions of the number of ratings, the number of ratings per item and
the rating scores for the MovieLens 1M dataset (see Appendix A.2 for a long-tailed
focused representation)

4.1.3 Amazon like MovieLens 1M

With the substantial gap in items, users and number of ratings per user between
the previously introduced datasets, we propose a version of the full Amazon
dataset which more closely resembles the structure of the MovieLens 1M dataset.
The goal of this new subset, named Am-like-ML, is to observe the difference
in performance of the algorithms on a dataset that contains characteristics of
both Amazon Fashion and MovieLens, as shown in Table 4.3. The Am-like-
ML subset is created by taking an equal amount of users as observed in the
MovieLens 1M subset, where all users have a minimum of 20 interactions. As
shown in Figure 4.3, some of the structural differences remain, such as the low
number of ratings per item and the heavily left-skewed distribution of ratings.

37

Chapter 4 – Experimental Setup

Table 4.3: Characteristics of Am-like-ML subset

General Statistics Value

Total Interactions 178 794
Total Users 6 040
Total Items 87 290
Sparseness 99.9996%
Average Rating 4.29/5

Interactions Per User

Average 29.6
Median 25.0

Interactions Per Item

Average 2.05
Median 1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Ratings per User

150
300
450
600
750
900

1050
1200

Co
un

t

Number of Ratings per User

0 10 20 30 40 50
Ratings per Item

10000
20000
30000
40000
50000
60000
70000
80000

Co
un

t

Number of Ratings per Item

1 2 3 4 5
Rating

0

20000

40000

60000

80000

100000

Co
un

t

Rating Distribution

Figure 4.3: Distributions of the number of ratings per user, the number of ratings
per item and the rating scores for the Am-like-ML dataset (see Appendix A.2 for a
long-tailed focused representation)

4.1.4 Structural Differences

Putting the highlighted differences in the previous subsections together, we ob-
tain Figure 4.4. The number of users and the minimum number of interactions
per user is now equal for Am-like-ML and MovieLens 1M. However, the number
of ratings of Am-like-ML is similar to that of Amazon 20k Users. A structural
difference that remains unchanged is the total number of items for the Am-like-

38

Chapter 4 – Experimental Setup

ML subset, which is more representative of fashion than of movies (see full data
characteristics in Appendix A). Besides the total number of items, the rating
distribution also retains the structure found in Amazon 20k Users as shown in
Figures 4.1, 4.2 and 4.3.

0

2500

5000

7500

10000

12500

15000

17500

20000

Us
er

 C
ou

nt

Number of Users

0

20000

40000

60000

80000

Ite
m

 C
ou

nt

Number of Items

0

200000

400000

600000

800000

1000000

Ra
tin

g
Co

un
t

Number of Ratings

MovieLens 1M Am-like-ML Amazon 20k users

Figure 4.4: Comparison of the number of users, items and ratings for Amazon 20K
Users, MovieLens 1M and Am-like-ML

4.1.5 Training, Validation and Test Split

Common practice in the literature is to split the data according to the leave-
one-out strategy. Here, the last item a user interacted with (chronologically)
is removed from the dataset to serve as an item for validation or testing. This
implies that the rest of the data can be used in training. Since the algorithms
adopted in this work differ in the way they utilise the available data, we propose
a modified version of this split.

We propose taking a subset of users using the leave-one-out strategy to cre-
ate the test set, this way we retain as many items per user in the training set
as possible. For the validation set, we exclude the users already present in the
test set. In addition, we need to take the differences between MF and sequence
prediction-based models into account. For BPR and NeuMF we need user-item
interaction history to update the latent factor vectors while training, as these
are individually defined per user and per item. The CFRNN on the other hand,
needs a user-item interactions sequence as input to predict the next items in
the sequence. Therefore, we cannot utilise the item sequences of the test users
to train on. Devooght and Bersini (2016) split the test sequences in half, using
the first half as input and evaluate performance on the difference in predicted
items and the second half of the true sequence. We propose a similar split but
instead of predicting the second half of their sequences, we predict only the
final item, meaning we feed all items except the held-out item of the test users
into the algorithm to generate the top n recommendations. Thus, for CFRNN

39

Chapter 4 – Experimental Setup

the training, validation and test set users will not overlap, while for BPR and
NeuMF the users in the training set overlap with both the validation users and
the test users. One disadvantage of this split is the fact that the MF-based al-
gorithms observe more user-item interactions than the CFRNN during training
(Table 4.4). However, this unfairness is inevitable when comparing these types
of algorithms, as also pointed out by Devooght and Bersini (2016). The char-
acteristics per dataset in terms of number of users for the training, validation
and test sets is shown in Table 4.5.

Table 4.4: Difference in training and test split between MF-based and CFRNN al-
gorithms for a single test user (chronologically ordered)

Algorithm Training set? Needed for predicting Test set

MF-based i1, i2, ..., ik−1 - ik
CFRNN - i1, i2, ..., ik−1 ik

?i1 represents the first item id in the user’s sequence, k
denotes the length of the user’s item sequence

Table 4.5: Number of users in the training, validation and test splits for CFRNN and
MF-based algorithms for Amazon 20k Users, MovieLens 1M and Am-Like-ML

CFRNN Am 20k Users MovieLens 1M Am-like-ML

train 18 500 4 540 4 540
test 1 000 1 000 1 000
validation 500 500 500

MF-Based

train 20 000 6 040 6 040
test 1 000 1 000 1 000
validation 500 500 500

4.2 Performance Metrics

Before explaining the modelling setup, we answer the second sub-question SQ2:
how to measure model performance? Since we are classifying which items to re-
commend, classification performance metrics are considered. Furthermore, note
that each algorithm uses a ranking of the final item scores per user. There-
fore, the position of the held-out test item among the other predicted items
will provide more insight into model performance. Thus, this section elaborates
on the choice of classification- and ranking metrics to measure recommendation
performance.

40

Chapter 4 – Experimental Setup

Recommending

For recommending with BPR, CFRNN and NeuMF we follow the procedures
as specified in 3.3.1, 3.4.4 and 3.5.4 respectively. Note that the items already
present in the user’s interaction history are not considered when recommending.
This is enforced by setting the score of past interaction items as low as possible
during the ranking of the item scores.

4.2.1 Classification: Recall@n

This classification boils down to predicting which items are interesting to the
user and which items are not. Thus this classification results in the following
confusion matrix shown in Table 4.6. As one of the main objectives of recom-

Table 4.6: Confusion Matrix for Recommendation Systems

Interacted with Not interacted with

Recommended True Positives (TP) False Positives (FP)

Not Recommended False Negatives (FN) True Negatives (TN)

mendation systems is to narrow down the items which appeal to a specific user,
we evaluate the performance at n. This implies that whenever the true next
item (held-out test item) of the user is among the predicted n items for that
user, we observe a True Positive.

Recall measures what proportion of actual positives is correctly classified:

Recall =
TP

TP + FN
[4.1]

High recall signifies we captured many positives from all positives in the data.
Since we are recommending a subset of all items per user, we measure recall
within this subset. This results in the recall@n metric, where n is the length
of the recommended subset. Since we have one held-out item in the test set, we
observe a recall of 1 per user if this item is observed in the top n recommenda-
tions and 0 if it is not. We define the final recall@n metric as the average recall
calculated over all test users. To obtain more insight in model performance we
obtain recall@n for n ∈ {1, 5, 10, 15, 20}. Note that a recall@1 equal to 1.0
represents a perfect classification score and will automatically set recall@n for
any n > 0 equal to 1. With a recall@n of 0.0, no held-out item is correctly
classified within the item subset of length n for all users involved.

4.2.2 Ranking: NDCG@n

With a recall@1 score of 1.0 we not only observe a perfect classification, but
also a perfect ranking. However, for recall@n where n > 1, this score does not
provide insight in the exact ranking of the held-out item anymore. Thus, the

41

Chapter 4 – Experimental Setup

recall@n score only confirms if the held-out test item is in the top n recom-
mendations, it does not take the position of this item within the top n into
account. Therefore, we include a ranking metric which provides additional in-
sights in model performance. For the ranking problem we can describe our top
n recommendations as:

recommendations = ir1, i
r
2, . . . , i

r
n, (i ∈ I, r ∈ {0, 1}), [4.2]

where r denotes the relevance of the item. Since we hold out one item per user
for the test set, we haveM− 1 items (see General notation in Table 3.1) where
r = 0 and a single item where r = 1. The rank of this i1 among the top n items
is what needs to be measured. We adopt the popular Normalised Discounted
Cumulative Gain (NDCG) as our ranking metric to evaluate ranking perform-
ance.

NDCG is build upon the basic concept of Cumulative Gain (CG) which is defined
as the sum of all the relevance scores in a given set:

CG =
n∑
j=1

rj . [4.3]

In our case CG equals hitcount, as there is only one relevant item with relevance
score 1. Thus, to take the position of this one item into account we use Dis-
counted Cumulative Gain (DCG). Discounting the relevance score by dividing
it by the log of the corresponding position allows us to take the position of each
item into account:

DCG =
n∑
j=1

rj
log2(j + 1)

. [4.4]

For completeness, we normalise DCG to arrive at NDCG. This step ensures
recommendations of various sizes are measured in the same way. For this we
divide DCG by the ideal order (iDCG):

NDCG =
DCG

iDCG
. [4.5]

Finally, to calculate the total ranking score we average the NDCG at cut-off
point n for all users in the test set, resulting in NDCG@n. A perfect NDCG@n
of 1.0 means all held-out items are ranked first in the top n recommendations.

4.3 Bayesian Personalised Ranking

The initialisation settings of BPR and its hyperparameters are shown in Table 4.7
and Table 4.8 respectively. The parameters that differ per dataset have been
found using a grid search per combination of algorithm and dataset of which
the results can be found in Appendix B. As already mentioned in Section 3.3,
the samples consist of a user, a positive item and a negative item, randomly

42

Chapter 4 – Experimental Setup

Table 4.7: Initialisation of BPR

Component Initialisation Parameters?

user latent factor matrix p random normal µ = 0, σ = 0.1
item latent factor matrix q random normal µ = 0, σ = 0.1

? µ and σ represent the mean and standard deviation of the normal
distribution respectively.

Table 4.8: Hyperparameters used in BPR for each dataset

Parameters Amazon 20K Users MovieLens 1M Am-Like-ML

γ 8 8 8
Epochs 25 25 25
α 0.05 0.05 0.08
ρ 1.05 1.05 1.05
σ 0.55 0.55 0.55
λp 0.1 0.001 0.1
λq 0.1 0.001 0.1
Sample Size 89 654 99 870 141 918
Sample% of Interactions 50% 10% 80%

sampled from the training set. Therefore the Grid Search and final results are
based on the same samples. Since the number of interactions is considerably
large and many users need to be considered, we use 25 epochs. The sampling
ratio is an important parameter as we limit the algorithm to 25 epochs, the
correct sampling ratio decides how many triples are observed per epoch. The
difference in sampling ratio between MovieLens 1M and Amazon 20k users can
be explained by the difference in the number of users and the number of inter-
actions per user.

We use 8 as the dimension of the latent feature vectors (γ) as this is commonly
used as the smallest dimension within the literature. With this minimum di-
mension we reduce computing time while still obtaining adequate performance.
Using a larger value for γ can result in a better abstract representation of users
and items, leading to better recommendation performance. As optimisation of
the utilised models is not the objective of this work, we leave larger values of γ
out of scope.

The learning rate and regularisation parameters are chosen based on the afore-
mentioned grid search (Appendix B) and its results on the validation set. More
specifically we utilise the parameters that achieved the largest validation re-
call@10 after 25 epochs.

Since the Bold-Driver heuristic adapts the learning rate based on the loss value,

43

Chapter 4 – Experimental Setup

we keep ρ and σ constant but vary the learning rate α. Thus, we observe
different initial learning rates during the grid search. Common values for the
Bold-Driver approach are around 1 for ρ and around 0.5 for σ (Shepherd, 2012).

The difference in regularisation can be explained by the difference in the number
of items between the MovieLens 1M dataset and the others. Within Amazon
20K Users and Am-like-ML more items need to be considered with less rat-
ings per item, meaning one update to the latent features of an item has more
impact on the results than for the MovieLens 1M updates. Thus, using more
L2 regularisation for the latent feature factors of the datasets with less ratings
per item and less ratings per user could limit overfitting as the updates have a
smaller impact on the latent feature factors. Note that during the grid search
we kept λp = λq, however, varying these values individually per run could result
in greater recommendation performance and is left for future research.

4.4 Collaborative Filtering with Recurrent Neural
Networks

The CFRNN contains four different layers, of which three have to be initial-
ised. Each initialisation approach and their parameters are shown in Table 4.9.
Initialisation plays an important role within RNNs, as already mentioned in
Section 3.4, vanilla RNN units suffer from exploding or vanishing gradients.
Certain weight initialisation in a DNN layer can bring about unstable gradi-
ents because of the combined variance of the layer’s input units. Methods to
restrict the initial variance during initialisation include Glorot- (Glorot & Ben-
gio, 2010) and Lecun initialisation (LeCun, Bottou, Orr, & Müller, 1998). The

Table 4.9: Initialisation of CFRNN

Component Initialisation Parameters?

Embedding layer random uniform b = [−0.05, 0.05]

Recurrent LSTM layer Glorot uniform b = [−
√

6
fanin+fanout

,
√

6
fanin+fanout

]

Dense Layer Glorot uniform b = [−
√

6
fanin+fanout

,
√

6
fanin+fanout

]

? b represents the boundaries for uniformly drawing the weight and is a preset parameter
for the glorot uniform initialisation based on Glorot and Bengio (2010). fanin denotes the
number of input units in the weight tensor, fanout the number of output units.

hyperparameters used for the CFRNN algorithm are shown in Table 4.10 and
are also obtained using a grid search per dataset (Appendix B). Note that for
the Amazon 20K Users we observed overall poor performance in the grid search
results. This performance gap between the Amazon 20K Users and the other
datasets can be caused by the relatively short user-item interaction sequences

44

Chapter 4 – Experimental Setup

within Amazon 20K Users. For the parameters found for MovieLens 1M we ex-
perimented with less hyperparameters as Devooght and Bersini (2016) already
explored various combinations of this model with this exact dataset. The Mask
value is taken to be M to make sure we do not mask items that are present in
user sequences, meaning item ids range from 0 to M− 1.

Table 4.10: Hyperparameters used in CFRNN for each dataset

Parameters Amazon 20K Users MovieLens 1M Am-Like-ML

δ 0.2 0.01 0.01
RNN Units 20 20 50
Epochs 20 100 20
α 0.1 0.2 0.1
Batch Size 32 16 64
Max Sequence Length 20 30 30
Embedding Dimension 100 100 100
Mask Value 90 395 3 706 87 290

45

Chapter 4 – Experimental Setup

4.5 Neural Collaborative Filtering

The initialisation of the user and item latent factor matrices is performed in a
similar fashion as for BPR, shown in Table 4.11. In addition, the MLP layers
on top of pM and qM together with the final layer use Glorot and Lecun uni-
form initialisation. Similar to the other algorithms, we used a grid search per
dataset to find optimal parameters for NeuMF. For the same reason as keeping
γ = 8 for BPR and in terms of keeping the comparison as fair as possible, we
use γ = 8 for the GMF component of NeuMF. Since the final dense layer of this

Table 4.11: Initialisation of NeuMF

Component? Initialisation Parameters??

pG random normal µ = 0, σ = 0.05
qG random normal µ = 0, σ = 0.05
pM random normal µ = 0, σ = 0.05
qM random normal µ = 0, σ = 0.05

MLP layers Glorot uniform b = [−
√

6
fanin+fanout

,
√

6
fanin+fanout

]

Final dense layer Lecun uniform b = [−
√

3
fanin

,
√

3
fanin

]

? pG and qG stand for user and item latent factor matrices of GMF respectively. pM

and qM denote user and item latent factor matrices of MLP respectively.
?? µ and σ represent the mean and standard deviation of the normal distribution
respectively. b represents the boundaries for uniformly drawing the weight and is a
preset parameter based on Glorot and Bengio (2010) and LeCun et al. (1998). fanout

denotes the number of output units, fanin denotes the number of input units in the
weight tensor.

algorithm is a concatenation of GMF and MLP we need the same final dimen-
sion. Consequently, keeping γ = 8 constrains the MLP layers to follow a tower
structure of 16, 32, 16, 8, where the first 16 is the combination of user and item
embeddings. Furthermore, within the grid search we utilise 4 and 8 negatives
per input sample. However, as the authors have tested any number of negatives
up to 10 for MovieLens 1M we restricted the corresponding grid search to only
use 4 negatives as this is the optimal result of their extensive testing.

Due to empirical evidence of rapid loss and recall@10 conversion in X. He et
al. (2017) and high computational needs we keep the number of epochs to 20.
Note that the previously mentioned research found empirical evidence for im-
proved performance of NeuMF when the weights are initialised by pre-trained
GMF and MLP components. We do not incorporate pre-training for weight
initialisation because this introduces more stochastic components which have
to be taken into account when obtaining final performance metrics and testing
for statistically significant results. In other words, training both components of
NeuMF before training NeuMF itself leads to a significant increase in computing

46

Chapter 4 – Experimental Setup

time needed to complete training. In addition, the empirical evidence shown in
Table 2 of X. He et al. (2017) exhibits no concluding evidence of performance
improvement when using pre-trained components and a γ equal to 8. The regu-

Table 4.12: Hyperparameters used in NeuMF for each dataset

Parameters Amazon 20K Users MovieLens 1M Am-Like-ML

γ 8 8 8
Layers 16, 32, 16, 8 16, 32, 16, 8 16, 32, 16, 8
Epochs 20 20 20
Regularisation GMF 1e-06, 1e-06 0,0 1e-05, 1e-05
Regularisation MLP 0.0001, 0.0001, 0.0001, 0.0001 0, 0, 0, 0 0.0001, 0.0001, 0.0001, 0.0001
α 0.0001 0.00005 0.00005
Batch Size 512 512 512
#Negatives 4 4 8
Sample Size 889 045 4 993 545 1 584 108
Sample% of Interactions 500% 500% 900%

larisation components seem to be based on the same arguments provided for the
regularisation of BPR. Here, less interactions per item seems to cause relatively
more regularisation for both the GMF component and the MLP component.

47

Chapter 5

Experimental Results

This Chapter showcases the results and comparison of Bayesian Personalised
Ranking (BPR), Collaborative Filtering with Recurrent Neural Networks (CFRNN)
and Neural Matrix Factorisation (NeuMF) for the Amazon 20K Users, Movielens
1M and Am-like-ML datasets. First, we elaborate on the implementation setup
in Section 5.1. Next, sections 5.2, 5.3 and 5.4 show the loss together with the
validation recall@10 and NDCG@10 on each dataset, for each algorithm respect-
ively. After the individual results we show a comparison for all algorithms per
dataset in terms of recall@n and NDCG@n for n ∈ {1, 5, 10, 15, 20} on their re-
spective test set. Finally, we present the p-values of the Paired T-Test for testing
the difference in average recall@n and average NDCG@n between algorithms for
every dataset.

5.1 Implementation Setup

As all algorithms presented in Chapter 3 involve stochastic optimisation and
random initialisation, we perform 30 runs per algorithm on each dataset, where
a run is defined as training and testing. For these runs we log the following
values:

• Loss per epoch

• Validation recall@10 per epoch

• Validation NDCG@10 per epoch

• Recall@n, n ∈ {1, 5, 10, 15, 20} on the test set as specified in 4.1.5

• NDCG@n, n ∈ {1, 5, 10, 15, 20} on the test set as specified in 4.1.5

In the graphical representation of the results, we show the average and stand-
ard deviation of these logged results over the 30 runs. The results obtained for
comparison then consist of 30 recall@n and NDCG@n scores for all ranks con-
sidered. In this work, an algorithm only outperforms another algorithm when

48

Chapter 5 – Experimental Results

the average recall@n and average NDCG@n are proven to be statistically differ-
ent from one another and both scores of one algorithm are above those of the
other, for all n.

Statistical Testing

To test whether the difference in means between the results per algorithm is
statistically significant, we utilise a Paired T-Test. For this test, we consider
a significance level of 0.01. Since the 30 results are realised using the same
test set for each algorithm, we cannot assume independence of the results when
comparing the observations in these samples. Therefore, we test the difference
in means between the samples using a Paired T-Test. With 30 observations per
sample, we assume normality within the sample, based on the Central Limit
Theorem. The corresponding null and alternative hypothesis are defined as

H0 : µ1 − µ2 = 0
HA : µ1 − µ2 6= 0,

[5.1]

where µ1 is the mean of the resulting 30 observations of one algorithm and
µ2 represents the same value for the other algorithm involved in the compar-
ison. For the difference between means of the two populations to be considered
significant, we need the p-value to be below a significance level of 0.01.

49

Chapter 5 – Experimental Results

5.2 Bayesian Personalised Ranking

Figure 5.1 shows the average loss, validation recall@10 and validation NDCG@10
during training for 30 runs of BPR on each dataset. The standard deviation of
the result sample is shown as the similarly coloured area around the mean. We
observe monotonically decreasing loss functions for all datasets in Figure 5.1a.
The validation metrics in Figure 5.1b and 5.1c both show upward trends with
signs of convergence for both MovieLens 1M and Am-like-ML.

0 5 10 15 20 25
0.64

0.66

0.68

0.70

Lo
ss

BPR Amazon 20K Users

0 5 10 15 20 25

0.4

0.6

Lo
ss

BPR MovieLens 1M

0 5 10 15 20 25
Epoch

0.66

0.68

0.70

Lo
ss

BPR Am-like-ML

(a) Loss

0 5 10 15 20 25
0.00

0.02

Va
lid

at
io

n
Re

ca
ll@

10
BPR Amazon 20K Users

0 5 10 15 20 25
0.000

0.025

0.050

0.075

Va
lid

at
io

n
Re

ca
ll@

10

BPR MovieLens 1M

0 5 10 15 20 25
Epoch

0.000

0.025

0.050

0.075

Va
lid

at
io

n
Re

ca
ll@

10

BPR Am-like-ML

(b) Validation Recall@10

0 5 10 15 20 25
0.00

0.01

0.02

Va
lid

at
io

n
ND

CG
@

10

BPR Amazon 20K Users

0 5 10 15 20 25
0.00

0.02

Va
lid

at
io

n
ND

CG
@

10

BPR MovieLens 1M

0 5 10 15 20 25
Epoch

0.00

0.02

0.04

0.06

Va
lid

at
io

n
ND

CG
@

10

BPR Am-like-ML

(c) Validation NDCG@10

Figure 5.1: Average and standard deviation per epoch of the Loss (a), Validation
Recall@10 (b) and Validation NDCG@10 (c) of BPR on MovieLens 1M, AM-like-ML
and Amazon 20K Users.

50

Chapter 5 – Experimental Results

5.3 Collaborative Filtering with Recurrent Neural
Networks

Figure 5.2 follows the same structure as Figure 5.1, but the results are obtained
using the CFRNN algorithm. We showcase the average training loss and average
validation metrics obtained using the parameters specified in Section 4.4 for
30 runs each. In Figure 5.2a we observe a clear downward trend with little
standard deviation for MovieLens 1M and Am-like-ML; however, Amazon 20K
Users shows a different pattern with a relatively large standard deviation. Note
that the number of epochs for MovieLens 1M is set to 100 as a result of the
aforementioned grid search. Only the validation metrics for MovieLens 1M show
a clear upward trend.

0 5 10 15 20
0.8

0.9

1.0

Lo
ss

CFRNN Amazon 20K Users

0 20 40 60 80 100
6.5

7.0

7.5

Lo
ss

CFRNN MovieLens 1M

0 5 10 15 20
Epoch

8.2

8.4

8.6

Lo
ss

CFRNN Am-like-ML

(a) Loss

0 5 10 15 20
0.000

0.001

0.002

0.003

Va
lid

at
io

n
Re

ca
ll@

10

CFRNN Amazon 20K Users

0 20 40 60 80 100

0.04

0.06

0.08

Va
lid

at
io

n
Re

ca
ll@

10

CFRNN MovieLens 1M

0 5 10 15 20
Epoch

0.030

0.035

0.040

Va
lid

at
io

n
Re

ca
ll@

10

CFRNN Am-like-ML

(b) Validation Recall@10

0 5 10 15 20
0.0000

0.0005

0.0010

Va
lid

at
io

n
ND

CG
@

10

CFRNN Amazon 20K Users

0 20 40 60 80 100

0.02

0.03

0.04

Va
lid

at
io

n
ND

CG
@

10

CFRNN MovieLens 1M

0 5 10 15 20
Epoch

0.015

0.020

Va
lid

at
io

n
ND

CG
@

10

CFRNN Am-like-ML

(c) Validation NDCG@10

Figure 5.2: Average and standard deviation per epoch of the Loss (a), Validation
Recall@10 (b) and Validation NDCG@10 (c) of BPR on MovieLens 1M, AM-like-ML
and Amazon 20K Users.

51

Chapter 5 – Experimental Results

5.4 Neural Matrix Factorisation

Here we observe the average loss and average validation metrics of NeuMF on the
three different datasets, obtained over 30 runs (Figure 5.3). First of all, every
loss function is monotonically decreasing, as observed in Figure 5.3a. Both
validation metrics of Amazon 20K Users and Movielens 1M show an upward
trend (Figure 5.3b, 5.3c). As for the Am-like-ML dataset we observe a relatively
large standard deviation for the average training loss and no clear trend in the
validation metrics.

0 5 10 15 20
0.3

0.4

0.5

0.6

Lo
ss

NeuMF Amazon 20K Users

0 5 10 15 20
0.25

0.30

0.35

Lo
ss

NeuMF MovieLens 1M

0 5 10 15 20
Epoch

0.3

0.4

0.5

Lo
ss

NeuMF Am-like-ML

(a) Loss

0 5 10 15 200.0000

0.0025

0.0050

0.0075

Va
lid

at
io

n
Re

ca
ll@

10

NeuMF Amazon 20K Users

0 5 10 15 20

0.06

0.08

Va
lid

at
io

n
Re

ca
ll@

10

NeuMF MovieLens 1M

0 5 10 15 20
Epoch

0.03

0.04

0.05

Va
lid

at
io

n
Re

ca
ll@

10

NeuMF Am-like-ML

(b) Validation Recall@10

0 5 10 15 20
0.000

0.002

0.004

Va
lid

at
io

n
ND

CG
@

10

NeuMF Amazon 20K Users

0 5 10 15 20
0.02

0.03

0.04

Va
lid

at
io

n
ND

CG
@

10

NeuMF MovieLens 1M

0 5 10 15 20
Epoch

0.02

0.03

0.04

Va
lid

at
io

n
ND

CG
@

10

NeuMF Am-like-ML

(c) Validation NDCG@10

Figure 5.3: Average and standard deviation per epoch of the Loss (a), Validation
Recall@10 (b) and Validation NDCG@10 (c) of BPR on MovieLens 1M, AM-like-ML
and Amazon 20K Users.

52

Chapter 5 – Experimental Results

5.5 Comparison

Figure 5.4 showcases the comparison of the average test set results of BPR,
CFRNN and NeuMF for the Amazon 20K Users, MovieLens 1M and Am-like-
ML datasets in terms of recall@n and NDCG@n. For each algorithm, we ob-
tain the recall@n and NDCG@n performance metrics for n ∈ {1, 5, 10, 15, 20}
(rank@n) on the held-out test set. Averaging these metrics over the 30 runs
results in the plots below, where each line represents the average performance
metric for a single model. The coloured area around each line represents the
standard deviation of the 30 results. Finally we showcase the Paired T-Test
p-values tables for each algorithm comparison on each dataset for both reacll@n
(Table 5.1) and Table 5.2).

1 5 10 15 20
Rank@

0.00

0.01

0.02

0.03

0.04

0.05

Re
ca

ll

1 5 10 15 20
Rank@

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ND
CG

BPR NeuMF CFRNN

(a) Amazon 20K Users

1 5 10 15 20
Rank@

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
ca

ll

1 5 10 15 20
Rank@

0.01

0.02

0.03

0.04

0.05

ND
CG

BPR NeuMF CFRNN

(b) MovieLens 1M

1 5 10 15 20
Rank@

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Re
ca

ll

1 5 10 15 20
Rank@

0.01

0.02

0.03

0.04

0.05

0.06

ND
CG

BPR NeuMF CFRNN

(c) Am-like-ML

Figure 5.4: Average Recall@n and NDCG@n of BPR, CFRNN and NeuMF over 30
runs per algorithm, together with their standard deviation for Amazon 20K Users
(5.4a), MovieLens 1M (5.4b) and AM-like-ML (5.4c)

53

Chapter 5 – Experimental Results

Table 5.1: p-values of the Paired T-Test for recall@n for all algorithm combinations
per dataset, all p-values rounded to 8 decimals. Bold algorithm names indicate which
algorithm dominates the other graphically (Figure 5.4) with all mean comparisons per
Rank@ being significantly different (p-value below 0.01).

Amazon 20K Users

Rank@ NEUMF vs. CFRNN BPR vs. CFRNN BPR vs. NEUMF

1 0.00864651** 0.0*** 0.0***
5 2.16e-06*** 0.0*** 0.0***
10 7.468e-05*** 0.0*** 0.0***
15 2e-08*** 0.0*** 0.0***
20 0.0*** 0.0*** 0.0***

MovieLens 1M

Rank@ NEUMF vs. CFRNN BPR vs. CFRNN BPR vs. NEUMF

1 0.22680662 2.2e-07*** 0.00021738***
5 0.8130222 0.0*** 0.0***
10 0.55757215 0.0*** 0.0***
15 0.21582326 0.0*** 0.0***
20 0.17299948 0.0*** 0.0***

Am-like-ML

Rank@ NEUMF vs. CFRNN BPR vs. CFRNN BPR vs. NEUMF

1 0.0*** 1.6e-07*** 0.0***
5 0.0*** 0.0*** 1e-08***
10 0.0*** 0.0*** 0.00306358**
15 1.71e-06*** 0.0*** 0.3858058
20 0.01282656* 0.0*** 0.56555254

? p value below significance level 0.05
?? p value below significance level 0.01
??? p value below significance level 0.001

Table 5.2: p-values of the Paired T-Test for NDCG@n for all algorithm combina-
tions per dataset, all p-values rounded to 8 decimals. Bold algorithm names indicate
which algorithm dominates the other graphically (Figure 5.4) with all Rank@ mean
comparisons being significantly different (p-value below 0.01).

Amazon 20K Users

Rank@ NEUMF vs. CFRNN BPR vs. CFRNN BPR vs. NEUMF

1 0.00864651** 0.0*** 0.0***
5 2.967e-05*** 0.0*** 0.0***
10 9.133e-05*** 0.0*** 0.0***
15 4.58e-06*** 0.0*** 0.0***
20 5.4e-07*** 0.0*** 0.0***

MovieLens 1M

Rank@ NEUMF vs. CFRNN BPR vs. CFRNN BPR vs. NEUMF

1 0.22680662 2.2e-07*** 0.00021738***
5 0.64151823 0.0*** 0.0***
10 0.4566743 0.0*** 0.0***
15 0.24818406 0.0*** 0.0***
20 0.20642687 0.0*** 0.0***

Am-like-ML

Rank@ NEUMF vs. CFRNN BPR vs. CFRNN BPR vs. NEUMF

1 0.0*** 1.6e-07*** 0.0***
5 0.0*** 0.0*** 0.0***
10 0.0*** 0.0*** 0.0***
15 0.0*** 0.0*** 0.0***
20 0.0*** 0.0*** 0.0***

? p value below significance level 0.05
?? p value below significance level 0.01
??? p value below significance level 0.001

54

Chapter 6

Analysis and Discussion

The objective of this chapter is to provide an in-depth analysis of the experi-
mental results as presented in Chapter 5 and answer SQ3: How do the structural
differences between the datasets affect model performance?

In addition, we discuss the setup and shortcomings of this work. This chapter is
structured similar to the previous chapter, meaning we focus on the algorithm
setups and their training procedures first. Next, we evaluate the comparison
and discuss the impact of each dataset on the performance comparison of the
algorithms.

6.1 Bayesian Personalised Ranking

This section uses the training loss and metrics as shown in Figure 5.1, together
with the formal notation and algorithm description provided in Section 3.1 and
Section 3.3 respectively. First we consider the setup of BPR, followed by an
evaluation of the training loss and metrics.

Setup

BPR assumes that if user u interacted with item i (positive item), it is pre-
ferred over non-interacted item j (negative item). Therefore, the algorithm’s
latent factor matrices p and q are updated based on the assumption that i
should have a larger preference score than j. Another consequence of this for-
mulation of the recommendation problem is the way data is considered during
training. We sampled uij triples from the total number of user-item interac-
tions (positive items) to train the model. Since these samples were created at
random, we expect each sample to be different, meaning the model observed
different samples at each epoch. As the test set consisted of one held-out item
for a subset of users we note that different samples can lead to different results.
For a more complete comparison, one could consider creating a multitude of

55

Chapter 6 – Analysis and Discussion

samples on which a number of BPR algorithms are trained and tested on differ-
ent test sets. However, such an approach, together with testing for statistically
significant results would require a substantial amount of time and resources.

Furthermore, during this sampling procedure, one could observe a bias towards
users and items with the majority of the interactions. Especially in datasets
similar to MovieLens 1M, where some users and items account for more than
300 interactions, while the majority of users and items have less than 100 in-
teractions (Figure 4.2). One can counteract this sampling bias by sampling
based on popularity in which popularity represents the number of interactions
of a user or item. The lower an item’s popularity, the more likely that item is
selected during sampling.

As mentioned in Rendle et al. (2012), the random sampling also prevents con-
secutive updates on the same user-item pairs. Following the standard user or
item order while sampling can lead to updating the same positive items every
iteration, while also updating the negative items. Since preference towards i
has to be larger than j, consecutive updates of j can lead to poor convergence
of SGD.

As already mentioned in the experimental setup, we utilise a γ equal to eight to
limit computational needs. However, a larger value of γ is often associated with
better performance as shown in the results of Rendle et al. (2012) and X. He et
al. (2017).

Training Loss and Metrics

The loss shown in Figure 5.1a is monotonically decreasing for all datasets while
the validation metrics show an increasing trend. This indicates the algorithm
learned to recommend during the training process. The structural differences
between the datasets reveal themselves in the different shapes of the loss func-
tions for each dataset. Considering the samples used for MovieLens 1M we
expect many samples to contain the same items and users as there were a lim-
ited number to choose from. Or more specifically, with 6 040 users, 3 706 items
and a sample size of 99 870, BPR performed frequent updates for each user
and each item for MovieLens 1M. This indicates that the algorithm learns more
about each user’s preferences per epoch for MovieLens 1M than for the other
datasets.

With less interactions per user and per item, the loss functions of the other
datasets follow the reverse reasoning as for Movielens 1M. The most extreme
case, Amazon 20K Users, reinforces this theory as there are even more users,
all with relatively fewer interactions than the other datasets. Different sample
sizes, learning rates and number of epochs might change this perspective on the
shape of the loss curves.

56

Chapter 6 – Analysis and Discussion

For both the recall@10 and NDCG@10 curves we observe a rapid increase to a
more steady-state reached around the fifth epoch for MovieLens 1M and Am-
like-ML. However, this sharp increase developed at a slower pace for the Amazon
20K Users dataset. We believe this relatively slow increase in the validation met-
rics was due to the large number of users with little interactions. With a total
of 180 809 interactions, 20 000 user and a sample size of 89 654 triples, not all
users have to be considered per epoch, let alone all items. A larger number of
epochs in the case of Amazon 20K Users could provide more insights into the
convergence of these metrics.

6.2 Collaborative Filtering with Recurrent Neural
Networks

Following the same structure as the previous section, we use the information
from the Experimental Setup (Chapter 4), loss and metrics as shown in Fig-
ure 5.2, formal notation from Section 3.1 and algorithm description presented
in Section 3.4.

Setup

Since each node in the output layer of CFRNN represented an item, we observe
a significant gap between the number of output units for MovieLens 1M and
the other datasets. With a total number of items of 3 706, the output layer for
MovieLens 1M had considerably fewer items to choose from than with the other
datasets with both total number of items above 85 000. As there can only be one
correct item at each time step per user, this relatively large number of items to
choose from made the sequence prediction task more complex for larger number
of items. Another effect of the number of items was the number of hidden neur-
ons selected by the grid search. We observe in case of longer sequences and more
items (Am-like-ML) that 50 LSTM units in the hidden layer were preferred over
20. Note that there was no substantial difference in the performance of the grid
search for Amazon 20K Users, meaning we cannot draw the same conclusion for
this dataset.

The values of the diversity bias (δ) explored during the grid search were 0.01
and 0.2. The reason for not exploring larger values of δ was the idea that pop-
ular items contribute more to higher recall@n and NDCG@n scores than less
popular items. In practice, however, popular items are often trivial recommend-
ations that are either already known to users or too general to be considered as
personalisation of the available items. Thus, tweaking δ could prove beneficial
in practical applications of this algorithm.

57

Chapter 6 – Analysis and Discussion

Training Loss and Metrics

First of all, the average loss of CFRNN for Amazon 20K Users shows a large
standard deviation and little decrease over the number of epochs. We believe
that this loss, together with the difference in sequence length medians between
datasets suggests the algorithm cannot learn enough from the relatively short
sequences of Amazon 20K Users. More specifically, MovieLens 1M and Am-
like-ML with medians of 96 and 25 respectively clearly dominate Amazon 20K
Users at a median of 7. We believe this difference had a significant impact on
the performance of CFRNN, even though the maximum sequence length for the
dominating datasets was set to 30. Besides, the parameters selected for Amazon
20K Users were the best-performing ones on the validation set during the grid
search. This implies that for any of the hyperparameter combinations in the
grid search, none enabled CFRNN to actually learn to recommend.

Furthermore, we observe a monotonically decreasing loss function for MovieLens
1M, together with monotonically increasing validation metrics. With little sign
of convergence in these three graphical representations, we assume the algorithm
is still learning and improving in terms of performance when reaching the final
epoch. In this case more epochs could result in better overall performance on
MovieLens 1M.

An important difference between the previously described results and those
of the Am-like-ML dataset is the difference in validation metric trends com-
pared to the loss. For Am-like-ML we observe a monotonically decreasing loss
function while the validation metrics show a relatively large standard deviation
and no upward trend. We believe this is also the reason no larger number of
epochs came out on top of the grid search results (Table B.11). With no signs
of an upward trend in these validation metrics, we belief the algorithm quickly
reached convergence in the initial epochs.

6.3 Neural Matrix Factorisation

Now for NeuMF we evaluate the results using Figure 5.3, Table 4.12, the formal
notation from Section 3.1 and the experimental setup as described in Chapter 4.

Setup

As argued by Table 3 in X. He et al. (2017), a larger number of neurons in the
final layer of the MLP component could lead to better performance. However,
this final layer should possess an equal dimension of latent feature vectors as the
GMF component since they are concatenated in the final layer of NeuMF. Since
we utilise a γ equal to eight for BPR we belief using larger γ values in NeuMF
would not result in a fair comparison. Without a limitation on computational
resources and time it would be beneficial to the comparison if both algorithms
were introduced to larger values of γ. Consequently, we would also utilise a

58

Chapter 6 – Analysis and Discussion

larger number of neurons for the MLP component in NeuMF.

In addition, the difference in number of negatives used between the different
datasets suggests that exploring more values could result in different results,
now only four and eight negatives were used in the grid search. Even though
X. He et al. (2017) did not observe any improvement for more than four negat-
ives for the MovieLens dataset, this threshold can be different for other datasets,
as observed in this work.

Not pre-training the GMF and MLP components for NeuMFs weight initialisa-
tion can have a number of consequences. The most straightforward one being
sub-optimal performance, the others will be discussed in the Training Loss and
Metrics below.

Training Loss and Metrics

We observe all loss functions monotonically decreasing and the validation met-
rics of both Amazon 20K Users and MovieLens 1M showing an increasing trend.
This indicates the algorithm was improving during its training on two out of
three datasets. The loss and validation metrics of MovieLens 1M have not
shown clear signs of convergence yet, indicating performance could be enhanced
by increasing the number of epochs. Even though we observe an upward trend
in the validation metrics for Amazon 20K Users, the exact values of recall@n
and NDCG@n are still significantly distant from the values reached on the other
datasets. With a converged loss function and significantly lower validation val-
ues, we suspect the algorithm learned to recommend relevant items for a small
subset of the validation user population. More specifically, we belief this subset
is made up of users with a relatively large number of positive user-item inter-
actions. This because the MLP component can better express the user-item
interaction mechanics when there is more data available per user.

For Am-like-ML we observe a highly volatile start in terms of recall@n and
NDCG@n, quickly reaching the observed maximum for both metrics before de-
creasing for the rest of the epochs (Figure 5.3b, 5.3c). We believe this behaviour
can be explained by the large number of negatives with which the algorithm was
trained. The large standard deviation at the beginning of training can be due to
not initialising NeuMF with pre-trained weights of both its components. This
means initialisation happens according to the initialisation methods as described
in Table 4.11 which, as pointed out by X. He et al. (2017), can have a significant
impact on the results. With eight negatives per positive item, the algorithm gets
to observe many examples to learn from and therefore quickly reached peak per-
formance around epoch seven for the validation metrics. The downward trend
after the peak in both validation metrics is most likely the downside of having
a large number of negatives in the training samples as the model starts to overfit.

Note that each sample for this algorithm contains all positive interactions, each

59

Chapter 6 – Analysis and Discussion

matched with a number of negative interactions per user. Since the negative
items are randomly sampled the performance of this algorithm may differ for
different samples.

6.4 Performance Comparison

With clear insights into each model’s setup and training procedure, we now
focus on the comparison of the held-out test set results per dataset, as shown in
Figure 5.4. This section follows the structure of the research questions, meaning
we compare the deep learning based models first. Next, each of these models
is compared with the MF benchmark for all datasets. Recall that in this work,
an algorithm only outperforms another algorithm when the average recall@n
and average NDCG@n are proven to be statistically different from one another
(Table 5.1, 5.2) and both scores of one algorithm are above those of the other,
for all n (Figure 5.4).

6.4.1 CFRNN vs. NeuMF

As explained before, we believe the combination of insufficient sequence lengths
together with a substantial total number of items led to CFRNN’s poor perform-
ance on the Amazon 20K Users dataset. For NeuMF we did observe monoton-
ically increasing validation metrics and a clear decrease in loss. We believe the
MLP component becomes more of a liability than an advantage when there is
not enough data available. The GMF part, which is based on standard MF, can
still learn in this setting as shown by BPR. The concatenation within the final
layer of NeuMF combines its components, lowering GMF’s performance with
the MLP component. This explains the small, yet significant gain of NeuMF
over CFRNN in terms of both recall@n (Table 5.1) and NDCG@n (Table 5.2).

On MovieLens 1M we observe similar performance in terms of both recall@n and
NDCG@n for these algorithms. These findings are in line with both Devooght
and Bersini (2016) and X. He et al. (2017) for CFRNN and NeuMF, respectively.
These authors utilised the same MovieLens 1M dataset for introducing their re-
spective algorithms and showcased the improvement over standard methods like
K-Nearest Neighbour and BPR. Even though our training, test and validation
sets differ from the aforementioned research in terms of structure, we still ob-
serve how these deep learning algorithms thrive under the right circumstances.
Thus, in terms of both metrics we cannot select one algorithm that clearly
dominates the other graphically, let alone in terms of statistical significant dif-
ferences between their results (Table 5.1, 5.2).

Finally, the results of the combination of both datasets reveals both the short-
coming of sequential interpretation of the recommender problem used by CFRNN,
and the advantage of combining deep learning with MF used by NeuMF. With
most sequences below the maximum sequence length in Am-like-ML, we still

60

Chapter 6 – Analysis and Discussion

observe adequate performance of CFRNN. NeuMF, however, clearly dominates
CFRNN as it can easily build the user latent feature vectors with the available
user-item interactions per user.

This partly answers SQ3 as the different structures of the data clearly influence
the results of these deep learning algorithms. For CFRNN we state that with
shorter sequences and more items, the results experience a setback in perform-
ance compared to its results on a dataset like MovieLens 1M. Its performance
degrades when user-item interaction sequences are shortened and the sequences
are made up of many different items. NeuMF can clearly utilise the vast amount
of user-item interactions for MovieLens 1M and Am-like-ML to build the user
latent feature vectors. It has become apparent that with fewer interactions, as
in Amazon 20K Users, this algorithm still outperforms the other deep learn-
ing approach. We believe this outperformance is due to the GMF component
being able to learn from the relatively short sequences while being hindered
by the MLP part of the algorithm. Therefore, in terms of absolute recall@n
and NDCG@n scores NeuMF’s performance is still distant from the non-deep
learning algorithm.

6.4.2 BPR vs. CFRNN

Based on the same intuition as before, we belief CFRNN is not able to learn
from the relatively short sequences of users in Amazon 20K Users. BPR on the
other hand shows it is still able to learn, even with little user-item interactions
per user. While this learning might be slower compared to MovieLens 1M and
Am-like-ML, as mentioned in Section 6.1, we observe dominance of BPR over
CFRNN in terms of recall@n and NDCG@n for every n (Table 5.1, Table 5.2).
We belief the difference in optimisation criterion between CFRNN and BPR is
what creates this substantial gap in performance for the Amazon 20K Users
dataset. Where CFRNN has to pick the one correct item, out of many items,
at every time step, BPR updates the user latent feature vectors based on a
comparison between two items. This means that during training, CFRNN sees
all non-interacted items as negative instances (0), while the positive instances
are represented as a one on each time step. The pairwise optimisation of BPR
assumes the positive items are preferred over the negative items, but does not
imply the negative item is actually disliked. This difference is crucial for the
performance of the algorithms when there are little interactions available as can
be seen in Figure 5.4a.

With more user-item interactions per user, as in MovieLens 1M, we observe
vastly different performance for CFRNN. As mentioned before, the length of
the sequences has a substantial impact on CFRNN’s performance. We believe
the aforementioned negative representation of non-interacted items is mitigated
by the fact that each item occurs more frequently, meaning each item is more
frequently observed as a one during training for MovieLens 1M than in the case
of Amazon 20K Users. This results in CFRNN outperforming BPR both graph-

61

Chapter 6 – Analysis and Discussion

ically as shown in Figure 5.4b and statistically significant as can be observed in
Tables 5.1 and 5.2. BPR still shows adequate performance, but could have bet-
ter represented the user and item latent feature vectors now that there is more
data available per user and item. In other words, we belief BPR’s performance
can be enhanced with a larger value of γ in the case of MovieLens 1M.

With the combination of the aforementioned datasets in Am-like-ML, we also
believe a combination of the aforementioned algorithm characteristics affect the
results (Figure 5.4c). Even though CFRNN trained on relatively long user-item
interaction sequences, the frequency of items being observed as a zero during
training is increased compared to MovieLens 1M. This is due to the larger
number of items and the far lower number of interactions per item in Am-like-
ML. Thus, while still showing adequate performance in Figure 5.4c we observe
CFRNN being outperformed by BPR in both recall@n and NDCG@n as shown
in 5.1 and 5.2.

Based on the previously explained insights we continue on SQ3. In this compar-
ison, the difference in objective functions together with the structural differences
in the datasets play a key part in the difference in performance of the algorithms.
Taking this into account, we believe the pairwise ranking optimisation criterion
of BPR shows more robust performance on datasets with different structures.
While for CFRNN, the negative representation of non-interacted items seems
to fade when the items are frequently observed as a one during training. Fur-
thermore, the sequence length is one factor in CFRNN’s performance, while the
combination of high item interaction frequency and long sequences shows it can
outperform the MF benchmark of this research.

6.4.3 BPR vs. NeuMF

As already mentioned, we belief NeuMF needs more user-item interactions than
present in Amazon 20K Users to perform as it does on the other datasets. Note
that NeuMF is a combination of a generalised form of MF and an MLP that
update user and item latent feature factors. As observed in the performance
on the other datasets, this MLP component provides NeuMF with an edge over
BPR when there is enough data available per user. Again, BPR’s pairwise
ranking objective function largely contributes to its success on the Amazon 20K
Users dataset. With this being said, we observe that BPR clearly outperforms
NeuMF on Amazon 20K Users as shown in Figure 5.4a, Table 5.1 and Table 5.2.

On MovieLens 1M, we observe similar domination of NeuMF over BPR as with
CFRNN, in terms of recall@n and NDCG@n (Figure 5.4b). This is in line with
the findings presented in X. He et al. (2017), where NeuMF also outperforms
BPR. Even though the pairwise ranking optimisation makes BPR relatively
robust to the underlying dataset, NeuMF performs better depending on the un-
derlying structure of the data.

62

Chapter 6 – Analysis and Discussion

This is also observed for the Am-like-ML dataset in Figure 5.4c, where NeuMF
has the upper hand when it comes to ranking (NDCG@n). Looking at the p-
values in Table 5.1 we cannot declare a clear winner in terms of recall@n. Again
NeuMF benefited from its ability to represent the user-item interactions in a
non-linear way with its MLP component. From the correctly classified items
(within top 20 recommendations), many of these items are ranked at rank@1
compared to BPR. This indicates well-represented users and items in their lat-
ent feature spaces of NeuMF as there are many items to choose from. Note
that NeuMF might also have benefited from a larger number of negatives in
this particular case.

Finally we incorporate this information in the answer to SQ3. Both this work
and the aforementioned research show that combining a generalised form of
MF with an MLP component can lead to enhanced performance compared to
standard MF optimised using BPR. However, as shown in this work, with less
interactions per user and more items we observe a decrease in NeuMF’s per-
formance compared to BPR. We believe the MLP component of NeuMF can
restrain the performance of GMF, as the final layer of NeuMF consists of a
concatenation of both components. This deduction seems to be reinforced by
the performance of NeuMF on Amazon 20K Users, where it still outperforms
CFRNN but does not come close to BPR for both evaluation metrics.

63

Chapter 7

Conclusions and Future
Work

In this final chapter, we reiterate the research questions and provide concise
answers, based on the findings of this work. Secondly, we summarise the reasons
for the differences in performance based on the data structures and algorithm
architectures. In addition, we convert the technical reasons for these differences
to managerial implications to guide decision making within YGroup. Finally,
we consider topics and open questions that future research can address.

7.1 Research Questions

In this thesis, we compared Bayesian Personalised Ranking (BPR), Collabor-
ative Filtering with Recurrent Neural Networks (CFRNN) and Neural Matrix
Factorisation (NeuMF) in terms of recall@n and NDCG@n on the well-known
MovieLens 1M, our Amazon 20K Users and our Am-like-ML datasets. Am-like-
ML is a combination of the other datasets that provides us with more insights
regarding model performance. Even though these datasets are originally rating
datasets, they have been used as implicit feedback data to align with YGroup’s
objectives. The algorithms have been optimised using a grid search and trained
in a similar fashion as in Devooght and Bersini (2016). The final comparison
is based on the average recall@n and NDCG@n of 30 runs per algorithm for
n ∈ {1, 5, 10, 15, 20}. The research questions as posed in the beginning of this
thesis are reiterated below.

RQ1 How do Collaborative Filtering with Recurrent Neural Networks and Neural
Network based Collaborative Filtering compare to each other in terms of
recommendation performance on fashion and movie datasets?

RQ2 How do these deep learning models perform compared to a Matrix Fac-
torisation benchmark model in terms of recommendation performance on
fashion and movie datasets?

64

Chapter 7 – Conclusions and Future Work

In the comparison of CFRNN and NeuMF, both showed similar performance on
MovieLens 1M; however, NeuMF outperforms CFRNN on both Amazon 20K
Users and Am-like-ML. Thus to answer RQ1, NeuMF surpassed CFRNN in
both recorded metrics for the fashion datasets, whereas both algorithms per-
formed equally well on the MovieLens 1M dataset.

For RQ2, we observed outperformance of BPR by both deep learning algorithms
on the MovieLens 1M data, which is in inline with both Devooght and Bersini
(2016) (CFRNN) and X. He et al. (2017) (NeuMF). For Amazon 20K Users we
observed the opposite results, both deep learning algorithms were surpassed in
terms of recall@n and NDCG@n by BPR. For the structural mix of MovieLens
1M and Amazon 20K Users; Am-like-ML, we observed a mix of the previously
mentioned results. NeuMF dominates the other algorithms in terms of ranking
and shows significantly higher rank@1 scores for both metrics.

7.2 Conclusions

One of our main contributions is to exhibit the difference in recommendation
performance of these models on the differently structured datasets. In addition,
we showcase the impact of structural differences between datasets from both
fashion and movies on the performance of the aforementioned models.

While evaluation metrics can widely differ between researchers as mentioned
in Chapter 2, this work is the first to compare these algorithms in terms of a
classification and a ranking metric based on all items. This comparison has
shown similar performance behaviour on the well-known MovieLens 1M data-
set with Matrix Factorisation (MF) based BPR as presented in Devooght and
Bersini (2016) (CFRNN) and X. He et al. (2017) (NeuMF). The novel datasets
with a different underlying structure revealed a shift in the performance of both
deep learning based algorithms to be either outperformed by or comparable with
BPR. The visual representation of these results is shown in Figure 5.4 while a
detailed description of the underlying reasons is provided in Section 6.4.

This work shows BPR’s pairwise ranking criterion can be advantageous com-
pared to the multi-class classification optimisation of CFRNN when there are
little user-item interactions and many items in total. In addition, while the
combination of NeuMF’s linear GMF and its non-linear MLP components prove
beneficial for datasets with well-represented users and items in terms of interac-
tions. We have reason to believe the MLP part can be a drawback in scenarios
where users possess less interactions with items.

With the observed performance of each model on the different datasets, we
can recommend each algorithm in a different setting. First of all, BPR can be
utilised in a broad range of CF recommendation problems, as a baseline form
of recommending. Its pairwise ranking optimisation shows robust performance

65

Chapter 7 – Conclusions and Future Work

for the three different datasets explored in this research. Secondly, when there
is a substantial amount of purchase history data available for a large number
of users, one could argue for CFRNN as it shows promising performance on
MovieLens 1M. Note that these types of datasets can be specific to a certain
domain, such as popular streaming platforms. Finally, if there is only a subset
of users with a considerable amount of purchase history data, we believe NeuMF
can be the optimal choice. In practice this can be utilised on a subset of users
who represent most of the user-item interactions, such as premium users or fre-
quent buyers. Since NeuMF updates individual user representations, it is able
to better represent the user-item interactions for longer user-item interaction
sequences, as observed in its Am-like-ML results.

As optimisation is not the goal of this work we suggest optimising each al-
gorithm to the problem at hand before selecting an approach.

7.3 Future Work

While the experimental setup and the corresponding results in this thesis yield
novel insights that build-up on previous findings, further investigations could
lead to valuable refinements. In general, a broader grid search could also broaden
the insights in model performance on the proposed datasets. In addition, enlar-
ging the training and validation sets or incorporating a form of cross-validation
could provide a more generalised view of the results compared to the ones ob-
tained in this thesis. In terms of data, it could be of added value to include a
dataset belonging to a different industry with different structural characteristics
to have an additional measure of performance for each algorithm.

In more detail, training and testing the sample-based algorithms (BPR and
NeuMF) on multiple sets of different samples could produce more insights in
the impact of sampling on these algorithms. More specifically, we belief BPR’s
performance can differ when trained and tested on a different set of samples.
Even though X. He et al. (2017) utilised binary cross-entropy loss to optimise
NeuMF, they argue many different optimisation criteria can be adopted. To
this end, we belief NeuMF would benefit from adopting BPR’s pairwise ranking
criterion for optimisation. In addition, incorporating a hyperparameter to spe-
cifically weight the contribution of each of the two components within NeuMF
could prove to be beneficial when the target data is structured as Amazon 20K
Users. Finally, to verify our deduction that the MLP component could restrain
GMF in certain situations, one can train and test the individual components of
NeuMF and compare their results.

As shown in Figure 4 of Devooght and Bersini (2016) one can use GRU units
instead of LSTM units or utilise a bidirectional LSTM or 2-layered LSTM struc-
ture. Even though the difference in model structure did not reveal significantly
different results in the aforementioned research, they could prove to be beneficial

66

Chapter 7 – Conclusions and Future Work

for the metrics or the datasets used in this research. Another difference between
Devooght and Bersini (2016) in terms of performance comparison and this work
is the evaluation metrics used. They propose a novel metric, named sps@10,
which measures the short-term prediction success of their CFRNN algorithm.
Expressing our results in terms of their sps@10 could provide additional insights.
Furthermore, X. He et al. (2017) compare their NeuMF with BPR using an item
sampling approach. Their evaluation metric places a positive item for user u in
a sample of negative items for that user. Then they compare existing algorithms
with their novel GMF, MLP and NeuMF in terms of hitrate@10 and NDCG@10.
Using this item sampling-based approach for performance evaluation, we could
observe different behaviour for both BPR and NeuMF (infeasible for CFRNN).
Finally, with the success of NeuMF on two out of three datasets, we would like
to investigate a similarly structured algorithm dubbed ConvNCF (X. He et al.,
2018).

67

Bibliography

Amazon review data. (2018). https://nijianmo.github.io/amazon/index

.html. (Accessed: 2020-04-26)
Bell, R. M., Koren, Y., & Volinsky, C. (2010). All together now: A perspective

on the netflix prize. Chance, 23 (1), 24–29.
Bennett, J., & Lanning, S. (2007). The netflix prize. In Proceedings of kdd cup

and workshop (Vol. 2007, p. 35).
Bhulai, S. (2018). Advanced machine learning lecture 7: Recur-

rent neural networks. https://canvas.vu.nl/courses/36744/files

?preview=887860. (Lecture slides: 2018-09-28)
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User

modeling and user-adapted interaction, 12 (4), 331–370.
Chen, G. (2016). A gentle tutorial of recurrent neural network with error

backpropagation. CoRR, abs/1610.02583 . Retrieved from http://arxiv

.org/abs/1610.02583

Chen, H. (2017). Weighted-svd: Matrix factorization with weights on the latent
factors. CoRR, abs/1710.00482 . Retrieved from http://arxiv.org/abs/

1710.00482

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H.,
. . . Ispir, M. (2016). Wide & deep learning for recommender systems. In
Proceedings of the 1st workshop on deep learning for recommender systems
(p. 7–10). New York, NY, USA: Association for Computing Machinery.
Retrieved from https://doi.org/10.1145/2988450.2988454 doi: 10
.1145/2988450.2988454

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the prop-
erties of neural machine translation: Encoder-decoder approaches. CoRR,
abs/1409.1259 . Retrieved from http://arxiv.org/abs/1409.1259

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., &
Bengio, Y. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation. CoRR, abs/1406.1078 . Re-
trieved from http://arxiv.org/abs/1406.1078

Chung, J., Gülçehre, Ç., Cho, K., & Bengio, Y. (2014). Empirical evalu-
ation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555 . Retrieved from http://arxiv.org/abs/1412.3555

68

https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://canvas.vu.nl/courses/36744/files?preview=887860
https://canvas.vu.nl/courses/36744/files?preview=887860
http://arxiv.org/abs/1610.02583
http://arxiv.org/abs/1610.02583
http://arxiv.org/abs/1710.00482
http://arxiv.org/abs/1710.00482
https://doi.org/10.1145/2988450.2988454
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555

Chapter 7 – Bibliography

Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., . . . et
al. (2010). The youtube video recommendation system. In Proceedings
of the fourth acm conference on recommender systems (p. 293–296). New
York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/1864708.1864770 doi: 10.1145/1864708
.1864770

Deng, L. (2014). A tutorial survey of architectures, algorithms, and applica-
tions for deep learning. APSIPA Transactions on Signal and Information
Processing , 3 , 1–29.

Devooght, R., & Bersini, H. (2016). Collaborative filtering with recurrent neural
networks. CoRR, abs/1608.07400 . Retrieved from http://arxiv.org/

abs/1608.07400

Donkers, T., Loepp, B., & Ziegler, J. (2017). Sequential user-based recur-
rent neural network recommendations. In Proceedings of the eleventh acm
conference on recommender systems (p. 152–160). New York, NY, USA:
Association for Computing Machinery. Retrieved from https://doi.org/

10.1145/3109859.3109877 doi: 10.1145/3109859.3109877
Duchi, J., Hazan, E., & Singer, Y. (2011, July). Adaptive subgradient methods

for online learning and stochastic optimization. J. Mach. Learn. Res.,
12 (null), 2121–2159.

Dziugaite, G. K., & Roy, D. M. (2015). Neural network matrix factoriza-
tion. CoRR, abs/1511.06443 . Retrieved from http://arxiv.org/abs/

1511.06443

eMarketer. (2017). Worldwide retail and ecommerce sales: emarketer’s estim-
ates for 2016–2021. https://www.emarketer.com/Report/Worldwide

-Retail-Ecommerce-Sales-eMarketers-Estimates-20162021/

2002090. (Accessed:2020-03-21)
Glorot, X., & Bengio, Y. (2010, 13–15 May). Understanding the difficulty

of training deep feedforward neural networks. In Y. W. Teh & M. Tit-
terington (Eds.), Proceedings of the thirteenth international conference on
artificial intelligence and statistics (Vol. 9, pp. 249–256). Chia Laguna Re-
sort, Sardinia, Italy: PMLR. Retrieved from http://proceedings.mlr

.press/v9/glorot10a.html

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural
networks. In G. J. Gordon, D. B. Dunson, & M. Dud́ık (Eds.), Aistats
(Vol. 15, p. 315-323). JMLR.org. Retrieved from http://dblp.uni-trier

.de/db/journals/jmlr/jmlrp15.html#GlorotBB11

Gomez-Uribe, C. A., & Hunt, N. (2016, December). The netflix recommender
system: Algorithms, business value, and innovation. ACM Trans. Manage.
Inf. Syst., 6 (4), 13:1-13:19. Retrieved from https://doi.org/10.1145/

2843948 doi: 10.1145/2843948
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). Deepfm: A

factorization-machine based neural network for CTR prediction. CoRR,
abs/1703.04247 . Retrieved from http://arxiv.org/abs/1703.04247

69

https://doi.org/10.1145/1864708.1864770
http://arxiv.org/abs/1608.07400
http://arxiv.org/abs/1608.07400
https://doi.org/10.1145/3109859.3109877
https://doi.org/10.1145/3109859.3109877
http://arxiv.org/abs/1511.06443
http://arxiv.org/abs/1511.06443
https://www.emarketer.com/Report/Worldwide-Retail-Ecommerce-Sales-eMarketers-Estimates-20162021/2002090
https://www.emarketer.com/Report/Worldwide-Retail-Ecommerce-Sales-eMarketers-Estimates-20162021/2002090
https://www.emarketer.com/Report/Worldwide-Retail-Ecommerce-Sales-eMarketers-Estimates-20162021/2002090
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp15.html#GlorotBB11
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp15.html#GlorotBB11
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
http://arxiv.org/abs/1703.04247

Chapter 7 – Bibliography

Hallinan, B., & Striphas, T. (2016). Recommended for you: The netflix prize
and the production of algorithmic culture. New media & society , 18 (1),
117–137.

He, R., & McAuley, J. (2016a). Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering. In Proceedings of
the 25th international conference on world wide web (p. 507–517). Repub-
lic and Canton of Geneva, CHE: International World Wide Web Confer-
ences Steering Committee. Retrieved from https://doi.org/10.1145/

2872427.2883037 doi: 10.1145/2872427.2883037
He, R., & McAuley, J. (2016b). Vbpr: Visual bayesian personalized ranking

from implicit feedback. In Proceedings of the thirtieth aaai conference on
artificial intelligence (p. 144–150). AAAI Press.

He, X., & Chua, T.-S. (2017). Neural factorization machines for sparse predict-
ive analytics. In Proceedings of the 40th international acm sigir conference
on research and development in information retrieval (p. 355–364). New
York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3077136.3080777 doi: 10.1145/3077136
.3080777

He, X., Du, X., Wang, X., Tian, F., Tang, J., & Chua, T. (2018). Outer product-
based neural collaborative filtering. CoRR, abs/1808.03912 . Retrieved
from http://arxiv.org/abs/1808.03912

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural
collaborative filtering. In Proceedings of the 26th international confer-
ence on world wide web (p. 173–182). Republic and Canton of Geneva,
CHE: International World Wide Web Conferences Steering Commit-
tee. Retrieved from https://doi.org/10.1145/3038912.3052569 doi:
10.1145/3038912.3052569

Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-
based recommendations with recurrent neural networks. arXiv preprint
arXiv:1511.06939 .

Hidasi, B., Quadrana, M., Karatzoglou, A., & Tikk, D. (2016). Parallel recurrent
neural network architectures for feature-rich session-based recommenda-
tions. In Proceedings of the 10th acm conference on recommender sys-
tems (p. 241–248). New York, NY, USA: Association for Computing Ma-
chinery. Retrieved from https://doi.org/10.1145/2959100.2959167

doi: 10.1145/2959100.2959167
Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6 (02), 107–116.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9 (8), 1735–1780.

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit
feedback datasets. In 2008 eighth ieee international conference on data
mining (pp. 263–272).

Jing, H., & Smola, A. J. (2017). Neural survival recommender. In Proceedings
of the tenth acm international conference on web search and data mining

70

https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/3077136.3080777
http://arxiv.org/abs/1808.03912
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/2959100.2959167

Chapter 7 – Bibliography

(p. 515–524). New York, NY, USA: Association for Computing Machinery.
Retrieved from https://doi.org/10.1145/3018661.3018719 doi: 10
.1145/3018661.3018719

Kang, H., & Yoo, S. J. (2007). Svm and collaborative filtering-based prediction
of user preference for digital fashion recommendation systems. IEICE
transactions on information and systems, 90 (12), 2100–2103.

Kim, D., Park, C., Oh, J., Lee, S., & Yu, H. (2016). Convolutional matrix
factorization for document context-aware recommendation. In Proceedings
of the 10th acm conference on recommender systems (pp. 233–240). New
York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2959100.2959165 doi: 10.1145/2959100.2959165
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization.

In Y. Bengio & Y. LeCun (Eds.), 3rd international conference on learning
representations, ICLR 2015, san diego, ca, usa, may 7-9, 2015, conference
track proceedings. Retrieved from http://arxiv.org/abs/1412.6980

Klema, V., & Laub, A. (1980). The singular value decomposition: Its compu-
tation and some applications. IEEE Transactions on automatic control ,
25 (2), 164–176.

Kombrink, S., Mikolov, T., Karafiát, M., & Burget, L. (2011, 01). Recur-
rent neural network based language modeling in meeting recognition. In
(Vol. 11, p. 2877-2880).

Koren, Y. (2009). Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th acm sigkdd international conference on knowledge dis-
covery and data mining (p. 447–456). New York, NY, USA: Association
for Computing Machinery. Retrieved from https://doi.org/10.1145/

1557019.1557072 doi: 10.1145/1557019.1557072
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for

recommender systems. Computer , 42 (8), 30–37.
Kramer, M. A. (1991). Nonlinear principal component analysis using

autoassociative neural networks. AIChE Journal , 37 (2), 233-243.
Retrieved from https://aiche.onlinelibrary.wiley.com/doi/abs/10

.1002/aic.690370209 doi: 10.1002/aic.690370209
LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient backprop.

In G. B. Orr & K.-R. Müller (Eds.), Neural networks: Tricks of the trade
(pp. 9–50). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from https://doi.org/10.1007/3-540-49430-8 2 doi: 10.1007/3-540
-49430-8 2

Lei, C., Liu, D., Li, W., Zha, Z., & Li, H. (2016). Comparative deep
learning of hybrid representations for image recommendations. CoRR,
abs/1604.01252 . Retrieved from http://arxiv.org/abs/1604.01252

Li, Z., Zhao, H., Liu, Q., Huang, Z., Mei, T., & Chen, E. (2018). Learn-
ing from history and present: Next-item recommendation via discrim-
inatively exploiting user behaviors. In Proceedings of the 24th acm
sigkdd international conference on knowledge discovery data mining
(p. 1734–1743). New York, NY, USA: Association for Computing Ma-
chinery. Retrieved from https://doi.org/10.1145/3219819.3220014

71

https://doi.org/10.1145/3018661.3018719
http://doi.acm.org/10.1145/2959100.2959165
http://doi.acm.org/10.1145/2959100.2959165
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1557019.1557072
https://doi.org/10.1145/1557019.1557072
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209
https://doi.org/10.1007/3-540-49430-8_2
http://arxiv.org/abs/1604.01252
https://doi.org/10.1145/3219819.3220014

Chapter 7 – Bibliography

doi: 10.1145/3219819.3220014
Liao, K. (2019). Prototyping a recommender system step by step part 2:

Alternating least square (als) matrix factorization in collaborative filter-
ing. https://towardsdatascience.com/prototyping-a-recommender

-system-step-by-step-part-2-alternating-least-square-als

-matrix-4a76c58714a1. (accessed: 2020-07-13)
Movielens 1m data. (2003). https://grouplens.org/datasets/movielens/

1m/. (Accessed: 2020-07-13)
Movielens 25m data. (2019). https://grouplens.org/datasets/movielens/

25m/. (Accessed: 2020-06-25)
Ncf framework. (2018). https://github.com/hexiangnan/neural

collaborative filtering. (Accessed: 2020-07-16)
Netflix 100m data. (2019). https://www.kaggle.com/netflix-inc/netflix

-prize-data. (accessed: 2020-04-26)
Ni, J., Li, J., & McAuley, J. (2019, November). Justifying recommendations

using distantly-labeled reviews and fine-grained aspects. In Proceedings
of the 2019 conference on empirical methods in natural language pro-
cessing and the 9th international joint conference on natural language pro-
cessing (emnlp-ijcnlp) (pp. 188–197). Hong Kong, China: Association for
Computational Linguistics. Retrieved from https://www.aclweb.org/

anthology/D19-1018 doi: 10.18653/v1/D19-1018
Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation

functions: Comparison of trends in practice and research for deep learn-
ing. CoRR, abs/1811.03378 . Retrieved from http://arxiv.org/abs/

1811.03378

Olah, C. (2015). Understanding lstm networks. http://colah.github.io/

posts/2015-08-Understanding-LSTMs/. (Accessed: 2020-05-19)
Rendle, S. (2010). Factorization machines. In Proceedings of the 2010 ieee inter-

national conference on data mining (p. 995–1000). USA: IEEE Computer
Society. Retrieved from https://doi.org/10.1109/ICDM.2010.127 doi:
10.1109/ICDM.2010.127

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012).
BPR: bayesian personalized ranking from implicit feedback. CoRR,
abs/1205.2618 . Retrieved from http://arxiv.org/abs/1205.2618

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton
project para. Cornell Aeronautical Laboratory.

Samet, A. (2020). Us ecommerce will rise 18% in 2020 amid the
pandemic. https://www.emarketer.com/content/us-ecommerce-will

-rise-18-2020-amid-pandemic?ecid=NL1001/. (Accessed: 2020-07-13)
Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015). Autorec: Autoencoders

meet collaborative filtering. In Proceedings of the 24th international con-
ference on world wide web (p. 111–112). New York, NY, USA: Association
for Computing Machinery. Retrieved from https://doi.org/10.1145/

2740908.2742726 doi: 10.1145/2740908.2742726
Shepherd, A. J. (2012). Second-order methods for neural networks: Fast and re-

72

https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/25m/
https://grouplens.org/datasets/movielens/25m/
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/hexiangnan/neural_collaborative_filtering
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.aclweb.org/anthology/D19-1018
https://www.aclweb.org/anthology/D19-1018
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1109/ICDM.2010.127
http://arxiv.org/abs/1205.2618
https://www.emarketer.com/content/us-ecommerce-will-rise-18-2020-amid-pandemic?ecid=NL1001/
https://www.emarketer.com/content/us-ecommerce-will-rise-18-2020-amid-pandemic?ecid=NL1001/
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2740908.2742726

Chapter 7 – Bibliography

liable training methods for multi-layer perceptrons. In (p. 16-17). Springer
Science & Business Media.

Smirnova, E., & Vasile, F. (2017). Contextual sequence modeling for recom-
mendation with recurrent neural networks. In Proceedings of the 2nd work-
shop on deep learning for recommender systems (p. 2–9). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/3125486.3125488 doi: 10.1145/3125486.3125488
Smith, B., & Linden, G. (2017). Two decades of recommender systems at

amazon. com. Ieee internet computing , 21 (3), 12–18.
Strub, F., Gaudel, R., & Mary, J. (2016). Hybrid recommender system based

on autoencoders. In Proceedings of the 1st workshop on deep learning
for recommender systems (p. 11–16). New York, NY, USA: Association
for Computing Machinery. Retrieved from https://doi.org/10.1145/

2988450.2988456 doi: 10.1145/2988450.2988456
Sutskever, I., Martens, J., & Hinton, G. (2011). Generating text with recurrent

neural networks. In Proceedings of the 28th international conference on
international conference on machine learning (p. 1017–1024). Madison,
WI, USA: Omnipress.

Wang, H., Wang, N., & Yeung, D.-Y. (2015). Collaborative deep learning for
recommender systems. In Proceedings of the 21th acm sigkdd international
conference on knowledge discovery and data mining (p. 1235–1244). New
York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/2783258.2783273 doi: 10.1145/2783258
.2783273

Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017). Recurrent
recommender networks. In Proceedings of the tenth acm international
conference on web search and data mining (p. 495–503). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/3018661.3018689 doi: 10.1145/3018661.3018689
Wu, S., Ren, W., Yu, C., Chen, G., Zhang, D., & Zhu, J. (2016). Personal

recommendation using deep recurrent neural networks in netease. In 2016
ieee 32nd international conference on data engineering (icde) (pp. 1218–
1229). doi: 10.1109/ICDE.2016.7498326

Yu, W., Zhang, H., He, X., Chen, X., Xiong, L., & Qin, Z. (2018). Aesthetic-
based clothing recommendation. In Proceedings of the 2018 world wide web
conference (p. 649–658). Republic and Canton of Geneva, CHE: Interna-
tional World Wide Web Conferences Steering Committee. Retrieved from
https://doi.org/10.1145/3178876.3186146 doi: 10.1145/3178876
.3186146

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recom-
mender system: A survey and new perspectives. ACM Computing Surveys
(CSUR), 52 (1), 1–38.

Zheng, L., Noroozi, V., & Yu, P. S. (2017). Joint deep modeling of
users and items using reviews for recommendation. In Proceedings of
the tenth acm international conference on web search and data mining
(p. 425–434). New York, NY, USA: Association for Computing Ma-

73

https://doi.org/10.1145/3125486.3125488
https://doi.org/10.1145/3125486.3125488
https://doi.org/10.1145/2988450.2988456
https://doi.org/10.1145/2988450.2988456
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/3018661.3018689
https://doi.org/10.1145/3018661.3018689
https://doi.org/10.1145/3178876.3186146

Bibliography

chinery. Retrieved from https://doi.org/10.1145/3018661.3018665

doi: 10.1145/3018661.3018665
Zhou, Y., Wilkinson, D., Schreiber, R., & Pan, R. (2008). Large-scale par-

allel collaborative filtering for the netflix prize. In Proceedings of the
4th international conference on algorithmic aspects in information and
management (p. 337–348). Berlin, Heidelberg: Springer-Verlag. Re-
trieved from https://doi.org/10.1007/978-3-540-68880-8 32 doi:
10.1007/978-3-540-68880-8 32

74

https://doi.org/10.1145/3018661.3018665
https://doi.org/10.1007/978-3-540-68880-8_32

Appendix A

Data Specifications

A.1 Full Data Characteristics

A.1.1 MovieLens 25M

The dataset can be found on MovieLens 25M data (2019), below are its Explor-
atory Data Analysis (EDA), features used and data specifications in Figure A.1,
Table A.1 and Table A.2, respectively.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Ratings per User

2500
5000
7500

10000
12500
15000
17500
20000
22500

Co
un

t

Number of Ratings per User

0 50 100 150 200 250 300
Ratings per Item

5000
10000
15000
20000
25000
30000
35000
40000

Co
un

t

Number of Ratings per Item

1 2 3 4 5
Rating

0.0

0.2

0.4

0.6

0.8

1.0

Co
un

t

1e7 Rating Distribution

Figure A.1: Exploratory Data Analysis for MovieLens 25M dataset

75

Chapter A – Data Specifications

Table A.1: MovieLens 25M features
used

Original Name Used Name

rating rating
user user id
item item id
datetime datetime

Table A.2: MovieLens 25M specifics

General Statistics Value

Total Interactions 25 000 000
Total Users 162 541
Total Items 59 047
Sparseness 99.998%
Average Rating 3.53/5

Interactions Per User

Average 153.81
Median 71.0

Interactions Per Item

Average 423.39
Median 6.0

A.1.2 Amazon 5-core Clothing Shoes and Jewellery

The dataset can be found on Amazon Review data (2018), below are its Explor-
atory Data Analysis (EDA), features used and data specifications in Figure A.2,
Table A.3 and Table A.4, respectively.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Ratings per User

80000
160000
240000
320000
400000
480000
560000
640000

Co
un

t

Number of Ratings per User

0 20 40 60 80 100
Ratings per Item

20000
40000
60000
80000

100000
120000
140000

Co
un

t

Number of Ratings per Item

1 2 3 4 5
Rating

0

1000000

2000000

3000000

4000000

5000000

6000000

Co
un

t

Rating Distribution

Figure A.2: Exploratory Data Analysis for Amazon Shoes Clothing and Jewellery
dataset

76

Chapter A – Data Specifications

Table A.3: Amazon Clothing Shoes
and Jewellery features used

Original Name Used Name

overall rating
vote -
verified -
reviewTime -
reviewerID user id
asin item id
style -
reviewerName -
reviewText -
summary -
unixReviewTime datetime
image -

Table A.4: Amazon Clothing Shoes
and Jewellery specifics

General Statistics Value

Total Interactions 11 285 464
Total Users 1 219 678
Total Items 376 858
Sparseness 99.998%
Average Rating 4.28/5

Interactions Per User

Average 9.25
Median 7.0

Interactions Per Item

Average 29.95
Median 10.0

A.1.3 Comparison

Here we put the characteristics of the full datasets next to each other.

0

200000

400000

600000

800000

1000000

1200000

Us
er

 C
ou

nt

Number of Users

0

50000

100000

150000

200000

250000

300000

350000

Ite
m

 C
ou

nt

Number of Items

0.0

0.5

1.0

1.5

2.0

2.5

Ra
tin

g
Co

un
t

1e7 Number of Ratings

MovieLens 25M Amazon 10M

Figure A.3: Comparison of the number of users, items and ratings for Amazon Shoes
Clothing and Jewellery dataset and the MovieLens 25M dataset

77

Chapter A – Data Specifications

A.2 Ratings per User & Item

Here we provide a more detailed view of the long tail of the number of ratings
and number of items per dataset.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Ratings per User

1000
2000
3000
4000
5000
6000
7000
8000
9000

Co
un

t

Number of Ratings per User

50 55 60 65 70 75 80 85 90 95 100
Ratings per User

5
10
15
20
25
30
35
40
45
50

Co
un

t

Number of Ratings per User (long-tail focus)

0 5 10 15 20 25 30 35 40 45 50
Ratings per Item

10000
20000
30000
40000
50000
60000
70000
80000

Co
un

t

Number of Ratings per Item

50 55 60 65 70 75 80 85 90 95 100
Ratings per Item

5
10
15
20
25
30
35
40
45
50

Co
un

t

Number of Ratings per Item (long-tail focus)

Figure A.4: Number of ratings per user and number of ratings per item, with their
long-tail focused representation for Amazon 20K Users

78

Chapter A – Data Specifications

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Ratings per User

150
300
450
600
750
900

1050
1200

Co
un

t

Number of Ratings per User

50 55 60 65 70 75 80 85 90 95 100
Ratings per User

5
10
15
20
25
30
35
40
45
50

Co
un

t

Number of Ratings per User (long-tail focus)

0 5 10 15 20 25 30 35 40 45 50
Ratings per Item

10000
20000
30000
40000
50000
60000
70000
80000

Co
un

t

Number of Ratings per Item

50 55 60 65 70 75 80 85 90 95 100
Ratings per Item

5
10
15
20
25
30
35
40
45
50

Co
un

t

Number of Ratings per Item (long-tail focus)

Figure A.5: Number of ratings per user and number of ratings per item, with their
long-tail focused representation for Am-like-ML

79

Chapter A – Data Specifications

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Ratings per User

50
100
150
200
250
300
350
400

Co
un

t

Number of Ratings per User

300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600
Ratings per User

5
10
15
20
25
30
35
40
45
50

Co
un

t

Number of Ratings per User (long-tail focus)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Ratings per Item

50
100
150
200
250
300
350
400

Co
un

t

Number of Ratings per Item

300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600
Ratings per Item

5
10
15
20
25
30
35
40
45
50

Co
un

t

Number of Ratings per Item (long-tail focus)

Figure A.6: Number of ratings per user and number of ratings per item, with their
long-tail focused representation for MovieLens 1M

80

Appendix B

Grid Search

B.1 Parameters

All parameters explored during the grid search for each algorithm and every
dataset.

Table B.1: BPR parameters used for the grid search per dataset

Parameters Amazon 20k Users MovieLens 1M Am-Like-ML

γ 8 8 8
Epochs 25 25 25
α 0.01, 0.03, 0.05, 0.08, 0.1, 0.12, 0.15 0.01, 0.03, 0.05, 0.08, 0.1, 0.12, 0.15 0.01, 0.03, 0.05, 0.08, 0.1, 0.12, 0.15
ρ 1.05 1.05 1.05
σ 0.55 0.55 0.55
λp 0, 0.001, 0.01, 0.1, 0.2 0, 0.001, 0.01, 0.1, 0.2 0, 0.001, 0.01, 0.1, 0.2
λq 0, 0.001, 0.01, 0.1, 0.2 0, 0.001, 0.01, 0.1, 0.2 0, 0.001, 0.01, 0.1, 0.2
Sample% of interactions 10%, 30%, 50%, 80% 10%, 30%, 50%, 80% 10%, 30%, 50%, 80%

Table B.2: NeuMF parameters used for the grid search per dataset

Parameters Amazon 20k Users MovieLens 1M Am-Like-ML

γ 8 8 8
Layers 16, 32, 16, 8 16, 32, 16, 8 16, 32, 16, 8
Epochs 20 20 20
α 0.00001, 0.00005, 0.0001, 0.0005 0.00001, 0.00005, 0.0001, 0.0005 0.00001, 0.00005, 0.0001, 0.0005
Batch Size 256, 512 256, 512 256, 512
#Negatives 4, 8 4 4, 8

81

Chapter B – Grid Search

Table B.3: CFRNN parameters used for the grid search per dataset

Parameters Amazon 20k Users MovieLens 1M Am-Like-ML

δ 0.01, 0.2 0.01, 0.2 0.01, 0.2
RNN Units 20, 50 20 20, 50
Epochs 20, 50, 100 20, 50, 100 20, 50, 100
α 0.05, 0.1, 0.2 0.05, 0.1, 0.2 0.05, 0.1, 0.2
Batch Size 16, 32, 64 16, 32, 64 16, 32, 64
Max Sequence Length 10, 20, 30 10, 20, 30 10, 20, 30
Embedding Dimension 100 100 100

B.2 Grid Search Results

The following tables show the variables tracked during the Grid Search of the
top 5 parameter combinations ranked on recall@10 for each algorithm on every
dataset used.

Table B.4: Top 5 grid search parameter sets ranked on validation recall@10 of BPR
on MovieLens 1M

train time total val rec val rec@10 nolf n iterations sample size learning rate rho sigma reg user reg item

157.5819 0.396 0.092 8 25 99870.9 0.05 1.1 0.5 0.001 0.001
344.8704 0.394 0.088 8 25 299612.7 0.03 1.1 0.5 0 0
332.731 0.39 0.086 8 25 299612.7 0.03 1.1 0.5 0.0001 0.0001
787.6276 0.372 0.086 8 25 798967.2 0.1 1.1 0.5 0.01 0.01
534.8713 0.404 0.086 8 25 499354.5 0.12 1.1 0.5 0.01 0.01

Table B.5: Top 5 grid search parameter sets ranked on validation recall@10 of CFRNN
on MovieLens 1M

val rec@10 total val rec train time epochs BATCH SIZE learning rate delta max seq len embedding dim rnn units pad value

0.066 0.314 285.5414 100 16 0.2 0.01 30 100 20 3706
0.066 0.288 24.49307 20 64 0.05 0.01 30 100 20 3706
0.06 0.302 283.0391 100 16 0.1 0.2 30 100 20 3706
0.054 0.274 285.0395 100 16 0.05 0.01 30 100 20 3706
0.054 0.258 30.22245 20 64 0.1 0.01 30 100 20 3706

Table B.6: Top 5 grid search parameter sets ranked on validation recall@10 of NeuMF
on MovieLens 1M

total val rec val rec@10 train time learning rate batch size layers reg layers reg mf nolf epochs num neg

0.426 0.096 621.7876 0.0001 256 [16, 32, 16, 8] [0, 0, 0, 0] [0, 0] 8 20 4
0.438 0.096 937.3461 0.0001 256 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [0, 0] 8 30 4
0.418 0.094 617.2445 0.0001 256 [16, 32, 16, 8] [1e-05, 1e-05, 1e-05, 1e-05] [0, 0] 8 20 4
0.412 0.092 614.7509 0.0001 256 [16, 32, 16, 8] [1e-06, 1e-06, 1e-06, 1e-06] [0, 0] 8 20 4
0.41 0.092 613.0559 0.001 256 [16, 32, 16, 8] [1e-06, 1e-06, 1e-06, 1e-06] [0, 0] 8 20 4

82

Chapter B – Grid Search

Table B.7: Top 5 grid search parameter sets ranked on validation recall@10 of BPR
on Amazon 20K Users

train time total val rec val rec@10 nolf n iterations sample size learning rate rho sigma reg user reg item

211.0553 0.3 0.068 8 25 89 654.5 0.08 1.1 0.5 0.1 0.1
269.485 0.294 0.066 8 25 143 447.2 0.1 1.1 0.5 0.1 0.1
260.4696 0.308 0.064 8 25 143 447.2 0.12 1.1 0.5 0.1 0.1
259.8149 0.304 0.062 8 25 143 447.2 0.15 1.1 0.5 0.1 0.1
205.6254 0.294 0.062 8 25 89 654.5 0.05 1.1 0.5 0.1 0.1

Table B.8: Top 5 grid search parameter sets ranked on validation recall@10 of CFRNN
on Amazon 20K Users

val rec@10 total val rec train time epochs BATCH SIZE learning rate delta max seq len embedding dim rnn units pad value

0.005 0.019 159.1642 20 32 0.1 0.2 20 100 20 90 395
0.004 0.017 160.0786 20 32 0.05 0.01 10 100 20 90 395
0.004 0.016 159.4162 20 32 0.05 0.2 20 100 20 90 395
0.004 0.019 163.2966 20 32 0.05 0.2 30 100 20 90 395
0.004 0.015 824.5462 50 64 0.2 0.2 30 100 20 90 395

Table B.9: Top 5 grid search parameter sets ranked on validation recall@10 of NeuMF
on Amazon 20K Users

total val rec val rec@10 train time learning rate batch size layers reg layers reg mf nolf epochs num neg

0.075 0.017 293.0282 0.00005 256 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [1e-06, 1e-06] 8 20 4
0.073 0.016 155.4766 0.0001 512 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [1e-06, 1e-06] 8 20 4
0.058 0.014 306.6946 0.0001 512 [16, 32, 16, 8] [1e-06, 1e-06, 1e-06, 1e-06] [1e-06, 1e-06] 8 20 8
0.049 0.01 210.6117 0.00005 256 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [1e-06, 1e-06] 8 20 8
0.041 0.01 332.5113 0.00005 512 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [0, 0] 8 20 8

Table B.10: Top 5 grid search parameter sets ranked on validation recall@10 of BPR
on Am-like-ML

train time total val rec val rec@10 nolf n iterations sample size learning rate rho sigma reg user reg item

201.5636 0.328 0.072 8 25 141 918.4 0.05 1.1 0.5 0.1 0.1
151.6832 0.278 0.07 8 25 88 699 0.05 1.1 0.5 0.1 0.1
91.85337 0.28 0.07 8 25 88 699 0.12 1.1 0.5 0.1 0.1
103.9839 0.286 0.07 8 25 53 219.4 0.1 1.1 0.5 0.1 0.1
75.9479 0.286 0.07 8 25 17 739.8 0.05 1.1 0.5 0.1 0.1

Table B.11: Top 5 grid search parameter sets ranked on validation recall@10 of CFRNN
on Am-like-ML

val rec@10 total val rec train time epochs BATCH SIZE learning rate delta max seq len embedding dim rnn units pad value

0.046 0.164 130.3405 20 64 0.1 0.01 30 100 50 86 843
0.046 0.162 126.6389 20 64 0.1 0.01 10 100 20 86 843
0.044 0.176 125.9628 20 64 0.1 0.2 30 100 20 86 843
0.044 0.176 139.3441 20 32 0.05 0.01 20 100 50 86 843
0.044 0.168 414.6351 50 16 0.05 0.2 20 100 20 86 843

Table B.12: Top 5 grid search parameter sets ranked on validation recall@10 of NeuMF
on Am-like-ML

total val rec val rec@10 train time learning rate batch size layers reg layers reg mf nolf epochs num neg

0.254 0.054 158.5695 0.00005 512 [16, 32, 16, 8] [1e-05, 1e-05, 1e-05, 1e-05] [0, 0] 8 20 4
0.212 0.046 151.8709 0.00005 512 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [1e-05, 1e-05] 8 20 8
0.214 0.046 168.1218 0.00005 256 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [1e-06, 1e-06] 8 20 8
0.194 0.044 540.3837 0.0001 256 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [0, 0] 8 20 8
0.198 0.044 170.349 0.00005 256 [16, 32, 16, 8] [0.0001, 0.0001, 0.0001, 0.0001] [1e-05, 1e-05] 8 20 8

83

Appendix C

Technical Environment

The testing and final runs of the algorithms were performed on a laptop provided
by YGroup (Y) and on their Paperspace account. Paperspace is a cloud service
that offers tools and computing power to developers1. The specifics per device
used for each algorithm are shown in Table C.1.

BPR has been implemented in Python using pythons Numpy2 package

CFRNN has been implemented in Python using TensorFlow3 and Keras4.

NeuMF has also been implemented in Python using TensorFlow3 and Keras4.
The algorithm used to create the results of X. He et al. (2017) has been used
and altered. This setup can be found on NCF Framework (2018).

Table C.1: Specifications per device used for testing and training each algorithm

Algorithm Device CPU GPU Ram

BPR Laptop Intel i5-6300U (2 CPU) - 16GB
CFRNN Paperspace P5000 Intel Xeon (8 vCPUs) NVIDIA Quadro P5000 (16GB) 30GB
NeuMF Paperspace C7 Intel Xeon (12 vCPUs) - 30GB

1https://www.paperspace.com/
2https://numpy.org/
3https://tensorflow.org
4https://keras.io/

84

https://www.paperspace.com/
https://numpy.org/
https://tensorflow.org
https://keras.io/

	Introduction
	About YGroup
	Information Overload
	Recommender Systems
	Research Questions

	Related Work
	Matrix Factorisation
	Deep Learning
	Multilayer Perceptron
	Autoencoders
	Convolutional Neural Networks
	Recurrent Neural Networks

	Summary

	Algorithm Description
	Notation
	Singular Value Decomposition
	Bayesian Personalised Ranking
	BPR-Opt & BPR Learning

	Collaborative Filtering with Recurrent Neural Networks
	Feedforward Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory Units
	RNN for Collaborative Filtering

	Neural Collaborative Filtering
	NCF Framework
	Generalised Matrix Factorisation
	Multilayer Perceptron
	Neural Matrix Factorisation

	Experimental Setup
	Data
	Amazon 20k Users
	MovieLens 1M
	Amazon like MovieLens 1M
	Structural Differences
	Training, Validation and Test Split

	Performance Metrics
	Classification: Recall@n
	Ranking: NDCG@n

	Bayesian Personalised Ranking
	Collaborative Filtering with Recurrent Neural Networks
	Neural Collaborative Filtering

	Experimental Results
	Implementation Setup
	Bayesian Personalised Ranking
	Collaborative Filtering with Recurrent Neural Networks
	Neural Matrix Factorisation
	Comparison

	Analysis and Discussion
	Bayesian Personalised Ranking
	Collaborative Filtering with Recurrent Neural Networks
	Neural Matrix Factorisation
	Performance Comparison
	CFRNN vs. NeuMF
	BPR vs. CFRNN
	BPR vs. NeuMF

	Conclusions and Future Work
	Research Questions
	Conclusions
	Future Work

	Bibliography
	Appendix Data Specifications
	Full Data Characteristics
	MovieLens 25M
	Amazon 5-core Clothing Shoes and Jewellery
	Comparison

	Ratings per User & Item

	Appendix Grid Search
	Parameters
	Grid Search Results

	Appendix Technical Environment

