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Faculteit der Bètawetenschappen
De Boelelaan 1085
1081 HV Amsterdam

Host organization
Olyx B.V.

Herengracht 458
1017 CA Amsterdam



Preface

This report is written as part of the Master Project Business Analytics. It is the
result of an internship at the company Olyx and describes the research of the
author. The research problem that is investigated concerns the modelling and
predicting of prices of biofuel products. Special thanks go to the supervisors
of this project, which are Eliseo Ferrante (VU), Joppe Hülsenbeck and James
Hitchcock (Olyx).



Abstract

The market for biofuels, consisting of both physical products and transferable
emission rights, is an upcoming market as a result of increasing demand for
cleaner ways of producing traffic fuels. Products on these markets are traded
directly between buyer and seller, that might use the service of a brokerage firm
to find a suitable counterparty. The prices of the products traded vary over
time and depend on numerous factors. This report focuses on the modelling
and predicting of these prices. Market prices are predicted using historic prices
in the form of time series data. These historic prices include the prices of the
product that is modelled. Second, the historic prices of similar products are
used as input data. We build a one time period ahead predicting model, that
predicts the price change relative to the last known price.
The main model is a Long Short Term Memory neural network that takes mul-
tiple fixed size time series as input. This LSTM model is capable of making
predictions based on time series data that are more accurate than ‘näıve’ pre-
dictions that do not use any data. However, this is only the case for data where
the correlation between time series is relatively high. Prices of individual trans-
actions can be modelled based on market prices. Using a number of properties
of a transaction, a regression model is able to model and predict the prices of
transactions.
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1 INTRODUCTION

1 Introduction

In the market for biofuels, physical products and transferable emission rights
are traded between seller and buyer, often using a intermediate party. The in-
termediate party has to make sure buyer and seller agree on the price for the
product. Seller and buyer indicate an offer respectively a bid. The right price of
a product that both parties can agree on, differs over time and depends on mul-
tiple external factors, including market conditions, historic prices, demand for
fuel and regulations. Besides, every product has its own characteristics. Phys-
ical products for example have different quality and different chemical product
specifications.
Olyx acts as the intermediate party on the market for biofuels. Brokers at the
company intermediate trades in different physical products such as biodiesel as
well as nonphysical products in the form of emission rights. The use of - and
therefore trade in - biofuels in the European Union has grown over the last ten
years as a result of regulations. Suppliers of fuel for road transportation have
the obligation to reduce the CO2 emissions that are released when producing
the fuels, the upstream emissions. They mainly do so by blending their fossil
fuels with biofuels, or by buying emission rights from other supplier that did so.
This research focuses on the question of how to model and predict the prices
of non standardized products in the biofuel market. We use historic price data
and human made price assessments to answer this question. The main research
question of this report is

To what extent can we model and predict prices of different biofuel
products, using historic price data and human made price assess-
ments?

We can break down this question using some smaller subquestions. First, we
would like to investigate whether we can predict prices using time series data
on historic prices only. This leads us to our first subquestion

• Can we predict biofuel market prices from historic price data in the form
of time series only, using machine learning prediction models developed
for time series?

Furthermore, there are two different kinds of prices we would like to model and
predict to fully answer the research question. First, there is the general market
price, the price that changes over the day. This price can be interpreted as
a reference price that will be the base for the determination of the price of a
particular deal. The price for a particular deal however does depend on other
factors as well. These include product characteristics as mentioned above, as
well as for example the parties involved in the deal or the product volume of the
deal. This means that in order to fully answer the main question, our second
subquestion focuses on the modelling of the prices as traded on the market

• Can we predict the price of a product as it is actually traded between two
parties as a function of 1.) the market price and 2a.) chemical properties
of the product and 2b.) the product volume of the trade?

A model that can predict and describe dependencies of different prices in the
biofuel market will help participants in the market to explain market trends.
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1 INTRODUCTION

This in turn will make new opportunities visible and will give an incentive to
brokers to spot potential trade possibilities. Secondly, a model for the price of
a specific product will give insight in the dependency between price assessments
on one side and the actual prices, the properties of a deal and the properties
of a trade on the other side. In doing so it can help to identify as well as
confirm business logic on what properties of a product play an important role
in determining its price.
The report starts with an overview of literature on similar research and different
modelling techniques. Some different models and methods are investigated and
explained in more detail. Next, we describe the data that is available on biofuel
prices. We propose to use a few models which we believe might be suitable for
our research. After looking into some details of how these models can suit our
purposes, we create an experimental setup. We evaluate the performance of dif-
ferent models and investigate how we can improve these models by tuning their
hyperparameters. For each model, we identify what data seems to add to the
explanatory power of the model. Finally, results are evaluated and compared,
leading to some conclusions and recommendations for the business case, as well
as for further research.
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2 LITERATURE

2 Literature

In the following section, we have a look at different models and techniques that
we will use throughout this report. We start with a discussion on similar re-
search and different methods and techniques used. Most models selected will be
able to work with time series, as this suits most of our data available. First we
discuss the use of regression models. Second, we discuss the use of AutoRegres-
sive Integrated Moving Average models. These models are a good start when
analyzing time series. Third, we discuss neural networks and try to give some
insight in how these work. Due to the relative complexity of these models, their
exact working might not always be immediately clear. By discussing their most
important principles we try to reveal their basic mechanisms. A neural network
can take many types of data as its input. A type of neural network that is
known to work well with time series data, is a Recurrent Neural Network. An
instance of this is a Long Term Short Term neural network. We will discuss in
more detail how both these networks work and why they suit time series data.
Finally, we discuss different error metrics that can be used to compare the
models. Most of these models will be trained on certain part of the data. The
evaluation of the model then will use a different part of the data. We shortly
discuss this splitting of the data.

2.1 Similar works

The modelling and forecasting of time series data is an important subject in
many applications, for example in economic or finance applications. AutoRe-
gressive Integrated Moving Average models offer a relative simple way to fit time
series. This allows for better understanding of the data and for making predic-
tions on future values of the time series. More advanced methods using machine
learning algorithms and deep learning also exist. With advancement in compu-
tational power of computers and development of these methods, such methods
are now suitable for modelling and predicting time series data [9]. Namini shows
that Long Short Term Memory Neural Networks are suitable for modelling time
series data and give superior predictions when compared to ARIMA models [9].
To study the relationships between two time series data sets, canonical correla-
tions are a popular method. This method can model simple linear correlations
between time series. A nearest neighbor overlap method as introduced by Roy
improves on these methods such that it also allows for modelling more complex
non linear relations between time series [12]. Huang and Sun focus on the pre-
diction of prices in the Hubei carbon trading market [14]. They decompose the
time series data using empirical mode decomposition. Using the Partial Auto
Correlation Function, they determine the relevant input variables of the model.
They continue to train a neural network using back propagation. This neural
network predicts decomposed subsequences. From these sequences, the actual
predicted values for the carbon prices are calculated.
Park and Bae in their paper on using machine learning algorithms for making
predictions on housing prices, have a setup that is comparable to ours [11]. They
use different machine learning algorithms to predict housing prices. Given the
listing price of a house, their model predicts whether the actual closing price is
greater than or less than the listing price. Our subquestion on the closing prices
of individual deals, is similar in setup. In our case, we have a general market
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2.2 Regression 2 LITERATURE

price and we would like to predict the actual closing price of a deal. Similar
to the prediction of these housing prices, we use features of a deal, together
with market data, to make a prediction for the price of this deal. Park and
Bae compare four different algorithms and find that the Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) algorithm out of these performs
best.

2.2 Regression

Regression is a model technique that is simple and widely used. Partly because
of its simplicity, it produces models that are easy to interpret and understand.
At the same time, it can produce models that make relative accurate predictions.
Since these models are widely known, we discuss them only shortly. A regression
model predicts the value of a continuous target variable using a vector of input
variables. In a simple case this target is a linear function of the inputs, but
other functions can be used as well. The output of a linear regression model is
calculated using the input variables

ŷ(x) =
I∑
i=0

θixi.

Where x0 = 1. Given a sample (X,Y ), the parameters Θ = (θ0, θ1, . . . , θI) in
this equation can be estimated using the Ordinary Least Squares method. In
this method, the sum of squares of the differences between the observed and
estimated dependent variable

n∑
i=1

(yi − ŷi(x))2

is minimized over Θ.

2.3 Time series and ARIMA models

A time series (X)t = (X0, X1, . . . , Xt) is defined as a series of discrete data
points. Each data point Xi is a repeated observation of an event at time t. For
convenience, we choose the time distance between t and t + 1 to be constant
for all t ∈ Z. An important concept when modelling time series is stationary.
A time series is weakly stationary if for any k, EXt and EXtXt+k exists and
are independent of t. In practice a time series may often not be stationary.
However, taking differences 5Xt = Xt −Xt−1 may generate a stationary time
series from a time series that is not stationary itself. The difference operator
can be repeated d times and can in this way reduce a polynomial trend of degree
d to a constant.
A Moving Average process specifies an output variable as a linear combination
on current and past values of a stochastic term. For a normal distributed vari-
able ε ∼ N (0, σ2) we denote an MA process of order q as Xt = µ+εt+

∑q
i θiεt−i,

with µ a constant. The value of Xt in an Auto Regressive process depends lin-
early on its previous values and is denoted as Xt = c+

∑p
i φiXt−i + εt, with c

a constant.
An ARIMA(p, d, q) model can be fitted to a time series to get an idea how
the time series is constructed, as well as to make predictions. The I stands
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for integration and refers to taking differences of the original time series. This
is done d times. The autoregressive and the moving average part then model
the integrated time series as a process that contains an auto regressive part of
degree p and a moving average of degree q.
A method to apply ARIMA models to a time series to find a good fit for past
values of the time series is the Box-Jenkins method [2]. This method divides the
finding of a model in three phases. The first phase concerns the identification.
Using a unit root test, we can determine whether the time series is stationary.
If not, the time series can be differenced to see if the new series does produce
a stationary series. This gives the value for d. Next, the parameters p and q
need to be determined. The Auto Correlation Function and the Partial ACF
can help with this. The former function denotes the correlation between Xt and
Xt−h. The latter does the same, but adjusted for the intervening observations
Xt−h+1, . . . , Xt−1.
In the second phase, the model parameters are estimated such that they min-
imize a specified loss. This is done using numerical methods. The model with
estimated parameters is checked in the third phase. The residuals of the data
points after applying the model are checked. By assumption of the model they
should follow a Gaussian distribution.
To check if a time series is indeed stationary, we use the Dickey-Fuller test.
This test is developed by Dickey and Fuller (1979) and can be used to test for
stationary of a time series [4]. The test has the null hypothesis that a unit
root is present in the time series. When this is the case, the time series is
not stationary. The alternative hypothesis of the test is that the time series is
stationary.

2.4 Neural Networks

Artificial Neural Networks have a basic structure of small processing units.
These units are connected with weights. Nodes are connected in different ways.
A distinction we make is between networks of nodes that contain cycles, also
called Recurrent Neural Networks, and neural networks that do not contain such
cycles. We will start studying the latter in more detail, since these are more eas-
ily described. A wide used form of these networks is the MultiLayer Perceptron
network. MLP networks consist of different layers. They have an input layer,
one or multiple hidden layers and an output layer. Figure (2) gives a schematic
representation of such an network. There is a collection of nodes with initial
value based on the data, the input layer. A hidden layer consists of a different
collection of nodes. Each node has a value that is calculated based on a (linear)
combination of the nodes from the previous layers, for example the input layer
or another hidden layer. The final layer is called the output layer. The values
of this layer can be seen as the output values. Put simply, we could see the
network as a function ŷ = f(x), where f represents the network, x the input
and ŷ the output. MLP can been seen as universal function approximators [1].
In practice we often have data (x, y) and we would like to find a network f that
maps x to y, in such a way a certain error ε = y − f(x) = y − ŷ is minimized.
More general, this error can be any loss function L(x,y)(f). In order to minimize
the loss, we can take the partial derivatives over the different network weights
with respect to the loss function. To be able to do so, first we will take a closer
look at how the MLP network maps the input to the output.
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Figure 2: Display of a neural network, by Bishop [1].

2.4.1 Forward propagation

The values for the units in the input layer of the network are calculated using
the data X and their associated weights. For a vector X = (x1, . . . , xI) we could
for example choose an input layer with I nodes. The ith node could then take
xi as input value. For the first hidden layer h1 the input value of node j will be

ajh1
=

I∑
i=1

wi,j,1xi + w0,j . (1)

The value of the corresponding node hj will be calculated by applying an acti-
vation function to this value

bjh = θh(ajh). (2)

The activation function is often chosen differentiable and non linear. This choice
depends on the kind of model. Common choices for θ(x) involve the logistic
sigmoid function or the hyperbolic tangent function. The values of the nodes in
hidden layer l are calculated similarly using the weights wi,j,l and the values of
the nodes in hidden layer hl−1

ajhl
=

|Hl−1|∑
i=1

wi,j,lb
i
hl

+ w0,j,l, (3)

bjhl
= θhl

(ajhl
). (4)

Where
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• hjl denotes node j in hidden layer l .

• bjhl
(or alternatively zhl

j ) denotes the value of node j in hidden layer hl.

• H = {h1l , h2l , . . . , h
j
l , . . . , h

l
l} denotes the set of nodes in hidden layer hl.

• wi,j,l denotes the weight from node i in layer l − 1 to node j in layer l.

• w0,j,l denotes the bias of node j in layer hl.

• ajhl
(or ajl for ease of notation) denotes the activation value of node j in

hidden layer l.

2.4.2 Output layer

The calculation of the values of the nodes in the output layer is similar to the
calculation of the values of the nodes in a hidden layer. The activation func-
tion used in this calculation depends on the particular problem. For regression
problems, the activation function in the output layer is often chosen to be the
identity function. For multiple binary classification problems, the final activa-
tion is often the logistic sigmoid function.
Based on the output values in the output layer a loss function can be chosen to
evaluate the outputs. A loss function used for classification could for example
be defined as

L(x, z) = − log p(z|x),

where x denotes the actual category and z denotes the category assigned by the
neural network. Other loss functions include the Mean Square Error, that is
suitable for continuous output variables. These error metrics will be discussed
in more detail below.

2.4.3 Training the network: BPTT

Given the outputs of a feed-forward neural network as described above, we
would like to evaluate the gradient of the error function of the outputs E(w).
Backward Propagation Through Time is a widely used algorithm to train a
neural network as described above. The algorithm looks at the gradient of the
loss function with respect to the model parameters, the weights. We can train
the network in two stages. In the first stage, the partial derivatives of the
error function with respect to the weights are evaluated. In the second stage,
the weights are iteratively updated, using for example gradient descent. These
procedures can be repeated iteratively. Assuming a non convex error E(w), this
will find a local minimum of the error function.
We take the derivative of the loss function with respect to the weights. Note
that the error depends on the weight wi,j,l through the summed input aj [1].
Using the chainrule we have

∂E

∂wi,j
=
∂E

∂aj

∂aj
∂wi,j

. (5)

7
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Define

δj =
∂En
∂aj

. (6)

Using the equation aj =
∑
i=1 wj,izi we can write

∂aj
∂wji

= zi. (7)

Now we substitute equation (7) and (6) into equation (5) to obtain

∂En
∂wji

= δjzi. (8)

For the δ’s in the hidden units we have

δhl
j =

∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

. (9)

The k then runs over all units to which node j sends a connection.
Using (6) and definitions (3) and (4), we get

δj = θ′(aj)
∑
k

wkjδk, (10)

the backpropagation formula.
To summarize, after calculating the values of the nodes using the data and the
feedforward procedure, we can calculate the values of the δk’s in the output
layer. After that we can calculate the δj for the hidden units. Finally, using
equation (8) we can evaluate the derivatives of the error function.

2.4.4 Gradient descent

Most training algorithms minimize an error function in an iterative procedure.
Weights are adjusted in a sequence of steps. For each step, we distinguish two
stages. The first stage involves evaluating the derivative of the error function.
This stage called back propagation is discussed above. In the second stage, these
derivatives are used to make adjustments to the weights. These adjustments can
be made in different ways. One of the simplest techniques to do this is gradient
descent and is described by Rumelhart [13]. Weights are updated such that they
move a small step in the direction of the negative gradient

wτ+1 = wτ − η5 E(wτ ).

Here η > 0 is called the learning rate. The error set is defined with respect to
the training set, so at each step the error and its gradient need to be evaluated
on the entire training set. Algorithms can use the whole training set, or split
the training data in different batches. The size of these batches is the batch size.
We will see later that both the learning rate and the batch size are important
hyperparameters when tuning a neural network. Besides gradient descent other
optimization schemes to update the weights exist as well. Many of them are
more powerful than simple gradient descent [1].
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2.5 RNN & LSTM 2 LITERATURE

2.5 RNN & LSTM

The general neural network as described above does not take into account the
past. This means that when the network is trained on data Xt = (xt−l, . . . , xt),
it does not take into account values (x0, . . . , xt−l−1). In order to solve this,
Recurrent Neural Networks have extra connections on top of the connections
between nodes of different layers as we saw above for the MLP network. These
extra connections are between nodes within the same layer, such that the nodes
in the network at time t connect to the nodes of the network for other t as well.

LSTM

Long Short Term Memory networks are a special case of RNN, introduced by
Hochreiter [7]. This kind of network has been observed to perform well on time
series data, since it is able to learn long term dependencies. A clear explanation
of this neural network is given by Olah [10]. A graphical display of a node in an
LSTM neural network is shown in Figure (3), which is obtained from Olah. The

Figure 3: Display of LSTM node, by Olah [10].

main characteristic of an LSTM network is that nodes (or cells) in the network
have a cell state Ct for each cell at time t, next to the cell output value ht. Given
a previous state Ct−1, a data input xt and a cell output ht−1, the new cell state
and output are calculated using the weights W and the bias b as follows.
A forget gate is calculated

ft = σ(Wf [ht−1, xt] + bf ).

A second sigma layer is the input gate layer, that is calculated

it = σ(Wi[ht−1, xt] + bi).

The new candidate state cell is calculated

C̃t = σ(WC [ht−1, xt] + bC).

The above are used to calculate the new cell state

Ct = ftCt−1 + iC̃t.

At this point the terminology also makes sense. The interpretation for the
new cell state is that it depends on the previous cell state, but part of that is
forgotten, as determined by ft. Next to that, the cell state depends on new

9
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input, that is a function of the previous cell output and the data input. This
new cell input is then filtered using it, that determines what part of the new
cell state is actually kept. This together produces the cell state to be used for
the cell at time t, Ct.
The final output of a cell ht depends on the cell state Ct and the cell output ot
that is also used in the MLP neural network

ot = σ(Wo[ht−1, xt] + b0),

ht = ot tanh(Ct).

2.6 GARCH

In financial price data on for example stock returns, it is often observed that
the time series have conditional variances that are not constant [15]. This can
be interpreted as ‘turbulent times’ in the market, where a day with big changes
in price is usually followed with another such day. A model that can account for
this property is the Generalized Auto Regressive Conditional Heteroscedasticity
process. A time series is GARCH(1,1) if for non negative α, θ, φ and a i.i.d.
sequence Zt with E[Zt] = 0,Var[Zt] = 1, it satisfies the following system of
equations

Xt = σtZt,

σ2
t = α+ φσ2

t−1 + θX2
t−1.

In this application, the variable σt has the interpretation of volatility of the time
series Xt at t. We usually observe time series X1, . . . , Xt. We then assume Zt v
N (0, 1). The parameters α, φ, θ we can estimate using maximum likelihood.
Conditional on information at t we have Xt = σtzt v N (0, σ2

t ). For the joint
distribution we have

f(X0, . . . , XT ;α, φ, θ) = f(X0;α, φ, θ)f(X1, . . . , XT ;α, φ, θ)

= f(X0;α, φ, θ)
T∏
t=1

f(Xt|Xt−1, . . . , X0;α, φ, θ)

= f(X0;α, φ, θ)
T∏
t=1

f(Xt|Xt−1;α, φ, θ)

= f(X0;α, φ, θ)
T∏
t=1

1√
2πσ2

t

exp−X
2
t

2σ2
t

.

From this, we drop f(X0;α, φ, θ) and take logs, to obtain the conditional log-
likelihood function

L(α, φ, θ) =
T∑
t=1

[
log(2π) log(σ2

t )− X2
t

σ2
t

]
.

Using a numerical approach, we minimize the negative log likelihood function
over α, φ, θ to obtain an estimation for these parameters.

10
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2.7 Error metrics

To evaluate the performance of different models, we look at different error mea-
sures as evaluated on the predictions made by the model. A widely used metric
is the Mean Squared Error. It compares every prediction against its actual
value, the difference between these two is the error. These errors are squared
and their mean is calculated

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2.

For models that make predictions of one step ahead time series, the MSE only
might only have meaning when it is compared to the MSE of other models.
Therefore we may create a base model, i.e. a model that makes predictions
without any data. In the case of one step ahead time series, a good baseline
model is the ‘zero difference model’. This model predicts Ŷi+1 = Yi. Or when
predicting the differences, it predicts 5Ŷi+1 = 0.
A similar error metric that makes this same comparison but expresses it in a
single number is the Mean Absolute Scaled Error, (MASE). This error metric
has the advantage that it is independent of the scale of the data. It was proposed
by Hyndman [8] and is defined as

MASE =
1
J

∑
j | ej |

1
T−1

∑T
t=2 | Yt − Yt−1 |

.

Where ej = ŷj − yj denotes the error at j. If the value of the MASE is greater
than one, the predictions are worse than the average one-step näıve forecast.
Conversely, when the MASE has value less than one, it shows the model actually
has explanatory power and could be preferred over the baseline model.

2.8 Train/test split of data

In most cases, we create a model to make predictions about future prices. We
would like to evaluate to what extend the model is able to produce predictions
that are close to actual prices. Therefore we create a setup where we use part of
the data to evaluate the model exclusively. This means we do not use this part
of the data to fit the model parameters. This part of the data is called the test
data. The data that is used to train the model and estimate the parameters
on the other hand, is called the train data. The latter part of the data usually
comprises about 70-90% of the data set. When evaluating the model using
the test data, the dependent variables are given as an input to the trained
model. The model will then produce predictions Ŷ = f(X), where Y denotes
the dependent variable, X the independent variable and f the model. The
predictions Ŷ can be compared to Y , since these data is available to us. Using
some error metric, such as the MSE or the MASE as described above, predictions
and actual values can be compared. This gives some indication of how well the
model is able to perform. When the model is able to make accurate predictions
on the test set, this might be an indication that the model will be able to make
accurate predictions on future data, for which we do not know the actuals Y .
In the case of time series data, the split of the data into train and test data is
a certain date. The train data consists of all the data before this date, while
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the test data consists of all data after this date. In this way, the setup where
the test data is available only after the model is trained, is comparable to the
situation where more data becomes available as time passes.
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3 Research Method and Data Gathering

In the two following chapters we discuss the application of different models
that were introduced in the previous chapter. We start with a more detailed
description of the available data. We will see different dependencies between
time series exist. Certain prices of products are highly related since the products
are very similar. We look into this, as well as different ways to take this into
account in our models. For the model section we look at how we can apply the
relative simple ARIMA model to our data.
Second, the LSTM models are studied. We look how we can apply them to
different data sets and in different settings. To validate the use of LSTM models
to our data, we create an experimental setup where we test whether the model
setup allows to learn a trivial dependency in a time series.
Next we investigate the use of regression models to answer the second part of
the research question concerning the prediction of the prices of a particular deal.

3.1 Form of research

As time series are a natural way of representing the prices over time, we choose
models that in general work well with this kind of data. First we use ARIMA
models to get familiar with the data. These models are widely used for time
series data. They are relatively simple and give us insight in patterns that
exist in the data. Second we look at models in which the price of a product is
modelled and predicted using only the data of the historic price of the product
itself. We use LSTM models for this, as they are known to work well on time
series [1]. For the modelling and predicting of the price of a particular deal
we use regression. As an input for this regression model we use the market
price and certain properties of the deal. Regression models are relatively simple
and therefore easy to interpret. Despite this, they can be very powerful in the
modelling of linear relationships. As we will see later, restricting ourself to
this kind of relationship will come at limited loss only, while a big part of the
dependencies can indeed be modelled in linear way.

3.2 Data description

We use different kinds of data. Part of these data concerns the prices of products
on the biofuel market directly. Other data is expected to be related to these
prices. Some of these data on prices comes from Olyx internal information
sources, such as the deals intermediated by the company. Other data are created
by brokers at Olyx. Finally, we consider relevant external data. These data
comes form third parties and is identified as potentially relevant by experts in
the field.

Internal data

Olyx is a brokerage firm that intermediates trades between sellers and buyers
on the biofuel market. This makes that from these transactions, the deals,
Olyx has the information on concrete trades in the biofuel market. Secondly,
many communication and negotiating usually takes place before closing a deal.
Therefore, brokers know about market trends and developments. This gives
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them some sense of developments and trends in the biofuel market. They use
this information to give an indication of current market prices. We first discuss
in more detail on the deal data. Secondly, we look at the data on the price
assessments made by the brokers.

Deals

When a deal is closed by a broker at Olyx, some concrete information about what
is happening in the biofuel market is revealed. The deal data gives information
about a product, its specifications, the price of the product and the buyer and
seller. Given that buyer and seller agree on a price for their deal, this means
that presumably both parties think the price is reasonably at the given moment.
They do not expect to get a better price somewhere else. As Olyx grows bigger,
the part of the total transactions on the biofuel market they intermediate grows.
Especially for frequently traded standardized products, the deal data may reveal
much information about the right price of a product at a given moment.

Price updates

Besides the prices of the products as traded between two parties in a deal, there
are the market prices. These prices give an indication of current market condi-
tions. At Olyx, brokers are continuously in contact with market participants.
This way, they hear about the latest market developments, the products that
are offered and the products that are in demand. This information is valuable
for the work of the brokers, in which they have to match supply and demand
of products in the biofuel market. The real value of this information comes
when the information is shared between brokers within the company. Brokers
regularly share information with each other, either ad hoc or in daily meetings.
This combined market information makes that a broker can say with some cer-
tainty what the ‘right’ price of a product is at the moment. This estimation
of the market price, is called the price assessment. The interpretation of this
assessment is that if a trade would be closed, the price of the product would be
close to the price assessment. In practice, brokers often have a offer and a bid
from respectively seller and buyer. To close a deal between these two, seller and
buyer have to move to a price that both parties agree on. The price assessment
of the broker will then usually be a price between this bid and offer. Based on
information and experience, the broker can decide the price should be closer to
the offer or the bid price.
For frequently traded products, brokers will give price assessments a few times
a day. Whenever they have new information, for example a new offer or a
new bid, they will update the price assessment of the concerning product. The
assessment of the market prices does not involve precise calculations, but rather
is based on experience to make a judgement on the right price. Moreover,
there is a subjective part to the judgement. Price updates therefore can lead to
differences in opinion between brokers. This is encouraged within the company,
since discussion might reveal market mechanisms and in such lead to better
price assessments.
These price assessments are important data in our research, as this is often
as close as possible to what one could call ‘the price of a biofuel product’.
Therefore, we will regard the price assessment as the market price of a product.
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This means that when we would like to predict the future price of a bio fuel
product, in fact we are predicting how the broker will assess the product price
in the future.
An example of some of these price assessments is shown in Figure (4), that
shows the daily averages of the price assessments of different variants of UCO
and UCOME in Figure (4a) and of price assessments of different variants of
THG ticket prices in Figure (4).

(a) Prices for different variants of UCO
UCOME.

(b) Prices for THG Conventional and THG
Other.

Figure 4: Price Assessment Daily Averages for business days.

Exchange rate

Since different prices are listed in different currencies, these prices are converted
such that they are displayed in the same currencies. For this, we use the daily
exchanges rates.

Oil price

Contrary to most bio fuels, oil is more frequently traded. Therefore, different
financial exchanges offer futures based on the oil price. This makes that there
is clear data on the oil prices and that it is widely available.

3.3 Application of selected techniques

ARIMA

We use ARIMA models to model time series data to better understand the data
or make predictions on the future of the time series. ARMA models assume
stationarity of the data, so trends and seasonalities in time series data are
removed. This can be done by taking differences of the series, this part of the
process forming the Integrated part of the model. As our data for a large part
comes into time series, or can be easily represented a such, the ARIMA model
is a good first choice. We will use the Box-Jenkins approach for estimating the
ARIMA models, as described in the previous chapter.
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LSTM

Since we would like to investigate whether prices can be predicted using historic
data, the input in our LSTM model setup consist of the historic price differences
(xt−1, xt−2, . . . , xt−k). In our data, the time between two prices is not constant.
In addition, some products have more price updates per time unit than others.
As our models do require a constant interval between prices, we take daily
or weekly averages of prices. These averages then form the sequence Xt =
(xt, xt−1, . . . ). On these series we can apply the difference operator. Also, as
described in the section on ARIMA models, we can take differences multiple
times. Due to the availability of data we take weekly averages of prices, unless
specified else. From these prices, we take the weekly differences5xt = xt−xt−1.
To make the data independent of the scale, we rescale the data into the interval
[−1, 1].

LSTM Model validation

In a perfect case, the input data contains all the information that is needed to
make a one step ahead prediction X̂t that is equal to Xt. To test our model
setup we would like to test whether the model in this case is indeed able to
learn from these data. For this purpose, we shift the input data by one time
step ahead, such that the input data becomes Xt = (xt−29, xt−28, ..., xt) for
predicting Yt = yt = xt. So the model should learn to act as the identity function
on the final value xt of the vector Xt, ignoring the other 29 values in Xt. The
predictions this model makes are shown if Figure (5a). The predictions made
by the LSTM model are close to the actual values. The loss of the predictions
made by the model after each iteration through the network is shown in Figure
(5b). We see the model learns to make predictions with a lower loss as the
number of iterations through the network increases. The hyperparameters used
for this experiment as well as the MSE of the predictions on the validation set
are listed in Table (1). For reference the MSE of the baseline model on the same
validation set is also listed for comparison. It turns out the model can indeed
learn to make accurate predictions.

(a) Predictions of daily price differences of
oil price by perfect model.

(b) Loss per iterator over the network.

Figure 5: Validation experiment 0.
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Table 1: Hyperparameters for experiment 0.

Value

Sequence length 30
Epochs 30
Learning rate 0.001
Batch size 1
Train/val split fraction 0.700
Size training set 135
# nodes in LSTM layer 16
MSE on val. set 3.021
MSE of baseline model on val. set 221.957
Features diff ume+
p 1
n 193

3.4 Regression

Regression models are used for estimating the relationships between a dependent
variable and independent variables. In our setup, we would like to predict the
unit price of a deal, which is our dependent variable. We will use the unit price
to make sure the dependent variable is expressed on a single scale. We notate
this variable of our data by Y = (y1, . . . , yn). The first independent variable we
use is the market price as assessed by the brokers. Since this price varies over
time, we take for each deal the weekly average price assessment of that week.
This means we have data points (X,Y ) = ((y1, x1), . . . , (yn, xn)) where xi is the
price assessment of the corresponding week in which the deal with unit price yi
is closed. Further independent variables we include concern other properties of
the deal. These include the volume of the deal, as possibly the unit price might
be influenced by the total volume of the deal. An other important factor of the
price of UCO as identified by brokers is the FFA, a chemical property of the
feedstock that is of importance for manufactures producing diesel out of UCO.
By rule of thumb, a lower value of FFA mean usually a higher price of the UCO.
In our regression model we will investigate whether this dependency can also be
seen from the data.
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4 Data Analysis

In the previous chapter we introduced the different datasets on biofuel prices
and related data. In this chapter we give a description and a first analysis of
these data. We classify different products in the biofuel market and look how
these might relate to each other.

4.1 Product dependencies

The different biofuel products that are priced at Olyx are often related to each
other. This also shows in the pricing of the different products, where a price
change in one product will usually go hand in hand with a price change in an
other product. This connection might be one of causality. When one looks at
the product chain, this makes sense from an economic point of view. For some
groups of products, these correlations between prices of products are more clear
than for others. We illustrate with some examples.

Figure 6: Clustermap of UCO and UCOME prices.

4.1.1 UCO and UCOME

UCOME is a biodiesel produced using the raw material UCO, Used Cooking
Oil. Refineries import the raw material often from China and other countries
in South East Asia, where UCO is produced as a rest or waste product from
factories. The raw material is then used to produce biodiesel. This is mostly
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Figure 7: Weekly prices differences of UCO and UCOME variants.

done in Europe, as regulations there demand the use of biofuels for motorized
road traffic.
UCO is a frequently traded and priced product on the biofuel market. From
business expert knowledge, we know there is a dependency between prices for
UCO and UCOME. Even more so, there is dependency between the different
standardized versions of UCO or UCOME. In our data, we have five standard-
ized products that receive regular price updates, as listed in Table (2). These
prices have different freight terms. For FOB China freight terms, the UCO or
UCOME is directly purchased in China whereas for CIF freight terms, the seller
pays the freight cost and the buyer does not have to import the product him-
self. Since usually UCO comes from South East Asia and is shipped to Europe,
the price differences between UCO with FOB China en CIF freight terms is
approximately equal to the shipping costs of UCO from China to Europe.

Table 2: UCO and UCOME

Name Currency Freight terms Variable
UCO EUR CIF ucospace€
UCO USD CIF ucospacedollar
UCO USD FOB China ucospacefobspacecn
UCOME USD ume+
UCOME USD FOB China umespacecn

It is expected that the prices of these products move similar over time. Figure
(6) shows the Spearman’s correlation coefficient of the weekly differences of these
prices. Figure (7) shows the scaled weekly price differences per product. From
these figures we see the prices are indeed correlated to each other, especially
the different variants within one product. Besides these there seems to be other
factors and randomness that contributes to the price differences as well.
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Table 3: Tickets

Name Country Category Variable
THG C Germany Conventional thgconventionspace21
THG O Germany Other thgotherspace21
HBE C the Netherlands Conventional hbeconventionalspace21
HBE O the Netherlands Other hbeotherspace21

For the plant owner that produces UCOME out of UCO, costs will naturally
rise when the price of UCO rises. Therefore, a increase in the UCO price might
lead to a rise of the price of UCOME. Figure (8) shows the prices of UCO and
UCOME. For comparison, the weekly prices in figure (8a) are normalized. We
note that these normalized prices seem to follow the same trends over time. The
weekly differences of these prices as shown in figure (8b) are therefore correlated
as well.

(a) Normalized weekly price averages. (b) Differences of weekly averages.

Figure 8: UCO and UCOME assessment prices.

4.1.2 Tickets

Since tickets are used to fulfill emission obligations, they can substitute the use
of biodiesel from the perspective of a fuel supplier. Therefore we expect the
prices of these to relate in some way to the prices of biofuels. For a gasstation A
that has to confirm with regulations, there are multiple options to do so. One
option is to make sure that the diesel it brings into traffic, is a mix of traditional
diesel and biodiesel. Another option to fulfill its obligation would be to buy
emission rights. In that case, another gasstation B that blends more biofuel
than it needs to confirm with regulations, can sell this surplus. This is done
in the form of certificates or tickets that are registered by national authorities.
In the Netherlands for example, this is the Nederlandse Emissie Autoriteit, the
Dutch Emissions Authority. For a gasstation, buying tickets or blending biofuel
are competitive options. When for example gasstations experience increasing
costs for biodiesel, they might buy tickets instead, driving up the demand and
therefore the price of tickets. It is therefore reasonable to expect that there
exists a positive correlation between the prices of these tickets and the physical
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biofuels. From Figure (9) we see that indeed the price of a ticket on the German
market follows a somewhat similar trend as the prices of UCO and UCOME.

Figure 9: Normalized THG, UCO and UCOME price assessment.

4.1.3 Ticket categories

In the German market TreibHausGasquotes, THG’s, are a way of trading obli-
gations for blending biofuels. There are multiple variants of these tickets, based
on the raw material that was used for producing the biofuel. In our data there
are the categories Conventional and Other. Both variants can be used to fulfill
an obligation. In order to stimulate the use of waste-based products as raw ma-
terials, biofuels produced using these materials generate a different ticket, the
THG Other ticket. Both THG’s can be used to fulfill an obligation. However, a
minimum amount of the obligation should be fulfilled using the THG O ticket.
Since this ticket has the advantage of counting towards this obligation, it has
extra value compared to THG C tickets. Furthermore, in general waste based
products are more expensive to produce. This factors make that usually the
THG O ticket is slightly more expensive than the THG C ticket. Since there
is only this price difference, the ticket prices will strongly correlate. In Figure
(10), we see the THG prices over the period of August 2020 to May 2021.

4.1.4 Oil prices

In the biofuel industry, traders and brokers use the oil price and the movements
of it as a reference. This means that when the oil price drops, biofuel prices
will likely drop as well. Figure (11) shows the movement of the oil price and
the UCO price assessment. For the oil price the price of a future on oil at the
Nasdaq exchange is used. In order to compare the prices, both prices are divided
by their mean over the total period.

4.2 Market participants and liquidity

Traders in the biofuel market often hold a portfolio of different products, which
can both be physical biofuels as well as tickets. By the end of the year they
have to make sure to fulfill their legal obligations in terms of blending biofuel
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Figure 10: THG prices.

Figure 11: Weekly price of Nasdaq oil futures along with weekly average of price
assessment of UCO.
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or possessing enough tickets. Traders at these firms look for the right moment
to sell, buy or exchange these products. Since these are mostly human actors,
certain factors as expectations on the market play a roll. Brokers at Olyx
observe this as well. This shows for example in a case where the price of THG
tickets starts dropping. Many holders of these tickets were previously expecting
the tickets would continue to rise for some more time. The unexpected drop
in price changes the behavior of the traders, causing a lots of extra offers from
sellers. As one may expect, this causes prices to drop even further because
of a rise in supply. Buyers however do also take these opportunities, since it
provides a nice moment to buy their obligations for a lower price, where they
were only seeing increasing prices before. This behavior can be seen in the
clustering of transactions, where there are some weeks with more than usual
transactions. This is shown in Figure (12) that displays the number of ticket
deals intermediated by Olyx per week. These described behaviour might not

Figure 12: Number of ticket deals in German market per week.

always be rational in the sense that these decisions are supported by models
that optimize a certain loss. Rather, these are the result of human behaviour.
According to brokers however, this is how part of the market is responding.
We could quantify this behaviour using metrics on the market activity, as for
example the number of deals closed per week or the number of price updates per
week. These might provide explanation in the movement of prices of biofuels.
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4.3 Clustering

We would like to know whether the above described product dependencies, based
on knowledge from business experts, is also apparent from the data. Figure (13)
shows the Spearman pairwise correlation for the prices of the main dashboard
products. This correlation coefficient assesses how well a relationship between
two variables can be described by a monotonic, not necessarily linear, function.
Clusters are displayed in this figure using lines, where lower level dependencies
are between products. Higher order lines are dependencies between correlation
groups of products or between a product and such a group. It is clear that the
different biofuels and raw materials do indeed form a cluster. The tickets of
different categories from the German market (THG Other, THG Conventional)
are clearly correlated as well. This group also correlates with the prices of the
tickets in the Dutch market (HBE).

Figure 13: Clustermap with correlation between dashboard prices.

24



5 EXPERIMENTAL EVAL-
UATION AND RESULTS

5 Experimental Evaluation and Results

In this chapter we model the relations between products as described in the
previous chapters. We create a model and predict biofuel prices using an LSTM
neural network. We make one step ahead predictions on the test set using these
models and compare these to actual values. In Chapter 3 we already saw the
model setup could learn trivial cases where the output prices completely depend
on the input. In this chapter we build models for different groups of products.
The LSTM models are in part defined by their hyperparameters. We discuss the
improving of these models using different sets of hyperparameters and identify
what hyperparameters have most significant impact.

5.1 Single time series models

Oil price

We investigate the Nasdaq oil price dataset with monthly prices from January
2011 to March 2021. The data is shown in Figure (14). From the data in
Figure (14a), it is already clear the time series is not stationary. The first order
differences of the oil price are shown in Figure (14b). We apply the logarithm
transformation to the series of the prices, these are displayed in Figure (14c).
The first order differences of the logarithm of the series, which can be interpreted
as the return as discussed above, are shown in Figure (14d). The latter two time
series where we took first order differences might be stationary, since from a first
visual inspection we do not spot a clear trend in the data.

(a) Oil price. (b) Daily differences oil price.

(c) Log oil price. (d) Daily differences log oil price.

Figure 14: Oil price data.
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We study the autocorrelation and the partial autocorrelation functions of the
time series. These are shown in Figure (15) and (16) for a lag of 365 days
respectively 28 days.

(a) ACF of first order difference of oil price.(b) PACF of first order difference of oil
price.

(c) ACF of first order difference of loga-
rithm of oil price.

(d) PACF of first order difference of loga-
rithm of oil price.

Figure 15: ACF and PACF of Oil price data, 365 lags.

From the ACF and the PACF functions for the interval of 365 lags, we can
conclude there is no clear periodic signal over a longer time period. This is the
case for both the original time series as the differenced time series, as well as for
the series where we applied the log transformation. When we look at the ACF
and the PACF of the 28 days lag, we see in Figure (16a) and Figure (16b) there
is a correlation in the differenced time series between Xt and Xt−1. Taking
logarithms of the original time series and applying differences after that, seems
to remove this correlation. This can be seen in the ACF and PACF in Figure
(16c) and (16d).
The above suggests we may consider the differenced logarithms of the series as
a stationary series. This is confirmed by the Dickey-Fuller test. For each of the
three time series, we check for stationarity using the Dickey-Fuller test. The
resulting p-values of these test are listed in Table (4). For both the differenced
series and the differenced logarithms of the series, we can reject with α = 0.05
the null hypothesis and assume the alternative hypothese that the series is
stationary.
Now we know these series are stationary, we can estimate the parameters of the
ARIMA model. We start with an ARIMA(1,1,1) model for the original series
and the logarithm of the time series. This gives the following estimations as
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(a) ACF of first order difference of oil price.(b) PACF of first order difference of oil
price.

(c) ACF of first order difference of loga-
rithm of oil price.

(d) PACF of first order difference of loga-
rithm of oil price.

Figure 16: ACF and PACF of Oil price data, 28 lags.

Table 4: Test statistics and corresponding p-values of Dickey-Fuller test.

Time Series Test Statistic p-value

oilprice -1.078 0.724
diff oilprice -15.249 0.000
diff log oilprice -8.821 0.000
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shown in Table (5) and Table (6). We show the estimates for the coefficients,
the standard error, the z value and its corresponding p-value, the left and right
boundaries of a central 0.95 confidence interval.

Table 5: Estimates of ARIMA(1,1,1) model on original series.

Coef S.E. z p-value C.I. 0.025 C.I. 0.975
ar.L1 0.0735 0.018 4.159 0.000 0.039 0.108
ma.L1 -0.3634 0.017 -20.906 0.000 -0.398 -0.329
σ2 3.5599 0.010 362.874 0.000 3.541 3.579

Table 6: Estimates of ARIMA(1,1,1) model on logarithm of series.

Coef S.E. z p-value C.I. 0.025 C.I. 0.975
ar.L1 3.344e-06 0.003 0.001 0.999 -0.006 0.006
ma.L1 3.328e-06 0.003 0.001 0.999 -0.006 0.006
σ2 0.0009 4.25e-06 203.122 0.000 0.001 0.001

For the model on the logarithm of the data we note that both the estimates for
the autoregressive as the moving average part are very close to zero and do not
have a significant p-value at α = 0.05. Therefore, predictions for the differences
of the log series made by this model will be equal to zero. This means if we
transform back to the original time series, predictions for Xt will be equal to
Xt−1. So this model is equal to the baseline model and thus does not improve
on it.
For the model on the original data the estimations are shown in Table (5). These
coefficients for the autoregressive and moving average part are not equal to zero
and significant with α = 0.05.
As a third step of our approach, we check the model found above is actually
a good fit for the data. We do this only for the first model, where we found
significant coefficients for the autoregressive and moving average part. The
model does not seem to fit the data well. A subset of the predicted differences
by the ARIMA(1,1,1) model are shown in Figure (17a), together with the the
actual differences. The MSE of predicted differences compared to the actual
differences is 3.56. The MSE of the baseline predictions is lower than this with
a value of 0.301. We conclude that for both the model on the differenced series
and the model on the logarithm of the differenced series, the historic prices in
the ARIMA(1,1,1) model cannot provide extra information to make predictions
on future values, other than the predictions based on the last known price.

5.2 Price prediction using product dependencies

LSTM

We start with a simple case where we use our knowledge of the current and
historic price of a product X and the historic price of product Y, to predict the
price of product Y at the current time. The price of tickets are a good choice
for a first model, as these products are standardized and priced on a daily basis.
We use the weekly differences of weekly averages of prices for the time series.
We denote the weekly differences of prices of THG C tickets at time t with Xt,
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(a) Predictions for differences. (b) Predictions of differences of log.

Figure 17: ARIMA(1,1,1) model predictions.

the weekly differences of prices of THG O at t with Yt. Suppose we observe
(X1, . . . , Xt), (Y1, . . . , Yt−1). In the LSTM model we give as input

Xt−l Yt−l−1
Xt−l+1 Yt−l
. . .
Xt Yt−1

 . (11)

As an output, we get a prediction for Yt. The hyperparameters used for this
experiment are listed in Table (7). The table also shows the MSE on the vali-
dation set, as well as the MSE of the baseline model on the same validation set
as a reference. From both the comparison of these MSE’s, as well as the fact
that the MASE has value lower than 1, we can conclude that this model can
predict the one step ahead future price.

Table 7: Hyperparameters and results for the ticket experiment.

Value

Sequence length 6
# epochs 20
Learning rate 0.010
Batch size 1
Train/val split fraction 0.500
Size training set 20
p 3
n 41
# nodes in LSTM layer 16
MSE on val. set 36.503
MSE of baseline on val. set 51.874
MASE 0.749
Features diff hbeother21,

diff thgother21,
diff thgconventional21

Figure (18b) shows the one step ahead predictions for the validation set. For
comparison the actual values are shown as well as the baseline prediction.
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(a) Loss per iterator over the network. (b) Predictions for differences in daily av-
erages by LSTM model and baseline model
and actuals values.

Figure 18: Ticket experiment 2.

Overfitting

Figure (18a) shows the loss on the predictions from the model during the training
of the model. From this figure we see the model is overfitting on the training
set. After about eight epochs, the loss on the validation set is increasing over
the number of iterations of the network, while only the loss on the training set
is decreasing. This suggests we might want to stop training earlier. In the next
experiment, experiment 3, we run the same model, only with a lower number of
iterations over the network. The results of this experiment are listed in Table
(8). The loss throughtout the training process is shown in Figure (19a). The
predictions of the model on the test set are shown in Figure (19b). Indeed the
MSE is lower compared to previous experiment. The MSE is also lower than
the MSE of the baseline model. Similarly, the MASE has a value lower than 1.
This means the predictions of our model are more accurate than the predictions
from the simple baseline model and may indeed be valuable.

(a) Loss per iterator over the network. (b) Predictions for differences in daily av-
erages by LSTM model and baseline model
and actuals values.

Figure 19: Ticket experiment 3 with early stop.
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Table 8: Hyperparameters and results for the ticket experiment 3.

Value

Sequence length 6
# epochs 8
Learning rate 0.010
Batch size 1
Train/val split fraction 0.500
Size training set 20
p 3
n 41
# nodes in LSTM layer 16
MSE on val. set 28.773
MSE of baseline on val. set 51.874
MASE 0.524
Features diff hbeother21,

diff thgother21,
diff thgconventional21

5.3 UCO & UCOME

In this experiment we model the price of UCOME using the price of UCO. We
use weekly averages prices from the price assessment data for the different UCO
and UCOME variants. Loss over the training of the network is shown in Figure
(20a). The predictions of the model are shown in Figure (20b). Although the
MASE of the model is somewhat below one, the model predictions seem not
that accurate and very close to the predictions from the baseline model. Big
changes in price that happened, where not at all predicted for by the model.

(a) Loss per iterator over the network. (b) Predictions for differences in daily av-
erages by LSTM model and baseline model
and actuals values.

Figure 20: Ticket experiment with early stop.
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Table 9: Hyperparameters and results for UCO & UCOME experiment 4.

Value

Sequence length 4
# epochs 10
Learning rate 0.010
Batch size 1
Train/val split fraction 0.600
Size training set 24
p 4
n 41
# nodes in LSTM layer 16
MSE on val. set 684.267
MSE of baseline on val. set 730.793
MASE 0.651
Features diff ume+,

diff uco€,
diff ucodollar

5.4 Deal

As discussed above, price assessments are made by brokers and indicate the
approximate right price of a standardized product in the market at a certain
time. These prices are however not directly tradeable. In this section we study
whether price assessments do indeed contain information about market events.

5.4.1 UCO

We model the price of UCO deals using the price assessments. We use a similar
model setup as in the previous section. An LSTM model is given the weekly
averages of historic price assessments of relevant products, that is UCO and
UCOME. Using this, the model predicts the average value of a metric ton of
UCO as traded in a particular week.
Figure (21a) shows the price assessments of UCO together with the average price
of actual traded UCO. It is clear from the figure that the prices do correlate. This
is confirmed by the Spearman correlation coefficient between these series, that
has a value of 0.946. The weekly differences of these prices are shown in Figure
(21b). From a first visual sight, the similarity between these two time series is
less clear. The Spearman correlation coefficient between these two differenced
time series is 0.335, much lower than the correlation coefficient between the
series themself. Our model, that predicts prices one week in advance, might
therefore have trouble making accurate predictions.
The experimental setup and the results of the predictions for this experiment are
listed in Table (10). The predictions are shown in Figure (22). It is clear that
the price assessments do contain information about the deal prices, as expected.
However, the relationship between these variables is not always direct, therefore
one week ahead predictions are not always accurate. These predictions have a
lower MSE than the baseline model. This means that the price assessments do
contain extra information on top of the deal prices of last week.
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(a) Average price of actuals trades per week
and weekly average price assessments of
UCO euro.

(b) Differences.

Figure 21: UCO prices: assessments and actuals.

Table 10: Experimental setup, hyperparameters and results.

Value

Sequence length 2
# epochs 10
Learning rate 0.010
Batch size 1
Train/val split fraction 0.600
Size training set 24
p 6
n 40
# nodes in LSTM layer 16
MSE on val. set 1895.285
MSE of baseline on val. set 2166.563
Features diff ume+,

diff uco€,
diff ucodollar
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Figure 22: Predictions for deal prices.

5.4.2 Traded tickets

In this experiment we use the price assessments for the tickets to predict the
prices of the German THG tickets as actual traded. The inputs of the model
are the differences of the weekly averages of the market prices for tickets, listed
as features in Table (11). The output of the model is the average weekly unit
price of tickets as traded. Figure (23) shows the predictions and the actual
values for the weekly differences. Table (11) shows the experimental setup, the
hyperparameters used and the MSE of the predictions made. The MSE on
the validation set is slightly lower than the MSE of the baseline predictions.
This shows we can make predictions for the traded ticket prices that are more
accurate than baseline predictions.
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Figure 23: Predictions for deal prices.

Table 11: Experimental setup, hyperparameters and results.

Value

Sequence length 4
# epochs 10
Learning rate 0.010
Batch size 1
Train/val split fraction 0.600
Size training set 24
p 4
n 41
# nodes in LSTM layer 16
MSE on val. set 214.561
MSE of baseline on val. set 239.562
Features diff hbeother21,

diff thgother21,
diff thgconventional21
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5.5 Hyperparameter tuning

When building the LSTM model, several hyperparameters are used. These
were already introduced in an earlier section where we discussed the layout of
an LSTM network. Among these hyperparameters are the

• learning rate,

• nodes per layer and hidden layer size,

• number of layers,

• sequence length of the input data,

• number of epochs,

• batch size.

In their paper on LSTM models, Greff et al. [5] note that of these, the learning
rate is the most important. The optimal value is dependent on the dataset. The
hidden layers size is important as well and effects the performance of the net-
work. In general, larger networks have better performance, but with diminishing
returns [5].

5.5.1 Case 1

To study the choice of hyperparameters for our models, we take a model that
was created in the previous subsection. Specifically we choose the model that
predicts the ticket prices in the German market.
We vary the learning rate for the LSTM model with one hidden layer, since as
noted above this hyperparameter is identified as most important. Figure (24)
shows 1.) the time it takes to run to train the model and make predictions and
2.) the MSE of these predictions from the models with the different learning
rates.
In the second setup we vary the number of epochs as well, next to the learning
rate. The MSE and the execution time of the model with different learning rates
and number of epochs are shown in respectively Figure (25a) and Figure (25b).
It is clear that models with more iterations through the network, have a higher
execution time. This differs from 5 seconds for only a few epochs to about 25
seconds for 20 epochs. The learning rate has little impact on the running time
of the model. The performance of the model in terms of MSE however differs
greatly for different hyperparamters settings. First, we observe that models
with a higher learning rate (10−1) have lower MSE than models with lower
learning rate (10−6). However, there is an interaction in this relation with the
number of epochs used to train the model. Increasing the number of epochs
gives a lower MSE, but this effect get stronger as the learning rate is smaller.
For the highest learning rate (0.1) however, this relation between the number of
epochs and the MSE is almost non existent. The interpretation for this is that
models with a low learning rate learn slower. These models can however learn
to make accurate prediction, but move slower to the prediction that gives lower
MSE. Therefore, these models need a higher number of epochs to get to the
estimation that will give predictions with lower MSE. The advantage that the
slower models with low learning rate and high number of epochs could have, is

36



5.5 Hyperparameter tuning 5 EXPERIMENTAL EVAL-
UATION AND RESULTS

Figure 24: Execution time and MSE for varying learning rate.

(a) MSE (b) Execution time

Figure 25: MSE and execution time of models with varying learning rate and
number of iterations through the network.
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that they might find local minimum. Especially in non convex spaces, this can
be powerful, as faster models with high learning rate might miss this solutions.
This benefit comes then at the cost of higher execution time.
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5.6 Deal regression

In this section we model the deal price of UCO. We use a regression model
where the traded unit price of UCO is the dependent variable. The independent
variables include the market price of UCO, as well as certain properties of the
UCO product of the particular deal. We look at all the deals for UCO from
2014 until May 2021. The prices of these deals are expressed in euro per metric
ton. Part of the deals are closed in USD, these prices are converted using the
EUR/USD exchange rate on the day of the deal. In our model we do not
consider the time that a deal is closed. Instead, we look at the weekly average
of the price assessment of UCO as submitted by the brokers, in the week that
the deal was closed.

5.6.1 Model 1

The first model takes the UCO price assessment as only independent variable.
The estimate of the regression coefficient for the variable ‘price assessment’ and
the coefficient of determination R2 of the model are listed in Table (12). Figure
(26a) shows the predictions as made by the model. We test whether the errors
of the model are approximately normally distributed using Shapiro-Wilk test
for normality. The test statistic is shown in Table (12) as ‘errors normality’ and
with significance level α = 0.05 we do not have to reject the null hypothesis that
the errors follow a normal distribution. The explained variance of the model is
relatively high with R2 = 0.785.

Table 12: Regression model 1.

Value

Errors normality 0.080
Price assessment 0.775
R2 0.785

(a) Regression model 1. (b) Regression model 2

Figure 26
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5.6.2 Model 2

To improve upon the model, we add extra independent variables. From expert
knowledge we know that the FFA, a chemical property of the UCO, plays an
important part in the unit price. The frequency of the different values for this
variable in the sample are shown in Figure (27a). It is clear from the figure
that the mode of the FFA values is 5. Furthermore there are some deals where
the UCO has FFA lower than that, as well as higher FFA. Since this cannot be
seen as a continuous variable, we choose to divide the FFA into three categories.
UCO with FFA lower than four, FFA between four and six, and FFA higher
than six. As a third variable in our model, we use the total volume of UCO
of a deal. Figure (27b) shows the frequency of different volumes per deal. For
the volume we make categories as well. We distinguish between low volume,
medium volume and high volume deals. The intervals for these categories are
respectively [0, 100], (100, 1000], (1000, 10.000).
Adding the variables for the categories of FFA and the categories of the deal
volume improves the model. Table (13) shows the results of this model. The
regression coefficients for the price assessment and for each of the different FFA
and volume categories are shown. Most notable the R2 improves from our first
model. This can also be seen by looking at the predictions directly. Figure
(26b) shows the predictions from model two labeled as ‘Prediction Adjusted’.

(a) Frequency of different FFA values,
boundaries of the intervals of the categories
are marked with a vertical red line.

(b) Frequency of different volumes, bound-
aries of the intervals of the categories are
marked with a vertical red line.

Figure 27
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Table 13: Regression model 2

Value

Errors normality 0.195
Price assessment 0.789
FFA cat. 1 38.631
FFA cat. 2 21.494
FFA cat. 3 15.076
Volume cat. 1 -47.921
Volume cat. 2 22.855
Volume cat. 3 -2.820
R2 0.828
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5.7 Discussion

Conclusions from experimental evaluation

In this chapter we applied different model techniques to model and predict
future differences of prices using the historic prices. We saw that these models
can not make predictions for the future price difference of a product using only
its historic price. In many cases however there are multiple products of which
the prices correlate over time. Our models can make accurate predictions when
we add to our model the current and historic prices of these related products.
The prices of a single deal can be modelled using a relatively simple linear
regression model. The market price has the most explanatory power in this
model. Other factors that explain the price are the chemical properties of the
fuel or raw material (the FFA) and the total volume of a deal.

Limitations

From the above experiments, there is an interesting observation that touches
on a fundamental question on how we view our data. In Figure (22), we see for
t = 10 that a rise in price is predicted. This rise however is only seen in the
actuals at t = 11. In our experimental setup, this predictions leads to increase
in MSE, since at both t = 10, t = 11, the prediction for the daily differences lay
relatively far from the actual daily difference. However, one could also argue
that our model at t = 10 foresees a rise in price that the markets only realize one
week later at t = 11. From this perspective, it is not the model that was wrong.
Rather, it is market participants that realize too late that the price should go
up. This means that the model that is created might actually be valuable, but
since this is not reflected in the MSE or MASE, this is not always recognizable.
This also gives rise to questions on interaction between model and reality. In
a future scenario, models as the ones described here may be used by different
market participants. In that case, predictions made by the model may be-
come reality because market participants act on them. This gives the models
a self-fulfilling prophecy element. Especially in a market with relatively few
transactions and limit number of participants, this effect may be quite strong.
The models developed in this report are able to use input data in the form of
time series. We mainly focused on data that is directly related to the biofuel
market. Certain market trends however seem to be caused by other external
factors, the massive price drop in the fuel and biofuel market in March 2020 as
a clear example. Data sets that contain information on factors like this, could
contribute to models. Further research may therefore focus on the question how
to quantify events like these, for example using machine learning techniques
that analyze news articles or sentiment analysis.
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6 Conclusions and Recommendations

It is a challenging task to model and make accurate predictions on the prices
of different biofuel products. By a lack of definite prices, price assessments and
markets events are used to get as close as possible to a ‘market price’. Our first
research subquestion focuses on the prediction of prices using time series data:

• Can we predict biofuel market prices from historic price data in the form
of time series only, using machine learning prediction models developed
for time series?

We observe that most of these prices do not contain clear trends or seasonalities.
ARIMA models have limited power in modelling these prices. Instead there
are different direct and indirect relationships between the prices of different
products. LSTM Neural Networks provide a good way to model part of these
relationships. These models can be used to make one-step ahead predictions
for time series. The resulting predictions are accurate and are able to model
the direct relationships that exists between different products. These models
however perform not as well when it comes to making predictions for the longer
term. Longer term trends seem to depend on factors like future use of fuels and
future regulations, which are due to their nature unavailable at the present. In
order to create a good LSTM model, hyperparameters need to be set before
training the model. Varying these may give models with more predictive power,
that in addition also require less running time. The importance of different
hyperparameters varies. The ones that have most significant influence on the
performance of the model are the learning rate and the number of iterations
through the network in the training process.
Our final subquestion regards the prediction of the price of a transaction:

• Can we predict the price of a product as it is actually traded between two
parties as a function of 1.) the market price and 2a.) chemical properties
of the product and 2b.) the product volume of the trade?

These prices of a single deal can be modelled using a relatively simple linear
regression model. The actual market price has the most explanatory power in
this model. The chemical properties of the fuel or raw material and the total
volume of a deal have a significant influence on the price of a deal as well.
The modelling of price dependencies gives brokers insight in how prices relate
to each other. These dependencies are often known, but not always directly
manifest in the price. This leads to a discrepancy in prices that usually will
be corrected later. With the use of modelling and predicting techniques, such
differences can be detected earlier. This can lead to more accurate price infor-
mation for the brokers and other market participants. This in turn will help
brokers to make more accurate price assessments and therefore to provide mar-
ket participants with more accurate price information. Similarly, deals can be
closed at prices that fit the current market situation, as well as deals of similar
products that have been closed in the past. Due to the delayed response of cer-
tain prices, models might predict price changes earlier than they actually occur.
In our current setup, models are penalized for this behaviour, since predictions
are compared to actual realizations. One could however argue that the actual
price is inaccurate. Therefore it would be interesting to experiment with differ-
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ent ways to account for this behaviour. As such, the score of models may more
accurately represent their predictive power.
The models developed in this research are able to use input data in the form
of time series directly related to the biofuel market. Certain market trends
however seem to be caused by other external factors. Further research may
therefore focus on the selection of other relevant datasets that contribute to
price changes of products in the biofuel market.
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