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“The Telosian organ of cognition is housed inside a segmented body that buds and grows
at one end while withering and shedding at the other. Every year, a fresh segment is

added at the head to record the future; every year, an old segment is discarded from the
tail, consigning the past to oblivion.”

from An Advanced Readers’ Picture Book Of Comparative Cognition, by Ken Liu
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Abstract

The increasing amount of available data and new attacks appearing in the cyber

security sector require new methods to timely detect new threats. Additionally,

the concept drift in the data poses a new challenge as algorithms need to

be updated constantly to maintain their performance. Existing methods use

different techniques to update their model. However, they lack the ability to

update according to the specific amount of drift observed. This can result

in poor detection performance or unnecessary computational effort. In this

research we address this issue by proposing Telosian, an unsupervised real-

time algorithm capable of adapting to concept drift. We show that measuring

the amount of drift to perform a custom update to the algorithm results in a

more efficient use of resources without degrading performance. The proposed

method achieves comparable results to state-of-the-art methods while using

fewer resources.
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1

Introduction

The rapid increase in data availability over the last decades has allowed us to develop new

ways of extracting information across different sectors. For example, industrial machinery

can now automatically emit a warning when it needs maintenance with the aid of real

time data generated by sensors [30], or loyalty programs can profile their customers in a

more detailed way by combining multiple data sources and training new algorithms with

them [33]. However, as data keeps being generated, the methods we use to exploit it must

handle the difficulties a data-driven world brings. The abundance of data, its fast gen-

eration and the limited resources to process it, pose six main challenges to be addressed

when building high performance data driven models: (1) scaling the models to process

large amounts of data, (2) handling streams of data in real-time, (3) exploiting unlabeled

data, (4) addressing concept drift, (5) efficient use of resources and finally, (6) updating

models in a proportionate manner to maintain their performance over time. These six

challenges are especially present in the cyber security sector, due to its dynamic and fast

data generation nature. Below, we will further explain the causes and importance of these

challenges. Additionally, we discuss the advantages and shortcomings of methods that have

been proposed to address them.

The first challenge is scalability, which results from the great amount of data that must

be processed. Existing data-processing methods, like distance-based anomaly detection,

have either poor performance or require significantly longer execution times [25]. Being

able to design models capable of handling large sets of data is of great importance, oth-

erwise tremendous amounts of information could be ignored due to lack of appropriate

methods to exploit them. This tremendous amount of data is generated at great speeds,

which poses the second challenge: the need to process this continuous data stream in a
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timely manner. More and more systems produce large amounts of data every second,

requiring methods capable of handling streaming data [10]. This challenge is closely

related to the third one, which is the lack of labeled datasets. The speed at which data

is created makes it difficult to obtain up to date and reliable labeled datasets. As a result,

current methods will have a significant advantage if they are able to obtain satisfactory

results without a labeled dataset [39], i.e., in an unsupervised manner. Furthermore, the

systems that generate data evolve quickly, changing the characteristics of the output they

produce. This is known as concept drift and failing to overcome this challenge can result

in solutions that degrade over time, until they become obsolete [24]. The fifth challenge

is the necessity to produce methods that use resources in an efficient manner. To

process the great sequences of data points that are available, minimising storage consump-

tion and usage of CPU is of paramount importance [10]. Finally, the last challenge is to

update the model in a proportional manner. Most existing methods take one of two

approaches: either a partial but constant update of the models [19], or a total retrain of

the model when certain conditions are met [14]. An update that is performed according to

how the data is changing, could result in a more efficient use of the resources and greater

performance, since the update is tailored to the type of concept drift.

The aforementioned challenges are evident in the cyber security context. For example,

the scalability challenge is apparent, considering that in 2024 it is expected that 22 billion

internet of things devices will be in use [32]. On the other hand, streaming-data has a lot

of relevance considering the speed at which cyberattacks are done. According to Cisco,

there were the more than 23,000 cyber security threats per second in 2018 [39], which

illustrates the pace at which data is generated. Furthermore, algorithms need to be able

to handle data-streams to be able to quickly detect such threats and allow supporting

systems to mitigate them in a few instants. In relation to this, the time-varying nature

of streaming data makes concept drift a common phenomenon that must be taken into

account [14]. Furthermore, the constant appearance of new attacks also produces changes

in the data and require for constant updates of existing models. This also makes it difficult

to develop a good cyber security dataset [9], since the data must be processed as it arrives

and data preparation or labeling tasks can be time consuming. This results in threats not

being identified in time. Moreover, many methods recreate models from scratch in order

to update their models [19]. Examples are the iForestASD algorithm [14] which trains

a new IForest algorithm every time concept drift is detected, or the HS-Trees algorithm

[37], which resets the learnt parameters with every new batch of data. This approach can
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be inefficient when concept drift is small or nonexistent. Besides, computer networks may

present small gradual changes due to an organic growth of the user base for example, but

might also experience sudden changes caused by a new type of attack. A model must be

able to handle both scenarios by performing a proportional adaptation as new data arrives

[19]. This way, when small changes occur, the model will perform smooth updates, while

greater changes trigger a sudden update.

Anomaly detection is a very effective way to address the lack of labeled data and can be

modified to address the rest of the challenges, so it is worth exploring in this thesis. Its goal

is to separate the normal data instances from the abnormal ones, which might be gener-

ated by deviating mechanisms and could therefore be of interest to us. These mechanisms

might be a disease that causes abnormal symptoms like in [27], where anomaly detection

is used to analyze images and detect skin disease, or like in [31] where it is used to detect

adversarial attacks and remove them from the data when training Deep Learning models

for natural language processing. The importance of anomaly detection lies in its flexibility

to detect new outliers instead of learning specific types [42]. This is of great importance

when dealing with data that changes over time. Besides, unsupervised anomaly detec-

tion algorithms do not require labeled datasets, which are often hard to procure. Making

anomaly detection techniques powerful tools to exploit large amounts of unlabeled data

[39].

Nevertheless, overcoming these challenges is not trivial and some of the most common

unsupervised anomaly detection methods are insufficient to handle data streams [10]. Ex-

isting machine learning methods tackle a number of these challenges. For example, iForest

[25], an unsupervised isolation-based anomaly detection algorithm, made great progress in

creating fast and scalable solutions that do not require labeled data. Others, like [42], inves-

tigated the detection of new attacks (zero-day attacks) with anomaly detection by removing

a type of attack from the training data. This solution partially addresses the concept drift

issue. However, the models were not designed to handle streaming data. Later, modified

versions of static-data based algorithms were proposed to handle streaming unlabeled data

at high speeds while still detecting anomalies effectively [6]. Nevertheless, concept drift

was not taken into account. Later, the idea of a sliding window was also used in later

works to address changes in the distribution of the data. Although this was proven to

be useful, it had the disadvantages such as requiring full retraining of the model which

may lead to inefficient use of resources and insensitivity towards some types of concept
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drift [19]. This insensitivity was addressed with the BWOAIF algorithm proposed in [19],

which leveraged the speed and scalability of iForest to design a more efficient streaming

algorithm which handles data drift by using iForest in a sliding window. This approach

improved accuracy and resource efficiency in comparison to existing methods such as the

iForestASD algorithm[14]. However, the initial parameters of the algorithm determine the

size of the update throughout its execution. Hence the size of the update remains constant

regardless of the magnitude of the concept drift1. Thus, the challenge of designing an

algorithm that is constantly updated according to the characteristics of the concept drift

and performing a proportional update has not yet been overcome to the best of our

knowledge. For that reason, in this research we attempt to answer the question: How can

anomaly detection algorithms adapt to concept drift in real-time unsupervised detection

of unseen attacks in cyber security?

In summary, we want to develop a method with the following main characteristics, such

that it can be used to successfully exploit streaming data:

1. Scales to process large amounts of data.

2. Handles streams of data in real-time.

3. Is unsupervised.

4. Accounts for concept drift.

5. Utilizes resources efficiently.

6. Performs a proportional update.

In this work, we propose the algorithm Telosian, which has the aforementioned charac-

teristics and has a comparable performance to existing methods designed for unsupervised

cyber security streaming data. The main contribution of this research is adapting the

BWOAIF algorithm [19] to include a mechanism that measures concept drift and per-

forms a proportional update. This allows Telosian to adapt to different types of concept

drift and use the computational resources in a more efficient manner, while maintaining

detection performance.

1The algorithm also includes a weighting method that allows to give more or less influence to some
trees and accelerate or slow down the adaptation. However, the number of replaced regressors, which
constitute the basis of the algorithm, remains constant

4



2

Background

The goal of this research is to propose an algorithm capable of performing unsupervised

anomaly detection in streams of cyber security data, taking concept drift into account. To

achieve this, a number of challenges need to be addressed, which require the investigation

of multiple concepts and methods. In this section, we introduce all relevant concepts and

methods: First, the advantages of using anomaly detection and methods to perform it.

Second, the iForest algorithm, an unsupervised anomaly detection algorithm which will

be the basis for the new algorithm presented in this research. Third, concept drift, the

main challenge this research will address. Fourth, the BWOAIF algorithm, a state of the

art anomaly detection algorithm adapted for concept drift which will serve as basis and

benchmark for our proposed algorithm. Fifth, the NNDVI algorithm which is used to

detect concept drift. Together, these five parts conform the building blocks for Telosian,

the concept drift optimized anomaly detection algorithm we propose in this research.

2.1 Anomaly detection

In this section, we first explain what anomaly detection is, then what methods are used

to perform it, followed by its application in the field of cyber security. The importance

of anomaly detection relies on the capacity to quickly identify anomalous patterns in data

without the need of previous knowledge of the nature of the anomalous observations. Be-

ing able to identify these anomalies reduces the amount of information that needs to be

carefully analyzed to model the data and results in a more efficient use of resources. In

the cyber security sector, for example, anomaly detection is used to develop more flexible

and efficient solutions to detect new attacks [6]. Anomaly detection is also of paramount
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2.1 Anomaly detection

importance in fraud detection to infer complexities and dynamic changes in criminal be-

haviour [18]. In the medical sector, anomaly detection is used to predict the appearance of

a certain medical conditions or diagnose already existing conditions [16]. To achieve these

goals, anomaly detection attempts to find observations in the dataset that are particularly

different from the rest. Anomalies are observations that do not conform with a defined

normal behaviour in a specific context or dataset, for example, these anomalous obser-

vations could be generated by intrusions in a system, fraudulent behaviour or a medical

condition. However, they are not necessarily harmful. For example, a change in policy or

service might produce anomalous observations which do not pose a threat [6]. Neverthe-

less, anomalous instances of the data are usually worth being investigated to uncover new

information as they can provide critical information about a system [5]. In this section,

we will discuss different methods that can be used to detect anomalies.

2.1.1 Anomaly detection methods

One of the challenges in anomaly detection is to define what normal behaviour entails.

What is normal or not can be highly dependent on the method used to perform anomaly

detection. In this subsection we will explore some of the methods that have been pro-

posed to find anomalous data points within a dataset. These methods are mainly divided

in: density-based methods, clustering methods, and isolation-based methods [10] and they

have a different approach in identifying the data which can be useful in different contexts.

Firstly, clustering- and density-based anomaly detection methods rely on the computa-

tion of distances between data points in feature space, in order to find hidden patterns.

Clustering methods partition the dataset into clusters, whose elements share similar char-

acteristics. Once the clusters are determined, points that do not belong to any of these

clusters or are the furthest from them, according to a pre-defined metric, are labeled as

anomalies [42]. The k-Mediods algorithm, for example, represents each cluster by its most

centric object and identifies anomalies by checking which points are the furthest from the

center. Density-based methods, on the other hand, group subsets of points that are close

to each other according to a chosen distance measure and then identify the areas with lower

density [38] in order to find anomalies. The Local Outlier Factor (LOF) algorithm [11] is an

example of a density based method. It works by computing an anomaly score based on the

relative proximity of a point to the rest of the points. It does this in two steps; first, using

the distance between a point and its neighbors, and then, the distance of the neighbors to
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2.1 Anomaly detection

their respective neighbors [7]. This allows it to determine to which extent a point is a local

outlier. Both k-Mediods and LOF are non-parametric algorithms and therefore do not

assume a distribution of the data. Density-based methods are more sensitive towards local

outliers, while clustering-based algorithms have a more global view of the data and there-

fore are more suited to identify global anomalies [10]. Although implementations of these

methods have shown great accuracy (for example [12] leveraged the K Nearest Neighbor

clustering algorithm in combination with Support Vector Machines to accurately classify

intrusions), these approaches require pairwise distances calculation to compare the data

instances, which makes them ineffective in large datasets, as they do not scale very well [39].

Contrarily, isolation-based methods rely on the assumption that anomalies are few, dif-

ferent and that the values of their attributes are different from those of normal instances of

the data [25]. Hence, by separating the data based on individual attributes, isolation-based

methods can identify anomalies without the need of computing distances, which reduces

their complexity and allows them to process greater amounts of data [38]. In [35], for

example, the isolation-based algorithm iForest was used to quickly identify anomalies in

a database of over 300 million data instances, which shows the potential of this kind of

method. Nevertheless, in the end the anomaly detection method used should be selected

based on the data we are trying to exploit [10]. This means that it is relevant to explore the

specific characteristics of the cyber security sector to determine the most suitable methods.

2.1.2 Anomaly detection in cyber security

In cyber security, anomaly detection has gained importance as conventional methods have

become insufficient to detect the increasing number of incidents [6]. Although there already

exist mechanisms to detect known attacks, such as rule-based intrusion detection systems,

these mechanisms lack the flexibility needed to discover novel types of attacks [39]. It has

been recognized that cyber defense requires the capabilities of artificial intelligence to ad-

dress the new threats that arise everyday [22]. Algorithms such as Random Forest, Naive

Bayes and Neural Networks have been successfully utilized in the cyber security context.

In [6] we can see a summary of the good performance of such algorithms on multiple bench-

mark datasets. However, as stated before, quality labeled datasets are uncommon in the

cyber security field, which poses a major obstacle for supervised algorithms. Additionally,

to make it possible for such algorithms to detect new attacks, examples of these attacks

must be recorded, labeled and used to retrain the algorithm. This is time consuming and
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2.1 Anomaly detection

requires human labeling. Anomaly detection algorithms, however, not only have the ca-

pacity to detect novel attacks, but can also uncover patterns in the data and potentially

use this information to make other detection systems more robust. In [35], for example,

anomaly detection is combined with expert feedback to increase accuracy and reduce the

number of false positives in future runs. However, the models used in the cyber security

sector often deal with two major challenges: lack of high quality datasets [6] and large

quantities of data being continuously generated [10].

First, the data used is of great importance in machine learning applications. However,

most of the publicly available datasets in the cyber security domain have quality issues.

These issues range from data being outdated, the lack of examples of some of the existing

attacks, class imbalance and noisy or non existent class labels [6]. Labeled data is a main

issue, as generating labels is time consuming, which makes the development of supervised

algorithms not feasible in most cases [35]. Secondly, the continuous streams of data being

generated requires algorithms to be able to deal with data efficiently. Anomaly detection

in streaming data must deal with fast generated data, meaning that the volume is infinite,

which makes it impossible to store the whole volume of data and therefore rules out the

traditional off-line methods that follow this approach [14]. However, the assumption that

anomalies are rare and show deviating behavior holds for static anomaly data sets, but also

for streaming data [38]. This means that the traditional methods based on the assumption

that anomalies are rare and deviating could be useful for streaming data. Nevertheless,

these methods must be adapted to be able to optimise the usage of CPU and reduce the

memory consumption [10] before being applied to streaming data.

Nowadays, the amount of data available in many sectors has increased considerably. To

transform this data into valuable information it is necessary to analyze it in an meaningful

way. However, the enormous quantities of data make it impossible to analyze every record

manually. For example, in the insurance sector, an expert could take up to 2 weeks to

analyze around 50 claims [40]. Few models are able to handle the great amount of data

in combination with the real time processing necessity [10]. A number of algorithms have

been proposed or adapted to address the streaming and concept drift anomaly detection

challenges. In the next subsection we highlight some algorithms used for this purpose and

their main contributions.
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2.1 Anomaly detection

2.1.3 Review of anomaly detection methods for streaming

An algorithm that aided in the effort of quickly detecting anomalies was iForest [25], an

unsupervised isolation-based anomaly detection algorithm, which made great progress in

creating fast and scalable solutions that do not require labeled data. Others, like [42],

investigated the use of the iForest and KMeans algorithms to detect new attacks (zero-

day attacks) by removing a type of attack from the training data and then testing the

model’s ability to detect the unseen attacks included in the dataset. This solution par-

tially addresses the concept drift issue, however, the models were not designed to handle

streaming data. Later, modified versions of the KMeans algorithm such as KMedioids and

the ADMIT algorithms were proposed to handle streaming unlabeled data at high speeds

while still detecting anomalies effectively [6]. Nevertheless, concept drift was not taken

into account.

A common way to adapt traditional algorithms to deal with streaming data and concept

drift, is by incorporating a sliding window [10], which allows the algorithm to work on an

up-to-date subset of the data. The idea is to use the algorithm designed for static data

sets, and apply it to intervals on a stream (sliding windows). This way, the algorithm is

able to be trained and make predictions on the most up-to-date data, resulting in reduced

storage and faster running times.

In [10], for instance, it was investigated how to adapt KMeans for real time detection on

streaming data by using a sliding window and monitoring incoming data to detect when

significant changes in the data arose and then update the algorithm accordingly. This idea

of a sliding window, was also used in later works to address changes in the distribution of

the data. An example is [14], where the iForest algorithm was modified to handle concept

drift by monitoring the number of anomalies and training a new iForest when the propor-

tion of anomalies surpassed a predefined threshold. This adaptation obtained a slightly

lower accuracy than other static methods1, but with a more efficient use of resources, since

only a fraction of the data is used. Although this was proven to be useful, it had the

disadvantage of requiring full retraining of the model which may lead to inefficient use of

resources and insensitivity towards some types of concept drift [19].

1It must be noted that the algorithm was tested on static data, which explains the lower accuracy.
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This insensitivity was addressed with the BWOAIF algorithm proposed in [19], which

leveraged the speed and scalability of iForest to design a more efficient streaming algorithm

which handles data drift by using iForest in a sliding window and replacing older regres-

sors with new ones trained on the most recent data. This approach not only improves the

accuracy of the algorithm in comparison to [14], but it also uses computing resources more

efficiently as it avoids full retraining. However, the initial parameters of the algorithm

determine the size of the update throughout its execution. Hence the size of the update

remains constant regardless of the magnitude of the concept drift1. Thus, the challenge of

designing an algorithm that is constantly updated according to the characteristics of the

concept drift and performing a proportional update has not yet been overcome to the

best of our knowledge.

In conclusion, in the cyber security context, algorithms that do not require labeled data,

are isolation-based and easily scalable are suitable choices to detect harmful behaviour,

as they address the main challenges present in this context. Specifically, the iForest algo-

rithm has characteristics which makes it a good choice for cyber security data due to its

capacity to scale, detect multiple types of anomalies and deal with high-dimensional data.

Nevertheless, there is still a need to create more robust algorithms that can adequately

detect attacks in the presence of concept drift. In the next section we will describe how

iForest works, its main characteristics and good practices and how these are beneficial in

the cyber security context.

2.2 iForest

iForest [25], is an unsupervised ensemble model designed to detect anomalies by isolation.

It uses recursive random partitioning of the data to determine which instances are the

most abnormal. It is built under the assumption that anomalies are few and different

and therefore easier to isolate than “normal” instances of the data. The main advantages

that make iForest relevant for this research are that it does not require a labeled

dataset and that it is highly scalable [25]. In this section, we first explain the algorithm

and then describe the characteristics that provide it with the aforementioned advantages.
1The algorithm also includes a weighting method that allows to give more or less influence to some

trees and accelerate or slow down the adaptation. However, the number of replaced regressors, which
constitute the basis of the algorithm, remains constant
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2.2 iForest

The algorithm consists of two stages; first, the training of the algorithm and later the

computation of an anomaly score over the data instances.

2.2.1 Training the algorithm

To train the algorithm on a dataset of n points where each point is composed of Q fea-

tures or attributes, an ensemble of independent iTrees is generated from samples (without

replacement) of the data. To construct a single iTree, first, an attribute is chosen from

the data and then a random split value is selected between the minimum and maximum

value of this attribute. The split results in two partitions of the original dataset which

are subsequently divided by selecting another random attribute and split value for each

sub-dataset. This process is repeated recursively on each partition until one of the two

termination conditions is met: 1. every resulting partition has a single unique value, or 2.

a predefined maximum number of splits (iTree height) is reached. Following this process

results in an iTree where the most anomalous points are closer to the root of the tree, as

these are more easily isolated. The following pseudo code describes the steps required to

build an iTree (Algorithm 1):

Algorithm 1 iTree
Require: X - input data, e - current tree height, l - height limit.

if e ≥ l or |X| ≤ 1 then
return externalNode{Size← |X|}

else
Q← list of attributes in X
Select a random attribute q form Q

Select a random split point p from the interval [min(X[q]),max(X[q])].
Xl ← filter(X, q < p)

Xr ← filter(X, q ≥ p)
return internalNode{Left← (Xl, e+ 1, l),

Right← iT ree(Xr, e+ 1, l),
SplitAtt← q,
SplitV alue← p }

end if

As an example, lets consider Figure 2.1 where the rectangles describe a dataset with two

features, one represented by the x-axis and another one represented with the y-axis. We

will use this to illustrate the process described in Algorithm 1. First, in Figure 2.1 (a) all

the data instances belong to the same partition. A blue and red point are highlighted in the
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Figure 2.1: Example of how an iTree is built.

figure, as these will be the focus on the example (only these partitions will be expanded but

it is assumed that the partitions that do not contain the points are equally separated until

the algorithm is completed for every point). In (b) a random feature (y-axis) is selected

and the data is partitioned in two by a random threshold (represented by a dashed line).

Then the process is repeated to arrive at step (c) where there are now 4 partitions. The

process continues until we arrive to image 2.1 (d) where both points have been isolated.

It is important to notice that the red point was isolated in only 4 steps, as it is more

separated from the rest of the observations, while the blue point took 8 steps, as it is more

centered in the cluster. Note that each partition results in two more partitions, which is

why this process can be represented as a binary tree. Using an iTree, the path length of a

point is the number of edges in the tree it traverses until it reaches an external node. This

path length is later used to compute the score using an iForest.

To build an iForest, T iTrees are created from T independent samples of size ψ taken

without replacement from the dataset X. These trees are used in an ensemble to assign

an anomaly score to each instance of the full dataset X. The process to determine the

anomaly score will be explained in the next subsection.

2.2.2 Anomaly score inference for iForest

Once the trees are trained, every point in the dataset traverses every tree to obtain the

path length ht(x) of the point x in the iT ree t ∈ {1, . . . , T}. Then all T path lengths are

averaged for each point. After this procedure, a normalization step is performed on the
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average tree length. Since the structure of each iTree is the same as a Binary Search Tree

(BST), the average path length of a an unsuccessful search in BST is used to calculate the

anomaly score [25]. The average path length is calculated as follows:

c(n) = 2H(n− 1)− (2(n− 1)/n). (2.1)

Where H(i) corresponds to the harmonic number, c(n) is the estimate of the average path

length h(x) to isolate all n data instances within a node.

Once the estimate of the average path length, E(ht(x)), of the data instance x over all

the iTrees t is obtained, the anomaly score s(x, n) is calculated as follows:

s(x, n) = 2
−E(h(x))

c(n) . (2.2)

With this anomaly score, there are two scenarios:

1. When there are evident anomalies within the data, s(x, n) will be close to 1 when x

is an anomaly and s(x, n) will be smaller than 0.5 when x is a normal point.

2. When there are no anomalies within the dataset, s(x, n) will be very similar to 0.5

for all points.

2.2.3 Hyperparameter guidelines for iForest

To give more insight in the workings of the iForest algorithm, we will discuss the different

hyperparameters that it uses. Namely the following:

• ψ - Sub-sampling size, which controls the training data size. According to [25],

increasing the value of this parameter after a certain threshold yields no additional

improvement in performance, whilst increasing the training time. The experimen-

tation performed in [25] suggests that using ψ = 256 results in a good performance

across multiple datasets. The authors mention the importance of this parameter to

alleviate swamping and masking issues. Swamping happens when normal instances

are classified as anomalies because they are close to anomalies. Masking refers to the

existence of groups of anomalies, which makes them appear as normal points. In [25]

it was found that taking a sub-sample increases accuracy, so the value of ψ should

be chosen carefully and according to the dataset.

• t - Number of iTrees used in the ensemble. According to [25], a value of t = 100

is usually enough for a satisfactory detection.

13



2.2 iForest

2.2.4 Advantages of iForest

The main advantages of the algorithm are: first, its focus on finding anomalies rather than

profiling normal points, second, its capacity to scale, and finally, its capacity to detect

multiple types of anomalies. Below we will explain how the design of the algorithm results

in this advantages and what these advantages entail.

2.2.4.1 Focus on anomalies

To start, the focus on anomalies is of great importance. Many existing anomaly detection

approaches separate abnormal points from the rest by constructing a profile of normal

instances and then identifying the records that do not conform to such a profile as outliers

[25]. The disadvantage is that these methods are optimized to profile normal instances

and the detection of anomalies comes as a consequence of such profiling. The choice of

the method (and intrinsic definition of what a normal point is), can ultimately bias what

an anomaly is, as this comes as a secondary task. This might result in a high amount of

false positives or the detection of too few anomalies [25]. Examples of such bias are the

cluster-based and density-based methods discussed in Section 2.1.1, where the former is

more suited for global anomalies while the latter is more effective with local anomalies.

Each of the methods might ignore the anomalies detected by the other, hence reducing

their detection capabilities. The iForest algorithm, on the other hand, is not dependent

on a definition of what a normal point is, making it more effective and versatile in the

detection anomalies.

2.2.4.2 Efficient use of resources

Another advantage of the algorithm is that it is scalable. It has this advantage because

of the initial subsampling task, the simple operations used to isolate anomalies, its high

capacity of running tasks in parallel and its low memory requirement.

Firstly, subsampling brings the advantage that, since the trees are trained on a smaller

subset of the data, their training time is significantly reduced. It is important to highlight

that the number of points used for training is determined by the number of trees and the

subsampling size, which maintains a constant training time regardless of the size of the

original dataset.
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Figure 2.2: Subsampling with Isolation Forest. Figure taken from [25].

Secondly, another important characteristic of the algorithm is the efficient use of com-

putational resources, resulting from the simplicity of its operations during training. For

example, creating each level of an iTree (partitioning the data) requires three basic op-

erations: first, finding the minimum and maximum points a and b, then, computing a

random value t in the interval [a, b] and, finally, doing an inequality comparison of the type

x < t. None of these operations entail involved mathematical operations. Furthermore,

the complexity of the process of building an iTree only depends on the size of the data

set, which gives it linear time complexity [25]. Thus, it is very fast to run on large datasets.

Thirdly, the model is highly parallelizable for two main reasons: First, comparing the

values in a partition to the randomly selected threshold can be performed simultaneously.

Second, every tree is independent from the others, so they can be trained and evaluated

in parallel.

Finally, the algorithm has a low memory requirement as it only needs to record the

attribute used in each partition, the selected threshold and the number of points per par-

tition. During training, because of the subsampling, the algorithm only requires a fraction

of the total data and once the training is complete the data used for training is no longer

needed.

The combination of the previous characteristics make this algorithm computationally

inexpensive and parallelizable which make it scalable. This is one of the desired qualities

for a model capable of successfully exploiting streaming data.
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2.2.4.3 Capacity to detect different types of anomalies

The iForest algorithm has the capacity to detect different types of anomalies due to the

following three factors [25]: First, its capacity to ignore irrelevant attributes, secondly, its

ensemble nature and, finally, its subsampling step.

First, all attributes of the data have the same probability of being chosen to perform the

split on. However, if instances are easily isolated by a subset of attributes, these attributes

only need to be chosen few times to isolate a point. Less relevant attributes, on the other

hand, can be chosen multiple times without contributing much in isolating instances. Since

the number of elements in a partition affects the anomaly score (more elements in a par-

tition results in a lower anomaly score), the observations with greater anomaly scores will

be influenced more by the attributes that differentiate them the most from the rest. As

a result, irrelevant attributes become less important and the algorithm becomes robust to

irrelevant attributes and the need of feature selection is reduced.

Second, since the algorithm is an ensemble of iTrees trained on different sub-samples of

the data, it is very unlikely that multiple types of anomalies will be present in the same

sample. This results in iTrees that become experts in different types of anomalies and

therefore allow the ensemble to detect a broad amount of them.

Thirdly, sub-sampling has a positive impact on the ability to detect anomalies by pre-

venting swamping and masking. Swamping refers to normal instances wrongfully being

labeled as anomalies due to their proximity to abnormal points. Contrarily, masking oc-

curs when anomalies in a cluster are mistaken as normal points due to the high density

of the cluster, although the cluster is isolated from the rest of the data [25]. Figure 2.2

shows the effect of sub-sampling where anomalies are represented in red, and normal points

in blue. First, (a) illustrates swamping, where normal points (blue) can be close to the

anomalies and thus be mistaken as such. In the same figure, masking is also present as

there are two anomaly clusters present which hide the anomalous nature of their data in-

stances. Figure 2.2(b) on the other hands, illustrates how both swamping and masking are

addressed using sub-sampling. Firstly, the clusters are smaller in size, reducing the mask-

ing effect. Additionally, the normal observations are better separated from the anomalies,

as the points between them are fewer, making the differences between the normal points

and the anomalies more evident. As a result, the final subset is more suitable to train the
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algorithm.

In summary, the design of the iForest algorithm allows it to detect a broad range of

anomalies without the need of labeled data. It also requires very little or no feature

selection, which is desireable for data sets where there is not time to perform preprocessing.

And finally, its low CPU and memory requirements combined with its ensemble nature

make the algorithm highly scalable. All these characteristics make iForest a good fit for

anomaly detection tasks in the context of cyber security.

2.2.5 Limitations

Among the main limitations of the iForest algorithm are its inability to accommodate

categorical variables and the high number of false positives generated. Firstly, since the

algorithm relies on selecting thresholds that depend on the minimum and maximum of

a certain attribute, the process can only work for numerical ordered data. This reduces

its usefulness for some data sets in cyber security where categorical data is present, for

example when flags are part of the attributes of the data. Another downside is that, despite

the capacity to identify anomalies, the algorithm may still produce a great number of false

positives. However, this is common in unsupervised anomaly detection methods [42] and

it has been shown that combining unsupervised methods with supervised approaches when

possible could ameliorate this issue [5]. Another solution is to incorporate expert feedback

when updating the algorithm [35].

2.3 Concept drift

Concept drift is one of the main challenges that comes with streaming data [10] and

addressing it is of paramount importance as it can turn high performing models into

outdated low-accuracy models. In this section we will explain what concept drift is, how

it can affect the performance of models and finally what methods exist to overcome the

difficulties it poses.

2.3.1 Introduction to concept drift

Concept drift refers to how the underlying distribution of the data changes over time.

When it occurs, the learnt patterns from past data do not occur in new data, leading to a

degradation in the performance of systems that leverage these learnt patterns [14]. Con-

cept drift has been the cause of decreased performance in many information systems such
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Figure 2.3: Types of concept drift [26].

as early warning systems and decision support systems [27]. Addressing this challenge is

of great importance to make more reliable data-driven solutions. It is critical to include

methods to detect concept drift, so models can be updated over time without their perfor-

mance being affected.

Concept drift can occur in a number of ways that can be grouped in the following four

categories: sudden drift, gradual drift, incremental drift and reoccurring concepts [26].

In sudden drift (Figure 2.3.a), the underlying distribution of the data changes in a short

period of time. Meanwhile, gradual concept drift (Figure 2.3.b) occurs when the previous

concept is progressively replaced by the new one. Moreover, incremental drift (Figure 2.3.c)

is when the previous drift starts to transform into the new one with a smooth transition.

Lastly, recurring concepts (Figure 2.3.d) refer to cases when old concepts reoccur after

some time. It is important that models are able to detect different kinds of concept drifts

in order to be effective. In the next subsection we will go through some methods used to

detect concept drift.
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2.3.2 Concept drift detection

There are a number of ways of achieving concept drift detection, however, most of the exist-

ing methods are supervised approaches. For instance, in [21], out of 59 surveyed methods,

only 2 constitute unsupervised concept drift detection methods. This poses an issue since,

as discussed earlier, labeled data sets are rare in the cyber security sector, so unsupervised

techniques must be used to detect concept drift.

Three approaches to address concept drift in an unsupervised way are: assuming that

drift exists, tracking a specific statistic within a time window, and measuring the discrep-

ancies between different batches of data. The first approach simply assumes that concept

drift exists and periodically updates the models. This approach is followed by [37], where

the model is updated with every new batch and is thus kept up to date. Although simple

and effective, it can result in excessive training as the models are replaced regardless of

the existence of drift and also, patterns learnt by the model could be prematurely discarded.

On the other hand, the statistic tracking approach consists of following specific statistics

of the data to determine if there is concept drift or not. The error rate-based drift detection

models are examples of this approach [26]. These models work by measuring the error rate

of the base learners within a sliding window and if the error rate increases or reduces sig-

nificantly with respect to previous windows, then it is assumed that concept drift occurred.

In [14] and [23], an unsupervised version of this method is leveraged by tracking the aver-

age anomaly rate of an anomaly detector per batch and triggering a drift alarm when it is

significantly different from other batches. Although effective, this method is not robust for

all types of concept drift [19] and relies on the accuracy of the underlying anomaly detector.

Finally, a more robust method that relies on measuring the differences between subsets

of data, where samples taken from a reference batch are compared to samples in a future

window [24]. The main idea behind this approach is that, although the batch changes, each

batch should be statistically similar to the rest when there is no drift. If the aggregation

of the dissimilarities between samples is statistically different, the alarm will be triggered.

This approach is more sensitive to local drifts and is also application independent, since

this partition can be taken from any type of streaming data [17] and is the main idea be-

hind the NNDVI algorithm. In 2.5, we will delve into the NNDVI algorithm and explain
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its advantages.

2.4 Bilateral-Weighted Online Adaptive Isolation Forest

The Bilateral-Weighted Online Adaptive Isolation Forest (BWOAIF ) [19] extends the iFor-

est algorithm for use on streaming data. Since it uses the iForest algorithm as a basis, it

inherits its scalability and unsupervised characteristics. However, there are also some

modifications which allow it to handle streaming data, deal with concept drift and

make more efficient use of the resources. The BWOAIF model leverages the ensemble

nature of the iForest algorithm to partially update itself by replacing old iTrees with new

ones trained on the most recent data. Additionally, a weighting scheme is applied during

the anomaly score calculation. This results in an ensemble method where the most recent

iTrees have a stronger influence on the computation of the anomaly score, thus allowing

it to deal with concept drift. Below we will explain the algorithm, give some guidelines

for parameter tuning and, finally, explain which characteristics result in the mentioned

advantages.

2.4.1 Training the algorithm

The training of the algorithm is one of the most important changes in the BWOAIF

algorithm with regards to the iForest. Constantly retraining BWOAIF is what allows it

to address concept drift. It performs this by replacing a portion of the T iTrees that

conform the ensemble. The BWOAIF algorithm performs the partial update by using

non-overlapping data batches of size B and replacing the oldest E trees with newly trained

E trees each batch. The data is selected from a receptive window of size W = B · T/E.

This ensures that the data is diverse enough to train the new trees. This way, the size of

the ensemble T remains constant but the algorithm is constantly updated with new data.

Figure 2.4 illustrates the process of tree replacement as new data arrives. For each batch

of data, the steps described in Algorithm 2 are performed to update the ensemble.

2.4.2 Anomaly score inference for BWOAIF

To allow for a more flexible adaptation to concept drift, the anomaly score inference is

also modified. To do so, the iForest is segmented in K sets of E trees, where every set

corresponds to the timestamp when it was created. Then, the conventional anomaly score
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Algorithm 2 BWOAIF algorithm

Require: D = {d0, d1, . . . , dN−1, dN} - Data, B - Batch size, T - Total number of trees,
E - Trees to be updated each batch.
W ← B · T/E
t←W

Train an iForest F sampling from DW = {d0, . . . , dW−1}
Compute the anomaly scores for Dt+B = {dt, . . . , dt+B−1} using the iForest F .
while t < N do:

t← t+B

Delete the oldest E trees from F based on the timestamp t.
Train E new trees sampling from the receptive window {dt, . . . , dmin (t+B−1,N)}.
Add the E new trees to the ensemble F with timestamp t.
Compute the anomaly scores for Dt+B = {dt, . . . , dmin (t+B−1,N)} with the iForest F .

end while

Figure 2.4: Update mechanism for the BWOAIF algorithm with T = 7 trees and E = 2

new trees per batch.
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is computed over every one of this batches. This results in K anomaly scores sk(x(t)) where

x(t) is the sample t of the dataset. Then these are aggregated using bilateral weighting:

S(x(t)) =
1

S

K∑
k=1

sk(x
(t)) · e−

(sk(x(t))−s1(x
(t)))2

2σ2
v e

− (k−1)2

2σ2
a , (2.3)

with a normalization constant:

S =
K∑
k=1

e
− (sk(x(t))−s1(x

(t)))2

2σ2
v e

− (k−1)2

2σ2
a . (2.4)

In Equation (2.3), the first exponential term is responsible for reducing the influence of

sets of trees which have been built from a very different batch than the most recent ones.

Note that this is done by comparing the anomaly scores of the most recent batch (s1(x(t)))

and those of the other batches (sk(x(t))). When the difference is very large, the exponential

term becomes smaller and hence the influence of batch k in the overall anomaly score is

reduced. The parameter σv controls the effect of this term. On the other hand, the second

term is concerned with giving a greater weight to the more recent trees, k = 1 being the

most recent batch. Similarly, the parameter σa controls the effect of this term.

2.4.3 Hyperparameter guidelines for BWOAIF

In [19], a set of guidelines is listed to adequately tune the algorithm. These are summarized

below:

• B - Number of samples in each batch The size of each batch should be such that

the data is approximately stationary. If this information is unavailable, set similar

to ψ.

• E - Number of trees The authors recommend setting it between 100 and 200, but

keeping it close to ψ.

• ψ - Sub-sampling size The authors recommend using similar values as in the iForest

algorithm (values around 256) while also keeping the value of the parameter similar

to the parameter E.

• T - Number of iTrees Should be based on the receptive window W = B · T/E.

A sufficiently high number of T is advised to provide smooth anomaly scores. With

periodic concept drifts, W should cover at least two periods.
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• σa - Parameter controlling suppression of old trees Normally, it is safe to set

this number high 1.

• σv - Parameter punishing dissimilar trees This parameter should be set accord-

ing to the dataset, but low values should be avoided because it will give small weights

to most of the ensemble, resulting in mostly the E updated trees contributing to the

overall score. However, very high values disable the capacity of the model to adapt

to sudden changes as newer trees are weighted the same as older ones. It is recom-

mended to choose a value in the range of [0.05, 0.1] so that new trees have enough

influence without discarding older trees.

2.4.4 Advantages of BWOAIF

The algorithm maintains some of the advantages of the iForest algorithm, but its modifi-

cations give it three additional advantages: Ability to handle streaming data, capacity

to account for concept drift and an efficient use of the resources.

2.4.4.1 Ability to handle streaming data

To deal with streaming data, the algorithm must combine the efficient use of the resources

with the ability to address concept drift. To do so, it uses diverse mechanisms, starting

with the use of a sliding window, then a replacement of the elements of the ensemble and

finally a new weighting scheme. Each of these mechanisms contribute to the capacity of

the model to exploit streaming data and will be explained below.

First of all, the algorithm uses a sliding window which limits the amount of data that has

to be processed. This has the advantage of a lower memory use, compared to algorithms

that keep all the data in memory. Additionally, it allows the model to focus only on the

most up-to-date data.

Secondly, the replacement of iTrees for newly trained ones ensures that at least a portion

of them are trained on the most recent data, providing the capacity to account for concept

drift while using less memory than if all iTrees were kept.

Finally, the weighting of the anomaly scores allows the user to determine the speed at

which the algorithm adapts to concept drift. This is done by giving more weight to more
1The original paper [19] is unclear about the optimal value for this parameter
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recent trees when needed, or by giving more weight to trees of the ensemble which make

similar predictions to those in the most recent batch. This mechanism allows the model to

adjust to different types of concept drifts.

2.4.4.2 Efficient use of the resources

The sliding window and replacement of old trees reduce the memory requirement of the al-

gorithm. However, to account for concept drift the algorithm is constantly being updated,

which results in additional CPU requirement. Nevertheless, in [19], it was shown that this

constant retraining of the algorithm resulted in higher accuracy and use of fewer trees than

other methods such as the iForestASD, which incurs in a full retrain when concept drift

is detected [14]. This makes BWOAIF an algorithm that has a more efficient use of

resources than other methods, as fewer trees are required for training and only the data

in the current window is maintained while the size of the ensemble remains constant.

Summarizing, out of the 6 characteristics listed in 1, BWOAIF addresses five, the only

missing characteristic being the proportional update. It inherits the scalability and unsu-

pervised characteristics from the iForest and introduces the capacity to deal with streaming

data and concept drift by using a sliding window, updating the ensemble and using a spe-

cial weighting scheme when computing anomaly scores. Finally, the sliding window and

partial update of the algorithm result in a more efficient use of the resources.

2.4.5 Limitations

One of the limitations of this algorithm is that the parameters that determine the speed

of the update are set at the beginning of the the execution. While the weighting scheme

and replacement of trees help it address different types of concept drift, with sudden drift

only a portion of the trees will be trained on the new data. This can be an issue because,

even if the obsolete trees are ignored, updated trees might be too few to converge to an

adequate score and therefore not enough to leverage the benefits of ensemble models. On

the other hand, with small or no concept drift, the algorithm will still perform the same

update size, resulting in unnecessary computations. An update scheme that is dependent

on the characteristics of the concept drift might be able to improve the performance of the

algorithm.
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2.5 Nearest neighbor-based density variation identification

2.5 Nearest neighbor-based density variation identification

The Nearest neighbor-based density variation identification (NNDVI ) algorithm [24] is

an unsupervised concept drift detection algorithm. It relies on comparing dissimilarities

between partitions taken from different batches of the data and has several advantages:

it is robust to high dimensional data, it is sensitive to regional drift, and it can give a

measure of how large the concept drift is. The algorithm has two main components: first,

the data modeling component builds a representation of the data instances which compares

their critical information. Then, a distance function is used to quantify the dissimilarity

between two datasets. In the following subsections we will explain both components and

then state how the algorithm can be incorporated into the iForest algorithm.

2.5.1 Data modeling with NNDVI

The first step of this model is creating a representation of the data which can be later

compared with other datasets. A commonly used method to represent data instances is to

group similar data instances into partitions and then use that partitioning scheme to group

the other dataset. By comparing the differences between the partitions we can have a dis-

similarity measure for the datasets. An example of this approach is comparing histograms,

where data instances are grouped in bins and then we can compare the empirical density

of two datasets by calculating a dissimilarity measure between the resulting histograms.

However, this method has the problem that if the partitions are not chosen correctly, then

similar items will be assigned to different partitions and the comparison will not be reliable.

To prevent this from occurring, the Nearest Neighbor-based partitioning schema (NNPS )

is proposed in [24].

The NNPS assumes that closely located data instances are related to each other. A way

of measuring such a relationship is by expanding each data instance into a hypersphere

which preserves more information than grouping data instances into partitions. Then the

similarity between two instances will be the intersection between their hypershperes. This

can be seen in Figure 2.5. In the figure, each point di was expanded to a hypershpere

and this resulted in three partitions, one corresponding to the intersection (p3), and the

other two to the non overlapping sections of the hyperspheres (p1 and p2). The similarity

between both points is calculated as |q3|
|q1|+|q2|+|q3| which corresponds to the area of the

intersection divided by the sum of the area of all three partitions.
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2.5 Nearest neighbor-based density variation identification

Figure 2.5: Example of hyperspheres and their intersection.

This approach is quite straight forward when dealing with two dimensions, but as the

number of dimensions increases, so does the difficulty of calculating the intersections be-

tween hyperspheres. For this reason the NNPS uses the k-nearest neighbors of a point to

generate its hypershpere and make the algorithm robust for high dimensional data. To

generate the hyperspheres, the algorithm generates a multiset of particles which can later

be used to estimate the difference between two datasets. However, to understand how

these multisets are formed, we first need to explain the notion of instance particle and

instance particle group which are the elements that form a multiset. For this, we will take

the dataset shown in Figure 2.6 (a).

Instance particle. An instance particle is the expansion of a given point di ∈ D, where

D is the dataset. This expansion Pdi is the pair (di,Kdi) where Kdi is the set of neighbors

of di. To help visualize this, Figure 2.6 (b) shows each point of the dataset connected to

its 4-nearest neighbors (a point di is not considered a neighbor of itself) by a line match-

ing the color of the node. Once the neighbors of each point are established, the instance

particle of point 1, for example, can be obtained, which is Pd1 = (d1, {d2, d3, d5}) as shown

in Figure 2.6 (c). This can be obtained in a similar fashion for all points of the dataset D.

Instance particle group. Once the instance particles are defined, we can obtain the

instance particle group of point di, P (di), which consists of the instance particles dj which
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Figure 2.6: Example of how a multiset is built to model the data in the NNDVI algorithm.

contain di in their neighbor set Kdj . This is defined as:

P (di) = {Pdj | di ∈ Kj , j = 1, . . . , |D|, i = 1, . . . , |D|}. (2.5)

Figure 2.6 (d) illustrates an instance particle group where P (d1) = Pd2 , Pd3 as di is one of

the nearest neighbors for both d2 and d3.

Now that we have the previous definitions, we can define a multiset Mdi of particle di.

This multiset will consist of pairs formed by an instance particle and a weight. It is defined

as:

Mdi = {(Pdj ,m(Pdj )) | Pdj ∈ P (di),m(Pdj ) =
Q

|P (dj)|
}, (2.6)

where Q is the lowest common multiple of {|P (dj)| ∀ dj ∈D}, which is the set of sizes of

the instance particle groups. Figure 2.6 (d) displays an example of the sizes of instance

particle groups. Note that with this weighting scheme, we obtain a lower weight when the

instance particle group is greater.

Now that we have defined a multiset, we have the main element used to measure the

dissimilarity between two datasets using the distance function which we will define and

explain in Section 2.5.2.
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2.5.2 Distance function

After defining the multiset, we have a basic element we can use to compare two datasets.

The idea is to use the intersection between two multisets to measure their similarity. The

distance δnnps between two multisets MA and MB is defined as:

δnnps(MA,MB) =
1

|P (MA) ∪ P (MB)|
×

∑
pdi∈P (A)∪P (B)

|IMA
(Pdi)− IMB

(Pdi)|
IMA

(Pdi) + IMB
(Pdi)

. (2.7)

Where IS is an indicator function which returns the weight of an element if it belongs

to a multiset or zero otherwise. Mathematically it is defined as:

IS(x) =

{
mS(x), if x ∈ S
0 otherwise

(2.8)

This distance is a weighted sum of the intersection of the elements within the multisets

and will allow us to see how similar two multisets are. A major advantage of this distance

is that it follows a normal distribution. This will allow the algorithm to perform a tailored

statistical significance test for the distance and with enough evidence, assess the existence

of drift. Since the distance is normally distributed, then we can perform a z-test with

the null hypothesis being that drift is not present. Now that we have explained the data

modeling procedure and the distance function we can proceed to explain the algorithm.

2.5.3 Using NNDVI

The goal of the algorithm is to compare two data sets D1 and D2. However, since the

algorithm relies on the calculation of distances, to prevent heavy computations, samples

S1 and S2 are taken from the data sets respectively. Then, the particle groups are obtained

and we proceed to estimate the distance δ between the data sets using Equation (2.7). This

process is repeated s times with different multisets and an estimation of the distribution

of the distance is obtained. With this distribution, we perform a statistical test on δ using

a Z-test. If the null hypothesis is rejected, we assume the existence of drift. Algorithm 3

illustrates the steps to complete this process.

2.5.4 Advantages of the NNDVI

Apart from being an unsupervised algorithm, NNDVI has the following three qualities

that make it compatible with the iForest algorithm: First, it is robust to high dimensional

data, second, is sensitive to regional drift, and finally it can give a measure of how large

the concept drift is. Below we explain these advantages and mention why they are relevant

to combine it with a iForest based algorithm.
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2.5 Nearest neighbor-based density variation identification

Algorithm 3 NNDVI algorithm
Require: S1 and S2 - Samples of the datasets, s - Number of shuffles of the samples, α

significance level, k number of neighbors.
D = S1 ∪ S2, joining the samples.
Obtain the k-nearest neighbors for each data instance.
Build the particles for each data instance.
Compute the distance δnnps(S1, S2)
for i . . . s do:

S′
1, S

′
2 = shuffle(S1), shuffle(S2)

Compute the distance δnnps(S′
1, S

′
2)

Store the distance δnnps in a list ∆nnps

end for
Estimate the distribution of ∆nnps ∼ N(µ, σ2)

Perform the z-test
if drift is detected then

return True
else

return False
end if

2.5.4.1 High dimensionality

The data representation model of NNDVI allows it to extract important information about

the data without the need of complex calculations which the hypersphere approach would

require. Also, this abstraction transforms high dimensional data into more basic struc-

tures (the multisets) which can be compared to one another with relative ease thanks to

the distance function.

This makes the algorithm robust to high dimensional data, which is an important char-

acteristic as this allows it to exploit large datasets and potentially deal with non-relevant

features in the data. Additionaly, this makes it compatible with algorithms which already

achieve good performance with high dimensional data, for example, the iForest algorithm.

2.5.4.2 Sensitive to regional drift

Another important characteristic of the algorithm is its capacity to detect small changes in

the characteristics of the data. This is achieved, because the expansion of data instances

in the data modeling stage allows NNDVI to have increased sensitivity to changes in the
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distribution [24]. Also, the statistical test allows to not only detect drift, but also to mea-

sure to what extent this change is significant.

This was tested empirically in [24], where regional drifts were introduced in a synthetic

dataset to test the capacity of the algorithm to detect them. In these experiments, NNDVI

outperformed the commonly used method, Kullback-Leibler distance, in measuring regional

drift. The sensitivity to regional changes allow the algorithm to detect a wider range of

drifts faster than other methods, which is a desirable characteristic.

2.5.4.3 Drift measure

Finally, another interesting characteristic is that the NNDVI algorithm not only detects

drift but is able to produce a measure of how large it is. This is done through the δnnps
distance which returns a number between 0 and 1.

In conclusion, the NNDVI algorithm has characteristics which make it a reliable method

to detect different kinds of drift. Additionally, it also has properties that make it compatible

with algorithms such as the iForest. In Chapter 3 we explain how both algorithms can be

used in conjunction to create an algorithm able to address concept drift.
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3

Telosian

3.1 Telosian

The Telosian algorithm we propose in this work, aims to extend the capabilities of the

BWOAIF algorithm while maintaining its advantages over previous methods. Telosian

also uses the iForest algorithm as core element, thus maintaining the scalability and unsu-

pervised properties. It also uses the update mechanism proposed in [19] for the BWOAIF,

replacing a fraction of the total trees. This allows it to handle concept drift and use the

resources in a more efficient manner as it avoids a full retrain. However, the BWOAIF

algorithm uses an incremental and progressive update, which is not optimized for regional

concept drift [24]. To solve this, the Telosian algorithm incorporates the NNDVI algo-

rithm to measure concept drift in every new batch and perform an update to the algorithm

proportional to the amount of drift. This has two main advantages: first, it optimizes the

algorithm for regional drifts and second, it only trains the necessary trees for every batch.

Below we will explain the algorithm an delve into the expected advantages.

3.2 Training Telosian

The training of Telosian follows the same logic as the BWOAIF algorithm, replacing a

portion of the ensemble to update the algorithm. However, unlike BWOAIF, the size of the

update performed by Telosian is not constant and depends on the amount concept drift

instead. To perform this update, Telosian considers non overlapping data batches of size

B and replaces the oldest E trees with newly trained trees each batch, keeping the size of

the ensemble T constant. The number of trees to be replaced is determined by the concept

drift score ν ∈ [0, 1] every batch, by using the NNDVI algorithm. The drift score of the
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batch is used as input for a function τ(ν) ∈ [0, T ] that determines the number of trees

to be updated. The receptive window is defined as W = B · T/E analogous to BWOAIF

(Section 2.4). Algorithm 4 describes the process in more detail.

Algorithm 4 Telosian algorithm

Require: D = {d0, d1, . . . , dN−1, dN} - Data, B - Batch size, T - Total number of trees,
E0 - Trees to be updated in the first batch.
W ← B · T/E
t←W

Train an iForest F sampling from DW = {d0, . . . , dW−1}
Train the NNDVI algorithm sampling from {dt, . . . , dmin (t+B−1,N)}.
Compute the anomaly scores for Dt+B = {dt, . . . , dt+B−1} using the iForest F .
while t < N do:

if t ̸=W then
Estimate the concept drift ν using the NNDVI algorithm on the window

{dt, . . . , dmin (t+B−1,N)}.
Update E = τ(ν) according to the drift score.

else
E ← E0

end if
t← t+B

Delete the oldest E trees from F based on the timestamp t.
Train E new trees sampling from the receptive window {dt, . . . , dmin (t+B−1,N)}.
Add the E new trees to the ensemble F with timestamp t.
Compute the anomaly scores for Dt+B = {dt, . . . , dmin (t+B−1,N)} with the iForest F .

end while

3.2.1 Tree update function for Telosian

To obtain the number of trees to be updated, we defined a special function. The goal of

the function is to perform small changes when the concept drift is small, while making

very large changes when it is high. The function takes the drift score ν as argument. The

total number of trees T is also used but is considered a constant as it remains unchanged

throughout the execution of the algorithm. An initial approach was to simply multiply

the total number of trees by ν to get E. However, this approach resulted in a really noisy

E and a great number of trained trees. A step function was chosen instead, as similar

concept drifts resulted in the same number of trees. This also prioritized small changes as
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Figure 3.1: Function to determine the number of trees to be replaced according to the level
of concept drift.

a full retrain is not only expensive but also means that the algorithm will discard many of

the already trained regressors. This resulted in a function that will change at most half of

the trees, but that requires only small concept drift values to change a portion of the trees

so the algorithm constantly updates itself. The resulting function is the following:

τ(ν) = 2⌊log2 (νT )⌋ (3.1)

3.2.2 Hyperparameters for Telosian

This algorithm uses similar parameters as the BWOAIF algorithm. Nevertheless, some of

them are used in a slightly different manner which is specified below.

• B - Number of samples in each batch This parameter also determines the size

of the reference window to estimate concept drift using NNDVI.

• ψ - Sub-sampling size This parameter determines the number of observations used

to train each tree but also the samples taken from the reference window to determine
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concept drift in each batch.

• T - Number of iTrees

• E0 - Initial number of new trees This parameter replaced the parameter E from

BWOAIF and is only used on the first batch as E is determined according to the

concept drift score after the first batch.

• σa - Parameter controlling suppression of old trees. This parameter should

be set as described in Section 2.4.

• σv - Parameter punishing dissimilar trees. This parameter should be set as

described in Section 2.4.

3.2.3 Advantages of Telosian

The algorithm keeps the advantages explained earlier for the iForest and BWOAIF algo-

rithms, but is more robust in its response to concept drift thanks to the addition of the

NNDVI algorithm. From this we expect two main advantages: First, the performance of

the algorithm should improve in comparison to BWOAIF and iForest as it should respond

to concept drift in a more effective manner. Second, in most cases we expect the number

of trained trees to be lower than that of BWOAIF as it only uses the necessary amount

of trees instead of a fixed quantity. In Chapter 4 we will test the algorithm to see if this

expectations are met and to have a better understanding of the algorithm.
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Experimentation

In this section, the Telosian algorithm for anomaly detection in streaming data with con-

cept drift was tested. For comparison purposes, our own implementation of the BWOAIF

and iForest algorithms were also tested. For the experimentation, several data sets were

selected. These vary in the sector, size, number of attributes and amount of concept drift.

This allowed us to test the model under various circumstances. We start by describing the

data that was used for the experiment, followed by a description of how the experimenta-

tion was performed, a short description of the implementation of the algorithms and finally

the main metrics that were recorded during the execution process. This information will

allow us to obtain the results that will be analyzed in Chapter 5

4.1 Data

The data on which the algorithms is tested is of great relevance. Selecting non-relevant data

sets would result in misleading results of the algorithm. For example, in [14], the proposed

algorithm was designed for concept drift but was only tested on static data sets, which

did not allow to test the true capacities of the algorithm. Additionally, it is important

to allow other researchers to compare the existing results. For that reason the algorithms

were also tested on commonly used anomaly detection data sets for comparison purposes.

Furthermore, the algorithm has some limitations that prevent it from being used in some

kinds of data sets, for instance, those with predominantly categorical variables. In this

section we will list and describe some of the most important characteristics of the chosen

data sets and mention other datasets that were considered but ultimately discarded for

their incompatibility with the current research.
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Dataset N Features Anomalies Drift score Source
SMD 1,416,825 38 2.08% 0.73 [20]
Thyroid disease 72,000 21 7.42% 0.18 [34]
Bank marketing 41,188 62 11.27% 0.13 [29]
KDDCUP Http 567,498 3 0.39% 0.28 [1]
KDDCUP Smtp 95,156 3 0.03% 0.17 [1]
Shuttle 49,097 8 7.15% 0.13 [4]

Table 4.1: Summary of datasets used for the experimentation.

A total of 6 data sets were used. They all share some characteristics such as class im-

balance and having only numeric attributes. Nevertheless, the sector which they belong

to, size, number of attributes and their concept drift varies. This is desirable as it allows

to test the algorithms under different circumstances. Table 4.1 lists the chosen data sets

along with some of their main characteristics. Below, we will further describe each data

set and state the motivation to include it in the experiment.

Server Machines Data. (SMD) The dataset corresponds to the cyber security sector

and is comprised of 5 weeks of data collected from servers from an undisclosed large internet

company. This dataset is comprised of 28 subsets which were obtained from 28 different

machines. These subsets are to be trained and tested separately as described in [20]. This

is the main dataset used for this research as it contains time dependent real world cyber

security data with various types of concept drift, making it a suitable dataset to test the

algorithms. This dataset can be found in [36] and it contains 38 features, a total size of

1,416,825 observations (about 47,000 for every subset) and an anomaly ratio of 2.08%. No

preprocessing steps were required for this dataset.

Thyroid Disease. (annthyroid) This dataset corresponds to the medical sector and

describes patients where some have hypothyroid and the rest (majority class) do not. The

dataset can be downloaded from [34]. It was included to allow future research to compare

the performance of the algorithm with models proposed in the future. It is comprised of

21 attributes, 7,200 patients (data instances), anomaly ratio of 7.42% and no significant

concept drift. No preprocessing steps were used for this dataset.

Bank Marketing. (bank-additional) This dataset describes clients of a Portuguese

bank who were contacted by phone to subscribe to a term deposit. The clients who sub-
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scribed to the product conform the minority class and the rest did not subscribe to the

product. It was included to test the algorithms in a frequently cited dataset that can be

used as benchmark. The dataset is available in [29] and consists of 62 features, 41,188 data

instances and 11.27% anomaly ratio. This dataset does not have a significant data drift.

No preprocessing tasks were needed for this dataset.

KDDCUP’99. This dataset consists of connections being made in a simulated mil-

itary network. The anomalies are attacks or intrusions to the network. This data set

was included because it is a common benchmark for anomaly detection related to cyber

security, which makes it highly relevant for this research. The data can be downloaded

from [1]. Only a subset was taken and then further divided as described in [41]. This

dataset was also used to reproduce the results presented in [25] and [19] and hence given

the same preprocessing steps. For preprocessing, the main steps were: First, select only

those records with a value of 1 for the logged_in attribute. After that, all records flagged

as normal. were labeled as normal points and all those with a different label were labeled

as anomalies. Then, two subsets of the dataset were taken: The first being what we will

call the Http dataset (kddcup_http) which had the http value for the service attribute

and, secondly, the Smtp dataset (kddcup_smtp) which had the smpt value for the same at-

tribute. Finally, for both data sets, only the following four attributes were kept (duration,

src_bytes, dst_bytes, flag). This resulted in the Http dataset having 567,498 records of

which 0.39% represented anomalies, and the Smtp dataset having 95,156 records of which

0.03% represent anomalies. Both data sets are also static and therefore have no concept

drift.

Shuttle. (shuttle_formatted) This dataset belongs to the physical science sector and

describes the radiator positions of a NASA space shuttle. The main reason of including

this dataset was reproducing the results shown in [25] and hence we performed the same

preprocessing steps: First, class 1 was transformed into class 0 indicating normal points.

After that, the classes 2,3,5,6 and 7 were joined into a single class with the 1 flag indicating

that those records are anomalies. This resulted in a dataset consisting of eight features,

49,097 records and an anomaly ratio 7.15%. This is a static dataset and therefore there is

no concept drift.
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4.1.1 Other data sets

In this subsection we quickly mention other data sets that were considered but ultimately

not used for this research. The main goal of this subsection is to mention some of the

expected difficulties when working with these data sets, but also to encourage other re-

searchers to address some of the limitations of the algorithm.

UGR’16. This data set was designed to allow algorithms to train on a data set that

considers the cyclostationary nature of traffic data and also has the advantage that it cap-

tures many different profiles of clients rather than focusing on, for example, a university

network [28]. It is a collection of network traces for a time frame of 4 months. Although it

has characteristics like its extended duration and variety of profiles and attacks included

that make it attractive to the cyber security sector, this data set was discarded for this

research. The reason for this was that its features are predominantly categorical which

cannot be leveraged by the iForest algorithm to accurately detect anomalies.

LITNET-2020. The data set consists of real-world data taken from an academic net-

work with 12 types of attacks over a period of 10 months [13]. The extension of the period

and range of attacks makes it a suitable to train anomaly detection models. However, only

a small portion of the features are continuous (such as received and sent packages and

bytes, or time duration of the transmission). Unfortunately, these features did not provide

enough information for the iForest algorithm to correctly detect anomalies. Hence, it was

not used in this work.

UWF-ZeekData22. This dataset is one of the most recent cyber security data sets

at the moment of writing of this work. It is based in the MITRE ATT&CK framework,

was generated using real-world adversarial techniques and can be used to detect the ad-

versary behaviour that leads to an attack [9]. Although this data set has characteristics

that make it a good fit for this work (such as the large amount of records, its real-world

data and updated examples of attacks) it was still being developed during our research

process. Nevertheless, we thank the authors who were in contact with us and helped us in

further understanding the data set. When the data set becomes available, it could be of

great value to test the algorithm proposed in this research.
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The aforementioned data sets have desireable characteristics that are beneficial to study-

ing anomaly detection in the cyber security context. Nevertheless, some of their character-

istics prevent them from being used with the algorithm proposed in this work. The ideal

data set to test our algorithm would be one that has the following characteristics:

• Have predominantly continuous features.

• Contain data taken over an extended period of time (so that concept drift is present).

• Include real-world data traffic.

• Have a wide range of up to date attacks.

• Be labeled so that the accuracy of the algorithm can be assessed.

• Contain data instances taken in chronological order and with low latency (to simulate

real-time).

• Include a large number of data instances (so we can test the scalability of the algo-

rithm).

A data set with these characteristics would be ideal to test the real capabilities of the

algorithm proposed in this research. However, to the best of our knowledge, there is not a

public data set fitting this description, available at the moment.

4.2 Implementation

In this section, we will discuss the implementation of the three algorithms used for the

experiments. First, we will describe the main components of the implementation, then we

will proceed to explain how it was ensured that the implementation was correct and finally

summarize the hardware specifications.

4.2.1 Main components of the implementation

The three algorithms have a few components in common. For this reason, it was decided to

develop our own implementation of each of the algorithms so that the common components

could be shared between all three algorithms. Figure 4.1 shows the relationship between

the main components of the algorithm. Note that the arrows do not represent a sequence

but dependence on the components used for each stage.

39



4.2 Implementation

Figure 4.1: Graph showing the main components of the implementation and their relation-
ship.

We will explain briefly each of these components and how they were implemented in Python.

The code base is available in the repository [3].

iTree This first component was defined as a class and its goal is to generate the iTree

from a subset of the data. Additionally, once the tree is generated (trained) it can be used

to obtain an anomaly score for each data instance.

iForest This component is also a class whose instances consist of a list of iTrees and

implements the iForest algorithm. The iForest class generates multiple iTrees and aggre-

gates their anomaly scores to compute a global anomaly score, which is the final output of

the iForest algorithm. It is important to mention that the tree generation and computing

on the scores were implemented to be run in parallel and leverage the multiple cores of the

hardware. Since this component is used by all three algorithms, they inherit the parallelism.

Bilateral weighting The bilateral weighting is a function which takes as input the

anomaly scores generated by the iForest algorithm as well as the parameters mentioned in

Algorithm 2. This function is used for both, the Telosian and BWAOIF algorithms.

Measuring concept drift with NNDVI The component that measures drift is only
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used by Telosian and it is what differentiates it from the other two algorithms. This com-

ponent is a function which takes as input the training data and returns a score which will

be later used to determine the size of the update for the Telosian algorithm. The amount

of concept drift is computed by the NNDVI algorithm. In this case, since the algorithm

was already implemented and the code base available publicly in [2], there was no need for

a full implementation.

Telosian This component is in charge of performing the update scheme necessary for

the Telosian algorithm. It uses the iForest instance and updates it according to the output

obtained from the measuring of the concept drift. It uses the bilateral weighting function

to generate the final anomaly score of the algorithm.

BWOAIF This component updates the iForest instance according to the update scheme

of the BWOAIF algorithm. It also uses the bilateral weighting function to generate the

final anomaly score.

4.2.2 Quality control of the implementation

To ensure that the algorithm were correctly implemented, they were ran on benchmark data

sets to replicate published results. Note that this was only done for the iForest algorithm

since the other two algorithms do not have comparable published results as they are our

own implementation. Nevertheless, in the case of the BWOAIF algorithm, we were able to

compare our own Python implementation with the original Cython implementation used

in [19]. This was thanks to the authors who proposed BWOAIF, whom provided us with

their code. It must be noted that their code base was not used for our implementation

(we developed our own code base for the BWOAIF algorithm). However, we used their

implementation to make sure that the results obtained by both, the original Cython and

our own Python implementation, obtained the same results. Furthermore, as additional

quality checks, it was tested if the algorithms followed the expected theoretical behaviour

which consisted mainly in the following points:

• Have anomaly scores around 0.5. The algorithms were expected to have an average

anomaly score close to 0.5 as described in Section 2.2. This condition was met by all

three algorithms.
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• The anomaly score stayed within the defined limits. The anomaly scores are a value

between 0 and 1 where 0 is the least anomalous point and 1 the most anomalous

point. All algorithms produced values in this range.

• The path lengths of the trees stayed within the theoretical limits. The theoretical

limit of the path length of a tree is known and all three algorithms were tested to

ensure that the produced values stayed within this limits.

Both the Telosian and BWOAIF algorithms use the iForest implementation internally and

share the same weighting scheme, which makes them comparable as they are built from

the same components.

4.2.3 Hardware specifications

All the experiments were ran in the same server. The hardware specification of the server

are summarized in Table 4.2.

Memory 256GB
Processor Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz
Cores 32

Table 4.2: Hardware used for the experiments.

4.3 Algorithm comparison design

To compare the performance of all the different algorithms in equivalent conditions, the

following experiment was performed. First, the user determines the following parameters

as a json file located in the repository [3] on the route conf/experiment_config.json:

• data sets (list): The data sets on which the algorithms will be tested.

• psi (list): The different values of subsampling which will be used. The chosen

values were {128, 256, 512, 1024}.

• ntrees (list): The different values for the number of trees. The values used for the

experiment are: {128, 256, 512, 1024, 2048}.

• n_new_trees (list): The different values for the number of new trees. The values

used for the experiment are: {128, 256, 512, 1024}.
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4.3 Algorithm comparison design

• batch_size (list): The batch size to be used for the streaming process. The batch

sizes were selected from the following values: {512, 1024, 2048, 4096}.

For the weighting of the anomaly scores of the BWOAIF and Telosian algorithms, the

values for the weighting parameters are σa = 1000 and σv = 0.05 following the best prac-

tices stated in [19].

This resulted in a total of |data sets| * |psi| * |ntrees| * |algorithms| parameter

combinations. Nevertheless, some of them are not feasible (for instance those where the

number of new trees exceed the the total number of trees) and therefore were discarded,

leaving us with a total of 17,824 combinations. The different configurations were used to

perform a grid search to find the best combination of parameters for every algorithm so

they can be compared later. Each dataset was divided into train (50%) and test (50%)

sets. First, the initial ensemble was trained over the whole train set and then tested on

batches taken from the test set. In the case of the iForest, the ensemble remains the same

during the execution, while for the other algorithms every batch was added to the sliding

window and used for training after the predictions on the test set were computed. This way

the test data remains unseen to the algorithm during the anomaly score computation phase.

The information recorded during each execution was:

1. AUC. The area under the Receiver Operating Characteristics curve (hereafter AUC),

is a metric often used for imbalanced classification problems. The Receiver Operating

Characteristics (ROC) curve is obtained by plotting the False Positive rate against

the True Positive Rate resulting from a classifier. Each of the points of the curve is

associated with a classification threshold [8]. The area under the ROC curve can be

interpreted as the probability that a random chosen positive instance will be ranked

higher than a negative instance [15], so values closer to 1 are preferred while values

closer to 0.5 correspond to a classifier that chooses randomly. This metric has proven

to be more consistent than accuracy and makes it easier to discriminate between

classifiers [8]. Additionally, it has been widely used for iForest-related algorithms

(for example [25], [19], [14]). Hence, it was chosen as the main performance metric

for this research. It was computed over the whole stream and also individually for

every batch.
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4.3 Algorithm comparison design

2. Number of updated trees. For every batch, the number of updated trees is also

computed. For the iForest and BWOAIF algorithms the value remains constant,

but for the Telosian algorithm it will be determined depending on the concept drift.

3. Minimum, maximum and mean anomaly score. For every batch, the total anomaly

scores are aggregated into the minimum, maximum and mean.

4. Execution time. For every execution the computation time was also recorded.

Once all the executions were completed, the results were analyzed. The main takeaways

from this process are presented in Chapter 5.
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5

Results

In this section we will comment on the performance of the algorithms during the exper-

imental phase described in Chapter 4. First, we will present the overall results obtained

by the algorithms iForest, BWOAIF and Telosian. After that, we will analyze the effect

of each parameter and understand the effects it has on each algorithm across the different

datasets. Also, we will compare BWOAIF and Telosian in a more detailed manner. Fi-

nally, we review the execution time per batch to assess if the algorithm can be used in a

real-time context.

5.1 Overall results

Table 5.1 shows the best Area Under the ROC curve obtained after performing grid-search

for hyper-parameter tuning for all algorithms and datasets. The highest score for each

dataset is indicated in bold. In the case of the Telosian and BWOAIF algorithms, the

total number of retrained trees is included (for iForest no trees were retrained). For each

dataset, the average drift score per batch is also shown.

From Table 5.1 we can make three main observations: First, BWOAIF obtained the high-

est AUC score across most of the different datasets. Second, Telosian uses fewer trees in

all but one of the datasets. Finally, the greatest difference between iForest and the other

algorithms is present when the concept drift is the highest. Below we comment on why

this behaviour occurs.

First, BWOAIF has the highest scores but with little difference with respect to Telosian.

This shows that there is not necessarily a great advantage at using either of the concept
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5.1 Overall results

Dataset Drift score AUC Trees
iForest BWOAIF Telosian BWOAIF Telosian

SMD 0.730 0.804 0.865 0.862 169,856 122,288
annthyroid 0.177 0.656 0.653 0.669 1,920 224
bank-additional 0.128 0.714 0.721 0.719 5,376 3,200
kddcup_http 0.284 1.00 0.997 0.997 17,792 13,184
kddcup_smtp 0.173 0.869 0.900 0.904 1,536 1,792
shuttle_formatted 0.127 0.995 0.995 0.995 6,144 2,432

Table 5.1: Summary of the results of the three algorithms on all datasets.

drift adapted algorithms (Telosian and BWOAIF ). Nevertheless, they both seem to out-

perform the iForest algorithm even when the concept drift is small. This gives an important

advantage as it suggests that both algorithms would be effective in static and in changing

streams.

Second, in most cases, the Telosian algorithm has a lower number of trees, with the

difference being greater when the concept drift is small. This shows that Telosian requires

fewer trees than BWOAIF to achieve similar results. However, the iForest algorithm has

similar performance in some of the data sets without the need to retrain any of the trees,

which makes it even more efficient.

Third, the Telosian and BWOAIF algorithms both show significant increase in perfor-

mance on the SMD dataset which has the greatest concept drift. This is an expected

behaviour as they are able to adapt to changes in the data and gives them a significant

advantage over iForest.

Concluding the initial remarks, the concept drift adapted algorithms achieve a similar

or better performance than iForest on static datasets and a significant superiority in the

dataset with greater drift, which makes them better choices if the drift of the dataset is not

known. Furthermore, Telosian has comparable performance to the BWOAIF algorithm

while being more efficient regarding the number of trees updated, which makes it a good

choice as we obtain the same results with fewer resources. Nevertheless these conclusions

are drawn from very general results. In the next section we will do a more detailed anal-

ysis of these results by analyzing specific data sets and parameters to see if these general
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observations hold up in more particular scenarios.

5.2 Effect of the hyperparameters

In this section we will focus on how different parameters influence the performance of the

three algorithms. To compare, for each parameter we found the value that resulted in the

highest AUC and investigated if the behaviour was consistent among the different datasets.

The purpose of this section is to explain the found trends, explain why some cases deviate

from this behaviour and finally give some guidelines to set the parameters based on the

observed trends. In each case, we selected 4 figures that are representative of the different

behaviours that resulted from testing different values for each parameter. Each case will

be discussed within each subsection. Note that guidelines for the iForest algorithm are not

in the scope in this paper as they have already been studied in [25].

5.2.1 Effect of the number of total trees

The parameter T determines the size of the ensemble, but also has an effect on the size

of the sliding window. Additionally, in the case of the Telosian algorithm, the number

of updated trees per batch (E) is determined by the value of this parameter in conjunc-

tion with the measured concept drift. In the experiments, Telosian and BWOAIF show

similar behaviour as the original iForest algorithm, where the AUC starts to converge

after around 500 trees [25]. In most cases, increasing the number of trees resulted in an

increase in performance for the BWOAIF algorithm. For the Telosian algorithm, on the

contrary, keeping a smaller number of trees seemed more convenient, as more trees did

not improve the AUC significantly but increased the use of resources. This can be seen in

Figure 5.1. Nevertheless, Telosian seems to be more robust to changes in this parameter

than BWOAIF as the changes are smaller. This might be due to the fact that increasing

the number of trees does not determine the portion of the ensemble that is replaced for

Telosian, while for BWOAIF algorithm it has an impact on the portion of updated trees.

Additionally, the fact that Telosian converges earlier could explain why the overall number

of trees is generally smaller for this algorithm in comparison to BWOAIF. For this reason,

we advise to use values slightly below 500 for Telosian and use values closer to 2000 for

the BWOAIF algorithm. Nevertheless, further analysis should be done to see the effects

of further increasing the number of trees.
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Figure 5.1: The AUC obtained with different values for T , the total number of trees.
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5.2.2 Effect of the retrained trees per batch

The number of new trees E, determines which portion of the ensemble will be updated each

batch. This parameter is not part of the iForest algorithm and for the Telosian algorithm,

it is only used for the initial batch so it is expected that it will have a smaller influence

on Telosian than on BWOAIF. The plots on the left side of Figure 5.2 illustrate how E

has a greater impact on BWOAIF than Telosian. For BWOAIF, increasing the trees to

be replaced degraded performance, while for Telosian it resulted in either small changes

or an evident decrease like the one showed in the top right corner of fig. 5.2. Finally, on

the right bottom plot, we see a greater decrease in the performance for Telosian when

the dataset has low concept drift. This is most likely influenced because the initial batch

was trained on 50% of the data, and initially replacing a large number of trees results

in discarding trees trained on a bigger portion of the data. Therefore, in the case of the

BWOAIF algorithm, a small number of updated trees is preferred, while for the Telosian

algorithm, the influence of the parameter is less, but values between 200 and 600 result in

better performance.

5.2.3 Effect of the subsampling size

The subsampling size ψ, determines how many observations will be sampled to train each

iTree in all three algorithms. However, in the case of Telosian, it serves a second purpose,

which is the number of points that will be sampled each batch to determine the amount

of concept drift. In most cases, a greater value of ψ resulted in an improvement of the

algorithm. However, the improvement on the AUC score is smaller as ψ is increased.

This is evident in the top plots of Figure 5.3. However, it must be noted that on the

right lower plot, there is a decrease in performance as the value of ψ is greater. This

also occurred in other static datasets with a smaller number of features. In this cases,

a large subsampling size can have a negative impact as it reduces the capacity of the

algorithms to deal with masking and swamping (explained in Section 2.2). On the left

lower plot we see this behaviour but we can appreciate a significantly greater impact on

the iForest algorithm. This suggests that updating the trees might make the concept drift

adapted algorithms more robust to the value of ψ. An explanation for this is that the

weighting scheme incorporated in Telosian and BWOAIF gives more importance to trees

that have similar anomaly scores to trees trained using the latest batch. It is also worth

noticing that the subsampling size is directly related to the height of the trees, so a small
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Figure 5.2: The AUC obtained after testing different values for E, the number of retrained
trees.
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Figure 5.3: The AUC obtained when changing the subsampling size ψ.

sampling size when there are many attributes in the dataset could result in trees that are

too shallow to explore multiple attributes. This could also be the reason we see an increase

in performance when the subsampling size is large with datasets with many attributes (top

row of Figure 5.3) and a decrease in performance when the number of attributes is lower

(bottom row of Figure 5.3). Hence, we recommend using values of ψ similar or greater to

1000 for both Telosian and BWOAIF. However, if the number of attributes is small, values

of ψ of 250 or lower should be used.

5.2.4 Effect of the batch size

The batch size determines the number of observations that must accumulate before the

algorithm is updated. This parameter can be set by the user as we assume that the ob-

servations are continuous and arrive with high frequency. Hence, it is realistic for the user
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Figure 5.4: The AUC obtained with various batch sizes B.

to determine how many observations to include per batch. In the case of the iForest algo-

rithm, this parameter does not have any effect because no trees are updated. For Telosian

and BWOAIF on the other hand, we see that both algorithms have similar behaviour

when changing the batch size. Although there does not seem to be an evident value for

the parameter which maximizes the AUC, values between 600 and 2500 observations per

batch result in higher AUC scores. This can be seen in Figure 5.4, where, although there

is no evident common behaviour, we can see that both algorithms might be sensitive to

large batches. It is important to note that the batch size not only determines the moment

a new update will be triggered, but it also impacts the amount of data that will be kept

in memory. Thus, setting this parameter to a small value will result in lower memory

requirement.
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5.3 BWOAIF vs. Telosian

In this section we will compare both the BWOAIF and Telosian algorithms to understand

why they achieve similar results and also explain the differences. For this purpose we will

focus on the SMD dataset, since the sub-datasets that compose it have the same features

and are generated by similar systems. Nevertheless, they have different types of anomalies

and behaviours which will allow us to test the algorithm under diverse conditions. After

running Telosian and BWOAIF on the 28 sub-datasets, there were two main takeaways:

first, the similarity in the AUCs obtained over the datasets, and second, their different

performance with different degrees and types of concept drift. In the next subsections we

will delve into these two topics.

5.3.1 Similarity in AUC

An evident result from the experiments is the similar performance of Telosian and BWOAIF.

This can be seen in Table 5.1 with the aggregated AUC and in more detail in Figure 5.5

where it is evident that the algorithms have very similar performance for all datasets dispite

the difference in number of trees needed. This is probably caused by the fact that both

algorithms share two main elements: having iForest as core element and sharing the same

weighting scheme.

Firstly, since iForest is the basis of both algorithms, they obtain similar results in the

anomaly score computation stage, with the number of trees being the main difference be-

tween the algorithms. However, as seen in Section 5.2.1, iForest converges very quickly

with a low number of trees so this is a reason we do not see a big difference in the AUCs,

despite the number of trees.

Secondly, the weighting scheme borrowed from BWOAIF is designed to give a greater

weight to trees similar to the most recently added trees. This means that in both algo-

rithms, the most recent batch will heavily influence the weighted anomaly score. Since

the new trees would be trained in similar data for both algorithms, we can expect similar

anomaly scores despite the difference in their update schemes.
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Figure 5.5: Similarity of the AUCs between Telosian and BWOAIF (dashed line corresponds
to the x = y line).

5.3.2 Difference in concept drifts

Despite the similarity in the AUC scores between both algorithms, the cause of the greatest

difference between the algorithms was investigated. These differences, although small, can

be attributed to an extent to the different types of drift present in the datasets.

To test if this was indeed the case the datasets were separated, creating a set where

Telosian obtained higher AUC scores and another where BWOAIF obtained the higher

AUCs. Then, an additional metric was computed to describe the datasets and understand

the differences in performance. This metric called mean difference is the average of the dif-

ferences between the drift of consecutive batches. Thus, the difference at time t is defined

as dt = |νt+1 − νt| which will allow us to see, to an extent, how uniform or noisy the drift

is for each dataset. Additionally, the mean drift was also included which is the average of

the drift scores per dataset.

After computing this metric for all sub-datasets, the mean drift score and mean differ-

ence was taken. First, for the sub-datasets where Telosian obtained higher AUC scores

than BWOAIF, and then, where the latter performed better than the former. The result is

54



5.3 BWOAIF vs. Telosian

Figure 5.6: Drift an differences present in dataset machine-1-7.

shown in Table 5.2, along with the total mean difference and drift from all 28 sub-datasets.

Mean difference Mean drift score
Telosian 0.22 0.75
BWOAIF 0.19 0.71
All 0.20 0.73

Table 5.2: Mean difference and mean drift score when Telosian obtained higher results and
when BWOAIF obtained higher results.

In the table we can see that when Telosian performed better, the mean drift was higher

as well as the difference in drifts. This indicates that it did better when the level of drift

was higher, but also when batches have a less uniform amount of drift between them. This

is more clearly shown in Figure 5.6, where we see that most of the batches have a drift of

over 0.8 and there is a spike of differences greater than 0, which shows that the drift levels

changed throughout the batches.

In the case of BWOAIF we see in Table 5.2 that the mean drift and differences between

sub-datasets are smaller. An example is shown in Figure 5.7, where the drift of each batch

is more evenly distributed around 0.65 and the majority of the differences are closer to 0.

This shows that the drift was not particularly high and that the batches showed similar

amounts of drift.
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Figure 5.7: Drift an differences present in dataset machine-3-2.

In conclusion, we find that Telosian out performed BWOAIF when the drift was more

noisy and higher, but the differences shown were still small, so both algorithms have similar

performances. It would be interesting to investigate if this behaviour is maintained when

testing on different datasets.

5.4 Real-time feasibility

In this section, we will review the execution times of the Telosian algorithm to assess

its viability in a real-time scenario. It must be noted, however, that the implementation

presented for this work is not time-performance oriented. Hence, the times presented here

can be significantly improved. In [19], for example, the implementation of the BWOAIF

algorithm was implemented in Cython and is considerably faster than our own Python

implementation. A Cython implementation of the Telosian algorithm could be developed

to further reduce the times presented here. Nevertheless, we consider that the execution

times were satisfactory and show the viability of the algorithm in a real-time context. In

the next subsections we will focus on the SMD dataset and review: first, the time it takes

the algorithm to process each record, then, we will see the effect of the sub-sampling (ψ)

and number of trees (T ), parameters in the processing time, and finally, comment on the

initial training time.
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Figure 5.8: Time it takes to process 100 records with different executions of the Telosian
algorithm in the SMD data, with different sub-sampling size, batch size and number of trees.

5.4.1 Processing time per second

In this part we will review the results of the time it takes the Telosian algorithm to process

100 records. This processing time includes the training of new trees, measuring of drift

and the computation of the anomaly scores. Figure 5.8 shows the count of executions of

the algorithm where 100 records were processed in the time range specified in the x-axis.

Each of the executions were ran with different combinations of parameters, where the main

variations were on the number of trees T , sub-sampling size ψ and batch size. The figure

shows that for most parameter combinations, the algorithm is able to process 100 records

in less than 1 second. Furthermore, specific combinations of parameters take less than

0.2 seconds, which shows that changing the parameters of the algorithm could further

reduce running times. In the next subsection we will discuss the effect of changing the

sub-sampling size (ψ) and number of trees (T ).

5.4.2 Effect of changing the parameters on the processing time

In this subsection we will review the effect of changing the number of trees (T ) and sub-

sampling size (ψ) which are the two parameters that have an impact on the execution
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time. The other parameters such as window size or weighting parameters have an effect

on the AUC score, but do not change the number of operations performed, thus they are

not included in this section. Although there are multiple possible combinations we chose

some cases that are representative of the general behaviour of the algorithm. The results

are summarized in Figure 5.9. Again, the processing time considers the time it took to

train new trees, estimate the drift of the current batch, and compute the anomaly score

for the data instances of the batch.

An initial observation we can make is that the batch size has a linear relationship with

the processing time. This behaviour is the expected behaviour from the iForest algorithm

and shows the scalability of Telosian. Additionally, the left plot shows that increasing the

sub-sampling size ψ does not have a significant effect of the slope of the duration but rather

changes the intercept of the lines. This is mainly due to the fact that the sub-sampling

size ψ only has an effect on the training stage and not the computation of the anomaly

score, which is more time consuming because it must be performed on all data instances

rather than a subset of them.

On the other hand, the right plot shows that increasing the number of trees has a more

evident effect on the slope of the execution time per batch. In this plot the sub-sampling

size is fixed to ψ = 256. We can see that the greater the number of trees, the greater

the processing time. Nevertheless, even with the largest number of trees (T = 2048), the

number of records processed per second is approximately 300, so the real-time feasibility

is maintained. Increasing the parallelism of the the computation of the anomaly score can

further reduce the effect of increasing the number of trees.

5.4.3 Initial training of the algorithm

It is also important to consider how much data is needed to train the initial ensemble of

the algorithm. This depends on the parameters chosen to run the algorithm, mainly T ,

the number of trees and ψ, the sub-sampling size. Since each tree is trained in a non-

overlapping sample of the data, the total amount of points needed for the first ensemble

must be equal or greater than Tψ. However, the data should be representative of the

real-world application. For example, a very homogeneous data set (no anomalies) would

not be useful to train the initial ensemble. Although Telosian is able to update itself,

starting with a good ensemble will provide better performance in the earlier stages of the
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Figure 5.9: The effect of changing the number of trees (T ) and sub-sampling size (ψ) in the
processing time per batch.

algorithm.

All in all, the time analysis shows that the algorithm scales linearly with the number of

records and also that even with a large amount of trees and sub-sampling size, Telosian is

able to process a considerable amount of records in a short time, which makes it a feasible

option for a real-time use case.
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6

Conclusion and future research

The goal of this research was to answer the research question: How can anomaly detec-

tion algorithms adapt to concept drift in real-time unsupervised detection of unseen attacks

in cyber security? We answered this question by introducing Telosian, an unsupervised

anomaly detection algorithm optimized for concept drift.

The components on which Telosian is built, which are inherited from the iForest, BWOAIF

and NNDVI algorithms, as well as its new features such as the update scheme and the new

tree estimation function, make it an algorithm that is able to scale, handle streaming data

in real-time, leverage unlabeled data, account for concept drift, efficiently use resources

and finally, perform a proportional update which were the main capabilities necessary to

deal with cyber security data.

The algorithm was able to achieve comparable performance to the state of the art

BWOAIF algorithm [19], and while there was no AUC improvement, it achieved similar

results with fewer resources. The experiments showed that adding additional information

about the concept drift within the data, could be leveraged to make custom updates to

the model. The additional information was provided by the NNDVI algorithm [24], which

provided a measure of the concept drift for each batch. Furthermore, the experiments also

showed that the algorithm achieves good performance in various kinds of drifts and even in

static data, having a slight advantage when concept drift was high or noisy. Additionally,

the analysis of execution times confirmed that it is feasible to be used in a real-time context

as it has low latency to process new data and is able to scale linearly with the amount of

data.
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We also identified some aspects of the algorithm which could be further investigated to

improve the performance. For instance, new tree update functions could be tested, per-

haps by using functions more sensitive to the drift or that take into account the drift of

more batches instead of only the most recent one. Another idea would be to experiment

with other algorithms to measure and perhaps try to identify the type of drift in order to

perform a more tailored update. It would also be interesting to run a more extensive grid

search to further understand the impact of the parameters. Additionally, running Telosian

without the weighting scheme borrowed from BWOAIF could be a interesting way of com-

paring which method is more effective to adapt to concept drift. Furthermore, testing the

algorithm on new cyber security data sets could prove of great value. Another interesting

topic would be to find better ways to summarize the different types of drift within a data

set rather than using only average drift. Finally, the trained trees could be leveraged to

try to give explainability to the anomalies by using information gain or a similar metric to

determine which features have a greater impact in a data instance being an anomaly.

To summarize, Telosian is an algorithm capable of achieving good detection performance

on data sets from various sectors and with different types of drift, with a smaller resource

requirement than comparable solutions. This makes it a versatile algorithm which can be

applied to multiple types of applications and with a specific relevance to the cyber security

sector.

61



References

[1] Kdd cup 1999 data data set. https://archive.ics.uci.edu/ml/datasets/kdd+cup+

1999+data. Accessed: 2023-03-10. 36, 37

[2] Menelaus. https://github.com/mitre/menelaus/tree/dev. Accessed: 2023-09-18.

41

[3] Olif - online iforest. https://ci.tno.nl/gitlab/iker.olarramaldonado-tno/olif.

Accessed: 2023-03-10. 40, 42

[4] Statlog (shuttle) data set. https://archive.ics.uci.edu/ml/datasets/Statlog+

(Shuttle). Accessed: 2023-03-10. 36

[5] Agrawal, S. and J. Agrawal (2015). Survey on anomaly detection using data mining

techniques. Procedia Computer Science 60, 708–713. 6, 17

[6] Ahsan, M., K. E. Nygard, R. Gomes, M. M. Chowdhury, N. Rifat, and J. F. Connolly

(2022). Cybersecurity threats and their mitigation approaches using machine learning—a

review. Journal of Cybersecurity and Privacy 2 (3), 527–555. 3, 5, 6, 7, 8, 9

[7] Alghushairy, O., R. Alsini, T. Soule, and X. Ma (2020). A review of local outlier

factor algorithms for outlier detection in big data streams. Big Data and Cognitive

Computing 5 (1), 1. 7

[8] Andretta Jaskowiak, P., I. Gesteira Costa, and R. José Gabrielli Barreto Campello

(2020). The area under the roc curve as a measure of clustering quality. arXiv e-prints,

arXiv–2009. 43

[9] Bagui, S. S., D. Mink, S. C. Bagui, T. Ghosh, R. Plenkers, T. McElroy, S. Dulaney,

and S. Shabanali (2023). Introducing uwf-zeekdata22: A comprehensive network traffic

dataset based on the mitre att&ck framework. Data 8 (1), 18. ii, 2, 38

62

https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
https://github.com/mitre/menelaus/tree/dev
https://ci.tno.nl/gitlab/iker.olarramaldonado-tno/olif
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)


REFERENCES

[10] Benjelloun, F.-Z., A. A. Lahcen, and S. Belfkih (2019). Outlier detection techniques for

big data streams: focus on cyber security. International Journal of Internet Technology

and Secured Transactions 9 (4), 446–474. 2, 3, 6, 7, 8, 9, 17

[11] Breunig, M. M., H.-P. Kriegel, R. T. Ng, and J. Sander (2000). Lof: identifying

density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international

conference on Management of data, pp. 93–104. 6

[12] Chitrakar, R. and H. Chuanhe (2012). Anomaly detection using support vector ma-

chine classification with k-medoids clustering. In 2012 Third Asian himalayas interna-

tional conference on internet, pp. 1–5. IEEE. 7

[13] Damasevicius, R., A. Venckauskas, S. Grigaliunas, J. Toldinas, N. Morkevicius,

T. Aleliunas, and P. Smuikys (2020). Litnet-2020: An annotated real-world network

flow dataset for network intrusion detection. Electronics 9 (5), 800. 38

[14] Ding, Z. and M. Fei (2013). An anomaly detection approach based on isolation forest

algorithm for streaming data using sliding window. IFAC Proceedings Volumes 46 (20),

12–17. 2, 4, 8, 9, 10, 17, 19, 24, 35, 43

[15] Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters 27 (8),

861–874. ROC Analysis in Pattern Recognition. 43

[16] Fernando, T., H. Gammulle, S. Denman, S. Sridharan, and C. Fookes (2021).

Deep learning for medical anomaly detection–a survey. ACM Computing Surveys

(CSUR) 54 (7), 1–37. 6

[17] Gemaque, R. N., A. F. J. Costa, R. Giusti, and E. M. Dos Santos (2020). An overview

of unsupervised drift detection methods. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery 10 (6), e1381. 19

[18] Gomes, C., Z. Jin, and H. Yang (2021). Insurance fraud detection with unsupervised

deep learning. Journal of Risk and Insurance 88 (3), 591–624. 6

[19] Hannák, G., G. Horváth, A. Kádár, and M. D. Szalai. Bilateral-weighted online

adaptive isolation forest for anomaly detection in streaming data. Statistical Analysis

and Data Mining: The ASA Data Science Journal . ii, 2, 3, 4, 9, 10, 19, 20, 22, 23, 24,

31, 37, 41, 43, 56, 60

63



REFERENCES

[20] Huasuya, T. (2019). Omnianomaly. https://github.com/NetManAIOps/

OmniAnomaly/tree/master. 36

[21] Iwashita, A. S. and J. P. Papa (2018). An overview on concept drift learning. IEEE

access 7, 1532–1547. 19

[22] Leenen, L. and T. Meyer (2021). Artificial intelligence and big data analytics in

support of cyber defense. In Research anthology on artificial intelligence applications in

security, pp. 1738–1753. IGI Global. 7

[23] Li, B., Y.-j. Wang, D.-s. Yang, Y.-m. Li, and X.-k. Ma (2019). Faad: an unsupervised

fast and accurate anomaly detection method for a multi-dimensional sequence over data

stream. Frontiers of Information Technology & Electronic Engineering 20 (3), 388–404.

19

[24] Liu, A., J. Lu, F. Liu, and G. Zhang (2018). Accumulating regional density dissimi-

larity for concept drift detection in data streams. Pattern Recognition 76, 256–272. 2,

19, 25, 30, 31, 60

[25] Liu, F. T., K. M. Ting, and Z.-H. Zhou (2008). Isolation forest. In 2008 eighth ieee

international conference on data mining, pp. 413–422. IEEE. vi, 1, 3, 7, 9, 10, 13, 14,

15, 16, 37, 43, 47

[26] Lu, J., A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang (2018). Learning under

concept drift: A review. IEEE transactions on knowledge and data engineering 31 (12),

2346–2363. vi, 18, 19

[27] Lu, Y. and P. Xu (2018). Anomaly detection for skin disease images using variational

autoencoder. arXiv preprint arXiv:1807.01349 . 3, 18

[28] Maciá-Fernández, G., J. Camacho, R. Magán-Carrión, P. García-Teodoro, and

R. Therón (2018). Ugr ‘16: A new dataset for the evaluation of cyclostationarity-based

network idss. Computers & Security 73, 411–424. 38

[29] Moro, S., R. P. and P. Cortez (2012). Bank Marketing. UCI Machine Learning

Repository. DOI: https://doi.org/10.24432/C5K306. 36, 37

[30] Nazi, G. (2022). How the world became data-driven, and what’s next. 1

64

https://github.com/NetManAIOps/OmniAnomaly/tree/master
https://github.com/NetManAIOps/OmniAnomaly/tree/master


REFERENCES

[31] Omar, M. and G. Sukthankar (2023). Text-defend: Detecting adversarial examples

using local outlier factor. In 2023 IEEE 17th International Conference on Semantic

Computing (ICSC), pp. 118–122. 3

[32] Parliment, E. (2022). Cybersecurity: why reducing the cost of cyberattacks matters.

2

[33] Perú, S. (2014). Club premier utiliza la analítica de sas para dar valor a su información

y conocer mejor a sus clientes. 1

[34] Quinlan, R. (1987). Thyroid Disease. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5D010. 36

[35] Siddiqui, M. A., J. W. Stokes, C. Seifert, E. Argyle, R. McCann, J. Neil, and J. Carroll

(2019). Detecting cyber attacks using anomaly detection with explanations and expert

feedback. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 2872–2876. IEEE. 7, 8, 17

[36] Su, Y., Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei (2019). Robust anomaly detection

for multivariate time series through stochastic recurrent neural network. In Proceedings

of the 25th ACM SIGKDD international conference on knowledge discovery & data min-

ing, pp. 2828–2837. 36

[37] Tan, S. C., K. M. Ting, and T. F. Liu (2011). Fast anomaly detection for streaming

data. In Twenty-second international joint conference on artificial intelligence. Citeseer.

2, 19

[38] Togbe, M. U., M. Barry, A. Boly, Y. Chabchoub, R. Chiky, J. Montiel, and V.-

T. Tran (2020). Anomaly detection for data streams based on isolation forest using

scikit-multiflow. In Computational Science and Its Applications–ICCSA 2020: 20th

International Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part IV 20, pp.

15–30. Springer. 6, 7, 8

[39] Tufan, E., C. Tezcan, and C. Acartürk (2021). Anomaly-based intrusion detection by

machine learning: A case study on probing attacks to an institutional network. IEEE

Access 9, 50078–50092. 2, 3, 7

[40] Weisberg, H. I. and R. A. Derrig (1991). Fraud and automobile insurance: A report

on bodily injury liability claims in massachusetts. Journal of Insurance Regulation 9 (4).

8

65



REFERENCES

[41] Yamanishi, K., J.-I. Takeuchi, G. Williams, and P. Milne (2000). On-line unsupervised

outlier detection using finite mixtures with discounting learning algorithms. In Proceed-

ings of the sixth ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 320–324. 37

[42] Zoppi, T., A. Ceccarelli, and A. Bondavalli (2021). Unsupervised algorithms to detect

zero-day attacks: Strategy and application. Ieee Access 9, 90603–90615. 3, 6, 9, 17

66



Appendix

67


	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Anomaly detection
	2.1.1 Anomaly detection methods
	2.1.2 Anomaly detection in cyber security
	2.1.3 Review of anomaly detection methods for streaming

	2.2 iForest
	2.2.1 Training the algorithm
	2.2.2 Anomaly score inference for iForest
	2.2.3 Hyperparameter guidelines for iForest
	2.2.4 Advantages of iForest
	2.2.4.1 Focus on anomalies
	2.2.4.2 Efficient use of resources
	2.2.4.3 Capacity to detect different types of anomalies

	2.2.5 Limitations

	2.3 Concept drift
	2.3.1 Introduction to concept drift
	2.3.2 Concept drift detection

	2.4 Bilateral-Weighted Online Adaptive Isolation Forest
	2.4.1 Training the algorithm
	2.4.2 Anomaly score inference for BWOAIF
	2.4.3 Hyperparameter guidelines for BWOAIF
	2.4.4 Advantages of BWOAIF
	2.4.4.1 Ability to handle streaming data
	2.4.4.2 Efficient use of the resources

	2.4.5 Limitations

	2.5 Nearest neighbor-based density variation identification
	2.5.1 Data modeling with NNDVI
	2.5.2 Distance function
	2.5.3 Using NNDVI
	2.5.4 Advantages of the NNDVI
	2.5.4.1 High dimensionality
	2.5.4.2 Sensitive to regional drift
	2.5.4.3 Drift measure



	3 Telosian
	3.1 Telosian
	3.2 Training Telosian
	3.2.1 Tree update function for Telosian
	3.2.2 Hyperparameters for Telosian
	3.2.3 Advantages of Telosian


	4 Experimentation
	4.1 Data
	4.1.1 Other data sets

	4.2 Implementation
	4.2.1 Main components of the implementation
	4.2.2 Quality control of the implementation
	4.2.3 Hardware specifications

	4.3 Algorithm comparison design

	5 Results
	5.1 Overall results
	5.2 Effect of the hyperparameters
	5.2.1 Effect of the number of total trees
	5.2.2 Effect of the retrained trees per batch
	5.2.3 Effect of the subsampling size
	5.2.4 Effect of the batch size

	5.3 BWOAIF vs. Telosian
	5.3.1 Similarity in AUC
	5.3.2 Difference in concept drifts

	5.4 Real-time feasibility
	5.4.1 Processing time per second
	5.4.2 Effect of changing the parameters on the processing time
	5.4.3 Initial training of the algorithm


	6 Conclusion and future research
	References

