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Abstract

The growing elderly population and modern lifestyle choices leading to an in-

crease in chronic diseases like Type 2 Diabetes, which, in turn, is placing signif-

icant pressure on healthcare systems. In the Netherlands, this trend exposing

notable gaps in accessibility and affordability of diabetes care, that traditional

healthcare systems find difficult to manage. To address these challenges, a

Dutch collaboration named CHIP aims to develop a Hybrid Intelligence sys-

tem that reduces healthcare professional workloads and improves treatment

quality by providing personalized patient care insights. This thesis, part of

the CHIP collaboration, focuses on extracting structured Subject-Predicate-

Object (SPO) triples from conversations between a Type 2 Diabetes patient

and a caretaker agent, enriching a Knowledge Graph for advanced reasoning

and personalized care. Due to confidentiality in healthcare, the thesis explores

the effectiveness of conversational triple extraction (CTE) systems in diabetes

healthcare management when used on synthetic data. The study examines the

necessary properties for constructing realistic conversations, the application of

generative AI to create these conversations and annotations, and identifies the

most effective method for extracting SPO triples from these synthetic dialogues.

The methodology includes the use of prompt-based learning with GPT-4 for

developing diabetic personas and generating realistic dialogues. For annotat-

ing these dialogues with SPO labels, prompt-based learning with GPT-4o was

applied. Both rule-based and transformer-based techniques were employed for

CTE. In particular, a rule-based Syntactic Parsing approach, prompt-based

learning with GPT-4o, and fine-tuning a BERT model were used for classi-

fying in a token-level conversational sentences with SPO labels. The forma-

tion of SPO triples followed the classification of these labels. The rule-based

method, while straightforward, showed limitations in handling the complexity

and variability of conversational data. Conversely, GPT-4o emerged as the

most effective method (F1-score of 0.6801), closely followed by BERT.
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1

Introduction

1.1 Problem Statement

The global demographic landscape is undergoing a significant transformation characterized

by an increasing proportion of elderly individuals. Currently, over 566 million people

worldwide are aged 65 and over, a number expected to nearly triple by 2050 (3). This

shift towards an older population is accompanied by a drastic growth in chronic diseases,

which are rapidly becoming a dominating concern in all healthcare systems worldwide (4).

Studies have indicated that the prevalence of diseases among the elderly population has

generally increased over time (5). For instance, data from various global regions, including

the Netherlands, have shown a significant increase in chronic conditions among the elderly,

demonstrating a broader trend that spans decades.

The problem of aging is further compounded by the universal and dominant effect of

lifestyle, which is, in turn, strongly impacting public health throughout modern societies.

Sedentary behaviors, poor dietary habits, and smoking are among the predominant lifestyle

choices that are leading to an increase in chronic conditions (6). Among these, is Type 2

Diabetes which is commonly observed in the elderly population (7). According to recent

data, Type 2 Diabetes underscores a broader global health concern, as in 2021 approxi-

mately 10.5% of the population globally aged 20 to 79, were diagnosed with this condition,

which is expected that by the year 2045 this prevalence will rise to 12.2% of the world’s

population, impacting 783.2 million individuals (8).

Consequently, the aging population, enhanced by adverse lifestyle choices, not only in-

creases the prevalence of chronic conditions such as Type 2 Diabetes, but also puts a

1



1.2 A Promising Solution

growing tension on both public and private healthcare systems globally, representing one

of the most significant challenges to health and well-being in our times (4). Notably, such

factors are driving up healthcare costs and placing an enormous pressure on healthcare

providers (9). This rising demand for healthcare services not only strains infrastructure

but also decreases the quality of life of the individuals and the economic stability of soci-

eties.

The management of diabetes extends well beyond medication and includes a lot of daily

self-care activities that are both important and challenging to the patient (10). This

involves complex daily meal planning routines, carbohydrate counting, regular exercise,

blood glucose monitoring, and daily adjustments in their management plans. Therefore,

given the considerable burden Type 2 Diabetes places on healthcare (11), a more compre-

hensive approach to improving health, lifestyle, and social factors may help to overcome

the rising costs and improve healthcare accessibility and affordability in various regions of

the Netherlands (9). In this context, traditional healthcare systems, under severe pressure

due to the above-mentioned challenges, are not able to serve the type of personalized care

that should be provided at an individual level (12). As a result, there is a significant gap

in the delivery of healthcare that efficiently addresses the dynamic and personalized needs

of diabetic patients.

1.2 A Promising Solution

In response to these challenges, the field of artificial intelligence (AI) presents a promising

frontier (13). AI’s rapid development within healthcare present revolutionary changes in

the way care is executed. Intelligent algorithms are increasingly applied to perform sophis-

ticated data analysis, giving personalized medical insights and recommendations. However,

despite these advancements, modern AI technology often surpasses human abilities in many

tasks but significantly lags in areas such as general world knowledge, common sense, and

particularly the human capabilities of collaboration, adaptability, and ethical responsi-

bility (14). Furthermore, AI systems are typically designed with a technology-centered

approach, which can overlook the nuanced needs of patients and healthcare providers (15),

(16). These gaps highlight the urgent need for innovative approaches that effectively in-

tegrate the strengths of both human and AI to deliver more effective, empathetic, and

user-centered healthcare solutions.
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1.2 A Promising Solution

Figure 1.1: CHIP System Architecture.

Hybrid Intelligence (HI) could provide such a solution (14). HI leverages the combined

strengths of human and AI, fostering a collaborative environment where both can thrive.

It aims to augment human intellect and capabilities, thereby enhancing the ability to make

meaningful decisions and perform actions that neither humans nor machines could achieve

alone. This approach is particularly vital in healthcare, where the complexity of patient

needs and the subtleties of medical care demand a nuanced understanding that AI alone

cannot provide.

For that reason, a team of experts from several Dutch institutions formed a collaboration

named CHIP with the goal of tackling the urgent problems facing the healthcare system

today, particularly in the management of Type 2 Diabetes (17). Their primary objective is

to develop an HI system that is not only technically competent but also ethically attuned

and socially responsible. By providing more in-depth, personalized insights on patient

care, this system will assist healthcare professionals in their work, reducing workloads and

improving treatment quality.

An interactive prototype of this system as depicted in Figure 1.1, integrates five key com-

ponents designed to adapt to individual user needs. It begins with a Dialogue Component

that employs a rule-based approach to engage users in alignment dialogues, essential for

gathering relevant user information. The Information Extraction component then trans-

forms dialogue text into structured triples. These are organized within the User Knowledge

Graph (User KG), which uses an OWL-based ontology to detail user health data and pref-

erences for personalized recommendations. The Domain Knowledge Graph (Domain KG)

contains vital medical knowledge about diabetes treatments. Finally, the Reasoning Engine

synthesizes data from both KGs to determine and execute the most suitable intervention

based on the user’s specific health data and personal preferences.

3



1.3 Research Goal

1.3 Research Goal

This thesis project is part of the CHIP collaboration, focusing specifically on the Infor-

mation Extraction aspect. A key element of this aspect is the extraction of structured

data in the form of Subject-Predicate-Object (SPO) triples from unstructured text, such

as patient dialogues. These triples are crucial for building and continuously updating

Knowledge Graphs (KGs) (18). By transforming raw conversations into structured triples,

KGs become capable of supporting advanced reasoning about treatment options, potential

health outcomes, and personalized patient recommendations (19). Such functions are crit-

ical for improving the understanding of patient interactions and adapting treatments to

individual needs. Thus, this study will concentrate on the extraction of SPO triples from

conversations between Type 2 Diabetes patients and an agent acting as a caretaker.

1.4 Research Questions

In the field of healthcare, the protection of medical data is extremely important, often pos-

ing a significant barrier to accessing authentic patient conversations for research purposes.

This confidentiality is essential to protecting patient rights and preserving trust, but it also

limits the amount of data available for developing and improving healthcare technologies.

Consequently, our research will focus on evaluating the potential of creating and utilizing

synthetic dialogues for conversational triple extraction, enabling its use in natural ones.

This brings us to the following research question: “What is the effectiveness of conversa-

tional triple extraction systems in diabetes healthcare management when used on synthetic

data?”.

To answer that research question, we need to consider the following subquestions:

• What properties should be included to construct effective conversations?

• How can generative methods be employed to generate realistic conversations and

annotations?

• Which method is most effective in extracting triples from synthetic conversations

related to diabetes healthcare?

4
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1.5 Outline

The structure of the thesis is organized as follows. Chapter 2 presents a review of existing

literature on triple extraction, large language models, and triple extraction for conversa-

tional contexts. Chapter 3 describes the methodology employed for data generation, includ-

ing the development of personas and the creation and annotation of conversations, alongside

exploring triple extraction techniques from these conversations. Chapter 4 demonstrates

the performance results of the systems used, offering both general insights and a detailed

error analysis of the methods applied. Chapter 5 discusses the limitations of the current

study and suggests directions for future research. Finally, Chapter 6 concludes the thesis

study.
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2

Literature Review

This chapter provides a literature review on the topics of triple extraction, the use of

large language models for this purpose, as well as the adaptation of triple extraction for

conversational contexts and its implications for the medical field.

2.1 Triple Extraction

The majority of the data we come across in today’s digital world is unstructured and mostly

text-based (20). When it comes to extracting useful knowledge for gaining deeper insights,

this flood of textual unstructured data poses serious challenges (21). In the field of natural

language processing (NLP), information extraction (IE) refers to the process of extracting

structured information from unstructured or semi-structured text data (22). The primary

goal of this task is to transform free-form text into a format that can be easily understood

and processed by computer systems, such as knowledge graphs (KGs).

IE encompasses a variety of tasks designed to identify specific types of structured informa-

tion from unstructured text, including named entity recognition (NER), relation extraction

(RE) and triple extraction (TE) among others. NER focuses on identifying and categoriz-

ing key entities in the text, like names of individuals, organizations, or locations. RE goes

a step further by determining the relationships between identified entities, often classify-

ing the interactions or connections between pairs of entities without necessarily forming

a structured triple. In contrast, TE specifically focuses on constructing these structured

triples (23). In the context of a KG, a triple is a data structure that represents real-world

entities and the relationships that connect them (24). Each triple typically consists of three

components: a Subject, a Predicate, and an Object. Thus, TE is about identifying and

6



2.1 Triple Extraction

structuring relationships from textual data into a Subject-Predicate-Object (SPO) format,

which is an important step in the creation and enrichment of KGs (25). By structuring

knowledge in graph format, the relationships between entities are clarified, which enhances

reasoning, interoperability, and efficient retrieval (19).

The literature presents distinct approaches for extracting SPO triples from texts based

on NLP techniques, with Rule-based methods constituting one such approach. That

kind of methods operate by applying a set of manually crafted linguistic patterns to iden-

tify and extract triples directly from syntactic structures. In his study, Shaun D’Souza

(26) creates parse trees that illustrate sentence structure, clarifying grammatical relation-

ships. The author uses depth-first search to detect noun phrases (NPs) as subjects and

objects and verb phrases (VPs) as predicates. Subjects are found within NPs, while ob-

jects are located in NPs following VPs or connected by prepositional phrases. Predicates,

consisting of main verbs and auxiliaries, are extracted from VPs. The system then com-

bines these subjects, predicates, and objects into triples during the parse tree traversal.

While rule-based approaches can be very effective in domains with limited and well-defined

vocabularies, they suffer from a lack of scalability and flexibility (27).

Supervised learning techniques, in contrast, leverage labeled datasets to train mod-

els such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),

and Long Short-Term Memory networks (LSTMs) to extract triples by recognizing and

classifying parts of sentences as subjects, predicates, or objects. While these methods can

adapt to more varied vocabularies and structures than rule-based systems, they still require

large amounts of labeled data. However, according to Fei et al. (28), triple labeling can be

time-consuming to produce and hence expensive. Additionally, the same study highlights

that these methods may struggle with generalization to unseen relation types and entities,

often suffering from overfitting when the training data is not representative of the target

application’s diversity.

According to Ding et al. (29), transformer-based methods such as those utilizing

large language models (LLMs), have recently become predominant in the field of TE. These

models benefit from deep contextual embeddings that capture nuanced language variations

and complex dependencies within text. Transformer-based methods excel in generalization,

thanks to pre-training on vast amounts of text, which allows them to perform well even

on relatively smaller labeled datasets, providing an advantage over traditional supervised

learning methods. The same study also highlights that by leveraging open-source LLMs we

can achieve superior results in TE through effective prompting strategies and fine-tuning.

7
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Therefore, despite their higher computational requirements, these models’ ability to learn

from the broader context make them the leading choice for current TE efforts (30).

While Ding et al. underscore the superiority of transformer-based methods in TE, Zhang

et al. (24) take this a step further by testing how fine-tuning language models specifically

for TE can enhance KG construction. They use tailored prompts for different aspects of

TE to optimize the training process of these language models. This facilitates the augmen-

tation of the original data and the creation of enriched training datasets. Subsequently,

the enriched datasets are used to fine-tune several high-performance models, including

Llama-2-7b, Mistral-t5-7b, and Vicuna-7b among the others. The performance is assessed

on various metrics such as type, partial, exact, and strict accuracy, comparing favorably

against benchmarks set by GPT-4 and previous GPT versions. Their results demonstrate

that even smaller, fine-tuned models can surpass the performance of more generalized

models like GPT-4, especially when high-quality training data is involved.

2.2 Large Language Models

Language modeling (LM) is a part of NLP that its objective is to learn a probability

distribution of word sequences for predicting the probabilities of new missing ones (31).

According to Zhao et al. (32), the research of LMs can be divided into four critical

development stages. At first, in 1990, the statistical language models (SLM) was developed

and originated the first development state. These models are about predicting the next

word based on the most recent context. Another stage of development that emerged in

2013 is neural language models (NLM). They introduced the concept of distributed word

representation, exemplified by the development of Word2Vec (33). Five years later (2018),

the pre-trained language models (PLM) were developed. These models have been trained

on a huge amount of not annotated data such as books, articles and websites (34). The

goal was to capture the underlying patterns, structures, and semantic knowledge present

in the text corpus. Zhao et al. (32) state that increasing model or data size in PLMs,

frequently results in an enhanced model’s ability to perform downstream tasks. Therefore,

the term large language models (LLMs) was given by the research community to describe

these large-scale PLMs.

A significant model in the landscape of LLMs is GPT-4 or Generative Pre-trained Trans-

former 4, developed by OpenAI (35). Among the various iterations, GPT-4 and its opti-

mized version GPT-4o stand out as the most capable and advanced models in the GPT

8



2.2 Large Language Models

series. GPT-4 is a pre-trained model which utilizes a transformer architecture, like its

predecessors, but with significantly increased scale and complexity, which allows it to un-

derstand and generate more nuanced text. This architecture employs layers of attention

mechanisms that help the model weigh the importance of different words relative to each

other within a given context.

Another prominent LLM is BERT, which stands for Bidirectional Encoder Representa-

tions from Transformers and was developed by Google researchers (36). BERT is based on

the Transformer architecture, which uses attention mechanisms to interpret the contextual

relationships between words in a text. Unlike other models that processed text in a single

direction (either left-to-right or right-to-left), BERT processes the entire word sequence

simultaneously. This bi-directional processing enables the model to capture a word’s full

context by considering both preceding and succeeding words. BERT is pre-trained with

two tasks: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). In

MLM, BERT learns to predict the identity of masked words based on surrounding context,

while in NSP it learns to predict whether two segments of text naturally follow each other.

This pre-training on a large corpus of text provides LLMs like BERT and GPT-4 with

a robust foundation of language understanding. This foundational knowledge can then be

refined and adapted for specific applications through techniques such as fine-tuning and

prompt-based learning.

2.2.1 Fine-Tuning

Fine-tuning involves adjusting the parameters of a pre-trained LLM to improve its per-

formance for specific tasks or domains (37). While these pre-trained models have broad

language skills, they often lack the deep understanding required for specialized areas. Fine-

tuning addresses this gap by further training the model with domain-specific data, enhanc-

ing its accuracy and effectiveness for particular applications. As a result, this approach

transforms a general-purpose language model into a specialized tool.

2.2.2 Prompt-Based Learning

When it comes to text generation, LLMs excel at producing coherent and contextually

relevant content based on prompts or inputs (38). A prompt is a specific instruction or

query that a human provides to an LLM to direct its behavior and generate desired outputs

(38). Prompt-based learning is achieved through the design of prompts, which enables the

9
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model to generate diversified text based on different contextual environments and can be

optimized and customized for different tasks and application scenarios (39).

2.2.2.1 Manual and Automatic Prompts

Depending on how prompts are generated, they are divided into two categories, namely

manual and automatic prompts (40). Manual prompts are crafted by humans to provide

precise and explicit instructions to the model regarding the type of data to concentrate

on and the most efficient way to accomplish the task. These prompts work very effec-

tively when the output needs to follow a certain structure or format and the input data

is well-defined. On the other hand, automatic prompts are generated using different algo-

rithms and methods without human engagement. These are categorized into discrete and

continuous prompts (39). While continuous prompts take into account the context of the

present conversation to provide accurate outputs, discrete prompts rely on predetermined

categories to generate responses.

2.2.2.2 Zero-shot Prompting and Few-shot Prompting

There are two types of prompting: few-shot and zero-shot, which depend on how many

instances humans provide an LM in order to train it for the downstream task. According

to Wang et al. (39), zero-shot prompting refers to the practice of presenting a model with

a prompt without providing any examples of the desired outcomes. The model uses its

pre-trained knowledge and capabilities to generate a response. Conversely, in few-shot

prompting, the model is provided with a few examples to help guide its responses. By

providing concrete examples along with the prompt, few-shot learning enables models to

adjust their outputs based on these examples, leading to higher accuracy and better task

performance (41). This method is particularly beneficial in interactive scenarios, such as

dialogue systems, where maintaining the flow of conversation is crucial (42).

2.3 Conversational Triple Extraction

Unlike classical triple extraction, which focuses on extracting knowledge from well-formed

sentences in documents or articles, conversational triple extraction (CTE) is an advance-

ment within the field of IE, specifically designed for dialogue-based text. The differences

between conversational and traditional triple extraction does not only lie in the textual

environment, but also in the nature of the language processed. One of the challenges in

dialogue understanding is dealing with ellipsis and anaphora, which frequently occur in

10



2.3 Conversational Triple Extraction

conversations (43). Ellipsis refers to situations where a phrase or clause mentioned earlier

is omitted for simplicity, while anaphora involves replacing a mention with a pronoun to

avoid repetition. For that reason, extracting triples from conversations is not an easy task.

In order to search and identify potential SPO components, not only the current utterance

but also its previous history sentences need to be considered (44). Yu et al. (45) highlight

in their study that 65.9% of the relational triples they extracted, involve components that

do not appear in the same utterance.

In addition to that, dialogues inherently involve multiple turns and can include com-

plex interactions between participants. In their survey, Zhao et al. (46) explored various

methods for CTE that can handle the sequential and more dynamic nature of dialogues.

The study specifically discusses using graph-based methods to build dialogue graphs, cap-

turing relationships between entities over multiple turns of conversation. It also explores

attention mechanisms that focus on relevant sections of dialogue rich in relational cues

and sequence labeling techniques that label dialogue text sequences to identify relation-

ships at the token level. The survey highlights notable progress in accurately extracting

triples from dialogues, emphasizing that combining graph-based methods, such as Graph

Neural Networks, with attention-focused techniques like Transformer-based models, has

led to significant performance enhancements across diverse dialogue types.

In a related study, Vossen et al. (47) utilize the Grounded Representation and Source

Perspective (GRaSP) model in combination with the Simple Event Model (SEM) to ex-

tract conversational triples. This system transforms natural language from sensory inputs

and interactions into structured triples of subjects, predicates, and objects, capturing the

semantic essence of events. The process begins with rule-based categorization followed by

the application of machine learning techniques to address ambiguities and inconsistencies in

the dialogue, thereby enhancing the system’s interaction and knowledge base capabilities.

2.3.1 Conversational Triple Extraction in the Medical Field

The task of CTE can be advantageous in the medical field. According to Souza et al. (48),

enriching and constructing KGs with triples derived from healthcare dialogues, the man-

agement and analysis of clinical data can be greatly improved. Converting unstructured

clinical conversations into structured triples that are semantically rich enables KGs to sys-

tematically organize and visualize complex relationships between medical entities, such as

symptoms, treatments, and outcomes. This structured format not only makes medical

records easier to use and understand for healthcare professionals but also supports more
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2.3 Conversational Triple Extraction

informed decision-making. Consequently, KGs enhanced with triples from dialogues may

contribute to advances in personalized medicine and more effective healthcare services,

ultimately benefiting patient outcomes.
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3

Methodology

This chapter is divided into two main sections. Section 3.1 focuses on the creation of the

dataset used in this study. Subsections within this section offer a more detailed look into

specific aspects of the process: In Subsection 3.1.1 personas generation will be explained,

including details about the prompts used. Subsection 3.1.2 will discuss the generation

of conversations, also detailing the prompts employed. Subsection 3.1.3 talks about the

preprocessing steps undertaken for preparing the dataset for subsequent analysis, while

Subsection 3.1.4 will cover the annotation of the dataset.

On the other hand, Section 3.2 delves into the methods employed for extracting SPO

triples from the conversations generated. In particular, this section provides detailed ex-

planations of the unsupervised and supervised systems implemented for classifying in a

token-level conversational sentences, whilst Subsection 3.2.1 outlines the process of con-

structing SPO triples from token-level classifications. Lastly, Subsection 3.2.2 discusses

the evaluation of these systems.

3.1 Data Generation

This section focuses on the creation of the dataset utilized in this study. All the steps

involved in this process are illustrated in Figure 3.1.
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3.1 Data Generation

Figure 3.1: Data Generation Workflow

As mentioned in Section 1.4, due to privacy protection of medical data, natural conver-

sations between Type 2 Diabetes patients and caretakers are not available. Therefore, to

carry out this thesis project, creating such conversations was necessary. However, the tight

timeline of the current project and the high costs involved in creating a human-generated

dataset, present significant challenges to manually constructing such conversations. Re-

search shows that when prompting effectively, LLMs can use their language generating

capabilities to generate datasets that are similar in quality to those provided by humans,

which reduces the time and expense associated with the process (49). Thus, for this study,

we leveraged the capabilities of LLMs to generate our dataset.

3.1.1 Persona Generation

This Subsection examines the decisions made, the reasoning behind them, and the approach

used to create realistic and distinct personas representing Type 2 Diabetes patients.

For making the dataset more natural, we started by creating diverse personas, each

representing a unique profile of a Type 2 Diabetes patient. These personas were carefully

created to capture a wide range of demographic traits, medical histories, and treatment

adherence behaviors, providing a thorough representation of the patient population. The

selection of specific demographic attributes for the creation of personas was informed by

robust epidemiological and sociocultural research, along with insights from consultations

with two experts from TNO, ensuring that the personas accurately reflect the diversity

and nuances of the Type 2 Diabetes patient population in the Netherlands.

In 2017 a Dutch nationwide consortium of diabetologists, paediatric endocrinologists,

and Diabetes patients has founded a national outpatient Diabetes care registry named

Dutch Pediatric and Adult Registry of Diabetes (DPARD). Between November 2017 and

January 2020, 20.857 patients were included from 8 (11%) Dutch hospitals with a level

of care distribution representative of all diabetic outpatients in the Netherlands. Among

patients with known Diabetes type, 51% had Type 2 Diabetes. Bak et al. (50) aimed to
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describe the implementation of DPARD and to provide an overview of the characteristics of

patients included during the first 2 years. The results showed that the mean age for Type

2 Diabetes patients was 65.9 years (14.0 – 98.0). Therefore, for the ages of our personas,

we selected values proximate to 65, specifically 55, 60, 65, 70, and 75.

Moving on to their ethnicities, data from StatLine, the online database of the Central

Bureau of Statistics (CBS) in the Netherlands (51), indicate that individuals of Moroccan

descent have the highest percentage of Type 2 Diabetes in the Netherlands, with 7.09%

of the population affected. The second highest rate is among the Surinamese population,

where 6.15% have Type 2 Diabetes. People with a Turkish background also show a rel-

atively high prevalence, with 5.95% affected. In comparison, individuals with a Dutch

background have a lower prevalence rate of 1.99%. In another study, Voortman et al. (52)

mentioned that ethnic minorities living in Western societies may have a higher prevalence

of Diabetes. Migrants from Turkey and Morocco are among the largest ethnic minority

groups in Europe including the Netherlands. The current study included 375 Turkish,

314 Moroccan and 417 Dutch individuals aged 18–70 years. The results showed that the

prevalence of Diabetes in the Amsterdam population was significantly higher in Turkish

(5.6%) and Moroccan (8.0%), compared to Dutch individuals (3.1%). Guided by the in-

sights from the studies referenced, we have selected Moroccan, Surinamese, Turkish, and

Dutch ethnicities for the creation of our personas in this research.

A special consideration was given also to the selection of names to ensure more accurate

cultural representation, enhancing the authenticity of each persona. The names for each

persona, including both male and female, were carefully selected based on their prevalence

within the aforementioned ethnic groups, as commonly indicated across various online

sources 1. As a result, the chosen names are Mohammed, Abdullah, Aicha, and Fatima

for Moroccans; Rudolf, Johan, Julia, and Ingrid for Surinamese; Ali, Mehmet, Ayşe, and

Fatma for Turkish; and Pieter, Jan, Johanna, and Maria for the Dutch.

Using these attributes, all possible combinations were generated, respecting gender-

specific naming conventions to ensure realism and cultural appropriateness. After ran-

domly shuffling these combinations to eliminate any bias, 16 unique profiles were carefully

selected to maintain an equal gender and ethnicity balance. All 16 selected profiles are

depicted in Table 3.1.

1The names were selected after reviewing multiple online sources to determine their commonality within
each ethnic group. This approach is not dependent on any one source but, rather, represents information
shared across various unofficial web-based resources.
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Name Gender Ethnicity Age
Jan Male Dutch 70

Maria Female Dutch 60
Abdullah Male Moroccan 70

Mohammed Male Moroccan 75
Aicha Female Moroccan 75
Julia Female Surinamese 55
Ingrid Female Surinamese 75
Johan Male Surinamese 60
Fatima Female Moroccan 65
Rudolf Male Surinamese 55
Ayşe Female Turkish 70
Pieter Male Dutch 75

Johanna Female Dutch 75
Fatma Female Turkish 65

Ali Male Turkish 60

Table 3.1: Selected Profiles

3.1.1.1 Prompts for Persona Generation

Each profile was enriched with additional details through a series of manual prompts de-

signed to get nuanced and varied responses from a generative model. These prompts guided

the generation of comprehensive profiles, including detailed descriptions of personal and

demographic backgrounds, physical features, psychological traits, professional and edu-

cational experiences, social interactions, daily routines, healthcare interactions, economic

factors, communication styles, and technological engagements. The full prompts used for

this generation can be found in Figure 6.1 in the Appendix.

As a generative model, we selected ‘GPT-4’, identified as the most proficient model within

the GPT series according to a report from OPENAI (35). In particular, they mention that

‘GPT-4’ is more reliable, creative, and capable of handling much more nuanced instructions

compared to other GPT models. Two parameters namely ‘temperature’ and ‘max_tokens’

play important roles in controlling the behavior and output of the model. The first one

affects the randomness or creativity of the responses produced by the model, while the

later one controls the maximum number of tokens each response contains. To generate

detailed and informative persona descriptions, the ‘temperature’ parameter was set to 0.9

to optimize for creativity, whilst the ‘max_tokens’ was left at its default value of 4096 from

the API configuration, since the length of the descriptions was not a primary concern.
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Instead, the focus was on ensuring that the descriptions were comprehensive and rich in

detail.

According to the responses we got, the personas vary significantly in their technological

proficiency: some are tech-savvy, regularly using digital tools to monitor their health, while

others, less familiar with technology, are nonetheless open to learning if it can improve

their health management. Relationships with healthcare providers also differ among the

personas; some maintain a realistic, albeit infrequent, interaction due to high demands on

general practitioners, while others enjoy good rapport but struggle with complex medical

terminologies and explanations. Health characteristics are prominently featured, with most

personas being slightly overweight, particularly around the abdomen, which is a noted risk

factor for Type 2 Diabetes. Lifestyle factors also vary; some personas have quit smoking

and experienced weight gain, others continue to smoke, and some never smoked. Economic

conditions among the personas range from stable to challenging, with some struggling with

the costs associated with their treatment. Education levels vary as well, with most having

received a basic education up to high school level. An example of a persona description

created is available in Appendix 6.

3.1.1.2 Persona Evaluation

The complete persona descriptions were reviewed and validated by two TNO experts who

work on the healthcare section and are familiar with Type 2 Diabetes. In this revision, we

adjusted several personas to represent socio-economic scenarios that align with the nature

of our problem that discussed in Section 1.1. Thus, while the original descriptions included

four financially well-off personas and five with strong relationships with their healthcare

providers, these were changed to reflect personas who might struggle economically and

have less favorable interactions with their healthcare systems. Such changes were made to

represent patients who would benefit from a system like the one the CHIP collaboration

aims to create, addressing the issues of expensive and inaccessible Diabetes healthcare.

This process ensured each persona was not only detailed but also equipped with realistic

and profound characteristics that reflect the nature of our problem and typical challenges or

circumstances faced by individuals managing Type 2 Diabetes. Finally, the personas were

ready for use in the study’s subsequent phase, which aims to generate realistic patient-agent

interactions.
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3.1.2 Conversation Generation

This Subsection discusses the decisions made and the methods used to create natural and

diverse conversations between a Type 2 Diabetes patient and an agent.

Using the personas created in the previous step, we generated detailed and varied conver-

sations between these personas reflecting a Type 2 Diabetes patient and an agent acting as

a caretaker. Each conversation consists of around 4 to 6 exchanges, clearly marked by ini-

tials indicating who is speaking: “P” for the patient and “A” for the agent. An exchange is

defined as a sequence where one speaker makes a statement and another speaker responds,

with these two utterances collectively counting as one exchange.

For each persona, 16 detailed conversations were generated, amounting to a total of 256.

This specific number was chosen to ensure a balanced dataset by maintaining an even

distribution of conversations initiated by both the agent and the patient. As a result,

each persona is represented by 8 conversations initiated by the patient and 8 by the agent.

Additionally, we limited the generation of conversations to 256, guided by research showing

that when LLMs process data beyond a certain volume, they tend to produce outputs that

lack diversity, often generating similar or repetitive data (53).

For generating the conversations, we used prompt-based learning with ‘GPT-4’. As

mentioned in Subsubsection 2.2.2, this process involves crafting specific prompts to guide

the behavior of the model to generate dialogues that meet desired criteria. We chose

‘GPT-4’ over other LLMs for reasons beyond those discussed previously in Subsubsection

3.1.1. Notably, it excels in creative language generation and maintaining contextual co-

herence throughout extended dialogues. In addition to that, Duan et al. (54) found that

‘GPT-4’ can generate human-style multi-turn dialogues with impressive quality. They also

highlighted that other LLMs struggle to generate high-quality multi-turn conversations

due to their poor ability to follow instructions, tendency to generate lengthy utterances,

and limited overall performance. Furthermore, it’s worth noting another student’s the-

sis, which demonstrated that ‘GPT-4’ achieved the highest average score across different

metrics such as naturalness, coherence, fluency, and groundedness (55). This was in the

context of creating realistic conversations between patients and agents, where it outper-

formed other state-of-the-art LLMs like ‘LLaMA 3’, ‘MedAlpaca’, and ‘Meditron’. Similar

to the persona generation phase, two parameters of the model were set for generating the

conversations. The ‘temperature’ parameter was set to 0.9 to foster creativity, whilst the
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‘max_tokens’ parameter was set to 300 to help keep responses concise and maintain focus.

Below are two examples of the conversations generated.

1) A conversation initiated by the agent concerning the persona named Aicha from Table

3.1:

A: Aicha, can you tell me more about your current strategy for managing your smoking
habit, specifically given its impact on your diabetes and overall health?
P: I’m trying to quit smoking but it’s really hard. Every now and then I find myself
reaching for a cigarette, especially when I’m stressed or after meals.
A: It’s great that you’re trying to quit, Aicha. Indeed, it can be challenging, especially
when it’s associated with your daily routines like meals. Have you tried using nicotine
replacement therapy or considered any support programs to aid in quitting?
P: No, I haven’t tried nicotine replacement therapy. I heard about it but was not sure
how it works.
A: Nicotine replacement therapy provides you with nicotine in the form of gums,
patches, sprays, inhalers, or lozenges to reduce the cravings associated with nicotine
withdrawal. It’s advisable to discuss with your doctor or a pharmacist about using
these therapies to ensure they’re suitable for you given your current medications and
health conditions.
P: I see, that sounds like something that might help. What about support programs?
A: There are many support programs available that provide advice, encouragement,
and tips to help people quit smoking. They can be in the form of local community
groups, telephone-based services, or online forums. You could also consider discussing
with your healthcare provider about referral to a smoking cessation program.
P: I’ll consider these options. Thank you!

2) A conversation initiated by the patient concerning the persona named Jan, as detailed

in Table 3.1:

P: I’ve been struggling with some anxiety lately due to my health. Does it impact my
diabetes in any way?
A: Yes, Jan, anxiety can impact your blood sugar levels. When you’re anxious, your
body releases stress hormones, which can cause your blood sugar levels to rise. It’s
important to manage anxiety to keep your diabetes under control.
P: What would you suggest to manage this anxiety? I already try meditation but it
seems insufficient.
A: Incorporating physical activities, like your regular walks or cycling, can help reduce
anxiety. You could also try other relaxation techniques like progressive muscle relax-
ation or guided imagery. Additionally, talking about your concerns with someone you
trust can also help.
P: My family is supportive but I worry about burdening them with my health con-
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cerns.
A: That’s a common concern, Jan. You might find it helpful to talk to a professional
counselor or therapist who specializes in chronic illnesses. They can provide coping
strategies and emotional support in a structured, understanding environment.
P: I will consider this. Does management of anxiety also involve changes in my medi-
cation or diet?
A: It doesn’t usually require changes in medication unless recommended by your doc-
tor. As for your diet, maintaining a balanced diet is beneficial. Some foods like those
rich in magnesium and Omega-3 fatty acids are known to help reduce anxiety.
P: Thank you. I’ll try to incorporate these suggestions into my lifestyle.

3.1.2.1 Prompts for Conversation Generation

Figure 3.2: Prompt Template for Conversation Generation

Figure 3.2 shows the prompt template for generating the conversations. The “user” role is

assigned to the patient in the simulated conversation. This aligns with typical patterns in

conversational AI, where the “user” is the one who initiates questions and seeks assistance

or information. The role of the “assistant” was designated for the agent, providing

guidance, and responding to the user’s queries. Assigning the “assistant” role to the

agent rather than the “user” ensures that the agent remains in a supportive and guiding

position. The “system” role acts as the control mechanism, initiating and directing the

conversation based on predetermined scenarios, much like a conductor supervising the

interaction between the “assistant” and “user”.

To enable meaningful and realistic interactions between the personas and the agent,

careful attention was given to the design of the manual prompts used for generating the

conversations. This design process was guided by existing literature and refined through

iterative testing to ensure that the conversations would be both authentic and effective in

simulating real-life interactions in Diabetes management.
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Agent Prompt

A study conducted by Nguyen et al. (56) is focusing on establishing foundational design

principles for developing effective conversational agents (CAs) that utilize artificial intel-

ligence to improve diabetes care. They suggest that the agent should maintain a friendly

tone, utilize small talk, and adapt the conversation flow to the individual needs and re-

sponses of the patient. This personalization can help in building trust and comfort, which

are essential for long-term engagement (57). Therefore, the agent prompt was designed to

engage in personalized and adaptive interactions with patients, tailoring the conversation

flow to meet each individual’s specific needs and responses. The relevant segments within

the prompt are:

“... your interactions should be personalized and adaptive. Personalization involves estab-

lishing common ground through the use of personal pronouns and engaging in small talk.

This helps in building trust and comfort, essential for long-term engagement.”,

“Adapt your conversation flow based on the individual needs and responses of the patient.”

According to Clark et al. (58) there is a need for the agent to understand patient

input clearly and quickly, ideally without repeating themselves. So, we highlighted within

the agent prompt the importance of accurate listening to the agent which ensures that it

understands and remembers user inputs which can enhance the conversation’s relevance

and depth. The relevant part within the prompt is:

“Accurate listening is crucial; ensure that you understand and remember user inputs to ask

relevant follow-up questions, enhancing the conversation’s relevance and depth.”

Additionally, we incorporated instructions for the agent prompt to employ empathic

language and maintain a consistent, warm, and understanding tone throughout the con-

versation. According to Liu et al. (59) expressions of sympathy and empathy by chatbots

are generally preferred over purely informational interactions. The agent should be capa-

ble of recognizing and adapting to the emotional state of the patient. This includes using

language that is supportive or uplifting if the patient is feeling down or anxious about their

health. The ability to adjust language based on emotional cues is critical when dealing

with health-related topics, where the patient’s emotional state can significantly impact the

effectiveness of communication (60). The relevant segment within the prompt is:

“Employ empathic language, maintaining a consistent, warm, and understanding tone

throughout the conversation. Sensitivity to the patient’s emotions is key ...”
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Furthermore, according to Walker et al. (60) the agent needs to be aware of the context

in which the dialogue is taking place, which could include understanding the patient’s

current health status, medical history, and possibly even the time of day or recent events

in the patient’s life. That is why we instructed it appropriately to be aware of its context.

Also, we pointed out the usage of concise language to communicate. The information de-

livered by the AI should be straightforward and concise, avoiding medical jargon that may

confuse the patient. This clarity helps in enhancing patient comprehension and adherence

to medical advice (56). The relevant segment within the agent prompt is:

“Use concise language to communicate. This involves choosing precise, simple, and effective

words that avoid medical jargon, making it easier for the patient to understand.”

Finally, we instructed the agent to request information in a conversational manner, asking

for one piece at a time instead of everything at once, in order to maintain a natural and

engaging dialogue. This approach mimics natural human conversation, which can be more

comfortable and less overwhelming for the patient. Adam et al. (61) found people disclose

more to a chatbot when it requests information conversationally one-by-one rather than

all at once. The relevant segment within the prompt is:

“Request information conversationally, one piece at a time, rather than all at once, to keep

the dialogue natural and engaging.”

The full agent prompt is depicted in Figure 6.3 in Appendix.

Patient Prompt

For the design of the patient prompt, we individually hardcoded the persona descriptions

created in the previous phase. For each conversation generated by the model, we used

a specific persona description. Afterward, for generating subsequent conversations, we

systematically rotated to a different persona description. We followed this process until we

had successfully generated 16 conversations for each persona.

System Prompt

Turning to the design of the system prompt, strategies such as capitalization and repetition

were employed to enhance the clarity and impact of the instructions given to the generative

model. We capitalized certain words to draw attention to specific parts of a prompt,

potentially making it more effective by emphasizing key terms or commands that are

crucial for the intended output. This approach was discussed by White et al. (62) and
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could be particularly useful in settings where clarity and precision are necessary to guide

the model’s response accurately.

Repetition is another strategy that was discussed by White et al. (62) and can be

leveraged to reinforce the importance or relevance of certain instructions within a prompt.

By repeating key phrases or concepts, prompt engineers can help the model to focus more

on these elements, potentially leading to more consistent and reliable outputs.

In particular, in our case, we capitalized the word “varied ” to emphasize the uniformity

in the way the outputs start. In addition, we focused on the instruction “each conversation

must contain exactly 4 to 6 exchanges” in both uppercase and repetition to address cases

where the output contained fewer than 4 exchanges.

In the final phase of our study, we explored both few-shot and zero-shot prompting meth-

ods. Unlike prior studies, we made the decision to independently assess the efficacy of these

techniques by directly observing their outcomes. The results indicated that conversations

generated through zero-shot prompting started in a similar manner, lacking variability.

Moreover, these conversations frequently failed to meet the specified guidelines. An exam-

ple is that the model typically producing only 2 exchanges rather than the 4 to 6 outlined

in our prompts. Below is an example of a conversation generated using zero-shot prompt-

ing:

A: Hi Alex, I understand that managing diabetes can be challenging, especially when it
comes to maintaining a healthy diet. You mentioned your fondness for Dutch cheeses,
which can be high in fat. Have you considered any alternatives or strategies to manage
your cheese intake while still enjoying it?
P: I’ve tried a few times to cut down on it, but it’s been quite difficult for me. Cheese
is a big part of our culture and I just love the taste. Any suggestions?
A: Absolutely, moderation is key. You don’t have to eliminate cheese completely from
your diet. Instead, aim for smaller portions. Choose low-fat or reduced-fat varieties
when possible. Also, pairing cheese with fresh fruits or vegetables can make a balanced
snack. How does that sound?
P: That sounds doable. I’ll try to follow these suggestions. Thanks for the advice.

Therefore, we implemented few-shot prompting in our system’s prompt design. This

involves providing the model with a small number of examples, in our case 4, to illustrate

the desired format and structure of the conversations. This helps guide the model in

generating responses that align with the specified criteria. The full system prompt can be

found in Appendix in Figure 6.2.
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Based on the research conducted and the decisions made to create natural and effective

conversations, all the properties used to design these conversations are outlined in Table

3.2.

Properties
Personalization and Common Ground

Accurate Listening
Empathetic Language and Friendly Tone

Engagement Through Small Talk
Contextual Awareness

Conciseness
Sequential Information Gathering

Table 3.2: Properties for Constructing Effective Conversations

3.1.3 Conversation Preprocessing

This Subsection discusses the decisions made and the methods used to prepare the conver-

sations for subsequent usage.

After generating the conversations, we applied two preprocessing methods. The first

involved expanding contractions within each conversation. For example, contractions like

‘I’ve’ and ‘don’t’ were expanded to ‘I have’ and ‘do not’ respectively. This expansion

clarifies the individual tokens within the conversational sentences, making the subsequent

annotation process easier.

Afterwards, the conversations were divided into three distinct sets: training, validation

and testing. To ensure that the dataset was balanced and unbiased, we decided to utilize

10 of the 16 conversations from each persona for training, with the remaining 6 designated

for testing and validation. We also applied stratification, a technique that ensures that

each segment of the dataset closely represents the overall distribution, particularly in terms

of key variables or categories. For instance, it maintains the proportion of examples from

various subgroups, such as gender, ethnicity, or other characteristics. By doing so, strat-

ification ensures that all sets are diverse and equally represent all personas, significantly

reducing sampling bias and thereby facilitating a fair and effective model training process.
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3.1.4 Conversation Annotation

This Subsection discusses the methods used for annotating in a token-level the conversa-

tions of our datasets (training, validation and testing) with SPO labels.

3.1.4.1 Validation and Test Datasets Annotation

Given the critical nature of medical information, it was necessary for the validation and

test sets to be manually annotated. This manual intervention was undertaken to ensure

the highest levels of data quality and reliability, which are essential in medical contexts.

The annotation schema designed, focus on extracting at a token-level, structured semantic

relationships in the form of Subject-Predicate-Object (SPO), which are crucial for enhanc-

ing the KG of the CHIP project (17). It would be more practical to annotate only the

patient utterances, as they contain the essential information for inclusion in the knowledge

graph (KG). The agent’s utterances are already stored within the KG, thus they do not

require further annotation. However, focusing solely on patient responses would result in

insufficient data for effectively training and evaluating our models. One possible solution

could be to generate more conversations, but as mentioned in Subsection 3.1.2, generative

AI models often produce repetitive outputs after a certain volume, which could reduce the

diversity and usefulness of the generated data.

To ensure high-quality and precise annotations, the INCEpTION annotation tool was

utilized, a cutting-edge platform specifically designed for annotation tasks (63). Annota-

tors were provided with a comprehensive guide detailing the steps for installing and using

the tool, including how to import project files and export annotated data. Additionally,

a detailed set of instructions was created to guide the annotators in annotating according

to predefined criteria, thereby ensuring consistency and reducing ambiguity in the anno-

tations.

Firstly, the instructions clarified that annotators should only label sentences containing

significant information about Diabetes management for inclusion in the KG, rather than

annotating every sentence in a conversation. It was also emphasized that our focus is

on the information contained within a conversation and not how the conversation flows.

Then, a set of clear, detailed guidelines were established to define what constitutes a Sub-

ject, Predicate, and Object in the nuanced setting of patient-agent dialogues. Considering

the complexity and variety of the conversations, the schema was developed to be robust

enough to handle special cases, such as passive voice, compound Subjects and Predicates,
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and subordinate clauses. Furthermore, specific cases where the Subject or Predicate may

be implied were addressed, ensuring that annotations capture the intended meaning accu-

rately.

For example, in the sentence “The doctor evaluates the patient’s condition and prescribes

medication.” features a compound Predicate, where “evaluates the patient’s condition”

and “prescribes medication” are actions performed by the same Subject, “The doctor ”. An

example of an implied Subject can be found in the sentence “Adjust your insulin dose

accordingly.” where the Subject “you” is understood but not explicitly stated.

For sentences that are part of a question-answer sequence within the dialogue, the schema

specifies different annotation approaches based on the nature of the response. To be

more precise, if a sentence poses a question and the next or subsequent one provides its

corresponding answer, if the answer is a simple affirmation, as illustrated in Example 1

below, only the question is annotated. The reason for that is because simple affirmations do

not contain meaningful substantive information that would enhance the KG; the valuable

information is contained within the question itself. On the other hand, if the response

is detailed and offers substantial information, as demonstrated in Example 2 provided

below, only the answer is annotated because it includes the essential details for the KG.

When the response consists of both an affirmation and additional information, as shown

in Example 3 below, both the question and answer are annotated, as each part holds

important information. The complete set of instructions is provided in Figure 6.4 in the

Appendix section.

Example 1

A: Have you taken your medication today?
P: Yes!

Example 2

A: What did you eat for breakfast?
P: I had oatmeal with bananas.

Example 3

P: Should I be concerned about dehydration?
A: Yes, the risk of dehydration and low blood pressure can increase while fasting.
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Following these instructions, the test set was manually annotated by two experts in lin-

guistics from TNO and myself. A pre-annotation meeting was conducted for all annotators,

where the functionalities of the annotation tool and the instructions were introduced and

explained. During the annotation process, time constraints allowed for only 200 of the

800 sentences to be annotated by the annotators for the inter-annotator agreement (IAA)

calculation, which was performed in a token-level. According to Table 3.3, the annota-

tion trial achieved a substantial agreement with a Fleiss’ Kappa score of 0.657. In order

to resolve the disagreement that occurred in those 12.26% utterances, a majority voting

approach was adopted, which was to select the label that the majority of the annotators

assigned to a certain sentence. There were 61 tokens that received three different labels

from the annotators. Since there was no majority consensus, a random selection method

was applied to these tokens. The rest of the conversations were annotated carefully by

myself and were reviewed by a TNO expert. After the majority voting review, the initial

200 were re-examined to guarantee consistency throughout the entire test set. The same

instructions and techniques used for annotating the test set were applied to the validation

set, which I personally annotated. The validation set was then reviewed by the same TNO

expert to ensure uniformity across both datasets. In Appendix, Table 6.1 shows 2 examples

of human-annotated in a token-level sentences with SPO labels.

κ Statistic Strength of Agreement
< 0.00 Poor

0.00− 0.20 Slight
0.21− 0.40 Fair
0.41− 0.60 Moderate
0.61− 0.80 Substantial
0.81− 1.00 Almost Perfect

Table 3.3: Classification of κ statistic values by strength of agreement (2).

3.1.4.2 Train Dataset Annotation

The training dataset should ideally be in the same nature as the validation and test

datasets. However, manually annotating the training set wasn’t feasible due to time limi-

tations and the fact that the training set is about three times larger than both the test and

validation sets. A study conducted by Liyanage et al. (64) highlighted GPT-4’s capabili-

ties in handling complex, domain-specific tasks like multi-label text annotation, achieving

results similar to those of human annotators when given clear instructions. As a result,

27



3.1 Data Generation

we decided to try annotate the training set leveraging the capabilities of LLMs. In partic-

ular, we selected prompting ‘GPT-4o’ over ‘GPT-4’ because it is more cost-effective and

processes data faster, which is beneficial considering the large size of the training set.

In Subsection 3.1.4.1, we detailed the guidelines the human annotators followed for an-

notating the validation and test datasets. Expanding upon this, we transformed these

instructions into a structured prompt to direct the annotation procedure of the model.

Our goal was to achieve the accuracy of human annotators using few-shot prompting. The

annotation prompt for the training dataset is shown in Figure 6.5 in Appendix. Annotation

examples from the prompt are not included in this illustration to preserve space.

To further enhance the model’s capability to process and accurately annotate dialogues,

we implemented a dynamic chunking technique. This technique was crucial for handling

complex conversational structures, particularly those involving question-answer sequences.

This method identifies if the current sentence being processed is a question. If so, it

groups this sentence with the following and subsequent one. The reason for including

the subsequent sentence as well is based on our observation that, in many conversations,

questions are often followed by intermediate sentences, with the actual answer typically

appearing in the subsequent sentence. If the sentence is not a question, it is taken alone;

thus, the chunk consists only of that sentence. These chunks, whether individual sentences

or grouped sequences, are then fed to the model for annotation. By applying this approach,

the model can accurately capture such cases and annotate them properly. It is noteworthy

to refer that we used the dynamic chunking technique specifically for question-answer

scenarios since our annotation instructions do not require more context beyond the sentence

level for any other cases in our dataset.

Additionally, in an effort to improve the quality of the model’s annotations, we also

experimented with different ‘temperature’ settings. Lower temperature settings are often

more suitable for annotation tasks, as they tend to increase consistency while maintain-

ing accuracy (65). Given the deterministic nature required for annotation, we avoided

higher ‘temperature’ values that we used in more creative tasks, like creating personas

or conversations. Instead, we used lower values to make sure the model strictly fol-

lowed the prompt, resulting in consistent outcomes. For example, we experimented with

‘temperature’ settings of 0.2 and 0.5. Both settings handled question-answer scenarios

well, but at a ‘temperature’ of 0.2, the annotations were much more precise. In contrast,

with a ‘temperature’ of 0.5, the annotations sometimes deviated from the guidelines, pro-

ducing less accurate annotations.
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Finally, we set the ‘max_tokens’ parameter to its maximum allowable value of 4096. This

decision was driven by the nature of our dataset, which includes long sentences comprising

multiple tokens. Our objective was to ensure that the model could process and annotate

entire sentences in a single go, without truncating any part due to token limitations.
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Figure 3.3: Conversational Triple Extraction Workflow

3.2 Conversational Triple Extraction

This section outlines the methods used for classifying tokens within conversational sen-

tences into Subject, Predicate, and Object (SPO) categories and for constructing SPO

triples from these classifications.

Following the creation of synthetic annotated conversations, the last objective was to

extract meaningful relationships in the form of Subject-Predicate-Object (SPO) triples.

However, due to the fact that generating data was a time-consuming process, time con-

straints prevented the testing of typical conversational triple extraction techniques applied

in literature. Therefore, this study has focused on token-level SPO label classification

since its evaluation is much simpler. This classification serves as an essential preliminary

step for constructing these triples. It involves accurately identifying and classifying each

token’s role within a conversational sentence, setting the foundation for the next assembly

of complete SPO triple structures. Figure 3.3 illustrates the workflow of our classification

task. Annotated conversational sentences are input into the system, which processes each

sentence to assign an SPO label to each token.

In this study, we examine both unsupervised and supervised systems for SPO label clas-

sification. Drawing upon the literature reviewed in Section 2.1, we experimented with both

rule-based and transformer-based techniques, as we noted that no previous studies have

applied these advanced approaches to synthetic conversations concerning the management

of Type 2 Diabetes. For the rule-based approach we applied Syntactic Parsing, while on

the transformer side, we used two advanced methods: fine-tuning the BERT model, and

implementing prompt-based learning with GPT-4o. These approaches were selected for

their state-of-the-art performance in triple extraction, allowing us to thoroughly evaluate

their effectiveness in our task.
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3.2 Conversational Triple Extraction

Figure 3.4: The parse tree for a sentence of our dataset.

Rule-Based Syntactic Parsing Approach

One of the unsupervised systems employed in this study involved the use of a rule-based

approach that included Syntactic Parsing, or else Syntactic Analysis, to classify tokens

within conversational sentences into SPO categories. This approach was directly applied

on the test dataset as it does not require any training. Syntactic Parsing, implemented

through spaCy’s advanced NLP capabilities, analyzes the grammatical structure of sen-

tences to clarify the relationships between words by identifying the head of each word and

determining how each word depends on or relates to others. This approach creates a parse

tree or a syntactic structure that outlines the hierarchical connections between words,

which is key to identifying their syntactic roles. There are two main types of Syntactic

Parsing: Constituency Parsing and Dependency Parsing. We utilized Dependency Parsing,

which focuses on the direct relationships between words by representing these links with

directed links, unlike Constituency Parsing, which organizes words into a tree structure

based on their syntactic components.

For example, the parse tree shown in Figure 3.4, illustrates the grammatical structure of

a typical sentence from our dataset, highlighting how words are interconnected syntacti-

cally. The parsing process starts with tokenizing the sentence, followed by lemmatization,

applying Part-of-Speech (POS) tagging to each token, and identifying the dependency re-

lationships among them. Subsequently, the approach identifies the syntactic root of the

sentence, the token whose head is itself (typically the main verb or action), and label it as

‘Predicate’. Then, tokens connected to the dependency labels ‘nsubj’ (nominal subject) or

‘nsubjpass’ (passive nominal subject), along with the tokens in their subtrees, are labeled

as ‘Subject’. These labels indicate that the tokens function as the subjects of the sentence,
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either as the one performing the action in active sentences (‘nsubj’) or the entity receiv-

ing the action in passive sentences (‘nsubjpass’). Tokens linked to ‘aux’ (auxiliary verb),

‘auxpass’ (passive auxiliary verb), and ‘neg’ (negation modifier) are labeled as ‘Predicate’,

as they play a role in expressing the tense, mood, voice, or negation of the main verb in

a clause. Meanwhile, tokens associated with ‘dobj’ (direct object), ‘pobj’ (prepositional

object), or ‘attr’ (attribute), along with those in their subtrees, are classified as ‘Object’.

These labels reflect that the tokens typically represent the recipient of the action or de-

scribe the attributes of the subject. Any tokens that do not fall into these categories are

labeled as ‘other’.

GPT-4o

Another unsupervised method employed in this study was a transformer-based approach,

specifically employing prompt-based learning with GPT-4o. This approach was also dis-

cussed in Subsubection 3.1.4.2 for annotating the training dataset. We decided to use

the exact same prompt we used for annotating the training dataset, and apply the same

dynamic chunking technique to be able to capture special cases like question answer pairs.

Also, both ‘temperature’ and ‘max_tokens’ parameters were kept consistent with the pre-

vious settings, 0.2 and 4096 respectively. This approach allowed us to directly evaluate its

performance on the test dataset.

BERT

The supervised system that we used consist solely of a transformer-based approach, the

fine-tuning of BERT model. As already discussed in Subsection 2.2.1, fine-tuning involves

adapting the parameters of a pre-trained LLM, such as BERT, to specialize in a specific

task. In Figure 3.5, the system workflow of BERT for token classification is clearly shown,

illustrating the process that aligns with our specific task.

The process starts by processing each dataset (training, validation, and testing) to align

to the specific format required for inputting sequences of words into the model. The

‘BertTokenizerFast’ was used, which utilizes the WordPiece Tokenization Algorithm to

break down each sentence into several tokens. This tokenizer is part of the Hugging Face

Transformers library and is a faster implementation of the original ‘BertTokenizer’. Addi-

tionally, BERT introduces a set of special tokens during tokenization that act as linguistic

markers. These tokens include [PAD], which standardizes the lengths of various input

sequences; [UNK], assigned to words not in BERT’s vocabulary; [CLS], placed at the be-

ginning of the sequence for classification purposes; and [SEP], used to seperate sequences.
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Figure 3.5: Fine-tuning BERT for Token Classification (1).

After tokenization, each token was aligned with its respective SPO label from the dataset.

Because deep learning models like BERT, do not understand text data directly, we con-

verted the SPO labels into numerical indices: [‘Subject’: 0, ‘Predicate’: 1, ‘Object’: 2,

‘other’: 3].

However, the WordPiece Tokenization Algorithm is a subword tokenization method that

splits words into several smaller units or subwords. For example, from our dataset, the

word ‘hypoglycemia’ is segmented into the subwords [‘h’, ‘##yp’, ‘##og’, ‘##ly’, ‘##ce’,

‘##mia’]. In that way the model learns effectively the relationships between the words or

subwords. If ‘hypoglycemia’ is labeled as ‘Object’, then each subword would initially align

with this label: [‘Object’, ‘Object’, ‘Object’, ‘Object’, ‘Object’, ‘Object’]. However, this

approach would end up introducing more labels of type ‘Object’, potentially disturbing the

balance of our dataset. Therefore, based on other studies (66, 67), we decided to assign

the actual label of the word only in the first subtoken, while following subtokens received a

dummy label (-100). This dummy label is also assigned to the special tokens created during

tokenization. This approach is advantageous because, during training, the loss function

calculation ignores these dummy labels, enabling more accurate model training by avoiding

the impact of skewed label distribution.

Subsequently, a sliding window technique was then applied, with a maximum sequence

length of 512 and a stride of 300. This approach ensures the model is trained on sequences

that retain the full context, effectively capturing scenarios that require multiple utterances

in conversations, such as question-answer pairs, rather than individual conversational sen-

tences. The window length of 512 was chosen because it represents the maximum number

33



3.2 Conversational Triple Extraction

of tokens that BERT can process in a single pass. A stride of 300 was selected to create

overlap between consecutive windows, preserving contextual information at the edges of

each sequence. Furthermore, the stride length of 300 corresponds to the average number

of tokens found in conversations within our dataset. By setting the stride to this value, we

ensure that each window typically includes at least one complete conversation, allowing

BERT to train on well-defined conversational units. We also made sure that all sequences

in a batch were padded to the maximum sequence length for that batch, aligning the labels

accordingly.

Building on the initial data preparation and token alignment, we fine-tuned BERT us-

ing the bert-base-uncased model from the Hugging Face Transformers library, which is

specifically designed for token-level classification tasks like SPO labeling. During training,

we applied gradient clipping to stabilize the process and prevent exploding gradients. The

loss is calculated by comparing the model’s predictions with the actual labels, and the

optimizer adjusts the model’s parameters to minimize this loss. For this task, we used

the AdamW optimizer, known for its ability to handle sparse gradients and its use of weight

decay to prevent overfitting. Additionally, we employed a learning rate scheduler that

dynamically adjusts the learning rate, improving the model’s adaptability and learning

efficiency over multiple epochs.

Hyperparameter tuning was conducted using Optuna on the validation dataset to identify

the optimal settings. We explored a range of learning rates (from 1e-5 to 1e-3) and batch

sizes (1, 8, 16) across 10 trials to find the hyperparameters that maximize the macro F1-

score. The model was trained for each setting for up to 10 epochs, incorporating an early

stopping mechanism that stops training if no improvement in the validation macro F1-

score was observed after two epochs (patience of 2). This approach not only prevents

overfitting but also ensures computational efficiency.

The highest score, 0.7563, was achieved in Trial 8, with a learning rate of 2.209e-05 and

a batch size of 1. This combination produced the best validation performance, suggesting

that a smaller batch size and a moderate learning rate worked most effectively for this task.

On the other hand, Trial 2 and Trial 5 resulted in the lowest F1-scores, both at 0.1607.

These trials had much higher learning rates (0.0009984 and 0.0006473, respectively), which

likely caused unstable training and poor model performance. This is reflected by the early

stopping mechanism being triggered after just three epochs. The best-performing model

was then saved for later evaluation on the test dataset. A detailed Table 6.2 of all trials

and scores of different hyperparameters during the Optuna study is depicted in Appendix.
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3.2.1 Construction of SPO Triples from Token-Level Classifications

Following the classification of tokens within conversational sentences into SPO categories,

we progressed to the construction of SPO triples to enhance our analysis and gain deeper

insights into the relational structures. Specifically, for each conversational sentence, we

aggregated all tokens that shared the same label (Subject, Predicate, or Object) into

cohesive components. These categorized tokens were then systematically assembled into

structured triples, each comprising the corresponding SPO components. This method

allowed for a structured representation of the underlying semantic relationships within the

conversational data.

3.2.2 Systems Evaluation

The performance of all systems in the token-level SPO label classification task is evaluated

by comparing their predicted labels with the gold standard labels in the test dataset.

Performance is assessed using standard metrics, specifically the F1-score, precision, and

recall, with predictions visualized through a confusion matrix.

The following equations outline the formulas for these measurements. In these equations,

TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False

Negative, respectively.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-score =
2× Precision × Recall

Precision + Recall
(3)

Precision measures the proportion of correctly identified instances for each category (Sub-

ject, Predicate, Object, and other) out of all instances predicted as that category. Similarly,

recall quantifies the proportion of actual instances in each category that are correctly clas-

sified. The F1-score, which is the harmonic mean of precision and recall, combines these

two metrics to offer a balanced assessment of a model’s accuracy in identifying each label

in our task (68). Furthermore, for this project, the macro-average approach was taken

into account for all metrics. This approach calculates the metric (such as precision, re-

call, or F1-score) independently for each class and then takes the average of these values.

This is especially useful for datasets with potential class imbalances, as it ensures that
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no single class disproportionately affects the overall performance evaluation (69). In that

way, a clearer and more balanced view of model performance across different categories is

provided.

In the triple evaluation process, each predicted triple from a conversational sentence is

compared against the gold standard triple. Matches are categorized as full matches if the

entire triple is correctly predicted, partial matches if any of the individual components

(Subject, Predicate, or Object) match, and component-level matches. The performance

of these predictions is measured using the standard metrics, namely precision, recall, and

F1-score.
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4

Results

This Chapter presents and discusses the performance results of both supervised and un-

supervised systems discussed in Section 3.2 of Chapter 3, as well as offers insights and an

error analysis of the systems’ results.

4.1 Label Distribution

Figure 4.1: Distribution of SPO Labels Across Datasets.

As shown in Figure 4.1, each dataset shows a significant imbalance, with the ‘other’ cat-

egory being the most frequent across all datasets. This could potentially bias the model

to predict ‘other’ more often, which might impact its performance on less frequent labels.

Despite the imbalance, the proportion of each label category remains relatively consistent
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across all three datasets. This consistency is crucial for model generalization, as it en-

sures the model is trained, validated, and tested under similar label conditions. It also

noteworthy to refer, given the imbalance, precision and recall may vary significantly across

categories. For labels with fewer instances, like the label ‘Subject’, even a small number

of misclassifications can cause a notable drop in performance metrics.

4.2 Systems Performance

System Type Model Precision Recall F1-score
Unsupervised Rule-based Syntactic Parsing 0.5447 0.5694 0.5502
Unsupervised GPT-4o 0.6833 0.7265 0.6801
Supervised BERT 0.6770 0.7213 0.6788

Table 4.1: Systems Performance

Table 4.1 showcases the performance metrics of all three experimented systems for SPO

label classification at the token level within conversational sentences. The unsupervised

rule-based syntactic parsing approach shows the lowest effectiveness, with a macro preci-

sion at 0.3380, a macro recall at 0.3139, and a macro F1-score of 0.3208, indicating a limited

ability to accurately identify SPO structures without supervised learning guidance. In con-

trast, the GPT-4o model performs significantly better, with a macro precision of 0.6833,

a macro recall of 0.7265, and a macro F1-score of 0.6801. This improvement suggests

that advanced language models like GPT-4o, through prompt-based learning, can effec-

tively capture the patterns needed for SPO classification even without explicit supervision.

Meanwhile, the supervised BERT model delivers similar performance to GPT-4o, with a

macro precision at 0.6770, a macro recall at 0.7213, and a macro F1-score of 0.6788. These

results demonstrate that GPT-4o performed the best among the models, with BERT’s

results closely following, suggesting that the difference between them is not significant.

To gain additional insights into the performance of the systems, particularly in terms

of the triples formed from token-level classifications as discussed in Subsection 3.2.1, we

can refer to Table 4.2. Syntactic Parsing appears to be the least effective of the three

models in accurately identifying structured relationships within the data. Although it

performs moderately well in capturing partial matches, with an F1-score of 0.3544, it

struggles significantly with full matches (F1-score of 0.0010) and Object matches (F1-score

of 0.0161), indicating a severe limitation in accurately identifying complete and correct
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Model Match Type F1-score
Syntactic Parsing

Full Match 0.0010
Partial Match 0.3544
Subject Match 0.2691

Predicate Match 0.1556
Object Match 0.0161

GPT-4o
Full Match 0.3594

Partial Match 0.6426
Subject Match 0.5863

Predicate Match 0.4307
Object Match 0.4347

BERT
Full Match 0.1406

Partial Match 0.5519
Subject Match 0.4666

Predicate Match 0.2524
Object Match 0.2098

Table 4.2: Evaluation of Triple Matching for Different Models

triples and in correctly classifying Objects within the triples. In contrast, GPT-4o is the

strongest model in terms of overall F1-scores across all match types. It performs best in

partial matches (F1-score of 0.6426) and also shows strong performance in Subject and

Object matches (F1-scores of 0.5863 and 0.4347, respectively), demonstrating a robust

ability to identify components of the triples even if the entire triple is not perfectly formed.

While not poor, its lowest performance is in predicate matches (F1-score of 0.4307), but it’s

still relatively strong compared to the other models. BERT is generally effective but not as

strong as GPT-4o. It shows good performance in partial matches (F1-score of 0.5519) and

Subject matches (F1-score of 0.4666), suggesting a competent ability to identify Subjects

and at least one other element of the triple correctly. BERT is weakest in Object matches

(F1-score of 0.2098) and full matches (F1-score of 0.1406), indicating challenges in fully

forming correct triples and identifying Object components accurately.

The differences in models’ performance across the two tables are primarily due to the

inclusion of the ‘other’ label in the classification evaluation, which is excluded in the triple

evaluation. Particularly, in Table 4.1, the models are evaluated including the ‘other’ la-

bel, which as already discussed in Section 4.1, is the most frequent label. So, it likely
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contributed significantly to the models’ overall performance metrics. This is because clas-

sifying a large portion of tokens as ‘other’ correctly would inflate the precision, recall, and

F1-scores due to the high prevalence of this label. Essentially, models get “rewarded” more

for correctly predicting a high-frequency class. In contrast, during the triple evaluation,

where only substantive SPO labels are considered, the exclusion of the ‘other’ label reveals

the models’ abilities to accurately identify and classify these more meaningful but less

frequent labels.

Additionally, applying the macro-average method in the classification task, rather than

in the triple evaluation, further explains the observed differences in performance metrics.

The macro-average approach ensures equal emphasis on all labels, even the infrequent

ones, whilst in triple evaluation which bypasses this averaging method, the focus is on the

model’s ability to precisely detect and classify specific SPO components, which results in

varied performance scores.

4.3 Error Analysis

Looking at models’ confusion matrices, we can derive some useful insights and understand

how well our models are predicting each class (Subject, Predicate, Object, and other).

The rows represent the actual (gold) labels and the columns the predicted ones, while the

values within the cells show how many tokens were classified as each label combination.

Rule-Based Syntactic Parsing Approach

Looking the confusion matrix (Figure 4.2) for the Syntactic Parsing approach, the model

has the highest misclassifications with ‘other’ predictions. Notably, ‘other’ is often confused

with ‘Object’. Also, the precision for detecting specific classes like ‘Predicate’ and ‘Object’

is notably low, as evidenced by significant numbers in off-diagonal cells where these are

confused with ‘other’. Finally, the label ‘Object’ has a comparatively better recall than

other categories, indicating that while the model can identify ‘Object’ labels, it struggles

significantly with ‘Subject’ and ‘Predicate’.

The model’s tendency to misclassify tokens as ‘other’ was anticipated, considering that

the rule-based approach processes and classifies every sentence without discrimination.

The model lacks the capability to distinguish between sentences that contribute valuable

information to Knowledge Graphs (KGs) and those that do not. This limitation, which
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Figure 4.2: The Confusion Matrix of the Rule-Based Syntactic Parsing Approach.

stems from the rule-based approach, results in treating all sentences the same way. Con-

sequently, the model struggles to handle specific cases like question-answer pairs discussed

in Subsection 3.1.4, contributing to the significant misclassification of tokens as ‘Subject’,

‘Predicate’, and ‘Object’ instead of ‘other’.

In the three examples below, we can see how the model classifies certain sentences within

the test dataset, highlighting its consistent errors. In particular, Example 1 involves a

question-answer pair within a conversation, where the answer is detailed and provides

substantial information. According to the guidelines outlined in Subsection 3.1.4, only the

answer should be annotated. However, the model incorrectly annotates both the question

and the answer. Furthermore, examples 2 and 3 show instances where the model mistakenly

annotates sentences that do not contain significant information relevant to enriching a KG.

These errors are just a few examples that contribute to the misclassifications mentioned

earlier.
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Example 1
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other
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Example 3
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:
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That

Subj

is

Pred
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Obj

start

Obj

.

other

BERT

Figure 4.3: The Confusion Matrix of BERT.

Unlike the Syntactic Parsing approach, the confusion matrix for BERT (Figure 4.3)

shows that its misclassifications are more balanced across different classes. BERT demon-
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strates high precision and recall for the ‘Predicate’ category, accurately identifying most

‘Predicate’ tokens with minimal misclassification into other categories. The ‘Object’ cate-

gory also performs well, especially in recall, as most ‘Object’ tokens are correctly classified.

Although some misclassifications occur, they are relatively minor compared to other cate-

gories, highlighting BERT’s strong capability to recognize objects. While BERT performs

adequately with ‘Subject’ tokens, there is noticeable confusion with ‘Object’ and ‘other’,

suggesting difficulty in distinguishing subjects from other sentence elements, particularly

objects. The classification of the ‘other’ category yields mixed results. Although many to-

kens are correctly identified, a substantial number are misclassified, indicating areas where

the model could benefit from additional refinement.

In the three examples below, we can see how BERT classifies in a token-level the same

sentences previously analyzed using the Syntactic Parsing approach. As noted earlier, the

misclassifications within the ‘other’ category are inconsistent. BERT misclassifies Exam-

ples 1 and 3, yet performs well in Example 2. Additionally, in Example 2, BERT has

difficulty correctly classifying the entire subordinate clause “Fasting during Ramadan” as

‘Subject’, reflecting the lower recall in the ‘Subject’ category, which is further evident in

its confusion matrix.
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GPT-4o

Figure 4.4: The Confusion Matrix of GPT-4o.

The confusion matrix of GPT-4o (Figure 4.4) shows strong diagonal dominance, indicat-

ing high accuracy in class predictions across all labels. The rates of misclassification are the

lowest among the three models, especially for ‘other’, which is a common misclassification

target in the other two models. GPT-4o shows also strong recall for the ‘Object’ category,

correctly identifying the majority of ‘Object’ tokens. This suggests that the model effec-

tively recognizes objects within sentences, likely due to distinct features it has learned to

identify. However, despite better overall performance, GPT-4o still faces challenges with

precision in the ‘Subject’ and ‘Predicate’ categories, with a significant number of tokens

intended as ‘Subject’ or ‘Predicate’ being incorrectly classified as ‘other’.

The three examples below illustrate that GPT-4o accurately classified each example,

showing its capability to effectively follow the annotation instructions and identify special

cases within the conversations.
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5

Discussion

Following the findings of the previous chapter, this chapter will discuss the limitations of

the current study, as well as ways for improvement as a future work.

5.1 Limitations

As discussed in Section 1.4, this study focuses on conversational triple extraction using

synthetic conversations related to Type 2 Diabetes management, with the goal of enabling

its use in natural ones. However, various limitations may have an impact on the study’s

generalizability and efficacy when applied to real-world conversations. Firstly, the synthetic

conversations generated for this study consist solely of well-formed, elaborate sentences

from the user’s (patient) side, that may not fully represent the spontaneous and often

fragmented structure of real human interactions. In real-world settings, we would expect

to see spelling errors, informal language, and sometimes grammatical mistakes, all of which

are typical in natural dialogues but absent from our synthetic ones. This may limit the

models’ ability to handle the wide range of conversational nuances found in real-world

conversations, potentially decreasing its usefulness in practical applications.

Secondly, considering that the CHIP collaboration targets patients in the Netherlands,

it would have been more suitable to work with Dutch-language conversations to better

reflect the desired user base. However, in this study, we chose the English language for the

generated conversations rather Dutch, due to the greater availability of resources and tools

for English natural language processing (NLP) tasks, as well as my lack of proficiency in

Dutch. This language choice, although practical, may limit the applicability of the findings
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to Dutch-speaking populations and may necessitate additional adaptations for effective use

in Dutch healthcare contexts.

Additionally, as discussed in Subsubsection 3.1.4.2, in contrast with the manually anno-

tated validation and test datasets, the training dataset was annotated by a large language

model (LLM) due to its large size and the time constraints of this study. The study’s

reliance on LLM-annotated data for fine-tuning the BERT model introduces a dependency

on the quality and accuracy of the language model outputs, which may carry inherent

biases or inaccuracies, thereby affecting the performance and reliability of the model’s pre-

dictions. Although one TNO expert and I reviewed a subset of the training set, the large

size of the dataset (approximately 3000 sentences) and the tight schedule of the current

study prevented a more thorough review.

Lastly, a notable limitation is the focus on token-level SPO label classification rather

than a comprehensive SPO triple extraction. By not directly extracting SPO triples from

conversations, we might have missed opportunities to develop models that more accurately

identify and interpret the interconnected structures of Subjects, Predicates, and Objects

as they naturally occur in dialogues, enriching the KG of the CHIP project.

5.2 Future Work

The future work is based on the findings from the results discussed in Chapter 4 and the

limitations in Section 5.1. As revealed by the error analysis in Section 4.3, there is a

consistent misclassification across all models with the label ‘other’. Given these misclassi-

fications and the class imbalance present in all datasets, it might be useful to investigate

what would be the systems’ performance if we excluded the label ‘other’ from the training

of BERT and from the evaluation process across all models. This exclusion could poten-

tially offer a clearer comparison between the systems’ performance as detailed in Table 4.1

and the triple evaluation results in Table 4.2 from Section 4.2. This kind of investigation

could clarify how effectively the models identify SPO elements in conversational sentences,

offering a more accurate measure of their actual performance.

Furthermore, as mentioned in Section 5.1, the annotation quality of the training dataset

could be misleading. Despite the initial review efforts, it might help to improve the annota-

tion quality of the dataset by incorporating sampling checking by human annotators. This

approach would make the annotations more accurate and reliable, which could enhance

BERT’s ability to classify token-level conversational sentences with SPO labels.
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While in this study the annotation schema is involving capturing special cases and

question-answer pairs in conversations, incorporating methods to handle linguistic phe-

nomena like anaphora and ellipsis which are prevalent in real conversations, could signifi-

cantly improve the model’s grasp of conversational context. Techniques such as coreference

resolution, which link different references to the same entity within a text, would help the

models maintain continuity and coherence over longer stretches of dialogue, potentially

leading to deeper and more accurate interpretations of conversations. In addition to that,

incorporating BIO labeling alongside SPO labeling in the annotation schema could im-

prove the model’s accuracy in identifying token roles. The BIO format, which marks the

beginning, inside, and outside of entity spans, is especially helpful in complex sentences

with multiple interacting entities. This combined labeling approach could clarify ambi-

guities from overlapping or embedded entities, enhancing the model’s ability to process

conversational data effectively.

Future research could also explore full SPO triple extraction by using existing tools

like REBEL or KnowGL, which are specifically designed for relational triple extraction

from text. These methods could help shift from token-level labeling to end-to-end triple

extraction, enabling a more complete representation of conversational semantics.
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6

Conclusion

The thesis aimed to determine the effectiveness of conversational triple extraction (CTE)

systems on synthetic data related to Type 2 Diabetes management. However, due to time

constraints, the scope was limited to token-level classification of synthetic conversational

sentences into Subject, Predicate, and Object (SPO) categories, an essential preliminary

step in building the SPO triples. The primary objectives were to investigate the necessary

properties that should be included to constructing effective and realistic conversations

related to Type 2 Diabetes management, to explore how generative methods can be used

to create and annotate these conversations, and lastly, find which method is most effective

in identifying and extracting triples from the generated conversations.

Initially, synthetic personas were created to reflect real-life Type 2 Diabetes patients.

Then, all the essential properties for constructing effective and realistic conversations were

identified and detailed in the Methodology chapter in Table 3.2. Generative methods

were explored and successfully applied to create and annotate with SPO labels, multi-

turn conversations simulating real-life interactions between these personas and a caretaker

agent. Both supervised and unsupervised systems were evaluated. Prompt-based learning

using GPT-4o achieved the highest performance being the most effective method for our

task, with BERT showing competitive results. The comparative analysis of these systems

offered key insights into their strengths and limitations, providing direction for future

applications and improvements in this field.

Overall, this thesis adds valuable knowledge to the intersection of artificial intelligence

(AI) and healthcare by demonstrating the potential of CTE systems on synthetic data

related to Type 2 Diabetes management. Future research should consider integrating more
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sophisticated natural language processing tasks such as anaphora and ellipsis resolution,

employing BIO alongside SPO labeling for greater precision, and advancing beyond token-

level classification to full triple extraction and validation within conversational contexts.
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Figure 6.1: The prompt for creating the persona descriptions.
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Example of a Persona Description

Your name is Fatima, often called "Fatouma" by your family, a 65-year-old Moroccan-

Dutch female. Born in Amsterdam, Netherlands, you currently reside in Rotterdam. Your

Moroccan heritage and Dutch nationality play a crucial role in defining your mixed cultural

roots. Born to Moroccan immigrant parents who moved to the Netherlands for work in

the 1950s, you have three siblings—two brothers and a sister. You are a mother to two

daughters and a son and have five grandkids whom you adore immensely. Both of your

parents had diabetes, and now you are a patient of Type 2 Diabetes yourself. Regarding

your physical characteristics and health, you are 5’4" tall with a body weight that fluctuates

between slightly overweight and obesity, a common issue among type 2 diabetes patients.

You have olive skin, deep brown eyes, and dark hair now sprinkled with grey, which you

usually keep wrapped in your favored headscarves. You have no tattoos or scars but do have

a heart-shaped birthmark on your right arm. Your general health has been somewhat com-

promised due to your ongoing strife with Type 2 Diabetes. You dress conservatively, often

opting for a hijab and long dresses, and pay special attention to comfortable shoes due to

occasional diabetic foot issues. Regarding your psychological and emotional profile, you can

be described as having a resilient and nurturing personality. You are generally optimistic

and extroverted but often get emotional when discussing your health. Diabetes has fortified

your patience as you deal with the daily routine of managing your illness. Your main fears

revolve around the potential complications of your disease and the fear that you might be a

burden on your family. Your ultimate goal is to manage your diabetes effectively to pursue

a healthy life. You find solace and strength in your faith, your family, and your favorite

pastime—gardening. You do not have any diagnosable mental health issues but do experi-

ence occasional anxiety related to your health condition. Regarding your professional and

educational background, you have a foundational education, having completed high school.

You worked as a cleaner for most of your life until retiring a few years ago. Diabetes has not

majorly affected your professional life as you were diagnosed after retirement. Apart from

Dutch, you are also fluent in Arabic and Berber, the languages you were brought up with at

home. You are known for your excellent cooking skills, especially Moroccan traditional cui-

sine. Regarding your social and cultural dynamics, you are a widow but maintain a strong

bond with your children and grandchildren. You are sociable and enjoy spending time with

your neighbors and a few close friends. Your faith and Moroccan roots greatly influence

your values, behaviors, and traditions, especially during festivities. However, because of
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your condition, you often find yourself modifying some food-related traditions. Your chil-

dren and siblings are your main source of support, and you also find comfort in your local

faith community. Regarding your lifestyle and daily routine, you are methodical and prefer

routines to manage your disease. You check your blood sugar regularly and are conscious

about meal timings and portions. You primarily consume a Mediterranean diet with a focus

on low glycemic index foods but do indulge in traditional Moroccan desserts occasionally.

You walk daily around your neighborhood, adoring the canals and windmills, although neu-

ropathy in your feet, a common complication of diabetes, sometimes limits your mobility.

Regarding your healthcare interactions and literacy, you have a cordial relationship with

your healthcare providers but heavily rely on your children during medical appointments.

You understand the basics of your disease but struggle with some of the complex medical

terminologies related to your condition. You try to remain positive through health setbacks,

with your faith and family acting as strong pillars of support. Regarding your economic and

environmental factors, being retired, you have a fixed income which can sometimes make

handling the financial burden of your disease challenging. You live in a comfortable urban

setting in Rotterdam and do not experience significant environmental stressors. Access to

healthy food options and healthcare facilities is good but could be negatively impacted by

your limited financial resources. Regarding your communication, decision-making, and le-

gal aspects, you are open to candid conversations about your health but often rely on your

children to make significant health-related decisions. With limited formal education, your

knowledge about patient rights and healthcare laws is minimal, relying heavily on your chil-

dren for understanding the legal aspects of your healthcare. Regarding technology, cultural

competence, and support networks, you are not tremendously comfortable with new tech-

nology. You use a basic cell phone and rely on your children for any technical needs. Your

healthcare providers are culturally competent, ensuring comfortable interaction due to their

multilingual skills, which include Dutch and Arabic. In addition to your family, you find

immense support in your small circle of friends and your faith community. You are not

part of any online community or support group.
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Figure 6.2: Conversations Generation: System Prompt

Figure 6.3: Conversations Generation: Agent Prompt
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Figure 6.4: Annotation Instructions
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Tokens (Sent. 1) Annotator 1 Annotator 2 Annotator 3
‘Diabetes’ ‘Subject’ ‘Subject’ ‘Subject’

‘can’ ‘Predicate’ ‘Predicate’ ‘Predicate’
‘cause’ ‘Predicate’ ‘Predicate’ ‘Predicate’
‘nerve’ ‘Object’ ‘Object’ ‘Object’

‘damage’ ‘Object’ ‘Object’ ‘Object’
‘known’ ‘Object’ ‘Object’ ‘Object’

‘as’ ‘Object’ ‘Object’ ‘Object’
‘peripheral’ ‘Object;Subject’ ‘Object;Subject’ ‘Object’
‘neuropathy’ ‘Object;Subject’ ‘Object;Subject’ ‘Object’

‘,‘ ‘other’ ‘Object’ ‘Object’
‘which’ ‘other’ ‘Object’ ‘Object’
‘often’ ‘Predicate’ ‘Object;Predicate’ ‘Object’
‘affects’ ‘Predicate’ ‘Object;Predicate’ ‘Object’

‘the’ ‘Object’ ‘Object;Object’ ‘Object’
‘feet’ ‘Object’ ‘Object;Object’ ‘Object’
‘.’ ‘other’ ‘other’ ‘other’

Tokens (Sent. 2) Annotator 1 Annotator 2 Annotator 3
‘P’ ‘other’ ‘other’ ‘other’
‘:’ ‘other’ ‘other’ ‘other’
‘I’ ‘Subject’ ‘Subject’ ‘Subject’

‘have’ ‘Predicate’ ‘Predicate’ ‘Predicate’
‘been’ ‘Predicate’ ‘Predicate’ ‘Predicate’
‘facing’ ‘Predicate’ ‘Predicate’ ‘Predicate’
‘some’ ‘Object’ ‘Object’ ‘Object’

‘discomfort’ ‘Object’ ‘Object’ ‘Object’
‘in’ ‘Object’ ‘Object’ ‘Object’
‘my’ ‘Object’ ‘Object’ ‘Object’
‘feet’ ‘Object’ ‘Object’ ‘Object’

‘recently’ ‘Object’ ‘Object’ ‘other’
‘.’ ‘other’ ‘other’ ‘other’

Table 6.1: Examples of Human-Annotated Sentences
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Figure 6.5: Training Dataset Annotation: Prompt

Trial Number Learning Rate Batch Size Train Loss F1 Score Best
0 1.976e-05 1 0.3098 0.7537 No
1 6.101e-05 1 0.3024 0.7505 No
2 0.0009985 1 1.2785 0.1607 No
3 2.791e-05 8 0.4916 0.7270 No
4 0.0003127 1 1.2761 0.1607 No
5 0.0006473 8 0.6048 0.1607 No
6 0.0004410 1 1.2764 0.1607 No
7 4.124e-05 16 0.6036 0.6520 No
8 2.209e-05 1 0.2917 0.7563 Yes
9 5.767e-05 8 0.4122 0.7378 No

Table 6.2: Optuna Trials and Results
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