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Abstract

In today’s fast-paced environment of the hospitality sector, reliable IT services

are critical to keep customers satisfied and operations running smoothly. In

this setting, anomaly detection has received much attention in recent years.

In order to prevent software system failures, the key is to integrate tools that

control and monitor the IT system’s behavior. However, the industry’s inher-

ited seasonality and unpredictable demand changes make effective IT system

management challenging. This study provides evidence of an advanced auto-

matic detection of seasonal patterns and detection of anomalies in hospitality

IT time series data, transitioning away from a reacting approach toward proac-

tively avoiding them. Our framework leverages time series analysis and machine

learning methods to identify repeating patterns and detect anomalous events

in operational data extracted by advanced hospitality IT systems. The results

validated the model’s performance on synthetic time series data, proving that

it can correctly identify seasonal patterns, and detect potential anomalies. Key

findings highlight the need to consider seasonality as a starting point, which

enhances anomaly detection recall and overall performance. The findings of

this study have important implications for IT management in the hospitality

domain, providing a scalable solution to increase service reliability and ele-

vate the client experience. The framework paves the door for more complex

automated IT management, allowing hospitality businesses to anticipate and

respond to changing business demands with better precision and agility.
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1

Introduction

There has never been such an information explosion as witnessed in the current digital

age. Data generation has increased dramatically as a result of the development of sensors,

mobile phones, and various cloud-based systems, including those used in cars and home

appliances. Several things we utilize on a daily basis, such as the smartphones we carry

around in our pockets, are continuously generating data. However, the true driving factor

behind this boom isn’t solely how easy it is to acquire these digital assets—rather, it’s

the increasing importance of data analysis and the automated processes these analytics

create. Such technological advancements have driven businesses’ reliance on advanced IT

systems (1), centering their operations on collecting, processing, and leveraging data to

drive decision-making.

The hospitality industry, in particular, has actively embraced Information Technology

(IT) systems to streamline operations. This sector heavily relies on technologies such as

Property Management Systems (PMS),(2) (3), which manage everything from reservations

to customer data and communication between various systems. Guests visit hotels for a

variety of reasons; therefore, hotels gather data to help them make data-driven decisions.

The growing number of guest data, alongside hotels operating around the clock, hampers

decision-making and poses a challenge for hotel chains seeking to improve customer sat-

isfaction while optimizing their processes. Thus, this infrastructure requires continuous

monitoring using the generated data, particularly when it comes to time series data. Due

to the middleware solution, businesses can monitor and analyze the frequency of API calls

to a specific system (i.e., a payment system) over a defined period. The massive volumes of

data make it impossible to extract meaningful information without the help of automated

solutions and may even result in the risk of hampering monitoring tasks as data processing

and analysis take too long.
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1. INTRODUCTION 1.1 Anomalies and Seasonality

In this setting, both seasonality and anomaly detection emerge as tools to monitor these

systems’ behavior and keep track of irregularities over time. Businesses may apply mathe-

matical algorithms to evaluate patterns in data at group and/or individual levels to identify

deviations from the expected behavior (4). This process is particularly useful for hotels

where system failures, such as check-in and out issues, can negatively affect the experi-

ence of visitors. Identifying and resolving issues promptly improves operational efficiency

and prevents further decreases in client satisfaction. Effective decision-making and quick

resolving issues are essential for building long-lasting connections with visitors.

Undoubtedly, both seasonality and anomaly detection have lately received substantial

research attention, yielding insights with a wide range of possible applications. Besides

hospitality, seasonality detection is beneficial in a range of areas, including supply chain, as

it helps organizations optimize inventory levels and minimize costs (5). Similarly, anomaly

detection is beneficial in a variety of scenarios. For example, in Financial Services, it assists

in monitoring spending trends for fraud detection (6), in Healthcare, it tracks patient

information and alerts professionals to potential health emergencies (7), and in Network

Security (8), it detects any suspicious network activity that could lead to a cyber-attack.

1.1 Anomalies and Seasonality

Anomaly detection is not an innovative concept. Its research goes back to the 18th

century, when, in 1777, Bernoulli commented on the common method of neglecting outlier

data when no prior knowledge was available (9). The important point is to deliver a

formal definition of the concept of anomaly. This is essential because different definitions

of anomalies imply varying methods to detect them. The most common definition of

anomalies is the following:

“Anomalies are patterns in data that do not conform to a well-defined notion

of normal behavior.” – Chandola et al. (10)

In our context, we can describe the anomaly in time series data as the data point(s) (or

observations) at time step(s) that differ significantly from previous time steps. Following

that, we classify the types of anomalies related to time series data as follows: point

anomalies, contextual anomalies, and collective anomalies (11).

A point anomaly is a data point or a sequence that significantly deviates from the

norm. Such anomalies may appear to be temporal noise and are often caused by sensor

errors or abnormal system operations. For detection, operators traditionally set upper

2



1. INTRODUCTION 1.1 Anomalies and Seasonality

and lower control limits, commonly referred to as UCL and LCL, respectively, based on

historical data. Values that exist outside those limits are regarded as point anomalies.

A sequence of data points may be classified as anomalous even if individual points are

not. For example, a low number of web accesses might be normal during night hours

but abnormal during the day. Such anomalies are called Collective anomalies. The

third type is called contextual anomalies, where some points can be normal in a certain

context while detected as an anomaly in another context. This study predominantly focuses

on point and collective anomalies because they occur frequently in the given dataset and

have a direct influence on operational efficiency. Figure 1.1 below illustrates three types of

anomalies commonly observed in time series data.

Figure 1.1: Types of Anomalies

Even though numerous businesses are heavily investing in data collection (12) and anal-

ysis to identify anomalous patterns in order to serve their customers better, the majority

of the data is in the form of streaming time series, which are characterized by seasonality,

trend, and noise, making accurate anomaly detection a challenging task.

Seasonality is defined as a periodic fluctuation in data values that occurs at regular and

predictable times of the year, known as seasons. Seasonality in the hospitality sector is an

important element that occurs through the days, weeks, and months. Poor understanding

of seasonal trends would have an impact on hotel operations, particularly if increased

demand could not be predicted during peak seasons such as summer. This would result in

lacking customer service, lengthy lineups, and poor client satisfaction. Unlike longer-term

trends, which can last for a longer length of time, seasonal patterns often recur at short

specified intervals, such as days, weeks, months, or quarters. The hospitality industry is an

ideal representation of seasonality, involving daily customer check-ins and check-outs. A

hotel enables customers to check in and out at particular times during the day. Customers,

for example, can check out between 11:00 and 12:00 and check in between 16:00 and 17:00.

This is not an arbitrary pattern, but rather a pattern based on the operational hours of

each hotel, which determine peak hours. This consistent timing might be considered a

seasonal pattern because it repeats regularly and becomes highly predictable.

3



1. INTRODUCTION 1.2 Research questions

This restriction provides a significant challenge for hotel chains since changes in client

behavior typically result in changes in the data. Anomaly detection evolves into more

than just a necessity; it is a critical component of excellence in operations, enhancing

client satisfaction. A wide range of strategies for anomaly detection have lately been stud-

ied, ranging from classic statistical methods (13), (14), to sophisticated machine learning

algorithms (15). However, many people overlook the importance of seasonal trends, which

are especially noticeable in the hospitality domain. There is still a gap in effective anomaly

detection in the extremely dynamic and seasonal environment of hotel enterprises. Thus,

this research gap emphasizes the importance of building a robust anomaly detection sys-

tem capable of reliably identifying seasonal time series while maintaining sensitivity to real

anomalies.

1.2 Research questions

IreckonU’s current anomaly detection module uses the Moving Average (MA) method as

a time series forecasting model. While this model works well and provides accurate forecasts

for the time series data at a constant level, it does not account for seasonal patterns. Our

primary goal in this study is to identify seasonal patterns in the data and implement

the most appropriate forecasting technique, focusing on maximizing the detection of true

anomalies and ensuring applicability in the hospitality domain. Therefore, the following is

our primary study question:

RQ1: How does accounting for seasonality improve the recall and performance of iden-

tifying anomalies in time series data?

Three sub-questions arise from this research question, which are formulated as follows:

SQ1: What are the most effective statistical methods and machine learning algorithms

for identifying seasonal patterns and anomalies in time series data?

SQ2: How to handle anomaly detection in seasonal time series?

SQ3: How can the identified statistical methods or machine learning algorithms for

seasonality and anomaly detection be implemented in practice, considering computational

efficiency, scalability, and interpretability?

Developing an effective seasonality and anomaly detection system in today’s data-driven

world faces many key challenges. As data volumes grow dramatically, scalability presents

as one of the main issues, making traditional methods like distance-based approaches

4
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inefficient and slow. Managing these databases is essential, or we run the risk of missing

important information because of insufficient computational capacity (5). A second, related

difficulty brought about by the acceleration of data generation is to obtain adequately

labeled datasets. This emphasizes the importance of techniques that produce satisfactory

results even in the absence of labeled data i.e., in an unsupervised manner. Third, systems

must be both accurate and fast, demanding computing efficiency to immediately respond

to incoming data.

These issues are especially apparent in the hospitality industry’s IT infrastructure, which

generates massive amounts of guest data, particularly during peak seasons. The vast range

of generated data, from customer reservations to transactions, makes it challenging to

maintain accurate and up-to-date labeled datasets for model training. Furthermore, the

creation of a fast and reliable system is critical since the hotel industry operates around

the clock, and the ability to detect and handle anomalies promptly has a direct influence

on overall business efficiency. In addition, a white-box approach is crucial since it provides

a simple and straightforward framework for non-technical IT domain experts, resulting in

quicker acceptance.

In light of the need for an anomaly detection module that accounts for seasonality, this

research paper wants to develop a sophisticated method that is characterized by its ability

to function effectively within the dynamic context of hospitality technology, addressing the

current limitations and challenges while aligning with the following main characteristics:

1. Is unsupervised

2. Accounts for seasonal patterns

3. Scales to process large amounts of data

4. Easy explainable (White box)

5. Incorporate Confidence Prediction intervals (CPI)

This thesis project makes significant contributions by addressing a crucial gap in anomaly

detection for seasonal time series data within the hospitality industry. Specifically, it in-

troduces and implements the SQR-AD algorithm, a seasonality-aware anomaly detection

framework designed to address the challenges of unsupervised time series data. The main

contribution of this research is an extension of the published research (16) to include a

mechanism for seasonality detection into anomaly detection for IreckonU, setting a new

standard for future developments in hospitality IT infrastructure. Through its methodology

and empirical validation, this research demonstrates the critical importance of adapting

to seasonal patterns in dynamic data environments, making a substantial technical and

practical advancement in the field.

5



1. INTRODUCTION 1.3 Structure

1.3 Structure

The structure of this report is as follows. First, an overview of previous research studies

is given in Chapter 2. It will include details about anomaly detection methods and how

they were used in prior research. Secondly, Chapter 3 offers a detailed overview of the

dataset along with pre-processing and key visualizations. Thirdly, Chapter 4 delves into

the foundational theory of time series and the algorithms employed, establishing the frame-

work for this research. After that, Chapter 5 discusses the experimental design, including

performance metrics and hyperparameter tuning processes. A summary of the findings

from the tasks of seasonality, anomaly detection, and data similarity assessment is given

in Chapter 6. Finally, Chapter 7 outlines the study’s limitations and provides suggestions

for future research.

6



2

Related Work

This section examines current anomaly detection approaches, with an emphasis on time

series forecasting techniques and cutting-edge models. It examines the evolution of these

methods, their practical uses, and inadequacies, highlighting the need for a new strategy

capable of effectively addressing the unique issues related to time series data, particularly

in scenarios with seasonal patterns.

A.Evolution of Anomaly Detection Techniques

The field of anomaly detection has advanced significantly from simple statistical ap-

proaches to complicated machine learning and deep learning approaches. Several such

methods are statistically rooted in the seminal publication of Hawkins’ study on outlier

detection (17). However, these traditional approaches frequently presume static data dis-

tributions, rendering them unsuitable for dealing with the seasonal trends in time series

data. The area of anomaly detection is wide and includes a variety of classification frame-

works intended to handle its different approaches and scenarios. A commonly accepted

categorization, as explained in (18), is based on the level of supervision needed by the

method: supervised, versus unsupervised.

Labeled data is not required for unsupervised learning techniques like clustering algo-

rithms (e.g., K-means, DBSCAN). These methods identify anomalies by identifying data

points that are distant from clusters or occur exclusively in sparse areas of the dataset (19).

While these strategies may be useful, they neglect seasonal variations in time series data,

resulting in incorrect classification. Instead, supervised machine learning approaches use

labeled datasets to train models and detect irregularities using classification models such

as Support Vector Machines (SVM), decision trees, and artificial neural networks (20).

7



2. RELATED WORK

Such approaches produce higher accuracy results, but they rely largely on the existence of

labeled data, which can be costly and time-consuming to obtain.

Recent improvements in transformer-based models have resulted in powerful methods

for detecting anomalies in time series data. For example, the Anomaly Transformer (21)

employs attention mechanisms to successfully capture both long-term and short-term de-

pendencies in temporal data, resulting in cutting-edge performance across many bench-

marks. However, these developments frequently need significant computational resources,

which might limit their applicability in situations requiring low latency or operating within

resource limits, such as hospitality IT systems.

B.Prediction-Based Techniques

Prediction-based anomaly detection is especially useful for time series data since it in-

volves predicting future values and identifying anomalies based on deviations from these

predictions. These approaches are ideal for tracking system performance because they can

adapt to shifting patterns. There are two related studies found, both detecting anomalies

using time series forecasting.

Shirani et al. (22) used the ARIMA (Autoregressive Integrated Moving Average) model

to build a predictive model on web service data and estimate the next time step. A

Prediction Confidence Interval of 95% was used to compare the prediction errors, which

correspond to the differences between the predicted and actual values. In other words,

if the estimated prediction error exceeded the PCI threshold value, that data point was

marked as an anomaly. This approach was extremely accurate, with a 97.3% positive rate

and a false positive rate of 0.0154. However, ARIMA’s power, specifically its inability to

manage overlapping seasonal patterns, makes it less useful in highly seasonal sectors such

as hospitality.

A similar study by He and Zhao et al. (23) established a Temporal Convolutional Net

(TCN)-based model that very successfully represents time series data using convolution

neural network architecture. This method outperforms conventional methods in terms of

accuracy and efficiency. The TCN model enhanced precision by detecting anomalies using

reconstruction errors, attaining scores of 0.946, 0.880, and 0.800 for beta values of 0.1, 0.05,

and 0.05, respectively. Regardless of its capabilities, TCN’s reliance on precisely calibrated

thresholds limits its flexibility in contexts with highly variable seasonal components.

8



2. RELATED WORK

C.Advanced Deep Learning Techniques

Deep learning techniques can enhance anomaly detection by addressing non-linear inter-

actions and complex data patterns. Munir et al. (24) developed DeepAnT, an unsupervised

deep learning method for identifying anomalies in time-series data, which may be used in

non-streaming scenarios. DeepAnT’s architecture consists of two modules: a time series

predictor and an anomaly detector. The time series predictor module ought to predict

the next timestamp on the specified horizon (used as a context) by using the deep con-

volutional neural network (CNN). This predicted value is then passed into an anomaly

detection module, which classifies the relevant timestamp as normal or abnormal. Deep-

AnT is a deep learning model that detects point and contextual anomalies in time series

data with periodic and seasonal patterns.

Recent advances in anomaly detection include hybrid models, which integrate neural

networks with statistical approaches to improve accuracy and flexibility. In her paper,

Farzaneh Khoshnevisa (25) employs the Robust Seasonal Multivariate Generative Adver-

sarial Network (RSM-GAN) to address noise and seasonality challenges associated with

high-dimensional data. This model extends GANs with convolutional-LSTM layers and

attention mechanisms, capturing temporal and spatial relationships while dealing with data

contamination. RSM-GAN leverages adversarial learning to accurately capture temporal

and spatial dependencies in the data, while simultaneously training an additional encoder

to handle training data contamination. The attention mechanism in the recurrent layers

of RSM-GAN enables the model to adjust complex seasonal patterns observed in the data.

The comparison with other existing classical and deep-learning AD models shows that this

architecture is associated with the lowest false positive rate and improves precision by 30%

and 16% in real-world and synthetic data, respectively.

D. Gaps and Opportunities

Despite recent significant advances in anomaly detection, fundamental obstacles remain.

Seasonality is frequently overlooked within existing strategies, particularly in unsuper-

vised environments, and computational efficiency is often inadequately addressed. This

constraint is especially relevant in businesses like hospitality, where anomalies fluctuate

dramatically as time period changes. To overcome these limitations, we want to develop

a robust seasonality-aware anomaly detection model in an unsupervised setting, ensuring

better flexibility and reliability.

9



3

Data Insights and Visualization

Having an extensive knowledge of the dataset of interest is the first, and the most crucial

step towards developing a model that is meant to act. Every dataset is different, and

figuring out which model works best depends a lot on understanding what makes each

dataset unique. The following chapter provides a full description of the dataset, includ-

ing its structure and data preparation, as well as emphasizing significant findings from

exploratory analysis. This effort sets the framework for the research’s later phases.

3.1 Data Description

This dataset, provided by IreckonU, is a collection of API call logs all derived from a

cloud environment. An API call is a request to deliver or receive data from one software

program to another software program. In our dataset, there are a total of 175,809 rows

and 8 columns representing various actions performed across various systems. The details

of each dataset’s column are as follows:

1. Category: Every entry is classified under the ‘Cloud’ category, denoting that the

interactions are based on cloud technology.

2. System: This column identifies the specific system within the IT infrastructure

targeted by the API call. The dataset includes seven distinct systems, that could

represent property management systems (PMS), customer relationship management

(CRM), and kiosk among others.

3. Action: Specifies the type of API request or action performed. There are 23 unique

actions listed, including ‘Check-in’, ‘Check-out’, ‘Create Reservation’, ‘Update Pro-

file’, and ‘Check Availability’, which are vital for regular hospitality operations.

10



3. DATA INSIGHTS AND VISUALIZATION 3.1 Data Description

4. TimeStamp: Records the date and time when the API call was executed.

5. Timespan: Indicates the duration for batch API calls, set at ‘00:05:00’.

6. AvgDuration: Measures the average time taken for the API Calls documented in

each entry, expressed in milliseconds.

7. SuccessCount: Quantifies the number of successful API calls.

8. ErrorCount: Measures the amount of failed API calls, which might provide useful

information about potential issues with the back-end system.

The time series data spans from 2023-02-11 17:00:00 until 2023-04-12 20:30:00 with

a 5-minute time interval. Three columns are of integer type, reflecting numerical values,

the AvgDuration, SuccessCount, ErrorCount. Five columns are object types including

Category, System, Action,TimeStamp, Timespan. The dataset captures interactions among

multiple systems and their accompanying actions, including timestamps, average durations,

success, and error counts.

For instance, on timestamp 2023-02-11 17:00:00, three distinct records highlight ac-

tivities involving two systems : System1 and System2 and three different actions: Action5,

Action6, and Action8. Specifically, System1 executed two different actions: Action5 and

Action6 at the specified timestamp. Action5 had an average duration of 33 milliseconds,

yielding two successful calls with no mistakes. In contrast, Action6, also on System1,

completed more quickly in just 13 milliseconds, but achieved a higher success count of 5,

indicating perhaps a more efficient or simpler task, also without errors. On the other hand,

System2 engaged in Action8 at the same time but took considerably longer, 689 millisec-

onds, to complete with only 2 successes, suggesting a more complex or resource-intensive

task. The illustration 3.1 below shows how actions within the same or distinct systems can

vary significantly in duration and efficiency, providing insight into operational dynamics.

Figure 3.1: Dataset snapshot

11



3. DATA INSIGHTS AND VISUALIZATION 3.2 Data Preparation

3.2 Data Preparation

A time series analysis requires careful and consistent data preparation. Data integrity

and continuity should be our primary goal, ensuring that missing timestamps are detected

and proper imputation techniques are provided. Missing values in our dataset correspond

to the cases where no actions were performed. In order to do that, we start by determin-

ing the earliest timestamp: February 11, 2023, 17:00:00 and the latest timestamps:

April 12, 2023, 20:30:00 to establish the whole time period that our dataset should

span. We utilize the pandas DataFrame library to determine the total 5-minute periods

in this timeframe. Since events are captured every 5 minutes, we anticipate 17,323 unique

timestamps.

Furthermore, it is critical to establish the number of time series related to each variable.

For those mentioned above, we identify every potential pairing of System and Action in our

dataset, each representing a distinct time series. There are a set of 23 possible combinations

for each of the three numerical variables. Examples of such combinations include (System1,

Action1), (System2, Action8), and (System5, Action17) among others. Notably, System3

does not account for any action. Table 8.1 thoroughly analyzes each pair’s present and

missing timestamps. In this table, the ‘MissingTimestamps’ column indicates the difference

between the expected and present timestamps, highlighting the number of timestamps that

were not recorded for each pair.

3.2.1 Handling Missing Data

Missing data must be handled cautiously in time series analysis since it could threaten the

dataset’s integrity and introduce biases into the models. In this study, when a timestamp is

missing, the AvgDuration variable is assigned to the NaN value, indicating that no activity

was recorded at the specified timestamp. We use the NaN value to guarantee that the

absence of data cannot be interpreted as a zero-duration event. Assigning a zero value in

place of NaNs may provide the misleading impression that an API request was performed

and finished immediately, introducing significant bias into the study. The dataset lacks

regular patterns for NaN records, making it difficult to assess their relevance or causes

across time.

In contrast, variables such as SuccessCount and ErrorCount are imputed with zero val-

ues, indicating that no events, either success or error, occurred during the missing time

period. The Timespan column is uniformly set to ‘00:05:00’ for consistency across all

timestamps, representing the intended recording interval. This method is executed for
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all unique System-Action combinations, resulting in a rebuilt dataset with no gaps in the

timestamp records.

3.2.2 Data aggregation

After imputing the missing values of our dataset the pre-processing continues with a data

aggregation process. Data aggregation is an important step in time-series studies that aims

to simplify data patterns, reveal long-term trends, and reduce the noise created by short-

term variations. This study reformatted an initial 5-minute dataset into three broader

intervals: 30 minutes, 1 hour, and 1 day. This transformation involved reformatting the

TimeStamp column to group consecutive 5-minute entries into unified time frames (e.g.,

30-min), ensuring a coherent and structured representation of temporal activity. Each

record had a System and Action ID (i.e. System1-Action5 ) that was linked to it and

remained with it during the merging process. We were able to represent every possible

combination of System and Action within each aggregated time period by taking the IDs

and using the TimeStamp (i.e. 12/04/2023 1:30:00 PM ) column to match them with the

data. Consequently, each System-Action pair was treated as a distinct time series, enabling

a detailed exploration of trends and patterns across multiple aggregation levels without

altering the dataset’s foundational structure.

The initial approach was to sum the successful and unsuccessful calls of each timestamp

into a single TotalCalls variable, which essentially encompasses the overall activity level

in a given time period (1 hour, etc.). The two initial variables recording the successful

(SuccessCount) and failed (ErrorCount) API calls, were renamed to TotalSuccessCount

and TotalErrorCount to highlight that these variables are aggregated after processing.

These renamed metrics now provide cumulative totals for successful and unsuccessful calls

within each granularity level.

The procedure also produces the WeightedAvgDuration column, which provides an ac-

curate and relevant picture of the third variable, AvgDuration. This is accomplished by a

weighted average technique, with weights determined by TotalCalls variable—the sum of

successful and error counts for each group. Using this method, times of higher activity,

which suggest greater volumes of data and more dependability, have a stronger effect on

the final value. For each group, the non-missing (i.e., non-NaN) AvgDuration values are

multiplied by their respective TotalCalls, and the resulting products are summed together.

This amount is then divided by the total number of calls in that group, assuming that

the sum of TotalCalls is not zero. When no requests for the API occur during the time
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frame specified, the value is set to NaN. This strategy avoids distortions that would arise

if all durations were weighted identically, ensuring that the aggregated number accurately

reflects both the degree of activity and the relative importance of each time period.

Figure 8.7 shows how individual durations are aggregated into a single weighted average

for the specified time period. Mathematically, the method is articulated as:

WeightedAvgDuration =

∑n
i=1(AvgDurationi × TotalCallsi)∑n

i=1 TotalCallsi
(3.1)

where:

• n is the number of time periods or entries considered.

• AvgDurationi is the average duration for the i-th time period or entry.

• TotalCallsi is the total number of calls for the i-th time period or entry.

Several important considerations influenced the choice to aggregate the data. The initial

5-minute dataset was extremely detailed, recording even little fluctuations that introduced

significant noise into the data. While this granular data may be useful for specific analysis,

it tends to add significant noise, as the short-term variations obscure the systemic tenden-

cies to which we are ultimately trying to respond. Moreover, the enormous amount of data

generated was computationally expensive and introduced complexity in modeling and an-

alytic processes. By aggregating the data over larger time durations, the noise is reduced,

more meaningful trends emerge, and fewer changes within a short term make it easier to

control and analyze. Given that most time series of the TotalErrorCount recorded zero

errors, we focused on TotalSuccessCount and WeightedAvgDuration at 30-minute, 1-hour,

and 1-day levels to identify the best degree of aggregation. This method allowed us to

establish a balance between clarity and detail, enhancing our ability to recognize patterns

and anomalies.

3.3 Exploratory Data Analysis

In this phase, the exploratory data analysis (or EDA) will highlight the important as-

pects of our various aggregated datasets. Our main objective is also to select the best

dataset for in-depth analysis. This process provides a strong base for our future modeling

endeavors. To analyze the impact of different aggregation levels, we visualized the key

variables: TotalSuccessCount and WeightedAvgDuration for System6-Action22 using line

graphs. These visualizations were generated for the initial 5-minute detailed dataset and
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each of the three aggregated datasets: 30 minutes, 1 hour, and 1 day. The line graphs for

TotalSuccessCount (Figure 3.2) and WeightedAvgDuration (Figure 3.3) revealed the effect

of varying aggregation granularities on the representation of patterns and deviations.

Figure 3.2: Line Graphs of TotalSuccessCount for 5-min, 30min, 1-Hour, and 1-Day Datasets
(System6-Action22)

Figure 3.3: Line Graphs of WeightedAvgDuration for 5-min, 30-min, 1-Hour, and 1-Day
Datasets (System6-Action22)
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The 30-minute and 1-hour datasets demonstrate variability during normal business op-

erations, with comparable behavior across time and both upward and downward trends.

While the 30-minute dataset is more detailed, it also contains more noise, making it more

difficult to detect important seasonal changes. Having additional data points complicates

the analysis, making it difficult to decide which features are worth investigating. On the

other side, the 1-day dataset provides a broader view showing major patterns, but it masks

finer details and variability.

The boxplots in Figure 3.4 show how TotalSuccessCount and WeightedAvgDuration are

distributed among different systems, using a logarithmic scale used to emphasize varia-

tions in each aggregated dataset. The 1-hour dataset serves as a middle ground, striking a

balance between the detailed, noisy 30-minute dataset and the too-generic 1-day dataset.

It reduces noise and minor fluctuations observed at 30-minute intervals while preserving

enough granularity to identify major operational trends and anomalies. In addition, utiliz-

ing a 1-hour aggregation reduces sensitivity to short-term deviations that may arise during

shorter time periods. That is very useful for focusing on long-term trends rather than

reacting to possible misleading short-term fluctuations. A sudden surge in call volume in

30 minutes may not look as substantial as it would in an hour, for example.

Figure 3.4: Boxplots of TotalSuccessCount and WeightedAvgDuration Across Systems for
30min, 1-Hour, and 1-Day Datasets on log Scale

In a nutshell, selecting the 1-hour dataset for subsequent analysis was a prudent choice.

With fewer data points to evaluate, it minimizes excessive noise and computational com-

plexity yet offers sufficient granularity to reveal crucial operational insights and trends.
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This approach offers an extensive and insightful investigation, providing a solid basis for

understanding and forecasting the behavior of the system under study.

3.4 Selected Dataset Insights

After concluding the dataset preparation and carrying out exploratory data analysis, the

focus shifted to our selected 1 hour dataset for further analysis, which consisted of 1,444

timestamps for each pair. This dataset was analyzed using plots and descriptive statistics.

3.4.1 Descriptive Statistics

The dataset reveals significant differences in System-Action efficiency. The pair (or time

series) with the greatest overall call volume is System4 - Action11, which recorded 2,072,001

calls, highlighting the importance of operations in IT hospitality systems. System4-Action9,

on the other hand, got the lowest number of API calls (980), indicating that it is rarely

utilized. Execution times also exhibited significant differences. System4-Action10 had the

longest average duration of 380,677.54 milliseconds, most likely owing to its participation in

complicated operations including sophisticated booking management with significant cus-

tomer service demand. System1-Action3 had the shortest average execution time of only

0.35 milliseconds, indicating that it is associated with simpler processes such as regular

check-outs.

Regarding the TotalSuccessCount, System4-Action11 had the highest average success

rate (1,434.89) and the most successful tasks (16,113). This demonstrates its capacity

to handle large task quantities efficiently. In contrast, System1-Action4 and System4-

Action14 had the lowest success rates, with average success counts of only 0.75, indicating

occasional successful task results. Errors in the TotalErrorCount were relatively infrequent,

with an average error count of zero across most combinations. The maximum known

error count for any pairing was 249. However, this level was rarely achieved, indicating

the systems’ general reliability. The bar chart 3.5 provides a visual representation of the

number of successful API Calls across different systems. Each bar corresponds to a system,

and the length of the bar indicates the total number of successful outcomes recorded by

that system.
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Figure 3.5: Total Success Count box plots by System

3.4.2 Distribution Analysis

Understanding the data distribution of our selected dataset (1 hour) is a critical step

toward understanding the behavior of the variables under study and creating an accurate

simulation model. Plotting histograms of each variable for all time series as illustrated

in Figure 3.6 for the TotalSuccessCount variable and in our Appendix (Figure 8.1 and

Figure 8.2) for the rest variables reveals some noteworthy patterns. The histograms are

predominantly right-skewed, with many low activity counts and few high counts, showing

that the majority of combinations do not follow a normal distribution. The distribution

varies between System-Action pairings, with some showing large variations in action counts

and others being more stable. Furthermore, many combinations have high zero counts,

indicating no successful actions, which is frequent in event-driven systems.

In order to ensure the creation of an accurate simulation model, we used the Kolmogorov-

Smirnov (KS) test to analyze and match the dataset to an acceptable probability distri-

bution. This non-parametric test compares the sample’s empirical distribution to a known

probability distribution by determining the largest absolute difference between their cu-

mulative distribution functions (CDFs). A low KS statistic value shows that the selected

distribution closely matches the actual distribution of the data, implying that the theoret-

ical distribution fits well and can be used for further research, or simulation.

In our study, we examined different distributions to accurately model our data, including

Normal, Log-Normal, and Poisson due to each right-skew characteristic. The Maximum

Likelihood Estimation (MLE) was employed to estimate the distribution parameters of the

TotalSuccessCount variable, which consists of discrete values. Interestingly, as the values

increased, its distribution began to resemble a continuous one, aligning with the Central

Limit Theorem, which states that the sum of many independent random variables tends to a

normal distribution, regardless of the initial distribution. Therefore, we also approximated

TotalSuccessCount using continuous distributions like the Gaussian and Log-Normal.
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Figure 3.6: Distribution of TotalSuccessCount by System-Action Combination

Given this behavior of the TotalSuccessCount variable, we explored both discrete (Pois-

son) and continuous (Gaussian and Log-Normal) distributions. The Poisson distribution,

suitable for count data, captured the right-skewed nature effectively. In contrast, the Gaus-

sian (defined by mean and standard deviation) and Log-Normal (with three parameters: µ,

σ, and location) distributions provided flexibility for modeling higher-value trends. These

parameters are estimated directly from data using MLE using specialized Python packages

(such as scipy.stats), which fit the distribution to the data and return estimates for

these parameters.

After estimating the parameters for each distribution, the Kolmogorov-Smirnov (KS) test

is performed to determine how well the theoretical distributions match the observed data.

The p-value indicates the probability that the observed data could have originated from the

reference distribution under the null hypothesis. To identify the best-fitting distribution,

we focused on the one with the lowest KS value, which indicates the closest match between

the actual data and the theoretical model. This best-fit distribution will then be utilized
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in our simulation model in Section 4.2 to confirm that the model correctly represents the

variables being studied. Here, in Table 3.1, the Kolmogorov-Smirnov (KS) test results are

presented for different scenarios, and the best-fitted distributions.

System Action Metric
Best Fit

Distribution
KS

statistic
System1 Action2 WeightedAvgDuration LogNormal 0.1734
System5 Action18 WeightedAvgDuration LogNormal 0.1697
System1 Action6 TotalSuccessCount Gaussian 0.1149
System6 Action22 TotalSuccessCount Gaussian 0.0944

Table 3.1: Kolmogorov-Smirnov (KS) Statistics for Best-Fitted Distributions

We assessed the suitability of several probability distributions for modeling using two

different time series for each of the two variables as representative scenarios. All the

fitted distributions for the TotalSuccessCount variable in System1-Action6 and System6-

Action22 can be seen in Figure 3.7. The Gaussian distribution fits best for both time

series, effectively modeling both the central peak and the tail behavior. The data was less

skewed and more symmetric, making Normal distribution a reasonable approximation.

Figure 3.7: Distribution fits for TotalSuccessCount showing the best fit distributions for
System1 - Action6 (Gaussian) and System6 - Action22 (Gaussian).
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Similarly, for the WeightedAvgDuration variable Figure 3.8 showed that the LogNormal

distribution provided the best fit for both the time series, the System1 - Action2 and the

System5 - Action18 as it accurately captured the positive skew and variability observed in

the histogram.

Figure 3.8: Distribution fits for WeightedAvgDuration showing the best fit distributions for
System1 - Action2 (LogNormal) and System5 - Action18 (LogNormal).
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4

Methodology

This chapter outlines the basic ideas as well as algorithms used in the study including the

subsequent time series modeling, simulation model development, followed by seasonality

and anomaly detection modeling. The intent is to present a reliable technique for determin-

ing whether the time series data can be classified as seasonal or non-seasonal. Following

that, a forecasting approach with a built-in confidence prediction interval is utilized to

identify anomalies within the identified seasonal time series.

4.1 Time series Modeling

Before proceeding to more complex analytical methods, it is critical to identify and

understand the fundamental concepts connected with time series data. Formal definitions

define time series data as a sequence of observations {Xt} indexed by time t, where t ∈ Z
(discrete) or t ∈ R (continuous). In most cases, however, time series data represents

observations recorded at discrete, equally spaced intervals, such as hourly, daily, or yearly

observations. The observation Xt may refer to anything from the hourly temperatures of

a machine over one hour to the stock values of a company over a day. In contrast to cross-

sectional data, which has no recurring components, time series data exhibit a continuous

association throughout time. This continuity creates challenges for analysis as time series

data cannot be treated as a collection of isolated points; instead, the temporal structure

must be incorporated into the analysis.

In practical applications, the data related to time series are observed at a time exhibit

three primary characteristics: Trend, Seasonality, and Noise. Trend is defined as an

increase or decrease of the values over a reasonably long period while seasonality applies

where there are regular or periodic variations of the activity over fixed shorter intervals.
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On the other hand, noise bears the random changes in the data that lack any repeating

patterns. These components can be modeled separately in an additive format as:

Xt = Tt + St +Rt (4.1)

where Tt represents the trend, St the seasonal, and Rt the residual/ noise components.

Time series data can be divided into two types based on the number of variables observed:

Univariate and Multivariate. A univariate time series is a collection of data gathered

over time on a certain variable, such as a stock’s daily closing price. A multivariate time

series, on the other hand, considers more than one variable, such as tracking an economic

system across time using indicators such as interest rates, inflation, and unemployment,

among others. This paper focuses on univariate time series; therefore, we use the word

‘time series’ to stand for Univariate time series. The next section will attempt to create

multiple time series of such forms.

4.2 Synthetic Data Generation

The primary purpose of this section and consequently of the TimeSeriesSimulator

class is to create a robust and flexible framework for generating synthetic time series data

with real-world characteristics like seasonality, trends, noise patterns, and anomalies. This

framework is meant to be a sandbox to execute various data analysis tasks, particularly

seasonality and anomaly detection. The TimeSeriesSimulator offers users the ability to

provide many configurable parameters that allow substantial control over the attributes

that will influence the produced time series. The configurable parameters are as follows:

• Number of Series (num_series): This parameter specifies how many unique time

series will be created. For example, if we were to set this to 100, it would create 100

individual time series.

• Frequency (freq): Define how often data points are in each time series. The default

is set to 1h, meaning that each data point is one hour apart.

• Lengths of Series (lengths): This parameter defines the number of data points

per time series. For our research, each series has 1,444 data points, which is approx-

imately two months of hourly data, consistent with what we’ve aggregated in our

selected dataset.

23



4. METHODOLOGY 4.2 Synthetic Data Generation

• Noise Type (noise_type): The type of noise that will be added to each series is

indicated by this option. All series will be subject to a particular noise type such as

gaussian, poisson,log_normal, which are analyzed in subsection 3.4.1.

• Seasonality Periods (seasonal_periods): Each time series is assigned a set of

seasonal periods that determine the recurring patterns in the data. The model uses

three main periods: daily (24 hours), weekly (168 hours), and monthly (720 hours).

• Trend Type (trend_types): This simulation model adds a trend in each series,

which may be either linear or non-linear, to show the underlying behavior over time.

• Trend Slopes (trend_slopes): Each series is given a trend slope selected by the

user (i.e., 0.001). These slopes control the rate and direction of the series trend.

• Anomaly Probabilities (anomaly_probs): Each series is assigned a probability of

anomalies happening at a given data point. This parameter enables a controlled but

varied level of anomaly injection across distinct series, reflecting true deviations.

• Application of Zero Values (zero_indices): In order to accurately fit the ob-

served pattern, we added zero values to the time series. A parameter that accounts

for the percentage of zeros in each time series was used to accomplish this. This

metric seeks to characterize the right skew of our dataset, which consists mainly of

zero values.

• Seasonality (include_seasonality): A boolean flag is added to each series to

indicate whether the seasonal components are present or not. A random number

between 0 and 1 is generated, and if it exceeds a specified probability (e.g., 25%),

the flag is set to True, introducing seasonality into the series; otherwise, it is set to

False. This method enables the simulator to generate a wide range of time series,

some having periodicity and others not.

These configurable parameters are highly adjustable, allowing IreckonU domain experts to

customize them to meet specific needs and demands, particularly when analyzing extended

time series data.

4.2.1 Noise Generation

Noise in synthetic time series resembles the random fluctuations seen in real-world data.

The generate_noise() method of the time series simulator generates a noise component
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per each series based on the type of noise specified. For series with Gaussian noise, the

simulator creates data points using the normal distribution. This approach employs user-

defined mean and variance values derived from the data given by the company, thereby

ensuring that the simulated noise closely resembles real-world characteristics. This tech-

nique, with its symmetrical distribution around the mean, guarantees that the noise will

be very similar to Gaussian noise. When utilizing Poisson noise, the simulator uses the

series’ specified mean as the lambda parameter to generate values with a Poisson distribu-

tion. While the Poisson distribution is suitable for modeling count-based data, we seldom

employed it in our study due to its limited effectiveness in best-fitting distribution, as seen

in the results of subsection 3.4.1.

Finally, the simulator computes the distribution parameters, mu, and sigma, for series

with log-normal characteristics using the mean and variance specified by the user. Because

of its inherent skewness, the log-normal distribution—which produces the noise values—is

well-suited for simulating phenomena with positively skewed data, such as financial returns

or data processing systems. This type of noise makes the generated time series more

realistic, and more aligned with what we found when examining the 1-hour dataset which

led to discovering more signs of log-normal behavior in the series.

4.2.2 Seasonality and Trend Generation

A realistic simulation of time series data must take into consideration fundamental factors

such as seasonality and trends, which represent repeating patterns and directional move-

ments across time. The add_seasonality() method adds seasonal components, which are

modeled using sine and cosine functions to capture data in a cyclical form. This seasonal

component is applied to the time series if the seasonality period is greater than zero. The

seasonal component is irrelevant in the absence of a positive period because there is no

repetition to the model. The simulator can produce complex seasonal patterns by combin-

ing sine waves of different frequencies and amplitudes. For example, this may represent a

scenario in which the data exhibits a strong daily pattern impacted by a weekly pattern,

as well as other modest oscillates across longer time periods.

This simulation model adds three forms of seasonal cycles: daily, weekly, and monthly,

each with a distinct amplitude. These time intervals were selected to correspond with

the expected seasonal fluctuations in the hotel business. The daily cycle reflects intraday

demand fluctuations, which are critical for daily operational choices like staff and hotel

room availability. Demand, for example, usually peaks and drops during the day based on
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check-in and check-out times. The weekly pattern can account for differences in demand

for weekdays and weekends, which is important for the hotel business. While business

travelers might swoop into the property during the week, leisure activity tends to deliver

more muscle to weekends in terms of room demand. The monthly cycle does allow you to

identify trends over a longer time frame such as more travel during vacation months when

business conferences or tourism events are assembled.

The method also uses the add_trend() method to add linear or non-linear trends to the

series. Trend can be upward, downward, or flat, controlled by trend_slopes parameter,

depending on the model used. A linear trend is formed by multiplying the slope by the

time index. This results in a straightforward upward or downward trend in the data over

time, depending on whether the slope is positive or negative. Non-linear trends, on the

other hand, might exhibit more complicated patterns, such as a combination of polynomial

growth and oscillatory activity. In this model, the non-linear trend creates a trend where

the value increases (or decreases) following a power law and adds a quadratic component

to the trend, which introduces further curvature.

4.2.3 Anomalies Generation

Anomalies are important to our simulation model because they act as deviations from the

normal data and help us to evaluate the accuracy of our anomaly detection algorithms. The

inject_anomalies() method is designed to generate anomalies, depending on a specified

anomaly probability (e.g., 10% for each series). These anomalies result from the injection

of large, random deviations into typical values. Their amplitude and frequency might vary,

posing a variety of obstacles to anomaly detection systems. For example, a time series can

exhibit anomalies seldom, with only a 2% chance of an anomaly occurring at any given

time. These anomalies may be in plain sight, large, and perhaps in the range of 100-200

units in terms of variation from the typical value. On the other hand, time series might

have outliers more often—10% of data points—but these are relatively small anomalies,

resulting in deviations of only 10–20 units. These subtle, repeated deviations can go

unnoticed since they are blended in with the surrounding noise. The diversity of the scale

and the existence of outliers give credibility to the simulation model as a representation

of the real-life scenario in which anomalies in actual data differ in both magnitude and

impact.
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4.2.4 Time Series Composition

The final synthetic time series is generated by combining each of the constituent compo-

nents—noise, seasonality, trends, and anomalies—into a cohesive unit. The generate_data()

method creates the final synthetic time series, Yt, by combining several components at each

time point t. The mathematical formulation of Yt is given by:

Yt = Bt + Tt + St +At (4.2)

where:

• Bt represents the base noise, which provides random fluctuations in the data, mim-

icking natural variability.

• Tt denotes the trend component, capturing any long-term increase, decrease or stay

flat over the long term in the series.

• St is the seasonal component, corresponding to regular predictable patterns occurring

at fixed positive periods.

• At stands for anomalies, which are deviations from the expected behavior.

Furthermore, the model provides a non-negativity constraint, which ensures that all data

points remain above zero and that the values are integer type. This functionality is critical

for some forms of time series data, such as sales figures and API call data, in which negative

and decimal values are neither practical nor possible.

4.3 Seasonality Detection

This section attempts to identify seasonality in time series data and then classify them as

seasonal or non-seasonal. The process involves testing on both synthetic and the company

provided time series data using a baseline model against a more advanced approach.

4.3.1 ACF: Baseline Seasonality Detection

The next part provides a baseline model for identifying seasonality using the Autocorre-

lation Function (ACF) method. This baseline approach leads one to probe whether a

time series maintains seasonal or non-seasonal characteristics which can be reflected in the

autocorrelation patterns at various time lags. This method is a commonly used statistical

tool, which measures the correlation of a time series at different time periods (lags). In

27



4. METHODOLOGY 4.3 Seasonality Detection

the context of time series analysis, these lags relate to prior time points or values in the

sequence, allowing researchers to investigate the link between past and present data points.

That makes it particularly effective at identifying repeating patterns in time series data,

which yields considerable insights into periodicity.

The model computes autocorrelation values (ACF) for the input time series across various

lags, which serve as the model’s hyperparameter. These values indicate how closely current

observations are linked to past observations. Strong autocorrelation at certain periods of

time (lags) indicates a potential cyclic behavior. Given a time series with xt data points,

the autocorrelation at lag k is computed as follows:

ACF(k) =
∑T−k

t=1 (xt − µ)(xt+k − µ)∑T
t=1(xt − µ)2

(4.3)

Where:

• xt represents the value at time t,

• µ is the mean of the time series,

• T is the length of the time series.

However, not all ACF values show repeating patterns; some may be due to random noise

or minor oscillations with little to no meaning. Therefore, the classification is guided by a

threshold scheme to filter out noisy or inaccurate ACF values, paying attention to events

that attain an agreed-upon threshold of significance. Specifically, if any ACF value (except

zero lag) exceeds a predetermined threshold, the time series is classified as seasonal (1).

In contrast, if all ACF values remain below the threshold, the series is characterized as

non-seasonal (0), which means that they do not have a significant repeating structure.

The classification rule is expressed mathematically as:

y =

{
1 if max(ACF(1), . . . ,ACF(k)) > threshold
0 otherwise

(4.4)

Where k is the number of lags and the threshold is the predefined cutoff for the ACF

values.

This binary classification approach identifies time series with and without recurring

patterns. However, as a baseline model, it may fail to handle complicated scenarios like

time series with several seasonal cycles or outliers.
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4.3.2 Seasonal Quantile Regression: Advanced method

Quantile regression, first introduced by Roger Koenker in his landmark work ‘Regres-

sion Quantiles’, published in 1978 (26), was a key improvement in regression analysis.

Traditional regression methods, particularly ordinary least squares (OLS), estimate the

conditional mean of the response variable. However, data frequently violate assumptions

of error normality, homoskedasticity (constant error variance across observations), and the

presence of extreme values (outliers). Due to these limitations of mean-based approaches,

the demand for a more robust alternative resulted in the invention of quantile regression.

Quantile regression is especially well adapted for our study owing to its innate robust-

ness concerning outliers. It generates accurate predictions even when there are outliers

and deviations in the dataset like in our scenario, by minimizing asymmetrically weighted

absolute residuals.

Quantile regression has already been applied to investigate how predictors interact across

quantiles in the distribution of a response variable, revealing important information regard-

ing data variability. However, since this work targets seasonality detection, we extend the

approach by altering it for seasonality detection. In order to achieve this, we suggest using

a seasonal quantile regression model designed particularly for detecting seasonal patterns

in data. The model assumes a linear connection between the predictors and the response

variable, which is appropriate for our exploratory objectives.

4.3.2.1 Seasonal Quantile Regression Design

The following part describes the Seasonal Quantile Regression model’s design and imple-

mentation, with a focus on how it is employed to classify seasonal and non-seasonal time

series data. The model will be applied to both the data generated by TimeSeriesSimulator

in Section 4.2 and our selected dataset. Each series is analyzed to extract elements that

reflect the inherent cycles seen in the hotel business. Thus, several time-related features

are extracted:

• Hour: This feature tracks the hour of the day ( 00 to 23). Certain IT systems

see spikes in API calls at particular times of the day. For example, check-ins are

typically done during afternoon hours (14:00-16:00), while check-outs are typical in

the morning (10:00-12:00).
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• Days: This feature records the day of the month (1-31), helping to identify spe-

cific day-based patterns (also known as daily seasonality). For instance, hotels may

experience an increase in reservations or cancellations on the last day of the month.

• Weeks: This function determines the number of weeks in a given year, allowing

patterns to be followed in the weekly calendar. There can be significant spikes during

high-activity periods, like holidays or vacation weeks such as Christmas. Certain

weeks exhibit recurring patterns, indicating seasonality.

• Months: This feature represents each month of the year (1-12) and helps to capture

broad seasonal patterns. Different months might have their peaks and lows of the

season. Strong seasonality on a monthly time frame is indicated by significant trends

like higher activity levels in December or during summer.

• Day Of Week: This element consists of the day of the week (0 is Monday, 6 is

Sunday). It is beneficial in identifying weekly patterns and variations in customer

behavior. Ongoing trends, such as increased weekend traffic, indicate seasonality.

The quantile regression model is employed for each time series to identify the relationship

between the time-based features and the target variable, i.e. TotalSuccessCount. The

model is fitted for three quantiles: 0.05 (lower quantile), 0.50 (median), and 0.95 (upper

quantile), which can be considered hyperparameters of our model. This non-parametric

approach allows for the analysis of various conditional quantiles of the response variable

as a function of the engineered time features. The regression equation is:

Qτ (Y | X) = β0 +

4∑
i=1

βi · Time_Featurei (4.5)

where:

• Qτ represents the τ -th quantile of the response variable Y, which can represent the

number of successful or failed API calls.

• β0(τ), β1(τ), . . . , β5(τ) are the regression coefficients of predictors for the intercept

and the predictors at quantile τ .

• X represents the vector of predictors (Hour, Day, Week, Month, DayOfWeek).
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After fitting the seasonal quantile regression model, we extract the coefficients (β values),

focusing on the median quantile (0.50). These coefficients measure the magnitude and

direction of each feature’s association with the response variable while keeping all other

variables constant. As a result, each quantile produces a unique set of coefficients that

describe how the predictors interact with various sections of the response distribution. For

example, a positive coefficient for ‘Hour’ in the middle quantile indicates that later hours of

the day are associated with more successful API calls, indicating evening check-in activity.

This is accomplished through the standard errors, which measure the variability and

uncertainty of the coefficients. This leads to much more precision, which translates into

more confidence about the correctness of your estimations. The t-statistic, calculated as a

ratio of the coefficient to its standard error, is then used to derive p-values in order to gauge

statistical significance. These p-values assist us in identifying the temporal characteristics

that have a significant impact on the variable that we are studying. The hypotheses for

detecting seasonality based on temporal predictors are as follows:

• H0: The temporal predictors have no significant effect on the response variable,

implying no seasonality in the time series. Formally:

H0 : β1 = β2 = β3 = β4 = β5 = 0

• H1: At least one temporal predictor (βi) has a significant effect on the response

variable, supporting the presence of seasonality. Formally:

H1 : βi ̸= 0 for at least one i ∈ {1, 2, 3, 4, 5}

For instance, a small p-value (e.g., < 0.05) for ’Days’ at the median quantile implies

daily seasonality making the time series classified as Seasonal. On the other hand, non-

significant p-values indicate that the temporal feature has no meaningful impact and thus it

is labeled as Non-seasonal. Therefore, a time series is seasonal if one or more of the time

features (i.e., hour) where consistently affect the response variable, showing that regular

variations over time could occur. The seasonality classification model is then enhanced

using further refinements that would improve model performance and accuracy.

1. Variance Threshold: A variance threshold was introduced to reduce the influence

of high variance time series, which makes seasonal trends difficult to spot and classify.

With this criterion, we can now label time series as seasonal or non-seasonal and also

flag those that show significant variability for further investigation.
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2. Data Sparsity Rule: In the case of sparse time series, a rule was developed. If the

percentage of non-zero data points is less than 5% in the given time series, then it is

classified as non-seasonal since random spikes might mask underlying patterns and

provide a sense of seasonality.

The following flowchart in Figure 4.1 illustrates the step-by-step process for classifying

N time series based on seasonality.

Figure 4.1: Flowchart of the Time Series Classification Process

4.4 Anomaly Detection

In this section, the anomaly detection module attempts to discover anomalies in the

identified seasonal time series provided in Section 4.3. It involves analyzing both synthetic

and company provided time series data using an anomaly baseline approach against a more

advanced algorithm prediction-driven approach.
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4.4.1 AD-PCI: Baseline Anomaly detection

In this part, the baseline anomaly detection technique comprises of a basic forecasting

approach and constructed Predictive Confidence Interval (PCI). This method predicts the

expected values of the data point by taking into account a weighting k past and k future

data points around a certain time step. A non-linear weighting structure is used to enhance

nearby time points while gradually decreasing the significance of farther away data points.

The basic principle is determining a weighted average of neighboring values, which is then

used to establish the upper and lower confidence intervals. These boundaries assist in

assessing whether current observation deviates significantly from predicted patterns.

For each time step t in the time series, the approach computes a weighted average of

both previous and future values. This weighted average represents the expected behavior

for time step t, which is compared to the actual observation to detect anomalies. The

formula for computing Xt is given by:

Xt =

∑k
j=1wt−jXt−j +

∑k
j=1wt+jXt+j∑k

j=1wt−j +
∑k

j=1wt+j

(4.6)

Where:

• Xt−j and Xt+j are the past and future values around time t,

• wt−j and wt+j are the weights associated with each past and future value, inversely

proportional to the distance from the current point t.

• The weights are defined as: wj =
1

j+1

This approach prioritizes the nearest points while decreasing the weight of the points

further away. The method is guided by two important parameters: alpha (a), which limits

the allowed width of the Prediction Confidence Interval (PCI), and k, which specifies the

window length, or the number of previously observed data points used in the assessment.

The forecasting procedure would need to be modified to allow the model to run both online

and offline, as it currently only operates in offline mode.

After we have calculated all the Xt values, the next step is to check if the actual value at

time t falls within the expected range using a Prediction Confidence Interval (PCI) around

Xt. These intervals are based on the standard deviation s of the available data points

within the window around t and use the t-distribution to account for the variability of

small samples, in particular when working with smaller window sizes. The formula used

for the confidence interval is:
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PCI = Xt ± tα,2k−1 · s ·
√
1 +

1

2k
(4.7)

Where:

• tα,2k−1 is the critical value from the t-distribution for a confidence level α, with

degrees of freedom 2k − 1,

• s is the standard deviation of the values in the window around t,

• k is the window size, and the term
√

1 + 1
2k adjusts the width of the confidence

interval based on the window size.

Once the confidence interval is calculated, the observed value at time t, denoted as yt, is

compared against the confidence bounds. The anomaly detection rule is as follows:

Flag as Anomaly =

{
1 if yt /∈ [Lower Bound,Upper Bound]
0 otherwise

(4.8)

In this framework, we label a data point yt as an anomaly if falls outside of the specified

range (i.e., the PCI). Conversely, if yt lies within the bounds, it is considered a normal

point, meaning it conforms to the expected behavior based on the model’s prediction.

While this approach can be effective for series with clear and consistent seasonal patterns,

it lacks the ability to adjust dynamically to changing distributions or trends over time,

which may result in false positives or negatives in highly non-stationary data.

4.4.2 Neural Prophet: Advanced Anomaly Detection

Neural Prophet, developed by Triebe et al. (2021), is an explainable forecasting frame-

work that boosts scalability and interpretability for time series analysis (27). Neural

Prophet, which builds on Facebook’s Prophet model (28), uses neural networks to more

precisely capture complicated non-linear trends and seasonal patterns. This makes it par-

ticularly useful for detecting anomalies because it not only produces forecasts but also

offers adjustable prediction intervals. Neural Prophet preserves Prophet’s decomposition

technique, which divides time series data into trend, seasonality, and residuals, but it now

integrates neural network components to reveal more complex relationships within the

data.
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4.4.2.1 Neural Prophet Design

In order to harness the power of the algorithm, we implement a data preprocessing and

model training strategy, splitting each time series into training, calibration, and test sets to

enhance generalization and limit the risk of overfitting. Neural Prophet can identify long-

term trends, seasonality, and potential anomalies through training from historical data.

In addition to single-point forecasts, Neural Prophet can generate prediction intervals

using the quantile regression approach, which identifies intervals where future values are

expected to fall. Instead of developing a single forecast, Neural Prophet employs a quantile

regression-based loss function to predict several quantiles of the target variable, resulting

in a probabilistic picture of future values. For example, using upper and lower quantiles ql
and qu (e.g., the 10th and 90th percentiles), we obtain a prediction interval:

Interval(t) = [ŷql(t), ŷqu(t)] (4.9)

which typically captures the middle 80% of the distribution.

While prediction intervals can also give information regarding coverage, which is useful

for determining the uncertainty about future data points, intervals may not behave as

anticipated based on data characteristics or under certain conditions. This is where con-

formal prediction comes into play, mitigating this challenge by calibrating these ranges to

better match the intended confidence level. Conformal prediction is a statistical approach

that analyzes data’s residuals on a calibration dataset to ensure that prediction intervals

fall where they ought to, allowing for more flexible interval modifications. For a target

confidence level of 1− α, conformal prediction guarantees that:

P (y(t) ∈ Interval(t)) ≥ 1− α (4.10)

Our approach uses a simple yet effective form of conformal prediction, known as naïve

conformal prediction (29). When compared to advanced methods such as Conformal-

ized Quantile Regression (CQR), this methodology requires no further training, making

it computationally efficient and well-suited for massive, diverse datasets like the one we

have. Specifically, using the quantile regression technique to produce prediction intervals,

we extend the intervals by adding or subtracting the greatest absolute residual rmax from

the calibration set:

Adjusted Interval(t) = [ŷq1(t)− rmax, ŷq2(t) + rmax] (4.11)
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These adjustments maintain the intervals balanced—neither too cautious nor too nar-

row—improving accuracy and reliability without requiring too much processing work.

The next phase is to establish a rule for identifying potential anomalies. This is ac-

complished by comparing actual observations from the test set to the predicted confidence

intervals. If an observation goes outside of these limits—either surpassing the upper limit

or dropping below the lower limit—it is classified as an anomaly, indicating an unexpected

deviation from the model’s predictions.

Given the specific nature of our dataset (e.g., API Call data), all predicted values must

stay non-negative. Negative predictions are inconsistent and may diminish the efficiency

of anomaly detection. To overcome this, we employ a post-processing phase that clips any

negative predictions to zero, placing a lower constraint on the forecasts. Figure 4.2 shows

the Workflow of the Neural Prophet anomaly detection model.

Figure 4.2: Workflow of the Neural Prophet model
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Experimental Setup

5.1 Evaluation Metrics

To evaluate how effective the model is in identifying seasonality and anomalies, we utilize

a number of key metrics, each of which provides a distinct view of its effectiveness and

reliability. The following metrics were used in this research:

1. Recall: Recall evaluates the model’s ability to identify all actual anomalies.

Recall =
TP

TP + FN
(5.1)

2. Precision: Precision measures the proportion of true anomalies among all detected

anomalies.

Precision =
TP

TP + FP
(5.2)

3. Fβ-score: The Fβ score is calculated as:

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

(5.3)

In this case, β = 2, which places 2 times more emphasis on recall.

4. Confusion Matrix: The confusion matrix provides a summary of the model’s per-

formance by displaying true positives (TP), true negatives (TN), false positives (FP),

and false negatives (FN).

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

(5.4)
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5. ROC Curve & AUC (Area Under the Curve): The Receiver Operating Char-

acteristic(ROC) curve is a graphical representation of the trade-off between the True

Positive Rate (Recall) and the False Positive Rate (FPR) across different threshold

values. The AUC summarizes the performance of the model: a model with an AUC

close to 1 is considered excellent, while an AUC of 0.5 suggests random guessing.

False Positive Rate (FPR) =
FP

FP + TN
(5.5)

5.2 Time series splitting

In time series modeling, it is important to effectively split the dataset for developing a

solid framework, which captures historical patterns and makes precise forecasts. In order

to accomplish this, the data has been divided chronologically into three parts: training,

calibration, and testing sets.

• Training Set (70%): This set consists of the first 70% data and serves as the basis

for predicting accuracy. It enables the model to identify the underlying patterns and

potential anomalies in the data.

• Calibration Set (10%): A small number between the training and testing sets.

In conformal prediction, this set aids in calibrating a prediction interval that closely

reflects the distribution of errors in the forecast.

• Testing Set (20%): This segment contains the most current data and remains

unseen throughout the training process. It is primarily utilized to assess the model’s

performance.

5.3 Hyperparameter Tuning

Hyperparameter tuning is the process of tweaking hyperparameters that control the

model’s learning process. This process seeks a balance between overfitting and underfitting

in order to achieve optimal performance. Conventional approaches, such as grid search and

random search, are inefficient, especially when applied to high-dimensional search space. To

accomplish this, a more balanced approach is the Bayesian optimization. This method is

built on the Hyperopt python package, which refines hyperparameters by utilizing previous

knowledge of the search space and continually narrowing it down.
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Internally, Hyperopt uses Tree-structured Parzen Estimators (TPE), a Bayesian tech-

nique that classifies assessments as successes or failures, directing the search to regions of

the parameter space with a high probability of producing positive outcomes. TPE is es-

pecially useful when optimizing for complex search spaces like deep learning or time series

forecasting, where extensive parameter research can be time-consuming. Throughout this

process, each model’s particular hyperparameters were adjusted to improve performance.

The important hyperparameters that have been modified for each model are summarized

here:

5.3.1 Autocorrelation Function (ACF) model

• Number of Lags: The number of lags determines how many time periods are

used to calculate ACF values. Selecting the appropriate range of lags is critical for

detecting seasonality, which might occur at various frequencies.

• ACF Threshold: This number distinguishes the seasonal and non-seasonal time

series. This enables for the reliable detection of significant autocorrelations while

avoiding allowing noise to result in false correlations.

5.3.2 Seasonal Quantile Regression (SQR) Model

• Quantiles: These are the predicted quantiles, which allow the model to incorporate

variability in the data at various distribution levels (low, median, and high).

5.3.3 Anomaly Detection Prediction Confidence Interval (AD-PCI) Model

• Alpha (confidence level): The threshold for sensitivity in anomaly detection to

be used to control the likelihood of an observation being classified as anomalous.

• k (data points to include): The number of previous and future points to be used

to forecast the actual values.

• beta: Weight for recall versus precision in the F-beta score.

5.3.4 Neural Prophet Model

• n_lags: The number of previous time steps used to predict the current value, cap-

turing seasonality across past data points.
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• trend_reg: Determines how strong the trend is, and hence how much we want to

regularize it to avoid overfitting.

• seasonality_reg: Determines how much regularization to apply to the seasonal

component to ensure a smooth seasonal pattern.

• learning_rate: Determines the speed at which the model updates its weights during

training.

• changepoints_range: Defines the portion of the data used to detect trend change-

points.

• fourier_order: Number of Fourier terms used to capture seasonality.

• epochs: The number of complete passes through the dataset during training.

• batch_size: Number of samples per training batch, affecting the speed and accuracy

of model training.

• quantiles_list_index: Refers to the specific quantiles being used for probabilistic

predictions.

• beta: Weight for recall versus precision in the F-beta score.

Each model’s hyperparameters were tweaked to achieve the optimal balance between

accuracy and recall. Since the costs of FP (false positive) and FN (false negative) are

unknown, it is difficult to select the appropriate β value in this study. However, higher

recall has been favored in the domain of hospitality IT systems, where reliability and visitor

experiences are crucial. False negatives (missing a potential issue) lead to unaddressed

failures or service disruptions, more damaging than the occasional false positives (warning

falsely to a potential issue). Consequently, hyperparameter tuning prioritizes recall while

maintaining a sufficient level of precision by maximizing the Fβ-score with β > 1. This also

ensures critical events don’t go undetected, reducing the chances of anything negatively

impacting system reliability.

Given the wide range of time series examined, each with its own set of ideal hyperpa-

rameters, reporting all individual results would be excessive and confuse the study. For

reproducibility, histograms displaying the distributions of selected hyperparameter values

across different methods used in this research can be found in Figure 8.4, Figure 8.5, and

in Figure 8.6 of our Appendix.
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Results

This section provides an extensive review of the results, starting with an assessment of the

alignment of the data that the company provided and the data that we simulated, followed

by seasonality and anomaly detection outcomes. The model’s performance is assessed using

performance metrics, confusion matrices, and ROC curves.

6.1 Data Similarity Assessment

In statistical analysis, it is critical to ensure that the simulated datasets accurately reflect

the behavior of the actual data. Plotting the dataset’s graphs is a straightforward way to

compare the similarities between them. By visualizing the data for both series, one may

quickly see patterns, trends, and potential anomalies, allowing us to determine similarities

and dissimilarities between the datasets.

Figure 6.1: Visual comparison of time series data from simulated and real dataset
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Both graphs in Figure 6.1 show similar patterns, with consistent peaks and declines

that indicate typical weekly periodicity. This shows that the simulated data closely re-

sembles the behavior of the real data, including essential characteristics like periodicity

and amplitude. The visual comparison is beneficial, but quantitative procedures such as

permutation tests are required to properly analyze similarity, especially for datasets with

contain anomalies, time-varying patterns, or non-standard distributions.

6.1.1 Permutation tests

Permutation tests are a non-parametric approach to compare datasets that makes no

assumptions about the distribution of the datasets. Before computing the target measure,

the approach performs a series of random permutations of the data’s label to generate a

null distribution that serves as a baseline for comparison. Such a process is highly efficient

in identifying correlations in features between simulated and real data sets that go beyond

the usual metrics of mean and variance.

In our research, permutation tests will be used to evaluate important properties of our

datasets. Comparisons of these will help us to determine how well the simulated data repli-

cates IreckonU’s dataset and confirm the suggested methods’ accuracy. Specifically, per-

mutation tests will help us to detect subtle differences or similarities between our datasets,

which might not be captured by conventional statistical metrics. To facilitate this study,

we formulate the following hypotheses:

• H0: There is no significant difference between the simulated time series and the

dataset sourced directly from the company.

• H1: There is a significant difference between the simulated time series and the dataset

sourced directly from the company.

In our scenario, we have a set of 23 simulated time series (Group A) that mimic the

TotalSuccessCount variable and a set of 23 time series derived from each System-Action

combination of the TotalSuccessCount (Group B). The objective is to determine whether

a significant difference exists between these two groups, examining different features.

6.1.1.1 Average Length of Time Between Consecutive Anomalies

The first feature examined was the average time between two consecutive anomalies. In

this test, anomalies were defined as data points that deviated from the mean by more than

two standard deviations. By setting this threshold, the function identifies anomalies outside
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of this 95% range, capturing values that are particularly far away from the mean—the

extreme 5% of data points. This setting strikes an appropriate balance between sensitivity

and false positives. A lower threshold would classify too many data points as unusual,

including typical oscillations around the mean while a higher threshold would miss some

significant outliers. When all of the peaks had been identified, we estimated the time gaps

between the peaks in both the real and simulated groups, yielding two types of average

intervals. The observed statistic in this model indicates the difference in average interval

length between two anomalies for the simulated and real-time series groups. This difference

indicates if anomalies in the simulated data occur more or less frequently than in the real

data. By concentrating on the average interval length between two consecutive anomalies,

we can create an easily interpretable metric that reflects an important feature of time

series behavior: how frequently two consecutive anomalies occur. This feature matters

since anomalies are produced randomly rather than at specified time intervals, making the

test applicable.

Under the null hypothesis that there was no significant difference between the two

datasets, interval lengths were merged before running the permutation test. It shuffled

and then split the intervals into two groups, repeating the process 10,000 times. To get the

p-value, the observed statistic was compared to the distribution of permuted differences.

Mathematically, the p-value can be calculated using the following formula:

p-value =
Number of permuted test statistics ≥ Actual test statistic

Total number of permutations
(6.1)

A low p-value (typically less than 0.05) indicates that the observed difference is unlikely to

have happened by randomness, implying a significant difference in interval lengths between

the simulated and real data groups. In this test, the observed difference was around 0.64,

with a high p-value of 0.4187, showing no significant difference in interval lengths between

the simulated and actual datasets. A difference of 0.64 indicates that, on average, the

simulated group has less than one unit difference from the real group.

6.1.1.2 Difference between Non-Anomalous Points

To determine the differences between the two sets of data points, we looked at the number

of non-anomalous points within two standard deviations of the mean. A custom function

has been produced for each batch of time series data to determine the mean, standard

deviation, and number of non-anomalous points. We repeated the test 10,000 times to

compare the difference in non-anomalous numbers between the two data groups.
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The observed statistic, which represents the actual difference in the average non-anomalous

point count, was compared against the distribution resulting from these permutations. The

observed value of -1.043 indicates that the real data (Group B) on average had slightly

more non-anomalous points than the simulated data (Group A). However, the difference

was not statistically significant (p-value= 0.578), suggesting that the variance is due to

randomness rather than a true difference between the two datasets.

Figure 6.2: Distribution of Permuted Test Statistics for Non-Anomalous Points.

The histogram 6.2 shows the distribution of differences in non-anomalous points between

simulated and real datasets, generated by random permutations. The blue bars show

the frequency of these differences under the null hypothesis, which assumes there is no

significant distinction between the groups. The red dashed line represents the observed

difference, which is close to zero. The observed difference falls well within the range of

permuted differences, implying that it is most likely due to random chance, suggesting no

meaningful difference across the two groups.

6.1.1.3 Approximate Entropy

We also conducted a test to assess the similarity between these 2 groups of time se-

ries data using Approximate Entropy (ApEn), a metric that quantifies regularity and

predictability in time series. Testing Approximate Entropy matters as it captures the un-

derlying dynamic behavior of the datasets. ApEn works by selecting subsequences of the

time series—here, we used subsequences of 72 data points. This subsequence length (3

days) ensures that there are enough data points to capture the patterns and any inherent

periodicity. ApEn calculates the likelihood that patterns of closely related observations

will remain consistent as the series progresses, for each time series in the actual and sim-

ulated data groups. Low ApEn values show regularity and predictability, whereas bigger
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ApEn values indicate greater complexity and less predictability. For each time series in

both groups, we computed the ApEn metric and then generated two sets of ApEn values.

We utilized the absolute difference between the average Approximate Entropy values of

real and simulated groups as the permutation test statistic.

For the permutation test, we utilized the absolute difference between the average Ap-

proximate Entropy values of real and simulated groups as the permutation test statistic.

To carry out the test, we added the ApEn values from both groups and randomized the

labels 10,000 times. During each repetition, 23 entropy values were randomly allocated

to either the real or simulated groups, with the test statistic recalculated each time. The

p-value of 0.4901 suggests that there is no statistically significant difference in the Approx-

imate Entropy (ApEn) of real and simulated time series. This minor discrepancy is most

likely due to random change, implying that the groups have comparable dynamic qualities

of regularity and complexity.

6.2 Seasonality Detection Results

In the next part, we evaluate the effectiveness of the ACF model against a more sophis-

ticated approach: SQR for identifying and classifying seasonal time series data. We may

acquire important insights into how the advanced method improves seasonality detection

and classification over the baseline model. The study was conducted using both synthetic

time series data and data provided by the company.

6.2.1 Results on Synthetic Data

We start the assessment in the control setting environment, where the outcomes of our

methods can be validated. To conduct the test a set of 23 different simulated time series

were generated to evaluate the model’s ability to detect seasonality. These time series have

been generated explicitly to replicate the behavior of the TotalSuccessCount variable at

different periods and include both seasonal and non-seasonal series. Initially, we assessed

the baseline seasonality detection model, which uses the Autocorrelation Function (ACF)

approach. This simplified model performed rather well, accurately classifying around 63%

of the non-seasonal time series (5 out of 8) and 46.6% of the seasonal time series (7 of 15).

As seen in the confusion matrix (Figure 6.3), the ACF model had a greater number of false

negatives, frequently misclassifying seasonal series as non-seasonal.
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Figure 6.3: Confusion Matrix for ACF method

Given the modest performance of the baseline model, which failed to accurately classify

seasonal series, the advanced model performed significantly better in recognizing seasonal-

ity. The confusion matrices in Figure 6.4 show that the model correctly identified most of

the non-seasonal time series. The model is extremely accurate in a range of scenarios and

time periods. For example, in the very first confusion matrix, the model correctly classified

13 out of 14 non-seasonal series. However, there was one case where the model identified a

seasonal time series while it had non-seasonal characteristics. This single misclassification

demonstrates that, while the model may occasionally identify non-seasonal data as sea-

sonal, such mistakes are rare, happening in less than 10% of all instances. The remaining

matrices demonstrate comparable performance. In a balanced situation with an equal num-

ber of seasonal and non-seasonal data, the model correctly identified 9 of 11 non-seasonal

series. In an unbalanced environment with more seasonal data than non-seasonal ones, the

algorithm successfully recognized 5 of 7 non-seasonal series. This consistent performance

across situations indicates the model’s capacity to recognize stable, non-recurring patterns

typical of non-seasonal series, even when datasets have varying class distributions.

Figure 6.4: Confusion Matrices for Seasonal Quantile Regression at different time periods
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The algorithm performs equally well when classifying seasonal series. For the first matrix,

all nine seasonal series are accurately identified. This great performance is also constant

across the other matrices since each seasonal series is correctly detected and classified. The

model’s consistent detection of seasonal series demonstrates its ability to capture repeating

patterns and cyclical behaviors independent of time period or class distribution.

In addition, the Receiver Operating Characteristic (ROC) curve illustrates the model’s

ability to distinguish between seasonal and non-seasonal time series by plotting the True

Positive Rate (TPR) (also known as recall) and the False Positive Rate (FPR) at various

threshold settings. In Figure 6.5 we observe a sharp rise toward the top left corner which

indicates a high true positive rate, and the Area Under the Curve (AUC) of 0.94 reflects

the model’s strong classification performance.

Figure 6.5: ROC Curve for Balanced time series distribution

Part of the analysis focuses on scenarios when the model classifies a time series as seasonal

despite the fact that it is not seasonal in nature. Looking more closely at the time series

in Figure 6.6, there are irregular spikes, with some of the points rising to significantly

higher levels than the base. These peaks occur in an unpredictable manner, as opposed

to seasonal data, which has predictable recurring patterns. If the model classified this

series as seasonal, it might indicate that the model is susceptible to these random spikes,

mistaking them for recurrent seasonal signals.

Figure 6.6: Misclassified Series

47



6. RESULTS 6.2 Seasonality Detection Results

6.2.2 Results on Real Data

When it comes to our dataset provided by the company the focus of the seasonality de-

tection was placed on variables like TotalSuccessCount and TotalErrorCount. The decision

not to apply the seasonality detection module to theWeightedAvgDuration stemmed from

the high frequency of non-recorded data points across many time series as discussed in

Section 3.1. Since our model required a continuous dataset to properly identify recurrent

patterns, the data’s large gaps made accurate detection impossible. The seasonal quantile

regression model was employed for analyzing these variables, however, due to the lack of

pre-labeled data in an unsupervised situation, the model depended mainly on high-quality

findings from synthetic data.

As seen in Table 6.1 for TotalSuccessCount, most time series are classified as seasonal,

with only three identified as non-seasonal. Notably, the pair of System4-Action11 and

16 as well as System1-Action6 are classified as seasonal however, it is debatable whether

these series are actually seasonal or if the noticeable fluctuation is just the result of random

noise. Although the model classifies them as seasonal, additional research is required to

understand if these variations are truly caused by periodicity or simply mimic seasonal

patterns.

Category System-Action Combinations
Seasonal System1: Action1,Action2,Action3,Action6 Action4, Action5, Action7

System2: Action8
System4: Action11,Action12,Action13, Action15, Action16
System5: Action17,Action18,Action19, Action20,Action21
System6: Action22
System7: Action23

Non-Seasonal System4: Action9,Action10,Action14

Table 6.1: Classification Results for Seasonal & Non-Seasonal Time Series for TotalSuccess-
Count variable.

Conversely, most of the time series of the TotalErrorCount variable (as shown in Fig-

ure 8.3) were classified as non-seasonal. This classification mainly results from the classical

representation of the time series in which zeros are prevalent in most of them. As we see

in Figure 8.2 when we look at the distribution of errors (and non-errors), we find limited

variability in our dataset since over 95% of the data points are error-free in most of these

series. As a result, the model does not detect significant seasonal patterns in the available
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time series data. Ultimately, only System4-Action9 was declared seasonal. The TotalEr-

rorCount for that time series had more variance and a lower percentage of zero values

compared to other combinations. The relative increase of non-zero data points meant that

the model was able to detect relevant patterns associated with time features.

6.2.3 Cross-validation Setup

Model validation is a key critical stage in model development that involves testing the

model with new and seen data to ensure that it responds properly. To test the robust-

ness and stability of our model, we used a time series cross-validation approach using a

custom quantile loss function (mean_pinball_loss) as evaluation metrics. This loss func-

tion illustrates the asymmetric nature of quantile predictions by penalizing under- and

over-prediction differently. The quantile loss function is defined as follows:

L(q, ytrue, ypred) =
1

n

n∑
i=1

{
q · (ytrue,i − ypred,i), if ytrue,i ≥ ypred,i
(q − 1) · (ytrue,i − ypred,i), if ytrue,i < ypred,i

(6.2)

where q is the quantile of interest, ytrue represents the true values, ypred denotes the pre-

dicted values.

Given the sequential structure of time series data, we utilized TimeSeriesSplit to pre-

serve it in an appropriate sequence and avoid data leaking (30). This method separates

the data into 10 successive folds, guaranteeing that the training data always precedes the

validation data. For each fold, quantile loss is calculated for both the training and valida-

tion sets. Finally, the training and validation losses are averaged across all folds to provide

a summary of the model’s performance for each time series. This averaging process helps

smooth out the variability across different time splits, offering a more reliable assessment

of the model’s ability to generalize.

To assess overfitting, we compute and compare the average training and validation quan-

tile losses per time series. The results can be seen in Table 8.2. Overfitting may occur

if the validation loss is significantly greater than the training loss. The large gap in time

series: System1-Actions 5 and 6 and System4-Actions 11 and 16 suggests that the model

might fit the training data too well and struggle to generalize to unseen data.

Our approach is to apply the Lasso regularization (L1 penalty) to address this issue,

on these specific time series. Our objective was to determine if the classification results,

especially the ability to discriminate between seasonal and non-seasonal series, would stay
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constant when regularization was implemented. Lasso tends to shrink some model coeffi-

cients to zero, which might have an impact on feature significance and the classification

process. We tested several levels of regularization (0.01, 0.5, and 1.0), but the classifica-

tion findings remained consistent, with the selected time series still being recognized as

seasonal. This consistency supports the accuracy of our original classification. Even after

regularization, the key features in each series remained to highlight crucial seasonal trends,

showing the robustness and reliability of our original classification results.

6.3 Anomaly Detection Results

In this result section, we examined two methods for detecting anomalies in seasonal

time series data: a baseline model against a more advanced model. The baseline model,

which used the typical anomaly detection method, does not account for seasonal variations.

In contrast, the Neural Prophet method involves components that model the recurrent

patterns, which enhances the ability to detect anomalies.

6.3.1 Results on Synthetic Data

The models were first tested on the identified seasonal synthetic time series, detected

using the method presented in 4.3.1. Similar to seasonality detection these synthetic data

were specifically designed to test the models’ ability to detect anomalies in the presence

of seasonal variations. However, once the models are optimized, the results are summa-

rized using the F ∗
β -score rather than the Fβ-score. This distinction is crucial because F ∗

β

represents the maximum Fβ value achieved during the tuning process, identifying the best

configuration of hyperparameters for the Neural Prophet model. Using F ∗
β ensures that

only the highest performance under optimal conditions is reported, avoiding any ambiguity

that could arise from averaging Fβ values across less optimal configurations.

The anomaly detection baseline model, which lacks sophisticated mechanisms to address

seasonality, achieved a 68% precision. This suggests that it properly recognized a significant

percentage of real anomalies among those discovered. However, its recall was significantly

lower at 37%, indicating that it missed a large proportion of actual anomalies. The model’s

low F ∗
β -score of 43% reflects its tendency to disregard anomalies associated with large

seasonal patterns, as seen by the gap between precision and recall. While the model’s

conservative approach substantially reduces false positives, it also leaves many critical

anomalies undetected.
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Model Precision Recall F ∗
β -Score

AD-PCI Model 68% 37% 43%
Neural Prophet Model 24% 63% 55%

Table 6.2: Comparison of Model Performance on Seasonal Synthetic Data

On the other hand, the Neural Prophet Model displayed a greater ability to control

seasonality and detect an increased number of anomalies. It achieved a 63% recall rate,

correctly detecting a substantially higher number of actual anomalies. However, its preci-

sion was lower (24%), indicating a greater number of false positives. Despite the trade-off,

the model’s F ∗
β -score of 55% indicates a more balanced overall performance compared to

the baseline, suggesting that the Neural Prophet Model may be better suited for cases

where maximum recall is critical. This approach detects anomalies more thoroughly while

also flagging more occurrences.

Missing anomalies in the hotel business, especially when tracking API call data, might

result in significant operational issues. For example, if an anomaly goes unnoticed dur-

ing peak check-in periods, it could be an obstacle to vital guest services such as room

availability, resulting in delays and frustrated guests. In such a high-stakes situation, the

maximum recall must be prioritized. Failure to identify an anomaly can have significant

consequences for service reliability and customer satisfaction.

The Neural Prophet Model, with a recall rate of 63%, comes out as a more reliable

option for our purpose. By collecting a broader variety of real anomalies this approach

detects possible issues early on, allowing the team to fix them before they become severe

service interruptions. Although the model may generate more false positives, this trade-off

is desirable in a situation where missing a true anomaly might have serious effects, making

the occasional extra research a minor price to pay.

6.3.2 Results on Real Data

Next, we analyze the results of how the model performs in detecting anomalies within

the identified seasonal series in Table 6.1. Similar to seasonality detection, the major

challenge is the absence of labeled anomalies, as it prevents direct measurement of model

performance metrics like precision and recall. Nevertheless, the main objective remained

to find potential anomalies in seasonal time series data, as these irregularities could signal

system disruptions or performance degradation.
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The time series plots in Figure 6.7 visually display the total number of successful API

calls, along with model forecasted values, confidence prediction intervals, and identified

anomalies across different System-Action combinations. These graphs demonstrate the

model’s ability to capture both normal seasonal patterns and deviations that might indicate

unexpected activity. The shaded area surrounding the prediction line reveals the model’s

prediction confidence intervals, which span the 15th to 85th percentiles. This range is

meant to represent typical data fluctuations, with data points outside of it marked as

anomalies, highlighted in red dots. These highlighted points reveal deviations from normal

seasonal patterns, which might indicate anomalous system activity.

Figure 6.7: Forecasts with Quantile 15-85 Confidence Intervals and Anomalies for different
time series
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We conducted a thorough evaluation of the model’s sensitivity in detecting anomalies

by experimenting with various quantile combinations. Each quantile pair establishes the

bounds for prediction confidence intervals around the expected value, which determine the

threshold for detecting deviations as anomalous. For example, narrow intervals such as

[0.30, 0.70] form a tighter border around the forecast, classifying even little deviations as

anomalies. Although this increases the model’s sensitivity, it also raises the possibility

of false positives, since regular oscillations are mistakenly marked as anomalies. In con-

trast, utilizing broader intervals, such as [0.05, 0.95], gives a larger buffer to accept normal

changes, which helps minimize the number of identified anomalies but may overlook tiny,

early indicators of system anomalies. It is important to mention that the parameter for

the conformal prediction level (α) was consistently set to 90%, ensuring a stable threshold

across different interval adjustments.

Figure 6.8: Heatmap of Anomaly Percentages Across Quantiles for the seasonal time series.

The heatmap in Figure 6.8 illustrates the percentage of data points marked as anomalies

across various quantile ranges for each seasonal time series. Generally, it shows that most

combinations have relatively low anomaly percentages, with values frequently between

2-5%. For example, System1-Action4 regularly exhibits increased anomaly percentages

across all quantile ranges, implying that this combination may encounter more anomalies

or inherent unpredictability that frequently prompts anomaly detection. On the other side,

combinations such as System7-Action23 have lower anomaly percentages, indicating more

consistent behavior with fewer deviations from typical trends.

53



6. RESULTS 6.4 Computational Efficiency Analysis

6.4 Computational Efficiency Analysis

An investigation of the computational efficiency of our suggested framework was used

to determine its practicality. Our focus is on two critical components of seasonality and

anomaly detection for hospitality IT systems: scalability and computational efficiency. A

set of 23 time series were generated and three different datasets with different amounts of

data points were used in this investigation. These datasets included 1,444 data points from

hourly intervals, 1,920 data points from 45-minute intervals, and 2,888 data points from

30-minute intervals. These datasets were chosen to reflect various temporal resolutions

that are frequently encountered in practical applications.

The preprocessing and hyperparameter of all the datasets were examined to ensure op-

timal performance. The runtimes reported include the total amount of time needed to

process to produce the outputs, including both seasonality and anomaly detection.

Figure 6.9: Runtime vs. Dataset Size

The framework’s scalability was highlighted by the conducting computational research.

This process showed a clear correlation between runtime and dataset size. Even for

datasets with more data points, the framework consistently produces results in an ac-

ceptable amount of time, as seen in Figure 6.9. More specifically, the amount of time

taken to perform the seasonality and anomaly detection increases in datasets with more

data points, suggesting a constant computing demand as additional data points are added.

Because of its effectiveness and scalability, the suggested framework is positioned as a solid

and dependable proactive IT management solution for the hotel industry that can meet

our operational needs.
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Conclusion

The essential challenge of identifying anomalies and seasonality in the IT infrastructure

for the hospitality industry has been addressed in this research project. The shift from

a reactive approach to a proactive, using an automated detection system is an important

advancement in an industry where efficiency affects both the customer experience and

business success. In this research, the main question lies in how accounting for seasonality

in anomaly detection improves both recall and overall performance, especially in time series

data. This question was addressed in both theoretical and empirical depth.

Our proposed solution is a two-step approach that first identified and classified seasonal

time series data through the Seasonal Quantile Regression (SQR) method, followed by the

Neural Prophet method to uncover anomalies. Non-seasonal time series, on the other hand,

is still managed using IreckonU’s existing moving-average forecasting technique. Such an

approach effectively optimizes computational requirements while maintaining accuracy and

represents a scalable approach that can efficiently manage high-dimensional datasets.

Key results demonstrate the critical role that seasonality plays in identifying anomalies

within time series data, with a significant recall improvement of 64% when seasonality is

taken into consideration. Through computational research, we were also able to validate

that this framework may be expanded to handle an increased number of data points while

maintaining processing efficiency. The framework’s goal of explainability further supports

its practicality. The system uses a white box model for anomaly detection with a Prediction

Confidence Interval (PCI) to generate clear, interpretable outputs that non-technical IT

hospitality experts can understand and act upon. The system is not only technically sound

but also accessible to a wider audience thanks to the capacity to make adoption easier by

explaining model behavior and outputs. The ability to explain model behavior and outputs
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fosters trust and facilitates quicker adoption, making the system not just technically robust

but also accessible to a broader range of users.

Neural Prophet exhibited a satisfactory recall performance and an average precision-

recall trade-off. Its susceptibility to fluctuations, which was exacerbated by the complexity

of dynamic high-frequency data, also frequently misclassified regular changes as anomalies.

These findings offer some interesting prospects for future studies, particularly related to

enhancing algorithms aimed at achieving greater precision.

In the long run, this research will not only improve the technical part of IT system

monitoring but also lay the foundation for scalable solutions tailored to the rapidly changing

requirements of the hospitality industry. The proposed approach in this work paves the

way for increased reliability in operation and customer satisfaction by moving from reactive

diagnosis to pro-active avoiding. Scalability, computational efficiency, and explainability

are all combined to guarantee that the solutions created are not only unique but also useful,

and prepared to handle the industry’s next challenges.
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Limitations and Future Work

Although this study showed encouraging results, there are limitations, which identify

areas for improvement in future research. A potential limitation is that seasonality de-

tection is based on a single quantile level. Although it is effective, this technique could

miss information, especially if the time series is skewed or there are outlier time series.

Future research should explore broader quantile ranges, such as the 15th-85th or 25th-75th

percentiles, to gain a better understanding of seasonal trends. In addition, investigating

a multi-quantile regression model or treating quantiles individually, may enhance model

robustness, which is critical for high-variance datasets.

Yet another obstacle arises in time series with significant variance, where noise may hide

seasonality. As a result, accuracy may be decreased in cases when random changes approxi-

mate seasonality. Building on possible future work that might use advanced decomposition

methods like Seasonal-Trend decomposition and Loess (STL) method to handle seasonal

decomposition. Such methods could help to better distinguish noise from actual seasonal

components, thereby improving the model’s ability to identify periodicity while reducing

errors attributed to variance-driven noise.

While our validation of the simulated data involves permutation tests, the model’s gen-

eralizability is limited due to the inherent limitations of the synthetic data. Synthetic time

series data is useful for testing in a familiar context, but it can never truly replicate the

complexity, and the unpredictability of datasets we see in reality. Future research is needed

to validate this model on real-world datasets from the IT hospitality domain, annotated

by domain experts.

The model’s ability to detect anomalies exhibits limitations, as seen by its high false

positive rate. This emphasizes the necessity of mechanisms that refine precision. Future

investigations might utilize a dynamic thresholding approach, in which prediction intervals
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are dynamically changed based on the underlying data distribution. Such flexibility would

lead to reduced false positives, improved accuracy, and increase the model’s resilience across

diverse datasets.

This research provides a solid basis, but addressing these drawbacks has profound im-

plications. Future research may result in enhanced, adaptable, and generalizable models,

leading to additional improvements in both seasonality and anomaly detection. These ini-

tiatives will not only enhance theoretical knowledge but also ensure practical applicability

across diverse and real-world datasets.
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Appendix

System Action ActualCount MissingTimestamps
System1 Action1 7368 9955
System1 Action2 10159 7164
System1 Action3 871 16452
System1 Action4 999 16324
System1 Action5 14589 2734
System1 Action6 14478 2845
System1 Action7 2664 14659
System2 Action8 15375 1948
System4 Action9 456 16867
System4 Action10 2147 15176
System4 Action11 15036 2287
System4 Action12 9343 7980
System4 Action13 9819 7504
System4 Action14 401 16922
System4 Action15 6608 10715
System4 Action16 13652 3671
System5 Action17 6845 10478
System5 Action18 3567 13756
System5 Action19 11331 5992
System5 Action20 7414 9909
System5 Action21 6406 10917
System6 Action22 10516 6807
System7 Action23 5765 11558

Table 8.1: Missing Timestamps for each pair of System-Action. The expected count for all
actions is 17,323.
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Figure 8.1: Distribution of WeightedAvgDuration across various System-Action combina-
tions

Figure 8.2: Distribution of TotalErrorCount across various System-Action combinations.
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Figure 8.3: Seasonal Distribution for the TotalErrorCount Variable

Figure 8.4: Histograms of Hyperparameters: Lags (left) and Threshold (right)

Figure 8.5: Histograms of Hyperparameters: Beta (left), Alpha (middle), and K (right) for
AD-PCI Method.
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Figure 8.6: Histograms of Hyperparameters for the Neural Prophet model

Figure 8.7: Aggregation process for calculating Weighted Average Duration.
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System-Action Avg_Train_Loss Avg_Validation_Loss Perceptual Difference (%)
System1-Action1 19.67 20.00 1.66
System1-Action2 13.44 15.63 16.29
System1-Action3 18.40 16.67 -9.41
System1-Action4 0.35 0.38 7.40
System1-Action5 40.56 52.37 29.11
System1-Action6 127.67 150.34 17.75
System1-Action7 1.46 1.35 -7.51
System2-Action8 38.67 48.84 26.31
System4-Action10 0.74 0.93 24.26
System4-Action11 619.34 622.30 0.48
System4-Action12 10.88 14.74 35.44
System4-Action13 5.20 6.46 24.09
System4-Action14 0.42 0.365 -13.16
System4-Action15 2.93 3.59 22.41
System4-Action16 110.16 134.63 22.22
System4-Action9 0.00 0.00 0.00
System5-Action17 2.43 3.42 40.40
System5-Action18 1.17 1.37 17.16
System5-Action19 5.64 7.19 27.51
System5-Action20 2.27 2.99 31.35
System5-Action21 2.50 2.84 13.62
System6-Action22 6.03 7.89 30.90
System7-Action23 1.95 2.20 12.82

Table 8.2: Seasonal Quantile Regression Results for Each Time Series with Perceptual Dif-
ference between Training and Validation Loss
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