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Introduction

In cancer research arrayCGH is a common technique for finding chromosomal aberrations. Linking these
chromosomal aberrations with survival through for instance early diagnosis of the disease is high on the
researcher’s list. In survival analysis statistics is essential for developing robust prediction methods and
discovering biomarkers which are associated with survival.

At the CCA, research in the field of cancer development and treatment is done with the aim of providing
cancer patients the best possible care, (early) diagnosis and treatment, now and in the future. There is
therefore a need for statistical models that can contribute to this highly relevant aim. Such models link
relevant genomics data with clinical data and predict survival. Furthermore, the statistics provide a
measure for reliability of the prediction.

The goal is to give new insight from a statistical perspective on the relationship between the genomics
and clinical data related to cancer. Moreover, we expect that some non-standard procedures, such as
stepwise approaches, may have higher prediction accuracy than available standard methods.

Problem definition
» Provide a statistical model that combines clinical and genomic data and predicts survival

» IF genomic data adds predictive power, find limited selection of genes that can be used for

prospective measurements

> Interpret alternative model with intermediate marker and compare with standard model




10



1. Theoretical part: Survival Analysis

In survival analysis we deal with a very important concept called censoring. Censoring occurs when we
are unable to observe the response variable of interest. It is a common phenomenon in medical
research that some patients can still be in remission when the observation period for remission is
terminated. For these patients the exact survival time is unknown because we only know that their true
remission time was longer than the observation period. This is called right censoring. In the case of
censoring the data is incomplete and special statistical methods have to be applied for analysis®. We can
either use parametric or nonparametric models to analyze this data. In the usual survival data setup the
available data has the following form (y1, X', 81)........... (yn, X", 8n)°.

The survival time y; is complete if §; = 1 and right censored if §; =0 and x is the usual vector of predictors
for the i individual®.

1.1. Parametric modeling

In parametric modeling we deal with survival functions and assume that the survival data follows a
certain underlying probability density function. Assuming that a random variable Y follows a probability
density function f and cumulative distribution function F, then

y
F(y)=P(Y <) = [f(u)du
0
And the survival function or reliability function

S =1-F(y)=P(Y <y)= [f(@)du

1.1.1. Hazard functions

The hazard function gives the rate of death of an individual given that the individual has survived up to a
certain time point. So if we say that individual Y lives up to time y where y>0 and then dies, the hazard
function of that individual Y is given by:

_/»

h(y)= SO

These hazard functions track how the failure rate changes with time®.

1.1.2. Exponential Modeling

The simplest parametric model is the exponential probability model with probability density function f
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f(y)=2e?
and cumulative distribution function F
F(y)=1- e ?

The hazard rate belonging to this model is:

f» e
h(y)_1—F(y)_1—(1—e-‘y)_)“

The exponential model is the only model with a constant hazard rate. This is also called the memoryless
property of the exponential model. This means that if the lifetime of the underlying follows an
exponential distribution its future performance is independent of its past performance.

1.1.3. Weibull Modeling

A more extensive parametric model compared to the exponential model is the weibull model. The
model has the following probability density function f

a  a 7[@&
SO =——y""e ,y>0
B
and cumulative distribution function F

Foy=t-¢ 7

The hazard rate belonging to this model is:

h(y) =

This is a power hazard rate and is used when risk of failure is rapidly increasing with time®
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1.1.4. Proportional hazards®

In survival modeling we are interested in the relationship between the survival time Y and the values of
explanatory variables X. So we want to know what the explanatory variables say about the survival time.
Now, if the relationship between X and Y is modeled parametrically and Y depends on a vector of the
observed values of explanatory variables x, then the hazard rate will also depend on x. If then the hazard

rate is given by 4 (), it is assumed that the covariates, x, have a multiplicative effect on a basic hazard

function called the baseline hazard which leads to proportional hazards models.

So the relationship between the hazard function and the baseline hazard is given as follows:

h(y)=hy(y)g,(x)

where g is a positive function of x and hy(y) is the baseline hazard, representing the hazard function for
an individual having g;(x) =1.

If two individuals have lifetimes that depend on vectors of covariate values x; and x, respectively, then
the following holds:

hxu () _ ho(y)gl(xl) _ gl(xl)

hx2 (6)) - ho()’)gl(xz) gl(xz)

This shows that the hazard ratio does not depend on y because the baseline hazards, which depend on
y, cancel from the ratio.

Now we want g;(x) bigger than or equal to 0 and g, (0) equal to 1. To accomplish this, a vector B is
introduced of p parameters by setting x’ = ()5 X pevennenn 3 X,), B = By, By ,pB,) and
g(x)=e"*

The proportional hazards model becomes
h(y)=hy(y)e””

where B x = B,x, + B, X, + oue.. + f3,x, is a linear combination of the covariate values from the

vector x and the coefficients are taken from the vector of parameters [ . Fitting a proportional hazards
model will lead to estimation of the p parameters in f using values of the observed responses and

covariates

13



1.1.5. Parameter estimation (Likelihoods)®

Parameter estimation is done through the construction of likelihoods and the maximum likelihoods
procedure. Let us assume that the parameters in the model are bundled into a variable, &. Then the
likelihood L(68) of the observed data is a constant multiple of the joint distribution of the observed

data. By maximization of this likelihood function, the estimator é of @, is estimated and is the value of
6 that maximizes the likelihood function. By searching through the possible values for &, this maximum
is found.

Uncensored data

In the case of uncensored data and observed random variables Y, for i =1.....n, the likelihood is given

as
1O)=c[1/,:6)

Solving for which value of @ the derivative with respect to @ of this function equals zero leads to an
optimum value. This is called the maximum likelihood procedure. Also checking that the sign of the
second derivative is negative gives a maximum. Maximizing the log-likelihood is much easier and

preferred. The log-likelihood /(€) is defined as log, L(€) and its maximum is also found through the

derivative. The derivative in this case is called the score function, U(#) = (6) . The solution to this

function is often found through the Newton-Method.
Censored data

For censored data the likelihood function is given as follows:

LO) =[] /)" 5"
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1.2. Nonparametric modeling

In nonparametric modeling there is no assumption on the distribution of the data. So we are dealing
with distribution free modeling and there is no parametric form for the baseline. The most important
distribution- free regression model used for the analysis of censored data is the Cox model®. For
visualization purposes the Kaplan Meier curves are widely used. The Cox model is a multivariate analysis
model and the Kaplan Meier curve is a univariate model.

1.2.1. Cox proportional hazards model
The Cox proportional hazards model first estimates the values for f and then calculates the baseline

through these estimates.

The same proportional hazards model from chapter 1.1.4. is used:
h(¥)=hy(»)e”",

where x” = (x;,X,,.e...... ,xp),ﬂr = (L), fyreeeene ,B,) and h,(y)is the baseline hazard that occurs
when x=0.
The baseline hazard has no influence on the estimation of £ thus at first only the uncensored data

points are used.

Analogously to parametric modeling, the likelihood function is constructed and maximized to find the
parameter values. A slight difference is that a conditional likelihood function is constructed:

k eﬂrxm
L. = —_—
0-1l5m

leR;

This is done by first specifying a risk set R as the set of individuals that have not died yet. Then the
conditional probability, that individual j in the risk set R is the first to die of the members of the risk set
is given as follows:

eﬁr"w)

- Zeﬂrx/

leR;

Taking the product of these probabilities leads to the conditional likelihood function.
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1.2.2. Kaplan Meier Curves (Product-Limit Estimator)

The Product-Limit estimator estimates the survival function S, using right censored data.

The method acknowledges three variables at a certain time point:
e the number of elements at risk,
e the number of elements that have died,
e the number of elements that are still alive;

By calculating the conditional probability for every individual in the risk set, that the individual will live

through a time-span given that it was alive at the beginning of the time-span, the survival function is

constructed as the product of these probabilities.

Assume p, ., stands for the conditional probability, then the estimate of p . ., is equal to

4’?5dyz'ng_].,_l.+1

-
P #p_dying, .,

Where #dying/)i+1 is the number of individuals that will die in the observed time-span (j,j+1] and

#p a’yingm+1 is the number of individuals that have the potential of dying within the time-span
(j,j+11.

The survival function b:(t) is the product of these conditional probabilities and is equal to
n n— _] 6(./')
SO =T1pr,.= (—]
U =525

. _ 1 if uncensored
where n is the number of observations and 6, =

0 if censored

Note that as j increases, the number of elements at risk decreases one at a time.

16



1.3. Penalizing high dimensional data

With high dimensional data it would be very hard to construct a good prognostic model unless the
possibility of dimension reduction was called upon. Conveniently, this is possible and there are
penalizing constraints upon which the selection is made. Such dimension reduction models are ridge-
and lasso-regression, that ensure L2 and L1 penalties upon the data. The main difference between
these two penalties is that the L2-penalty allows all penalized variables to become zero and there is no
feature selection possible.

1.3.1. The Lasso method (L1-penalty)

Take the partial likelihood function from the Cox model

T
)

LB =[]+

T
-1 eﬂ X

leRj

Then by the lasso method® the estimate of L is given by

A p
P(s) =argmin/(f), subject to Z‘,BJ‘ <s
j=1

where s is a tuning parameter determining how many coefficients and thus the effect of the belonging
covariates become zero.

17
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2.

2.1.

Practical part: Data Analysis

Clinical Data

The raw clinical data consists of observed clinical information concerning 50 patients. Alongside the 50
rows the patients and alongside the columns 58 measured variables are represented.

From these variables the most promising are chosen for the prediction model. This is done through
information known beforehand and by input from co-workers. The only condition is that all information
concerning this variable is known and present at baseline. The baseline in this case is the date of
operation.

For the first prediction model the selected clinical variables are:

1.

No U wN

The age of the patient, ( Continuous variable)

The sex of the patient, (M or F)

The hospital where the patient was treated, (2 values)
The differentiation of the tumor, (Poor, Moderate, Well)
The state of the tumor, (MSI or MSS)

Peritoneal involvement, (Yes or No)

The location of the tumor; (2 values)

For “Differentiation” the two values moderate and well were combined because only 3 patients were
coded with value “Well”. So now all variables except “Age” are dichotomous.

<Confidential picture not included>
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2.2. Genomic Data

The genomic data consists of the calls from the regions with 1120 variables (generated with CGHcall)
corresponding to the 50 patients. Every variable can take on 3 values that stand for normal, gain or loss
on that part of a chromosome. The 3 values are coded by 0, 1 and -1 respectively. We assume that a
gain is the opposite of a loss and this is taken into account when the coefficients are interpreted.

2.21. Array Comparative Genomic Hybridization (aCGH)

While reading keep in mind that the goal of aCGH is to find aberrations in the DNA of a patient. These
aberrations are of course seen in relation to healthy DNA (read: of a healthy person). One would thus
want to compare different DNA samples with each other.

The comparing mechanism is established by hybridization which is the main fundament of DNA
microarrays’. Two DNA strands can be hybridized if they are complementary to each other reflecting the
Watson-Crick rule.” A DNA molecule consists of nucleotides and each of these nucleotides consist of a
phosphate group, a deoxyribose sugar molecule , and one of the four different nitrogenous bases called:
guanine(G), cytosine(C), adenine(A) or thymine(T). By the Watson-Crick rule it is know that G only pairs
with C, and A only pairs with T and thus are called complementary.? Therefore two strands can only
hybridize if they are complementary to each other

5 — ATGCCCTGAC -3
3 — TACGGGACTG - 5’

Figure 1: Complementary DNA strands’

At first only small strings of DNA called oligonucleotides were used to hybridize to complements. Now
instead of just using one small string, more of these strings are placed on a surface forming a DNA array.

@@@@@@@_ﬂ+®®©©®®®

DOV

RAQIOON

Figure 2: Hybridization of two DNA molecules. Dotted line: hydrogen bonds ?
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A healthy DNA strip has a certain form and by comparing this with an unhealthy DNA sample,
aberrations as in copy number changes can be spotted. This is important with cancer because during
tumor progression genomic DNA regions are frequently lost or gained.

Comparative genomic hybridization (CGH) was the first efficient approach to scanning the entire
genome for variations in DNA copy number?. Here a test sample and reference sample are labeled with
a fluorescent dye, the reference sample with a red dye and the test sample with a green dye, and then
both samples are hybridized to normal human metaphase chromosomes. This then produces images of
both fluorescent signals and ratios of these signals are digitally quantified along the length of each
chromosome®; green means an amplified region with a ratio above one, red means a deleted region
with a ratio below one while yellow means a normal region with both signals equally represented. This
method is limited due to the poor resolution of the metaphase chromosomes®. As follow up to this
approach the array CGH method was introduced which produces higher resolution signals because the
human metaphase chromosomes are replaced by DNA fragments (100-200 kb) of which the exact
chromosomal location is known, identified by its base-pair position on a chromosome. This fragment or
array first consisted of spotted genomic sequences inserted into bacterial artificial chromosomes (BACs)
but now consists of oligonucleotides (oligo’s)™ .

o

Test DNA Control DMA
Fig.l. Schematic overview of the
microarray-based comparative genomic
hybridization technique. Test and control

DNA are labeled with a green and red

fluorochrome, respectively. Both DNAs
| are hybridized to cloned DNA fragments

Digital image processing that have been spotted in triplicate on a

Fluorescence glass slide (the array). Images of the
microscopy fluorescent signals are captured and

Hybridization Fluorescence Ratio analyzed. Red spots indicate loss of test

DNA, green spots indicate gain of test

DNMNA, and yellow spots indicate the

presence of equal amounts of test and

control DNA. For a precise evaluation,
test to control fluorescence signal ratios
are measured for each single clone. These
results can be translated in a high-
resolution overview of chromosomal

; copy number changes throughout the
l Liomn 220 Gnin whole genome.

Figure 3: Schematic overview of aCGH 4

These hybridization techniques generate profiles in which aberrations can be detected if present. By
comparing the generated profiles with normal profiles a clear diagnosis can be established. Due to the
fact that the exact chromosomal location of the DNA fragments is known it is possible to link the
aberrations to exact parts of chromosomes. The log-ratios are usually converted back to an absolute
measure: 3 or 4 underlying discrete states representing loss (<2 copies), normal (2 copies), gain (3-4
copies) and possibly amplification (>4 copies), called calling . Now to translate the profiles into these
discrete states certain steps have to be followed. A method that performs this translation is called
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CGHecall invented by M.A. van de Wiel” which combines strong concepts of previously developed

methods.

Sample Genomic Microarray Copy Mumber Profile

Segments Selected from Physical Map

Cy3 Labelled Cy& Labelled
Reference Sample

Armray Visualization

DMA DMNA
,\:- Y 1 -i% | LAY |
Spotin Array Format g
Q0000000 |
00000000 =l
00000000 i
4 00000000 '§
&= 00000000 B
[s]elelelelels]e] I
00000000 I
0000000 2l | :
.;:: 3 I.'l:

Figure 4: aCGH process (Source unknown)

This method follows 3 main steps: Normalization, Segmentation and Calling and makes a distinction
between 6 states instead of 4. After the calling step the dimension of the data is reduced by making
Regions. Normalization makes the log2-ratios from different hybridizations comparable (MAD, median
normalization). Segmentation divides the genome into contiguous segments and clones that belong to
the same segment are used to have the same underlying copy number. Calling is the process of
categorizing the different segmentation states into the 6 underlying discrete states: (0) double loss, (1)
single loss, (2) normal, (3) single gain, (4) double gain, (=5) amplification. Regions capture the essential
features of the data and are a series of neighboring clones on the chromosome whose aCGH-signature is

shared by all clones.’
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2.2.2. CGHcall’

CGHcall is an algorithm that detects copy number changes and classifies them into six states: double
deletion, single deletion, normal, gain, double gain and amplification. The algorithm combines strong
concepts of other methods that also detect and classify copy number changes. The algorithm is divided
into three major parts: Normalization, Segmentation and Calling.

Normalization aims to make log,-ratios from different hybridizations comparable. Though there are
different normalization types, CGHcall uses the median normalization. This normalization type shifts the
median of the log,-ratio to zero.

After the normalization step, the genome is split into contiguous segments. Clones that belong to the
same segment are assumed to have the same copy number. The segmentation is needed to reduce the
noise in the genomic data and to detect the aberrations and perform breakpoint analysis.

Calling , the last part of the algorithm, is the process of categorizing the different segmentation states as
‘loss’, ‘normal’, ‘gain’, ‘amplification’.

2.3. AnalysisinR

R is a free software environment for statistical computing and graphics. It is well suited for data analysis
purposes and is commonly used when analyzing medically related data.

So now the genomic data is formed and the clinical data is available. And from these data forms the
most potential covariates can be analyzed. The genomic data is added to the clinical data and by
imposing a penalty constraint on the weights we deal with the unfortunate occurrence of having more
predictor variables than observations. Some weights are thus forced to become zero by the Lasso
method.

2.3.1. Coxpath’

Coxpath is the built-in R function, from the package glmpath, that implements penalization of the cox
proportional hazards model by using the predictor-corrector method to determine the entire path of
coefficients.

The coefficients are computed with the following criterion
A2 = argminl-log{L(y: )} + 2]

Where L denotes the partial likelihood.
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The entire coefficient paths are formulated as {,5’(/1) 0<A <A, }, where A is the largest A that

makes B(/I) non-zero, through the predictor-corrector scheme. The active set changes along with A
due to the sparse solution set that is a result of the L1-penalization. The algorithm starts with 4, and

estimates the coefficients by reducing A at each step based on the previous estimate.

The formula for the computation of the coefficients in section 1.3.1 is modified by adding a
regularization parameter 4 .

24



2.3.2. Double 10-fold Cross Validation

For the analysis a double cross validation procedure is implemented which ensures minimal fluctuations
in the outcome of the prediction model.

One of these is an internal cross-validation method performed in the built-in R function “coxpath” to
construct the model and the other is an external cross-validation for prediction purposes.

For the internal cross-validation a standard 10 fold cross validation approach is used which splits the
data in 10 equal random sections. These sections are in turn part of the test and training set. At each
fold of the external cross-validation the whole data set is split into a training-set and a test-set with a
ratio training: test of 45: 5 for the set of 50 patients. Each externally created training set is passed
through the internal cross validation method in the function coxpath and therein split into another
training and test set. The internal split is used to predict an optimal penalty. This optimal penalty is then
used to predict the externally created test set and the coefficients belonging to the selected covariates.
The optimal penalty that is used is a median over several values due to instability of the method with
respect to different seeds that cause a different split of the dataset to give slightly different optimal
penalties. The external 10-fold cross validation is stratified; this means that within the test and training
sample the proportion of censored data v.s. uncensored data is approximately the same as the
proportion in the original data set. By stratifying the cross validation, the model becomes more stable
because it is based on a sample that resembles the test set.

2.3.3. Ranking procedure

The aim of the model is to predict survival of the patients in the data set. The model that is used returns
the hazard rates belonging to each patient. These hazards rates are translated into survival by saying
that a low hazard rate corresponds to a high survival time using the relationship:

S@) = exp(— J.ﬁ(u)du] , where A(t) is the hazard function
0

Within every external cross validation procedure the whole dataset of patients is predicted and saved
with a certain order from patients with high hazard rates to patients with low hazard rates. The highest
hazard rate gets label 1 and the lowest rate gets label x (# of patients) and everything in between gets a
label from 2 to x-1. Now this is done 10 times and every time the label of the initially created test set is
taken from the group that it belongs to. When all the test sets have been gathered they are again
ordered with respect to their labeling. Now it is clear which patients have a high predicted survival rate
and which patients have a low survival rate. The patients are then divided into good and bad groups and
labeled group 1 and 2 respectively. We use the ranking of the hazard rates rather than the hazard rates
themselves to “standardize” between the splits.
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Thereafter, Kaplan Meier curves of the observed survival times are plotted using the information in the
groups. When the prediction is good, the curves lie far apart and the curve of the good group lies above
the curve of the bad group.

It is not correct to just rank the hazard rates of the test set within the group of predicted test sets. We
are then implicitly assuming that the predictions for the test sets are from the same model. The models
that predict each test set are different because coxpath is instable. By using this particular ranking
procedure as explained above, the fact that the models within each cross validation are different is well
accounted for. It also takes a while before the program is finished running when the genomic data is
included in the analysis. For the datasets that were used it took roughly 2 to 3 hours to run the
procedure.

Example

There are 10 patients, numbered from 1...10

Suppose that in the first run of the external cross validation, 1/10 of the whole dataset, number 2 is
picked as the test set whereas the rest is the training set. So now a prediction is made for this patient
based on the remaining 9 patients.

Patient number | Predicted hazard rates
1 ?

2 0.8
3 ?
4 ?

5 ?

6 ?

7 ?

8 ?

9 ?
10 ?

Actually we do not only predict this 1 patient’s hazard rate but we predict all 10 patients at once.

Patient number | Predicted hazard rates

0.4

0.8

0.5

0.5

0.2

0.6

0.7

0.1

OO |IN(ON[A|IWIN|F-

0.3

[EEN
o

0.9

Next, the patient numbers are ordered from low to high hazard rates and assigned a label from 1 to 10.
The higher the label number, the lower the hazard rate.
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Patient number

Predicted hazard rates

label

0.1

0.2

0.3

0.4

0.5

0.5

0.6

N|lo|bh|lwWlRL|O|U|

10

0.7

0.9

O|IN|jonn] Bl WIN

10

We forget the hazard rates and only store the label and patient number of the test set. Patient no. 2 has

label no. 9.

Assume these are the results for the 10 test sample patients when the procedure is repeated 10 times.
So every patient has been in the test set once.

Patient number | label
1 8
2 9
3 6
4 1
5 5
6 4
7 7
8 10
9 2

10 3

The patient numbers are again ordered, but now according to the labels from low to high. Also the

labels are divided into a good and bad group

Patient number | label | Group
4 1| Good

9 2| Good

10 3| Good

4| Good

5| Good
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3 6 Bad
7 7 Bad
1 8 Bad
2 9 Bad
8 10 Bad

Now we know which patient belongs to which group by selecting the columns “Patient number”and
“Group”.

Patient number | Group
4 | Good
9| Good

10 [ Good
6 | Good
5| Good
3 Bad
7 Bad
1 Bad
2 Bad
8 Bad

The Kaplan Meier curves are drawn with the information in the group. By ordering the patients in
ascending patient number, the column “Group” is in the correct format to place beside the observed
survival data.

Patient number | Group

Bad

Bad

Bad

Good

Good

Good

Bad

Bad
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Good

=
o

Good




3. Results

These are the results of the 50 patients when we run the clinical variables combined with the genomic
variables.

Kaplan Meier curves 7 clinical variables + genomic data
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Figure 5: Kaplan Meier curves of survival cancer patients based on both clinical and genomic data.

As we can see in Figure 6, the curves lie apart. Important to know is that to generate these curves the
number of genomic covariates added to the 7 clinical variables is only equal to 1. So only 1 region was
added to the clinical variables and the model now consists of 8 variables. Actually this is built into the
model because the minimum number of genomic covariates that it selects is equal to 1. We can thus say
that no regions were selected for prediction purposes. This was already evident from the optimal
penalties that were found by the model at each optimization run, the value was always close to 1 which
means that all variables should be penalized.

It is not possible to perform a log-rank test on the groups because the data is not independent. The
information in the groups is dependent on the observed survival rates; this means that the groups are
not prespecified and are only constructed with help from the observed survival rates. Also the point of
these Kaplan Meier curves is to measure the performance of the predictions; is there a clear visual
difference. Therefore it is not needed to perform any test on the groups.
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Figure 6: Kaplan Meier curves of 7 clinical variables only

These are the results of only the 7 clinical variables only. From these results we conclude that the
genomic data used to generate figure 6 does have some influence on survival prediction.

We now determine which clinical variables are most promising with respect to survival prediction by
looking at the Akaike criterion, AIC. We start with a model that includes all clinical variables and drop the
variable that has the lowest p-value. Then we look at the AIC of the model to see if it is lower than the
previous AIC of the model with that variable in it. The variable combination that gives the lowest AIC is
then seen as the best model and thus those variables are seen as the most promising. In this case the
most promising variables are the Age of the patient, the differentiation of the tumor and the MSI status.
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Kaplan Meier curves 3 clinical variables
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Figure 7: Most promising Clinical variables Age, Differentiation & MSI status

When we now take the most promising clinical variables and repeat the procedure the results are given
in Figure 8. These seem to be much better than the previous results. The curves lie much more apart

and are more easily separated. So it seems that this model performs much better than the one
represented in Figure 6.
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Now, if we add the genomic data again to these 3 clinical variables and then consider the results, the
findings are gathered in the following figure.

Kaplan Meier curves 3 clinical variables + genomic data
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Figure 8: 3 clinical variables combined with genomic data

Even now we see that the genomic data does not add any new information to the predictive power of
the clinical variables. The clinical variables are enough for survival prediction with this dataset of 50
patients. The curves are again strangled into each other and do not lie much further apart, on the
contrary they even lie a bit closer to each other.

The best model for survival prediction is the model with 3 clinical variables, Age, MSI status and the
differentiation of the tumor. It outperforms the other alternative models that include the genomic data
for survival prediction. We thus conclude that the genomic data has little added value for survival
prediction for this particular data set.
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Cancer dataset 2

The next dataset was from 51 patients. There are 6 clinical variables named: Gender, Age, stage of the
tumor, PTNMN status, HPV status® and silent pattern. All variables except “Age” are binomial variables.
For the stage of the tumor, stages 1 and 2 are combined into one group and stages 3 and 4 as well.
PTNMN status takes on 3 values: 0, 1 and 2 and has been decoded with dummy variables and is
represented by two columns. The genomic data consists of 277 regions and the same procedure as with

the other cancer patients was applied. The result of the clinical data combined with genomic data is
given in the following figure.

Kaplan Meier curves clinical + genomic data
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Figure 9: Kaplan Meier curves for the clinical + genomic data

This is a very nice prediction that combines the clinical and genomic data. Now if we only run the clinical
variables the figure is as follows.

® From a medical point of view, it is worth analyzing the HPV positive tumors only. But the dataset is then too small
to construct a good model from a datamining point of view.
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Kaplan Meier curves clinical data
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Figure 10: Kaplan Meier curves of the clinical data only

By looking at this figure we conclude that the genomic data adds some value to the clinical data in
survival prediction, as figure 10 illustrates a better prediction than figure 11. But just as we saw with the
other cancer data set it might be possible that the most promising clinical variables give a much better

prediction than the one in figure 10. So now we will run the most promising variables and consider the
results.
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Kaplan Meier curves most promising clinical variables

Survival

02

— high
- low

0.0

0 500 1000

I I
1500 2000

Days

I
3000

Figure 11: Clinical variable PTNMN

I
3500

In figure 12 we see that the most promising clinical variable does not predict survival that well. So,
based on the previous two figures, for this dataset the genomic data does add some predictive power to

the clinical variables. Now we consider which genomic variables cause this nice prediction in figure 10.

When the clinical and genomic data are combined for each cross-validation run, a model is made and

some regions are chosen. We consider which regions are chosen the most and then make a graph to see

where the “hot-spots” are. But when reading the table you must keep in mind that the variable numbers

are NOT region-numbers. To get the region numbers subtract the number of columns that represent the

clinical variables, in this case 7 columns. See table 2 for all the information concerning table 1.

Variable no. Region no. Occurs (times)
19 12 1
43 34 5
68 61 1
153 146 2
228 221 6
256 249 1
264 257 2

Table 1: Number of times a region occurs in 10-fold cross validation
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As we see in table 1, the regions 34 and 221 occur the most, 5 and 6 times resp., followed by region 257
and 146. In the figure below this is visualized. The peaks at the beginning belong to the clinical variables

that were not penalized and occur in all 10 models.

Number of times a variable occurs

10

QCCUrrence

50 100

150 200

variable no

Figure 12: Occurrence of the regions. (Region no. is variable no. -7)

The base pair positions, chromosomes and number of clones corresponding to these region numbers are

given in the table below

Region no. Bp.start Bp.end Chromosome Nclones Occurs (times)
12 148554987.5 175246568 1 23 1
34 87134141.5 87650067 3 2 5
61 16699355 38253477 5 21 1
146 45156792.5 49333679 10 6 2
221 47082923 47965567 14 6
249 33153148.5 38330510 17 12 1
257 17228242 19103014 18 3 2

Table 2: base pair positions and other chromosomal information

36




Chromosomes
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Figure 13: Occurrence on Chromosomes

Now we will only run the genomic data to see which regions are selected.

Kaplan Meier curves genomic data
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Figure 14: Kaplan Meier curves of genomic data

®The up-side-down triangle in the upper right corner has no meaning




The most promising genomic variables that cause figure 14 are given in the table below

Region no.

Occurs

times)

12

13

33

59

82

83

84

156

193

Rl Nkl w|~

275

1

Table 3: Occurrence of the regions

In table 2, region no. 33 occurs 5 times followed by region no. 12 and 13, 3 times and region 83, 2 times.

When we compare these results with the results in table 1, it seems that regions 33 and 34 are
important for survival prediction in this dataset. As are region 12 and 13.

Number of times a region occurs

occurrence
3
|
L]

a

50 100

150

region no

200

Figure 15: Occurrence of regions

The peak just before region no. 50 belongs to region no 33 as we see in table 2.

250
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The base pair positions, chromosomes and number of clones corresponding to these region numbers are

given in the following table

Region no. Bp.start Bp.end Chromosome Nclones Occurs (times)
12 148554987.5 175246568 1 23 3
13 177659991.5 180399975 1 5 3
33 83768304 86178494 3 3 5
59 2647827 11407911 5 15 1
82 21493012.5 28338420 7 5 1
83 30097981.5 39348401 7 8 2
84 43018169.5 51470332 7 10 1
156 120459257 135198772 10 19 1
193 46570873.5 53822609 12 9 1
275 14683313 29715891 21 11 1

Although in figure 15, the predictive power of these particular regions does not seem that well we say

Table 4: Base pair positions and other chromosomal information

that region 33 and 34 are important for survival prediction of this dataset, also region 12 and 13 as well

as region 221.

occurrence

Chromosomes

Chromosome

Figure 16: Occurrence on Chromosomes*

“ The up-side-down triangle in the upper right corner has no meaning
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Model validating data sets

To check whether this approach to survival prediction really works, the model was tested on 2 non-CCA
related datasets. One dataset is the heart transplant dataset provided by R and the other is the breast
tumor set from Jane Fridyland™. The first set is a low dimensional clinical dataset and the second is a
high dimensional aCGH set. For both sets the covariates have predictive power and thus the model has
to select the covariates that cause a good survival prediction.

Kaplan Meier curves Heart transplant

Kaplan Meier 20 regions added

Survival
Survival
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Table 5: Model validating datasets

In these two figures we see that this approach to survival prediction works correctly. As we knew from

the beginning that these two datasets consist of predicting variables, the model indeed finds these
variables and shows a good prediction.
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4. Sensitivity analysis

In this chapter we will take a closer look at the model’s performance when some variables are adjusted.
This will give us a view on the stability of the model and also help us when interpreting future results.
With every good model, the random adjustments should not affect the results drastically. So in this case
we would want that every split of the data should give somewhat the same results with respect to
survival prediction. The parameter that causes the split is the seed, so different seeds are likely to give a
different split and these data-splits might give slightly different results. Now we will consider the
prediction results of the datasets for different seeds.

If the model is stable, the results between seeds should not differ that much. The results within one
seed are allowed to differ due to the high correlation aspect of aCGH data.

We will compare results of 2 different seeds for the second cancer dataset of the CCA. For the dataset 4
different sets will be examined:

1. Clinical data only,

2. Genomic data only,

3. Clinical with and without penalization + penalized genomic data,

4. Clinical without penalization + wecca clusters + penalized genomic data;

The wecca (weighted clustering of called array CGH data)*® clusters are added in this part because as it is
common to first cluster the data and then predict survival, it is worth checking if this particular order of

working adds any value to survival prediction.

The two seeds used are (randomly chosen): 7868 and 81345
Both the figures and occurrence tables will be given.
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Result for clinical data only

Kaplan Meier curves clinical variables
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Results for genomic data only
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Figure 18: Comparison of results of genomic data for different seeds
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Results for clinical (no penalty) + genomic data with penalty (region no = variable no (occur_ index)-7)

7868 81345
Kaplan Meier curves clinical + penalized genomic variables
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Figure 19: Comparison of results of clinical(no penalty) +penalized genomic data for different seeds

Results for clinical with penalty + penalized genomic data (region no = variable no (occur_index) -7)
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Figure 20: Comparison of results of penalized clinical + penalized genomic data for different seeds(region no = variable no-7)
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Results clinical data + wecca clusters

7868 81345
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Figure 20: Comparison results for clinical data + wecca clusters




Results penalized clinical+ penalized genomic data + clusters (region

no=variable no (occur index)-11)
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o

Kaplan Meier curves clinical + genomic variables + wecca clusters

=)

08

3 R +
2 b -
| g 11— high
-==- low
S . ; ; ; ; ; ; 0 50‘0 mloo 15‘00 20‘00 25‘00 30‘00 35‘00
0 500 1000 1500 2000 2500 3000 3500 Days
Days
Number of times a variable occurs Number of times a variable occurs
5‘0 180 1;0 250 2;0 5I0 1[;0 1;0 20‘0 2;0
variable no variable no
occur_index occur_count occur_index occur_count
[1,1 47 6 [1,1 24 1
[2,] 72 1 [2,] 47 6
[3/] 89 1 (3,1 75 1
[4,] 94 1 [4,] 116 1
[5,] 95 1 [5,] 204 4
[6,] 117 1 [6,] 248 1
[7,]1 174 1 [7,] 250 5
[8,] 204 4 (8,1 268 4
[9,] 250 3 [9,] 286 1
[10,] 258 1
[11,] 268 3

Figure 21: Comparison results penalized clinical + penalized genomic data + wecca clusters (region no=variable no-11)

48



For some of the figures there is a slight difference in the predictions. To get rid of this difference, the
mean over several seeds could be taken and worked with. This is not implemented because the whole
procedure is very time-consuming when the genomic data is included. For one seed the procedure takes
around 2 hours and we would at least want 10 seeds to take the mean over.

Although the differences arise, the model seems to be robust because in all cases we would draw the
same conclusion with respect to the most promising variables (regions and/or clinical data). On
Chromosome 3 the part between base pair position 17263371 and 134686034, thus between region no.
30 and 39 is chosen very often as adding information for prediction purposes. Also the regions between
230 and 240 are chosen very often.

As mentioned before, aCGH data is highly correlated and this results in appearance of part of the
correlated set but not the whole set. So if region 1 and 2 are highly correlated they will unlikely appear
together in a predictive model.

By analyzing the results in figure 20 and 21 we conclude that the results are the same as without the
clusters. So clustering first does not have an impact on the prediction results. Compare figure 20 with
figure 16 and compare figure 21 with figure 19.

For information on the base pair positions and chromosomes corresponding to the region numbers see
appendix A. In appendix B the figures of the chromosomes are shown.

Future implementations

For further analysis it would be interesting to consider an alternative model with an intermediate
marker and compare it with the standard model. The expectation is then that the alternative model will
perform better than the standard model.

Another consideration would be to take the mean over the results of different seeds as the end results.
Basically stabilizing the model further would be the main focus in future implementations. The
efficiency of the calculations is also improvement worthy.

Concerning the results of this analysis with respect to the second cancer dataset, a biological
interpretation of the findings is worth considering.
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Conclusion

Assignment

The genomic data has little added value for the first data set that | have worked on. The clinical data
gave a much better survival prediction than the clinical and genomic data combined. For this set no
limited selection of genes were given for prospective measurements.

The genomic data for the second cancer set had some added value for survival prediction. Multiple
regions were selected as promising covariates, switching between different regions that are correlated
and separately lead to the same prediction (Appendix C). These regions are translated into base pair
positions and chromosomes. It does not seem to matter whether the data is clustered first and then
predicted, because the results are the same either way.

Technical

Throughout the analysis of the data some difficulties arose and were dealt with. Apart from the cross
validation method in the function coxpath, an external cross validation was implemented to ensure
minimal fluctuations in the outcome of the prediction model (section 2.3.2). The issues concerning
stability of the function coxpath were solved by working with the median over several optimal penalties
that the function produced. With respect to the stability issues of the external cross validation
procedure, a stratified approach was implemented. Also ranking the predictions as an evaluation of the
predictive performance of the model had its own complications that were taken care of (section 2.3.3).

The built-in R function coxpath, that implements the lasso method through the predictor-corrector
scheme, has a hard time finding the most promising covariates. As the search-space (dimension of the
data) gets larger, from low to high dimensional, the function needs more time to find the most
promising covariates and produce results.

Stratifying the samples in the external 10-fold cross validation leads to much more stable results.
Although differences are still detected, the conclusion with respect to the most promising variables
stays the same in most cases.

Producing the Kaplan Meier curves needs some special attention. The hazard rates that coxpath
produces should not be considered as coming from the same model. Therefore the hazard rates cannot
be ranked within only test samples. The ranking should be done over the test and training set for one
cross-validation. This gives the correct results.

The last part of the problem definition was not implemented due to unforeseen reasons; the first
dataset did not perform as was expected and switching to the next dataset and repeating the whole
procedure was very time-consuming.
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Appendix A: Chromosomal information

Region no.
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Appendix B: Figures related to the chapter “Sensitivity analysis”d

Results for genomic data only
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4The up-side-down triangles in the plots have no meaning
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Results for clinical+ genomic data with penalty (region no = variable no (occur_ index)-7)
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Results for clinical + genomic data without penalty (region no = variable no (occur_index) -7)
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Results clinical+(non-penalized)genomic data + clusters(region no=variable no(occur_index)-11)
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