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Abstract

With increasing pressure on elderly care facilities, optimizing nursing home admission

policies is essential to balance costs, crisis prevention, and patient well-being. This

study examines the impact of incorporating individual patient preferences into a cost-

optimal admission policy under imperfect information.

The proposed Markov Decision Process (MDP) models the gradual deteriora-

tion of an individual’s health, determining both the optimal timing for nursing home

admission and the scheduling of medical check-ups, which serve as an information-

gathering mechanism to reduce uncertainty in decision-making. We first determine

the cost-optimal admission policy and subsequently evaluate the impact of incorpo-

rating patient preferences regarding their preferred care situation.

The model can be used to assess the impact of incorporating personal prefer-

ences into the admission policy, allowing for a structured evaluation of its effects.

The healthcare office responsible for these admissions can use these insights to make

well-informed decisions on whether and how to account for personal preferences in the

admission process, specifically by evaluating their impact on both costs and crisis risk.

The results indicate that even a small shift in preference toward earlier nursing home

admissions can lead to a significant reduction in crisis situations with minimal finan-

cial impact. For instance, adjusting the policy slightly reduces the crisis fraction from

47% to 22.5%, while increasing total costs by only 1.42%. This demonstrates that

a carefully adjusted policy can achieve substantial improvements in crisis prevention

while maintaining cost efficiency.
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1 Introduction

The global population is undergoing an unprecedented demographic shift. Societies

around the world are aging rapidly, increasing the demand for elderly care services.

By 2030, there will be 72 million adults in the United States who are 65 years of

age or older, accounting for 20% of the population [45]. China is experiencing an

even steeper aging trend, with the proportion of older adults projected to grow from

6.8% to 23.6% over the first half of the twenty-first century [12]. The UK and the

Netherlands face similar patterns, with individuals aged 65 and over expected to make

up 26% of the Dutch population by 2060 [19].

This demographic shift places an increasing strain on healthcare systems, espe-

cially nursing homes. Many facilities struggle to keep up with demand due to staffing

Figure 1.1: Increasing pressure on healthcare for older adults [2]
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shortages and limited capacity, resulting in long waiting lists. In the Netherlands,

22,218 individuals are currently on the waiting list for a nursing home, with an ad-

ditional 10,820 waiting as a precautionary measure [2]. These waiting lists are a

widespread issue across multiple countries [5]. Figure 1.1 illustrates the growing de-

mand for long-term elderly care in the Netherlands. The green section represents

older adults currently residing in nursing homes, while the white section represents

those receiving home care.

Long waiting times for nursing homes pose serious risks for older adults, affecting

both their health and well-being. Delayed admission increases the likelihood of frailty,

confusion, distress, and anxiety [4]. Beyond mental health consequences, prolonged

waiting periods elevate the risk of acute hospitalizations, often forcing individuals

into nursing homes under emergency conditions. A lack of adequate supervision

and unsafe home environments—such as steep stairs and high doorsteps—can lead

to falls and accidents [15]. According to Bär [8], each month of delay increases

urgent hospitalization risk by 2.6 percentage points (15% of the baseline probability),

particularly among individuals with dementia living alone.

Not only does delayed access to nursing homes impact older adults’ well-being,

but it also imposes a significant financial burden on healthcare systems. When timely

admission is unavailable, frail individuals require additional home care and emergency

interventions, leading to rising healthcare expenditures. Many remain at home longer,

relying on formal home care services that strain public long-term care insurance and

government subsidies [8].

Crises further complicate nursing home admissions, as emergency placements dis-

rupt the queue. Nearly half of all nursing home admissions result from such crises

[1], exacerbating delays for those who are not yet in immediate need. Next to that,

crises lead to high costs that could have been avoided through timely interventions

and better monitoring of patient health. To prevent crisis situations, it is crucial to

ensure timely admissions by prioritizing patients at the highest risk. By determining

the optimal timing for an individual to transition to a nursing home, emergencies can

be prevented, resource allocation can be improved, and long-term care efficiency can

be enhanced.

2



However, identifying individuals most at risk based on health status is challeng-

ing due to the lack of accurate and up-to-date health information on older adults.

The decision to transition someone to a nursing home depends on multiple factors,

including financial costs [46]. Predicting and preventing crises requires continuous

monitoring, yet health status is often inferred indirectly. Research by Smeekes et al.

highlights the use of proxies such as home care service intensity to estimate health

deterioration [38]. While these proxies provide insights into frailty levels, they do not

offer real-time health assessments, further complicating timely decision-making. Next

to that, it is challenging to model health due to personal variability and the many

factors influencing deterioration rates.

Another key consideration is that not all older adults have the same preferences

regarding nursing home admission. Many individuals prefer to remain in their own

homes as long as possible, as it promotes independence and improves quality of life.

Research by Pedlar and Walker [33] found that 90% of patients preferred increased

home care over nursing home admission. This suggests that developing an optimal

admission policy requires balancing both cost efficiency and individual preferences to

create a sustainable and patient-centered approach.

1.1 Problem Statement

The decision to transition an individual to a nursing home depends on multiple factors,

including financial considerations, individual preferences, and health risks associated

with remaining at home. The challenge is to develop a decision framework that

identifies individuals most at risk and optimally determines when to admit them to

a nursing home or schedule check-ups, balancing these competing objectives.

This study models the progression of elderly individuals’ health states and ana-

lyzes how uncertainty in health deterioration affects decision-making. Based on these

insights, we develop a Markov Decision Process (MDP) that incorporates all relevant

costs, including home care, check-ups, crisis events, and nursing home admissions.

This results in an optimal policy for admissions and check-ups, ensuring that high-

risk patients are prioritized before their health deteriorates to a crisis.
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However, to be practically effective, the model must also account for patient

preferences. Some individuals prefer to stay at home as long as possible due to

strong family support and a comfortable living environment, while others experience

loneliness or inadequate home care, making earlier nursing home admission more

desirable. Incorporating these preferences allows for a more patient-centered decision-

making approach, balancing individual well-being and crisis prevention.

Additionally, it is important to explore different check-up strategies, as the choice

of monitoring frequency directly impacts decision outcomes. Fixed-interval check-ups,

commonly used in practice, may lead to inefficiencies; some patients are monitored too

frequently, while others deteriorate before their next scheduled check-up. Exploring

alternative strategies, such as state-based check-ups that adapt to individual risk

levels, could improve early detection of health decline while minimizing unnecessary

costs.

Therefore, this study investigates how the cost-optimal admission strategy is im-

pacted by:

• Patient preferences (utility rewards for staying at home longer).

• Different check-up strategies (state-based vs. time-based scheduling).

The results provide quantitative insights into how nursing home admission de-

cisions can be optimized, ensuring that limited spots are allocated to those at the

highest risk. This helps reduce crisis-driven admissions and control healthcare costs

while respecting patient preferences. This study is guided by the following research

question:

Research Question

How does the incorporation of patient preferences impact the cost-optimal tim-

ing of nursing home admissions and health check-ups?

To answer these questions, the following sub questions are formulated:

1. How do older people progress through different health states?

2. How can the optimal timing for nursing home admissions and health check-ups

be determined to minimize healthcare costs?
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3. How do different check-up strategies affect the crisis risk and health expendi-

tures?

4. How does incorporating patient preference impact crisis risk and health expen-

ditures?

The output of this research is an analysis of how incorporating patient preferences

affects crisis risk and total healthcare costs, providing valuable insights that can aid

in determining the optimal timing for admitting patients to nursing homes.

1.2 Organizational Context

This research is conducted in cooperation with Centrum Wiskunde & Informatica

(CWI). CWI, located in Amsterdam Science Park, is the national research institute

and was founded in 1946. It is run by NWO-I, the Institutes Organization of NWO.

CWI, which is well-known for its creative research, combines computer science and

mathematics to solve basic and real-world problems, advancing fields including smart

energy systems, internet security and healthcare problems. As an internationally

renowned organization, CWI actively engages in European research initiatives and

works closely with academia and industry to convert theoretical understandings into

practical implementations [16].

This research is part of the “Data-Driven Optimization for a Vital Elderly Care

System in the Netherlands” or DOLCE VITA project, a collaborative initiative in-

volving Amsterdam UMC, CWI, and Vrije Universiteit Amsterdam. DOLCE VITA is

an initiative that combines medical and mathematical knowledge to tackle problems

in elderly care.

1.3 Thesis Outline

This thesis is organized into several chapters. Chapter 2 introduces the foundational

concepts and mathematical techniques relevant to this research. Chapter 3 reviews

existing studies, identifying gaps that this study addresses. Chapter 4 outlines the

methodological approach and conceptual model. Chapter 5 examines how sensitive

5



the model is to key parameters, while Chapter 6 details the estimation of probability

and cost parameters. Chapter 7 presents the key findings and derived policies, which

are analyzed in Chapter 8. This chapter also discusses the research’s limitations and

practical implications. Finally, Chapter 9 summarizes the main insights of this study.
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2 Background

This chapter provides the theoretical background necessary to understand the tech-

niques and context underlying this research. Section 2.1 discusses the current elderly

care system, while mathematical concepts used in this research will be discussed in

Section 2.2.

2.1 Care system in the Netherlands

The Dutch healthcare system is a complex structure comprising various legal frame-

works and care services, each with distinct responsibilities and financial arrangements.

This section provides an overview of elderly care in the Netherlands, detailing the key

legislative frameworks that govern care provision. Additionally, this section examines

crisis situations in elderly care, the process of Nursing Home (NH) placement, and

the concept of health profiles.

2.1.1 Framework Elderly Care in the Netherlands

Figure 2.1 shows an overview of the different components involved in the Dutch

healthcare system. The green arrows indicate smooth cooperation and transfer with-

out major issues. In contrast, the red dotted arrows highlight potential risks or

concerns, while the red arrows signify significant obstacles in coordination and trans-

fer. As the figure illustrates, the Dutch healthcare system is complex, with numerous

connections and challenges. This research focuses specifically on the pathway leading

to NH admissions.

The system provides financial coverage for elderly care through various legal

frameworks. Each framework addresses specific types of care and involves distinct
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Figure 2.1: Dutch healthcare system [37]

responsibilities for reimbursement and implementation. In the following, we detail

the different types of elderly care systems together with the financial arrangements

[42] [18] [28].

Zorgverzekeringswet (ZVW)

The Zorgverzekeringswet (Health Insurance Act) covers medical care, including sev-

eral forms of elderly care, through basic health insurance. Services included under

ZVW are:

• District Nursing (Wijkverpleging): Care provided at home for individuals

requiring nursing support.

• Terminal Care: For individuals with a life expectancy of fewer than three

months, provided at home or in a hospice through district nursing (wijkverpleg-

ing).

• Short-term residential care (Eerstelijnsverblijf): Temporary stays in an

NH or specialized care center, including geriatric rehabilitation and terminal

care.
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The services provided under ZVW are reimbursed from the basic health insur-

ance, though they are subject to the insured person’s deductible (eigen risico).

Wet Maatschappelijke Ondersteuning (WMO)

The Wet Maatschappelijke Ondersteuning (Social Support Act) ensures support for

individuals with limitations in daily functioning, administered and financed by mu-

nicipalities. Key services under WMO include:

• Personal Care: Assistance with personal hygiene and basic daily activities.

• Guidance for Independent Living: Support for those with psychosocial

limitations to function autonomously.

• Home support: Assistance with household tasks for individuals unable to

perform these themselves.

WMO services are implemented by municipalities, ensuring localized and tailored

support for residents.

Wet Langdurige Zorg (WLZ)

The Wet Langdurige Zorg (Long-Term Care Act) covers intensive, round-the-clock

care for individuals with severe health conditions, including:

• 24-Hour Care and Night Care: Necessary for individuals unable to live

independently.

• WLZ-zorg thuis: Long-term care provided at home instead of in an NH,

available through arrangements like Volledig Pakket Thuis (VPT) or Modulair

Pakket Thuis (MPT), depending on the individual’s needs and feasibility.

Clients contribute an income-dependent personal fee, while the remainder of the costs

are funded by the AWBZ-premie, a tax-based premium. WLZ care is specifically for

those requiring heavy, intensive care, including elderly individuals, people with dis-

abilities, and those with chronic psychiatric conditions. Eligibility is determined by

the Centrum Indicatiestelling Zorg (CIZ). Care can be provided in institutions or,

where possible, at home, following the client’s preferences and circumstances. WLZ
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often represents the final stage of care received by older adults, typically preceding

the end of life.

Relevance to this Research

In the context of this research, two key components of the Dutch healthcare framework

are particularly relevant: ZVW and WLZ. The ZVW plays a crucial role in the model,

as individuals are assumed to receive home care before being considered for placement

in an NH, which is financed and administered under this framework. As individuals’

health deteriorates over time, they may transition toward more intensive care needs.

The final stage of our system is NH admission, which falls under the WLZ, since WLZ

provides long-term institutional care for those who cannot live independently.

2.1.2 Crisis Definition

Preventing crisis situations is one of the primary objectives in developing an optimal

policy for NH admissions. To provide clarity, we first define what constitutes a crisis:

Definition of a crisis: “An acute situation in which the current living

arrangement of a patient becomes untenable due to medical, social, or

interactional factors, and immediate intervention is required.”

From a medical perspective, crises often arise due to the unexpected deterioration

of chronic conditions or acute episodes that do not warrant hospital or psychiatric

admission but cannot be managed effectively with existing home care services. So-

cially, crises may result from abrupt changes in a patient’s support network, such as

the loss or burnout of caregivers. Interactional crises involve breakdowns within the

care environment, such as conflicts between caregivers and patients, leading to un-

safe or unmanageable situations. These scenarios require rapid evaluation and action

to ensure the patient’s safety and well-being, often necessitating either temporary

hospitalization or permanent NH admission [41].

2.1.3 Current practice for placement in Nursing Homes

The placement of older adults in NHs in the Netherlands involves a structured pro-

cess managed by regional healthcare offices. This process aims to ensure timely and
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appropriate care for those with a valid indication under the WLZ. However, due to

limited availability and high demand for certain NHs, waiting lists are a significant

component of this system.

The regional healthcare office (“zorgkantoor”) oversees the waiting lists and is

responsible for ensuring timely care provision, even when a preferred placement is

unavailable. There are 31 healthcare offices in the Netherlands, each managing the

placement of older individuals in NHs within their designated region. If immediate

placement is not possible, the waiting list management process begins. This also ap-

plies if a care provider can no longer meet a client’s care needs due to changes in their

condition. The major consideration when placing a client, is the client’s preferred

NH, which they can specify at the moment that they receive a WLZ-indication. In

order to foster familiarity and limit interruption to the client’s social network, care

is offered as close as possible to the client’s present or preferred location. Currently,

only one preferred provider can be registered due to restrictions in the administrative

system, which significantly limits placement options and reduces flexibility in accom-

modating individual preferences.

Classification of waiting statuses

To streamline the process and prioritize care effectively, clients are currently catego-

rized into different waiting statuses at the time they are placed on the waiting list

for NHs [43]. The waiting time varies significantly based on the urgency of the situ-

ation and bed availability at the preferred nursing home. Additionally, the assigned

VV profile influences the selection of the waiting status. Clients with urgent needs

are prioritized and placed as quickly as possible. For others, waiting times can span

several weeks to months. The indicated urgency level is dynamic and can be changed

when the situation changes. For every urgency level, there is a targeted waiting time;

however, due to the increasing pressure on health care, these targets are not always

met. The percentage of placements that met their target ranges from 74% to 84%

[2]. Figure 2.2 shows the number of older adults that are classified in each urgency

level. The bars are divided into two parts, indicating the fraction of people receiving

care. As shown in the right part of the picture, the majority of the waiting people are

currently being provided with some kind of care, usually this indicates home care.
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• Urgent Placement: Clients in unsafe or unlivable home situations are given

priority for placement. Temporary measures, such as bridging care at home,

may be arranged if feasible. For this urgency level, a waiting period of 0–4

weeks is indicated.

• Active Placement: Clients actively waiting for placement while receiving

necessary care at home. The targeted waiting times for active placement is 0-6

months.

• Waiting for Preference: Clients who are willing to wait for a placement in

their preferred NH. The targeted waiting time is 0-12 months

• Preventive Waiting: Individuals who do not require immediate care but

anticipate needing NH placement in the future. There is no target for the

waiting time.

Figure 2.2: Number of patients per urgency level. Source: [2]

Handling placement

Once an NH is identified, the regional healthcare office coordinates the transition.

Providers are expected to contact the client within 10 working days of receiving the

allocation to discuss the care arrangement. If necessary, temporary measures such as

bridging care are arranged to ensure continuity of care until the client’s placement is

finalized.
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2.1.4 Health profiles

A health profile called a “VV profiel” (Verpleegzorg Verblijfszorg profile) is given to

older people in the Netherlands who meet the requirements for a WLZ indication.

These profiles, which range from VV1 to VV10, categorize people according to the

degree of care they need; higher numbers denote more intense care requirements

[30]. When a person receives a WLZ indication, a VV profile is assigned. This

classification helps to determine the kind and degree of care that the person needs.

A nursing facility is often recommended for older adults with VV profiles of VV4

and above, but this threshold may shift to later profiles as pressure on nursing homes

increases. These characteristics usually relate to people who need constant supervision

or significant help with daily tasks. Therefore, the VV profile system is essential for

maximizing the provision of care and directing choices for a person’s transfer to an

NH when required. The different VV-profiles together with an explanation are given

in Table 1 in the Appendix.

2.2 Mathematical models

Mathematical models are used to represent the health dynamics of elderly individuals

and to optimize the decision-making process. This section introduces the key methods

employed in this research.

2.2.1 Markov model

The aim of this research is to create optimal schedules for NH admission based on

the health condition of older adults. For this purpose, health is expressed using a

discrete set of states, referred to as ’health states’. Since these states are dynamic,

meaning they change over time, a stochastic model is well-suited for this situation.

A well-known mathematical model used for modeling states in a stochastic setting, is

a Markov chain. As shown in Figure 2.3, a Markov chain is a mathematical system

that undergoes transitions from one state to another within a finite or countably

infinite set of states, where each transition depends only on the current state. These

transitions are governed by probabilities that depend only on the current state (“the

13



Figure 2.3: Simple example of a Markov chain

Markov property”). Markov chains can be categorized into Discrete-Time (DTMC)

and Continuous-Time (CTMC) models. Figure 2.3 illustrates a simple example of a

Markov Chain, demonstrating how the system transitions between states at each time

step with probability p. In a continuous setting, the system evolves in continuous time,

meaning that transitions occur at random time intervals rather than at fixed steps

[39]. In this research, we adopt the discrete setting, as check-ups and placements are

scheduled on a weekly basis. While the exact timing within the week is not strictly

fixed, the model remains flexible enough to accommodate decisions at designated

weekly time points. A special type of state within a Markov chain is an absorbing

state, a state that once entered cannot be left. When this state is entered, the system

remains there indefinitely.

2.2.2 Markov Decision Processes

A Markov Decision Process (MDP) models state transitions influenced by actions

and provides a framework for identifying the optimal policy. This model can be

used when there are certain rewards associated with taking action a in state s. An

MDP models sequential decision-making scenarios where outcomes are influenced by

both transition probabilities and the actions of a decision-maker. Solving an MDP

yields a policy that minimizes expected future costs, considering long-term average,

discounted, or horizon-based costs, depending on the objective.

To formalize decision-making within an MDP, key functions are defined to eval-

uate and optimize choices. One such function is the value function, which quantifies
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the total expected reward (or minimized cost) for being in a particular state while

accounting for future transitions and actions. It is expressed as:

V (s) = max
a∈A

(
R(s, a) + γ

∑
s′

P (s′ | s, a)V (s′)

)
From this value function, the optimal policy π∗ can be derived, which specifies

the best action to take in each state:

π∗(s) = argmax
a∈A

(
R(s, a) + γ

∑
s′

P (s′ | s, a)V (s′)

)
Where:

• s: Current state.

• a: Action taken.

• s′: Next state.

• A: Set of all possible actions.

• R(s, a): Immediate reward received after taking action a in state s.

• P (s′ | s, a): Probability of transitioning to state s′ from state s after taking

action a.

• γ: Discount factor (0 ≤ γ < 1), representing the present value of future rewards.

These equations are fundamental in Markov Decision Processes and can be found in

[36].

An MDP can be solved using various approaches, including policy iteration, value

iteration, and linear programming. Although all methods ultimately converge to the

same optimal policy, they differ in computational efficiency and numerical stability.

Value Iteration is often preferred for medium to large MDPs as it avoids the compu-

tational overhead of matrix inversions required in policy iteration [34]. Given these

advantages, this research adopts Value Iteration as the solution method.

In this research, a key challenge arises from the uncertainty caused by the lack

of up-to-date information about the health of elderly individuals. Models such as
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Partially Observable Markov Decision Processes (POMDPs) are specifically designed

to handle such uncertainty. However, instead of adopting a POMDP framework, we

take a different approach by creating a custom version of an MDP that incorporates

mechanisms to deal with imperfect information. We chose this method because in a

POMDP, uncertainty is handled by using belief states, which indicate the probability

of being in a certain state. However, this is challenging to interpret, particularly for

those who will be using the model—namely, the individuals responsible for assigning

clients to nursing homes. To ensure that the model remains accessible and user-

friendly, we design a state space that is intuitive and easily understandable, even for

those without a mathematical background. This MDP framework accounts for the

limited observations of an individual’s health state by introducing additional states

that reflect the time elapsed since the last health check. The decision-making process

in this modified MDP revolves around actions taken without having full information

about the current health state of an older adult.
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3 Related work

This chapter reviews the literature relevant to this research, structured into four

main sections. Section 3.1 explores studies on patient flow and allocation models in

healthcare, with a particular emphasis on elderly care and nursing home admissions.

Section 3.2 delves into mathematical approaches to health modeling, which are applied

in this research to optimize health care strategies for elderly populations. After that,

Section 3.3 discusses research on preventive maintenance strategies of similar systems

in a different application domain. Finally, the contribution of this research will be

outlined in Section 3.4.

3.1 Patient Flow and Allocation Models in Elderly

Care

Since optimizing patient flow is central to reducing crises and waiting times in elderly

care, this section first reviews existing models for patient allocation and nursing home

admissions. As outlined in the introduction, crises have a detrimental impact on the

mental and physical well-being of older adults and are associated with significant

financial costs. Bom et al. [7] demonstrate that being admitted to a nursing home

can significantly reduce the risk of acute hospitalizations. Their study highlights

that timely access to nursing home facilities prevents critical health deterioration

that would otherwise lead to costly and urgent medical interventions . This finding

emphasizes the importance of timely admissions. However, due to a shortage of

healthcare workers, expanding capacity is currently not feasible [9]. This limitation

requires research on waiting list management, focusing on alternative prioritization

strategies to prevent crises.
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Several researchers have explored methods to reduce waiting times using advanced

allocation techniques. Burkell et al. [10] examined the impact of transitioning from a

first-come, first-served admission policy to a needs-based approach in a chronic care

hospital in London, Ontario. Their study used a computer modeling technique to

analyze waiting list dynamics under both policies. The results highlighted substantial

variability in patients’ care requirements, demonstrating that implementing a needs-

based criterion would significantly alter individual placement priorities and overall

admission decisions. As this research also aims to develop a needs-based prioritization

policy, the findings demonstrate the potential impact such an approach can have on

admission decisions.

Meiland et al. [27] focused on urgency-based prioritization as well. According

to their research, non-urgent patients had to wait longer, but their health status did

not change during that time. Additionally, waiting at home had no effect on the

satisfaction levels of non-urgent patients. These results show that it is possible to

prioritize urgent patients without having a significant detrimental impact on non-

urgent patients.

Arntzen et al. [5] propose a preference-based allocation model for nursing home

admissions that balances waiting time reduction with patients’ individual preferences.

Their approach, validated through simulations in the Amsterdam area, demonstrates

a significant reduction in abandonment rates from 32.2% to 7.4% while simultaneously

lowering waiting times and maintaining patient-centered care. This research shows

that effective allocation strategies can significantly reduce waiting times, improve

patient satisfaction, and optimize resource utilization.

Hallal [21] utilized a Markov chain model to analyze and optimize patient flow

within Nova Scotia’s long-term care system. The model represented key stages, such

as home care, acute hospitalization, LTC placement, and system departure, with

transitions between these states determined by historical data. By simulating patient

flow and testing interventions like increased LTC capacity or enhanced home care, the

model identified strategies to reduce waiting times and improve resource allocation,

showcasing the effectiveness of Markov chains in addressing bottlenecks in healthcare

systems.

The patient flow models discussed in this section primarily focus on managing
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queues and optimizing system-wide allocation strategies. These models determine the

best way to reduce waiting times and improve resource distribution at a macro level.

However, this research shifts the focus to individual-level decision-making, where

patient health states are explicitly modeled as a Markov process. The next section

explores how health modeling techniques can capture individual patient transitions

and guide optimal decision-making.

3.2 Modeling Health Dynamics

In this research, health condition is a key factor influencing decision making. Health

is conceptualized as a dynamic process with multiple discrete states, transitioning

over time due to aging and external factors. Previous research on health modeling

has utilized dynamic state-based approaches. Stochastic processes are frequently

employed to model individual health trajectories, whereas System Dynamics (SD) is

typically utilized for modeling health dynamics at the population level.

Health can be expressed using health states. Walsh et al. [44] defines health

status using the Frailty Index (FI), a widely used measure for quantifying frailty in

elderly individuals. The FI classifies health along a spectrum from “fit” to “severe

frailty” based on the accumulation of health deficits, allowing for the tracking of

frailty progression.

Similarly, the Clinical Frailty Scale (CFS) provides a structured approach to as-

sessing frailty by classifying individuals on a nine-point scale ranging from “very fit”

to “terminally ill” [14]. The CFS evaluates a combination of comorbidities, functional

ability, and cognitive impairment, making it a widely used tool in geriatric care. A

scoping review of its applications highlights its strong association with key health

outcomes, including mortality, hospitalization, and functional decline. The CFS is

frequently used across various healthcare settings, such as acute care, intensive care,

and long-term care facilities, to support clinical decision-making and prioritize health-

care interventions. Given its predictive power and practical applicability, the CFS

could serve as a valuable framework for mapping individuals to discrete health states

in dynamic health models.

19



System dynamics (SD) is a commonly used approach for modeling healthcare

systems, particularly when a broad, strategic perspective is needed ([11] [22]). In

its quantitative stock-flow representation, SD effectively models disease progression

within a population by capturing transitions between health states, which can be

influenced by both natural disease dynamics and healthcare interventions ([20] [17]).

England et al. [20] integrates the Frailty Index (FI), into a system dynamics

simulation model, using routine healthcare data from over 2.2 million primary care

patients in England. Their model projects frailty prevalence over time, estimating

that by 2027, nearly 50% of individuals aged 50 and older will exhibit some degree

of frailty. The study highlights the importance of early detection and targeted in-

terventions to prevent crisis situations and optimize healthcare resource allocation.

However, it does not account for the possibility of frailty decreasing, meaning that

an individual’s health may improve over time due to recovery, medical interventions,

or lifestyle changes, highlighting areas for improvement.

SD is particularly useful for studying large populations where individual variations

are less relevant. However, when the focus shifts to smaller subgroups or individual

patient trajectories, the aggregated nature of SD may not be sufficient. In such cases,

stochastic models, including Markov processes, provide a more suitable framework

for capturing uncertainty in individual health transitions over time.

Beyond static frailty indices, mathematical models such as Markov chains have

been employed to capture health dynamics in a probabilistic manner. Chiang [13]

introduced a health index derived from a Continuous-Time Markov process, concep-

tualizing individual health as a dynamic continuum ranging from optimal well-being

to severe illness. This continuum is segmented into ordered health states, with transi-

tion probabilities between states defined by intensity functions. The index quantifies

the expected proportion of time an individual spends in each health state over a year,

offering a numerical measure of population health that ranges from zero to one.

Kaushik et al. [23] developed a Markov-based methodology to monitor the health

status of elderly individuals living at home. Their model represents daily activity pat-

terns as discrete states and employs transition probabilities derived from sensor data

(e.g., infrared or magnetic switches). By comparing a “profile” Markov chain, repre-

senting typical behavior, with a “test” Markov chain based on recent observations,
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deviations in health status can be detected using statistical tests such as chi-square

goodness-of-fit. This methodology offers an unobtrusive, real-time approach to mon-

itoring elderly individuals, making it valuable for early intervention.

3.3 Preventive Maintenance

As a person’s health gradually deteriorates, timely interventions are crucial to prevent

escalation into a crisis situation. This process is analogous to the field of preventive

maintenance in engineering, where machines undergo progressive deterioration and

require maintenance to prevent failure. In both cases, the goal is to determine the

optimal timing for interventions to minimize long-term costs and adverse outcomes.

Various methods have been developed to optimize intervention strategies in such

processes. This field is called preventive maintenance. This section explores these

approaches and their relevance to healthcare decision-making.

Systems often transition through various states over time, each associated with

different risks. In maintenance optimization, an optimal schedule for interventions is

determined to prevent costly failures, which is called Preventive Maintenance (PM).

There are 2 types of PM: Condition-Based Maintenance (CBM) schedules interven-

tions based on observed conditions, while Time-Based Maintenance (TBM) schedules

interventions at fixed intervals, regardless of the system’s actual condition.

Recent research has focused on optimizing CBM and TBM policies using Markov

decision processes (MDPs) to model deterioration and determine cost-effective main-

tenance strategies. Andersen [3] highlights that CBM reduces unnecessary mainte-

nance by performing interventions only when the system’s monitored condition indi-

cates a need for action, whereas TBM follows a rigid schedule that does not account

for actual wear and tear.

Liao et al. [25] propose a reliability-centered sequential preventive maintenance

model for repairable deteriorating systems. Unlike traditional preventive mainte-

nance strategies with fixed intervals, this model schedules maintenance actions based

on continuously monitored system reliability. When reliability reaches a predefined

threshold, an imperfect repair is performed, and after a set number of cycles, the
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system is replaced. The model optimizes maintenance scheduling by considering fail-

ure rates, operational costs, and breakdown costs, aiming to minimize long-term total

cost. Their approach demonstrates improved cost efficiency and practicality compared

to conventional methods. This method is well suited for situations where real-time

information is available. However, this research proposes a model capable of handling

uncertainty regarding the system’s current state.

Assis and Marques [6] introduced a dynamic methodology for inspection schedul-

ing, addressing uncertainty with safe and unsafe time windows (STW and UTW).

STWs allow detection and management of potential failures, while UTWs pose higher

risks of undetected failures. By dynamically adjusting inspection intervals based on

real-time observations, the methodology reduces costs and mitigates risks. Noori et

al. [32] propose an integrated inspection and preventive maintenance planning model

for a Markov deteriorating system under scenario-based demand uncertainty. The

study employs a two-stage stochastic programming approach to optimize inspection

and maintenance decisions over a finite time horizon. In the first stage, inspections

are scheduled based on the machine’s state, while in the second stage, maintenance

actions are determined based on inspection outcomes.

This research builds on these principles by modeling health transitions, aiming

to minimize crisis risks and associated costs. It further enhances this approach by

comparing benchmark strategies, such as periodic health checks or fixed schedules,

with dynamic and optimal strategies introduced in previous research. For exam-

ple, periodic strategies might involve routine inspections at set intervals regardless of

individual health conditions, while dynamic strategies adjust based on real-time ob-

servations or estimated probabilities of health deterioration. By incorporating these

comparisons, this research investigates the effect of implementing optimal policies

created by the MDP, on costs and the well-being of older adults, while dealing with

imperfect information.

3.4 Contribution

The reviewed studies illustrate a variety of approaches for patient allocation, modeling

health dynamics, and preventive maintenance. Despite extensive research in patient
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flow optimization and health modeling, there is a significant research gap in inte-

grating dynamic policies for real-time decision making in nursing home admissions,

while taking into account uncertainty about health state. Previous studies often as-

sume static parameters or overlook the uncertainty in health state observations. This

research addresses these gaps by developing a model to dynamically manage health

state transitions in elderly care, while incorporating uncertainty into decision making

using probabilistic tools.
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4 Modeling

This section offers a step-by-step explanation of how the final model was developed

to determine the optimal policy for assigning patients to Nursing Homes (NHs) and

performing check-ups. First, Section 4.1 discusses the underlying health model that

reflects the dynamics of an individual’s health. Secondly, Section 4.2 builds on this

concept by adding the possibility to take actions in each state, that is, NH placements

will be included. This model assumes perfect information, which means it always has

access to the current health state of an individual. Uncertainty about this information

will be incorporated in the final model discussed in Section 4.3.

4.1 Health-model

To effectively capture the dynamics of patient health states and transitions, our model

incorporates an underlying structure, referred to here as the Health Model. The

Health Model represents the process of an individual’s changing health over time,

where the states correspond to different health conditions, and the transition proba-

bilities define the likelihood of health progression or deterioration. The Health Model

M consists of N + 1 states, representing N health states, and a single absorbing

state, named the crisis state. The health states reflect the various stages of a pa-

tient’s condition, while the crisis state denotes a point at which intervention becomes

mandatory. As time progresses, health deteriorates, meaning a patient’s condition

worsens until they ultimately reach a crisis state. It is important to note that, due

to this progression, without intervention, everyone will eventually experience a cri-

sis, which is a fundamental assumption of this model. The first state in the model

represents the point at which a person’s health begins to be at risk, marked by the
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Figure 4.1: Health ModelM

initiation of home care, or “wijkverpleging”. This stage indicates the first signs of

frailty or an increased risk of health deterioration, where minimal support is required

to maintain daily activities. As such, it serves as the natural starting point for mod-

eling health progression, capturing the shift from independence to increasing levels

of care dependency. The next states represent gradual health deterioration until a

person has a crisis.

The state space of the Health ModelM is given by:

SM = {1, . . . , N, C}

where 1, . . . , N represent the health states, and C denotes the absorbing crisis state.

The structure of the model is shown in Figure 4.1.

4.1.1 Initial Distribution

To account for the differences in health conditions among individuals entering the

system, not all patients start in the first health state. Instead, an initial distribution

µ is introduced to model the probability of an individual beginning in each possible

health state. This distribution allows flexibility in representing different population

characteristics at the point of entry. The initial distribution is represented as a

probability vector:

µ = (µ1, µ2, . . . , µN)

where µi denotes the probability of starting in health state i, satisfying:
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N∑
i=1

µi = 1, µi ≥ 0 ∀i ∈ {1, . . . , N}.

Different assumptions can be made about the health distribution of new patients,

such as a uniform, linear, or exponential distribution over the discrete states with

finite support. By selecting an appropriate initial distribution, the model can better

reflect real-world patient characteristics upon entry.

4.1.2 Transition Probabilities

Figure 4.1 displays the structure of the Health Model. In every state, there is a

probability of staying in the same state, transitioning to the next state, or to the

absorbing crisis state. Although Figure 4.1 does not show the possibility of skipping

a state and moving two states forward, the model is flexible, and this can be included.

The transition probability matrix of the general Health Model is denoted by PM,

which is defined as follows:

PM =



p11 p12 p13 · · · p1N p1C

p21 p22 p23 · · · p2N p2C

p31 p32 p33 · · · p3N p3C
...

...
...

...
. . .

...
...

pN1 pN2 pN3 · · · pNN pNC

0 0 0 · · · 0 1


The probability parameters used to calculate the transitions withinM are given

in Table 4.1. These probabilities are based on the assumptions made about the

structure of the model. Given these assumptions, the transition probabilities for each

state i are computed as follows:
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Parameter Description

N The number of health states

µ Initial distribution

psame state The probability of remaining in the same health state

pcrisis The base probability of transitioning to the crisis state

pcrisis growth A scaling factor that increases the crisis probability as health dete-
riorates

pback The probability of improving in health by moving back to a previous
state

Table 4.1: Parameters of the Health Model

• Probability of staying in the same state:

pi,i = psame state

• Probability of transitioning to crisis:

The probability of a crisis increases linearly as health deteriorates, starting at

pcrisis and growing with pcrisis growth over time:

pi,C = pcrisis +

(
pcrisis growth ×

i

N

)
• Probability of improving in health (moving to a better state, only if i > 1):

pi,i−1 = pback, i > 1

• Probability of health deterioration (moving to a worse state):

pi,i+1 = 1− pi,C − pi,i − pi,i−1 i < N
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• Boundary conditions for the last pre-crisis state:

pN−1,C = 1− psame state − pback,

pN−1,N−1 = psame state,

pN−1,N−2 = pback

• Absorbing crisis state:

pC,C = 1

To calculate the expected time until absorption in the Markov chain, we consider

the transition probability matrix PM, which can be partitioned as:

PM =

[
Q R

0 I

]
where:

• Q is the transition matrix for transient states.

• R is a vector representing the transition probabilities from transient to absorbing

states.

• I represents the identity matrix associated with the absorbing states. Since

there is only one absorbing state, I reduces to the scalar value 1.

The fundamental matrix L is defined in Equation 4.1, where each entry Lij rep-

resents the expected number of times the process visits transient state j given that

it started in transient state i. The expected time until absorption for each transient

state is then given in Equation 4.2, where 1 is a column vector of ones. The vector t

contains the expected number of steps before absorption for each transient state [36].

L = (I −Q)−1 (4.1)

t = N1 (4.2)
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4.1.3 Example model

To illustrate the model’s intuition, this section presents an example. The health states

from England et al. [20] are used, which has 4 health states, so we define N = 4.

This results in a total of 5 states, including the crisis state. The states are defined as

follows:

SM = {Fit,Mild,Moderate, Severe, Crisis}

Next, we define the transition probabilities for the health states, and the initial dis-

tribution. The transition matrix of the Markov Chain is shown in the matrix below.

psame state = 0.8

pcrisis = 0.1

pcrisis growth = 0

pback = 0

µ = [1, 0, 0, 0, 0]

PM =



0.8 0.1 0 0 0.1

0 0.8 0.1 0 0.1

0 0 0.8 0.1 0.1

0 0 0 0.8 0.2

0 0 0 0 1


Implementing these transition probabilities result in the example model shown

in Figure 4.2. Using Equations 4.2 and 4.1, the expected time until absorption can

be calculated, which means the expected time it takes to transition from any of the

four predefined health states to the crisis state. Figure 4.3 shows the expected values

resulting from the calculation. As shown in the figure, using this transition structure,

the expected time until absorption decreases as the condition of the patient worsens.

This aligns with the intuitive expectation that individuals in worse health states

have a higher probability of transitioning to a crisis sooner. The findings validate

the transition structure used in the model and highlight the importance of timely
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Figure 4.2: Example of the Health Model

Figure 4.3: Time until absorption per state

interventions to delay or prevent crisis situations.

4.1.4 Interpretation

To apply this Markov model in practice, healthcare professionals need a structured

approach to assign patients to one of the N discrete health states based on observable

characteristics. In the following, several possible approaches to assess patient health

and determine their corresponding state in the model will be proposed.

One option is to use the Frailty Index (FI) [44] as a basis for defining health states,

where a connection is established between FI scores and the discrete states in the

model. Lower FI scores represent better health conditions, while higher scores indicate

increasing frailty, providing a structured way to classify individuals. Alternatively,

the Clinical Frailty Scale (CFS) [14], which assess functional independence, could be

30



used to categorize patients. These tools provide well-established thresholds that can

be aligned with health states, ensuring a clinically interpretable classification. Lastly,

a possible approach is to leverage activity-based monitoring [23], where deviations

in mobility or daily activity patterns help determine a patient’s state. In this case,

real-time movement data from wearables or caregiver reports could refine the state

assignment. In the next sections, we will build on this concept by adding actions to

every state.

4.2 Optimization Model with Perfect Information

The optimization model with perfect information, denoted by G, operates under the
assumption of perfect information, maintaining complete and accurate knowledge

of an individual’s health state at all times. It provides a simplified version of the

complete framework, serving as a foundational step before introducing the final model.

G includes the same health states as inM, and is designed to make a decision on the

optimal timing to admit a person to an NH, accounting for all associated costs. This

section will give an overview of all the key elements used to create this model.

The model is formulated as a Discrete-Time Markov Decision Process (MDP).

As explained in Chapter 2, a discrete-time approach is chosen to allow for structured

decision-making at fixed intervals, such as the option to examine patients on a weekly

basis. This simplifies the implementation of scheduled check-ups without requiring

a continuous-time framework. The MDP used in this study is designed to optimize

decisions regarding patient admission to a NH within the healthcare system. Figure

4.4 shows the structure of this model. The key elements of the MDP are described

below.

4.2.1 States

The state space of G expands upon the health states defined in the health modelM
by introducing an additional state: the nursing home state (NH). In M, the crisis

state is modeled as an absorbing state, representing the final state of the system.

However, in G, the crisis state is no longer absorbing, as individuals in a crisis state

always transition to the newly introduced nursing home state. The nursing home
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Figure 4.4: Optimization model with perfect information G

state serves as the final and absorbing state of the model, representing the ultimate

destination for all individuals. This gives us the following states:

• The first N states represent different health conditions while the patient is living

at home and receives home care.

• The (N + 1)-th state represents a crisis.

• The last state N + 2 is the absorbing NH state.

4.2.2 Actions

An essential component of an MDP is the set of actions available to the decision-

maker. These actions determine possible transitions between states and ultimately

shape the optimal policy by identifying the best course of action for each state. In G,
there are two actions available:

• Action 0: Do Nothing: This action allows the client to naturally transition

within the health states of the model. Over time, the client will ultimately

reach the crisis state, which subsequently leads to a transition to the nursing

home.
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• Action 1: Send: The patient is directly transferred to the absorbing nursing

home state. This action can be chosen in any health state, including the crisis

state.

This results in the following action space:

AG = {0, 1}

4.2.3 Transition probabilities

In an MDP, the transition probabilities depend on both the current state and the

chosen action. In G, two different probabilities are used: pi,j indicates the probability

of transitioning to one of the health states, specifically, transitioning from state i to

state j. Probability pNH
i indicates the probability of transitioning from state i to the

NH state. The probabilities are defined as follows:

pi,j = P (Xt+1 = j | Xt = i, a = 0) = PM[i, j], i, j ∈ {1, . . . , N, C}

pNH
i = P (Xt+1 = NH | Xt = i, a = 1) = 1

pNH
NH = P (Xt+1 = NH | Xt = NH, a = 0) = 1

pNH
C = P (Xt+1 = NH | Xt = C, a = 1) = 1 i ∈ {1, . . . , N, C}

4.2.4 Reward function

Each (state, action)-pair in the model is associated with specific costs, some of which

vary based on the individual’s health condition. There are 3 types of costs involved

in G, and 1 utility component. The utility component represents the client’s personal

preference within the system. Specifically, if a client prefers to remain at home for as

long as possible, a positive utility is added to the home rewards. Conversely, if a client

prefers early admission to a nursing home, a negative utility is incorporated into the

home rewards, reflecting their preference for transition. The home cost depends on the

current health state, as individuals with deteriorating health require more intensive

home care, leading to higher expenses. Similarly, the nursing home cost also varies

with the individual’s health state at the time of admission. A healthier person who is
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placed in a nursing home is expected to stay there longer, accumulating more costs,

whereas a frail person is likely to have a shorter stay due to a higher mortality risk.

The crisis cost is fixed and not dependent on the state prior to the crisis state. To

capture this dependency, we define:

• Chome(s) as the home cost for an individual in state s.

• CNH(s) as the expected nursing home cost for an individual admitted from state

s.

• Ccrisis as the fixed cost associated with a crisis.

• Uhome is a utility term that captures the personal preferences to stay at home.

The costs are mapped to a reward function, which is defined as follows:

RG(a, s, s
′) =


Chome(s

′) + Uhome if s′ ∈ {1, . . . , N}

CNH(s) if s′ = NH, s ∈ {1, . . . , N}

Ccrisis if s′ = C

4.3 Model with Imperfect Information

The final model, which incorporates imperfect information, includes a critical exten-

sion to better capture the lack of real-time information about health statuses. In

this model, check-ups are used to establish the current health state of a client in the

model. This section will delve into all the components of this model.

4.3.1 States

The model with imperfect information, denoted by F , represents an expansion of

the model without uncertainty G and incorporates additional states to account for

the passage of time. In this model, each health state 1, . . . , N is represented as a

combination of two variables, (i, j), where i denotes the health state and j represents

the time since the last check. To limit uncertainty, j is capped at T , which means

that there is a maximum allowed time between health checks. Once T time steps
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have elapsed without a check, a health check is required to observe the current health

state. This structure results in a total of (N × (T + 1)) + 2 states within F . The

state space of the model F is given by:

SF = {(1, 0), (1, 1), . . . , (1, T ), . . . , (N, 0), . . . , (N, T ), C,NH}

where C represents the crisis state, and NH denotes the absorbing NH state.

4.3.2 Actions

Model F includes one additional action within the MDP framework of G: the action

“check”. This action represents a health check performed by a specialist to determine

the current health status of a client. Chapter 6 will elaborate further on the specifi-

cations of this check. This action complements the actions of model G, that is, “do
nothing” and “send to nursing home”. Combining these action spaces creates a set

of three distinct actions available at each decision point. However, not every action

is available in every state. The next section will specify in which states each action

can be taken.

• Action 0: Do nothing: Doing nothing results in an increasing uncertainty of

the current health state of the client.

• Action 1: Send to nursing home: Directly move the client to the nursing

home state, used to avoid a crisis.

• Action 2: Check: Perform a health check to observe the current health state

of the patient. This action reduces the uncertainty about the client’s condition,

enabling more informed decisions regarding subsequent actions.

This results in the following action space:

AF = {0, 1, 2}
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Figure 4.5: Transitions of model with imperfect information F

Figure 4.5 illustrates the structure of this model, with colored arrows depicting

possible transitions and the corresponding actions. For clarity purposes, not all transi-

tions are indicated with arrows. The different actions and their associated transitions

will be explained in detail below.

Action 0: Do Nothing

The action do nothing can be taken in all states except for:

• States (i, T ) for i ∈ {1, . . . , N}, where T represents the maximum time since

the last check. In these states, the model is forced to perform a check to ensure

the patient’s current health state.

• The crisis state C, as a patient in this state must be sent to the nursing home.

There are two possible outcomes when taking action do nothing in state (i, j):

• The patient transitions to the crisis state C with probability pCi,j. This tran-

sition occurs independently of the chosen action and reflects a critical health

deterioration. When a crisis occurs, the model is immediately informed without

requiring a check.
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• If the patient does not transition to the crisis state, the uncertainty regarding

their health state increases, resulting in a transition from state (i, j) to (i, j+1)

with probability 1− pCi,j.

Action 1: Send

The action send can be taken from the states (i, 0) for i ∈ {1, . . . , N} and state C.

This condition ensures that patients are only sent to the nursing home after their

health status has been verified through a check. The send action guarantees that

a patient avoids entering the crisis state by transitioning directly to the NH state.

Furthermore, if a patient enters the crisis state C, they are always sent to the nursing

home in the next step.

Action 2: Check

The check action can be performed in every state except for:

• The crisis state C.

• The nursing home state NH.

When choosing the check action in state (i, j) , there are 2 types of subsequent states:

• C: the probability of transitioning to C remains the same as it is for do nothing.

• (k, 0): the system transitions from state (i, j) to (k, 0) with probability pki,j,

where k ∈ {i, . . . , N}. The index j resets to 0, indicating that the time since

the last check is zero.

4.3.3 Transition probabilities

To calculate the transition probabilities for F , we rely on those derived from the health

modelM. However, because we are dealing with imperfect information, we need the

n-step transition matrix of M, denoted by P
(n)
M , which represents the likelihood of

moving from one state to another in n steps.
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We denote the current state of the model by Xt, therefore, a transition in 1 time

step from state i to state j is denoted as

P (Xt+1 = i | Xt = j) = PM[i, j] (4.3)

The n-step transition probabilities are defined as follows:

P (Xt+n = j | Xt = i) = P
(n)
M [i, j] = Pn

M[i, j] (4.4)

When the last check was performed j time steps ago, the transition probabilities

between states must account for the dynamics over j time steps. For example, to

determine the probability of transitioning from state i to state k after not checking

for 4 time steps, we use the 4-step transition probabilities from P
(4)
M . An important

aspect to consider is the fact that model M is an absorbing Markov chain. This

means that when we calculate the n-step transition probability from state i to a cri-

sis, denoted by P
(n)
M [i, C], we have the probability that the chain transitioned to the

crisis state within n steps, so n steps or less. However, when calculating the proba-

bility of transitioning from state (i, j) to a crisis, we want to know the probability of

transitioning to a crisis in exactly j time steps, as we know that the client was not in

a crisis until time step j − 1. To account for this, conditional probabilities are used

in the transition probability calculations, which are discussed below.

Probability of a crisis

The client can transition to the crisis state from any state in the state space except

the NH state. The probability of a crisis is calculated for every state in the state

space, and depends on the health state as well as the uncertainty. The probability of

a crisis in state (i, j) is denoted by pCi,j.

When the last check was 0 time steps ago, that is, j = 0, the exact health state

of the patient is known. Therefore, the probability of a crisis is easy to calculate, as

it directly represents the transition from a health state to the crisis state inM.

pci,0 = P (Xt+1 = C | Xt = i) = P
(1)
M [i, C] i ∈ {1, . . . , N}
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Difficulty arises when the last check was not performed in the current time step,

that is, j > 0. The probability of transitioning to the crisis state from state i when

the last check was j time steps ago can be calculated using the fact that there was

no crisis up until the current time step. In other words, when the model is in state

(i, j), it is known that until time j − 1, there was no crisis situation. Therefore, the

probability of a crisis can be calculated as follows.

pCi,j = P (Xt+j+1 = C | Xt = i,Xt+j ̸= C) =
P (Xt+j+1 = C ∩Xt+j ̸= C | Xt = i)

P (Xt+j ̸= C | Xt = i)

=
P

(j+1)
M [i, C]−P

(j)
M[i, C]

1−P
(j)
M[i, C]

i ∈ {1, . . . , N}, j ∈ {1, . . . , T}

By incorporating the case where j = 0, the resulting function for the transition

probabilities to the crisis state is given as follows:

pCi,j =

P
(1)
M [i, C] i ∈ {1, . . . , N}, j = 0

P
(j+1)
M [i,C]−P

(j)
M [i,C]

1−P
(j)
M [i,C]

i ∈ {1, . . . , N}, j ∈ {1, . . . , T}

Probability of transitioning to a different state

When a check is performed in state (i, j), three outcomes are possible: the system

may remain in the current state, move to another health state, or transition to the

crisis state. The probability to transition from state i to state k, when the last check

is j time steps ago, is denoted by pki,j. When a check is performed with j = 0, the

transition probabilities are straightforward to compute, as they correspond to the

transition from state i to state j in the health model, and are defined as follows:

pki,0 = P (Xt+1 = k | Xt = i) = P
(1)
M [i, k] i, k ∈ {1, . . . , N}

The probabilities become more complex to calculate when j > 0, due to the

increased uncertainty. Similar to the crisis probability calculation, we must again
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account for the absence of a crisis up to time j − 1, leading to the following compu-

tations:

pki,j = P (Xt+j+1 = k | Xt = i,Xt+j ̸= C)

=
P (Xt+j+1 = k ∩Xt+j ̸= C | Xt = i)

P (Xt+j ̸= C | Xt = i)

=
P

(j+1)
M [i, k]

1−P
(j)
M[i, C]

for i ∈ {1, . . . , N}, j ∈ {1, . . . , T}, k ∈ {i, . . . , N}

By incorporating the case where j = 0, the resulting function for the transition

probabilities to any health state is given as follows:

pki,j =

P
(1)
M [i, k] i,∈ {1, . . . , N}, k ∈ {i, . . . , N}, j = 0

P
(j+1)
M [i,k]

1−P
(j)
M [i,C]

i ∈ {1, . . . , N}, k ∈ {i, . . . , N}, j ∈ {1, . . . , T}

Transition probability matrices

Using the probabilities calculated above, the transitions of F can be formulated. For

clarity purposes, the initial distribution µ is not shown in the matrices.

Action 0: Do Nothing

For the ”Do Nothing” action, the transition probabilities depend on the current state

(i, j). There are three possible cases:

• If the system is in state (i, j), there is a probability pci,j of transitioning to the

crisis state C.

• With probability 1 − pci,j, the system transitions to state (i, j + 1), increasing

the time since the last check.

• If the system is in the nursing home state NH, it remains there, as this state

is absorbing.

Formally, the transition probabilities are given by:
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P(s′|s, a = 0) =



pCi,j if s = (i, j); s′ = C,

1− pCi,j if s = (i, j); s′ = (i, j + 1),

1 if s = NH and s′ = NH,

0 otherwise.

P(s′|s, a = 0) =

(1, 0) (1, 1) (1, 2) · · · (1, T ) · · · (N, T ) C NH

(1, 0) 0 1− pC1,0 0 · · · 0 · · · 0 pC1,0 0

(1, 1) 0 0 1− pC1,1 · · · 0 · · · 0 pC1,1 0

(1, 2) 0 0 0 · · · 0 · · · 0 pC1,2 0
...

...
...

...
. . .

...
. . .

...
...

...

(1, T ) 0 0 0 · · · 0 · · · 0 pC1,T 0
...

...
...

...
...

. . .
...

...
...

...

(N, T ) 0 0 0 · · · 0 · · · 0 pCN,T 0

C 0 0 0 · · · 0 · · · 0 0 0

NH 0 0 0 · · · 0 · · · 0 0 1

Action 1: Send For the ”Send” action, the transition probability is either 0 or 1.

This action can solely be chosen when the health state of the person is known, i.e.

j = 0.

P(s′|s, a = 1) =

1 if s′ = NH

0 otherwise

Action 2: Check For the ”Check” action, the transition probabilities are deter-

mined by the following cases:

• If the system is in state (i, j), it transitions to a new observed state (k, 0) with

probability pki,j.

• The probability of transitioning to C remains pCi,j, as similar in the ”Do Nothing”

action.

Formally, the transition probabilities are given by:
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P(s′|s, a = 2) =


pki,j if s = (i, j); s′ = (k, 0) for k ∈ {1, . . . , N},

pCi,j if s = (i, j); s′ = C,

0 otherwise.

P(s′|s, a = 2) =

(1, 0) (1, 1) (1, 2) · · · (N, 0) · · · (N, T ) C NH

(1, 0) p11,0 0 0 · · · pN1,0 · · · 0 pC1,0 0

(1, 1) p11,1 0 0 · · · pN1,1 · · · 0 pC1,1 0

(1, 2) p11,2 0 0 · · · pN1,2 · · · 0 pC1,2 0
...

...
...

...
. . .

...
. . .

...
...

...

(N, 0) p1N,0 0 0 · · · pNN,0 · · · 0 pCN,0 0
...

...
...

...
...

. . .
...

...
...

...

(N, T ) p1N,T 0 0 · · · pNN,T · · · 0 pCN,T 0

C 0 0 0 · · · 0 · · · 0 0 0

NH 0 0 0 · · · 0 · · · 0 0 0

4.3.4 Reward Function

The reward function RF(a, s, s
′) of F is defined for every action a, state s, and next

state s′ and is based on four different cost components: nursing home cost, home

cost, check cost, and crisis cost, and one utility component: utility home. Since the

cost of home care depends on an individual’s health condition and the expected cost

of nursing home care depends on the state at admission, these costs are modeled as

functions of the health state.

We define:

• Chome(s) as the cost of home care when the individual is in state s, which

depends only on the last observed health state i (the first component of s′),

since the level of care needed is based on the most recent check.

• CNH(s) as the total expected nursing home cost for an individual admitted from

state s, reflecting longer stays for healthier individuals.

The reward function can be formally expressed as follows:
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RF(a, s, s
′) =



Ccrisis if a ∈ {0,1} and s′ = C

Ccheck + Ccrisis if a = 2 and s′ = C

Ccheck + Chome(s) + Uhome if a = 2 and s′ ̸= C

Chome(s) + Uhome if a = 0 and s′ ̸= C

CNH(s) if a = 1 and s′ = NH

The home cost, Chome(s), accounts for the fact that individuals in worse health

states require more intensive home care, leading to higher costs. If a health check

is performed, an additional check cost Ccheck is incurred. When a patient is sent to

a nursing home, the total cost CNH(s) depends on their initial state s, as healthier

individuals are expected to stay in the nursing home longer, accumulating higher

expenses. More details on these cost functions will be provided in Chapter 6.

Optimal Policy Calculation

Having defined the critical components of the MDP, the optimal policy for every

state in SF can be calculated using value iteration [36], which iteratively updates the

value function until convergence. Since the costs are defined as negative values, the

optimization process maximizes the value function, which is expressed as follows:

V (s, t) = max
a∈{0,1,2}

(
RF(a, s, s

′) + γ ·
∑
s′

P (s′ | s, a) · V (s′, t+ 1)

)
(4.5)

where:

• V (s, t) represents the value of being in state s at time t

• RF(a, s, s
′) is the reward function

• P (s′ | s, a) is the transition probability of moving to state s′ given action a,

given in the transition probability matrices.

• γ is the discount factor, which determines the weight of future rewards relative

to immediate rewards. In this model, we set γ = 1, as future rewards are

considered equally important as immediate rewards.
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Value iteration proceeds by iteratively updating V (s, t) for all states until the

change in values across iterations is smaller than a predefined threshold ϵ, ensuring

convergence. In this research, ϵ = 0.001 is chosen through trial and error as a suf-

ficiently small value to achieve convergence to optimality. Once the value function

has stabilized, the optimal policy π∗(s) can be derived by selecting the action that

minimizes the value function:

π∗(s) = arg max
a∈{0,1,2}

(
RF(a, s, s

′) + γ
∑
s′

P (s′ | s, a)V (s′, t+ 1)

)
. (4.6)

The algorithm is given by:

Algorithm 1 Value Iteration Algorithm

1: Initialize: Set V (s, t) = 0 for all s ∈ SF
2: repeat
3: V ′ ← V
4: for each state s ∈ SF do

5: V (s, t)← max
a∈{0,1,2}

(
RF(a, s, s

′) + γ
∑
s′
P (s′ | s, a)V (s′, t+ 1)

)
6: end for
7: until max

s
|V (s, t)− V ′(s, t)| < ϵ

8: Return optimal policy:

9: π∗(s) = arg max
a∈{0,1,2}

(
RF(a, s, s

′) + γ
∑
s′
P (s′ | s, a)V (s′, t+ 1)

)

The optimal policy determines the best action to take in each state, ensuring

that decisions are made in a way that maximizes long-term rewards. For instance,

it identifies the point at which uncertainty about a client’s health has increased to a

level where a check-up becomes necessary. Additionally, it specifies the state when

a client’s health has deteriorated to a degree that justifies transitioning them to a

nursing home, balancing timely interventions with resource efficiency. Some example

policies will be shown in the next chapter, where we introduce a toy model and analyze

the impact of varying parameter values on the output.
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5 Sensitivity Analysis

In this chapter, we analyze the model introduced in Chapter 4. The objective of this

chapter is twofold: first, to create a policy using toy values, second, to demonstrate

how the policy adapts when certain model parameters are adjusted. This process

serves to verify the correctness and robustness of the model.

5.1 Example: Toy Model

To analyze the sensitivity of the model, we first define an example model that follows

the same structure as the model F , introduced in Section 4.3. This model serves as a

baseline for further analysis, allowing us to investigate how changes in key parameters

affect the outcome.

5.1.1 Defining the Model

The example model uses the Health Model M, which includes the parameters de-

scribed in Section 4.1, which serves as the underlying structure of the model. Next

to that, example cost parameters are introduced to create a full toy model F . Table
5.1 displays all the parameter values chosen to create this toy model. The home

and nursing costs are represented as intervals, within which they increase or decrease

linearly over time. Chapter 6 will provide a detailed explanation of the behavior of

these parameters. Once the model is fully specified, we compute the optimal policy

by iteratively solving the value function defined in Equation 4.6 in Section 4.3. This

is done by using value iteration until convergence.

The heat map in Figure 5.1 illustrates the optimal policy created by solving this

function. The figure shows the optimal action that should be taken in state (i, j)
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Figure 5.1: Heat map of the optimal policy of the toy model

Parameter Value
µ [1,0,0,0,0]
psame state 0.8
pcrisis 0.1
pcrisis growth 0
pback 0
Crisis cost -150
Home cost [-35,-35]
Nursing cost [-1.000,-2.000]
Check cost -5
Utility 0

Table 5.1: Parameters of the baseline model
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to minimize the total expected cost. As shown in the heat map, the threshold for

sending a patient to a nursing home is reached when their health status is classified

as ’moderate,’ indicating that home care is no longer optimal. In the mild health

state, the model suggests performing a health check if three weeks have passed since

the last check-up, while the model recommends waiting for 6 weeks when the state is

“fit”.

5.2 Impact of Parameter Variations

With the model defined, we now conduct a sensitivity analysis to examine the impact

of key parameter changes on the optimal policy. The optimal policy, calculated in

Section 5.1, serves as a reference for comparison.

5.2.1 Effect of Cost Variations

First, the effect of varying the cost parameters will be examined.

Varying Home Care Cost

The home care cost consists of two components: low cost for healthier individuals

and high cost for individuals in later stages of deterioration. As discussed in Chapter

4, home care costs increase linearly with declining health, as individuals in poorer

health require more intensive care. In this analysis, we vary the high cost of home

care while keeping the low cost fixed, which results in a steeper ascent of the costs. As

shown in Figure 5.2, increasing the high cost of home care provides the model with a

stronger incentive to send individuals to a nursing home earlier to avoid accumulating

high home care expenses.

Varying Nursing Home Cost

The nursing home cost also consists of high and low components, where sending

a healthier individual to a nursing home results in a longer stay and thus higher

cumulative costs. In this analysis, we vary the high cost of nursing homes while

keeping the low cost fixed. As shown in Figure 5.3, reducing the high cost of nursing
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Figure 5.2: Effect of varying home care costs on the optimal policy

Figure 5.3: Effect of varying nursing home costs on the optimal policy

home reduces the incentive to keep individuals at home, leading to earlier nursing

home admissions.

Varying Crisis Cost

Figure 5.4 illustrates the effect of changing the crisis cost. As expected, when the

cost of the crisis is high, the model prefers earlier admission to the nursing home to

avoid the financial burden of a crisis. In contrast, if the cost of the crisis is low, the

model no longer prioritizes avoiding a crisis and instead focuses on delaying nursing

home admission.
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Figure 5.4: Effect of varying crisis costs on the optimal policy

Figure 5.5: Effect of varying checking costs on the optimal policy

Varying Checking Cost

The check cost affects how frequently the model chooses to monitor the individual’s

health status. As shown in Figure 5.5, when the checking cost is low, the model checks

more frequently to reduce uncertainty and prevent crises. In the extreme case where

the check cost is zero, the model always checks, ensuring maximum information. Since

it checks at every time step, it has full access to the current health state, making it

behave identically to the model with perfect information. In contrast, when checking

is expensive, the model reduces the frequency of health assessments. As shown in the

figure, varying these costs only affects the checking policy while the sending threshold

remains constant. However, this is not a strict rule, if the cost values become extreme,

they could also influence the sending policy, potentially lowering or increasing the

threshold for sending individuals to a nursing home.
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Figure 5.6: Effect of varying crisis probability on the optimal policy

5.2.2 Effect of Probability Variations

Varying Crisis Probability

As shown in Figure 5.6, increasing the probability of a crisis primarily leads to earlier

nursing home admissions in the leftmost figure, while the other figures remain largely

unchanged. This suggests that the impact of crisis probability on the optimal policy

is limited, possibly due to the relatively small probability values used in the analysis.

Additionally, if the crisis probability is uniform across all health states, its effect

may be less pronounced in later stages, as the decision to admit a patient is already

strongly influenced by other cost factors.

Varying Self-Transition Probability

Increasing the self-transition probability results in individuals spending more time

in each state before transitioning to the next health stage. This slows down the

progression through the system while accumulating home care costs. As shown in

Figure 5.7, this effect causes the model to favor earlier nursing home admission to

reduce prolonged home care expenses.
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Figure 5.7: Effect of varying self-transition probability on the optimal policy

Conclusion

The sensitivity analysis confirms that the model behaves as expected, with parameter

changes producing logically consistent adjustments in the optimal policy. Increasing

home care costs encourages earlier nursing home admission, while higher crisis costs

reinforce preventive measures. Similarly, adjustments in transition probabilities in-

fluence the timing of interventions in a predictable manner. These findings validate

the model’s robustness and correctness, allowing us to proceed with refining it based

on real-world data. In the next chapters, we will focus on identifying and integrating

realistic cost and probability parameters to enhance the applicability of the model.
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6 Parameter Estimation

This chapter presents the parameter estimation process required to operationalize the

conceptual model introduced in Chapter 4. Using real-world data, it establishes both

probability and cost parameters crucial for accurately representing the dynamics of

elderly patient flow and optimizing policies for nursing home admissions. This chapter

is structured into two main sections. Section 6.1 on the estimation of transition

probabilities between health states, while Section 6.2 on the estimation of associated

costs and rewards.

6.1 Probability Parameter Estimation

This section details the analysis used to estimate the transition probability parameters

of the Health Model. The data originates from the non-public micro data provided by

Statistics Netherlands (CBS), and from “Zorginstituut Nederland” [31]. The analysis

focuses on estimating the time required for a patient to transition from the initial

health state to the crisis state, offering key insights into the model’s transition dy-

namics and informing the probability estimates that drive the simulation.

6.1.1 Estimating Transition Probability Parameters

In this section, we describe the process of estimating the transition probabilities of the

model introduced in Chapter 4 based on real-life data. For this purpose, we used non-

public micro data from Statistics Netherlands (CBS) covering the years 2017–2019.

The dataset includes individuals aged 65 and older and was filtered to focus on those

who progressed to a nursing home, ensuring that the analysis captures the full tran-

sition from home care to institutionalized care. The dataset encompasses the entire
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Dutch population, providing a comprehensive view of elderly care transitions. Addi-

tionally, experts were consulted to gain insights into health deterioration, the role of

home care, the onset of crises, and the overall process leading up to a crisis state.

The transitions of the model with imperfect information (F) can be calculated

based on the transitions of the Health Model (M). To achieve this, we will first

connect the states to the data. Subsequently, an appropriate number of states along

with the transitions will be determined by fitting a data distribution to the model.

Connecting the States to the Data

The health decline process of an older adult is captured by M. This model com-

prises N health states, with the final absorbing state representing a crisis. The initial

entry point into the system reflects a state in which health is expected to deterio-

rate. Therefore, the first state is defined as the moment an older adult begins to

receive home care. Furthermore, expert opinions corroborated that this serves as an

appropriate starting point for modeling the onset of declining health. As discussed in

Chapter 2, most older adults with a WLZ indication receive some level of home care,

which means that most clients waiting for a place in a nursing home, are included in

our data analysis.

As mentioned before, it is assumed that every individual receiving home care

would eventually experience a crisis if no action is taken. This assumption is essential

for applying a consistent model to all individuals. Therefore, to capture the dynamics

of M, the expected period between the initial home care registration and the start

of a crisis must be estimated.

Estimating the Time Distribution from Home Care to Crisis

To estimate the distribution of the time it takes for individuals receiving home care

(wijkverpleging) to experience a crisis, we began by extracting data from the CBS

data. This data includes individuals registered for home care and records of emergency

department visits (SEH bezoek), which we consider indicative of a crisis. The time

in between these two events is considered to be the time it takes to progress through

M. The data shows that, in most cases, clients transition into a nursing home

after an emergency department visit, which aligns with the progression of the model.
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Additionally, we observed that a significant number of clients transitioned to a nursing

home within three weeks. As we believe that these individuals were already too frail

and that no intervention could have prevented their transition, we excluded them

from our analysis.

Unfortunately, the dataset is limited to the years 2017–2019. This short time

frame results in censored data when estimating the time until crisis, as not all indi-

viduals who receive home care experience a crisis within the observation period. To

address this, we filtered the dataset to include only individuals who eventually expe-

rienced a crisis, based on the assumption that, in the absence of intervention, every

individual will ultimately reach a crisis state. We then applied a Kaplan-Meier curve,

a non-parametric method widely used in survival analysis to estimate the survival

function from censored data [35]. This ensures that the analysis properly accounts

for the truncated nature of the dataset. The Kaplan-Meier estimator [35] is defined

as:

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)
(6.1)

where:

• ti represents the distinct observed event times, meaning the moments when at

least one individual transitions to SEH.

• di is the number of individuals who transition to SEH at time ti.

• ni is the number of individuals who were still receiving home care before ti.

This method estimates the survival probability S(t), which represents the propor-

tion of individuals who remain in home care at time t, without having transitioned

to SEH.

To determine the transition probability parameters of the Markov chain, we fit

its simulated survival curve to the Kaplan-Meier curve. This ensures that the model

accurately reflects the observed duration distribution of individuals in home care

before experiencing a crisis. Below we will further detail the methodology used for

this fitting process.
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Fitting the Markov Chain to the Distribution

To ensure that the Markov chain accurately reflects the real-life distribution of time

from home care to crisis, we fit the transition probabilities of the model to the survival

function obtained from the Kaplan-Meier estimator. This is achieved by performing

a grid search over a parameter space, while minimizing the distance between the

survival function derived from Markov chain simulations and the empirical Kaplan-

Meier survival curve. The survival function of the Markov chain is determined by

simulating the time until absorption and subsequently estimating the survival function

using Equation 6.2.

SM(t) =

∑n
i=1 1(xi > t+∆t)

n
(6.2)

In this function, SM(t) represents the probability of not reaching the absorbing

state by time t, based on simulated absorption times. It depends on transition prob-

abilities the initial state distribution and the time step size (∆t), which shape the

expected duration before absorption.

The parameter space is given by Table 4.1 shown in Chapter 4.1. This space

includes the probability parameters, the number of states, and the initial distribution.

For each combination of parameters, the Markov chain is simulated one thousand

times to generate an empirical distribution of transition times. From this empirical

distribution, we compute the corresponding survival function.

The next step involves calculating the distance between the simulated survival

function and the empirical Kaplan-Meier survival function. By minimizing this dis-

tance, we identify the optimal set of transition probability parameters that best fit

the observed duration distribution. This approach aims to capture the real-life pro-

gression from home care to crisis as accurately as possible within the Markov chain

framework. The following section details the methodology used to quantify the dis-

tance between survival functions and optimize the model parameters.
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Parameter Parameter space
N ∈ {10, 20}
P same ∈ [0, 1]
P crisis ∈ [0, 1]
P back ∈ [0, 1]
Crisis growth ∈ [0, 1]
Distribution type ∈ {Uniform,Exponential, Linear}
Distribution steepness ∈ [1, 15]

Table 6.1: Parameters grid search

Minimization Problem Formulation

To accurately fit the Markov chain to the Kaplan-Meier survival curve, several tran-

sition probability parameters and model configurations are considered. These pa-

rameters influence the behavior of the Markov chain and are adjusted during the

optimization process. A grid search was performed to find the optimal set of pa-

rameters. Since the grid search operates on discrete values, the parameter ranges

have been discretized accordingly using a step size of 0.001. One of these parameters,

distribution steepness, controls the steepness of the initial distribution and is only

applicable when the exponential distribution is used, determining how sharply prob-

abilities increase. Table 6.1 summarizes the parameter ranges included in the grid

search.
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Formally, the optimization problem is defined as follows:

min
θ,µ

∑
t

(SM(t; θ)− SKM(t))
2 (6.3)

s.t.
∑
j

PM[i, j] = 1, ∀i, (6.4)

PM[i, j] ≥ 0, ∀i, j, (6.5)

pback < pforward, (6.6)∑
i

µi = 1, µi ≥ 0, ∀i, (6.7)

µi =


1
N
, if uniform distribution,

e−λi∑
j e

−λj , if exponential distribution, λ > 0,

N−i∑
j(N−j)

, if linear distribution.

(6.8)

The objective function in Equation (6.3) minimizes the mean squared error (MSE)

between the survival function obtained from Markov chain simulations, SM(t; θ), and

the empirical Kaplan-Meier survival function, SKM(t). Here, θ represents the set of

probability parameters that influence the survival function of the Markov chain. The

goal is to find the optimal parameter set θ∗ that best aligns the simulated survival

function with the real-world data.

The constraints in Equations (6.4), (6.5), and (6.6) ensure that the transition

probabilities of the Markov chain remain valid and adhere to reasonable assumptions

about health transitions. Equation (6.4) ensures that the sum of transition proba-

bilities for each state equals 1, maintaining a well-defined probability distribution.

Equation (6.5) enforces non-negativity, ensuring that no probability values are neg-

ative. Equation (6.6) introduces an additional structural constraint, ensuring that

the probability of transitioning to a worse state (pforward) is always greater than the

probability of transitioning to a better health state (pback). This reflects the assump-

tion that health deterioration is more likely than recovery in the modeled population.

Equations (6.7) and (6.8) ensure that the initial distribution µ is a valid probability

distribution, with non-negative values summing to 1. Additionally, Equation (6.8)

enforces a predefined structure for µ, assuming either a uniform, exponential, or lin-

ear distribution, each reflecting different assumptions about patient entry into the
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Figure 6.1: Simulated survival function vs Empirical survival function

system.

Results

The results of the optimization process are summarized in Table 6.2, which presents

the parameter set that minimizes the mean squared error (MSE) between the two

survival functions. These optimized parameters define the transition probabilities,

the number of states, and the shape of the initial distribution.

Figure 6.1 shows the fitted survival function of the Markov chain, together with

the Kaplan-Meier survival function. While the two curves do not align perfectly,

this was the best achievable fit given the constraints and parameter space explored

during the optimization process. The remaining discrepancy suggests that additional

refinements to the model, such as adjusting the structure of transition probabilities

or incorporating a more flexible initial distribution, may further improve the align-

ment. Next to that, using other datasets could be helpful to better understand the

progression of declining health.

Overall, the optimization successfully identified a parameter set that closely ap-

proximates the empirical survival function, while maintaining interpretability and
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Table 6.2: Optimized Parameter Set

Parameter Value
psame 0.86
pcrisis 0.0
pback 0.06
Crisis growth 0.01
Distribution type Exponential
Distribution steepness 2
N 20
Objective function value 0.000236

adherence to the underlying Markov model constraints.

6.2 Cost Parameter Estimation

This section outlines the estimation of cost and reward parameters to ensure the

model accurately reflects real-life scenarios. It first describes how the theoretical

health states from the conceptual model were translated into a practical analytical

framework. This includes analyzing the expected length of stay in nursing homes,

specifically how a client’s health condition at the time of admission influences their

duration of stay. Using these insights, along with the transition probabilities esti-

mated in the previous section, realistic reward values are assigned to different states

and actions within the model. Finally, several assumptions are made to align the

model with the current healthcare environment in the Netherlands.

6.2.1 Cost Structure and Reward Function

The economic aspects of healthcare interventions and transitions are represented by

the model parameters, which are based on a variety of cost estimations. Zorginstituut

Nederland’s ”Kostenhandleiding voor economische evaluaties in de gezondheidszorg:

Methodologie en Referentieprijzen” [40] contains useful information about current

pricing in health care. These are used to calculate the expenditures for the model

parameters.
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It is crucial to remember that calculating the exact prices for each parameter is not

feasible. All costs in the model are approximates due to the complexity and variety of

healthcare expenses, which are affected by regional variations, individual situations,

and data restrictions. Although these values give the model a useful foundation, it is

important to recognize the uncertainty in their interpretation.

Overview of Cost Categories

Four primary categories of costs are considered in the model:

• Home care cost: The cost associated with providing care to people in their

own homes.

• Nursing home cost: The cost incurred when an individual transitions to a

nursing home.

• Crisis cost: The cost of managing an individual in a crisis state.

• Checking cost: The cost of evaluating the health of an older adult in a con-

sultation.

This section provides a detailed examination of each cost category, outlining the

specific costs involved. However, before delving into these details, the expected length

of stay in nursing homes will first be determined, as this is a crucial factor in accurately

calculating nursing home costs.

6.2.2 Length of Stay Analysis

In Model F , explained in Chapter 4, the final absorbing state represents a nursing

home. Within this system, individuals can be sent to this state from any health state,

provided their health state is known. To calculate the costs associated with taking the

action “send to nursing home” from a given health state, it is essential to understand

the expected length of stay in the nursing home, which depends on the current health

situation of the individual. This section aims to analyze the relationship between

health state at the moment of sending and the associated length of stay. To do this,

we need to first find a connection between real life and the model states.
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Identifying Relevant Health Profiles

Zorginstituut Nederland [31] conducted an analysis that examined the length of stay

in nursing homes. This expectation is based on their VV profile at the time of

admission, which is a concept introduced in Chapter 2. The description of every

VV profile can be found in Table 1 in the Appendix. A link between the states in

our model and the VV profiles must be established to use these data for the model

parameters. However, health profiles typically lack the dynamic nature of the health

states in the model, making a one-to-one mapping between health profiles and states

infeasible.

To simplify the model’s parametrization while allowing flexibility in the number

of states, we assume that the expected length of stay decreases linearly from the first

to the last state. Therefore, the expected length of stay in a nursing home must be

determined at the time of admission for both the first and last health states. The

expected length of stay for the intermediate health states will be estimated through

interpolation.

The first state corresponds to individuals with minimal care needs who are capable

of living at home with support. Among the available health profiles, we identify the

profile with the lowest care requirements to represent this state. Therefore, VV profile

1 serves as a reasonable approximation of the health condition for individuals in state

1.

The state N represents the stage immediately preceding a crisis and is therefore

associated with intensive care needs that can only be adequately provided within

a nursing home setting. Given the characteristics of individuals in this state, VV

profile 6 is the most appropriate match. According to Zorginsitiuut [29], VV profile

6 includes individuals with significant variations in care needs. Although some may

still receive care at home or in a sheltered living environment, others may already

require intensive nursing and personal care, necessitating nursing home-level support.

Therefore, VV profile 6 aligns well with state N in the model, as it captures the care

needs among individuals approaching a crisis state. It reflects increasing dependency

of individuals in this stage and supports timely interventions to prevent a crisis. While

some patients may initially be managed with home care, the progressive nature of

their condition often requires a transition to a nursing home setting, where specialized
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medical supervision, intensive care, and personal care are readily available.

Estimating Length of Stay

The expected duration of stay in an NH was determined using data from Zorginstituut

Nederland [31]. This data set provides information on the distribution of the length

of stay for older adults in NHs based on their health status at the time of admission.

Since the dataset includes such distributions for every VV profile, it enables the esti-

mation of the duration for each specific VV profile. Generally, individuals admitted

while still relatively healthy tend to remain in the nursing home longer than those

admitted in a more deteriorated state, as the latter group has a higher mortality risk.

Figure 6.2 illustrates the distribution with flexible number of states. The ex-

pected length of stay was calculated using the weighted average of the provided data.

Specifically, as described before, the expected length of stay for the healthiest (State

1) and most deteriorated (State N) individuals was derived from the weighted aver-

age values of VV1 and VV6, respectively. This resulted in an expected stay of 166.49

weeks for VV1 and 94.77 weeks for VV6. The expected stay duration for intermediate

health states was then estimated using linear interpolation between these two values,

producing the results shown in Figure 6.2. Mathematically, the expected length of

stay in weeks for a client admitted to a nursing home when in state s is calculated

as:

LOSNH(s) = 166.49− s− 1

N − 1
71.72 (6.9)

where N is the total number of states, and s ranges from 1 (home care) to N (crisis).

Nursing home cost

The Nursing Home (NH) state in the model represents the final and absorbing state.

Once this state is reached, no further actions are taken, and no additional rewards

are received. Therefore, the reward associated with the transition to an NH must

account for the total cost of the entire stay, including all expenses until the end of

life. These costs are calculated based on the expected duration of stay and the daily

cost of NH care, taking into account the state in which the person is admitted to

an NH. The data from Zorginstituut Nederland indicate an average cost of €290 per

day. By integrating this with the length of stay equation introduced in Section 6.2.2,
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Figure 6.2: Length of stay approximation by interpolation

we derive the following calculation for the NH cost in each state where the patient is

sent.

CNH(s) = LOSNH(s)× (290× 7)

CNH(s) = LOSNH(s)× 2030

LOSNH(s) = 166.49− s− 1

N − 1
× 71.72

Substituting LOSNH(s) into the first equation gives:

CNH(s) = (166.49− s− 1

N − 1
× 71.72)× 2030

Home cost

The weekly costs for home care are estimated using a method similar to the estimation

of the length of stay per health state. Reference points are established for the first

and last health states, and a linear interpolation is applied to estimate the states in

between.

A report by Nederlandse Zorgautoriteit (NZa) [24] provides data on the average

hours of home care needed for various groups of people having different kinds of care
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need. Two groups are chosen to be a good match for the first and last health state

of the model. The analysis by NZa shows that the minimal home care category,

referred to as “Prevention for vulnerable older adults who do not yet have a care

demand (PREV)”. PREV receives an average of 5 hours of home care per month,

which translates to 1.17 hours per week. This group consists of individuals who

are still largely independent but receive preventive home care support to maintain

their well-being and delay further health deterioration. Given that State 1 in the

model represents individuals at the beginning of home care needs, it is reasonable to

equate their care requirements with those of the PREV group. Thus, we estimate

that individuals in State 1 receive approximately 1.17 hours of home care per week,

aligning with the data provided by NZa.

For the last state, the Long-Term Care Somatic Problems (LT-SOM) category

is selected as the best match. The NZa analysis indicates that this group consists

of individuals with severe physical health conditions who require intensive home care

but have not yet transitioned to an NH. Given that the final health state in the model

represents individuals on the verge of a physical health crisis, LT-SOM aligns well

with the care needs of this group. This group has an average need of 17 hours of

home care per month, which equals approximately 3.97 hours of weekly home care.

The estimated weekly hours of home care for each profile are multiplied by the

average hourly cost of home care. This is calculated by taking the average of different

kinds of home care costs [40], which results in an average hourly cost of €73.47.

Multiplying this by the number of hours of home care per week and adding the travel

cost per visit (€30.64) gives us the the following equation for the home cost:

Chome(s) = 73.47×
(
1.17 +

s− 1

N − 1
× 2.8

)
+ 30.64 (6.10)

Crisis cost

Determining the cost of a crisis is challenging due to the wide range of scenarios a

crisis can encompass. A crisis could involve various levels of medical intervention,

ranging from mild to severe, and the associated costs can vary significantly based on

the services required. Costs possibly associated with a crisis are given below [40].
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• Ambulance Ride: The cost of transportation to a medical facility by ambulance

is €528.

• Emergency Department Visit: A visit to the emergency department (spoedeisende

hulp) incurs a cost of €258.

• Hospitalization: A standard hospital stay costs €644 per day.

• Intensive Care Unit Stay: For more severe cases requiring intensive care, the

cost is €2727 per day.

As reported by Medisch Contact [26], the average cost of a crisis for individuals

aged 65 and older is €8,400, while for those aged 85 and older, it is €15,000. Since

the exact cost of a crisis varies depending on individual circumstances, we use the

average of these two amounts (€11,700) as the crisis cost in the model. This provides

a reasonable estimate based on available data while keeping the model clear and

practical.

Checking cost

The cost of performing a health check on an older adult was defined based on the

nature and duration of the check. A check involves a healthcare specialist conducting

a comprehensive review of the individual’s health, ensuring all relevant factors are

evaluated. According to expert input, such a check typically takes approximately one

hour to complete. With an estimated cost of €50 per hour for the specialist’s time,

the cost of a single health check was set at €50 [40]. This value serves as a reasonable

approximation for inclusion in the model parameters. A limitation is that crises not

only lead to immediate costs but also increase healthcare expenses in the long term.

Patients who experience a crisis often require more intensive care afterward, resulting

in higher overall costs that are not fully accounted for in the model.

Summary of Parameterization

The model parameters, including the number of states, transition probabilities, and

cost structure, have been defined based on empirical data and expert insights. The
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home cost and checking cost are incurred per time unit, where one time unit cor-

responds to a week, while the crisis cost and nursing home cost are one-time costs

incurred at the moment of transition. A summary of the cost parameters is given

below:

Parameter Value
Home cost Varying from €115.96 to €322.32
Nursing home cost Varying from €192,383.10 to €337,974.70
Crisis cost €11,700
Checking cost €50

Table 6.3: Cost Parameters

In the next chapter, the cost and probability parameters will be incorporated into

model F , and the results will be generated accordingly.
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7 Results

This chapter presents the results that provide insights into the research question,

as formulated in Chapter 1. The analysis focuses on addressing the sub questions

outlined in the introduction, examining the progression of older individuals through

different health states, determining the cost-optimal timing for nursing home admis-

sions and health check-ups, and evaluating the impact of different check-up strategies

and patient preferences on crisis risk and health expenditures.

Each section in this chapter presents the results that contribute to answering

these questions. In Section 7.1, we analyze how older adults transition between

health states. Section 7.2 examines how the cost-optimal admission strategy was

determined, and how different check-up strategies impact the crisis risk and total

expected costs. Finally, Section 7.3 investigates how patient preference affects the

results of the model.

7.1 Analyzing Health Dynamics

In Chapter 6, we established the transition probability parameters of the Markov

Model based on real-world data, reflecting the expected time from the start of home

care until a crisis occurs. These parameters define how individuals transition between

different health states over time and allow for a realistic simulation of elderly care

dynamics. In this section, we analyze and interpret the transition probability matrix,

the initial distribution of health states, and the expected time until absorption.
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Figure 7.1: Heat map of transition probabilities

7.1.1 Health State Transitions

The transition probability matrix, visualized in Figure 7.1, displays the estimated

transition probability parameters, based on the matching of the Markov chain with

the CBS micro data. In this heat map, the first row represents the initial distribution,

and the values in the matrix are rounded to two decimals, which makes them appear

constant, but they do increase very slightly. One of the most notable patterns in

this heat map is that the probability of moving forward, that is, transitioning to a

more frail state, is consistently slightly higher than the probability of improving and

moving back to a healthier state. This suggests that deterioration is the dominant

trend, which is in line with the fact that people in this system already require home

care and are generally in a frail condition. However, since they receive care, the

probability of rapid deterioration remains limited, indicating that home care helps
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slow down the decline.

Another important observation is that the probability of transitioning into a crisis

state gradually increases as individuals become more frail. While the probability of a

crisis is negligible in the early health states, it steadily rises in more advanced frailty

stages, reaching approximately 1%. This increase is expected, as individuals in worse

health conditions inherently have a higher risk of experiencing a sudden crisis event.

Finally, we note that the probability of entering a crisis in the last state before crisis

(state 20) is 8%. This is significantly higher than in previous states, which is expected

since this state represents the final stage before a crisis. Patients in this state have

already undergone a significant deterioration, which increases the likelihood of a crisis

event.

7.1.2 Initial Health State Distribution

Figure 7.2 presents the initial distribution of individuals across health states upon

entering the system. The distribution follows an exponentially increasing pattern,

indicating that the probability that individuals start in a frail state is greater than

in a healthy one. The probability of entering the system in the most healthy state

is less than 2% while the probability of entering the system in the most frail state

is more than 10%. This big difference suggests that frailty is often recognized too

late, potentially due to delayed registration for home care. As a result, many indi-

viduals enter the system only after their health has already deteriorated significantly,

increasing their risk of experiencing a crisis.

7.1.3 Expected Time Until Absorption

Figure 7.3 illustrates the expected time until absorption (that is, reaching the crisis

state) for individuals starting in each health state. The red dotted line shows that the

mean expected time until absorption is approximately 132 weeks, which is more than

2.5 years. The values shown in the figure are calculated using Equation 4.2. As shown

in the figure, there is a clear linear decrease in the expected time until absorption

as individuals start in worse health states. Individuals who enter the system at

the earliest health state take more than 300 weeks (more than 6 years) to reach a
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Figure 7.2: Initial distribution

crisis, whereas those who enter at the most deteriorated state progress to a crisis in

approximately 25 weeks (half a year). This big contrast shows that early recognition

of frailty could potentially prevent crisis situations, as it provides significantly more

time for interventions and regular health checks. Table 2 in the Appendix provides

additional information on crisis risks, calculated using similar methods as the time

until absorption estimates. These insights allow for a more practical interpretation

of health states, helping specialists make informed assessments.

7.2 Effect of Different Check-Up Strategies on Decision-

Making

To answer the second and third sub-questions, we analyze how the optimal policy for

NH admission and check-ups can be determined, and how different check-up strategies

perform compared to the optimal policy.

7.2.1 Optimal Policy

Figure 7.4 presents the optimal policy derived by incorporating the estimated cost

and probability parameters from Chapter 6. The figure visualizes the recommended
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Figure 7.3: Expected time until absorption

decisions across different health states, illustrating when a patient should be checked,

and when a transition to an NH becomes the cost-optimal choice. The figure shows

that the optimal state for admission is at health state 18. Additionally, check-ups

become necessary earlier than the predefined threshold, starting at health state 15,

where the recommended check interval is 14 weeks. Beyond this point, the interval

between check-ups decreases progressively, ensuring closer monitoring as the patient’s

condition deteriorates. Notably, the policy recommends sending patients to a nursing

home relatively late, as the likelihood of a crisis remains low, particularly in the early

stages of deterioration. Additionally, early admissions to NHs are relatively costly,

providing further incentive to delay placement until it becomes more necessary.

7.2.2 Impact on Crisis Risk and Costs

Figure 7.6 presents examples of fixed-interval checking rules, to illustrate how the

time-based check-up policies were constructed. To assess the impact of these strategies

relative to the optimal policy, a simulation was conducted. The simulation results

provide key insights into the effect of different check-up strategies on two indicators,

the total expected costs and the crisis risk. Figure 7.5 presents the results of this

simulation, featuring a dual-axis representation: one for total cost and another for

the crisis fraction, both derived from the simulation. The dotted lines indicate the
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Figure 7.4: Heat map of the optimal policy

corresponding values under the optimal policy, providing a clear comparison between

the simulated outcomes of the optimized decision strategy versus the time-based

checking strategies. The figure highlights three key takeaways. First, the MDP-

optimized schedule outperforms all time-based schedules in terms of cost efficiency,

as it has an expected cost of €228500. Secondly, the only scenario where time-based

check-ups result in a lower crisis risk than the MDP-optimized schedule is when checks

occur at every time step (t=0). This indicates that the MDP approach can maintain

an almost equally low crisis risk while significantly reducing unnecessary check-ups,

improving overall efficiency. Lastly, the red axis shows a narrow range in the crisis

risk fraction, as it varies from just under 46% to 55.5%. This occurs because only the

checking policy is modified, while the threshold for NH admission remains constant,

which has the biggest impact on the risk on a crisis. Since patients are still sent to

the nursing home at the same health state, the impact on the overall crisis fraction

remains minimal.
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Figure 7.5: Time-based checking

Figure 7.6: Time-based checking schedules

7.3 Impact of Patient Preference on the Optimal

Policy

The last sub-question is answered by investigating how incorporating patient pref-

erence influences decision making. As discussed in Chapter 4, the model includes a

utility reward that accounts for patient preferences. Some patients prefer to stay at

home as long as possible, while others may prefer earlier NH admission. By adjusting

the utility parameter, we can analyze how these preferences shift the optimal policy

for admission and check-ups and influence the cost and crisis risk.
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7.3.1 Effect on Admission Timing

A utility reward is received at each time step the individual remains at home. There-

fore, a positive utility leads to a delayed NH admission, while a negative utility en-

courages an earlier admission. The check-up policy also adapts to these shifts; when

home care becomes more favorable, the model relies more on check-ups and earlier

admission to minimize uncertainty. To analyze the effect of patient preference, we

first adjust the policy by incorporating a utility reward into the cost function, and

after we evaluate their effectiveness by simulating the environment using the original

cost function. This allows for a fair comparison by assessing both total costs and

crisis fractions under different preference scenarios. The impact of these adaptations

on the policy can be found in Chapter 5, which examines how changes in the cost

function influence policy schemes.

The results of the simulation are visualized in Figure 7.7. The figure shows that

the crisis fraction (red line) ranges from 0 to 1, illustrating the two extreme scenarios:

either all individuals are immediately admitted to an NH, or everyone remains at

home until a crisis occurs. As expected, the lowest cost is observed at utility = 0,

which aligns with the cost-optimal policy. Furthermore, a stronger preference for NH

admission results in higher costs compared to a preference for staying at home. How-

ever, this cost difference comes at the expense of crisis risk. When preference shifts

toward staying home, costs remain lower than in the case of early NH admissions,

but the likelihood of crises increases.

As mentioned in the introduction, approximately 50% of nursing home admissions

in the Netherlands currently occur through a crisis [1]. The figure shows that while

this approach is close to minimizing total costs, it has a big impact on crisis risk,

affecting the physical and mental health of patients. To address this, it is essential to

examine the cost implications of reducing the crisis fraction by shifting the preference

toward earlier NH admissions.

The results indicate that without significantly increasing costs, a substantial re-

duction in the crisis fraction can be achieved. When the utility is set to 0 (neutral

preference), the crisis fraction is 47%, and the total cost is €228,548. However, when

the utility is adjusted to -250, shifting the preference slightly toward earlier nursing

home admissions, the crisis fraction drops to 22.5% while total costs increase only
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Figure 7.7: Effect of Patient Preference

slightly to €231,786. This represents a cost increase of just 1.42%, while the crisis

fraction is reduced by 24.5 percentage points. These results highlight that by making

a relatively small adjustment in preference, a significant reduction in crisis situations

can be achieved without a major financial impact. This demonstrates the potential

for optimizing policy to balance crisis prevention and cost efficiency effectively.
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8 Discussion

This chapter interprets and evaluates the results presented in this research. Sec-

tion 8.1 summarizes the main findings. Section 8.2 discusses potential limitations

that may affect the interpretation or generalization of these results. Finally, Section

8.3 suggests areas for future research, considering both academic advancements and

practical implications.

8.1 Main Findings

This study aims to address the following research question: “How can patient prefer-

ences be incorporated into cost-optimal nursing home admission timing and check-up

scheduling?”

To address this, we developed a priority-based admission policy that evaluates

clients’ health states to determine who should be prioritized for nursing home place-

ment. Burkell et al. [10] demonstrated that implementing such a needs-based ap-

proach can lead to significant shifts in individual placement priorities and overall

admission decisions. We modeled the health of older adults as a dynamic process

using a Markov model, a widely applied approach in healthcare settings [23, 13]. We

further investigated the associated costs in the process of health deterioration, includ-

ing home care expenses, nursing home costs, and costs arising from crisis situations.

The optimum can be determined using an MDP, a well-established framework for

decision-making under uncertainty that has been widely applied in healthcare alloca-

tion models [21] and preventive maintenance scheduling [25]. The model incorporates

uncertainty due to the lack of real-time health information. The optimal strategy

will be used as a benchmark to test the effect of patient preference and time-based
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checking schedules. The resulting policy provides valuable insights that can be used

to effectively prioritize clients waiting for nursing home placement, by minimizing

health care expenditures, and incorporating patient preference.

The main findings are structured around four key areas, based on the sub-

questions of this research. First, the progression of health states is examined. Ac-

cording to probability estimates from the Kaplan-Meier model applied to CBS data,

many patients enter home care in an already deteriorated state, limiting opportunities

for preventive measures. Earlier screening could help delay or prevent crisis-driven

admissions.

Second, the optimal timing for NH admissions and health check-ups was deter-

mined by minimizing healthcare costs using an MDP. The results indicate that older

adults are admitted to nursing homes relatively late in the progression of health states

to avoid the high costs associated with early admissions. Additionally, as health de-

teriorates, the intervals between check-ups become shorter, ensuring more frequent

monitoring. This adaptive approach helps mitigate the risk of undetected deteriora-

tion and enables timely interventions.

Third, the research evaluated the efficacy of different check-up scheduling strate-

gies in relation to crisis risk and costs. The results indicate that the optimal policy,

which dynamically adjusts check-up timing based on the patient’s health state, out-

performs time-based schedules. This aligns with findings from Andersen [3], who

highlights that Condition-Based Maintenance reduces unnecessary interventions by

scheduling actions only when needed, whereas Time-Based Maintenance follows a

rigid schedule that does not account for actual wear and tear. Similarly, in the

healthcare context, state-based checks allow for earlier detection of declining health

while preventing unnecessary medical examinations, leading to improved cost effi-

ciency and patient outcomes. Specifically, delaying check-ups increases the likelihood

of a crisis, as later detection of health deterioration reduces opportunities for timely

intervention. In contrast, a state-based check-up strategy allows for earlier detec-

tion of declining health, effectively lowering crisis risk while preventing unnecessary

healthcare expenditures. These findings highlight the importance of adaptive check-

up policies in improving both cost efficiency and patient outcomes.

Lastly, introducing a utility score to capture patient preferences has a significant

77



effect on both healthcare expenditures and crisis risk. The analysis shows that even

a modest increase in spending can lead to a substantial reduction in crisis situations,

highlighting the trade-off between cost and patient well-being. By using these insights,

policymakers can make more informed decisions on nursing home admissions, ensuring

that resources are allocated effectively while minimizing crisis risks.

8.2 Limitations

Several limitations must be acknowledged in this research. First, the data used for

estimating the time from home care until crisis was modified by cutting off the first

three weeks due to an excessively steep descent, which may have influenced the esti-

mated survival probabilities. Although we assume that this steep descent was caused

by incorrect data related to the billing of home care services, further research is needed

to confirm this. Additionally, the fit of the transition probabilities to the Kaplan-

Meier curve is not perfect and could be further refined to improve model accuracy.

The Markov Chain was simulated to estimate the survival curve, but due to compu-

tational constraints, the simulation was limited to 1,000 runs, which may not fully

capture the underlying randomness. Increasing the number of runs could enhance

the accuracy of the fitted probability parameters. Next to that, the data used for

this estimate was censored. Another way to improve the fit is by incorporating more

data, providing deeper insights into how health deteriorates over time and refining

the transition estimates accordingly.

Furthermore, the model applies the same transition dynamics and cost structures

to all patients, assuming a uniform progression through health states. However, in

reality, each patient follows a unique health trajectory and incurs different health-

care costs, which this simplification does not fully capture. The homogeneous patient

trajectory assumption presents several challenges. Firstly, it implies that all individ-

uals will inevitably experience a crisis if no intervention is made, which is not always

the case. In addition, the model assumes that all individuals transition to a nursing

home after experiencing a crisis, overlooking the possibility that some may recover

and return home instead. Incorporating patient-specific factors into the model could

improve its accuracy and lead to more personalized and effective decision-making.
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Next to that, the model does not account for patient mortality while waiting for

nursing home placement, which may impact the practical applicability of the policy

recommendations. Ignoring mortality could lead to overestimation of long-term care

costs and suboptimal admission strategies.

Lastly, estimating crisis-related costs is complex, as crises vary in severity, and

not all result in emergency department visits. This introduces uncertainty in the cost

estimation process. However, this limitation can be partially addressed by conducting

a sensitivity analysis on these parameters, allowing for an evaluation of how different

assumptions regarding crisis costs impact the overall model outcomes. Similarly,

the interpolation of costs for intermediate health states between home care and NH

care may not accurately reflect real-world expenditures. A more precise approach

would involve defining exact costs for each specific health state, improving the model’s

overall accuracy.

8.3 Future Work

Future research could explore further enhancements to the model, including inte-

grating more detailed patient-specific health trajectories. Additionally, collaboration

with healthcare experts is essential to accurately define the health states, ensuring

that the model aligns with real-world medical assessments and care needs. Another

important extension would be to incorporate mortality into the model, allowing for a

more realistic representation of patient transitions over time. Finally, simulating the

nursing home queue including the capacity could provide valuable insights into the

broader system dynamics, helping to assess the practical implications of the proposed

decision policies on waiting times and crisis risk.

8.3.1 Practical Implications

In the Netherlands, NH placements are managed by the “zorgkantoor” (regional

healthcare office), which assigns individuals a waiting status based on the urgency of

their need for care. This urgency is primarily determined by the VV-profile, assigned

by the CIZ, which reflects the required intensity of home care. The zorgkantoor then

evaluates the VV-profile and other factors to determine when a patient should be
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admitted to an NH. However, these assigned statuses are largely static, relying on

predefined urgency levels rather than real-time health dynamics. Instead of static pri-

oritization, the proposed dynamic approach can be integrated into existing systems

to optimize admission timing and check-ups based on real-time health assessments.

This enables more responsive and cost-effective decision-making while considering

crisis risk and patient preferences.
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9 Conclusion

This research investigated how patient preferences can be incorporated into cost-

optimal nursing home admission timing and check-up scheduling. By integrating

a utility score into a Markov Decision Process (MDP) model, patient preferences -

either favoring early nursing home admission or extended home care - can be explicitly

accounted for in the decision-making process.

The findings reveal that while adjusting for patient preference allows for more

personalized care decisions, it also influences crisis risk and healthcare expenditures.

A slight shift in preference toward earlier nursing home admission can have a sub-

stantial positive impact by significantly reducing crisis risk, while only marginally

increasing total costs. Conversely, prioritizing home care lowers expenditures but

leads to a higher likelihood of crises, emphasizing the need for a balanced approach

in admission policies.

This study contributes to the field by introducing a quantitative framework that

integrates patient preferences into optimal elderly care decisions. By providing a

structured, data-driven approach, it helps policymakers make informed decisions

about nursing home admissions, ensuring that the right individuals are prioritized.

Future research can refine this model by incorporating more detailed patient health

trajectories and real-world healthcare constraints, further enhancing its practical rel-

evance.
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Appendix

This appendix contains additional figures and tables used in this research.

Profile Description

VV1 Basic care needs, including support with simple daily activities and
light supervision.

VV2 Moderate care needs, requiring assistance with several daily activ-
ities and occasional supervision.

VV3 Significant care needs, including help with most daily activities and
regular supervision.

VV4 Extensive care needs, involving frequent assistance with daily activ-
ities and supervision, often for individuals with moderate cognitive
impairments.

VV5 High care needs, requiring intensive assistance with daily activities,
continuous supervision, and potential medical care, typically asso-
ciated with severe cognitive or physical impairments.

VV6 Specialized care needs for individuals with advanced cognitive dis-
orders, such as dementia, requiring tailored care and constant su-
pervision.

VV7 Intensive care needs for individuals with severe physical disabilities,
requiring constant assistance and medical care.

VV8 Complex care needs involving severe physical and cognitive im-
pairments, often necessitating specialized medical interventions and
24/7 care.

VV9 Critical care needs, typically for individuals in end-of-life care, re-
quiring specialized palliative care and support.

VV10 Exceptional care needs for highly complex cases involving inten-
sive medical and psychosocial care, requiring a multidisciplinary
approach in an NH or specialized facility.

Table 1: Description of care needs per health profile

89



State Crisis within a
week (%)

Crisis within 4
weeks (%)

Crisis within
half a year
(%)

Crisis within a
year (%)

0 0.05 0.23 2.43 6.14

1 0.10 0.39 2.99 6.96

2 0.14 0.58 3.99 8.58

3 0.19 0.76 5.11 10.55

4 0.24 0.95 6.26 12.62

5 0.29 1.14 7.41 14.71

6 0.33 1.33 8.54 16.77

7 0.38 1.52 9.67 18.78

8 0.43 1.71 10.78 20.76

9 0.48 1.90 11.87 22.69

10 0.52 2.08 12.96 24.60

11 0.57 2.27 14.03 26.53

12 0.62 2.46 15.10 28.60

13 0.67 2.64 16.20 31.03

14 0.71 2.83 17.47 34.27

15 0.76 3.02 19.40 39.03

16 0.81 3.20 23.24 46.14

17 0.86 3.52 31.47 56.31

18 0.90 6.03 47.19 69.53

19 8.00 26.29 71.45 84.76

Table 2: Probability of experiencing a crisis within different timeframes for each
state.
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