
Improving Efficiency in Outpatient
Clinic Scheduling

Master’s Thesis Business Analytics

Author: Goos Neefjes (2640149)
1st supervisor: Dr. René Bekker

Company supervisor: Phillip Kersten
2nd reader: Dr. Kevin Luck

2025-11-26

Abstract

Currently, the scheduling process at the outpatient clinic of the VUMedical Centre is han-
dled manually, making it not only tedious and error-prone but also inefficient. This thesis
presents an optimization algorithm designed to improve efficiency in patient scheduling,
which will be applied at the outpatient clinic of the Amstdam UMC, Location VUmc. By
integrating a predictive no-show model with a mathematical scheduling framework, the
research addresses the challenge of incorporating patient no-show behavior into schedul-
ing decisions. Using the open-source Kaggle medical appointment dataset, a LightGBM
model was trained to estimate individual no-show probabilities, achieving an accuracy of
69%. The best-performing scheduling approach, the Horizontal and Vertical Batch Algo-
rithm, generates a six-week schedule within 20 minutes and within 2.6% of the calculated
lower bound. Applying the best double-booking strategy—the cost-based double-booking
approach— results in an increase of 13.9% patients scheduled in the same time window
then without applying a double booking strategy, a doctor idle time reduction of 22.34%
and a cost reduction of 17%.

Acknowledgements

I would like to acknowledge several individuals and the organization who have made this
thesis possible. First of all, I would like to thank my company supervisor, Phillip Kersten,
for his expertise and guidance. I am thankful to my academic supervisor, Prof. Dr. René
Dekker, for his inspiration, feedback, and academic guidance. Your input during our
meetings have helped me to get more structure in this thesis. I also appreciate the time
taken by the second academic reader, Prof. Dr. Kevin Luck. Finally an appreciation for
the VU Medical Centre for sharing their current scheduling practice and helping to shape
the scheduling algorithm. Thank you for being part of this contribution.

1

Contents

1 Introduction 4
1.1 Research Objective . 6
1.2 Host Organization . 6
1.3 Thesis Structure . 6

2 Related Work 8
2.1 No-show prediction model . 8

2.1.1 Features . 8
2.1.2 Modeling Approaches . 9
2.1.3 Double booking . 9

2.2 Scheduling Models . 10
2.2.1 Mixed Integer Linear Programming 10
2.2.2 Stochastic Programming Techniques 11

2.3 Meta-Heuristics . 11
2.4 Applied literature and novel contributions 13

3 Data 15

4 Methodology 22
4.1 No-show prediction model . 22

4.1.1 Feature Engineering . 22
4.1.2 Feature Selection . 23
4.1.3 Model Selection . 23
4.1.4 Model Training and testing . 24
4.1.5 Patient Selection . 25

4.2 Scheduling model description . 26
4.2.1 Introduction notation . 26
4.2.2 Mathematical formulation: basic model 28
4.2.3 Mathematical formulation: extended model 30

4.3 Double Book strategies . 33

5 Scheduling Algorithms 37
5.1 Overview Algorithms . 37

5.1.1 The Optimal algorithm . 37
5.1.2 The Vertical Batches algorithm 37
5.1.3 The Horizontal Batches algorithm 41
5.1.4 The Horizontal and Vertical Batch algorithm 44
5.1.5 The Fix-And-Optimize algorithm 44

5.2 Vertical Batch algorithm . 47

2

5.3 Horizontal Batch algorithm . 50
5.4 Horizontal and Vertical Batch algorithm 53
5.5 Fix and Optimize algorithm . 53

6 Results 57
6.1 No-show predictions . 57
6.2 Experimental Setup . 58

6.2.1 Baseline model scenario . 58
6.2.2 Extended model scenario . 60

6.3 Evaluation Metrics . 62
6.4 Algorithm Performance . 63

6.4.1 Baseline model scenario: group A 64
6.4.2 Baseline model scenario: group B 65
6.4.3 Baseline model scenario: group C 67
6.4.4 Extended model scenario . 68

6.5 Double Booking . 70

7 Conclusion 74

8 Discussion 76

A Appendix 77
A.1 Tables . 77
A.2 Graphs . 80

3

Chapter 1

Introduction

The Dutch healthcare system, long recognized as one of the most expensive in Europe, is
currently under significant pressure [33]. Rising demand for care, persistent staff short-
ages, and the increasing burden on healthcare workers pose serious challenges to main-
taining high-quality services. One key area under pressure is the outpatient clinic, which
plays a central role in managing chronic diseases, coordinating follow-up care, and alle-
viating pressure on inpatient services. Despite its importance, access to outpatient care
is becoming increasingly difficult due to long waiting times [26]. These delays can lead
to postponed diagnoses, treatment, and follow-up care—ultimately resulting in poorer
health outcomes, increased patient anxiety, and reduced trust in the healthcare system
[14].

While new patients face long waiting times and staff shortages persist, the available work-
force is often inefficiently utilized. Missed appointments and late cancellations contribute
to wasted capacity and financial losses. One study found that, within a single year, 31%
of appointments were either canceled or missed, causing an estimated 3–14% loss of total
annual clinic income [25].

Demographic developments further intensify the pressure on outpatient capacity. The
proportion of older adults—who typically require more frequent and specialized care—is
steadily increasing. In the Netherlands, the population aged 65 and above is projected
to account for 45.4% of the 20–65 age group by 2060, up from 35.5% in 2025 [10]. Many
of these individuals live with chronic conditions such as diabetes, cardiovascular disease,
or cancer, which require continuous monitoring and intervention.

The COVID-19 pandemic highlighted the fragility of scheduling systems: staff infections
forced mass appointment cancellations, creating extensive waiting lists and significant
workloads for schedulers. A study in Scotland showed that pre-pandemic elective care
capacity had not been fully restored even by the end of 2023 [30]. Although the pandemic
represented an extreme case, rescheduling and recovery remain necessary on a day-to-day
basis due to staff sickness and other absences.

4

Therefore, the healthcare system urgently calls for sustainable, collaborative solu-
tions [38]. One promising approach lies in improving patient scheduling, a critical yet
complex process. Each patient must be assigned to the correct doctor and room. The
complexity arises from the large number of possible combinations in real-world settings.
A typical example of a hospital scheduling instance might include: 600 patients to sched-
ule, 40 doctors and 14 rooms.

Without considering any additional constraints, the total number of possible combina-
tions for assigning patients to doctors and rooms is: 600*40*14 = 336,000. Adding
realistic constraints further increases complexity, see here a list of constraints used in
the scheduling process of the VU Medical Centre which will be applied in our scheduling
algorithm:

1. Patients have a sequence of appointments that must occur in the correct order (first
appointment A, then appointment B).

2. Some follow-up appointments require a recovery time (appointment B can be sched-
uled one week after appointment A).

3. Some appointments must occur at a fixed interval (appointment B must be sched-
uled one hour after appointment A).

4. Each doctor has specific working shifts (morning, afternoon, or full day).

5. Each doctor has a defined specialty and cannot treat every patient.

6. Some rooms can accommodate only a certain care type (MRI Scan in MRI Room).

7. Some appointment types have a limited number of spots available each day.

8. Some appointments can only be scheduled during specific parts of the day.

These constraints make the patient scheduling problem even more complex, making it
an difficult task to find an close to optimal solution within a reasonable computation
time. Smart scheduling techniques are needed that can reach close to an optimal solution
efficiently.

Another promising solution is double booking. By accurately predicting the no-show
probability of each patient and double-booking those with a high no-show likelihood,
the wasted capacity and financial losses will be reduced caused by missed appointments.
Additionally, double bookings help reduce the long waiting time for new patients for
scheduling an appointment.

5

1.1 Research Objective

This project aims to develop a mathematical model that generates close to optimal out-
patient clinic schedules using an offline planning approach, where patients are scheduled
from a predefined list rather than in real time (the online planning approach). An online
approach is also possible, in this approach patients are scheduled on arrival. A hybrid
method could also be considered: in the first phase (offline), a schedule is generated from
existing requests; in the second phase (online), remaining time slots are allocated to new
patient requests. However, this study focuses primarily on the offline scheduling ap-
proach.

The central research question is:

Which modeling approach can be employed for scheduling, and how can it be
integrated with no-show information to increase staff efficiency?

The proposed model will assign various outpatient types to appropriate physicians and
consultation rooms while accounting for key constraints such as staff availability, sched-
uled breaks, and patient no-show probabilities. By integrating predictive analytics
into the scheduling framework, the model aims to dynamically optimize appointment
allocations, mitigate no-shows, and enhance overall clinic efficiency. The developed
mathematical model will be applied at the outpatient clinic of the VU Medi-
cal Centre.

1.2 Host Organization

This research is conducted in collaboration with PersonalAize, an innovative IT com-
pany based in the Netherlands that focuses on improving healthcare quality and efficiency
through advanced machine learning and artificial intelligence solutions. PersonalAize col-
laborates closely with medical professionals, researchers, and healthcare institutions to
bridge the gap between technological potential and clinical application.

Insights of the Amstdam UMC, Location VUmc are used. Based on interviews, the
required constraints, care types and specialties are collected and used in this research.
Due to privacy restrictions, it is not possible to use real outpatient clinic data. Instead,
dummy data closely related to the hospital’s data are used.

1.3 Thesis Structure

This thesis is organized into seven chapters. First, all related literature is discussed, fol-
lowed by an exploration of the dataset used in this research. Chapters 4 and 5 describe
the methodology and scheduling algorithms, and the thesis concludes with the results,
discussion, and conclusion. For a more detailed structure, see:

6

Chapter 2: Related Work Reviews the literature on no-show prediction approaches,
mathematical scheduling models, and metaheuristic methods for scalable scheduling
optimization.

Chapter 3: Data Explores the dataset used in this study.

Chapter 4: Methodology Describes the feature engineering, feature selection, and
prediction model selection. Also presents the scheduling model (mathematical for-
mulation, objectives, constraints, and extensions) with the double book techniques.

Chapter 5: Scheduling Algorithms Details the Vertical Batch Algorithm, Horizon-
tal Batch Algorithm, their combined variant, and the Fix-and-Optimize approach,
explaining design choices and computational properties.

Chapter 6: Results Outlines predictions on no-show behavior of patients and the ex-
perimental results of different scheduling algorithms. In addition, different double
book strategies are analyzed.

Chapter 7: Conclusion summarize the results with additional comments.

Chapter 8: Discussion Discusses limitations, provides practical implications for hos-
pital scheduling, and suggests directions for future research.

7

Chapter 2

Related Work

This research is focused on two main topics: a no-show prediction model and a math-
ematical scheduling model. Therefore Section 2.1 describes literature on no-show pre-
diction models and Section 2.2 describes literature on the scheduling models. Since
meta-heuristics are widely applied in order to solve realistic problem instances close to
optimality, section 2.3 describes literature around meta heurstic techniques and Section
2.4 describes all methods used in this research and new contributions in the field.

2.1 No-show prediction model

This section starts with common features used in predicting no-show behavior. After
the features, models used in literature will be described and the performance including a
limitation. Ending this section with double booking strategies.

2.1.1 Features

Prediction models for no-show in healthcare typically employ a combination of admin-
istrative, scheduling, and electronic health record (EHR) data. For example, the Mayo
Clinic developed a model using ten years of data from a pediatrics clinic—including 7,988
distinct patients and over 104,000 visits—based on appointment features (visit type, prior
no-show count, appointment time), demographics (distance to clinic, race, number of
household), and insurance information (insurance holder, total insurance carriers) [16].
Prior no-show count is a strong predictor for no-shows. Another large-scale study in
a rural healthcare network analyzed over 1.2 million appointments and identified lead
time (greater than 60 days) and age (21–30 years) as strong predictors of no-shows [6].
Common predictive variables used in studies include [2, 3, 4, 6, 8, 13, 16, 19, 24] :

• Patient-level history: previous attendance.

• Appointment characteristics: lead time and time of day.

• Demographics: age, gender, insurance status, and socioeconomic factors.

In many studies, a patient’s history of missed appointments has proven to be the single
most influential variable in predicting future no-shows [2, 13, 19, 16, 24].

8

2.1.2 Modeling Approaches

Various statistical and machine learning techniques have been explored for predicting
no-shows, ranging from traditional regression models to more advanced deep learning
frameworks. Gradient Boosting Machines (GBM) are an extremely popular ma-
chine learning algorithm that have proven successful across many domains and is one
of the leading methods for winning Kaggle competitions [18]. In a study in corporation
with a Spanish clinic, GBM achieved an average error of 29.08% when predicting no-show
probabilities [24]. Huang et al used a logistic regression model to predict the no show
behaviour in a clinic in the city of Livonia (US), logistic regression achieved a training
error rate of 10.6% and a validation error of 13.9% when predicting no-show probabili-
ties [16]. More recent studies apply Neural Networks (NN). A study compared the
performance of a logistic regression with a NN, despite the high accuracy of the NN
predictions (72%), it is not possible to directly know the predictive features responsible
for the result [6]. New research explores hybrid and interpretable deep learning models.
For instance, a 2025 study introduced a Multi-Head Attention Soft Random For-
est (MHASRF) model for no-show prediction, achieving an accuracy above 93% and
providing interpretable insights into patient behavior patterns [3]. Another 2024 study
used symbolic regression and instance hardness thresholding to address data imbalance
and enhance model generalization [13]. Model performance varies widely depending on
dataset size and features. Most studies report accuracy values of around 0.7 [24, 13].
However, there is one important limitation:

• Data imbalance: No-shows are relatively rare (e.g., 6.65–19.03% of appoint-
ments), which can bias predictions unless resampling or reweighting methods are
applied [13].

2.1.3 Double booking

An application where no-show information are applied is the double booking strategy.
Lotfi and Torres [22] schedule patients in time slots, if the no show probability of the
patient is below a certain threshold extra patients will be scheduled in the same time
slot until the expected number of patients in the slot has reached 1. Double booking has
some positive effects. For example, a study by Huang and Hanauer [16] compared two
overbooking strategies, with and without the use of no-show predictions. The authors
reported a reduction of 27% in employees’ idle time hours, and 3% in total costs when
using double book strategy. At the same time it negatively influenced patient waiting
times as more patients are scheduled during the day.

9

2.2 Scheduling Models

Scheduling techniques and mathematical models for outpatient clinics have been exten-
sively studied. Ahmadi-Javid, Jalali, and Klassen [1] provide a comprehensive review of
mathematical scheduling models in outpatient appointment systems. In the literature
review, the techniques can be divided into two main modeling techniques: Mixed In-
teger Linear Programming (MILP) and Stochastic Programming. Beside the
model techniques, meta-heuristics are used in these model techniques that can produce
near-optimal solutions within practical computation times helping to reduce the problem
complexity.

2.2.1 Mixed Integer Linear Programming

Burdett et al. [9] present three MILP models of varying complexity that assign patients
to hospital resources that incorporate numerous real-world technical conditions.

• The first model assigns patients to hospital areas.

• The second assigns patients to specific rooms within those areas.

• The third integrates multiple healthcare resources such as physicians and nurses.

Each model determines either the maximum number of patients that can be treated within
a given period or the time required to serve a defined patient cohort. They introduce
Patient Care Plans (PCP), which define for each patient type the required activities, re-
sponsible units, duration, and necessary resources. These models account for outpatients,
inpatients, and emergency patients.

Similarly, Hooshangi-Tabrizi et al. [15] proposed an integer programming model that
maximizes the number of scheduled patients while considering patient preferences and
patient–specialist continuity. A secondary integer program was introduced to reschedule
existing appointments with constraints on allowable time shifts and the proportion of
appointments affected.

In another contribution, Schimmelpfeng, Helber, and Kasper [28] developed a hierar-
chical three-stage model that enables solving medium- to large-scale instances on
standard computers.

• Stage 1 schedules patients to specific days.

• Stage 2 assigns patients to time slots within each day.

• Stage 3 allocates resources and groups treatments.

This solving structure allows independent rescheduling of specific days if disruptions
occur, such as staff illness or patient cancellations.

10

2.2.2 Stochastic Programming Techniques

Stochastic programming is frequently used to capture uncertainty in appointment du-
rations, no-shows, or patient routing. Leeftink, Vliegen, and Hans [20] applied a two-
stage stochastic integer programming model for multidisciplinary outpatient clinics.
The first stage determines “here-and-now” decisions, while the second stage incorporates
scenario-based uncertainty related to patient routing. Since the number of scenarios grows
exponentially, they employ the Sample Average Approximation (SAA) method to reduce
computational burden. Shuang, Chen, and Cai [31] introduced a two-stage stochastic
model combining inter-day and intra-day scheduling. The first stage optimizes doctor
availability, while the second assigns patients to time slots. Using the SAA method, they
successfully balanced flexibility and computational efficiency.

Anvaryazdi, Venkatachalam, and Chinnam [5] proposed a two-stage stochastic mixed-
integer linear programming (SMILP) model integrated with simulation. Their approach
captures uncertainty in no-shows, waiting times, and fairness in provider assignments.
The results significantly outperformed standard scheduling practices focused solely on
waiting time minimization. Berg et al. [7] developed a similar two-stage stochastic MILP
to optimize sequencing decisions, minimizing waiting times while maximizing resource
utilization. Their results demonstrated that data-driven, flexible scheduling consistently
outperformed static, fixed schedules.

strategies have also been studied using stochastic models. Samorani and LaGanga
[27] showed that overbooking can reduce productivity losses due to no-shows, though
computational complexity increases rapidly with scenario count.

2.3 Meta-Heuristics

Although mathematical programming techniques offer optimality guarantee, they of-
ten require excessive computation time. To address this, many researchers use meta-
heuristics—high-level optimization strategies that guide problem-specific heuristics to-
ward near-optimal solutions. The common meta-heuristics used in hospital scheduling
algorithms are:

Adaptive Large Neighborhood Search (ALNS) and Fix-and-Optimize

Masson, Lehuédé, and Péton [23] adapted an Adaptive Large Neighborhood Search
(ALNS) algorithm for hospital scheduling. ALNS iteratively destroys and repairs large
portions of the current solution via multiple operators, typically augmented with a meta-
heuristic such as simulated annealing or a weight-based scheme to balance exploration
and exploitation. This class of methods is also often referred as Fix-and-Optimize
(F&O). The basic structure of these meta-heuristcs are:

1. Start from an initial feasible solution.

2. In each iteration, “fix” most decision variables to current values, the other decision
are free (the “neighborhood”).

11

3. Solve or improve the subproblem defined by the free variables.

4. Accept or reject the improvement (sometimes using simulated annealing or thresh-
old acceptance) and proceed to the next iteration.

F&O approaches have shown strong performance. For example, Wickert et al. [35] demon-
strated that an F&O-based matheuristic could generate near-optimal schedules for in-
stances with up to 150 physicians within 30 minutes, outperforming commercial MILP
solvers (e.g. Gurobi) especially on larger instances. In other domains, Turhan and Bil-
gen [32] applied a F&O and simulated annealing in a nurse rostering setting, showing
improved solution quality over other meta-heuristics. Liu, Wang, and Hao [21] propose a
two-stage optimization framework with model reduction and decomposition for admission
scheduling, reflecting the same spirit of F&O methods. Different warm start procedures
are compared and their influence on the solution quality. Some of these procedures re-
sulted in the optimal solution, indicating the importance of a good initial feasible solution.

Because F&O allows incremental improvement while managing complexity, it is widely
used in large-scale scheduling problems in hospital settings (e.g. resource allocation, staff
rostering, admission scheduling). Its flexibility to integrate with exact solvers and meta-
heuristics makes it a powerful tool in bridging the gap between pure heuristics and mono-
lithic MILP models.

Hybrid and Decomposition Methods.

Chouksey, Agrawal, and Tanksale [12] combined a Benders Decomposition Algo-
rithm (BDA) with several metaheuristics such as rolling horizon, parallel processing,
and a Fix-and-Optimize (F&O) hybridized with Simulated Annealing (SA). The rolling-
horizon variant delivered near-optimal solutions for small and medium instances and
consistently produced feasible solutions for large instances within practical time lim-
its; although the pure F&O approach was faster, the Benders + rolling-horizon scheme
achieved a smaller optimality gap. A practical enhancement frequently used alongside
these decomposition schemes is subgrouping (also called grouping or partitioning). Sub-
grouping partitions the full scheduling problem into smaller subproblems. For example,
grouping doctors with the same specialty or clustering patients based on patient charac-
teristic blocks. Then each subgroup is solved independently.

The literature shows several successful applications of subgrouping in scheduling. For
example, Schneider et al. scheduled surgery groups (clusters of surgery types with sim-
ilar characteristics) within OR blocks and demonstrated that grouping lowers downstream
bed-usage variability and reduces the risk of overtime while preserving high OR utilization
[29]. Wang et al. partitioned elective surgeries into more-predictable and less-predictable
cohorts and used simulation to show that such partitioning can reduce elective waiting
times and simplify operational decision-making, provided reassignment between groups
is allowed when needed [34].

The typical architecture of decomposition methods is two-level: (i) define subgroups
and solve each subgroup with a solver, and (ii) combining all indepedent solution in a
final global solution. The additional benefit of subgrouping is that it enables parallel
computing which can be useful in extreme large problem sizes.

12

Particle Swarm Optimization (PSO)

Chen et al. [11] applied an improved Particle Swarm Optimization (PSO) algorithm
to the hospital staff scheduling problem, where each particle represented a complete
monthly schedule. The algorithm incorporated a repair mechanism to restore feasibility
whenever hard constraints were violated, while soft constraint violations were penalized in
the fitness evaluation to guide the search toward high-quality solutions. By dynamically
adjusting the weight and learning coefficients, the approach balanced global exploration
with local exploitation. The results showed that PSO effectively improved scheduling
efficiency and reduced manual errors compared to traditional rule-based methods. Wu,
Shen, and Zhang [36] applied a bi-layer discrete Particle Swarm Optimization (PSO) algo-
rithm to optimize operating room scheduling. The method jointly planned and sequenced
surgeries with objectives of maximizing patient satisfaction and minimizing overtime and
resource costs, using specialized repair and crossover operators to maintain feasibility and
improve efficiency. Although the PSO effectiveness, it is not widely applied in hospital
scheduling settings.

2.4 Applied literature and novel contributions

Based on the literature, a MILP model will be developed that integrates key operational
constraints derived from the outpatient scheduling process at the VU Medical Centre. A
MILP models have a great performance and are less complicated than stochastic program-
ming models. Because the real-life problem involves large instances with many patients,
physicians, and rooms, solving the full MILP to optimality within a reasonable time
is computationally infeasible. Therefore, a set of meta-heuristic techniques will be
applied to obtain high-quality, near-optimal solutions in a tractable time frame. These
methods from the literature will be compared to evaluate their respective advantages and
limitations in this specific hospital scheduling context.

• Rolling Horizon. Schedulers at the VUmc typically plan appointments over a six-
week horizon. This long planning period substantially increases problem complexity.
The rolling horizon approach mitigates this by dividing the overall time horizon into
smaller, subperiods that are solved sequentially.

• Subgrouping. The scheduling model must assign a large number of patients to
multiple doctors with varying specialties, which significantly increases the problem
scale. To address this, a subgrouping strategy will be applied, where patients or
doctors are partitioned into smaller, more homogeneous subsets. Each subgroup is
then scheduled independently, either sequentially or in parallel, to improve compu-
tation time. The results from all subgroups are later merged into a global schedule.

• Fix-and-Optimize (F&O). The Fix-and-Optimize approach is a well-established
meta-heuristic widely used in hospital and workforce scheduling. Including F&O in
this study provides a benchmark for comparison with the other meta-heuristics.

In addition to evaluating each meta-heuristic individually, this research will also develop
and test a hybrid meta-heuristic that combines the rolling horizon and subgrouping
strategy. This hybrid method has not yet been extensively studied in the literature,
particularly within outpatient clinic scheduling. By integrating temporal decomposition

13

(rolling horizon) with structural decomposition (subgrouping), the hybrid algorithm aims
to exploit the strengths of both techniques: maintaining manageable time windows while
solving multiple smaller subproblems concurrently. The approach is expected to yield
scalable performance, improved computational efficiency, and robust schedule quality
across large, realistic hospital instances.

The best performing meta-heuristic will be used and the double book strategy of Lotfi
et al will be implemented. This strategy will be compared with the well known Bailey-
Welch booking strategy and a booking strategy which will minimize the cost using a
Monte Carlo simulations.

14

Chapter 3

Data

The dataset used in this research is open-source and originates from a Kaggle compe-
tition predicting patient no-shows [17]. It contains 110,527 medical appointments and
14 associated variables (features). The target variable is the show up variable. The re-
maining variables can be grouped into two categories: time-related variables, such as
the appointment creation and appointment dates, and patient characteristics, such as
gender, age, and scholarship status. An overview of all variables is provided in Table 3.1,
and sample rows of the dataset are shown in Table 3.2.

Feature Description

0 Patient ID Unique identification number for each patient.
1 Appointment ID Unique identification number for each appointment.
2 Gender Gender of the patient ({Male, Female}).
3 Scheduled Day Date on which the appointment was scheduled.
4 Appointment Day Actual date of the appointment.
5 Age Age of the patient in years.
6 Neighbourhood Neighbourhood in which the patient resides.
7 Scholarship Whether the patient is enrolled in a scholarship program

({T, F}).
8 Hypertension Whether the patient has hypertension ({T, F}).
9 Diabetes Whether the patient has diabetes ({T, F}).
10 Alcoholism Whether the patient has alcoholism ({T, F}).
11 Handicap Whether the patient has a handicap ({T, F}).
12 SMS Received Whether the patient received an SMS reminder ({T,

F}).
13 Showed Up Whether the patient showed up ({T, F}).
14 Date Difference Difference (in days) between the scheduled and appoint-

ment dates.

Table 3.1: Overview of dataset features.

Patient ID AppointmentID Gender ScheduledDay AppointmentDay Age Neighbourhood Scholarship Hypertension ... SMS Received Showed Up DateDiff

1 5642903 F 2016-04-29 2016-04-29 62 JARDIM DA PENHA F T ... F T 0
1 5642503 M 2016-04-29 2016-04-29 56 JARDIM DA PENHA F F ... F T 0
2 5642549 F 2016-04-29 2016-04-29 62 MATA DA PRAIA F F ... F T 0

Table 3.2: Sample records from the medical appointment dataset (partial view).

15

The target variable represents whether a patient shows up for their appointment. Fig-
ure 3.1 presents the distribution of this variable. Approximately 21% of appointments
result in a no-show. At the VUmc outpatient clinic, the no-show rate is around 4% and
15% when cancellations are included. It is unclear whether cancellations are counted as
no-shows in this dataset.

Show No Show
Status

0

20000

40000

60000

80000

N
um

be
r o

f A
pp

oi
nt

m
en

ts

85,307.0

21,680.0

Appointment Attendance Status

Figure 3.1: Show-up distribution of appointments.

Figure 3.2 presents the age distribution of patients, ranging from 1 to 115 years. The
distribution remains relatively stable until around age 58, after which a gradual decline
is observed.

0 20 40 60 80 100 120
Age

0

200

400

600

800

1000

1200

1400

C
ou

nt

Histogram of Patient Age

Figure 3.2: Distribution of patient age (in years).

16

Other patient-related features are represented as Boolean variables. An overview of these
values are shown in Figure 3.3. All features, except SMS Received, exhibit a strong
imbalance, with fewer than 20% of true values compared to false values.

Sch
ola

rsh
ip

Hyp
ert

en
sio

n

Diab
ete

s

Alco
ho

lism

Han
dic

ap

SMS_re
ce

ive
d

Feature

0

20000

40000

60000

80000

100000

C
ou

nt

96,178

85,186

99,044
103,627 104,747

72,402

10,809

21,801

7,943
3,360 2,240

34,585

Distribution of Boolean Features

Value
False
True

Figure 3.3: Overview of Boolean patient features.

The difference in days between the scheduled date and the appointment date are shown
in Figure 3.4. It can be seen that a lot of appointments are scheduled on the same day
or a couple days later while a small proportion of the appointment is scheduled 25 days
later.

0 25 50 75 100 125 150 175
Date Difference (days)

0

10000

20000

30000

40000

50000

60000

70000

C
ou

nt
 /

D
en

si
ty

Distribution of Appointment Date Differences

0 25 50 75 100 125 150 175
Date Difference (days)

Boxplot Highlighting Outliers

Figure 3.4: Difference in days between the scheduled and appointment dates.

17

The number of times a patient has visited the outpatient clinic, are shown in 3.5. Around
28.4% of patients visit the clinic more than once. These patients have a prior attendance
history that can be compared to their current show-up behavior. For example, if a patient
has five visits, the first four can be used to calculate their average historical show-up rate,
which can then be compared to the fifth (most recent) appointment. Figure 3.6 illustrates
this comparison.

1 2 3 4 5 6 7 8 9 10
Number of Unique Visits

0

5000

10000

15000

20000

25000

30000

35000

40000

N
um

be
r o

f P
at

ie
nt

s

Distribution of Unique Visits

Figure 3.5: Distribution of the number of unique outpatient clinic visits per patient.

Patients with a previous show-up rate close to 1 are more likely to attend future ap-
pointments. However, for patients with a historical show-up rate between 0 and 0.9, this
relationship weakens, and their likelihood of showing up becomes slightly lower than that
of missing the appointment.

0.0 0.2 0.4 0.6 0.8 1.0
Average Previous Show Rate

0

1

2

3

4

5

6

D
en

si
ty

Density of AvgShowRate by ShowedUp
Outcome

No Show
Show

Figure 3.6: Comparison of previous and current show-up behavior.

18

To investigate the influence of these features on the no-show behaviour of the patients
the correlation coefficient is calculated for these variables with the variable Showed Up.
See Table 3.3.

Feature Correlation with Showed up

Age 0.07
Hypertesion 0.04
Diabetes 0.02
Handicap 0.01
Gender 0.00
Alcoholism 0.00
Scholarship -0.03
SMS received -0.13
Date difference -0.19

Table 3.3: Correlation coeffi-
cients

As it can be seen in Table 3.3, the
features have no high correlation with
the target variable Showed up. The
only features that have a absolute
correlation of larger than 0.05 are Age,
SMS received and Date difference.
These features will be further explored
for interesting findings.

First, the feature Date difference, which is the difference in days between scheduled day
and appointment day, is compared with the no-show percentage in Figure 3.7. The values
are grouped into bins, where the bar height indicates the no-show percentage and the
number in each bin the number of appointments. Appointments in which this day
difference is equal to zero are left out since these appointments have a show-up
rate of 0.953, see Figure 3.8.

(0-
20

]

(20
-40

]

(40
-60

]

(60
-80

]

(80
-10

0]

(10
0-1

20
]

(12
0-1

40
]

(14
0-1

60
]

Date Difference Bin

0

10

20

30

40

50

60

70

Sh
ow

-U
p

(%
)

73.4%

48733

66.6%

15824

65.9%

3155

70.6%

1670

75.2%

311

76.0%

50

65.0%

20

45.0%

20

Percentage of Patients Show-Up by scheduled and appointment date difference

Figure 3.7: No-show compared for varying difference scheduled date and appointment
date

19

0 1 2 3 4 5 6 7 8 9 10 11
Difference in days

0

20

40

60

80

100
Sh

ow
-U

p
(%

)
95.3%

37154

78.6%

5028

76.1%

6636

76.4%

2639

76.8%

5212

73.5%

3196

75.3%

3950

73.4%

4785

71.1%

2248

72.6%

1563

68.2%

1360

67.9%

955

Percentage of Patients Show-Up by scheduled and appointment date difference

Figure 3.8: No-show compared to difference scheduled date and appointment date

Figure 3.8 displays the small Date difference, if the appointment day and the scheduled
day are the same, then there is a high chance that the patient will show up. Otherwise,
there is a chance higher than 20% that a patient don’t show up.

When comparing the no-show percentage with patient age, a lower show-up rate is ob-
served among younger individuals (approximately 5–30 years old) compared to older
patients (Figure 3.9). After about age 24, the show-up rate increases steadily until
roughly 60 years of age. As shown in Figure 3.2, the number of available records declines
sharply beyond this point, and results for patients over 90 years of age should therefore
be interpreted with caution.

0-4 5-9
10

-14
15

-19
20

-24
25

-29
30

-34
35

-39
40

-44
45

-49
50

-54
55

-59
60

-64
65

-69
70

-74
75

-79
80

-84
85

-89
90

-94
95

-99

Age Bin

0

10

20

30

40

50

60

70

80

Sh
ow

-U
p

(%
)

81.7%
77.6%

75.1% 74.6% 74.8% 75.8% 77.5% 79.0% 78.0%
81.3% 82.0% 83.0% 85.1% 84.7% 85.1% 84.4% 84.1% 84.4%

79.3%
83.1%

Percentage of Show-Up Patients by Age Bin

Figure 3.9: Show-up percentage by age group

20

To investigate the correlation between Showed up and SMS received, see Figure 3.10a.
The figure displays the negative correlation with show up rate. This negative correlation
means that patients receiving an SMS (a reminder about their appointment) are less
likely to show up than patients without a reminder. This unnatural conclusion comes
from the fact that patients that have a date difference larger than 1 day will receive an
SMS while patients with a date difference of 0 or 1 day will not receive an SMS, see Figure
3.10b. It is know that the highest show up rate is among patients with a date difference
of 0 or 1 day, see Figure 3.8. If the correlation between Showed up and SMS received is
investigated for patients only with a date difference larger than 1 day, then patients with
an SMS reminder are more likely to show up than patients without an SMS reminder,
see Figure 3.11.

False True
Received SMS Reminder

0
10
20
30
40
50
60
70
80
90

100

Sh
ow

-U
p

(%
)

83.3%

72.3%

Show-Up Percentage by SMS Received

(a) Show up distribution compared by SMS
received

0 50 100 150
Date difference

0

10000

20000

30000

C
ou

nt

Distribution of date difference by SMS received

SMS=False
SMS=True

(b) SMS received compared to date difference

Figure 3.10: Comparison SMS received

False True
Received SMS Reminder

0
10
20
30
40
50
60
70
80
90

100

Sh
ow

-U
p

(%
)

69.3% 72.3%

Show-Up Percentage by SMS Received

Figure 3.11: Show up distribution compared by SMS received excluding appointments
with Day difference of 0 and 1

21

Chapter 4

Methodology

In Section 4.1, we describe the process of feature engineering and selection, as well as
the predictive model developed to estimate patient no-shows. Section 4.2 details the
methodology used for the scheduling algorithms and Section 4.3 provides the mechanics
of different double book strategies.

4.1 No-show prediction model

4.1.1 Feature Engineering

As displayed in Table 3.3. the existing features have a low correlation with the target
variable. Therefore, feature engineering is applied to enhance the predictive power of the
data. No data cleaning was needed, as the dataset is complete and all values are correctly
labeled as integers, strings, or datetime objects. Furthermore, based on the data explo-
ration, no outlier detection or removal was necessary. With the exception of the feature
Date.diff, there were no indications of potential outliers. The feature Date.diff contains
some relatively large values, but none are extreme or isolated from the rest of the data.

Prior to feature engineering, the dataset was split into multiple subsets, each containing
all appointments of a unique patient. Consequently, the number of subsets corresponds
to the number of unique patients in the dataset. The following features were created:

• Avg prev show rate: The average show-up rate of a patient based on their pre-
vious completed appointments. The most recent appointment is excluded from this
calculation and labeled as the current appointment, while all other appointments
are labeled as historical appointments and used to calculate the average previous
show-up rate. If there are no previous appointments than this feature is set equal
to 0.5 to indicate a random show up rate.

• Num visits: The total number of times a patient has visited the outpatient clinic.

• Day of week: The day of the week for the appointment, labeled as “Monday”,
“Tuesday”, . . . , “Sunday”.

Once these features were created for each subset, only the data entries labeled as current
appointment were retained for the final dataset. This resulting dataset contains all current
appointments of each patient. The number of entries in this dataset is therefore equal to
the number of unique patients in the original dataset.

22

The dataset exhibits a substantial class imbalance, with only 21% of appointments labeled
as no-shows. The final dataset, containing the most recent appointments for all patients,
includes approximately 60,000 records. Given the dataset’s size, undersampling without
replacement was applied to the majority class (show) to achieve a more balanced ratio of
65% show to 35% no-show. After this adjustment, the resulting dataset comprises 34,108
entries.

4.1.2 Feature Selection

After feature engineering, the coefficient of correlation is calculated again to evaluate
their correlation with the target variable. Among the features, only Avg prev show rate
exhibited a notable correlation with the target, with a correlation coefficient of 0.54.
Based on the correlation coefficients and graphical analyses, the following features were
selected for predicting the patient show-up rate:

Feature Name Type Description
Age Int Age of the patient in years
Hypertension Boolean Indicates whether the patient has hyperten-

sion (Yes = True)
SMS received Boolean Indicates whether the patient received an

SMS reminder (Yes = True)
Date.diff Int Difference in days between the scheduled

date and the appointment date
Avg prev show rate Float Average show-up rate based on previous ap-

pointments (0.5 if no previous appointments
exist)

Table 4.1: Overview of selected features for predicting the target variable Showed up

4.1.3 Model Selection

For the model selection, a python package is used for quick evaluation. The package con-
tains all classifier models and, if input data is provided, compares the prediction perfor-
mances of these models based on minimal tuning. The package is called LazyClassifier.
Based on the preliminary results, two best performing models were selected for further
analysis: LightGBM and Nearest Centroid.

LightGBM

LightGBM is a gradient boosting framework that constructs an ensemble of decision trees
in a sequential manner. Unlike traditional boosting methods, LightGBM grows trees leaf-
wise rather than level-wise, allowing it to reduce loss more efficiently and often achieve
better predictive performance. It is well suited for large datasets, can naturally handle
missing values, and effectively captures non-linear relationships between features. In this
work, LightGBM is used to model complex patterns in patient behavior that contribute
to no-shows.

The mechanics of LightGBM rely on two core principles. First, gradient boosting iter-
atively improves the model by minimizing a differentiable loss function, enabling gradual

23

refinement of predictive accuracy. Second, LightGBM employs leaf-wise tree growth,
expanding the leaf that yields the greatest reduction in loss, which accelerates conver-
gence and enhances model precision. LightGBM provides feature importance estimates,
offering insight into which patient or appointment characteristics most strongly influence
no-show predictions.

Nearest Centroid

The Nearest Centroid classifier is a distance-based algorithm that assigns each sample
to the class whose centroid lies closest in the feature space. It is computationally simple
and highly interpretable, making it a useful baseline model. Although it cannot capture
complex non-linear interactions in the same way as LightGBM, it offers a clear reference
point for understanding the underlying data structure and for assessing the added value
of more sophisticated models.

The mechanics of the Nearest Centroid classifier are straightforward. First, it computes a
centroid for each class by taking the mean feature vector of all samples belonging to that
class. Next, during prediction, it measures the distance—typically Euclidean—between
a new sample and each centroid, assigning the sample to the class with the smallest dis-
tance. The method offers strong interpretability, as feature contributions can be examined
by comparing the relative distances to the class centroids.

4.1.4 Model Training and testing

For training and testing, the dataset with 34.108 data entries is used with the target
variable and features described in Table 4.1. In this dataset the class imbalance is cor-
rected. A 70/30 train-test split was applied, ensuring that both the training and test sets
maintained a balanced class distribution.

For LightGBM, a gradient boosting decision tree model, hyperparameter tuning was
performed using a grid search with 3-fold cross-validation on a subset of 5,000 samples.
Key parameters such as num leaves, learning rate, n estimators, subsample, and
colsample bytree were optimized to maximize accuracy. The best model was then eval-
uated on the test set using accuracy. See Table 4.2 for the parameter grid.

The best model achieved an accuracy of 0.7 with the following parameters (bold):

Parameter Values
num leaves 20, 30, 40
max depth -1 (no limit)
learning rate 0.05, 0.10, 0.15
n estimators 50, 100, 150
subsample 0.6, 0.7, 0.8
colsample bytree 0.6, 0.7, 0.8

Table 4.2: Hyperparameter Grid for LGBMClassifier

24

For the Nearest Centroid classifier, a distance-based model, hyperparameter tuning
was carried out using a grid search with 3-fold cross-validation on a subset of 5,000
samples. The search space included multiple distance metrics (euclidean, manhattan,

chebyshev, minkowski) as well as a range of shrinkage thresholds. Shrinkage thresh-
olds adjust the class centroids by pulling them toward the global mean and setting small
class–mean differences to zero, thereby reducing the influence of noisy or weakly infor-
mative features. The best-performing configuration was subsequently evaluated on the
test set using accuracy as the primary performance metric.

Parameter Values

metric euclidean, manhattan, chebyshev, minkowski

shrink threshold None, 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05,
0.07, 0.1, 0.15, 0.2, 0.3, 0.5, 0.7, 1.0

Table 4.3: Parameter grid for Nearest Centroid hyperparameter tuning.

Eventually the model with the distance metric euclidean and shrink threshold of 0.005
is the best performing model with an accuracy of 0.66. Since the tuned lightGBM
model is the best performing model, this model will be used in predicting the no-show
behaviour of patients in the scheduling model.

4.1.5 Patient Selection

The final LightGBM model will be trained on the cleaned dataset, which contains 34,108
entries, using the features described in Section 4.1.2. However, not all entries are used
for training: 5,000 patient records are set aside for testing the scheduling algorithm and
using their no-show probability for analyzing the performance of different double book
strategies. The remaining 29,108 entries are randomly sampled without replacement to
form to train the prediction model. Once trained, the LightGBM model can predict the
no-show probabilities for the 5,000 reserved patients, providing the basis for evaluating
how different scheduling or double-booking strategies may affect appointment attendance.

25

4.2 Scheduling model description

4.2.1 Introduction notation

The input of the model consists of different sets such as time, demand and resources. For
time we have a set of slots T in which H is the last slot in the set (make span). The
demand and resources are discussed in more details below.

Demand

For the demand the model needs a set of patients P and set of care types C, in which
each care type c ∈ C has a care duration lc ∈ L (set of care durations) and a recovery
time bc ∈ B (set of care recovery times). Every patient p ∈ P has a list of care types for
which the patient needs help (Cp) consisting of just one or more care types, in the correct
order of scheduling. Therefore the first care type in Cp needs to be scheduled before the
second care type in the Cp, the second care type in Cp before the third care type in Cp,
etc. An example input with 3 patients and 3 care types is given below:

T = {1, 2, 3, ..., H}
P = {P1, P2, P3}

C = {Consult, MRI, Blood test}
L = {Consult = 1 slot, MRI = 2 slots, Blood test = 1 slot}
B = {Consult = 0 slots, MRI = 1 slots, Blood test = 0 slots}

C1 = [Consult]
C2 = [Blood test, Consult]

C3 = [Blood test, MRI, Consult]

The care sequence of patient P3 is C3. In this example, first a Blood test needs to be
scheduled with a duration of 1 slot and no recovery time, then an MRI must be scheduled
after the time slot of the Blood test with a duration of 2 slots and recovery time of 1 slot
and the last care type Consult must be scheduled after the MRI with a care duration of
1 slot and no recovery time. See Table 4.4 for a simplified schedule for P3.

slot 1 slot 2 slot 3 slot 4 slot 5

Blood test MRI MRI - (MRI
recovery)

Consult

Table 4.4: A simplified schedule for P3

26

Resources

For the resources the model needs a set of doctors D and a set of rooms R. Each
doctor is specialized in certain care types, meaning the doctor can provide help for these
care types. The same holds for a room, a room has certain capabilities, meaning that
a room may facility certain care types. Additionally, a doctor has a certain shift s ∈
S = {morning, afternoon, full day}. This specifies which part of the day the doctor is
available.

D = {D1 (Clinician), D2 (Echografist)}
R = {R1 (MRI Room), R2 (Doctor Office)}

A Clinician is specialized in a Consult and a Blood test, which can be facilitated in Doctor
Office. An Echografist is specialized in an MRI, which can be facilitated in an MRI Room.

S = {morning (slot 1-3), afternoon (slot 4-6), full day (slot 1-6)}
D1 is available a full day and D2 is available in the morning.

A patient needs to be scheduled at the correct doctor and room, making the scheduling
problem more complex. The simplified schedule of P3 in Table 4.4 may look like the
schedule in Table 4.5 if doctors and rooms are incorporated.

Doctor / Room slot 1 slot 2 slot 3 slot 4 slot 5

D1-R2 Blood test Consult

D2-R1 MRI MRI - (unavail-
able)

- (unavail-
able)

Table 4.5: A schedule for P3

The goal of the model is to schedule all patients while minimizing the make span (H),
the number of slots needed for scheduling all patients. This will result in an optimal
schedule, such as the schedule in Table 4.6 in which the min make span is equal to 5
slots.

Doctor / Room slot 1 slot 2 slot 3 slot 4 slot 5

D1-R2 Blood test
(P3)

Consult
(P1)

Blood test
(P2)

Consult
(P2)

Consult
(P3)

D2-R1 MRI (P3) MRI (P3) X X

Table 4.6: Optimal schedule for P1, P2 and P3

27

4.2.2 Mathematical formulation: basic model

Sets, parameters and decision variables

Sets
Patients and care
P Set of patients.
C Set of care types.
Cp Set of ordered list of care tasks required by patient p ∈ P .
L Set of care durations.
B Set of recovery times (break times).

Resources
S Set of shifts, S ={morning, afternoon, full day}.
D Set of doctors.
R Set of rooms.

Wd ⊂ C Set of specialities of doctor d ∈ D.
Fr ⊂ C Set of capabilities of room r ∈ R.

Time
T = {t1, t2, . . . , tH−1} Discrete time-slots, H is scheduling horizon.
Parameters
K Number of slots per day, K ∈ Z+. In the example of ?? K = 6.
M The first number of slots of the day that are morning slots, M ∈ Z+

and M < K. In the example of 4.2.1 M = 3. Meaning that the
first 3 slots of the day are morning slots. If K = 12, the morning
slots are {1,2,3,7,8,9}

Derived parameter
ad,t = 1 if doctor d ∈ D is available in time slot t ∈ T , else 0. The

matrix A in which ad,t is an element of depends on the parameters
K and M .

Decision Variables
xp,c,d,r,t ∈ {0, 1} = 1 if patient p starts care c ∈ Cp with doctor d ∈ D in room r ∈ R

at time t ∈ T , else 0.
yp,c,d,r,t′ ∈ {0, 1} = 1 if patient p occupies slot t′ for care c with doctor d in room r,

else 0.
sp,c ∈ Z≥0 Start time of patient p with care task c.

H ∈ Z≥0 Makespan (time horizon).

Table 4.7: Sets, parameters, and decision variables

28

Objective

min H

Minimize the make span that is the total number of slots needed to schedule all patients.

Constraints∑
d∈D, r∈R, t∈T

ad,t · xp,c,d,r,t = 1, ∀p ∈ P, ∀c ∈ Cp (1)

1) Each patient p ∈ P with care task c ∈ Cp in the list of care sequence Cp is assigned to
a doctor d ∈ D and a room r ∈ R for exactly one time slot t ∈ T if doctor d is available
at t.

sp,c =
∑

d∈D, r∈R, t∈T

t · xp,c,d,r,t, ∀p ∈ P, ∀c ∈ Cp (2)

2) For a specific patient p ∈ P with care task c ∈ Cp, which is assigned to a certain doctor
d ∈ D and room r ∈ R, the starting time sp,c equals the time slot t where xp,c,d,r,t = 1.

yp,c,d,r,t′ ≥ xp,c,d,r,t, ∀p ∈ P, ∀c ∈ C, ∀d ∈ D, ∀r ∈ R,

∀t, ∀t′ ∈ {t, . . . , t+ Lc − 1} (3)

3) If a specific patient p ∈ P with care task c ∈ Cp is assigned to a certain doctor d ∈ D
and room r ∈ R, then yp,c,d,r,t′ = 1 not only for the assigned slot t but also for the
following Lc − 1 slots.∑

p∈P, c∈Cp, r∈R

yp,c,d,r,t′ ≤ 1, ∀d ∈ D, ∀t′ ∈ T (4)

4) A doctor d ∈ D can handle at most one patient per time slot t′ ∈ T .∑
p∈P, c∈Cp, d∈D

yp,c,d,r,t′ ≤ 1, ∀r ∈ R, ∀t′ ∈ T (5)

5) Each room r ∈ R can accommodate at most one patient at any time slot t′ ∈ T .

sp,ci+1
≥ sp,ci + Lci +Bci , ∀p ∈ P, ∀ consecutive tasks ci, ci+1 ∈ Cp x CP (6)

6) For a patient p ∈ P with a care sequence larger than 1 (len(Cp) > 1), the next care
task ci+1 starts only after the previous one ci finishes and the required recovery (break)
time in slots Bci has passed.

H ≥ sp,c + Lc, ∀p ∈ P, ∀c ∈ Cp (7)

7) The make span H is the planning horizon and must be greater than or equal to the
finish time of every patient p and care task c ∈ Cp with care duration (length) Lc.

(4.1)

29

Doctor availability matrix

Based on the constants K (the number of slots per day) and M (the number of slots of
the day that are morning slots), the doctor availability matrix ad,t is created. Moreover,
if a day consist of 20 time slots (K = 20) and a morning consist of 8 time slots (M = 8)
then the afternoon consist of 12 time slots (20-8=12). If a doctor is available on Monday
morning (6-10-2025) and Wednesday morning (8-10-2025) and the scheduling starting
horizon is Monday moring (6-10-2025) then the doctor is available in the following slots:

ad,t = 1 for t ∈ {1, 2, ..., 8, 41, 42, ..., 48}

The constants also give context to the results of the model, if the minimum make span
is 60 while K = 20 it is known that the model has found a min make span of 3 days and
the doctor assignments can be translated to specific time slots.

The model described in Section 4.2.2 is a complex model which can be applied in practice
but for most hospitals there are additional constraints such as max appointments per
shift type, limitation on new patients or not only have a minimal recovery time but also
a maximum care help date for necessary care needed for a specific time or discussing
results. In order to integrate these constraints the model is extended with the following
sets and constraints.

4.2.3 Mathematical formulation: extended model

As already known, the scheduling time window consists of T = {1, 2, 3, . . . , H}. Each
day consists of K slots, where the first M slots correspond to the morning shift and the
remaining K −M slots to the afternoon shift. The full-day shift covers all K slots of the
day. If, for example, a doctor works during a morning shift, the doctor is only available
in the first M slots of that day. A full-day doctor, however, is available throughout all
K slots.
LetW = {1, 2, . . . ,Wmax} represent the set of days in the planning horizon, whereWmax =
⌈|T |/K⌉. Each time slot t ∈ T belongs to a specific day w ∈ W and shift s ∈ S. The
corresponding subset of time slots belonging to day w and shift s is denoted by Tw,s.
Formally:

Tw,s = { t ∈ T | day(t) = w, t ∈ T s },

where

day(t) =
⌈ t

K

⌉
, slot in day(t) =

(
(t− 1) mod K

)
+ 1.

This decomposition allows the model to apply constraints on a per-shift, per-day basis
and with:

T s =


{1, 2, . . . ,M, K,K + 1, . . . , K +M, 2K, 2K+, . . . }, s = mornimg,

T/Tmorning, s = afternoon,

T, s = full.

30

Example of the extended setup Consider again a small example:

T = {1, 2, . . . , 12} K = 6 M = 3

⇒ 2 days (W = {1, 2}), each with 6 slots.

Tmorning = {1, 2, 3, 7, 8, 9}, T afternoon = {4, 5, 6, 10, 11, 12}, T full = {1, . . . , 12}.

Then, for day w = 1:

T1,morning = {1, 2, 3}, T1,afternoon = {4, 5, 6}, T1,full = {1, . . . , 6}.

and for day w = 2:

T2,morning = {7, 8, 9}, T2,afternoon = {10, 11, 12}, T2,full = {7, . . . , 12}.

Additionally, patients can be classified as regular patients and new patients. Regular
patients are patients that already have visited the hospital clinic. New patients are
patients that visited the hospital clinic for the first time. These subsets, Tw,s, will be used
in the new constraints to maximize the number of new patients per subset or maximize
the number of new patients per doctor. It is possible that a regular or new patient needs
to see the same doctor for their entire care sequence Cp, if this is not the case the patient
can be scheduled at an other doctor for their follow up care.

Example schedule for the extended model

This example illustrates how patients, doctors, rooms, and shifts are assigned according to
the extended model constraints. The same information is used of Example 4.2.1 extended
with:

• New patients: P new = {P1, P2, P3}.

• Same-doctor patients: P same = {P2}.

• Maximum appointments for shift s ∈ S and care type c ∈ C: Ac,s = 2.

• Maximum number of new patients per doctor per shift: ND1 = 2, ND2 = 1.

Doctor / Room S1 S2 S3 S4 S5 S6 S7 S8 S9

D1-R2 Blood
test
(P3)

Consult
(P1)

- - - - Blood
test
(P2)

Consult
(P2)

Consult
(P3)

D2-R1 - MRI
(P3)

MRI
(P3)

x x x - - -

Table 4.8: Optimal schedule for P1, P2 and P3 based on extended model

31

Explanation of Table 4.8:

• Doctor availability is respected: D1 is available in slot t ∈ {1, 2, ..., 9} and D2 in
slot t ∈ {1, 2, 3, 7, 8, 9}.

• Maximum appointments per shift (Ac,s) are respected.

• Maximum new patients per doctor per shift (Nd) are respected.

• P2, being a same-doctor patient (P same), is assigned entirely to D1.

Sets, derived parameters and constants

Sets
P new ⊆ P Set of new patients.

P same ⊆ P Set of patients that require the same doctor for their entire care
sequence.

W = {1, . . . ,Wmax} Set of calendar days, where Wmax = ⌈|T |/K⌉.
Tw,s Set of time slots belonging to day w ∈ W and shift s ∈ S.

Derived Parameter
Mc,d

=

{
1, if care type c can be performed by doctor d,

0, otherwise.

This matrix ensures that each care type is only assigned to com-
patible doctors, based on their specializations.

Constants
Ac,s Maximum number of appointments of care type c ∈ C allowed per

shift type s ∈ S.
Nd Maximum number of new patient appointments allowed for doctor

d ∈ D per shift.

Table 4.9: Extended sets, derived parameter and constants for the Extended Model

Extended constraints

∑
p∈P

∑
d∈D

∑
r∈R

∑
t∈Tw,s

xp,c,d,r,t ≤ Ac,s, ∀c ∈ C, ∀s ∈ S, ∀w ∈ W (9)

9) For each day w and shift s, the total number of appointments of care type c within
the slots of (w, s) cannot exceed Ac,s.∑
p∈Pnew

∑
c∈C

∑
r∈R

∑
t∈Tw,s

xp,c,d,r,t ≤ Nd, ∀d ∈ D, ∀s ∈ S, ∀w ∈ W (10)

32

10) For each doctor d, day w, and shift s, the number of new patients assigned during
that shift cannot exceed Nd.∑
r,t

xp,c1,d,r,t =
∑
r′,t′

xp,c2,d,r′,t′ , ∀p ∈ P same, ∀d ∈ D, ∀ consecutive tasks ci, ci+1 ∈ Cp x CP

(12)

12) If a patient p ∈ P same requires the same doctor for all consecutive tasks c1, c2 ∈ Cp

must be assigned to the same doctor d ∈ D.

(4.2)

4.3 Double Book strategies

To further improve physician utilization and reduce idle time caused by patient no-shows,
this research implements several double booking strategies. Each strategy differs in
the way appointments are scheduled to balance the expected number of patients, physi-
cian availability, and potential patient waiting times. There are three double booking
strategies.

(1) Double booking, standard. In the standard double-booking strategy, additional
patients are scheduled so that the expected number of patients showing up is close
to 1 for each appointment for a specific doctor.

Let vi ∈ [0, 1] denote the predicted show-up probability for patient i. The expected
number of patients who will appear in slot t is:

E[Vt] =
∑
i∈Pt

vi,

where Pt represents the set of patients assigned to slot t. The goal of double booking
is to get E[Vt] ≈ 1−. Most patients have high show-up probabilities, typically greater
than 0.6. Therefore, the double-booking strategy does not consider each time slot
independently but it evaluates the cumulative expected number of patients
over a specific half-day. Starting with the first appointment and continuing with the
last appointment for a specific doctor in this specific half-day. Each appointment,
the cumulative expected number of patients is divided by the current appointment
number. If this outcome is still less than 1 with the additional patient included,
double booking is possible.

For illustration, consider the schedule in Table 4.8, generated using the extended
model. The show-up probabilities for the patients are:

v1 = 0.7, v2 = 0.75, v3 = 0.65.

33

The schedule is divided into four half-days: T1,morning, T1,afternoon, T2,morning, T2,afternoon.
As mentioned, for each half-day the cumulative expected number of patients is eval-
uated, starting with T1,morning. with the following appointments for doctor D1:

S1: Blood test (P3, show-up probability 0.65)

S2: Consult (P1, show-up probability 0.7)

– At the first appointment (S1), the expected number of patients showing
up is 0.65.

– After the second appointment (S2), the cumulative expected number of
patients is 0.65 + 0.7 = 1.35.

Now, if a fourth patient P4 (show-up probability v4 = 0.6) requires a Blood test,
this patient can be double booked at the second appointment because:

cumulative expected number of patients
number of appointments

= 0.65+0.7+0.6
2

≤ 1

To generalize this idea, the following set will be added:

– Ad,T = set of patients scheduled with doctor d in half-day T

For a given doctor d and half-day T = Tw,s, the expected cumulative number of
patients is:

E[Vd,T] =
∑

i∈Ad,T

vi.

If there are |Ad,T | patients scheduled in that half-day, the average expected number
of patients showing up per appointment until appointment m where m < |Ad,T | is:

V d,T =

∑m
i∈Ad,T

vi

m
.

Double-Booking condition

An additional patient j can be scheduled in appointment z of that half-day if:

(
∑z

i∈Ad,T
vi) + vj

z
≤ 1,

When a patient j is double booked with patient i in time slot t then this time slot
is full. For each time slot a maximum of 2 patients can be scheduled.

Patient j is added to the set Ad,t when a double booking occurs. This process
continues until no additional patients can be added without violating the constraint.
The patients selected for double booking are those who are currently unscheduled,
and they are chosen in increasing order of their show-up probabilities.

34

(2) Double booking, Bailey–Welch. The Bailey–Welch strategy modifies the stan-
dard approach by introducing an initial double booking at the start of the scheduling
horizon. Subsequent double bookings are then determined following the same rules
as the standard strategy. The rationale for the initial double booking is to mitigate
slow start periods and reduce early shift underutilization. However, because the
expected number of patients at the beginning of the shift can exceed one (around
two), this may increase waiting times for patients scheduled early. This strategy
thus represents a trade-off between early shift efficiency and patient punctuality,
which can be particularly important in settings with variable arrival patterns.

(3) Double booking, cost optimization. This strategy aims to schedule double
appointments in a way that minimizes the overall operational cost, including factors
such as physician idle time, patient waiting time, and potential overtime. The
optimization is performed using a Monte Carlo simulation, which repeatedly
samples patient show-up scenarios based on predicted probabilities and evaluates
the associated costs. For each candidate schedule, the expected cost is estimated,
and the double booking configuration that minimizes this expectation is selected.
The pseudo-code for the Monte Carlo-based cost optimization procedure is provided
in Algorithm 1. For the cost overview see Table 4.10:

Function Cost (€/hour)
Clinician 240
Doctor Assistant 160
CR-Thorax 650
Echografist 800
Spirometrie 450
General 40
Cost of Waiting (patient) 10

Table 4.10: Cost Overview (Cost per Hour)

35

Algorithm 1 Monte Carlo Simulation Cost

Require: Schedule S, patient show probabilities P , idle cost cidle, waiting cost cwait,
minutes per slot and care durations, number of simulations nsim

Ensure: Estimated total costs: waiting, idle, and overtime
1: Initialize lists: total wait, total idle, total overtime
2: for i = 1 to nsim do
3: for doctor d in S do
4: current time← 0
5: waiting cost, idle cost, overtime cost← 0
6: for all slots s in sorted order S do
7: slot start← s×minutes per slot
8: slot end← slot start+minutes per slot
9: for all patient p in S[d, s] do
10: r ← random()
11: if r < P [p] then
12: service time← care durations[p]×minutes per slot
13: start service← max(current time, slot start)
14: wait time← start service− slot start
15: waiting cost← waiting cost+ (cwait/60)× wait time
16: current time← start service+ service time
17: Mark p as processed
18: show ← show + 1
19: end if
20: end for
21: if current time < slot end then
22: idle cost← idle cost+ (cidle/60)×minutes per slot
23: end if
24: end for
25: schedule end← (max(S) + 1)×minutes per slot
26: if current time > schedule end then
27: overtime cost← (cidle/60)× 2.5× (current time− schedule end)
28: end if
29: Append waiting cost, idle cost, overtime cost to totals
30: end for
31: end for
32: return Mean of total wait, total idle, total overtime

36

Chapter 5

Scheduling Algorithms

Five algorithms are evaluated in this study: the Vertical Batches Algorithm, the Hori-
zontal Batches Algorithm, the Horizontal and Vertical Batches Algorithm, the Optimal
Algorithm, and the Fix-and-Optimize Algorithm. Each algorithm solves the scheduling
problem and produces a schedule that can be represented as a table (see Table 4.6). In
this table, each row consist of a doctor–room combination with the scheduled patients
for a certain time slot. In Section 5.1, each algorithm is explained briefly with the help
of the example described in Section 4.2.1 with 3 patients, 2 doctors and 2 rooms. This
example will be used in the explanation of the algorithms. Section 5.2, 5.3, 5.4 and 5.5
contains the mathematical details of the algorithms.

5.1 Overview Algorithms

5.1.1 The Optimal algorithm

The optimal algorithm takes as input the full set of resources of 4.2.2 and solves the
MILP in a single iteration for all patients. Table 4.6 illustrates the output of the Optimal
Algorithm based on the example.

5.1.2 The Vertical Batches algorithm

The vertical batches algorithm partitions doctors and rooms into subgroups and solves
the scheduling problem for each subgroup independently. This approach is inspired by
Yüksektepe (2009)[37], who applied an MILP model for multi-class data classification by
dividing the dataset into two subgroups using a similarity–dissimilarity function.

In our context, subgroups are formed based on the care coverage. Care coverage refers to
the number of doctors or rooms available and qualified to provide a specific type of care.
For example, Subgroup 1 may have a care coverage of 0 doctors and 0 rooms for Care A,
while Subgroup 2 has 1 doctor and 1 room for the same care. Therefore, Subgroup 2 has
a higher care coverage for Care A. Each doctor or room is assigned to the subgroup with
the lowest care coverage. If there a multiple subgroups with the same low care coverage,
a random subgroup is selected.

37

Patients are assigned to subgroups based on each subgroup’s workload, defined as the
number of patients requiring a specific type of care. For instance, Subgroup 1 may have
a workload of 10 patients for Care B, while Subgroup 2 has a workload of 5 patients
for Care B. In this case, Subgroup 1 has a higher workload for Care B than Subgroup
2. Patients are assigned to the subgroup with the lowest workload, if there are multiple
subgroups with a low workload then a random subgroup is selected.

When this algorithm is applied on the example in 4.2.1, doctor D1 and room R2 form
subgroup 1, while doctor D2 and room R1 form subgroup 2. The main steps of the
algorithm are displayed in Figure 5.1 with additionally tables and figures to illustrate the
process.

Initialization

Order doctors and rooms by the num-
ber of their specialties or capabilities.

Example:
Doctors: D1 (Consult, Blood test), D2 (MRI)
Rooms: R2 (Consult, Blood test), R1 (MRI)

Resource Division

Iteratively assign a doctor or a rooms to a subgroup:

1. Assign to the subgroup with the low-
est care coverage for its specialty/capability.

2. If equal, assign to the subgroup with the lowest total coverage.

(See Table 5.1 for an example.)

Patient Division

For each patient:

1. Identify suitable subgroups based on specialties/capabilities.
2. Assign the patient to the subgroup with the lowest workload.

If no suitable subgroup exists, assign the patient to a special
group. This group has all doctors and all rooms assigned to it.

(See Table 5.2.)

Solving

First, solve the special group. Its solution is then used
across all other subgroups, which are solved independently.

Figure 5.1: High-level overview of the Vertical Batches Algorithm.

38

In the initialization step, doctors and rooms are ordered according to the number of their
specialties or capabilities from high to low. Starting with the highest, each doctor or
room is assigned to a specific subgroup. For example, Doctor D1 has two specialties
(Consult and Blood test), while Doctor D2 has one (MRI). Therefore, D1 is assigned
first, followed by D2. A doctor (or room) is assigned to the subgroup with the lowest
care coverage.

In Table 5.1, Doctor D2 is assigned while Doctor D1 is already in Subgroup 1. First rule
1 is checked from Figure 5.1 in the resource division block, ”Assign to the subgroup with
the lowest care coverage for its specialty/capability”. D2’s specialty (MRI) is not yet
covered in both subgroups (0). Therefore the algorithm checks rule 2, ”If equal, assign
to the subgroup with the lowest total coverage”. In this case, subgroup 2 has lower total
care coverage (0) then subgroup 1 (2). Therefore D2 is assigned to subgroup 2. The same
procedure is applied to assign rooms to subgroups.

First check rule 1

Subgroup 1 2

Doctors (D)

Consult 1 0

Blood test 1 0

MRI 0 0

Sum 2 0

No result, check rule 2

Subgroup 1 2

Doctors (D)

Consult 1 0

Blood test 1 0

MRI 0 0

Sum 2 0

D2 is assigned to sub-
group 2

Subgroup 1 2

Doctors (D)

Consult 1 0

Blood test 1 0

MRI 0 1

Sum 2 1

Table 5.1: Example assignment D2

The patient division works mainly on the subgroup workload, patients are assigned to the
subgroup which has the lowest workload. There is no specific order of assigning patients
to subgroups. From the example, patient P3 has a workload of 3.

C3 = [Blood test, MRI, Consult]

Only the workload of subgroups are compared that have the specialities and capabilities
that are in the list of care of the patient. The patient division procedure is visualized in
Table 5.2

In this example, there is no case where a patient could be assigned to multiple subgroups.
If a patient has multiple suitable subgroups—meaning all subgroups that have the re-
quired specialties and capabilities— the patient is assigned to the subgroup with the
lowest workload. For example, if both subgroups 1 and 2 would be suitable for patient
P2 in iteration 2, the algorithm assigns P2 to subgroup 2 because it has the lowest total
workload.

39

Patient Care Sequence Sub 1 Sub 2 None/Special Notes / Workload Update

Iteration 1

C1 [Consult] Assigned – – Only suitable subgroup, workload to 1

C2 [Blood test, Consult] – – – Not yet assigned

C3 [Blood test, MRI, Consult] – – – Not yet assigned

Iteration 2

C1 [Consult] Assigned – – Already assigned

C2 [Blood test, Consult] Assigned – – Only suitable subgroup, workload up-
dated to 3

C3 [Blood test, MRI, Consult] – – – Not yet assigned

Iteration 3

C1 [Consult] Assigned – – Already assigned

C2 [Blood test, Consult] Assigned – – Already assigned

C3 [Blood test, MRI, Consult] – – Assigned No suitable subgroup; assign to special
group

Table 5.2: Patient division procedure

The last step in the algorithm is scheduling the appointments for each subgroup. This is
done by first solving the special group, which is solved using all doctors and rooms.

Doctor–Room (Special Group) Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

D1–R2 Blood
test
(P3)

– – – Consult
(P3)

D2–R1 – MRI
(P3)

MRI
(P3)

– –

Table 5.3: Resulting schedule for the special group.

Solving the special group follows the same procedure as the optimal algorithm but just for
a small set of patients, namely the patients that couldn’t fit in one subgroup. The solution
of this special group is used in all remaining subgroups that are solved independently to
ensure that the model accounts for doctor and room unavailability during specific time
slots.

Doctor–Room (Subgroup 1) Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

D1–R2 Blood
test (P3)

Blood
test (P2)

Consult
(P2)

Blood
test (P1)

Consult
(P3)

Table 5.4: Resulting schedule for Subgroup 1.

40

Doctor–Room (Subgroup 2) Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

D2–R1 – MRI
(P3)

MRI
(P3)

– –

Table 5.5: Resulting schedule for Subgroup 2.

The final schedule combines all sub-schedules. See Table 5.6 for the final schedule.

Doctor–Room (Optimal) Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

D1–R2 Blood
test (P3)

Blood
test (P2)

Consult
(P2)

Blood
test (P1)

Consult
(P3)

D2–R1 – MRI (P3) MRI (P3) – –

Table 5.6: Final optimal schedule combining all subgroups.

5.1.3 The Horizontal Batches algorithm

The horizontal batches algorithm solves the scheduling problem by dividing the time
horizon into smaller parts. For instance, if the problem requires scheduling over two
weeks, the Horizontal Batches Algorithm solves each day separately and then combines
the results into a full schedule. Figure 5.2 provides a visual representation of this process.

Figure 5.2: Visual representation of the Horizontal Batches Algorithm

41

In this algorithm, set T is divided into the subsets T1, T2, . . . , where each subset repre-
sents a fraction of the total time horizon. Each fraction is solved sequentially, starting
with the first time fraction T1, then the second fraction T2 until all patients are scheduled.
In each iteration, all doctors and rooms are used in the model. Only uncompletely sched-
uled patients are incorporated into the model. The algorithm stops when all patients are
completely scheduled.

In each iteration (time step) the algorithm attempts to schedule one additional care task
from a patient’s care sequence into the current time interval. The order in which patients
are selected is as follows:

1. Uncomplete scheduled patients (patients of which not all care is scheduled)

2. Patients with the longest time span

• If scheduling the task is infeasible (for example due to timing conflicts or resource
limits), the algorithm remembers the care type of that last attempted task and then:

(a) excludes the current task from further consideration in this iteration, and

(b) ignores any new patients that require the same care type for the remainder of the
current scheduling process.

• If scheduling is feasible, the algorithm keeps the successfully added care task and
allows that care type to be considered again in subsequent iterations (note: the partial
solution is not reused only the care task information is retained).

The algorithm repeats these steps until either all patients’ care sequences have been con-
sidered or every care type has been found infeasible for the current scheduling horizon.
The final schedule comprises all care tasks that were successfully scheduled.

The same example will be used to explain the process. Only C3 is changed to C3=[Consult,
MRI, Blood test] to better show the mechanism of this algorithm. For time division, the
time will be divided into half-days (morning and afternoon). The algorithm starts solving
the first time fraction, which in this case is slots 1, 2 and 3.
Patients time span is the sum of the care durations and care recovery times of the patients
care sequence. The time span of patient 3 in the example is:

P3 = 1 (Consult) + 2 (MRI) + 1 (MRI, recovery) + 1 (Blood test) = 5

The patient selection at the beginning of the example will be based on this time span, so
the order will be:

1. P3 (5), 2. P2 (2), 3. P1 (1)

42

During the scheduling process of a certain time fraction every care task of the care se-
quences of these patients is checked, see Table 5.8. As already explained, every scheduling
iteration there are three possibilities:

1. Feasible, reuse task

2. Infeasible, store task as infeasible and do not use this task in further scheduling
iterations

3. Infeasible task, a task that already has been found infeasible. Continue to the next
task.

Scheduling iterations Solution Infeasible tasks Feasible tasks

1. P3 [Consult] Feasible – P3 [Consult]

2. P3 [Consult, MRI] Feasible – P3 [Consult, MRI]

3. P3 [Consult, MRI, Blood test] Infeasible [Blood test] -

4. P3 [Consult, MRI], P2 [Blood test] Infeasible task [Blood test] P3 [Consult, MRI], P2
[Blood test]

5. P3 [Consult, MRI], P2 [Consult] Feasible [Blood test] P3 [Consult, MRI], P2
[Consult]

6. P3 [Consult, MRI], P2 [Consult], P1 [Consult] Feasible [Blood test] P3 [Consult, MRI], P2
[Consult], P1 [Consult]

Table 5.7: Scheduling process of T1

The result of the scheduling process in T1 is Table 5.8, in T2 the same scheduling process
is applied and then all patients are completely scheduled. See Table 5.9 for the result of
T2. Together this result in a final schedule in Table 5.10.

Doctor–Room (Optimal) Slot 1 Slot 2 Slot 3

D1–R2 Consult (P3) Consult (P2) Consult (P1)

D2–R1 – MRI (P3) MRI (P3)

Table 5.8: Solution schedule first time fraction Horizontal Batch Algorithm

Doctor–Room (Optimal) Slot 4 Slot 5 Slot 6

D1–R2 Blood test (P2) Blood test (P3) -

D2–R1 - - -

Table 5.9: Solution schedule second time fraction Horizontal Batch Algorithm

43

Doctor–Room (Optimal) Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

D1–R2 Consult
(P3)

Consult
(P2)

Consult
(P1)

Blood
test (P2)

Blood
test (P3)

D2–R1 – MRI (P3) MRI (P3) – –

Table 5.10: Final optimal schedule combining all subgroups.

5.1.4 The Horizontal and Vertical Batch algorithm

The horizontal and vertical batch algorithm combines the Vertical Batch Algorithm with
the Horizontal Batch Algorithm. An algorithm that has not been found in literature. In
the algorithm each subgroup that is solved as in Vertical Batch Algorithm but the time
horizon is split up in time fractions and each time fraction is solved sequentially as in
Horizontal Batch Algorithms. All sub schedules together result in the final schedule.

5.1.5 The Fix-And-Optimize algorithm

The Fix-and-Optimize Algorithm (F&O) approach is a popular method for solving com-
plex problems. It has been successfully applied in several studies, such as Chouksey et al.
(2024) and Wickert et al. (2020), among many others, where it demonstrated performance
close to optimality with relatively low computational effort. The F&O approach always
consists of two phases: a feasibility phase (fix), in which a feasible solution is constructed,
and an optimization phase, in which this feasible solution is iteratively improved until no
further progress can be made.

The feasible solution is obtained by sequentially scheduling patients one by one. For each
patient, the solution is stored and then passed again to the solver together with the next
patient that needs to be scheduled. In this way, a feasible solution is quickly found. See
Figure 5.3 for this procedure.

44

P1 (Consult) →

Doctor–Room Slot 1

D1–R1

D1–R2 P1 (Consult)

D2–R1

D2–R2

P2 (Blood test,
Consult) →

Doctor–Room Slot 1 Slot 2 Slot 3

D1–R1

D1–R2 P1 (Consult) P2 (Blood test) P2 (Consult)

D2–R1

D2–R2

P3 (Blood test,
MRI, Consult) →

Doctor–Room Slot 1 ... Slot 4 Slot 5 Slot 6 slot 7 slot 8

D1–R1 ...

D1–R2 P1 (Consult) ... P3 (Blood test) P3 (Consult)

D2–R1 ... P3 (MRI) P3 (MRI)

D2–R2 ...

Figure 5.3: Example of the feasible phase of F&O Algorithm

After the feasible phase, the optimization phase begins. In this phase, a subset of patients
is selected for rescheduling. The subsets are created based on the patients time spans
and the parameter g, which determines the number of patients included in each subset.

The selection process follows a structured order: first the patient with the highest time
span is chosen, then the patient with the lowest time span, followed by the second highest,
the second lowest, the third highest, and so on. Below is an example based on g = 2.

Step 1: Ordered list of patients: [P3(5), P2(2), P1(1)]

Step 2: Subsets: [{P3, P1}, {P2}]

In each iteration, every subset is used to reschedule the patients. This is done by remove
these patients from the current solution such that these slots are free. For each attempt,
the current subset is extended by adding a group of patients who were scheduled last,
giving the model the opportunity to adjust the makespan. The number of last-scheduled
patients to be added is determined by the parameter l. The optimization procedure is
illustrated in Figure 5.4. In this example, l = 1.

45

rescheduled patients:
{P3,P1}

Doctor–Room Slot 1 slot 2 Slot 3 Slot 4 Slot 5 Slot 6 slot 7 slot 8

D1–R1

D1–R2 P1 (Consult) P2 (Blood test) P2 (Consult) P3 (Blood test) P3 (Consult)

D2–R1 P3 (MRI) P3 (MRI)

D2–R2

result rescheduling:
(Iteration 1)

Doctor–Room Slot 1 slot 2 Slot 3 Slot 4 Slot 5

D1–R1

D1–R2 P3 (Blood test) P2 (Blood test) P2 (Consult) P1 (Consult) P3 (Consult)

D2–R1 P3 (MRI) P3 (MRI)

D2–R2

rescheduled patients:
{P2,P3}

Doctor–Room Slot 1 slot 2 Slot 3 Slot 4 Slot 5

D1–R1

D1–R2 P3 (Blood test) P2 (Blood test) P2 (Consult) P1 (Consult) P3 (Consult)

D2–R1 P3 (MRI) P3 (MRI)

D2–R2

result rescheduling:
(Iteration 1)

Doctor–Room Slot 1 slot 2 Slot 3 Slot 4 Slot 5

D1–R1

D1–R2 P3 (Blood test) P2 (Blood test) P2 (Consult) P1 (Consult) P3 (Consult)

D2–R1 P3 (MRI) P3 (MRI)

D2–R2

Figure 5.4: Iteration 1, optimization phase of F&O Algorithm

If an improvement is found in an iteration, the algorithm proceeds to the next iteration,
where both g and l are increased by 1. This provides the algorithm with greater flexibility
to make local changes. However, it also increases the computational time. If a patient
belongs to the selected subset and is also among the last l scheduled patients, then the
number of rescheduled patients will be smaller than g + l.

Rescheduling may sometimes lead to a solution that is worse than the current best. To
handle this, a Simulated Annealing–inspired procedure is used, which allows worse solu-
tions to be accepted with a probability that decreases as the number of iterations grows.
This probability also depends on the absolute difference between the new solution and
the current best: the larger the difference, the lower the probability of acceptance.

The algorithm terminates when no improvement is achieved in when a;l subsets are used
for rescheduling, returning the best solution found.

46

5.2 Vertical Batch algorithm

As described in Section 5.1, the Vertical Batch Algorithm begins by partitioning the re-
sources (doctors and rooms) using the procedure outlined in Algorithm 3. The procedure
follows three main steps:

• Initialization: Define the number of subgroups. Each subgroup is initialized with
empty sets of doctors and rooms. The care coverage is defined as the number of
times a care type is covered by doctors or rooms within the subgroup.

• Score calculation: Each unassigned doctor or room is assigned to the subgroup
with the highest score. The scoring is done separately for doctors and rooms. The
scoring function for a subgroup g is defined as sd for doctors and sr for rooms:

sd(g) =
∑
d∈g

∑
c∈Wd

1

1 + f(g, c)
, sr(g) =

∑
r∈g

∑
c∈Fr

1

1 + f(g, c)
(5.1)

f(g, c) =
∑
p∈P

1{ v(p) = g ∧ c ∈ Cp } (5.2)

– v(p) is a function that returns a subgroup number for each patient p that is
assigned to a specific subgroup g. Returns 0 if a patient is not yet assigned.

It sums over the care types in a doctor’s specialties or a room’s capabilities. A high
score indicates a low care coverage of the subgroup of the care types which can be
provided by the current unassigned doctor or room. The choice of scoring function
is motivated by several desirable mathematical properties of the part within the
sum. First, the function is strictly decreasing in f(g, c) for a fixed g, ensuring
that higher care coverage correspond to lower scores. Second, its hyperbolic shape
yields high sensitivity for smaller care coverage while lower sensitivity for larger care
coverage. Trying to ensure that each subgroup is able to cover all care, although
this requirement becomes less critical when overall coverage is already high.

• Assignment of doctors and rooms: Each doctor and room is assigned to the
subgroup with the highest score, determined by the scoring function. This ensures
a balanced distribution of resources across subgroups. The assignment is done with
Algorithm 1. This assignment is done iteratively until all doctors or rooms are
assigned to a subgroup.

Algorithm 2 Assign Doctor/Room (Entity) to the best fitting subgroup

1: function AssignEntity(entity key, entity cares, entity type, subgroups)
2: Initialize empty list of scores
3: for each subgroup in subgroups do
4: score ←

∑
c∈entity cares

1
1+subgroup.care coverage[c]

5: Append (score, subgroup id) to scores
6: end for
7: Sort scores in descending order
8: chosen subgroup ← subgroup with highest score
9: Add entity key to chosen subgroup[entity type]
10: for each care in entity cares do
11: Increment chosen subgroup.care coverage[entity type][care] by 1
12: end for
13: end function

47

Algorithm 3 Partition Doctors and Rooms Evenly Across subgroups

1: procedure PartitionDoctorsAndRooms(doctor info, room info,
all specialities, num subgroups)

2: Initialize subgroups {1, .., num subgroups} with empty doctors, rooms, and
care coverage

3: Distribute Doctors:
4: Group doctors by shift
5: for Each shift group do
6: Sort doctors by number of specialties, descending
7: for Each doctor in group do
8: AssignEntity(doctor, doctor specialties, ’doctors’, subgroups)
9: end for
10: end for

11: Distribute Rooms:
12: Sort rooms by number of capabilities, descending
13: for Each room do
14: AssignEntity(room, room capabilities, ’rooms’, subgroups)
15: end for

16: return subgroups
17: end procedure

The Vertical Batch Algorithm partitions the model 4.2.2 in n (the number of subgroups)
smaller parts and solves each part independent after the special group is solved. In
mathematical terms, the sets D,R are divided in n subsets and P in n+ 1 subsets:

P1 ∪ P2 ∪ · · · ∪ Pn+1 = P, Pi ∩ Pj = ∅ for i ̸= j
(patient partitioning)

D1 ∪D2 ∪ · · · ∪Dn = D, Di ∩Dj = ∅ for i ̸= j
(doctor partitioning)

R1 ∪R2 ∪ · · · ∪Rn = R, Ri ∩Rj = ∅ for i ̸= j
(room partitioning)

Ti = {t1, t2, ..., tHi−1}

The partition of the doctors and rooms follow the structure of Algorithm 3. The patients
are partitioned illustrated in Table 5.2. After solving the special group n + 1, for each
subgroup i in {1, 2, ..., n} solve the following mathematical problem which has the same
structure as ?? but now for each subset separately:

48

Objective: min Hi

∑
d∈Di, r∈Ri, t∈Ti

ad,t · xp,c,d,r,t = 1, ∀p ∈ Pi, ∀c ∈ Cp (13)

13) Each patient p ∈ Pi with care task c ∈ Cp in the care sequence Cp is assigned to a
doctor d ∈ Di and a room r ∈ Ri for a specific time slot t ∈ Ti. This assignment defines
the start time of the scheduling for subgroup i.

sp,c =
∑

d∈Di, r∈Ri, t∈Ti

t · xp,c,d,r,t, ∀p ∈ Pi, ∀c ∈ Cp (14)

14) The start time sp,c for patient p ∈ Pi and care c ∈ Cp equals the time slot t where
xp,c,d,r,t = 1.

yp,c,d,r,t′ ≥ xp,c,d,r,t, ∀p ∈ Pi, ∀c ∈ Cp, ∀d ∈ Di, ∀r ∈ Ri,

∀t ∈ Ti, ∀t′ ∈ {t, . . . , t+ Lc − 1} (15)

15) If a care task c ∈ Cp is assigned to doctor d ∈ Di and room r ∈ Ri at time t, then
yp,c,d,r,t′ = 1 for all subsequent slots t′ within the duration Lc of that care.∑

p∈Pi, c∈Cp, r∈Ri

yp,c,d,r,t′ ≤ 1, ∀d ∈ Di, ∀t′ ∈ Ti (16)

16) Each doctor d ∈ Di can handle at most one patient at any time slot t′ ∈ Ti.∑
p∈Pi, c∈Cp, d∈Di

yp,c,d,r,t′ ≤ 1, ∀r ∈ Ri, ∀t′ ∈ Ti (17)

17) Each room r ∈ Ri can host at most one patient at any time slot t′ ∈ Ti.

sp,ci+1
≥ sp,ci + Lci +Bci , ∀p ∈ Pi, (ci, ci+1) ∈ Cp (18)

18) For each patient p ∈ Pi with sequential care tasks, the next care ci+1 can only start
after the previous care ci has finished and the required break time Bci has passed.

Hi ≥ sp,c + Lc, ∀p ∈ Pi, ∀c ∈ Cp (19)

19) The makespan Hi for subgroup i must be at least as large as the finish time of all
care tasks in Pi.

(5.3)

49

Then eventually the min make span H is decided by the maximum of the make spans of
these subgroups.

H = max{H1, H2, ..., Hn}

Optimizing H means lowering the make span of the subgroup with the highest makespan.
Therefore adjustments are made in order to optimize H. Patients from the subgroup with
the largest makespan are reassigned to the subgroup with the smallest if the patient can
be covered (at least 1 doctor and room that can help the patient). The maximum number
of patients transferred is determined using equation 5.4. In which sum(L) is the sum of
all care durations and len(C) the number of care types.

Maximum number of moved patients =
max{H1, H2, ..., Hn} −min{H1, H2, ..., Hn}

sum(L)/len(C)
(5.4)

Patients are ordered (ascending) on their time span and patients with a low time span
are first selected. Running the Vertical Batch Algorithm again for the new subsets of
patients and continue this process until there is no improvement of H.

5.3 Horizontal Batch algorithm

In this research, the time horizon is divided into half-day and full-day intervals. With
half-day intervals, the algorithm solves the scheduling problem per shift (morning and
afternoon). Unlike the Vertical Batch Algorithm, where subgroups are solved indepen-
dently, here they are solved sequentially: start with solving the first time interval (sub-
group), and then continue to the next time interval where the solution of the previous
time interval influences the current time interval.

The patient set is divided into three subsets: unscheduled patients P u, scheduled patients
P s, and prioritized patients P p (patients whose care has started but whose full care
sequence is not completely scheduled). At the start of the Horizontal Batch Algorithm,
the subsets are initialized as follows:

P s = {}, P p = {}, P u = P

The following relation always holds:

P s ∪ P u ∪ P p = P

Solving the scheduling problem for each interval requires the following steps:

• Initialization: Select the doctors available in the current interval, as well as the
rooms which can be used by the corresponding doctors. Patients are ordered in
descending order of their time span. If a patient is completely scheduled it is
assigned to P s, if it is scheduled but not completely scheduled to P p and otherwise
to P u.

50

• Scheduling: In each iteration, a specific care–patient combination is used in the
basic or extended scheduling model with a specific time interval. If the scheduling
model returns an optimal solution, the combination is scheduled in the current
interval. If it returns an infeasible solution, the care type is saved and skipped
for later iterations. See Algorithm 4 for the pseudo-code of the scheduling step.
A crucial aspect of this step is the order in which care–patient combinations are
considered. The following order is taken into account:

1. Priority patients with long time spans

2. Priority patients with short time spans

3. Unscheduled patients with long time spans

4. Unscheduled patients with short time spans

Since partially scheduled patients (priority patients) are considered first, the average
waiting time (i.e., the additional time a patient must wait beyond their recovery
time) is taken into consideration to reduce it. Additionally, if a patient has a long
time span, the current and later intervals may become empty or sparse, since this
patient is likely to have care with long recovery time. This unnecessarily increases
the makespan. To minimize the overall makespan, it is essential to schedule long-
span patients with long recovery times first, and short-span patients last.

• Update: Each iteration solves one time interval. After solving the current interval,
time values are updated to ensure correct input for the next iteration. Priority
patients are those already scheduled but not yet fully completed. When a patient
transitions from unscheduled to priority, the ending time of their last scheduled care
is remembered and used in the recovery constraint of the next iteration, to make
sure the recovery time is correctly taken into account.

As described earlier, the algorithm uses the basic or extended scheduling model with
a subset of P which is incrementally filled first with patients from P p and then with
patients from P u. If the model returns a solution H outside the current time interval T i,
the solution is considered infeasible. If all care types have returned an infeasible solution
once and there are still uncomplete scheduled patients, do the same procedure for interval
T i+1. If in interval T i+1 all patients are completely scheduled, then H i+1 determines the
final makespan.

51

Algorithm 4 Pseudocode Scheduling Step, Horizontal Batch Algorithm

Require: schedule, P u, P s, P p, T ′ (current time interval)
Ensure: schedule, P u, P s, P p

1: P ′ = {}
2: infeasible care = {}
3: for each p in ordered(P p) do
4: C ′

p = {}
5: for each c in Cp do
6: if [p,c] /∈ schedule and c /∈ infeasible care then
7: P ′ = P ′ ∪ {p} and C ′

p = C ′
p ∪ c

8: status, objective = Model 4.2.2 or 4.2.3 (with P = P ′, Cp = C ′
p and T = T ′)

9: if status ∈ {optimal,feasible} then
10: [p,c] −→ schedule
11: else
12: P ′ = P ′/{p}
13: infeasible care.add(c)
14: end if
15: end if
16: end for
17: if p is completely scheduled then
18: P s = P s ∪ {p}
19: P p = P p/{p}
20: end if
21: end for
22: for each p in ordered(P u) do
23: Same procedure as line 3-21
24: if p is completely scheduled then
25: P s = P s ∪ {p}
26: P u = P u/{p}
27: else
28: P p = P p ∪ {p}
29: P u = P u/{p}
30: end if
31: end for
32: return schedule, P u, P s, P p

52

5.4 Horizontal and Vertical Batch algorithm

The Horizontal and Vertical Batch Algorithm combines both the Horizontal Batch Algo-
rithm and the Vertical Batch Algorithm. Technical descriptions of these two algorithms
are provided in Sections 5.2 and 5.3. The combined approach first applies the Verti-
cal Batch Algorithm, in which subgroups are formed and solved independently. Each
subgroup is then solved using the Horizontal Batch Algorithm, where the time horizon
is divided into multiple parts that are solved sequentially. The min make span of this
algorithm is:

H = max{H1, H2, . . . , Hn} (5.5)

Hi = Horizontal Batch Algorithm(Pi, Di, Ri), i = 1, . . . , n (5.6)

5.5 Fix and Optimize algorithm

The Fix-and-Optimize (F&O) Algorithm consists of two phases: a construction phase
and an optimization phase. See Algorithm 6 for the pseudocode.

Construction phase. The model (Section 4.2.2) is solved iteratively for one patient
pi ∈ P , while reusing the solution of previously scheduled patients p1, p2, . . . , pi−1. This
process continues until all patients are scheduled (line 1 of Algorithm 6). No ordering is
applied in selecting patients.

Optimization phase. Once a feasible solution is obtained, the optimization phase
begins. Each iteration i (lines 4–24 of Algorithm 6) proceeds as follows:

(1) Creating subgroups. Subgroups are formed based on patient time spans (see
Algorithm 5). Given a predefined subgroup size, the algorithm pairs patients with
complementary time spans—specifically, the patient with the longest time span is
grouped with the patient with the shortest one. Patients with longer time spans
typically require multiple care types with extended recovery periods, making them
more difficult to reschedule than patients with shorter time spans, who usually need
only a single care type and no recovery time. Once a subgroup reaches its capacity,
a new subgroup is created.

(2) Reschedule subgroup. Each subgroup is used for rescheduling, along with the
last x patients based on ending time of the current solution. So in rescheduling the
solution is reused and only the patients selected for rescheduling are removed from
the solution and free to schedule on available spots. So the model (Section 4.2.2)
is solved with:

Pi = Pk (patients in subgroup k) ∪ Pl (last x patients scheduled)

If the model returns a feasible or optimal solution, the algorithm checks whether
the min make span is lower than the current min make span.

53

True: Update the current make span. If the new make span is also lower than the
optimal make span, update the optimal make span as well.

False: A Simulated Annealing-inspired approach determines whether a worse make
span is accepted. A random number r ∈ [0, 1] is generated; if r is below a
threshold value, the worse make span is accepted and the current make span
is updated.

If infeasibility occurs during rescheduling, the threshold for accepting a worse make
span is given by:

ρ(i,H) =
1

i
− e(H)

40
(5.7)

where

e(H) = |H − current H|

At the start (iteration 1), nearly all worse solutions are accepted. In later iterations,
only a small percentage are accepted. For i ∈ {1, 2, 3}, the threshold upper bounds
are {1, 0.5, 0.33}, respectively. Larger deviations between the cost and the current
cost decrease the probability of accepting the worse solution.

If in a certain iteration (iteration 1 or 2) no improvement is found, then the algorithm
will stop and returns the best cost and best solution. This best cost is the min make
span of the Fix and Optimize Algorithm.

An important parameter of the algorithm is the group size, which determines the num-
ber of patients to be rescheduled simultaneously. Setting group size = |P | transforms
the Fix-and-Optimize algorithm into the Optimal Algorithm, guaranteeing the best so-
lution but at the cost of high computation time. Conversely, setting group size = 2
yields low computation time but offers little opportunity for improvement. Independent
of how the groups are formed. Thus, a trade-off must be made between solution quality
and computation time. Experimental results indicate that group sizes between 3 and 6
provide the best balance between optimality and efficiency.

54

Algorithm 5 Make Time Span based Subgroups

Require: A list of patients, group size
Ensure: A list of subgroups
1: Sorted patients list ←− list of patients ordered by time span in descending order
2: Initialize subgroups← []
3: while Sorted patients list not empty do
4: Initialize empty set group
5: while |group| < group size do
6: if |group| is even then ▷ Take patient with highest time span
7: group.add(Sorted patients list[0])
8: else ▷ Take patient with lowest time span
9: group.add(Sorted patients list[−1])
10: end if
11: end while
12: if |group| ≠ 0 then
13: Append group to subgroups
14: end if
15: end while
16: return subgroups

55

Algorithm 6 Fix-and-Optimize Algorithm (corrected)

Require: unscheduled patients
Ensure: best cost, best solution
1: (best cost, best solution)← ReturnFeasibleSchedule(unscheduled patients)
2: current cost← best cost
3: current solution← best solution
4: for i← 1 to 3 do
5: improvement← False
6: groups←MakeSubgroups(unscheduled patients, group size = 2 + i)
7: for all group ∈ groups do
8: last patient group← ReturnLastPatients(current solution, group size =

2 + i)
9: (status, cost, solution, deviation) ← SolveSchedule(group ∪

last patient group, current solution)
10: if status ∈ {optimal, feasible} then
11: if cost < current cost then
12: current cost← cost
13: current solution← solution
14: improvement← True
15: if cost < best cost then
16: best cost← cost
17: best solution← solution
18: end if
19: else

20: if Random(0, 1) <
1

i
− cost− current cost

40
then

21: current cost← cost
22: current solution← solution
23: end if
24: end if
25: end if
26: end for
27: if improvement = False then
28: break
29: end if
30: end for
31: return (best cost, best solution)

56

Chapter 6

Results

This chapter covers the predictions obtained from the prediction model in section 6.1)
and the results obtained from the experiments described in section 6.2. The experiments
are divided into two main parts: the baseline model scenario and the extended model
scenario. In section 6.3 different performance criterion’s are explained. The algorithms
are tested on a MD Ryzen 7 7730U with Radeon Graphics machine with 16GB ram,
the result are presented in section 6.4. Additionally, different double book strategies are
analyzed in section 6.5.

6.1 No-show predictions

The best LightGBM model from section 4.1.4 is used. It is trained on 29,108 patients.
The model predicted the no-show probability for 5000 patients, which will be used in the
scheduling. The model reached an accuracy of 0.69. The predictions can be summarized
in Figure 6.1. In this figure the patients are grouped based on their predicted show-up
probability. From this group the average show-up rate is calculated and used to compare
this against the average predicted show-up probability. In this graph it can be seen that
if the model predicts a show-up probability of 0.5 or higher, that this is closely aligns
with the actual average show up rate. If the predicted show-up probability is lower than
0.5, this average show-up rate is higher than the predicted show-up rate.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Predicted Show-up Probability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
bs

er
ve

d
Sh

ow
-u

p
R

at
e

Observed Show-up Rate by Predicted Show-Up Probability

n_patients
200
400
600
800
1000

Figure 6.1: Predicted show-up compared to actual show-up

57

6.2 Experimental Setup

6.2.1 Baseline model scenario

To evaluate the performance of the different strategies/algorithms, a set of test instances
is generated. These instances contain information for the baseline model and not yet the
information needed in the extended model. The reason is that these instances contain
key elements to compare the strengths and weaknesses of each strategy/algorithm within
a reasonable computation time. Based on the results obtained from these instances, the
best-performing strategy or algorithm will be tested on the extended model to assess its
effectiveness under realistic conditions.

The instances are divided into three groups: A,B en C. Each group corresponds to a
specific combination of doctors, rooms, and care types, see Table 6.1. A group can be
interpreted as a hospital scenario with its own specific personnel working their shifts,
with their specialties and with their rooms.

Group #Doctors #Rooms #Care Types
A 4 3 3
B 8 6 6
C 12 8 8

Table 6.1: Overview of test instance groups

Each group is tested with different number of patients, these number of patients range
from 25 until 200 in steps of 25.

set of patients = {25, 50, 75, 100, 125, 150, 175, 200}

In all groups, a day consists of 24 slots of 20 minutes each, representing an 8-hour working
day. The first 4 hours (12 slots) are considered as morning slots, and the remaining 4
hours (12 slots) are the afternoon slots. A full day consist of the morning and afternoon
slots. In the testing phase, there are no constraints regarding free working days; thus,
doctors are assumed to work every day.

A schedule is considered complete when all patients have been assigned appointments.
The primary objective is to minimize the number of days required to schedule all patients.

From the model point of view, in each group (A,B,C) the following sets are fixed: care
types (C), care durations (L), recovery times (B), shifts (S), doctors (D) and rooms (R).
Only the set of patients (P) is different (|P | ∈{25,50,...,200}).

ID Shift Specialties
D0 Morning C1, C2
D1 Afternoon C1, C2
D2 Morning C2, C3
D3 Afternoon C1, C2, C3

Table 6.2: Doctors Group A

ID Capabilities
R0 C1, C2, C3
R1 C2, C3
R2 C1, C2

Table 6.3: Rooms group A

58

Name Duration (Slots) Recovery (Slots)
C1 1 4
C2 2 2
C3 2 6

Table 6.4: Care types group A

Between the groups (A,B,C) these previously mentioned fixed sets can be different. Dif-
ferent doctors with different specialties, different care types and so on. See Tables 6.2,
6.3 and 6.4 for detailed information about the resources and care information in group
A. R0 in group A has different capabilities than R0 in group B, see Table 6.6. For the
detailed doctor and care information for group B see Tables 6.5 and 6.7. For detailed
information of group C, see Tables 6.8, 6.9 and 6.10

ID Shift Specialties
D0 Morning C1, C2, C3, C4, C5
D1 Afternoon C1, C2, C3, C4, C5, C6
D2 Morning C2, C3, C4, C6
D3 Afternoon C1, C2, C3, C4, C5, C6
D4 Morning C1, C2, C3, C4, C5, C6
D5 Afternoon C1, C2, C3, C4, C5, C6
D6 Full Day C3, C4, C5
D7 Full Day C1, C2, C4, C5, C6

Table 6.5: Doctors Group B

ID Capabilities
R0 C1, C6
R1 C1, C2, C3, C4, C5, C6
R2 C1, C2, C3, C4, C5, C6
R3 C1, C4
R4 C2, C3, C4, C5, C6
R5 C4, C6

Table 6.6: Rooms group B

Name Duration (Slots) Recovery (Slots)
C1 1 4
C2 2 2
C3 2 6
C4 2 3
C5 3 2
C6 4 6

Table 6.7: Care types group B

59

ID Shift Specialties
D0 Morning C7, C8
D1 Afternoon C1, C3, C8
D2 Morning C1, C2, C3, C5, C6, C7, C8
D3 Afternoon C1, C2, C3, C4, C5
D4 Morning C1, C5, C6, C7, C8
D5 Afternoon C1, C2, C3, C4, C5, C7, C8
D6 Full Day C2, C4, C8
D7 Full Day C1, C3, C4, C6
D8 Morning C1, C3, C4, C5, C6, C8
D9 Afternoon C1, C2, C3, C5, C7, C8
D10 Full Day C1, C2, C3, C4, C6, C7, C8
D11 Full Day C2, C5

Table 6.8: Doctors group C

ID Capabilities
R0 C1, C2, C3, C4, C5, C6, C7, C8
R1 C1, C2, C3, C4, C5, C7
R2 C1, C3, C4, C5, C6, C8
R3 C1, C2, C3, C4, C5, C6
R4 C1, C2, C4, C7
R5 C5, C8
R6 C1, C2
R7 C5

Table 6.9: Rooms group C

Name Duration (Slots) Recovery (Slots)
C1 1 0
C2 2 0
C3 2 6
C4 2 4
C5 2 4
C6 4 8
C7 1 24
C8 2 24

Table 6.10: Care types group C

6.2.2 Extended model scenario

Based on the results of the baseline model scenario, the two best performing algorithms
will be tested on the extended model scenario. The extended model is inspired by the
VU medical centre. The provided objective is to create an optimal schedule for 6 weeks.
See Table 6.11 for all care types with their duration and recovery times. For the full
detailed doctor and room information, see Tables A.1 and A.2. Summarized, these are
the different types of doctors:

Functions: Clinician, Doctor Assistant, Echografist, CR-Thorax Specialist,
Spirometrie specialist and Student

60

Care Types Duration
(Minutes)

Recovery

C0: B.P.C. 30 -
C1: CPAP 60 -
C2: CR-Thorax 20 1 Hour
C3: CT Scan 30 2 Weeks
C4: Doctor Appointment (person) 20 -
C5: Doctor Appointment (virtual) 15 -
C6: Dynamap 30 -
C7: ECG (Blood Pressure) 20 -
C8: EKG 10 -
C9: Holter 15 2 Weeks
C10: MRI 30 4 Weeks
C11: Pacemaker 20 -
C12: PM/ICD 20 -
C13: Spirometrie 20 1 Hour
C14: Syncope 90 -
C15: TTE 45 1 Hour
C16: XECG (Fysical Test) 30 -

Table 6.11: Care types VUmc

The following information is incorporated into the model:

• The working day is from 09:00 to 18:00 with 30 minutes break (13:00-13:30), this is
considered a full day shift. Morning shifts last from 09:00 to 13:00, and afternoon
shifts from 13:00 to 18:00 (or until 17:00, depending on the function). During the
final hour (17:00–18:00), only digital doctor appointments may be scheduled.

• On a half day, a doctor may see up to 2 new patients and a total of 15 appointments.
On a full day, the limits are 4 new patients and 25 appointments.

• At most 5 Holter and 5 XECG appointments are scheduled per day. For pacemaker
appointments, the daily maximum are 10 in the morning and 7 in the afternoon.

The number of patients used to test the two best performing algorithms are:

patients sizes = {250,500,750,1000}

61

6.3 Evaluation Metrics

The primary key performance indicator (KPI) is:

• Makespan — the number of days required to schedule a given number of patients.
When the makespan is fixed at six weeks, this KPI instead represents the number
of patients that can be fully scheduled within that time horizon.

The makespan serves as the primary objective of the baseline model and is consistently
used across all algorithms. Although this is the main KPI, two additional performance
measures are also important: the time required to obtain a solution (solving time) and
the waiting time experienced by patients.

Solving time refers to the computational time required for an algorithm or solver to
produce a feasible or optimal schedule. Short solving times are crucial for practical appli-
cations, especially in settings where schedules must be updated frequently, such as during
rescheduling or when new patient information becomes available.

Patient waiting time is defined as the delay between the completion of recovery and
the start of follow-up care. Minimizing waiting time is essential for maintaining quality
of care, ensuring timely follow-up, and reducing delays in the patient treatment pathway.

Based on these considerations, two secondary KPIs are defined:

• Solving Time (CPU Time)

• Patient Waiting Time

Patient waiting time was not included as a secondary objective in the baseline model to
preserve its simplicity. Adding additional variables, constraints, or objectives increases
the model’s complexity and, consequently, the solving time. Since the model already
struggles to find optimal solutions for small instances using only makespan as the objec-
tive, we chose to retain this single objective.

A lower bound is computed which is the minimal make span based on the capacity ignor-
ing all the constraints. A scheduling solution has a make span that is higher or equal to
the optimal make span which is higher or equal to this lower bound. Since the optimal
make span is not always known this lower bound is used to have an indication how close
the solution is to the optimal solution.

Lower bound
To determine the lower bound, we first calculate the total number of resource-slots re-
quired:

of required slots = P1→ 1 + P2→ 2 + P3→ 3 = 6.

Each time slot can accommodate a limited number of patients, determined by the most
restrictive resource:

min{2 doctors, 2 rooms} = 2 patients per slot.

62

We now subtract this capacity from the remaining demand slot by slot:

After slot 1: 6− 2 = 4,

After slot 2: 4− 2 = 2,

After slot 3: 2− 2 = 0.

Once the remaining demand reaches zero, we have found the minimum number of required
slots.

Lower bound = 3 slots

6.4 Algorithm Performance

Baseline model scenario

The following algorithms from the methodology are evaluated: the Vertical Batch Algo-
rithm, the Horizontal Batch Algorithm, the Horizontal and Vertical Batch Algorithm, the
Optimal Algorithm, and the Fix-and-Optimize Algorithm.

The Optimal Algorithm is only tested on Group A, since it requires a lot of computation
time and memory for larger instances. Even for the small instances of Group A, opti-
mality cannot always be reached. Therefore, a one-hour time limit is added for every 25
patients scheduled. If the time limit is reached, the best solution returned by the Optimal
Algorithm is considered “optimal”.
For each group (A,B,C), the metrics defined in section 6.3 are displayed. Additionally, 2
plots based on the loading time and the percentage of optimal solution is displayed.

• Loading Time: The time it takes to load the model and find appropriate subgroups
instead of time spend to find a solution.

• Fraction of optimal solutions: The model returns optimal or feasible solutions.
Feasible solution indicates that improvement is possible and is returned if the time
limit is reached.

In total there are 8 different models used from the 5 algorithms which are mentioned.
Namely:

Vertical Batch Algorithm: a model with 2 subgroups and a model with 3 subgroups

Horizontal Batch Algorithm: a model with full day intervals and a model with half
day intervals

Optimal Algorithm:the complete model solved with CPLEX solver and Google OR
solver. All models are solved with Google OR solver. Only the optimal algorithm is once
solved with CPLEX solver to test the quality of an expensive commercial solver compared
to a free open source solver.

63

6.4.1 Baseline model scenario: group A

25 50 75 100 125 150 175 200
Patients

2

4

6

8

10

12

14

M
in

 M
ak

e
Sp

an
 (D

ay
s)

Min Make Span Comparison
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize
Optimal (CPLEX)
Optimal (OR)

(a) Min make span

25 50 75 100 125 150 175 200
Patients

0

2

4

6

8

10

D
iff

er
en

ce
 in

 M
in

 M
ak

e
Sp

an
 (H

ou
rs

) Difference in Min Make Span vs Lower Bound
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize
Optimal (CPLEX)
Optimal (OR)

(b) Difference make span compared to lower
bound

Figure 6.2: Group A, comparison make span

The minimum makespans of all strategies are closely aligned. As shown in Figure 6.2a,
the Horizontal and Vertical Batches algorithm consistently returns the highest makespan
across all patient sets. Figure 6.2b illustrates deviations relative to the lower bound:
all strategies except the Horizontal and Vertical Batches and the Vertical Batch with 2
groups remain within 1 hour. With 200 patients, the makespan is about 14 days, resulting
in differences of less than 0.5% with the best and worst solution.

25 50 75 100 125 150 175 200
Patients

0

20

40

60

80

100

So
lv

in
g

Ti
m

e
(M

in
ut

es
)

Solving Time Comparison
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize

(a) Solving Time

25 50 75 100 125 150 175 200
Patients

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

W
ai

tin
g

Ti
m

e
(D

ay
s)

Average Waiting Time Comparison
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize
Optimal (CPLEX)
Optimal (OR)

(b) Average Waiting Time

Figure 6.3: Group A, Performance Metrics 1

Figure 6.3 summarizes the second part of the algorithmic performance. Solving times
(Figure 6.3a) for Horizontal Batches (Half Day) and Horizontal and Vertical Batches
increase much slower with patient count than other algorithms. The gap between the
fastest and slowest run is 107 minutes, with only 0.5 minutes for Horizontal and Vertical
Batches at 200 patients. Figure 6.3b shows the average waiting time, defined as the
additional delay (excluding recovery) between consecutive treatments. This grows under
Fix and Optimize and Vertical Batches (2 groups) but remains stable for other methods.

64

Horizontal Batches (Full Day)

Vertical Batches (2 groups)

Fix & Optimize

Horizontal Batches (Half Day)

Horizontal + Vertical Batches
0

5

10

15

20

25

30

35

40

Ti
m

e
(M

in
ut

es
)

40.9

21.8

16.7

0.8 0.6

20.2

1.1 2.1
0.2 0.3

Average Solving Time with Average Loading Time
Total Solving Time
Loading Time

(a) Solving Time and Loading Time

Horizontal Batches (Half Day)

Horizontal + Vertical Batches

Fix & Optimize

Vertical Batches (2 groups)

Horizontal Batches (Full Day)0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

O
pt

im
al

 S
ol

ut
io

ns
 (%

)

1.0 1.0

0.6

0.4

0.1

Average Percentage of Optimal Solution Comparison

(b) Fraction Optimal Solutions

Figure 6.4: Group A, Performance Metrics 2

Figure 6.4 summarizes the last part of the algorithmic performance averaged over the
instances. Figure 6.4a compares solving time and loading time, i.e., data initialization
and subgroup identification. The part of the loading time which include subgroup identi-
fication is time which could be improved. Horizontal Batches (Full Day) has the highest
percentage of loading time, consuming a lot of time to find the appriopriate patients
fitting in the 1 day time window. Finally, Figure 6.4b displays the fraction of optimal
sub solutions. Both Horizontal Batches (Half Day) and Horizontal and Vertical Batches
always returns the optimal solution, while Horizontal Batches (Full Day) most often
returns feasible solutions, indicating a better solution could be possible.

6.4.2 Baseline model scenario: group B

25 50 75 100 125 150 175 200
Patients

2

4

6

8

10

M
in

 M
ak

e
Sp

an
 (D

ay
s)

Min Make Span Comparison
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize

(a) Min Make Span

25 50 75 100 125 150 175 200
Patients

0

2

4

6

8

10

D
iff

er
en

ce
 in

 M
in

 M
ak

e
Sp

an
 (H

ou
rs

) Difference in Min Make Span vs Lower Bound
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize

(b) Difference make span compared to lower
bound

Figure 6.5: Group B, comparison make span

The minimum makespans of all strategies are again closely aligned. As shown in Fig-
ure 6.5a, only Horizontal and Vertical Batches and Vertical Batches (2 groups) con-
sistently return the highest makespan across all patient sets. Figure 6.5b illustrates
deviations relative to the lower bound. The difference between Horizontal and Verti-
cal algorithm and Vertical Batch algorithm grow compared to other algorithms, as the
number of patients grows.

65

25 50 75 100 125 150 175 200
Patients

0

50

100

150

200

250

300

350

400
So

lv
in

g
Ti

m
e

(M
in

ut
es

)
Solving Time Comparison

Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize

(a) Solving Time

25 50 75 100 125 150 175 200
Patients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

W
ai

tin
g

Ti
m

e
(D

ay
s)

Average Waiting Time Comparison
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize

(b) Average Waiting Time

Figure 6.6: Group B, Performance Metrics 1

Figure 6.6 summarizes the second part of the algorithmic performance of group B. The
solving times (Figure 6.6a) follow trends similar to group A. Figure 6.6b also reflects
trends consistent with group A.

Vertical Batches (2 groups)

Horizontal Batches (Full Day)

Fix & Optimize

Horizontal + Vertical Batches

Horizontal Batches (Half Day)0

20

40

60

80

100

120

140

Ti
m

e
(M

in
ut

es
)

137.2

50.8

39.7

4.6 3.7

53.4

24.6

2.1 2.1 1.1

Average Solving Time with Average Loading Time
Total Solving Time
Loading Time

(a) Solving Time and Loading Time

Horizontal Batches (Half Day)

Horizontal + Vertical Batches

Fix & Optimize

Horizontal Batches (Full Day)

Vertical Batches (2 groups)0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
O

pt
im

al
 S

ol
ut

io
ns

 (%
)

1.0
1.0

0.7

0.4 0.4

Average Percentage of Optimal Solution Comparison

(b) Percentage Optimal Solutions

Figure 6.7: Group B, Performance Metrics 2

Figure 6.7 summarizes the last part of the algorithmic performance of group B. Fig-
ure 6.7a compares solving time with loading time, i.e., data initialization and subgroup
identification. While Horizontal Batches (Full Day) again has a high percentage of load-
ing time, Vertical Batches (2 groups) also exhibits a substantial loading time, with its
average loading time equal to the average solving time of Horizontal Batches (Full Day).

Finally, Figure 6.7b shows the fraction of optimal sub solutions returned by the model.
The patterns mirror those of group A, but in this case Horizontal Batches (Full Day)
produces a greater number of optimal solutions. Based on the results of group B, the
parameters of the Vertical Batches algorithm were adjusted. Since the algorithm requires
more time to find solutions, the time limit was increased with an additional hour for each
set of patients. This prevents the algorithm from prematurely restarting the solving
process when no solution is found.

66

6.4.3 Baseline model scenario: group C

25 50 75 100 125 150 175 200
Patients

2.5

3.0

3.5

4.0

4.5

5.0

5.5

M
in

 M
ak

e
Sp

an
 (D

ay
s)

Min Make Span Comparison
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize
Vertical Batches (3 groups)

(a) Min make span

25 50 75 100 125 150 175 200
Patients

0

2

4

6

8

10

D
iff

er
en

ce
 in

 M
in

 M
ak

e
Sp

an
 (H

ou
rs

) Difference in Min Make Span vs Lower Bound
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize
Vertical Batches (3 groups)

(b) Difference make span compared to lower
bound

Figure 6.8: Group C, comparison make span

The minimum makespans of all strategies differ as the number of patients increases, as
shown in Figure 6.8a. Figure 6.8b illustrates the deviations relative to the lower bound.
The Horizontal Batch algorithm approaches the lower bound as the number of patients
increases.

25 50 75 100 125 150 175 200
Patients

0

25

50

75

100

125

150

175

200

So
lv

in
g

Ti
m

e
(M

in
ut

es
)

Solving Time Comparison
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize
Vertical Batches (3 groups)

(a) Solving Time

25 50 75 100 125 150 175 200
Patients

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

W
ai

tin
g

Ti
m

e
(D

ay
s)

Average Waiting Time Comparison
Vertical Batches (2 groups)
Horizontal Batches (Half Day)
Horizontal Batches (Full Day)
Horizontal + Vertical Batches
Fix & Optimize
Vertical Batches (3 groups)

(b) Average Waiting Time

Figure 6.9: Group C, Performance Metrics 1

Figure 6.9 presents the first part of the algorithmic performance results for group C. The
trends resemble those observed in group B.

Figure 6.10 shows the second part of the performance results for group C. Again, the
trends are consistent with those in group B. Due to the solving time adjustment in the
Vertical Batch Algorithm, the average solving time decreased. Similarly, the Horizontal
Batch (Full Day) model achieved a higher fraction of optimal solutions, also as a result
of solving time adjustments.

67

Vertical Batches (2 groups)

Horizontal Batches (Full Day)

Vertical Batches (3 groups)

Fix & Optimize

Horizontal Batches (Half Day)

Horizontal + Vertical Batches
0

20

40

60

80

Ti
m

e
(M

in
ut

es
)

86.2

66.1

45.2
40.3

7.5

1.6

30.1 32.1

18.4

3.2 3.3 0.7

Average Solving Time with Average Loading Time
Total Solving Time
Loading Time

(a) Solving Time and Loading Time

Horizontal Batches (Half Day)

Horizontal + Vertical Batches

Horizontal Batches (Full Day)

Fix & Optimize

Vertical Batches (3 groups)

Vertical Batches (2 groups)0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

O
pt

im
al

 S
ol

ut
io

ns
 (%

)

1.0 1.0

0.9

0.7
0.7

0.5

Average Percentage of Optimal Solution Comparison

(b) Percentage Optimal Solutions

Figure 6.10: Group C, Performance Metrics 2

6.4.4 Extended model scenario

The following algorithms are used to test the extended model scenario: the Horizontal
Batch Algorithm (Half Day) and the Horizontal and Vertical Batch Algorithm (Half Day
& Individual Subgroups). In the Vertical Batch Algorithm, subgroups are defined based
on doctor characteristics. The first subgroup includes all unique doctors together with
one representative of each non-unique doctor type, while each remaining duplicate doctor
forms its own subgroup. To make this clear, see the example:

Set of doctors = {Clinician (Monday, Morning), Clinician (Monday, Morning),
Echografist (Monday, Full Day), Echografist (Monday, Full Day), Student (Monday,

Morning)}

Subgroup 1: {Clinician (Monday, Morning), Echografist (Monday, Full Day), Student
(Monday, Morning)}

Subgroup 2: {Clinician (Monday, Morning)}
Subgroup 3: {Echografist (Monday, Full Day)}

In this example, only the Student is unique on Monday morning. Two Clinicians work the
Monday morning shift, and two Echografists work the full-day shift on Monday. There-
fore, the first subgroup consists of the Student, one Clinician, and one Echografist. Each
of the remaining duplicate doctors is then assigned to its own subgroup. All subgroups
contain the same rooms; the split is applied only to doctors.

Since in the extended model scenario the goal is to make a schedule for 6 weeks, the main
KPI is changed to schedule as many complete patients as possible in this time window.

68

300 400 500 600 700 800 900 1000
Patients

200

300

400

500

600

700

800

C

om
pl

et
e

Pa
tie

nt
s

Sc
he

du
le

d
Comparison Complete Patients Scheduled

Horizontal Batches (Half Day)
Horizontal + Vertical Batches

Figure 6.11: Extend model, comparison complete scheduled patients

300 400 500 600 700 800 900 1000
Patients

2.5

5.0

7.5

10.0

12.5

15.0

So
lv

in
g

Ti
m

e
(M

in
ut

es
)

Solving Time Comparison

Horizontal Batches (Half Day)
Horizontal + Vertical Batches

(a) Solving Time

300 400 500 600 700 800 900 1000
Patients

0.206

0.208

0.210

0.212

0.214

Av
er

ag
e

W
ai

tin
g

Ti
m

e
(D

ay
s)

Average Waiting Time Comparison

Horizontal Batches (Half Day)
Horizontal + Vertical Batches

(b) Average Waiting Time

Figure 6.12: Extend model, performance metrics

Figure 6.11 presents the total number of patients scheduled over a six–week horizon for
different sizes of patient sets. Both algorithms achieve the same number of complete
scheduled patients. A similar observation holds for the average waiting time (see Figure
6.12b). The only difference between the Horizontal Batches (Half Days) and the Horizon-
tal and Vertical Batches algorithm is the computation time. The Horizontal and Vertical
Batches method consistently outperforms the former in terms of computation time, with
reductions ranging from 35% to 60%. Therefore, the Horizontal and Vertical Batches
algorithm is applied to solve the scheduling problem with a six–week scheduling horizon.
The corresponding performance results are summarized in Table 6.12. The Horizon-
tal and Vertical Batches algorithm generates a six–week schedule within 20
minutes and achieves a solution with 2.6% difference compared to the lower
bound.

69

Metric Value
Solving Time (minutes) 19.03
Loading Time (minutes) 16.73
Percentage Working Time 54.06%
Patients Completely Scheduled 1544
Average Waiting Time (days) 0.04
Lower Bound Gap 2.6%
Average Doctor Utilization 94.00%

Table 6.12: Performance metrics of the scheduling algorithm.

6.5 Double Booking

The double booking strategy is analyzed based on the following performance metrics:

• Average waiting time for appointment. This is not the average waiting time
used to compare different algorithms. With the comparison of the double booking
strategy the average waiting time for being helped on arrival is used which is in
minutes (instead of days).

• Percentage of appointments covered by double booking. The main principle
of double booking is to ensure patient attendance and minimize the impact of no-
shows. The percentage of appointments covered by double bookings represents the
proportion of no-show appointments that are still attended by another patient. In
an ideal scenario, this percentage would be 100%, indicating that every appointment
affected by a no-show is effectively used by another patient due to double booking.
A lower percentage indicates that some appointments remain unused due to no-
shows, resulting in idle time and reduced scheduling efficiency.

• Percentage doctor idle time. Double bookings have positive effect on the doctor
idle time, since the goal of double bookings is to lower the doctor idle times. This
doctors idle time is only based on working hours, so excluding the break.

• Doctor’s overtime. The double-booking strategy leads to more patients waiting
throughout the day, including at the end of the doctor’s shift. This often enforces
the doctor to work overtime to help those still waiting. Since overtime is costly, it
is important to minimize or avoid it.

• Cost. Double booking has a positive effect on doctors idle time but a negative
effect on patients waiting time, both incure a cost. See Table 4.10 for the cost
overview. Specialist making use of expensive equipments are more expensive than
clinicians.

The results are shown in Table 6.13. For some metrics the best and worst solution is
indicated with green and red, respectively. The no double booking strategy is the worst
strategy based on most metrics. It has a low number of complete scheduled patients,
high doctor idle time and high cost. The best strategy based on most metrics is the
Bailey-Welch double book strategy. It has a high number of complete scheduled patients,
low doctor idle time and high double book coverage. To see the complete distribution of

70

the waiting times of each strategy, see Figure A.2. For the distribution of the doctor’s
overtime for each strategy see Figure A.2. For the distribution of idle time see Figure
A.2. For the simulation results of the cost based double booking strategy see Figure A.1,
in the results the average cost is taken of each metric which results in €65.718.

Metric (avg = average) No DB DB (SD) DB (BW) DB (cost)

No-shows 529 587 699 591
No-show percentage (%) 17.88 18.35 19.16 18.31
Double bookings 0 296 589 193
Complete scheduled patients 1544 1856 2084 1759
Doctor idle time (%, avg) 22.24 17.89 15.21 17.27
Doctor idle time (Hours, avg) 402.75 343.75 284 324.75
Doctor over time (Minutes, avg) 0 14.63 33.75 5.25
Covered by double bookings (%) 0 37.3 65.4 36.8
Average waiting time (Minutes) 0 2.55 8.98 3.64
Cost (€) 79,184 74,933 72,254 65.718

Table 6.13: Performance Metrics Different Double Book Strategy

Based on the results, the average patient waiting time increases when double booking is
implemented. Specifically, the Bailey–Welch strategy results in an average waiting time
more than three times higher than that of the standard double booking strategy. This in-
crease can be explained by a larger number of patients scheduled within the six-week time
horizon. The benefits of double booking can be found in the reduction of doctor idle time.
Without double booking, the doctors’ idle time is approximately 22.24%, whereas under
the Bailey–Welch strategy it decreases to around 15.21%. Across all strategies—except
for the cost-based double booking strategy—a clear trend emerges: as the number of
double bookings increases, doctor idle time and overall cost decrease, while patient wait-
ing time increases. Notably, the cost-based double booking strategy achieves the lowest
total cost, despite having relatively few double bookings and maintaining a low average
patient waiting time.

As mentioned earlier, patient waiting times increase more under the Bailey–Welch strat-
egy compared to the standard double booking approach. Figure 6.13 and Figure 6.14
present the cumulative distribution functions of waiting times for both strategies, pro-
viding a more detailed comparison. Under the standard double booking strategy, 90%
of patients are seen within 10 minutes, whereas under the Bailey–Welch strategy, this is
within 25 minutes

71

0 10 20 30 40 50 60
Waiting Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f P
at

ie
nt

s

 80% < 0.0 min

 90% < 10.0 min

 99% < 30.0 min

Cumulative Distribution of Waiting Times

CDF

Figure 6.13: Cumulative distribution function under the Standard double book strategy

0 10 20 30 40 50 60 70
Waiting Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f P
at

ie
nt

s

 80% < 15.0 min

 90% < 25.0 min

 99% < 50.0 min

Cumulative Distribution of Waiting Times

CDF

Figure 6.14: Cumulative distribution function under the Bailey-Welch double book strat-
egy

In extreme cases, it can be stated that it is almost certain that a patient will be helpd
within 30 minutes under the standard double booking strategy, and within 50 minutes
under the Bailey-Welch strategy.

72

On average a patient requires two appointments in order to be completely scheduled. In
the case in which no double book strategy is applied, 1544 patients are completely sched-
uled, that is approximately a total of 3088 appointments. All scheduled appointments
can be classified as show or no-show. No-show appointments are appointments in which
a patient did not showed up and show appointments are appointments where all patient
did show up. In order to get an overview of the appointments affectected by no show
or by the double booking see Figure 6.15 and Figure 6.16 for the appointment distribu-
tion. In this figure, an overview of show and no-show appointments are presented. From
these no-show appointments, the double booked patient will visit a percentage of these
appointments if double booking is applied (orange).

0 500 1000 1500 2000 2500
Number of appointments

Appointments Effected by No Show

All Appointments

Appointment Distribution

Show
No-show
Covered by Double Booking

Figure 6.15: Appointment Distribution {Standard DB}}

0 500 1000 1500 2000 2500 3000
Number of appointments

Appointments Effected by No Show

All Appointments

Appointment Distribution

Show
No-show
Covered by Double Booking

Figure 6.16: Appointment Distribution {Bailey-Welch DB}}

In the appointment distribution the coverage by double bookings can be seen. In the case
of the Bailey-Welch strategy this coverage is higher than with the standard strategy.

To get an overview of the important results, a summary is displayed in Table 6.14. In
this overview the main impact of the strategies are displayed on the main KPI.

Metric No DB DB (standard) DB (BW) DB (cost)

Doctor idle time (%) 22.24 17.89 15.21 17.27
Average waiting time (Minutes) 0 2.55 8.98 3.64
Covered by double bookings (%) 0 37.3 65.4 36.8
Cost (€) 79,184 74,933 72,254 65,718

Table 6.14: Performance Metrics Different Double Book Strategy

73

Chapter 7

Conclusion

This thesis addressed the complex problem of constructing efficient outpatient clinic
schedules in the presence of patient no-shows and multiple operational constraints. The
underlying scheduling problem requires assigning a set of patients each with a sequence
of care types characterized by care durations and recovery times to a multi-resource envi-
ronment consisting of doctors and rooms, each with specific capabilities and availabilities.
The objective is to create a feasible schedule over a discrete time horizon while minimizing
the makespan. Additional hospital requirements were incorporated, such as maximum
appointments per shift and care type, limits on new patients per doctor or per shift, and
the possibility that some patients must remain with the same doctor throughout their
care sequence.

To support more effective scheduling, a no-show prediction model was first developed to
estimate the probability that patients miss their appointments. A LightGBM classifier
using patient demographics, temporal features, reminder information, and historical at-
tendance achieved an accuracy of approximately 0.69. Although moderate, the model
predicted low no-show probabilities more reliably than high ones, enabling meaningful
differentiation between more and less reliable patients.

Subsequently, several scheduling algorithms were designed and compared, including the
Optimal algorithm, Vertical Batch, Horizontal Batch, combined Horizontal and Verti-
cal Batch, and the Fix-and-Optimize heuristic. These algorithms were evaluated first
on a basic model and later extended to incorporate realistic constraints such as daily
shift structures, per-shift appointment limits, and new-patient restrictions. In the basic
model, the Horizontal Batch algorithm yielded the best makespan, while the combined
Horizontal and Vertical Batch algorithm achieved the lowest solving time. When scaled
to larger patient sets in the extended model—and with an adapted subgroup-formation
method—both algorithms achieved comparable makespan performance. However, the
combined Horizontal and Vertical Batch algorithm remained significantly faster, reduc-
ing solving times by 35%–60%. Based on these results, this algorithm is identified as the
most effective and scalable scheduling approach.

In addition, several double-booking strategies were examined: the standard, Bailey-
Welch, and cost-based approaches. While double booking increases patient waiting times,
90% of patients were still served within 10–25 minutes, and doctor idle time was markedly
reduced. Without double booking, doctors were idle 22% of the time on average; this
dropped to 17% with the standard and cost-based approaches and to 15% under Bailey-

74

Welch. The cost-based approach produced the best overall performance, achieving the
lowest total cost of €65,718 compared with €72,254 for Bailey-Welch and €74,933 for
the standard strategy.

In conclusion, this research demonstrates that integrating predictive no-show informa-
tion into a mathematical scheduling framework can substantially enhance the efficiency
of outpatient clinic operations. The combination of the mixed-integer linear programming
model with the Horizontal and Vertical Batch algorithm offers high-quality schedules with
strong computational performance, and when paired with a cost-based double-booking
strategy, it effectively balances patient waiting times and resource utilization. This ap-
proach will be implemented at the outpatient clinic of Amsterdam UMC (location VUmc),
supporting the development of more flexible, data-driven, and operationally efficient ap-
pointment schedules.

75

Chapter 8

Discussion

The findings of this study demonstrate that incorporating predictive analytics into ap-
pointment scheduling with a double book strategy can significantly improve outpatient
clinic efficiency. The LightGBM model proved to be a moderate predictor on the syn-
thetic data. The absence of real patient data limited the model accuracy for predicting
no show. In the synthetic dataset the patient history, the no-show of previous appoint-
ments, proved to be a strong predictor for no-show behavior although this patient history
was not present or limited to mostly one,two or three appointments. An improvement
in the predictions could be made if real data are used that capture a longer patient history.

This improvement in no-show prediction could result in an improvement in double book
efficiency, the so called ”Covered by double bookings”. Higher coverage means higher
resource utilization which has a positive effect on the cost.

The Horizontal And Vertical Batch Algorithm, achieved near-optimal schedules with
substantially lower computation times than other meta-heuristic. This balance between
accuracy and scalability is crucial for applying the algorithm in practice where dynamic
updates are frequent. For further improvement in computation time, the Horizontal And
Vertical Batch algorithm could be adapted for parallel computing. Each subgroup is
solved independent and could be send to a different machine to be solved.

Additionally, the scheduling model assumes deterministic service times and constant room
availability, while in practice, these service times are variable and rooms can be unavail-
able due to maintenance and introduce further complexity. Future work could incorporate
variable service times and room unavailability.

This study focused on double bookings as a way to deal with no-show behavior. It could
be interesting to investigate the effect of scheduling more than 2 patients in certain time
slots and compare this with the standard double booking strategy.

Overall, this research highlights the potential of data-driven scheduling to mitigate the
impact of no-shows, reduce waiting lists, and improve resource utilization. The proposed
framework provides a foundation for hospitals seeking to modernize their scheduling pro-
cesses and transition toward intelligent, automated planning systems that increase oper-
ation efficiency.

76

Appendix A

Appendix

A.1 Tables

ID Shift Specialty Working Days
D0 Morning Clinician Monday
D1 Morning Clinician Tuesday
D2 Morning Clinician Wednesday
D3 Morning Clinician Thursday
D4 Morning Clinician Friday
D5 Morning Clinician Saturday
D6 Afternoon Clinician Monday
D7 Afternoon Clinician Tuesday
D8 Afternoon Clinician Wednesday
D9 Afternoon Clinician Thursday
D10 Afternoon Clinician Friday
D11 Afternoon Clinician Saturday
D12–D17 Full day Clinician Mon–Sat
D18–D23 Full day Clinician Mon–Sat
D24–D29 Morning Doctor Assistant Mon–Sat
D30–D35 Afternoon Doctor Assistant Mon–Sat
D36 Full day CR-Thorax All
D37 Full day Spirometrie All
D38 Full day Echografist All
D39 Full day General Mon–Fri
D40 Full day General Mon–Fri

Table A.1: Doctors

77

ID Capability
R0 CR-Thorax
R1 CT Scan
R2 Doctor Appointment
R3 Doctor Appointment
R4 Doctor Appointment
R5 Doctor Appointment
R6 Doctor Appointment
R7 Dynamap
R8 ECG (Blood Pressure)
R9 EKG
R10 Holter
R11 MRI
R12 Spirometrie
R13 TTE
R14 XECG

Table A.2: Rooms

78

Rule Entity Condition / Description

R0 Patient The following procedures have immediate results:
XECG, ECG (BP), and PM/ICD. These procedures re-
quire a doctor appointment directly afterwards.

R0 Patient Procedures with results available within one hour in-
clude TTE, CR-Thorax, and Spirometry. These proce-
dures require a doctor appointment after 1 hour.

R0 Patient The same doctor must be assigned for ECG, Holter,
PM/ICD, TTE, and XECG procedures.

R1 Doctor Clinicians, Doctor Assistants, and General doctors
can perform: B.P.C., CPAP, D.A., Dynamap, ECG,
EKG, Holter, Pacemaker, PM/ICD, Syncope, TTE, and
XECG.

R1 Doctor Echografists are responsible for CT Scans and MRI pro-
cedures.

R3 Scheduler Working hours: 09:00–18:00; Morning session ends at
13:00.

R3 Scheduler Appointment slot length: 5 minutes; Minimum work-
load per doctor: 44 half-days per year.

R3 Scheduler Maximum appointments per day: Half-day = 15, Full-
day = 25, Holter = 5, XECG = 5, Pacemaker 10.7.

R3 Scheduler Maximum new patients per day: Half-day = 2, Full-day
= 4.

R3 Scheduler Between 17:00 and 18:00, only virtual Doctor appoint-
ments are allowed.

Table A.3: Detailed Scheduling Rules

79

A.2 Graphs

Simulation Results

Idle Time Over Time Waiting Time
Metric

0

5000

10000

15000

20000

25000

30000

35000

Co
st

 (
)

Simulation Results

Figure A.1: Monte Carlo Cost Simulation Results

Double Booking, Patient Waiting Time Distributions

0 10 20 30 40 50 60
Waiting Time (Minutes)

0

200

400

600

800

1000

1200

1400

N
um

be
r o

f P
at

ie
nt

s

Patient Waiting Time Histogram

Figure A.2: Patient Waiting Time Distribution {Standard Double Book Strategy}

80

0 10 20 30 40 50 60 70
Waiting Time (Minutes)

0

200

400

600

800

1000

N
um

be
r o

f P
at

ie
nt

s
Patient Waiting Time Histogram

Figure A.3: Patient Waiting Time Distribution {Bailey-Welch Double Book Strategy}

0 10 20 30 40 50
Waiting Time (Minutes)

0

200

400

600

800

1000

1200

1400

N
um

be
r o

f P
at

ie
nt

s

Patient Waiting Time Histogram

Figure A.4: Patient Waiting Time Distribution {Cost Double Book Strategy}

81

Double Booking, Doctor’s Idle Time Distributions

0 250 500 750 1000 1250 1500 1750 2000
Idle Time (Hours)

0

1

2

3

4

5

6

7

8

N
um

be
r o

f D
oc

to
rs

Doctor's Idle Time Histogram

Figure A.5: Doctor’s Idle Time Distribution {No Double Booking}.

0 250 500 750 1000 1250 1500 1750 2000
Idle Time (Hours)

0

2

4

6

8

10

12

14

N
um

be
r o

f D
oc

to
rs

Doctor's Idle Time Histogram

Figure A.6: Doctor’s Idle Time Distribution {Double Booking Standard}.

82

0 250 500 750 1000 1250 1500 1750 2000
Idle Time (Hours)

0

2

4

6

8

10

12

14

N
um

be
r o

f D
oc

to
rs

Doctor's Idle Time Histogram

Figure A.7: Doctor’s Idle Time Distribution {Double Booking Bailey-Welch}.

0 250 500 750 1000 1250 1500 1750 2000
Idle Time (Hours)

0

2

4

6

8

N
um

be
r o

f D
oc

to
rs

Doctor's Idle Time Histogram

Figure A.8: Doctor’s Idle Time Distribution {Double Booking Cost}.

83

Double Booking, Doctor’s Over Time Distributions

0 4 8 12 16 20 24 28 32 36 40

Over Time (Minutes)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f D
oc

to
rs

Doctor's Overtime Time Histogram

Figure A.9: Doctor’s Over Time Distribution {Double Booking Standard}.

0 50 100 150 200 250
Over Time (Minutes)

0

5

10

15

20

25

30

N
um

be
r o

f D
oc

to
rs

Doctor's Overtime Time Histogram

Figure A.10: Doctor’s Over Time Distribution {Double Booking Bailey-Welch}.

84

0 5 10 15 20 25
Over Time (Minutes)

0

5

10

15

20

25
N

um
be

r o
f D

oc
to

rs
Doctor's Overtime Time Histogram

Figure A.11: Doctor’s Over Time Distribution {Double Booking Cost}.

85

Bibliography

[1] A. Ahmadi-Javid, Z. Jalali, and K. J. Klassen. “Outpatient appointment systems in
healthcare: A review of optimization studies”. In: European Journal of Operational
Research 258.1 (Apr. 2017), pp. 3–34. doi: 10.1016/J.EJOR.2016.06.064.

[2] A. Alaeddini et al. “A probabilistic model for predicting the probability of no-
show in hospital appointments”. In: Health Care Management Science 14.2 (2011),
pp. 146–157. doi: 10.1007/s10729-011-9148-9.

[3] N. N. Amalina, K. B. Ofori-Amanfo, and A. Heungjo. “A Multi-Head Attention Soft
Random Forest for Interpretable Patient No-Show Prediction”. In: arXiv preprint
(2025). doi: 10.48550/arXiv.2505.17344.

[4] Anonymous. “Development of an evidence-based model for predicting patient, provider,
and appointment factors that influence no-shows in a rural healthcare system”. In:
BMC Health Services Research 23 (2023), p. 115. doi: 10.1186/s12913- 023-
09115-6.

[5] Samira Fazel Anvaryazdi, Saravanan Venkatachalam, and Ratna Babu Chinnam.
“Appointment scheduling at outpatient clinics using two-stage stochastic program-
ming approach”. In: IEEE Access 8 (2020), pp. 175297–175305. issn: 21693536.
doi: 10.1109/ACCESS.2020.3025997.

[6] D. Barrera Ferro et al. “Improving healthcare access management by predicting
patient no-show behaviour”. In: arXiv preprint (2020). doi: 10.1016/j.dss.
2020.113398.

[7] Bjorn P. Berg et al. “Optimal booking and scheduling in outpatient procedure
centers”. In: Computers & Operations Research 50 (Oct. 2014), pp. 24–37. issn:
0305-0548. doi: 10.1016/J.COR.2014.04.007.

[8] S. Boughorbel, F. Jarray, and A. Kadri. “Fairness in TabNet Model by Disentangled
Representation for the Prediction of Hospital No-Show”. In: arXiv preprint (2021).
arXiv:2107.XXXX [cs.LG]. url: https://arxiv.org/abs/2107.XXXX.

[9] Robert L. Burdett et al. “A mixed integer linear programing approach to perform
hospital capacity assessments”. In: Expert Systems with Applications 77 (July 2017),
pp. 170–188. issn: 0957-4174. doi: 10.1016/J.ESWA.2017.01.050.

[10] Centraal Bureau voor de Statistiek. Hoe vergrijsd is Nederland? 2022. url: https:
/ / www . cbs . nl / nl - nl / visualisaties / dashboard - bevolking / leeftijd /

ouderen.

[11] P.-S. Chen et al. “Applying heuristic algorithms to solve inter-hospital hierarchi-
cal allocation and scheduling problems of medical staff”. In: International Journal
of Computational Intelligence Systems 13.1 (2020), pp. 318–331. doi: 10.2991/
ijcis.d.200310.004.

86

https://doi.org/10.1016/J.EJOR.2016.06.064
https://doi.org/10.1007/s10729-011-9148-9
https://doi.org/10.48550/arXiv.2505.17344
https://doi.org/10.1186/s12913-023-09115-6
https://doi.org/10.1186/s12913-023-09115-6
https://doi.org/10.1109/ACCESS.2020.3025997
https://doi.org/10.1016/j.dss.2020.113398
https://doi.org/10.1016/j.dss.2020.113398
https://doi.org/10.1016/J.COR.2014.04.007
https://arxiv.org/abs/2107.XXXX
https://doi.org/10.1016/J.ESWA.2017.01.050
https://www.cbs.nl/nl-nl/visualisaties/dashboard-bevolking/leeftijd/ouderen
https://www.cbs.nl/nl-nl/visualisaties/dashboard-bevolking/leeftijd/ouderen
https://www.cbs.nl/nl-nl/visualisaties/dashboard-bevolking/leeftijd/ouderen
https://doi.org/10.2991/ijcis.d.200310.004
https://doi.org/10.2991/ijcis.d.200310.004

[12] A. Chouksey, A. K. Agrawal, and A. N. Tanksale. “Accelerated bender’s decomposi-
tion algorithm and hybrid heuristics for multi-period planning of maternal health-
care facilities in India”. In: Journal of the Operational Research Society (2024),
pp. 1–20. doi: 10.1016/j.ejor.2024.04.013.

[13] C. Deina et al. “Decision analysis framework for predicting no-shows to appoint-
ments using machine learning algorithms”. In: BMC Health Services Research 24
(2024), p. 37. doi: 10.1186/s12913-023-10418-6.

[14] Diwakar Gupta and Brian Denton. “Appointment scheduling in health care: Chal-
lenges and opportunities”. In: IIE Transactions 40.9 (2008), pp. 800–819. doi:
10.1080/07408170802165880.

[15] Pedram Hooshangi-Tabrizi et al. “Improving patient-care services at an oncology
clinic using a flexible and adaptive scheduling procedure”. In: Expert Systems with
Applications 150 (July 2020), p. 113267. issn: 0957-4174. doi: 10.1016/J.ESWA.
2020.113267.

[16] Y.-C. Huang and D. A. Hanauer. “Patient no-show predictive model development
using multiple data sources for an effective overbooking approach”. In: Applied
Clinical Informatics 5.3 (2014), pp. 836–860. doi: 10.4338/ACI-2014-04-RA-
0026.

[17] Joniarroba. Medical Appointment No Shows. Kaggle dataset. Accessed: 24 Sept
2025. Kaggle. 2017. url: https://www.kaggle.com/datasets/joniarroba/
noshowappointments.

[18] Kaggle Community. What machine learning approaches have won most Kaggle
competitions? Accessed: 23 Oct 2025. 2021. url: https://www.kaggle.com/
discussions/general/248068.

[19] P. Kheirkhah et al. “Prevalence, predictors and economic consequences of no-
shows”. In: BMC Health Services Research 16 (2016), p. 13. doi: 10.1186/s12913-
015-1243-z.

[20] A. G. Leeftink, I. M.H. Vliegen, and E. W. Hans. “Stochastic integer programming
for multi-disciplinary outpatient clinic planning”. In: Health care management sci-
ence 22 (1 Mar. 2019), pp. 53–67. issn: 1572-9389. doi: 10.1007/S10729-017-
9422-6. url: https://pubmed.ncbi.nlm.nih.gov/29124483/.

[21] Haichao Liu, Yang Wang, and Jin-Kao Hao. “Solving the patient admission schedul-
ing problem using constraint aggregation”. In: European Journal of Operational
Research 316.1 (2024), pp. 85–99. issn: 0377-2217. doi: https://doi.org/10.
1016/j.ejor.2024.02.009. url: https://www.sciencedirect.com/science/
article/pii/S0377221724001012.

[22] V. Lotfi and E. Torres. “Improving an outpatient clinic utilization using deci-
sion analysis-based patient scheduling”. In: Socio-Economic Planning Sciences 48.2
(June 2014), pp. 115–126. doi: 10.1016/j.seps.2013.12.002.

[23] R. Masson, F. Lehuédé, and O. Péton. “An adaptive large neighborhood search for
the pickup and delivery problem with transfers”. In: Transportation Science 47.3
(2013), pp. 344–355. doi: https://doi.org/10.1287/trsc.1120.0432.

[24] F. Mochón et al. “Machine-Learning-Based No Show Prediction in Outpatient Vis-
its”. In: International Journal of Interactive Multimedia and Artificial Intelligence
4.7 (2018), pp. 29–35. doi: 10.9781/ijimai.2017.03.004.

87

https://doi.org/10.1016/j.ejor.2024.04.013
https://doi.org/10.1186/s12913-023-10418-6
https://doi.org/10.1080/07408170802165880
https://doi.org/10.1016/J.ESWA.2020.113267
https://doi.org/10.1016/J.ESWA.2020.113267
https://doi.org/10.4338/ACI-2014-04-RA-0026
https://doi.org/10.4338/ACI-2014-04-RA-0026
https://www.kaggle.com/datasets/joniarroba/noshowappointments
https://www.kaggle.com/datasets/joniarroba/noshowappointments
https://www.kaggle.com/discussions/general/248068
https://www.kaggle.com/discussions/general/248068
https://doi.org/10.1186/s12913-015-1243-z
https://doi.org/10.1186/s12913-015-1243-z
https://doi.org/10.1007/S10729-017-9422-6
https://doi.org/10.1007/S10729-017-9422-6
https://pubmed.ncbi.nlm.nih.gov/29124483/
https://doi.org/https://doi.org/10.1016/j.ejor.2024.02.009
https://doi.org/https://doi.org/10.1016/j.ejor.2024.02.009
https://www.sciencedirect.com/science/article/pii/S0377221724001012
https://www.sciencedirect.com/science/article/pii/S0377221724001012
https://doi.org/10.1016/j.seps.2013.12.002
https://doi.org/https://doi.org/10.1287/trsc.1120.0432
https://doi.org/10.9781/ijimai.2017.03.004

[25] C. G. Moore, P. Wilson-Witherspoon, and J. C. Probst. “Time and money: effects
of no-shows at a family practice residency clinic”. In: Family Medicine-Kansas City-
33.7 (2001), pp. 522–527.

[26] Nederlandse Zorgautoriteit. Stand van de zorg 2024. Tech. rep. Rapport uitgebracht
op 8 oktober 2024. Nederlandse Zorgautoriteit, Oct. 2024. url: https://www.nza.
nl/publicaties/stand-van-de-zorg.

[27] Michela Samorani and Larry R. LaGanga. “Outpatient appointment scheduling
given individual patient preferences and probabilistic service times”. In: European
Journal of Operational Research 245.2 (2015), pp. 548–560. doi: 10.1016/j.ejor.
2015.03.013.

[28] Katja Schimmelpfeng, Stefan Helber, and Steffen Kasper. “Decision support for
rehabilitation hospital scheduling”. In: OR Spectrum 34 (2 Apr. 2012), pp. 461–
489. issn: 01716468. doi: 10.1007/S00291-011-0273-0/METRICS. url: https:
//link.springer.com/article/10.1007/s00291-011-0273-0.

[29] A. J. T. Schneider, J. Theresia van Essen, B. Carlier, et al. “Scheduling surgery
groups considering multiple downstream resources”. In: European Journal of Oper-
ational Research 282 (2020), pp. 741–752. doi: 10.1016/j.ejor.2019.09.029.

[30] S. A. Shah et al. “Impact of COVID-19 pandemic on elective care backlog trends,
recovery efforts, and capacity needs to address backlogs in Scotland (2013–2023): a
descriptive analysis and modelling study”. In: The Lancet Regional Health–Europe
(2025). doi: https://doi.org/10.1016/j.lanepe.2024.101188.

[31] M. Shuang, S. Chen, and X. Cai. “A Two-stage Stochastic Programming Model
for Outpatient Appointment Scheduling”. In: IEEE International Conference on
Industrial Engineering and Engineering Management (Dec. 2019), pp. 79–83. doi:
10.1109/IEEM44572.2019.8978589.

[32] Aykut Melih Turhan and Bilge Bilgen. “A hybrid fix-and-optimize and simulated
annealing approaches for nurse rostering problem”. In: Computers Industrial Engi-
neering 145 (2020), p. 106531. issn: 0360-8352. doi: https://doi.org/10.1016/
j.cie.2020.106531. url: https://www.sciencedirect.com/science/article/
pii/S0360835220302655.

[33] P. Van der Maas. “Health care in the Netherlands”. In: Volksgezondheid en Gezond-
heidszorg (1999), pp. 102–105.

[34] Lien Wang et al. “On the use of partitioning for scheduling of surgeries in the
inpatient surgical department”. In: Health Care Management Science 25.4 (2022),
pp. 526–550. doi: 10.1007/s10729-022-09598-0.

[35] T. I. Wickert et al. “An integer programming approach for the physician rostering
problem”. In: Annals of Operations Research 302.2 (2021), pp. 363–390. doi: 10.
1007/s10479-020-03552-5.

[36] Xiuli Wu, Xianli Shen, and Linjuan Zhang. “Solving the planning and scheduling
problem simultaneously in a hospital with a bi-layer discrete particle swarm opti-
mization”. In: Mathematical Biosciences and Engineering 16.2 (2019), pp. 831–861.
doi: 10.3934/mbe.2019039.

[37] F. Ü. Yüksektepe. “MILP Based Hyper-Box Enclosure Approach to Multi-Class
Data Classification”. PhD thesis. Koç University, 2009. doi: https://doi.org/
10.1142/9789812772954_0002?urlappend=%3Futm_source%3Dresearchgate.

88

https://www.nza.nl/publicaties/stand-van-de-zorg
https://www.nza.nl/publicaties/stand-van-de-zorg
https://doi.org/10.1016/j.ejor.2015.03.013
https://doi.org/10.1016/j.ejor.2015.03.013
https://doi.org/10.1007/S00291-011-0273-0/METRICS
https://link.springer.com/article/10.1007/s00291-011-0273-0
https://link.springer.com/article/10.1007/s00291-011-0273-0
https://doi.org/10.1016/j.ejor.2019.09.029
https://doi.org/https://doi.org/10.1016/j.lanepe.2024.101188
https://doi.org/10.1109/IEEM44572.2019.8978589
https://doi.org/https://doi.org/10.1016/j.cie.2020.106531
https://doi.org/https://doi.org/10.1016/j.cie.2020.106531
https://www.sciencedirect.com/science/article/pii/S0360835220302655
https://www.sciencedirect.com/science/article/pii/S0360835220302655
https://doi.org/10.1007/s10729-022-09598-0
https://doi.org/10.1007/s10479-020-03552-5
https://doi.org/10.1007/s10479-020-03552-5
https://doi.org/10.3934/mbe.2019039
https://doi.org/https://doi.org/10.1142/9789812772954_0002?urlappend=%3Futm_source%3Dresearchgate
https://doi.org/https://doi.org/10.1142/9789812772954_0002?urlappend=%3Futm_source%3Dresearchgate

[38] Zorginstituut Nederland. Jaarverslag 2024 Zorginstituut Nederland. Tech. rep. Defini-
tief verslag, uitgebracht aan de minister van Volksgezondheid, Welzijn en Sport op
12 maart 2025. Zorginstituut Nederland, 2025. url: https://www.zorginstituutnederland.
nl/publicaties/jaarverslag/2025/03/12/jaarverslag-2024-zorginstituut-

nederland.

89

https://www.zorginstituutnederland.nl/publicaties/jaarverslag/2025/03/12/jaarverslag-2024-zorginstituut-nederland
https://www.zorginstituutnederland.nl/publicaties/jaarverslag/2025/03/12/jaarverslag-2024-zorginstituut-nederland
https://www.zorginstituutnederland.nl/publicaties/jaarverslag/2025/03/12/jaarverslag-2024-zorginstituut-nederland

	Introduction
	Research Objective
	Host Organization
	Thesis Structure

	Related Work
	No-show prediction model
	Features
	Modeling Approaches
	Double booking

	Scheduling Models
	Mixed Integer Linear Programming
	Stochastic Programming Techniques

	Meta-Heuristics
	Applied literature and novel contributions

	Data
	Methodology
	No-show prediction model
	Feature Engineering
	Feature Selection
	Model Selection
	Model Training and testing
	Patient Selection

	Scheduling model description
	Introduction notation
	Mathematical formulation: basic model
	Mathematical formulation: extended model

	Double Book strategies

	Scheduling Algorithms
	Overview Algorithms
	The Optimal algorithm
	The Vertical Batches algorithm
	The Horizontal Batches algorithm
	The Horizontal and Vertical Batch algorithm
	The Fix-And-Optimize algorithm

	Vertical Batch algorithm
	Horizontal Batch algorithm
	Horizontal and Vertical Batch algorithm
	Fix and Optimize algorithm

	Results
	No-show predictions
	Experimental Setup
	Baseline model scenario
	Extended model scenario

	Evaluation Metrics
	Algorithm Performance
	Baseline model scenario: group A
	Baseline model scenario: group B
	Baseline model scenario: group C
	Extended model scenario

	Double Booking

	Conclusion
	Discussion
	Appendix
	Tables
	Graphs

