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Abstract

Currently, no adequate method exists for determining how frequently a retail store in

a supply chain should receive deliveries from its distribution center. Existing methods

neglect many crucial constraints, such as the necessity to account for maximum store

storage capacities and the volume of load carriers.

This thesis addresses the problem by outlining a new method for determining the op-

timal number of deliveries within a proposed periodic cycle (in weeks) and the vehicle

routing problem of these delivery distributions to the stores of Etos to gain control over

the outbound transportation costs. For these research topics, a Mixed Integer Program-

ming optimization model is developed that is solved using Gurobi for the replenishment

process of the supply chain of Etos. A Capacitated Vehicle Routing Problem with Time

Windows, in which vehicles have a predefined capacity and stores must be served after

the earliest and before the latest time window bounds, is translated and implemented

into an optimization model that determines the optimal delivery schedule minimizing the

transportation costs and taking the optimal number of deliveries as input for demand.

It is shown that, with the currently available data, our two sequentially used Mixed

Integer (Quadratically Constrained) Programming optimization models (optimization of

delivery frequency and Capacitated Vehicle Routing Problem with Time Windows) are

able to make accurate predictions on the cumulative total transport cost up to and in-

cluding week 36 of 2022. A heuristic approach was chosen to produce a working solution

within a reasonable time frame. Instead of looking for a perfect solution, heuristic strate-

gies look for a quick solution that falls within an acceptable range of accuracy. Because a

heuristic approach emphasizes speed over accuracy, it is often combined with optimization

algorithms to improve results.

The evaluation of results shows that, with a periodic cycle of two weeks, we can theoret-

ically reduce the total cumulative transport costs by 38.6% and decrease the cumulative

number of deliveries by 47.3%. Nevertheless, these implementations of results and the

inclusion of possible PostNL delivery approaches might be an interesting field of study for

further research. Recommendations include investigating methods to optimize the inter-

mediate lead time of deliveries; optimize the delivery day and time of the Etos stores; and

optimize the workload distribution of the warehouse. These recommendations are related

to the feasibility of the actual implementation of the proposed models.
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1.1 Description of Host company: Etos

Etos originates in 1919 as a part of Philips under the name “Philips Coöperatieve Ver-

bruiksvereeniging”. The company was founded due to the decrease in sales related to the

price increase. In 1931, Etos become independent of Philips and took the name Etos,

which stands for “Eendracht, Toewijding, Overleg en Samenwerking”. Currently, Etos is

an entity of Ahold Delhaize. This happened in 1973 when Albert Heijn overtook Etos. In

2000 was the next development, namely the possibility to buy their products online. The

store also won the title of “Beste drogisterij” seven times, with the first win in 2008.

Etos, the largest health and wellness platform in the Netherlands, has been customers’

trusted drugstore for over a hundred years. With 550 stores throughout the Netherlands,

an online store, around 5,400 employees, of which 2,400 are certified druggists, we work

together on the mission of helping the customer feel good every day. As a reliable drug-

store and the largest digital health platform in the Netherlands, we are there for our

customers with advice, service, and products. Every week we help more than 1 million

customers in our stores and on Etos.nl, and on an annual basis, we provide more than 30

million pieces of advice on health, appearance, balance, exercise, and nutrition.

Figure 1.1: Example of Etos Store | Etos Leidschendam.

Optimal Delivery Frequency & Vehicle Routing Problem Page 7 of 71
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1.2 Department of Supply Chain Tactics

As a Data Analyst & Data Scientist within Supply Chain Tactics, my team and I are part

of the Supply Chain of Etos together with the Replenishment Fulfilment and Warehouse

Fulfilment departments. The department consists of a diverse group of people in different

functions, with the aim of jointly ensuring the best product availability (for our approx-

imately 8 million customers in our approximately 550 stores and in our webshop) at the

lowest possible cost!

In our daily work, we spruce up a lot of ideas to realize improvement opportunities.

More in detail: my team and I develop smart solutions that make it possible to have our

products available to our customers in the best possible way. The Supply Chain Tactical

team is responsible for managing, optimizing, and innovating the Supply Chain of Etos,

from supplier to the store shelf. This implies the following:

① Warehouse Replenishment: Making the best possible order for our suppliers

based on data and algorithms.

② Warehouse Improvement: The continuous search for improvements in our dis-

tribution center processes to enhance the warehouse’s performance.

③ Store Replenishment: Continuously improving our store orders based on signals

from stores and our own analyses.

④ Store Item Forecasting: Making the best possible sales forecast for our stores

based on data and algorithms.

⑤ Data & Tooling: Developments of tooling & dashboards (including Toolbox),

automating activities, and developing add-ons on existing IT systems.

An organizational chart of only four layers can describe the organization of Etos. This

organizational chart is visible in Figure 1.2. The chart shows that Etos has six main

departments, namely: Supply Chain, Retail Operations, Finance, Merchandise, Marketing

& E-Commerce, and HR. From the chart, we can observe the department of Supply Chain

Tactics is part of the Retail Operations (Supply Chain) and is highlighted in yellow.

Page 8 of 71 Optimal Delivery Frequency & Vehicle Routing Problem



Master Thesis Business Analytics Dave de Moel

Figure 1.2: Organizational Chart of Etos.

Figure 1.3: Distribution Center of Etos in Beverwijk.
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2.1 Introduction of Subject

The topic of Supply Chain Management is very wide and involves many factors. Supply

Chain Management has been defined, by Cornell Engineering University [1] as the “design,

planning, execution, control, and monitoring of supply chain activities with the objective

of creating net value, building a competitive infrastructure, leveraging worldwide logistics,

synchronizing supply with demand and measuring performance globally.”

It includes the movement and storage of raw materials, work-in-process inventory, and

finished goods from point of origin to point of consumption. Interconnected or interlinked

networks, channels and node businesses are involved in the provision of products and

services required by end customers in a supply chain. Warehouse management, routing

problems, goods receipt, and order creation are only some aspects that belong to this

argument. Another important feature of Supply Chain Management is the determination

of the delivery frequencies in distribution management. In fact, they are often used, and

determining them is therefore an important decision in the design and operation of dis-

tribution networks.

Retailers serve consumers by providing a variety of products to them. Thereby, they

have to be able to sell any product at the demand of the consumer. However, this is not

always feasible, as items compete with each other for scarce shelf space and backroom

storage. Typically, a retailer has pre-determined the amount of shelf space allocated to

each item and for each store. Furthermore, the retailer sets the frequency of deliveries to

each store. The availability of the item depends on whether the order is large enough to

protect the store from stock out between the order arrival and the arrival of the next order.

Nowadays different modeling approaches exist to decide on delivery frequencies. The

goal of this thesis is therefore to describe the problem statement in the context of Etos,

outline which factors play a role, and present an overview of different quantitative oper-

ations management approaches that can provide decision support for Etos.

Optimal Delivery Frequency & Vehicle Routing Problem Page 11 of 71
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2.2 Problem Statement

Many companies are trying to reduce inventory carrying costs at each stage in the sup-

ply chain. For the retail stores of Etos, this generally includes reducing the amount of

merchandise on the shelves and in the backroom, an area that is not on the sales floor

and is used for storing excess products. Companies that have successfully implemented

programs reducing store inventory have realized large savings in carrying costs. In doing

so, however, retailers have often had to increase the frequency of deliveries from their

distribution centers in order to keep products on the shelves, resulting in increased trans-

portation costs. Particularly with the uncertainty in fuel prices, there is rising interest

in taking a closer look at the trade-off between carrying and product handling costs and

transportation costs, and in trying to determine the optimal delivery frequency and out-

bound scheduling planning that will result in the lowest overall costs.

The rising cost of transportation is of particular concern to the retail grocery indus-

try, which moves large volumes of low-margin goods. For that reason, this problem is of

high relevance to Etos. The stores of Etos stores are severely constrained in the number

of deliveries they require each week because of factors such as limited shelf space, little

or no backroom storage, large demand uncertainty, and an increasing number of Stock

Keeping Units (SKUs) being sold at each store.

Constraints such as limited vehicle capacity and the necessity of a fixed delivery (rout-

ing) schedule further complicate the issue. These tight constraints and necessities make

reducing the delivery frequency to these stores quite difficult. Some research has been

done in this area, but existing models do not incorporate the constraints of both limited

physical space at the store and the necessity for deliveries to fall on fixed days of the week.

This paper addresses this problem by providing a method for analyzing the delivery

frequency from the main distribution center to a retail store. For this thesis, we worked

with retailer Etos to develop a method for determining the delivery frequency for each in-

dividual store based on a set of characteristics including shelf space, transportation costs,

inventory costs, and product handling costs. The proposed methodology also includes

the addition of post-delivery goods via PostNL and an application of the vehicle routing

problem for planning an outbound schedule to give Etos insights into the (cumulative)

total cost of transportation.

Page 12 of 71 Optimal Delivery Frequency & Vehicle Routing Problem
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2.3 Research Question

The outbound logistics planning of the delivery frequency and route scheduling from the

DC to the stores of Etos is considered to be an integrated replenishment fulfillment and

distribution planning problem. The aim of this research of outbound logistics planning is

to increase the operational efficiency of the outbound logistics operation and reduce the

accommodated transportation costs in the supply chain of Etos. Based on the problem

definition and the goal, the following research question had been defined:

Can Etos improve its supply chain responsiveness as well as its cost of

transportation through optimal transport flow, and delivery frequency con-

trol and vehicle routing using mathematical optimization techniques?

If these individual predictions can be made accurately, they can be used to compute

an estimate of the number of deliveries for a periodic cycle. In combination with the

vehicle routing problem, Etos will get an indication of the (cumulative) total transport

cost in advance so so that they can discuss savings measures accordingly.

In addition, Etos can also review its current process. Determining the importance of

outbound logistics planning will give them insight into which factors might influence and

contribute to supply chain responsiveness and transport efficiency. This results in the

following sub-question:

① Identify the current order-and-delivery schedule and the workload and capacity lim-

itations at the distribution center and stores.

② What are the vehicle and store capacity limitations of the retail stores operating

under the current order-and-delivery schedule?

③ What methodology and heuristic approach benefits both the model performance

and the result when trying to minimize the optimization objective?

④ What factors might influence and contribute to supply chain responsiveness, cost of

transportation, and number of routes of Etos?

⑤ What parameter settings result in optimally integrated outbound logistics planning

for the supply chain of Etos?

Optimal Delivery Frequency & Vehicle Routing Problem Page 13 of 71



Dave de Moel Master Thesis Business Analytics

2.4 Research Approach

In general, mathematical optimization projects have a fixed structure. This structure is

also applied in this research, and an overview is shown in Figure 2.1. The first step is

to understand the problem. This consists of understanding the business needs, defining

appropriate research questions and researching related literature to the topic. They will

be discussed in Section 2.3 and in Chapter 3, respectively.

Secondly, we look at the processes as they are in use in the current situation. The

processes of most relevant topics within the supply chain of Etos and related to my prob-

lem statement are described in Chapter 4.

The third step is the collection of data that is used for the mathematical model. How

the data is collected, cleaned, and prepared as described in Chapter 5. Once the data is

prepared, it can be used as input for the optimization models.

Chapter 6 outlines and explains the methodology of two optimization models used to

answer the research questions. Section 6.2 outlines the methodology of the optimal deliv-

ery frequency. Section 6.3 outlines the methodology of the Capacitated Vehicle Routing

Problem with Time Windows (CVRPTW). In Section 6.1, we discuss the coherence of

both optimization models and how it uses the collected data as well as intermediate out-

comes as input values for optimization.

Next, we discuss the results of the implementation of both methodologies to make predic-

tions and determine the outcome of the (cumulative) total transport cost in Chapter 7.

In this chapter, we also discuss the performance of the models, the experimental setups,

and related evaluations that benefit the outcome.

Finally, we draw a conclusion and make recommendations based on the results en eval-

uations in Chapter 7.9. We end this thesis with a discussion of the capabilities and lim-

itations of relevant modeling approaches and other possible subjects for future research

discussed in Chapter 7.9.
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Business Setting

Problem Analysis

Desk Study (Literature Review)

Data Collection and Exploration

(Mathematical) Modelling

Design and Implementation

Testing & Simulation

Evaluation of Results

Conclusion & Recommendations

Figure 2.1: The Research Structure Adopted in This Thesis
and Which is Typical in A Mathematical Optimization Project.
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The problem addressed in this study refers to the area of scheduling and routing. The

literature on scheduling theory is very extensive. Therefore, this literature review is

restricted to publications directly addressing the scheduling and routing of retail stores.

All upcoming subsections describe relevant information that applies to both my problem

statement and the current challenge within the supply chain of Etos.

3.1 Out-of-Stock Rate

Corsten and Gruen (2005) [2] provides an overview of the problem to increase on-shelf

availability. They report on their own empirical findings at retailers and review other

studies between 1996 and 2003. The average out-of-stock (OOS) rates were found in

those studies about 7 to 10 percent. The rates are different depending on the product

category, e.g. fresh food categories (perishables) tend to have higher rates. However, the

figures are subject to the measurement methods applied. Corsten and Gruen also review

different methods that define and measure OOS. Aastrup and Kotzab (2010) [3] review

two research streams dealing with OOS. The first is about consumer responses to OOS,

the second is about the root causes of OOS: They propose to seek the optimal level of

OOS in terms of cost and gains instead of striving for a minimal OOS rate. Trautrims

et al. (2009) [4] contribute to this gap. They explore the relation and trade-off between

on-shelf availability and profitability of a retailer.

3.2 Economic Order Quantity

The Economic Order Quantity (EOQ) takes into account all costs which are impacted by

the order size, namely inventory holding costs, ordering costs, purchase costs (including

volume discounts), and stock-out costs. Transportation costs are generally included in

the ordering costs if there is a fixed charge per delivery. If all or part of the transportation

cost is based on the number of items ordered, the variable portion of the cost is generally

added to the purchase price. Even though the EOQ is appropriate in many applications

for finding the optimal order size, and therefore the order frequency, it does have its

limitations (Silver et al. (1998) [5]). The limitation of the EOQ model that becomes

particularly apparent when trying to apply it to a retail grocery store is non-financial

considerations, such as delivery time windows and labor availability. The EOQ model

also becomes difficult to use when looking at the several thousand SKUs that are shipped

on a single truck, each with a different demand pattern.

Optimal Delivery Frequency & Vehicle Routing Problem Page 17 of 71
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3.3 Replenishment Schedule

Balintfy (1964) [6] has done work in determining the replenishment schedule by looking at

it in terms of a Joint Replenishment Problem (JRP). The JRP refers to a situation where

several different products can be ordered together for one fixed cost for the entire order

(usually referred to as a major setup cost) and an additional charge per product (minor

setup cost). In the case of transporting inventory from a warehouse to a retail store, the

transportation cost would be the major setup cost, and there would be little or no minor

setup cost. This is the case because the delivery cost remains the same (to the point

when the truck is filled) regardless of the size of the delivery, with the possible exception

of small incremental order-picking costs, depending on how the orders are picked.

Under Balintfy’s method, each product is assigned a can-order and a must-order level.

When one product drops below its must-order level, all products below its can-order level

are ordered. Enough of each product is ordered to raise its level to an order-up-to-level.

For grocery retailers, this is not a logical replenishment method because with several thou-

sands of SKUs and in many cases very limited shelf space, the can-order and must-order

numbers will be very close to the same. This method also does not lend itself to a fixed

delivery schedule, nor does it incorporate truck capacity constraints.

3.4 Delivery Frequencies

Cachon (2001) [7] considers a method for determining delivery frequencies that dispatches

a truck once the total order size reaches a given threshold. For this method, a contin-

uous review of shelf inventory is needed, and Cachon is able to show that this method

performs better than comparable methods which use periodic review. He assigns a dollar

value to shelf space but assumes that shelf space is unlimited and determines the optimal

allocation for each product.

Again, grocery retailers are often severely constrained by shelf space limitations and gen-

erally do not have total freedom to reallocate shelf space. With a product mix that is

continually changing, reallocating shelf space based on optimal numbers for thousands of

stock keeping units (SKUs) is not practical. Also, dispatching a truck after it reaches a

given threshold means that the delivery schedule will not be fixed, which makes it very

difficult for grocery stores to schedule their stocking labor.
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3.5 The Retail Supply Chain

In the literature, there have been several studies that focused on integrative retail lo-

gistics in fast-moving consumer goods (FMCG) supply chains. The retail system of the

supply consists of three different subsystems: the distribution center, transportation, and

the store, which account for the three largest shares of the operational costs (Kuhn and

Sternbeck (2013) [8]). Together, these subsystems define the retail supply chain.

The three different subsystems of the retail supply chain are interrelated, and each subsys-

tem has its own planning and working mechanism. However, each subsystem is dependent

on the requirements of the other subsystems, which causes interdependent internal op-

erations planning problems on a tactical level (Kuhn and Sternbeck (2013) [8]). The

research of Kuhn and Sternbeck discovered five components of tactical supply chain plan-

ning considerably affecting more than one subsystem in the retail supply chain: the order

packaging unit, store delivery pattern, store replenishment lead time, store delivery ar-

rival times, and arrival time window, and roll-cage sequencing and loading carriers. Store

delivery patterns, and the store delivery arrival times and arrival time window determine

the store replenishment lead time. Altogether, these aspects and their interdependencies

have the most substantial impact on scheduling and routing.

3.6 Periodic Routing Problems

Gaur and Fisher (2004) [9] studied a periodic inventory routing problem at a supermarket

chain in the Netherlands instead of supply chains with vendor-managed inventory with

the supplier owning the distribution network. The focus of the research is on transporta-

tion and inventory costs, but it disregards the effects on the operations at the DC and

the in-store operations costs (Holzapfel, Hübner, Kuhn and Sternbeck (2016) [10]).

Furthermore, Ronen and Goodhart (2008) [11] studied the application of the periodic

vehicle routing problem (PVRP) in a retail supply chain. They applied a cost-based ap-

proach with several objectives, including transportation costs, DC handling costs, and

DC capacities (minimal and maximal capacity utilization). The DC activities and trans-

portation activities are integrated into the approach of Ronen and Goodhart (2008) [11],

but in-store operations costs are neglected in the model approach.
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3.7 Store Delivery Patterns

Tactical store delivery has already been studied using periodic routing problems. How-

ever, these approaches ignored the effect of the design on in-store operations and the

corresponding costs. Store delivery patterns integrate the operations at the distribution

center, transportation, and stores on a tactical level. Sternbeck and Kuhn (2014) [12]

studied the topic of tactical store order delivery patterns in grocery retailing to better

integrate and coordinate upstream operations and in-store operations. The research lacks

stochastic effects and the delivery patterns used in the model, to determine store-specific

delivery patterns, were obtained from a predefined set of store delivery patterns, limiting

the solution space of the problem, and this affected the resulting value of the objective

function.

The topic of repetitive store delivery patterns has been studied by Holzapfel et al. (2016)

[10], in which warehousing, transportation, and in-store operation have been scheduled

jointly. They proposed a novel model to minimize total costs in all associated subsys-

tems of a retail distribution chain. A solution approach was developed for clustering

stores and selecting delivery patterns that reflect practical requirements. Applying repet-

itive delivery patterns resulted in considerable benefits when managing DC capacities,

transportation routes, and scheduling the workforce for shelf-filling. Although this model

seems promising, it only takes the minimum and maximum production capacity per day

of the distribution center into account. Furthermore, the model does not take the effect

of stochasticity into account and disregards the buffer capacity of the DC in the supply

chain.

3.8 Vehicle Routing Problem

This section discusses some relevant literature in the area of scheduling and routing using

applications of the vehicle routing problem. A general mathematical formulation of the

implementation will be described and discussed in Chapter 6. This section is limited to

aspects that are applicable to extend the concepts of a vehicle routing problem and which

are relevant to the research conducted in this thesis.

Page 20 of 71 Optimal Delivery Frequency & Vehicle Routing Problem



Master Thesis Business Analytics Dave de Moel

3.8.1 General Definition

The vehicle routing problem (VRP) is a combinatorial optimization that involves finding

an optimal design of routes traveled by a fleet of vehicles to serve a set of customers. In

the traditional VRP, we try to detect routes for a homogeneous fleet of vehicles to satisfy

the customers’ demands. Every customer node is visited once by just one vehicle which

begins and completes its travel at the central station, and some side constraints must be

satisfied.

3.8.2 Vehicles Constraints

The Vehicle Routing Problem (VRP) can be modeled with non-identical vehicles. The

typical variability that disturbs the homogeneity is the capacity of the vehicles, but there

can be other factors such as different travel times, different costs, or time windows for the

vehicles. In the non-identical (or multiple vehicle types) VRP, the vehicles can vary or

there may exist categories of vehicles where an upper limit on the capacity of vehicles in

each category is given in most cases.

3.8.3 Time Constraints

If we add a time window constraint for each store, one obtains the Vehicle Routing

Problem with Time Windows (VRPTW). Time constraints ensure that a vehicle visits

a store within a certain time frame. This time window includes the earliest and latest

arrival time information. The vehicle may arrive before the time window ’opens’, but the

store cannot be serviced until the time window opens. It is not allowed to arrive after the

time window is closed.

3.8.4 Objective Functions

The objective function may also differ in VRPs. Below are some types of these objective

functions. It should be noted that a combination of these can also be used: the minimum

number of vehicles; minimum total distance; the minimum total travel time; the maximum

number of stores served with a given number of vehicles; the minimum total waiting time

of the vehicles; the minimum variability in the travel times of the vehicles; the efficient

loading of the vehicles and minimum variability in the total distance traveled by the

vehicles.
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3.8.5 Capacitated Vehicle Routing Problem with Time Win-

dows

The Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) is a well-

known NP-hard problem, which is an extension of normal VRP, encountered very fre-

quently in making decisions about the distribution of goods and services (Tan et al.,

2000) [13]. The CVRPTW can be stated as follows: given a central warehouse, a fleet

of vehicles with associated capacity, and a set of stores with known demands (e.g., some

quantity of goods to be delivered), find a set of closed routes, originating and ending at

the warehouse, that service all stores at minimum cost. Moreover, each route must sat-

isfy capacity and time window constraints (Potvin et al., 1995) [14]. In CVRPTW, a set

of decision variables is added to the model to specify the times that services begin and end.

Allowable vehicle capacity and delivery times of the stores add complexity to the VRP

because of the time feasibility check for each store. In the VRPs with capacity and time

constraints, the service of a store, involving pick up or delivery of goods or services, can

start and must end within the time window defined by the earliest and the latest times,

respectively, when the store permits the start of service. Furthermore, the number of

goods cannot exceed the associated vehicle capacity of the store and the vehicle itself.

3.8.6 Mathematical and Computational Complexity

Being one of the most important problems in Operations Research literature, the Vehicle

Routing Problem (VRP) is one of the most difficult problems to solve. The problem is

quite close to the Traveling Salesman Problem (TSP). TSP is a well-known NP-Hard

problem, where only one vehicle or person visits all the stores. As a Multiple Traveling

Salesman Problem (mTSP), the VRP, even for small fleet sizes and a moderate number

of transportation requests, is more complicated than Traveling Salesman Problem (TSP).

Adding time windows to the VRP results in a more complicated problem than VRP with-

out time windows. Furthermore, Savelsbergh (1985) [15] has shown that even finding a

feasible solution to the Vehicle Routing Problem with Time Windows (VRPTW) when

the number of vehicles is fixed is itself an NP-Complete problem. Therefore, the develop-

ment of approximation algorithms or heuristics for this problem is of primary interest to

many researchers.
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This section will not cover all operations of the supply chain of Etos but will instead focus

only on the operations relevant to the subject of this thesis. Since no two stores operate

in exactly the same manner, this section will focus on general operations which pertain

to the majority of the stores. To begin with, Section 4.1 will describe an overview of the

current supply chain of Etos. Section 4.2 will elaborate on the replenishment process of

Etos and on how the stores place orders from the distribution center (DC). Section 4.3

will explain the operations within the distribution center and how the orders are picked

at the DC and how the goods are delivered to the store. At last, Section 4.4 will discuss

the process of the outbound distribution of goods to the stores of Etos.

4.1 Supply Chain Overview

Etos is a drugstore retailer with approximately 550 retail stores throughout the Nether-

lands. The stores are located in metropolitan areas, such as Amsterdam, Rotterdam, and

The Hague, as well as many rural areas. The stores vary greatly in physical size and

sales volume and therefore have a wide range of delivery schedules. The 550 stores are

supplied with articles from one distribution center (DC) and five cross-dock facilities, all

of which are owned and operated by external operators. The products moving from the

warehousing facilities to the stores are in their entirety transported by external carriers.

4.2 Replenishment Process

Store Replenishment is the process within the Supply Chain organization that deals with

the deliveries from the DC to the stores. Store Replenishment aims for optimal product

availability in the store. This means sufficiently stocked shelves and as few leftovers as

possible. In short, a stock that is tailored to customer needs.

The replenishment process is handled by an internally constructed forecasting algorithm

in conjunction with a Retail Operations Solutions (ROS) system, which calculates how

much of each product is actually needed at the store and places the order with the DC and

a Retail Merchandising System (RMS), which places the order with the supplier of the

item. It is worth mentioning that all of our private stores have migrated to an automated

replenishment and ordering process and this section will focus on the operations of the

stores which have automated this process, but the basic ideas apply to the other stores

as well.
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In addition to the aforementioned store replenishment functionality, ROS also supports

all goods processes in the store. ROS is therefore used both locally by the stores and

centrally by the employees of Supply Chain Tactics and Store Support. Stores use it

for all their goods processes, such as ordering, inventory management, receiving, and re-

turning. Store Support uses it for scheduling counts, among other things. Supply Chain

Tactics and Replenishment Fulfillment use it to perform and maintain store replenishment.

The internally constructed forecasting algorithm gathers Point-of-Sale (POS) data and

uses historical data to forecast the sales for each stock keeping unit (SKU) individually

on a weekly basis. The forecasting package makes adjustments to the forecast based on

day-of-the-week and seasonality factors, price reductions, and whether or not a particular

SKU is placed in the two-weekly advertisement.

Once the forecasting software has generated the forecast, the ROS system takes this

forecast and calculates how much of each product should be delivered to the store. To

make these calculations, the ROS system must also know the current amount of product

on the shelf (this information is also supplied by forecasting software), the shelf space

allotment, the reorder point, and the case size for each SKU. The RMS (Retail Merchan-

dise System) and SAM (Store Assortment Manager) applications are the main sources

of information for this information. Based on the above information, the ROS system

calculates the number of products expected to be left on the shelf at the time the next

delivery arrives.

If the amount projected to be left on the shelf is less than the reorder point, enough

product is ordered in increments of cases to restock the shelf. (Replenishment Fulfilment

does have the ability to manually change the amount ordered as they deem necessary.)

Any product that will not fit on the shelf must be placed in the backroom. Because re-

ducing the number of deliveries per week means that the size of each delivery is increased,

fewer deliveries means that there is a greater likelihood that additional products will need

to be stored in the back room. This becomes the major trade-off when determining the

optimal delivery schedule.

Figure 4.1 has been compiled to visualize the replenishment process as above. Figure

4.2 shows that this process is repeated for a large number of unique articles.
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Figure 4.1: Stock Adjustments of Etos Articles over Time in 15 Weeks.
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Figure 4.2: Number of Distinct Sold SKU’s of Top 5 Stores of Etos in Past 10 Weeks.
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4.3 Distribution Center Operations

The distribution center (DC) of Etos is somewhat centrally located and averages about

75 kilometers from each private Etos store. The DC warehouses all of our 15716 distinct,

active articles and serves as the central storage place for all items as well as the main

location for all items that need to be brought to the stores and/or our hubs.

The DC operations that are particularly relevant to the store deliveries are those that

are associated with picking an order (combining individual cases of different products

onto a container that will be delivered to an individual store) and loading it onto a truck.

Orders are received by 16:00 two (working) days before they need to be delivered and are

picked up on the (working) day before the delivery date which depends on the scheduled

delivery time for each store.

The order picking is directed by a computer system around the arm of the pickers, which

receives the order information from the Warehouse Management System (WMS) and reads

it off to the picker on an item-by-item basis. The system tells the picker which article

and corresponding quantity needs to be picked and in which location he/she can find the

article.

The computer then tells the picker the quantity of that particular article to load onto

the trolley. The picker scans the location code to ensure that he/she is at the correct

location and loads the quantity of the article onto his/her trolley and tells the system

that he has finished by reciting to the system the item quantity. The system then tells

him/her the information for the next article. This process is repeated until the route of

the order is completed.

The full trolleys are then loaded and/or combined onto an empty container and the

picker gets an empty trolley and repeats this process until the entire order for the store

is picked and put on containers. Deliveries are picked and dispatched throughout the day

from approximately 6:00 to 18:00, although the first orders to be delivered each day are

generally picked up the afternoon before as mentioned earlier.
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Inbound shipments of products are received and put away throughout the day. The

workload involved (in minutes) of incoming goods at the distribution center is illustrated

in Figure 4.3a. From a previously executed project, it was investigated whether we could

optimize this schedule and distribute the workload more evenly over the week and within

the working days. This resulted in a new proposed distribution illustrated in Figure 4.3b.
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Figure 4.3: Improvement of Workload Distribution of Distribution Center of Etos.

4.4 Outbound Schedules and Transportation

At the time of writing, Etos determines the number of deliveries per week from the DC

to a store based on its average weekly sales volume. There is, however, some room for the

stores to negotiate on the number of deliveries per week and on which days of the week

the deliveries will be made. Stores generally prefer to receive deliveries as frequently as

possible (up to daily), mainly for stock level and capacity-related reasons.

The amount of required safety stock is of particular concern for stores with limited shelf

space because a greater amount of safety stock means that more products will need to be

stored in the back room, which leads to additional handling of the product. On the other

hand, when stores have products that stock out for any reason, more frequent deliveries

mean that the stores have to wait for a shorter time period until the next delivery ar-

rives, which decreases the amount of time the store is dealing without a particular product.

Furthermore, some stores do not have the physical capacity to store enough products,

on the shelves or in the backroom, to allow them to skip an additional delivery day.

When this is the case, the delivery frequencies of these stores cannot be altered.
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Currently, all Etos stores are supplied several times a week, varying from once a week to 4

times a week. As mentioned earlier, the delivery frequency depends on the average weekly

sales volume and the physical store storage capacity. The distribution of the number of

times a store receives a delivery is shown in Figure 4.4. From the illustration, we can

observe that 432 stores (≈82%) of our WWM stores are supplied with new stock once a

week, 88 stores (≈17%) receive a new shipment twice a week and 7 stores (≈1%) receive

a new shipment three times a week. There is a single store which gets his goods delivered

4 times a week.
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Figure 4.4: Number of Stores per Weekly Delivery Frequency.

The regular deliveries are distributed relatively evenly throughout the week, with Mondays

and Thursdays seeing the fewest scheduled deliveries and Wednesdays seeing the greatest

number. The distribution throughout the week is illustrated in Figure 4.5. Etos tries to

keep deliveries evenly spaced throughout the week in order to keep driver and equipment

utilization as high as possible and to take the human work capacity in our warehouse into

account as much as possible.
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In addition to the regular orders generated by the automated reorder process, each store

also receives an extra order (which is generated separately) each week for promotional

items. This order of promotional items is combined with the store’s regularly scheduled

delivery on either Wednesday, Thursday, or Friday so that the promotional product will

be on hand early enough to display on the sales floor by Monday, the first day of the

promotional week. Note that these promotional deliveries or not considered in Figure 4.5.

The reason why most of the stores are delivered at the end of the week has to do with our

deliveries of promotional products and the weekend day. We want to bring these items to

the stores as late as possible. In this way, we need to store the articles for the upcoming

promotional period (starting on Monday) as shortly as possible. In addition, Etos realizes

the majority of its sales during the weekend. This means that we have to be in the store

with new stock before the peak days.
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This section gives a description of the data that is used in this research. First, the data

collection process is discussed in Section 5.1. Next, we describe how the data is cleaned

and prepared such that it can be used by the optimization models in Section 5.2 and 5.3,

respectively.

5.1 Data Extraction

The data in this research is collected from multiple sources provided and serviced by Etos.

The main data sets contain both store and retail item data as well as historical orders for

the year 2022. Every data set provides a unique primary key. The content of every data

extraction is described in the upcoming paragraphs.

Store Attributes: The first data extraction contains information about the stores that

Etos owns herself. Including the warehouse, the total number equals 551 unique locations.

For each location, the extraction includes the longitude and latitude of the location, the

travel distance and travel duration to the warehouse (driving with heavy-goods-vehicle),

and the store storage area, expressed in square meters and the number of roll containers.

Store Transport Mode: For each individual location, the transport modes are re-

trieved as they are known according to our most recent information. Due to prescribed

legislation, the transport capacity of each store is different and pre-determined. As a

consequence, this data extraction contains the type of vehicle and its respective capacity.

This distinction will be relevant at a later stadium for determining the freight volume to

the stores and with which means of transportation these should be transported.

Store Order Deliveries: The store orders form the basis of the transport schedule.

These store orders determine the quantity of specific retail items that have to be trans-

ported to the stores. For my research, we make use of historically delivered store orders.

These have been selected based on their respective delivery date in the past.

Store Travel Matrix: Using the store longitude and latitude from the extraction of

store attributes, a store travel matrix is constructed with the travel distance and travel

duration between every possible combination of locations. These values will be of impor-

tant use during the delivery frequency optimization and vehicle routing problem.
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Store Time Window: In addition to retrieving vehicle information, the time window

(earliest and latest time) of all individual stores are also retrieved. These times windows

can mainly be determined by municipality restrictions. In all other cases, this is deter-

mined by the opening hours of the respective store.

Store Opening Hours: As stated in the previous section, store opening times are

necessary for determining the time windows. As a result, this data extraction contains

the store opening time and store closing time of every individual location.

Retail Item Dimensions: After the extraction of multiple store measures, retail item

measures must also be included in the data collection. We start with the retail item di-

mensions (in CM). These values combined determine the volume of an individual product,

which is of consequence for the type of shipment method.

Retail Item Pick Zone: Next to the extraction of the retail item dimensions, the

extraction of the retail item pick zone in the warehouse is also included in the data collec-

tion. The different pick zones have an influence on the way of an individual item is picked

and transported. As an example, items picked in single units are packed in CBL-23 crates

while items picked in case units are packed directly onto roll containers. This distinction

will be relevant at a later stadium for determining the means of transportation.

5.2 Data Cleaning

During the data collection, a lot of records were collected recorded from different data

sources. Not all these data could be used in this research, because of the missing values

or outlier values in part of the records. These non-useful values have been dropped or

omitted for progress in various ways. Different discoveries are described in the upcoming

paragraphs.

For example, 2 stores had to be manually supplemented with their coordinates (longitude

and latitude), since they were unknown. Also, the store area and maximum container

storage values were unknown for 14 stores. These are replaced with the value 3 since this

is the minimum any store can handle at a single point in time. Stores that did not have

a transport mode specified were assigned to the smallest transportation option available.

In that way, one knows for sure the store is reachable without breaking any legislation.
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Regarding store time windows, the store opening hours during the weekend are being re-

moved since Etos does not supply its stores during the weekends. Furthermore, the final

store opening and closing times were selected based on their most common occurrence.

In addition, we reduced the store closing time by 1 hour and applied a maximum of 18:00

to ensure deliveries arrive on time and can still be useful on the day of delivery. At last,

missing rows were given a start time of 9:00 and a closing time of 17:00, since these are

the most common opening en closing hours of Etos stores in general.

In addition, retail items where one observed a maximum dimension greater than 180

centimeters, a minimum dimension greater than 60 centimeters, or a median dimension

greater than 80 centimeters were removed from the selection of article, since none of them

would fit on a psychical roll container (80cm x 60cm x 180cm). The exclusion of these

items resulted in deleting approximately 5.35% of the total number of unique retail items.

Moreover, medical retail items are also excluded from the data extraction, since these

are being transported via an external service. As a result, the exclusion of selected retail

items result in the removal of approximately 11.5% of the store item deliveries (18,474,361

records remaining), throughout the period of 2022 up to and including week 36.

5.3 Data Preparations

After all necessary data sets have been cleaned and filtered for relevant articles and stores,

they can be combined into a single data set that will be used for modeling and optimizing

the Etos store delivery frequency. For the computation of an optimal result, we begin with

the determination of the shipping method for every retail item. For this calculation, we

use the retail item dimensions in combination with the retail item pick zone as specified

and discussed in Section 5.1. Secondly, the order volume for every shipping method is

calculated by multiplying and aggregating the retail item dimensions.
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The current chapter presents the process of developing the research methods and theoret-

ical optimization frameworks needed to complete the experimentation part of the current

study. This chapter will discuss in detail the various stages of developing the methodology

of the current study that follow one another to arrive at a definitive result.

To begin with, in Section 6.1 we will discuss the coherence of the two optimization models

to come to a final result. Section 6.2 will discuss the model for determining the optimal

delivery frequency. Section 6.3 will discuss the methodology for determining optimal

routes using the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW).

Next, Section 6.4 will discuss which parameters apply and affect the outcome. Finally,

in Section 6.5 we will discuss which software and packages were used for the technical

implementation of the two optimization models.

6.1 Coherence of Both Optimization Models

The need for two different optimization models that together solve the problem arises

from the fact that neither of the individual models is capable of answering the research

question in full completeness. Ideally, we would like both models to communicate with

each other for the most optimal and efficient result. However, due to time limitations and

complexity, a sequential approach was chosen.

The first model determines the optimal delivery frequency based on a one-way journey

from origin to destination, but in order to calculate realistic transport costs at the same

time, we need the outcome of optimal routing. These can be calculated using the Ca-

pacitated Vehicle Routing Problem with Time Windows (CVRPTW) model described as

second.

Based on the outcome of determining the optimal delivery frequency, we know the number

of deliveries and the number of containers that Ahold Transport must carry out within

the chosen periodic cycle. By dividing these two numerical values, we can also determine

the number of load carriers (demand) per delivery. The output of the CVRPTW suggests

on which day and at what time this delivery should actually take place.
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This demand for an individual delivery is then passed as a parameter to the CVRPTW

model as Di (Demand at node i). From this point forward, together with the limited shelf

space, backroom storage, limited vehicle capacity, and time constraints, we have all the

data to solve the CVRPTW model and to arrive at an outcome of the (cumulative) total

cost of transportation of Etos.

In the next two sections (Section 6.2 and 6.3), we take a closer look at the content of

the individual methodologies and the mathematical formulation of upcoming models. I

would also like to state in advance that both models apply to individual stores and that

the CVRPTW is able to combine individual stores into an optimal route.

6.2 Store Delivery Frequency Optimization

Optimizing the store delivery frequency starts with designing an efficient fulfillment net-

work. For the purpose of this thesis, this network should be based on relevant service

requirements that have an impact on mainly transportation costs. As such, it is essential

that the design will be an integrated effort of supply chain management to balance the

needs and the possibilities.

After a careful review of the business processes, two factors, which play an important

role in the determination of the delivery frequency have been found. Both, explicitly

and logically obtained, factors are discussed in Subsections 6.2.1 and 6.2.2, respectively.

Thereafter, the possible utilization of these two factors is discussed in the subsection

detailing the mathematical formulation of delivery frequency optimization model.

6.2.1 Total Costs Minimization

The economic aspect of distribution management is one of the primary factors which plays

a role in the determination of the delivery frequency in a company. Generally stated, it

is not easy to find a model which deals only with the delivery frequency determination,

because this topic is strictly related to a more general issue: developing an optimization

model which aims to minimize the total costs of the supply chain considered.
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In addition to this, the economic aspect, the minimization of the total costs, consists

mainly of transportation costs. It is mathematically and logically demonstrated that as

Sternbeck and Kuhn (2014) [12] state, a high delivery frequency corresponds to an in-

crease in transportation costs, due to the many trips taken by the vehicles. Meanwhile, a

low delivery frequency leads to lower transportation costs but higher holding and inven-

tory costs and a different distribution of workload. Mathematically, the right balancing

between these two measures leads to the perfect configuration of a delivery pattern.

The final objective is to present an equation, or a system of equations, in which the

entire model is set, and it is successively implemented in an optimization model. There-

fore, the goal of this equation is, mainly, to minimize the total cost of transportation.

Once the model has been solved, many variables of the equation, or system of equations,

are determined, including the demand variable regarding the delivery frequency.

6.2.2 Delivery Capacity

The capacity of delivery has been classified as a secondary factor that plays a role in the

determination of delivery frequency because it represents such a constraint in the supply

chain of the companies. The delivery capacity is defined as the maximum number of units

at which a generic seller, such as a supplier or distribution center, can deliver its products

to a generic buyer, a store for instance, into the supply chain. The delivery capability

consists principally of the balance of two capacities: the transportation capacity and store

storage capacity.

For example, if the capacity of delivery is not enough to handle the requested volume

of demand, the company has the possibility to increase the delivery rate. It must be said

that this way of thinking and acting is not always convenient. In fact, the real economic

gain of this choice should be evaluated; sometimes it is preferable to adopt a lower delivery

rate.

In conclusion, the company must evaluate the delivery frequency based on the advantages

or disadvantages of the economic aspect to divide the moved load into more or fewer

shipments, increasing or decreasing the delivery frequency, respectively, while satisfying

demand and respecting capacity constraints.
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Mathematical Formulation of Delivery Frequency Optimization

To utilize the possibilities of these two factors (discussed in Subsections 6.2.1 and 6.2.2

respectively) in any optimization, we compute an optimization model on the delivery

frequency based on the defined volume calculations per shipping method from Section

5.3. For this utilization, we propose delivering the required goods through our internal

carrier Ahold Transport and/or an external carrier PostNL. Both ways of transportation

have an associated cost and the objective of this optimization is to minimize the total

transportation costs accounting for the volume of demand given as input and the delivery

capacities of both the transportation mode and maximum store storage capacity consid-

ered as constraints.

When trying to minimize the total transportation costs, the outcome of the model gives

us, within the specified periodic cycle, output on the number of shipments that should

theoretically be carried out for each carrier. The model also gives us output on the total

number of containers and crates that have to be brought to each individual store. In

addition, it is good to know that a maximum of 14 crates fit on a roll container and that

a shipment can consist of several roll containers.

First of all, the model is introduced along with the sets and parameters, decision variables,

and constraints that come with it. This mathematical elaboration is followed by a written

explanation of the model.

Sets and Parameters

VRRC : Total Volume Retail Items Shipped Through Containers

VCBL : Total Volume Retail Items Shipped Through CBL-23 Crates

QRRC : Volume Capacity Container (in CM3)

QCBL : Volume Capacity CBL-23 Crate (in CM3)

QStore : Container Capacity of Store (in Units)

QTransport : Container Capacity of Transport Vehicle (in Units)

CAT : Transportation Costs Ahold Transport

FCPNL : Fixed Transportation Costs PostNL

V CPNL : Variable Transportation Costs PostNL

PC : Periodic Cycle (in Weeks)
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Decision Variables

XAT ∈ N : Number of Shipments Ahold Transport

YAT ∈ N : Number of Containers Ahold Transport

ZAT ∈ N : Number of CBL-23 Crates Ahold Transport

XPNL ∈ N : Number of Shipments PostNL

ZPNL ∈ N : Number of CBL-23 Crates PostNL

Objective Function

min(XAT ∗ CAT +XPNL ∗ FCPNL + ZPNL ∗ V CPNL) (6.2.1)

Constraints

YAT ∗QRRC ≥ VRRC (6.2.2)

(ZAT + ZPNL) ∗QCBL ≥ VCBL (6.2.3)

(YAT + ZAT/14) ≤ min(QStore, QTransport) ∗XAT (6.2.4)

ZPNL ≤ 14 ∗XPNL (6.2.5)

XAT ≤ PC ∗ 5 (6.2.6)

Explanatory Notes

The objective (6.2.1) is the minimization of the total transport cost. This value is formed

by the summation of the transport costs of both Ahold Transport and PostNL, where the

transport costs of Ahold Transport are composed of a one-way drive from the warehouse to

the store accounting for the travel distance and travel duration and the transport costs of

PostNL are composed of fixed costs plus a variable costs based on any additional CBL-23

crate. This process and calculation are then repeated for all stores considered.
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Furthermore, constraints 6.2.2 and 6.2.3 ensure that all the volume of the retail item

orders is being shipped to each individual store for both shipping methods respectively.

Constraint 6.2.4 ensures that the number of containers and CBL-23 crates we ship to

the store does not exceed the minimum capacity of the store or the transport vehicle.

Thereby we must take into account that a maximum of 14 CBL-23 crates fit on a single

container. Constraint 6.2.5 determines the number of shipments carried out by PostNL,

where we must again take into account that a maximum of 14 CBL-23 crates fit on a single

container. At last, constraint 6.2.6 ensures the maximum number of shipments that can

be carried out by Ahold Transport is less than or equal to the number of working days

within the periodic cycle (10 days in a periodic cycle of 2 weeks).

6.3 Capacitated Vehicle Routing Problem with Time

Windows

Freight transportation is one of the most critical activities in supply chain management.

This importance comes from the fact that it brings more than half of the total logistics

cost. The contribution of the freight transportation cost to the total cost can be de-

creased by better utilization of the resources, which can be suggested by better routing

and scheduling approaches to the problems.

In general, in this paper one considers the Capacitated Vehicle Routing Problem with

Time Windows (CVRPTW), in which vehicles with finite capacities are allowed to start

servicing customers with their volume of demand after and before the earliest and latest

time window bounds, respectively. Furthermore, The CVRPTW aims at designing a set

of vehicle routes through several store locations with minimum transportation costs, un-

der the conditions that each route starts and ends at the depot and each store must be

visited only once by one vehicle.

The general definitions and overall complexity are also discussed in Section 3.8. In this

section, we take a closer look at the mathematical formulation. First of all, the model is

introduced along with the sets and parameters, decision variables, and constraints that

come with it. This mathematical elaboration is followed by a written explanation of the

model.
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Mathematical Formulation of Capacitated Vehicle Routing Prob-

lem with Time Windows

The CVRPTW model is given by a heterogeneous set of vehicles, a set of store deliveries

and a directed graph G. The graph consists of n + 1 vertices where the locations are

denoted as StoreID +X, where the letter X can be variable from the letter A to letter

J (every letter represents a unique working day in periodic cycle, with a maximum of

10). The warehouse is represented by the vertex 1234A. The set of vertices excluding the

depot is denoted as N ′. The set of arcs (denoted as A) represents connections between

the depot and the customers and among the customers.

All routes originate from the warehouse and terminate at the warehouse (vertex 1234A).

With each arc (i, j) ∈ A, we associate a cost Ci,j. Each vehicle has a finite capacity Qi

and each store i has a demand Di and strict earliest start time Ei and latest end time Li.

A new route (with a possible new truck) is created when the maximum capacity of the

truck is reached. The model uses an unlimited number of trucks because we make the

assumption that the goods can always be delivered to each and every store.

First of all, the model is introduced along with the sets and parameters, decision variables,

and constraints that come with it. This mathematical elaboration is followed by a written

explanation of the model.

Sets and Parameters

G = (N,A)

N : Nodes

A : Arcs

0 : Warehouse

A = {(i, j) : i, j ∈ N}
N = {0, 1, ..., N}
N ′ = {1, ..., N}

Ti,j : Travel duration of going from node i to node j

Ki,j : Kilometer allowance of going from node i to node j

Ci,j : Cost of going from node i to node j. Ci,j = Ki,j + Ti,j
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Di : Demand at node i

Qi : Vehicle Capacity at node i

Si : Service time at node i

Ei : Earliest arrival time at node i

Li : Latest arrival time at node i

Decision Variables

Xi,j =

1, if arc (i, j) is used

0, otherwise

Yi ∈ N : Load of Vehicle arriving at node i

Ai ∈ N : Arrival time at node i

Objective Function

min
∑
i∈N

∑
j∈N

Ci,j ∗Xi,j (6.3.1)

Constraints∑
i∈N

Xi,j = 1 ∀j ∈ N ′ (6.3.2)

∑
i∈N

Xj,i = 1 ∀j ∈ N ′ (6.3.3)

∑
j∈N

X0,j =
∑
i∈N

Xi,0 (6.3.4)

∑
i∈N

Xi,j =
∑
i∈N

Xj,i ∀j ∈ N (6.3.5)

Di ≤ Yi ≤ Qi ∀i ∈ N ′ (6.3.6)

Xi,j ∗ (Yi −Di − Yj) = 0 ∀i ∈ N ′, j ∈ N ′, i ̸= j (6.3.7)
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Ei ≤ Ai ≤ Li − Si ∀i ∈ N ′ (6.3.8)

Xi,j ∗ (Ai + Si + Ti,j − Aj) ≤ 0 ∀i ∈ N ′, j ∈ N ′, i ̸= j (6.3.9)

Explanatory Notes

The objective (6.3.1) is the minimization of the total transport cost. This value is formed

by the travel distance and travel duration traveled by all delivery vehicles within the pro-

posed routes.

Furthermore, Constraints 6.3.2 and 6.3.3 ensure that each store is visited exactly once.

Constraint 6.3.4 ensures that the number of vehicles leaving the warehouse is equal to the

number of vehicles arriving at the warehouse. Constraint (6.3.5) ensures that the in-flow

equals the out-flow of all the visited stores.

Constraints 6.3.6 and 6.3.7 ensure the demand equalities of the vehicle. A vehicle’s load

arriving at store j is equal to the vehicle’s load arriving at store i minus the demand at

store i, where the vehicle’s load is always greater or equal to the demand of store i and

less than or equal to the vehicle capacity of the store i.

Constraints 6.3.8 and 6.3.9 ensure the time equalities of the vehicles arriving at the stores.

The arrival time at store j must be between the specified time window and must also keep

in mind the travel duration between store i and store j and the service time at store i.
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6.4 Parameter Settings

For the implementation of the methodology of the Capacitated Vehicle Routing Problem

with Time Windows (CVRPTW) we have accounted for a small number of parameters

representing some fixed values for the results of the optimization. To begin with, the

hourly rate and cost per driven kilometer are fixed and determined by Ahold Transport.

Next, the costs per package and any additional cases carried out by PostNL also have a

fixed cost rate.

In addition to a fixed rate for determining the (cumulative) total transport costs, we

also use a fixed minimum number for the storage of containers (’MaxStorageContainers’)

in the stores and the maximum volume per container or CBL-23 crate for optimization,

namely 3 containers. The number that determines the minimum number of containers

to be stored (’MaxStorageContainers’) is experimented with and discussed in Section 7.7.

The maximum number of roll containers in store storage is determined by the back room

space of each individual Etos store.

For the maximum volume of a roll container, we use the same value as the warehouse

currently has applied in its Warehouse Management System (WMS). For the maximum

volume of a CBL-23 crate, we use the inner dimensions but take into account an air per-

centage of 33%. This value was determined on the basis of observation in the distribution

center, various discussions with experts by experience, and an evaluation of an experi-

ment discussed in Section 7.8. As a result, both determinations of values correspond most

closely to reality and provide an accurate approximation of the optimization results.

Important Note: At last, for each experiment and associated evaluation discussed in

Chapter 7, we use a periodic cycle of 2 weeks and 33% percentage of air in the CBL-23

load carriers, unless stated otherwise. For the most innovative and cost-saving change,

a periodic cycle of 10 working days has been chosen that differs from the current one,

namely 1 week (5 working days). Thereby, a broader periodic cycle gives more room for

the calculation and optimization of the research problem.
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6.5 Software and Packages Used

The implementation of all the data preparations (Section 5.3) and the optimization mod-

els were performed using the combination of the programming language Python and the

Gurobi Optimizer V9.5.2. The Gurobi Optimizer is a state-of-the-art solver for mathemat-

ical programming. The solvers in the Gurobi Optimizer were designed from the ground

up to exploit modern architectures and multi-core processors, using the most advanced

implementations of the latest algorithms.

The Gurobi Optimizer is considered one of the most diverse optimization software that

can solve a wide range of problem types. These include linear programming, mixed inte-

ger linear programming, mixed integer quadratically constrained programming, and many

more. It is accessible by importing the Gurobi library in Python.

In addition, all computations were performed on an HP notebook with an I7 processor,

an 8-core CPU, and 16GB of RAM.
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In Chapter 6, we have outlined and introduced the methodology related to the research

problem. In this section, we discuss the results obtained by the different models. To be-

gin with, we will discuss the application of the Capacities Vehicle Routing Problem with

Time Windows (CVRPTW) to the actual historic deliveries planned by Ahold Transport

in Section 7.1. Next, we will discuss the complexity and performance of the CVRPTW

related to the size of the instances and an evaluation of the actual application of the

CVRPTW in Sections 7.2 and 7.3, respectively.

Afterward, in Section 7.4, we will discuss the heuristic approach to produce a feasible

solution that is good enough to quickly solve a particular problem and achieve immediate

goals, but not necessarily an optimal solution. At last, we will evaluate results on the

total cumulative cost of transportation in Section 7.5, results on the number of planned

deliveries in Section 7.6, results on the number of store storage containers in Sections

7.7, results on the percentage of air in CBL-23 crates in Section 7.8 and results on the

inclusion of PostNL deliveries in Section 7.9.

7.1 Baseline Results Vehicle Routing Problem

To begin with, we start with the interpretation of the results computed using the actual

historic outbound deliveries to all 550 Etos stores throughout the Netherlands. Figure

7.1.1 illustrates the cumulative transport costs of the historic deliveries planned by Ahold

Transport and the historic deliveries computed using the methodology of the Capacitated

Vehicle Routing Problem With Time Windows (CVRPTW) model. In both latter calcu-

lations, the number of roll containers has been used as input for demand.

The results show that at the start of the year the methodology of CVRPTW (orange)

is about 15% higher compared to Ahold Transport (blue). Cumulatively, this percent-

age decreases to 8.7% in week 36 of 2022. This percentage is equal to approximately

€XXX,XXX.

These results evaluate the methodology behind my implementation of Capacitated Ve-

hicle Routing Problem With Time Windows as discussed in Section 6.3. By comparing

the results with the routing calculations of Ahold Transport, we can check how well the

implemented methodology works against the computation of the executing party.
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Intuitively, it makes sense that my model comes out higher compared to Ahold Transport.

The main reason for this is that Ahold Transport has the ability to combine the transport

of Etos with other Ahold entities (Albert Heijn and Gall & Gall). As an example, it is,

therefore, possible to deploy a single truck for multiple entities and distribute the costs

evenly based on their fraction of physical contents. This ensures a more efficient way of

planning and optimal use of transport vehicles.
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Figure 7.1.1: Cumulative Transport Costs of Historic Deliveries Planned by Ahold
Transport and Capacitated Vehicle Routing Problem with Time Windows Model.

7.2 Complexity Mixed Integer Programming Models

In the use case of Mixed Integer (Quadratically Constrained) Programming optimization

models, one can use the evaluation of the MIPGap to evaluate on the complexity of the

model. The MIPGap value refers to at least the gap value that Gurobi has to reach

before declaring optimality. The current relative optimality gap is computed as follows:

|(ObjBound−ObjV al)|/|ObjV al|, where ObjBound and ObjV al are the MIP objective

bound and incumbent solution objective, respectively.

Gurobi will not always terminate with the exact MIPGap set by the user. Gurobi does

not search for feasible points that are exactly in the gap set by the user but rather tries

to find the best point it can reach and terminates when the MIPGap requirement is met.
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In the process of verifying the correctness of the model using the evaluation of the MIP-

Gap value, a run of the Capacitated Vehicle Routing Problem with Time Windows was

performed where the parameter ’TimeLimit’ was set to a value equal to 36000 seconds (10

hours). For comparison and verification, we established 4 different sets of data instances

of different sample sizes of Etos stores which were used for optimality calculations. The

results in Figure 7.2.1 show that the size of the input instances has a major impact on the

opportunity of reaching optimality. This information will be discussed further in Section

7.4, where we will discuss a heuristic approach to better scale the computations.

The MIPGap value after 36000 seconds was still around 37%. If we then take a sam-

ple of 20% of the total number of stores (100 stores), we observe that the MIPGap value

decreases to 4% after the total run time has passed. In case the vehicle routing problem

is solved for 50 stores, we observe a MIPGap value equal to 2.5% after 750 seconds. At

last, when trying an instance where the sample size equals 25 stores, we reach optimality

after 3 seconds.

Furthermore, Figure 7.2.1 illustrates that in case the number of large instances of data

sets, the data presolve preparations take a significantly larger amount of time (≈ 800

seconds), where all the other samples start from almost the beginning of time. Moreover,

the illustration shows that after ≈ 750 seconds, the MIPGap value does not decrease as

significantly as from the start of the optimality calculations and remains fairly the same

thought the rest of the optimization.
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Figure 7.2.1: Relative MIP Optimality Gap over Time of CVRPTW.
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As mentioned in the literature review (Section 3.8.6), the VRP is one of the most difficult

problems to solve. The problem is quite close to the Traveling Salesman Problem (TSP).

TSP is a well-known NP-Hard problem, where only one vehicle or person visits all the

stores. However, The Vehicle Routing Problem (VRP) is more complicated than Traveling

Salesman Problem (TSP). Furthermore, Savelsbergh (1985) [15] had shown that even

finding a feasible solution to the VRPTW when the number of vehicles is fixed is itself an

NP-Complete problem. In conclusion, we may state that the complexity of the capacitated

vehicle routing problem with time windows increases as the set of data instances increases.

7.3 Evaluation of Application CVRPTW

With the current sample sizes of the large-scale data sets of store instances given to the

model of the CVRPTW, one does not always achieve an optimal result. As a result, in

exceptional cases, the model returns an erroneous route. Results in the output show this

happens in less than 1% of the cases. We see this observation since we are solving a

non-linear (quadratically constrained) optimization problem for which there are no opti-

mality guarantees. To address this observation and proof this erroneous route is related

to methodology of the quadratically constrained mixed integer programming model with

respect to the input size, an example is outlined and discussed. This example addresses

both the erroneous route and the correct application.

In a large-scale situation, an example of this erroneous route is illustrated in Table 7.3.1

and Figure 7.3.1. From the table, we observe the Etos store in both Hilversum (6322) and

Utrecht (7780) is visited twice during this single route. This result violates constraints

6.3.2 and 6.3.3, which states that a store may receive a maximum of 1 delivery during a

route due to store storage capacity constraints. In conclusion, this result in infeasible and

not optimal.

However, to demonstrate that the CVRPTW model has been formulated correctly, this

exact same set of specific instances (Etos stores from Table 7.3.1) was given to the same

model formulation. The result of this sub-optimization is shown in Table 7.3.2 and Figure

7.3.2. From Table 7.3.2 one can observe every single store is visited once during a single

route. In case a store requires multiple deliveries during the periodic cycle, multiple routes

are created for those stores (i.e. 6322 and 7780). In conclusion, this result in both feasible

and optimal.
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Route Origin To Destination

1 Etos Warehouse → 7584 | Etos Amsterdam
1 7584 | Etos Amsterdam → 6310 | Etos Amsterdam
1 6310 | Etos Amsterdam → 7780 | Etos Utrecht
1 7780 | Etos Utrecht → 6322 | Etos Hilversum
1 6322 | Etos Hilversum → 6327 | Etos Kortenhoef
1 6327 | Etos Kortenhoef → 7780 | Etos Utrecht
1 7780 | Etos Utrecht → 6322 | Etos Hilversum
1 6322 | Etos Hilversum → Etos Warehouse

Table 7.3.1: Numeric Example of Wrong Route
As Result of Relative MIP Optimality Gap.

Figure 7.3.1: Visual Example of Wrong Route
As Result of Relative MIP Optimality Gap.
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Route Origin To Destination

1 Etos Warehouse → 7584 | Etos Amsterdam
1 7584 | Etos Amsterdam → 6310 | Etos Amsterdam
1 6310 | Etos Amsterdam → 7780 | Etos Utrecht
1 7780 | Etos Utrecht → 6322 | Etos Hilversum
1 6322 | Etos Hilversum → Etos Warehouse

2 Etos Warehouse → 7780 | Etos Utrecht
2 7780 | Etos Utrecht → 6322 | Etos Hilversum
2 6322 | Etos Hilversum → 6327 | Etos Kortenhoef
2 6327 | Etos Kortenhoef → Etos Warehouse

Table 7.3.2: Numeric Example of Correct Route
As Result of Relative MIP Optimality Gap.

Figure 7.3.2: Visual Example of Correct Route
As Result of Relative MIP Optimality Gap.
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7.4 Heuristic Approach

If we look back at Section 7.2 and Section 7.3, one can conclude that the methodology be-

hind Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) works faster

and more optimally with smaller sizes of data set instances. This decreases the number

of instances of a single run and benefits the MIPGap without compromising the results.

From this point forward, it is good to know that all results displayed and discussed make

use of this heuristic approach with the distinction and approximation below.

In order to reduce both the complexity of modeling and the model’s run time, it was

decided to divide the Etos stores into different groups. Firstly, For the final determina-

tion of groupings, it was decided to locate the Etos stores based on their geographical

location. This creates 12 different groups, all with a relatively useful size.

Secondly, to further reduce the sizes of the data set instances, the stores within these

12 distinct groups are divided according to a predetermined delivery day. This predeter-

mined delivery day was applied according to Table 7.4.1. This allows for an individual

CVRPTW on a weekday, but multiple CVRPTWs within a region (province).

Cumulative Number of Delivery Week Delivery Day

1 1 Monday
2 1 Wednesday
3 1 Friday
4 1 Tuesday
5 1 Thursday

6 2 Monday
7 2 Wednesday
8 2 Friday
9 2 Tuesday
10 2 Friday

Table 7.4.1: Predetermined Delivery Day
Based on Number of Delivery During Periodic Cycle.

From Table 7.4.1, we observe it was decided to keep a fixed pattern related to the lead-

time of delivering new goods to the stores. The main takeaway from this table is that

deliveries are as planned as possible at the start of the week and, if possible, maintain a

2-day lead time.
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7.5 Results on Transportation Costs

In this section, we will evaluate the results related to the total cumulative cost of trans-

portation. These have been computed using the sequential methodologies and their co-

herence as discussed in Sections 6.1 and the heuristic approach from Section 7.4. For the

final results and evaluation, we used the parameters discussed in Section 6.4.

Figure 7.5.1 illustrates the final results for the cumulative total transport costs of different

experiments. For the final results, we included the multiple computations, mentioned in

the legend of Figure 7.5.1 and the next paragraphs, and will evaluate on the difference

between the cumulative outcomes. It is good to repeat that the results in Figure 7.5.1

are based on the applied elaborations described in Section 7.4 and using the parameter

settings as described in Section 6.4.

Figure 7.5.1 also includes the cumulative transport costs of the actual historic deliver-

ies planned by Ahold Transport and computed using the methodology of the Capacitated

Vehicle Routing Problem With Time Windows (CVRPTW) model. These have been eval-

uated in Section 7.1 and will be used as a reference for the optimization of the delivery

frequency and solving the vehicle routing problem associated with this delivery frequency.

In addition, it was decided to simulate the results over the first 36 weeks of the year

in order to gain a better understanding of the potential cost savings over time. On one

hand, it is possible to compare a specific periodic cycle of 2 weeks with the historical

observations, but cumulatively it becomes more insightful what the impact can be of the

proposed sequential methodology.

First and foremost, Figure 7.5.1 illustrates the results of the interaction between the de-

livery frequency optimization and the Capacitated Vehicle Routing Problem With Time

Windows for both a periodic cycle of 1 week (purple) and 2 weeks (green). From the

illustration, we observe that cumulatively, up to and including week 36 of 2022, the total

transportation costs have decreased by 26.5% (€XXX,XXX) for a periodic cycle of 1 week

and even decreased by 38.6% (€X,XXX,XXX) for a periodic cycle of 2 weeks.

When we look at the difference between the periodic cycles, we see that a periodic cycle

of 2 weeks causes a decrease of 16.5% (€XXX,XXX) percent compared to a periodic cycle

of 1 week.
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Figure 7.5.1: Results Total Cost of Transportation of Etos
Periodic Cycle & Capacitated Vehicle Routing Problem with Time Windows.
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7.6 Results on Number of Deliveries

From the delivery frequency optimization methodology proposed and implementation as

described in Section 6.2, we can visualize the effect on the (cumulative) number of deliv-

eries carried out by Ahold Transport, the transport company responsible for all transport

movements of the various entities within Ahold. The results are illustrated in Figure 7.6.1.

In the current situation, Etos brings new goods to the stores once a week. For the

optimization of the delivery frequency, a new periodic cycle of 2 weeks has been chosen

and proposed. This periodic cycle of 2 weeks is also used for the optimization of the

cumulative number of deliveries visible in Figure 7.6.1.

From the illustration, we observe striking results regarding the number of deliveries that

had to be carried out by Ahold Transport. First of all, if an external carrier such as

PostNL is not used, we see that the cumulative number of deliveries up to and includ-

ing week 36 of 2022 has decreased by 22.9% compared to the current delivery schedule.

When PostNL is one of the transportation options, we see a cumulative decrease of 47.3%

compared to the current delivery schedule. When we then look at the difference between

whether or not PostNL deliveries are allowed, we see that the number of deliveries that

had to be carried out by Ahold Transport decreases by 31.6% if we were to deliver goods

via PostNL to the Etos stores.
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Figure 7.6.1: Cumulative Number of Deliveries of Ahold Transport.
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7.7 Maximum Number of Store Storage Containers

An important parameter that can influence the determination of the total transport costs

of Etos is the parameter ’MaxStorageContainers’. This parameter is responsible for the

minimum number of containers a store can store in its storage area in the back of the store.

For the final results, we conducted a small experiment with different values of this parame-

ter ’MaxStorageContainers’. The results of this experiment are illustrated in Figure 7.7.1.

From the illustration, we see that for the first 7 weeks of 2022 the difference between

the cumulative transport costs for Etos is minimal. In week 7, a ’MaxStorageContainers’

value equal to 5 is only 2.5% lower compared to a ’MaxStorageContainers’ value equal

to 3. Moreover, a ’MaxStorageContainers’ value equal to 8 is 8.8% lower compared to

a ’MaxStorageContainers’ value equal to 3. Furthermore, from the ’StoreLibrary’ file

provided by Etos (a file containing the storage area information of Etos stores), we ob-

served 58 stores (10.5%) have a ’MaxStorageContainers’ lower than 3 containers, 138

stores (25.1%) have ’MaxStorageContainers’ lower than 5 and 290 stores (52.7%) have a

’MaxStorageContainers’ lower than 8.

In conclusion, a ’MaxStorageContainers’ value equal to 3 was chosen for the final compu-

tation of the (cumulative) total cost of transportation. The differences between all three

possibilities were significantly small, but the larger two values were realistically too high.
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Figure 7.7.1: Effect Parameter ’MaxStorageContainers’ on Total Transport Costs.
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7.8 Percentage of Air in CBL-23 Crate

One of many possible important distinction that can influence the determination of the

(cumulative) total cost of transportation of Etos is percentage of air we take into consid-

eration when order picking the goods that need to be packed in the CBL-23 load carrier

crates and shipped to the Etos stores. The results of different parameter values can be

observed in Figure 7.8.1.

From the illustration, which plots the cumulative total cost of transportation up to and in-

cluding week 36 of 2022 for different percentages of air and the historic outbound planned

by Ahold Transport (red), we observe a noticeable, influential difference in total transport

costs. In earlier discussed results from Section 7.5, the percentage of air is equal to 33%

for the final computation of results. Both these lines are presented in green.

From the illustration we observe that, by the end of week 36 of 2022, the cumulative

total transportation costs have decreased by 38.6% (€X,XXX,XXX) when considering

33% of air. When we take into account 66% air, this reduction in transport costs is only

equivalent to 15.1% (€XXX,XXX). Finally, for a common middle ground, which is 50%

air, the reduction in transport costs is equivalent to 30.8% (€XXX,XXX). All reductions

are compared the historic outbound planned by Ahold Transport (red).
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Figure 7.8.1: Effect Parameter ’PercentageAirCBL23’ on Total Transport Costs.
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7.9 Inclusion of PostNL Deliveries

Another important distinction that can influence the determination of the (cumulative)

total cost of transportation of Etos is the inclusion of possible PostNL Deliveries. For the

results and evaluation of this inclusion, we will take observations from Figure 7.9.1.

From the illustration, which plots the cumulative total transport costs up to and including

week 36 of 2022 for the inclusion (green) and exclusion (orange) of PostNL deliveries, we

observe a noticeable difference in total transport costs.

By the end of week 36 of 2022, adding the ability to deliver goods via PostNL will,

accounting for a periodic cycle of 2 weeks, reduce the cumulative total transportation

costs by 12.6%. This reduction is equivalent to approximately €XXX,XXX.
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Figure 7.9.1: Difference in Transport Costs with Inclusion of PostNL Deliveries.
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The goal of this research was to investigate the effect of the delivery frequency on the (cu-

mulative) total cost of transportation of Etos, which was calculated by the methodology of

the delivery frequency and the Capacitated Vehicle Routing Problem with Time Windows

(CVRPTW). A combination and interaction of two Mixed Integer (Quadratically Con-

strained) Programming optimization models that are solved using Gurobi was developed

to answer these questions. These models have been used sequentially to solve the prob-

lem where we used different input values for the periodic cycle, the minimum number of

storage containers, the percentage of air in load carriers, and the inclusion of PostNL de-

liveries to evaluate the predicted outcome of the (cumulative) total cost of transportation.

It turned out that, with the current data cleaning, data preparations, and parameter

settings, these sequentially Mixed Integer (Quadratically Constrained) Programming op-

timization models were able to produce insightful results using a heuristic approach for

the data set instances. This heuristic approach was chosen to produce a working solution

within a reasonable time frame. Instead of looking for a perfect solution, heuristic strate-

gies look for a quick solution that falls within an acceptable range of accuracy. Because

a heuristic approach emphasizes speed over accuracy, it is often combined with optimiza-

tion algorithms to improve results. This heuristic approach was taken with care and had

a positive effect on the predicted outcome of the total (cumulative) cost of transportation.

Based on the results, we would like to make a number of recommendations to Etos.

First and foremost, a new evaluation of the periodic cycle parameter, the volume pa-

rameter, and the inclusion of PostNL deliveries could have a major impact on its cost

of transportation. An evaluation of the results, as discussed in Sections 7.5, 7.8 and 7.9

respectively, shows that significant savings can be made when the combination of these

parameters and interactions is used correctly.

In addition, when we propose a new periodic cycle of bi-weekly deliveries, we see a cost

of transportation cost decrease of 38.6% compared to Ahold Transport’s current sched-

ule. Consequently, as a result of a newly proposed efficient planning, it is also possible

to reduce the number of transport rides of Ahold Transport, and thus the number of

kilometers and transport movements, by 47.3%. In addition to this latter conclusion, it

is of great influence to add the possibilities of PostNL deliveries to its flow of goods from

the warehouse to its stores.
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In analyzing the delivery frequencies and scheduling the possible routes for all the stores

of Etos, this thesis has uncovered multiple primary areas for future research, all of which

can have significant impacts on the operations and costs of a retail supply chain indepen-

dent of the delivery schedules of its stores.

To conclude this research, we may state different topics of limitations and alterations

which are subject to future research and will be discussed in this chapter. Most topics

are devoted to the quality of the data and various optimizations that could be applied in

the future.

9.1 Quality of Data Extractions

Data quality is a measure of the condition of data based on factors such as accuracy,

completeness, consistency, reliability, and whether it’s up to date. The emphasis on data

quality has increased as data processing has become more intricately linked with busi-

ness operations and organizations increasingly use data analytics to help drive business

decisions. Data quality management is a core component of the overall data management

process, and data quality improvement efforts are often closely tied to data governance

programs that aim to ensure data is formatted and used consistently throughout an or-

ganization.

This thesis brought to light that bad data can have significant business consequences for

companies. Poor-quality data is often pegged as the source of operational snafus, inac-

curate analytics, and ill-conceived business strategies. Examples of the economic damage

that data quality problems can cause include the exclusion of retail items because their

dimensions exceed transportation limits, and lost sales opportunities because of erroneous

or incomplete customer records.

9.2 Intermediate Lead Time Optimization

To begin with, the underlying lead times between two deliveries may also be the subject of

further investigation. The current study does not take into account a minimum number of

days between deliveries. This can have consequences for the number of delivery locations

per day and their geographical location, respectively.
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9.3 Store Storage Capacities

Secondly, this research is highly dependent on the values specified in the so-called ’Store-

Library’ of Etos. In this file, all physical store properties are documented and maintained,

including the store storage capacities. However, while using this data, it appeared that

there was a lot of misconception about the interpretation of the numbers. Research has

shown that not all values are correct or that values are missing. In order to improve the

possible theoretical solution compared to reality, it would be desirable to conduct a new

inquiry into the most recent, actual numbers related to the store storage capacities.

9.4 Distribution of Demand

Thirdly, under the current implementation of my research problem, the demand for the

number of load carriers to the stores is evenly distributed over the number of proposed

deliveries. As an example, if the Etos store in Leidschendam has a store storage capacity

of 9, and requires 21 load carriers in the periodic cycle of 2 weeks, we proposed 3 deliveries.

Consequently, the demand for each delivery will be 7 load carriers each time. However,

one could think it might be more efficient to deliver different quantities for every single

delivery, accounting for the maximum store storage capacity. Future research could show

whether this statement applies to my research topic.

9.5 Percentage of Air in Load Carriers

In addition, under the current implementation of my research problem, we use a fixed

percentage of air in the load carriers that have to be transported to the stores. In future

applications, the retail items can also be packed optimally using the algorithm applications

of the bin packing problem. This optimization problem tries to minimize the total number

of used bins.

9.6 Delivery Day and Delivery Time Optimization

Moreover, in relation to lead time optimization, any optimization towards the optimal

delivery day and delivery time during the week and day, respectively, also has great

potential. In this way, Etos can maintain an equal distribution over the week, which can

be of great importance to the external carrier.
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9.7 Workload Optimization Warehouse

Furthermore, this equal distribution over the week is just as important for the Etos

warehouse. The warehouse also has to deal with its own capacity restrictions, both

humanly and psychically. These constraints are currently not included in the optimization.

Since this topic of future research is mainly related to lead time optimization and delivery

day and time optimization, this combination of additions would be of great practical

added value for Etos her supply chain.

9.8 Retail Item Store Stock Level

Currently, the current stock levels of articles in the stores and the rotational speed at which

these goods are sold are also not taken into account. In this way, insight is not used when

an article can go out of stock. Implementing this information to the optimization could

consider when the next delivery should be scheduled in the future. Therefore, this topic

is parallel to the lead time optimization described in Section 9.2.

9.9 Algorithmic Applications

At last, there are many perspectives related to the optimization algorithms that are wor-

thy of receiving further investigation. One could think of the application of multiple but

different algorithms. The more successful implementations of Tabu Search are more likely

to create better initial solutions and neighborhood structures.

Alternative strategies for generating an initial solution, more sophisticated neighborhood

exploration, different memory structures, different aspiration criteria, and more sophisti-

cated diversification and intensification methods can be developed. One should also take

the trade-off between the complexity of the algorithm and the computational effort that

this algorithm requires into consideration.

Another future option can focus on the setting where only a subset of customers has

fixed time windows. A study on developing more sophisticated approximation methods

and doing extensive parameter tuning of these methods can be conducted.
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