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Abstract: As part of this research, an Insights System has been built, using an ensemble of Big 

Data Technologies and Machine Learning Algorithms. The Insights System can be used to 

process large data sets (impressions, bid requests), create viewer history and compute the values 

of various derived attributes. The system further facilitates feature and model selection using 

different statistical techniques and machine learning algorithms, thereby enabling us to identify, 

a set of relevant features and a model, that estimates the likelihood of whether an impression will 

result in a click or not. 

Keywords: Hadoop, MongoDB, HIVE, MapReduce, Feature Selection, Naïve Bayes, Logistic Regression, 

Support Vector Machines 
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Executive Summary 
The advent of auction-based media buying is fast transforming the landscape of digital media, thereby 

allowing advertisers and publishers to obtain contextual relevance in advertisements, which a user sees on 

a website. Such customer marketing effectiveness, combined with process efficiency, promises better 

accountability for advertisers on their ad spends. As per the Internet Advertising Board report published 

in 2013, the Dutch online advertising market was €619m in H1 2013, a H/H growth of 5.8%.Moreover, 

the report expected the Dutch display advertising market to grow at 6% in 2014 mostly driven by high 

growth rates in the auction-based media buying. Auction-based media buying has led to the creation of an 

ecosystem comprising of Agencies, Trading Desks, Data Providers, Buying and Selling Solutions 

Providers as shown in the Display Advertising Ecosystem of Netherlands. 

 

Adscience, which is a buy side solutions provider, connects to multiple sell side solutions providers (that 

run the auctions) and participates in auction-based media buying on behalf of media agencies /advertisers. 

Therefore, Adscience strives to combine media buying efficiency with display advertisement 

effectiveness in order to deliver greater accountability to advertisers on their ad spend. Moreover, a 

Winterberry Group White Paper published in 2013, revealed that the 260 executive-level marketers, 

technologists and media industry leaders that it interviewed, lay a high emphasis on applying 

programmatic approached to audience segmentation (91% of respondents) and actionable insight 

development (88% of respondents).This thesis will provide details of an Insights System that has been 

built for Adscience and using the system, different approaches for audience segmentation will be 

explored. Moreover, using the insights system, different attribute selection methods will be explored, that 

enhances the effectiveness of a display advertisement. This system will further streamline the media 

buying efficiency of Adscience by allowing them to identify the optimum bid price of an auction.  
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1. Introduction 

Realtime Bidding (RTB) ‘allows advertisers to bid on the opportunity to show an advertisement to a 

specific user on a specific site with a display advertisement slot’ [51]. To help advertisers participate in 

realtime bidding, intermediaries exist called demand side platforms (DSP), that connect to multiple ad 

exchanges (which run the auctions), and participate in realtime bidding on behalf of the advertiser. The 

demand side platform can access inventory from these ad exchanges and decide whether or not they want 

to bid and at what price. An inventory is defined as the place where the advertisement will be shown. 

Each won bid is termed as an impression. The goal is to identify if showing a particular advertisement to 

a viewer will result in a click and to determine the bid price accordingly. The likelihood of a viewer 

clicking on an advertisement depends on a number of different factors (attributes), and some factors have 

a greater influence than others in the final outcome (click/no-click). The goal can therefore be restated as 

“identification of a set of factors that increase the likelihood of a viewer clicking on a particular 

advertisement” 

 Adscience provides a demand side platform that enables media agencies and advertisers to participate in 

realtime bidding for display ads. The core business of Adscience is Marketing Accountability: 

demonstrating the relationship between marketing efforts on the one hand, and unmistakable additional 

returns on the other. Adscience is also specialized in real-time campaign management. NOAX, 

Adscience’s optimization platform, explores and discovers such relationships and makes real-time 

decisions, or highlights these relationships to marketing and sales specialists. Adscience is affiliated with 

Ortec, a global market leader in software and consultancy in the field of planning and optimization [1]. 

NOAX, the real-time bidding algorithm of Adscience uses a Naïve Bayes algorithm to determine the bid 

price of a banner to be displayed for an inventory. The algorithm uses a set of base attributes (received as 

part of the bid requests) as well as derived attributes to determine the click probability of each viewer. 

The details regarding each won-bid (impression) and the outcome of it (no action, click, conversion) is 

registered and stored in the database. This information is processed frequently in order to update the 

statistics regarding each attribute. A set of delivery rules can be set that restricts the algorithm from 

exploring uninteresting audiences [4]. Moreover, NOAX allows campaign managers to define constraints 

on the budget spent, bid price, number of impressions etc. NOAX also allows campaign managers to do 

audience retargeting mainly on two kinds of attributes: the current url and the browsing pattern of the user 

[4]. As shown in Figure [1], Adscience provides an interface that allows campaign managers to create and 

manage campaigns while a collection of bidding and database servers, process and store bids information.   

Adscience receives approximately 100M bid requests and serves more than 1M impressions per day. This 

number is set to grow rapidly as Adscience connects to more Ad Exchanges and therefore, gains access to 

global inventory in the near future. This allows Adscience access to large volumes of data and therefore 

opens up the possibility of mining these massive datasets [6]. Therefore, Adscience requires a system that 

can store and process the bid requests and impressions. Moreover, the data stored in this new system 

needs to be processed to compute the values of various attributes. Furthermore, the system should enable 

attribute selection using various machine learning techniques and also serve as a test bed for estimating 

the click probability of an impression using alternate algorithms like Logistic Regression and Support 

Vector Machines.  
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Figure 1: NOAX- An Overview 

The aim of this research is to implement an Insights System using an ensemble of Big Data technologies 

and Machine Learning packages for feature selection and classifier comparison. The Insights System 

extracts the bids requests and impressions from the operational platform and stores it in a distributed file 

system (bid requests) and a NoSQL data store (impressions) [14][15]. This data is then transformed using 

a set of map-reduce jobs to compute the values of various attributes [16].The transformed data set 

(attribute values per impression) is then loaded into an environment suitable for statistical computing and 

graphics, wherein different machine learning packages are used to identify the attributes that best predict 

the likelihood of a viewer clicking on a display advertisement [17] [18]. 

A number of feature selection methods like Wrappers, Filters and Embedded methods have been 

evaluated for this purpose. Due to the high dimensionality and large number of impressions, it has been 

found that Wrappers have a high time complexity. Therefore, a unique method has been proposed, that 

combines the filter and wrapper methods wherein a filter method is used to reduce the dimensionality of 

the dataset by selecting attributes that have a high correlation with the outcome while a low correlation 

among themselves. The reduced feature set is then passed to a wrapper method that performs an iterative 

ROC analysis to identify the set of features that best predict the likelihood of a viewer clicking on a 

display advertisement. Moreover, the existence of class skew in the data set has led us to formulate a 

novel approach for ROC analysis by ranking impressions based on their estimated click probabilities. 

Finally, the click probability of each impression has been estimated with alternate algorithms like Logistic 

Regression and Support Vector Machines and performance of these algorithms have been compared 

against the Naïve Bayes algorithm [18][19][20]. The predictions of the models have  been validated 

against the actual outcome of distinct validation sets (to assess robustness) and methods like ROC 

analysis and statistical significance tests have been used to draw conclusions on the performance of the 

models thereby allowing us to draw conclusions on the comparative analysis of the models. Moreover, the 

system is being used for other research purposes like viewer profiling and conversion attribution which 

are out of scope for this report. 
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2. The Insights System 

2.1 Overview 

The Insights System is an ensemble of Big Data Technologies and a Statistical Analysis Environment for 

processing and analyzing impressions data.

100M+ bid requests, 1M+ impressions, 

computes the attributes values for each impression daily. Moreover, the system runs various machine 

learning algorithms on large volumes of impressions data to 

impression.   

 

Figure 2: Insights System 
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The Insights System is an ensemble of Big Data Technologies and a Statistical Analysis Environment for 

processing and analyzing impressions data. As shown in Figure [2], the system processes

ions, their corresponding outcomes (no clicks, clicks, conversions) and 

for each impression daily. Moreover, the system runs various machine 

learning algorithms on large volumes of impressions data to estimate the click probability for each 

Figure 2: Insights System – An Overview 
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The Insights System is an ensemble of Big Data Technologies and a Statistical Analysis Environment for 

processes approximately 

their corresponding outcomes (no clicks, clicks, conversions) and 

for each impression daily. Moreover, the system runs various machine 

imate the click probability for each 
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2.2 The ETL Process 

2.2.1 Extraction 

The extraction process, as shown in Appendix A, sources bid requests, impressions and events data 

(clicks, conversions and retargeting) from the operational system. Moreover, the extraction process also 

extracts domain categories and average time spent by a viewer on a webpage. Bid requests are extracted 

from each of the bidding server and contain the following information 

� Viewer Id 

� Impression Id 

� Banner Id 

� Position of the Banner 

� Size of the Banner  

� Browser 

� Domain Name 

� IP Address 

� Language  

� Operating System 

� SSP  

� Timestamp 

The value of Banner Id indicates whether we bid for the requested impression or not. A Banner Id of -1 

indicates that we did not bid for the impression. The Impression Id is a concatenation of the Timestamp 

and Viewer Id. Similarly, impressions data is extracted from the operational databases and contains the 

following information  

�  Impression Id 

� Viewer Id 

� Timestamp 

� Domain Name 

� Estimated  CTR (Click Through Rate) 

� IP Address  

� Operating System 

� Banner Id 

� Campaign Id 

� Browser 

Moreover, events data (clicks, conversions & retargeting) is extracted which contains the following 

information 

� Viewer Id 

� Event Time  

The extraction process extracts these data sets and stores them in the Insights System for further 

processing. 
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2.2.2 Transformation 

The transform process, as shown in Appendix B, creates and stores viewer profile i.e impressions and its 

outcomes (click, no click, conversion, no conversion, retargeting) are aggregated per viewer. Creation of 

viewer profile transforms the attribute computation problem into an embarrassingly parallel problem such 

that the attributes for each viewer can be computed in parallel. Once the viewer profile (history) has been 

created, a large number of attribute can be computed for each viewer. Some of these attributes are 

mentioned below 

� Base Attributes: These attributes are the default attributes present in the data extracted 

from the operational system. Examples of Base Attributes are:  

� BROWSER 

� OS 

� DOMAIN 

� IP  

� BANNER 

� CAMPAIGN 

� SSP 

� DATE_TIME 

� CTR  

� DOMAIN_CATEGORY 

 

� DateTime Attributes: These attributes are derived from the timestamp at which the 

impression was served. Examples of  such attributes are: 

�  DATE 

� DAY_OF_WEEK 

� HOUR_OF_DAY 

 

 

� GeoLocation Attributes: These attributes are derived from the IP address of a viewer 

and provide information about the geographic location of a user. Examples of such 

attributes are : 

�  COUNTRY 

� LATITUDE 

� LONGITUDE 

� REGION 

� CITY 

� WEATHER: the geographic coordinates (Latitude, Longitude) are used to 

derive the weather information of the location in which the impression is 

served. 

 

� Count Attributes: These attributes define the number of occurrences of a particular 

event per viewer, till the given impression was served. Examples of such attributes are:  

�  NOF_IM_THIS_AD : Number of times the viewer has seen this banner 
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� NOF_IM_THIS_CAMPAIGN : Number of times the viewer has seen any 

banner belonging to  this campaign 

� NOF_IMPRESSIONS : Number of Impressions already served to the viewer 

� NOF_CONVERSIONS : Number of conversions  already registered for the 

viewer 

� NOF_RETARGETING_REQUESTS : Number of times the viewer has been 

retargeted 

� NOF_CLICKS : Number of clicks  already registered for the viewer 

� NOF_CONVERSIONS_THIS_AD : Number of conversions  already 

registered for the viewer for this banner 

� NOF_VISITS_THIS_DOMAIN : Number of times the viewer  has visited  

this  domain 

� NOF_BID_REQUESTS : Number of bid requests received for the viewer 

� NOF_VISITS_THIS_DOMAIN_CATEGORY : Number of times the viewer  

has visited  this  domain category 

� NOF_CONVERSIONS_THIS_CAMPAIGN : Number of conversions  

already registered for the viewer for this campaign 

� NOF_CL_THIS_CAMPAIGN : Number of clicks  already registered for the 

viewer for this campaign 

� NOF_CL_THIS_AD : Number of clicks  already registered for the viewer for 

this banner 

� NOF_BID_RESPONSES : Number of bid requests for the viewer that have 

been responded to 

 

� Flag Attributes: These attributes indicate the occurrence of an event in the past for a 

viewer. Examples of such attributes are: 

� HAS_CLICKED : A yes/no flags indicating whether a viewer has already 

clicked on a banner in the past 

� HAS_CONVERTED : A yes/no flags indicating whether a conversion has 

been registered for the viewer in the past 

2.2.3 Load 

Since the main objective is to compute the click probability per impression, the load process maps the 

attribute values   computed per viewer (in the transform step) to each impression served to the viewer 

thereby generating attribute values per impression. The attribute values per impression are then loaded 

into the statistical analysis environment wherein various machine learning algorithms are used to identify 

the attributes/algorithm pair that best predicts the likelihood of a viewer clicking on a display 

advertisement.  

 

 

 



 

 

2.3 Setup of the Insights System

As described in Section 2.1, due to the large volume of data that has to be stored and processed by the 

Insights System, a set of parallel and distrib

describes the different technologies that have been used in setting up the Insights System

Figure 
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Setup of the Insights System 

due to the large volume of data that has to be stored and processed by the 

ystem, a set of parallel and distributed computing technologies is required.

s the different technologies that have been used in setting up the Insights System

Figure 5: Architecture of the Insights System 
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2.3.1 Data Storage 

The data model of the Insights System (see Appendix C) is implemented using MongoDB and HIVE 

which are described in this section. MongoDB is a NoSQL database which stores data in key-value 

format and offers a wide range of features [21]. Some of the features of MongoDB which make it 

appealing as the data store of the Insights System are 

�  Document Storage:  Since most of the big data sets generated by the operational 

platform are in key-value format, the feature of MongoDB to store data as JSON 

documents makes it a good fit. The key-value structure of the data model is shown in 

Figure [8]. 

 

�  Indexing Support:  The attribute computation task requires accessing documents 

(records) from large collections of data. The indexing in MongoDB allows low latency 

access to documents and therefore is expected to speed up the data transformation 

process. Indexing in the data model is shown in Figure [8]. 

 

�  Horizontal Scaling: Since the Insights System has to store large collections of data, this 

data needs to be split and stored as multiple smaller sets, in order to facilitate quick 

retrieval of data. Moreover, as the data size keeps growing, it should be feasible to scale 

horizontally by distributing the data over additional processing units. MongoDB supports 

this feature of horizontal scaling by allowing creation of shards and adding them to a 

cluster as shown in Figure [6] [22]. Once a shard has been added, the automatic sharding 

feature of MongoDB enables redistribution of data over this new (and larger) processing 

cluster. The use of shard key in the data model is demonstrated in Figure [8]. 

 

� Querying: MongoDB supports a large collection of data retrieval, aggregation and data 

insert/update queries which allows us to perform as lot of the ETL (extract, transform, 

load) tasks as described in Section 2.2.2, via Mongo queries.  

 

Figure 6: Architecture of MongoDB Sharded Cluster for the Insights System 
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While MongoDB provides a number of features which make it a de-facto choice for data store on the 

Insights System, it suffers from high latency when the number of inserts is high as it creates write locks 

on the collection in each shard. The performance of MongoDB worsens for updates as the collection size 

gets larger [25].Therefore, MongoDB ,though a good choice  for storing and processing impressions data , 

it does not work for bid requests wherein the number of bid requests received daily  is approximately 100 

times more than the number impressions served daily. On the contrary, Apache Hive is a powerful data 

warehousing application built on top of Hadoop, which enables access to data using Hive QL, a language 

which is very similar to SQL[23][30].  As shown in Figure [5], Hive only requires the bid request files (in 

json format) to be processed (via map-reduce jobs as shown in Figure [5]) and copied to HDFS (Hadoop 

Distributed File System). Hive provides a database layer abstraction on this file (see Figure [7]) by 

allowing the user to create tables and map the columns of the table to each field in the file. Data 

retrieval/aggregation is done via Hive QL, which in turn invokes map-reduce jobs (see Figure [7]) to 

process the data, thereby allowing the computation of various attributes from bid requests [30]. 

 

Figure 7: Architecture of Hive 

(Source: Hive- A Warehousing Solution Over a Map-Reduce Framework) 
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2.3.2 Data Processing 

The attribute computation task as outlined in Section 2.2.2 has a high computational complexity and 

therefore requires parallel and distributed applications for the same. Hadoop is an open source framework 

for writing and running distributed applications that process large amounts of data [14]. Of all the great 

features of Hadoop that has made it one of the most widely used Big Data technologies, we intend to 

leverage its salability and simplicity in the Insights System. Hadoop scales linearly to handle larger data 

by adding more processing units to the cluster [14]. Moreover, Hadoop provides a very simple abstraction 

for writing efficient parallel code, while the bookkeeping of splitting/managing input data and the 

assignment of computation to a processing unit is done under the hood [14].As shown in Figure [10], a 

Hadoop setup consists of the following components  

� Name Node:  Hadoop employs a master/slave architecture in which Name Node acts as 

the master of HDFS (Hadoop Distributed File System) that directs the slave Data Node to 

perform low level I/O tasks. The Name Node is the bookkeeper of HDFS; it keeps track 

of how files are broken down into file blocks, which nodes store which blocks and the 

overall health of the distributed file system. The Name Node is memory and I/O intensive 

[14]. 

 

� Data Node:  The Data Node is responsible for reading or writing HDFS blocks to actual 

files on the local file system. When a user program wants to read or write a HDFS file, 

the file is broken into blocks and the Name Node tells the user program which Data Node 

does each block reside in. The user program then directly communicates with the Data 

Node daemons to process the local files corresponding to the blocks [14].The interaction 

of the Name Node and Data Node is demonstrated in Figure [10]. 

 

� Secondary Name Node: The Secondary Name Node is an assistant daemon for 

monitoring the state of the cluster HDFS. The SSN differs from the Name Node in that 

this process doesn’t receive or record any realtime changes to HDFS. Instead, it 

communicates with Name Node to take snapshots of the HDFS metadata at intervals 

defined by the cluster configuration [14]. 

 

� Job Tracker:  As shown in Figure [9], the Job Tracker acts as a liaison between the user’s 

program and the Task Tracker. Once a code is submitted to the Hadoop cluster, the Job 

Tracker determines the execution plan by determining which files to process, assign Task 

Trackers to different tasks, and monitors all tasks that are running on the Task Trackers. 

Should a task fail, the Job Tracker will automatically relaunch the task, possibly on a 

different Task Tracker, upto a predefined limit of retries. There is one Job Tracker 

daemon per cluster [14]. 

 

� Task Tracker: The Task Tracker is responsible for managing the execution of each map-

reduce job that the Job Tracker assigns to it, as shown in Figure [9]. The Task Tracker 

constantly communicates with the Job Tracker. If the Job Tracker fails to receive a 

heartbeat from a Task Tracker within a specified amount of time, it will assume that the 



 

 

Task Tracker has crashed and will resubmit the corresponding task to 

Tracker in the cluster [14].

Figure 9: Interaction between Job Tracker  and 

(Source: 

 

Figure 10: Architec

(Source: 

The structure of a typical  map-reduce job is shown in 

which assigns map task to each Task Tracker in the cluster

on the corresponding input split and generate intermediate files  onwhich reduce tasks are run to create 

the final output file. Since we are using both MongoDB and Hadoop on the  Insights System, this allows 

us to leave the data aggregation (reduction) to MongoDB. Therefore

program (data transformation / attribute computation)

map task sends the output to be aggregate/stored to th

across multiple shards. This structure therefore allows us to further simplify the map

program, wherein the user only has to write map
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Task Tracker has crashed and will resubmit the corresponding task to 

Tracker in the cluster [14]. 

Interaction between Job Tracker  and Task Tracker 

(Source: Hadoop in Action by Chuck Lam) 

Architecture of Hadoop Cluster for the Insights System 

(Source: Hadoop in Action by Chuck Lam) 
 

reduce job is shown in Figure [11] wherein the master is the Job Tracker 

ach Task Tracker in the cluster. The Task Trackers, then execute the map task 

on the corresponding input split and generate intermediate files  onwhich reduce tasks are run to create 

Since we are using both MongoDB and Hadoop on the  Insights System, this allows 

eduction) to MongoDB. Therefore, for the execution of a map

(data transformation / attribute computation) on the Insights Platform  (see Figure

map task sends the output to be aggregate/stored to the Mongo router, which in turn distributes the data 

across multiple shards. This structure therefore allows us to further simplify the map
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on the corresponding input split and generate intermediate files  onwhich reduce tasks are run to create 

Since we are using both MongoDB and Hadoop on the  Insights System, this allows 

the execution of a map-reduce  

Figure [12] ), each 

e Mongo router, which in turn distributes the data 

across multiple shards. This structure therefore allows us to further simplify the map-reduce user 

jobs and embedd the Mongo  insert/update query in the 



 

 

map job   and therefore eliminates the need to write reduce jobs .

task is stored in MongoDB (and therfore available for further procesing by leveraging on MongoDB’s  

rich querying features) rather than in flat files.

wherein the Data Node and Task Trackers run on dif

mode wherein all Hadoop components run on a single machine. Since the Insights System is setup on a

single server with multiple CPU cores, we are running Hadoop in 

 

Figure 11: Overview of the execution of a map

(Source: Mining of Massive Datasets by Rajaraman,Leskovec and Ullman)

Figure 12: Overview of the 

 

 

Dimensionality Reduction & Model Selection for Click Prediction|

 

job   and therefore eliminates the need to write reduce jobs . Moreover, the output of a map

task is stored in MongoDB (and therfore available for further procesing by leveraging on MongoDB’s  

rich querying features) rather than in flat files. Hadoop can be configured to run in fully distributed mode

Node and Task Trackers run on different machines on a cluster or in pseudo

wherein all Hadoop components run on a single machine. Since the Insights System is setup on a

single server with multiple CPU cores, we are running Hadoop in pseudo-distributed mode.

 

: Overview of the execution of a map-reduce program  

(Source: Mining of Massive Datasets by Rajaraman,Leskovec and Ullman) 
 

 

: Overview of the execution of a map-reduce program on the Insights System
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task is stored in MongoDB (and therfore available for further procesing by leveraging on MongoDB’s  

fully distributed mode 

ferent machines on a cluster or in pseudo-distributed 

wherein all Hadoop components run on a single machine. Since the Insights System is setup on a 

distributed mode. 

 

reduce program on the Insights System 
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The data processing and attribute computation classes for the Insights System have been written in 

Python. The map-reduce jobs that have been written in python are executed on Hadoop by using the 

Hadoop Streaming API , which  is an utility that allows map-reduce jobs to be written in languages other 

than Java[16].Appendix D gives an outline of all the classes that have been written for the Insights 

System.  

2.3.3 Data Analysis 

Apart from being the statistical computing and graphics environment , with  a large library of packages 

that support statistical computing and data visualization,  R has a number of machine learning packages 

like “glm” (for Logistic Regression),”klaR” (for Naïve Bayes),”e1071” (for Support Vector Machines) 

and “pracma” (for ROC analysis) among others which are required  for the analysis done in this research 

[17][18][26].Moreover, R provides packages like “rmongodb” and “Rhive” for connecting to and 

retrieving data from  Mongo DB and Hive respectively [27][28].  

2.3.4 External API’s 

As shown in Figure [5], the Insights system uses two external API’. The first API is the GeoLite City 

database of MaxMind which enables us to determine the country, region, city, latitude and longitude 

associated with IP addresses worldwide [31]. The second API is the Local Weather API of World 

Weather Online which returns the current weather for a given latitude/longitude coordinates [32]. Since 

the Insights System processes the impressions data of the previous day, the weather data has to be stored 

beforehand. Therefore a list of latitude/longitude coordinates is maintained along with the frequency of 

impressions from each coordinate which is updated when the Insights System processes impressions.  

Therefore the weather information is obtained daily from the Local Weather API based on the 

geographical coordinates sorted by frequency of impressions in descending order. 

2.3.5 Interfaces 

A set of interfaces have been setup for the Insights System, which allows for ease of access, monitoring 

and analysis of data. The first interface is a job scheduler called Citrine, which allows us to create, 

schedule and monitor all data processing tasks in Section 2.3.2. Please refer to [34] for details. Similarly, 

we have setup an interface for MongoDB called RockMongo which allows us to access, update and 

monitor the state of data in the Mongo cluster. Please refer to [35] for details. Rstudio IDE servers as a 

users interface for R on the Insights platform, thereby allowing data analysis to be done easily. Please 

refer to [36] for details. Moreover, the status of map-reduce jobs running on the Task Trackers can be 

monitored through [37] and the health of the Name Node and therefore the Hadoop Cluster can be 

monitored through [38]. 
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3. Dimensionality Reduction & Model Selection 

3.1 The Data Mining Process 

 

 

 
Figure  14: The DataMining Process 

 

 
A standard Data Mining process consists of steps as shown in Figure [14].We briefly describe each step in 

this section 

 

� Data Collection/Storage : The data collection/storage step includes extraction and storage of bid 

requests, impressions and events data as described in section [2.2.1] 

� Preprocessing: The preprocessing step includes computation of various attributes as described in 

section [2.2.2]. 

�  Dimensionality Reduction: In the dimensionality reduction stage, we identify irrelevant and 

redundant features that can be excluded from the model. The various feature selection methods 

have been explained in section [3.12] 

� Prediction: During the prediction stage of the data mining process, we train different learning 

models (Naïve Bayes, Logistic Regression, Support Vector Machines) on the training set and then 

use the model to predict outcomes for a validation set. Training Set and Validation Set have been 

described in section [3.2]. The various learning models have been explained in section 

[3.5],[3.6],[3.7] 

� Model Selection & Analysis : In the model selection & analysis stage, we evaluate the accuracy of 

each model by ROC Analysis and compare the performance of models against each other using 

methods described in section [3.10],[3.11] 
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3. 2 Notations & Definitions 

We define a viewer history, : , ,
k k k

k k

V V V V V kφ +∈ = = ∈�∪ ∩ and ‘
kn

+∈� ’ as the number of 

impressions shown to viewer 
k

V . The set of attributes for viewer 
k

V  is denoted by 

, j 1,..., ,j jA J A A= ∈ . Let the class label {0,1}C ∈  denote no-click/click.Therefore, each impression 

for  
k

V  is denoted by  : 1,..., ,
i k k

k

x i n n I= =∑  where 
1, 2( ,...., ), 1,..., ; 1,...,i i i iJx x x x i I j J= ∀ = =  is 

a vector of dimension 1 J×  and represents the attribute values for an impression and is therefore called 

an instance of the data set. Therefore, 
ijx  is the attribute value of attribute 

jA  for impression i . 

Moreover 
i

c   denotes the oucome for impression ‘ i ’. Let 
I J

X ×  be a I J× matrix denoting the dataset 

where  
k

k

n I=∑  is the number of impressions and J  is the number of attributes in the dataset. Let  

X Cℵ = ×  denote the space of labeled instances. Therefore the vector 

1, 2 .( ,...., , ), 1,..., ,i i i iJ i j jx x x c i I x Aℵ = ∀ = ∈  represents the attribute values for impression ‘ i ’ and its 

outcome (click/no-click). ℵ ⊂ ℵ�  denotes the training set while \ℵ ℵ�  represents the validation set. A 

classifier :
i i

x c→�  maps an impression to its outcome. Training the classifier �  on the training set 

ℵ�  implies identifying a scoring function  

                                                                  :f X C× →�� �                                                               (1) 

While Cross Validation implies hypothesizing the class ‘ i
c ’ such  

 

                                              ( ) argmax ( , ) \ ,
i

i i i i i
c

x f x c x X X c C= ∀ ∈ ∈��                                       (2) 

and then comparing the predicted class of 
i

x  with the actual class. In a binary classification problem, the 

following scenarios can occur 

 

Table [1]: Confusion Matrix for a Binary Classifier 

 Actual Class = 1 Actual Class = 0 

Predicted Class =1 True Positives False Positives 

Predicted Class =0 False Negatives True Negatives 

 

When the number of non-clicks (negative instances) >>  number of clicks (positive instances) i.e

1   ( ) 0

I

i

i

c

Click Through Rate CTR
I

== →
∑

, the data set suffers from Class Skew. In such cases, the 

classifier �  does not find sufficient number of positive examples to train on and as a result the scoring 

function f  is inaccurate. Therefore the cross validation step results in large number of false negatives 

while the number true positives are close to zero. On the other hand, in-order to ensure that the classifier 

finds sufficient number of positive instances to train on without disturbing the class proportions (CTR), 

the number of impressions, I  in the training set and the validation set have to be large which  in turn 

increases the cost of training a classifier.  Moreover, if the number of attributes J  is large, the classifier 

further suffers from the Curse of Dimensionality.  
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3.3 Click Prediction Process 

The click prediction process involves creating K distinct random samples from the data set, splitting the 

impressions ordered by date-time in each of these K samples into a training set and test set such that both 

the training set and the test set have equal number of clicks. We then train the classifier on each of the K 

training sets and cross validate on the K validation sets. Finally, we conduct statistical significance tests 

on the result of the K cross validation steps to hypothesize on the performance of the classifier [44]. A 

formal representation of the algorithm is given below. 

 

� Step 1: Divide the space of labeled instances X Cℵ = × into K distinct subsets 

1 1 1 2 2 2C , ,....,
k k k

X X C X Cℵ = × ℵ = × ℵ = ×  such that 
1

K

k

k =

ℵ = ℵ∪  and 
1

K

k

k

φ
=

ℵ =∩ where each 

k
ℵ is a ( 1)

k
I J× +  matrix. 

 

� Step 2:  Sort 
k

k Kℵ ∀ ∈ by DATE_TIME 

� Step 3: Find k
l  such that  1

1

:
2

k

k

I

l i

i

k k k i

i

c

c =

=

∀ℵ ∃ℵ ⊂ ℵ =
∑

∑�  

� Step 4: Therefore 
kℵ�  which is a ( 1)

k
l J× +  matrix forms the training set while \ kℵ ℵ�  which is 

a ( ) ( 1)
k k

I l J− × +  matrix forms the validation set. 

 

� Step 5: Train classifier �  on kℵ�  and obtain scoring function f as shown in equation [1] 

 

� Step 6: Cross-validate the classifier �  on \k kℵ ℵ� and perform ROC analysis. 

 

� Step 7: Construct confidence intervals on the performance of the classifier �   
 

For classifiers like Naïve Bayes where the training costs are low and frequency of clicks in the training set 

is a parameter of the model we train the model on 
k

k

ℵ�∪ and cross validate on \ ,k k k Kℵ ℵ ∀ ∈� .However, 

for models that incur a high cost of training like Logistic Regression and Support Vector Machines, we 

select a training set from one of the K  distinct training sets and add impressions that resulted in clicks 

from the rest of the 1K −  training sets to the selected training set. This results in the classifier finding 

sufficient number of positive instances in the training set in order to identify a correct scoring function. A 

formal representation of the algorithm is given next. 

 

� Step 1:  Choose an 
kℵ� and add : 1,mi ic m k m Kℵ = ≠ ∀ ∈�  

� Step 2:  Train classifier �  on the training set created in step 1  

� Step 3:  Cross-validate the classifier �  on \k kℵ ℵ� and perform ROC analysis 

� Step 4:  Construct confidence intervals on the performance of the classifier �   

 



 

 

3.4 DRMS Flow Diagram 

3. 5 Naïve Bayes Algorithm

The Naïve Bayes algorithm estimates the pr

independence of the attributes conditioned on the outcome (click/no

probability of the attributes along with the prior is estimated from the training set

estimate the posterior (click probability) for an impression in the validation set. 

3. 5.1 The Model 

Adscience uses a Naïve Bayes algorithm

 Naïve Bayes can be defined as  

 

                                         ( 1| ) ( 1) ( | 1)i i i ij ip c x p c p x c= = = =

                              Z ( 0) ( | 0) ( 1) ( | 1)i ij i i ij ip c p x c p c p x c= = = + = =
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Bayes Algorithm 

The Naïve Bayes algorithm estimates the probability that an impression will result in a click, by assuming 

independence of the attributes conditioned on the outcome (click/no-click). Therefore the conditional 

ity of the attributes along with the prior is estimated from the training set, which is then used to 

estimate the posterior (click probability) for an impression in the validation set.  

ce uses a Naïve Bayes algorithm to compute the click probability of an impression

                                                 

1

1
( 1| ) ( 1) ( | 1)

J

i i i ij i

j

p c x p c p x c
Z =

= = = =∏                           

 

1 1

Z ( 0) ( | 0) ( 1) ( | 1)
J J

i ij i i ij i

j j

p c p x c p c p x c
= =

= = = + = =∏ ∏                 
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obability that an impression will result in a click, by assuming 

click). Therefore the conditional 

, which is then used to 

n impression. 

                                         (3) 

                              (4) 
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Where ( 1| ) : \i i ip c x x X X= ∈ �   is the likelihood of a click, given an impression ‘ i ’ having attributes  

1, 2( ,...., ), 1,..., ; 1,...,i i i iJx x x x i I j J= ∀ = =  [2]. The prior ( 1)
i

p c = , which is estimated from the 

training set
kℵ� , is defined as [5],   

                                   

                              
#Clicks

( 1) ; ( 0) 1 ( 1)
# Impressions

i i ip c eCTR p c p c= = = = = − =                         (5) 

 

Furthermore, the Weak Law of Large Numbers implies 

                                    1 1

1 1

lim P 0 0, {0,1}

1 1

I I

i i

i i
I iI I

i i

c c

E cε ε= =
→∞

= =

  
  
  − > = ∀ > ∈
  
    

∑ ∑

∑ ∑
                          (6) 

Which suggests that as the number of impressions in the training set 
kℵ� , gets large, the CTR i.e ( )

i
p c  

converges in probability to the expected click through rate i.e eCTR.Moreover, the likelihood, 

( | )ij ip x c  is defined as the conditional probability that impression ‘ i ’ will have attribute value 

ijx given that it’s a click or a non-click. 

3.5.2 Estimation of Likelihood 

The likelihood, as defined in section [3.5.1] can be estimated in two ways. The first method as 

demonstrated in equation [7] computes the proportion of occurrence of an attribute value for a given event 

in the training set. 

  

                                            1

1

1

( | ) , {0,1}

1

ij i

i

I

x c

i

ij i ij j iI

c

i

p x c x A c
∩

=

=

= ∀ ∈ ∈
∑

∑
                                                (7) 

The second method, as shown in equation [8] is the kernel density estimation of attribute 
jA  wherein 

0h >  is a smoothing parameter called bandwidth and (.)K is the kernel, a symmetric but not necessarily 

positive function that integrates to one. The kernel function (.)K  determines the shape while the 

bandwidth h  determines the width of f̂  [44]. 

                                            
1

1ˆ ( ) : ,
I

ij

h j ij k j

x x
f A K x A A

Ih h

− 
= ∈ℵ ∈ 

 
∑ �                                               (8) 
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3.5.3 Estimation of Click Probability for New Attribute Values 

The computation of the posterior probability ( 1| ) \i i ip c x x X X= ∀ ∈ �  requires the computation of

( | )ij i ijp x c x X∀ ∈ � .  A Naïve Bayes Classifier when trained on the training set 
kℵ�  results in J  matrices 

each of dimensions | | ij
i

C x× ∩  wherein each element represents the probability ( | )ij ip x c . Therefore, in 

cases where there can be many possible values for an attribute
jA , there can be cases where in 

\ix X X∈ �  but 
ix X∉ � and as a result, the classifier does not return the corresponding 

( | )ij i ijp x c x X∀ ∈ � .Thus, for the computation of the posterior probability, the following algorithm has 

been proposed 

� Step 1: \ijx X X∀ ∈ � , check whether | |ij ij
i

x C x∈ × ∩ . If TRUE , then Goto Step 2 else Goto 

Step 3 

� Step 2 : Return  ( | )ij ip x c  ; STOP 

� Step 3 : Return 
1

ij
i

x∩
; STOP 

3. 6 Logistic Regression 

The Logistic Regression model estimates the click probability of an impression by first finding a 

separating hyper plane between the clicks and non-clicks and then by mapping the hyper plane to the 

interval (0, 1) by a logit function. 

3. 6.1 The Model 

The Logistic Regression model is a binary classifier �  that identifies a scoring function f  by   

� Formulating a linear model from the training set, ℵ�  and    

� Map the linear model to the interval (0,1)  by a logit function which in turn becomes the 

probability of a positive outcome (click). 

Let us denote by ( 1)
i

p P c= = , the probability that an impression results in a click out of I impressions. 

Therefore we define a Bernoulli random variable
1 if  1

0 o.w

i

i

c
M

=
= 


.  Therefore, the random variable M

denotes the number of clicks in I  impressions and has a binomial distribution as shown in equation [9].  

                                                            
1

~ ( , )
I

i

i

M M Bin I p
=

=∑                                                        (9) 
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Now, we formulate the linear model as shown in equation [10] wherein X�  is a ( 1)I J× + matrix of I

impressions, J  attributes and a vector of 1’s. Moreover, the weights
0 2

( , ,..., )
J

β β β β=  is a ( 1) 1J + ×  

vector where 
0

β represents the intercept. The model results in a 1I ×  vectorη . 

                                                                                   Xη β= �                                                                                (10)                                                             

We map η +∈�  to (0,1)p ∈  by the logit function given in equation [11]  

                                                                   ( ) log
(1 )

p
g p

p
η

 
= =  − 

                                                             (11) 

Therefore, the computational problem is estimation of the weights β̂   from the training setℵ�  which is 

obtained by maximizing the log-likelihood of the canonical distribution function of M with respect to β

.This is done by the Fisher Scoring Method. An alternate method for obtaining β̂  is by the Batch 

Gradient Descent Method though; the Fisher scoring method is faster. We do not elaborate on these 

methods as they are built into most data mining packages [19] [20]. 

3. 6.2 Estimation of Click Probability 

The click probability for an impression 
i

x   is estimated from equation [12] where \ix X X∈ �  and β̂  is 

estimated using the methods described in section [3.6.2.1]. 

                                                        
ˆ

1ˆ( 1| ; )
1

T
i

i i x
p p c x

e
β

β
−

= = =
+

                                                       (12) 

 

3. 7 Support Vector Machine 

A support vector machine is a binary classifier that builds a model by finding a separating hyper plane 

with maximal margins, that separates clicks from non clicks and then uses the model to classify whether 

an impression  will result in a click or not. 

3. 7.1 The Model 

Support Vector Machine is a binary classifier �  that identifies a scoring function f  by    

� Mapping an instance 
ix ∈ℵ�  into a higher (maybe infinite) dimensional space [50] 

� Find a  separating hyper plane  with the maximal margin in the higher dimensional space [50] 

This follows from redefining the classification problem as the problem of finding a hyper plane (as shown 

in equation [13]) with suitable weights, w  such that the hyper plane can separate instances of the two 

classes [44]. Therefore an instance
i

x  can be mapped to a target class depending on which side of the 

hyper plane it lies on.  
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0

0

( ) 0 for 1

( ) 0 for 0

T

i i

T

i i

w x w c

w x w c

+ ≥ =

+ ≤ =
                                                    (13) 

Separability of instance into two classes results from the following theorem 

Theorem 3.1 (Cover’s Theorem): A complex pattern-classification problem, cast in a high-

dimensional space nonlinearly, is more likely to be linearly separable than in a low dimensional 

space, provided that the space is not densely populated. 

Support Vector Machines, further improvise on this concept by finding a hyper plane that has the largest 

distance to the nearby training instance of any class (the margin), since larger the margin, the better the 

classifier will generalize to unseen data. Therefore, we rewrite equation [13] as follows to incorporate 

margins into the classification problem 

                                                            
0

0

( ) 1 for 1

( ) 1 for 0

T

i i

T

i i

w x w c

w x w c

+ ≥ + =

+ ≤ − =
                                                   (14) 

 

Therefore, if we define
1  0

1  1

i

i

i

if c
y

if c

− =
= 

=
, equation [14] can be re-written as 

                                                           
0( ) 1T

i iy w x w+ ≥ +                                                            (15) 

 

The distance from a separating hyper plane is defined as  

                                                                0| |

|| ||

T t
w x w

w

+
                                                                 (16) 

Using equation [14], equation [16] can be rewritten as 0( )

|| ||

T

i i
y w x w

w

+
. However, since the click 

prediction problem suffers from class-skew we define a soft-margin hyper plane by re-writing equation 

(15) as  

                                                           
0( ) 1 , 0T

i i i iy w x w ξ ξ+ ≥ − >                                                     (17) 

Where 0
i

ξ >  is a slack variable which stores the deviation from the margin. A deviation from the margin 

can be of two types (a)  
i

x  lies on the wrong side of the hyper plane and is therefore misclassified or (b) 

i
x  lies on the right side of the hyper plane but within the margin. If training an SVM onℵ� , results in
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0
i

ξ = , then 
i

x  has been correctly classified, if 0 1
i

ξ< < , 
i

x  has been misclassified while 1
i

ξ ≥  implies 

that 
i

x  has been misclassified. Moreover, we introduce a penalty parameter, 0C >  which penalizes

: 0
i i

x ξ >  thereby leading to lower generalization error. The instances : 0
i i

x ξ >  are called support 

vectors and the number of support vectors is an upper bound estimate for the expected number of errors 

[44]. Finally the instance 
i

x is mapped to a higher dimensional space by a functionφ . Equation [18] 

represents the optimization problem solved by support vector machines where w is the normal vector to 

the hyper plane. A number of popular methods like Sequential Minimization Optimization exist for 

solving equation [18]. We will however not elaborate on these methods since they are readily available 

with the LIBSVM library and other data mining packages. The time complexity of an SVM is 
3( )O I [50].                           

         
, ,

1

1
min

2

I
T

i
w b

i

w w C
ξ

ξ
=

+ ∑                                                                  

                                                         ( ( ) ) 1 ; 0T

i i i isubject to y w x bφ ξ ξ+ ≥ − ≥                                            (18) 

 

3. 7.2 RBF Kernel 

Equation [18], when represented in its dual form, requires the computation of ( ) ( )
T

i j
x xφ φ . However, the 

inner product ( ) ( )
T

i j
x xφ φ  can be replaced by a kernel function ( , )i jK x x . Therefore, instead of having 

to map two instances 
i

x and 
jx  to a higher dimensional space and then having to do a dot product, the 

kernel function can be directly applied in the original space. The substitution of ( ) ( )
T

i j
x xφ φ  with 

( , )i jK x x  is called kernel trick. The symmetric and positive semi definite I I×  matrix of kernel values 

is called a Gram matrix [44]. 

The radial basis function (RBF) kernel, given in equation [19] is one of the most widely used kernels that 

non-linearly maps instances into a higher dimensional space, so that, unlike the linear kernel, it can 

handle the case when the relation between class labels and attributes is non linear. An important property 

of the RBF kernel is 0 1ijK< ≤  [50].  

                                                             ( )2

( , ) exp , 0
i j i j

K x x x xγ γ= − − >                                               (19) 

 

3. 7.3 Parameter Estimation 

Support Vector Machines   require the estimation of the penalty parameter C  and the kernel parameterγ

.
Since these parameters are not known beforehand, the parameters need to be estimated from the training 

set,ℵ� . The goal is to identify ( , )C γ such that the classifier can predict class labels from the validation set 

\ℵ ℵ� with minimum misclassification errors. A number of techniques have been suggested in literature to 
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estimate the parameters. One such technique is combining a grid-search method with cross validation 

which can be easily parallelized [50]. However, this technique is only feasible when the number of 

instances in the data set is in order of magnitude of thousands [50]. For very large data sets, we have to 

rely on heuristic techniques. One such method is to consider exponentially growing sequences of C andγ

, for example 
5 3 152 ,2 ,..., 2C − −=  ; 

15 13 32 , 2 ,..., 2γ − −=  [50]. Therefore, the heuristic method identifies a 

starting position and then identifies the direction of the next sequence by cross validating with values on 

either side of the chosen parameter values. This enables us to specify a lower bound for the parameter. 

Since the click prediction problem suffers from class skew, we need to have a high penalty for 

misclassification. Therefore the lower bound on C  can be given as 1C > . It is important to note that for 

very large value ofC , the training time will also go up accordingly. Therefore, starting with 2C = , C  

can be increased exponentially till the misclassification errors on the validation set \ℵ ℵ� have fallen to a 

desired level. The starting value of γ  is generally chosen to be 
1

J
 where J  is number of features in the 

training set [18].   

 

3.8 Dimensionality Reduction for Logistic Regression and SVMs 

Logistic Regression and SVMs require each impression, 
i

x  to be represented as a vector of real numbers. 

Attributes that are defined on the nominal scale, have to be converted to numeric data. This requires 

encoding the attribute values into a 1
ij

i
x× ∩ binary vector, where for an impression the attribute is 

represented a vector Y  of dimension 1 ij
i

x× ∩  where  

                                                            
1  

,
0 . .

ij i

k ij
i

if x x
Y k x

o w

∈
= ∈ ∩


                                                  (20) 

The number of attribute values for attributes like DOMAIN, IP, COUNTRY and BANNER can be very 

large and as a result the binary vector Y  would be large as well. Since training a Logistic Regression and 

SVMs require estimation of weights for each of the J features, increasing the size of J  by introducing 

largeY  requires the models to estimate a larger weight vector. As a result, the number of iterations 

required by the estimation method increases as well, thereby increasing the computational complexity of 

the estimation method. Therefore, to prevent the model from suffering from curse of dimensionality, such 

attributes need to be grouped into categories. However, a number of attributes like IP and DOMAIN 

cannot be easily categorized. We present the following algorithm in such cases which uses Naïve Bayes’ 

posterior probabilities to group attribute values. 

� Step 1: Compute the priors and the likelihood for  
k

k

ℵ�∪ using equations [5][7]and [8] 

� Step 2: Estimate the click probability for attribute ' 'j  as         
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1

( 1| ) ( 1) ( | 1) , ,
l l l l l l ij ij ij k

i i
k

p c a p c p a c a x l x x
Z

= = = = ∀ ∈∩ ∈ ∩ ∈ ℵ�∪          (21) 

� Step 3: Divide ( )
l

p c into ' 'm  groups and map 
ij k

k

x ∈ ℵ�∪  to each of these groups 

It is important to note that the choice of m will determine how well the target algorithm (logistic 

regression or support vector machine) performs. Therefore, search heuristic methods combined with cross 

validation as outlined in section [3.7.3] can be used to estimate m . 

3.9 Transformation of Features   

For attributes defined on the ordinal or interval scale, large numeric  ranges cause numerical difficulties in 

the algorithms used to estimate the weights in logistic regression and support vector machines. Moreover 

attributes with large numeric ranges tend to dominate attributes in smaller numeric ranges and therefore 

would lead to incorrect feature selection. It is important to note that both training and testing data have to 

be scaled using the same method [50]. A number of packages for SVM scale the numeric attribute values 

to zero mean and unit variance. However, for the logistic regression model, the input data has to be scaled 

and then given to the algorithm to train or predict. A number of transformations like the Box-Cox 

Transform and the Inverse Hyperbolic Sine Transform have been proposed. We present a simplified 

version of the Box-Cox transform in equation [22] that scales numeric attributes for which the bounds are 

unknown, to the interval[0,1] . 

                                                                             
. .g( ) log( 1)j jx x= +                                                                (22) 

On the other hand, non-negative attributes for which the upper bounds are known, we scale the data to the 

interval [0,1]  by computing the ratio of the attribute value to the upper bound. 

3.10 Receiver Operating Characteristics (ROC) Analysis  

A receiver operating characteristics graph (ROC) is a ‘technique for visualizing, organizing and selecting 

classifiers based on their performance’ [13]. In a ROC graph , the true positive rate 
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.We can only compute the true positive rate and the false positive rate in case of discrete classifiers for 

which the output is a class label.  

As defined in section [3.2], the cross-validation step results in a class {0,1}c ∈  such that   

( ) argmax ( , ) \ ,
i i i i i

c

x f x c x X X c C= ∀ ∈ ∈��  where in the scoring function :f X C× →�� �  is the 

probability that an impression will result in a click. However, as the CTR, 1 0

I

i

i

c

I

= →
∑

, the estimated click 

probability ( , 1)
i i

f x c =  is small while the probability of not clicking an impression, 

( , 0) 1 ( , 1)
i i i i

f x c f x c= = − =  is large. This results in the classifier, misclassifying clicks as no-clicks 
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Figure  15: ROC Graphs. The dotted lines represent the estimated click probabili
dashed lines represent the actual outcomes sorted by the click probabilities.

Figure [15] shows three different schematics of ROC
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by the rank of each impression. In a perfect prediction or in cases of over fitting, the dashed line will 
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probability, ( , 1) 0jf x c = ≈  was estimated even for a click. However there 

of clicks which have been predicted correctly. This is represented by the part of the curve where the 

dotted line and the dashed line overlap. On the other hand in (b) 

Dimensionality Reduction & Model Selection for Click Prediction|

 

.Therefore , instead of classifying an impression in the validation set as 

click , we rank the impressions by their estimated click probability i.e  :R f

( , 1) ( , 1) .This implies that the impressions with the highest rank have the 

) of being clicked, while the impression with the lowest rank have the lowest 

d. Let \
i

c C C∈ � be the actual click for impression ' 'i . In case of perfect 

estimation of click probabilities, we can partition R  into 
' ' and \R R R

 and \   and
' '

0 , 1 , \
i j

c c i R j R R= = ∀ ∈ ∈ . However, such a scenario only 

the data. The cross validation step will therefore result in cases there 

and  
'

\ : 0
j

j R R c∃ ∈ =  (false positive).It is therefore important 

number of false positives will depend on the partitioning of R as decreasing the number of false 

ill increase the number of false negatives and vice versa. This leads to the optimization 

problem of finding the optimal partition of R such that misclassification costs are minimized with 

different costs assigned to misclassification of click as no-click and misclassification of no

However, this is out of scope of this research and is a topic that should be investigated in future work.

we take the running sum of the actual clicks ordered by the rank of the impressions 
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. The dotted lines represent the estimated click probabilities sorted in ascending order. The 
dashed lines represent the actual outcomes sorted by the click probabilities. 

Figure [15] shows three different schematics of ROC where the dotted line represents the estimated click 

probabilities for each impression while the dashed line represents the running sum of the clicks ordered 

In a perfect prediction or in cases of over fitting, the dashed line will 

In (a), the ROC shows that there exists some false negatives wherein

was estimated even for a click. However there exist a substantial 

clicks which have been predicted correctly. This is represented by the part of the curve where the 

and the dashed line overlap. On the other hand in (b) the classifier performs worse than (a) as 
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the false negatives are large i.e the scoring function has estimated a click probability, ( , 1) 0jf x c = ≈ for 

all clicks. In (c), the classifier performs even worse wherein an even lower click probability is estimated 

for each click as is evident from the steep rise in click count for impression with low rank.   

We now turn our attention to the Area under an ROC Curve (AUC) which is defined as ‘probability that 

a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative 

instance’ and can be used as a measure of classifier performance [13].  From Figure [15], the total area of 

the ROC space can be defined as the area of the rectangle, where the length is the number of impressions 

and breadth in the total number of clicks in the validation set. The ROC curve occupies a certain 

proportion of this area and therefore the area occupied by the ROC curve can be expressed as a 

percentage of the total area. Now, as described in the properties of the ROC curve, lesser the proportion 

of area occupied by the ROC curve, lower is the number of misclassification by the algorithm and as a 

result better the performance. Therefore, the proportion of space occupied by the ROC curve in Figure 

[15.a] is lesser than the proportion of space occupied in Figure [15.b] and Figure [15.c] and therefore 

represents better performance. However, standard formulations of ROC curves and AUC suggest that 

larger the AUC, better is the performance of the model. Therefore, in order to standardize our analysis, 

we take the complement of the proportion of space occupied by the ROC curve. 

 

Formally, The AUC is estimated as  
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1

1 , 1,.., :
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i iI
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AUC k I R R
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=

+

=

= − = ≤

×

∑∫

∑
                                           (24) 

The definite integral 
10

I k

i

i

c
=

∑∫  is approximated using the trapezoidal rule [42]. Moreover, as described in 

section [3.3], when there are K distinct folds on which we train and validate the model, we will have K 

ROC curves.   

3.11 Estimation of Model Performance 

For training set ℵ�  and validation set \ℵ ℵ� , let us denote by p , the probability that the classifier 

classifies a click correctly ( ) 1 \ , 1i i ix x X X c= ∀ ∈ =�� . Therefore we define a Bernoulli random variable

1 if  ( ) 1 \ , 1

0 o.w

i i i

i

x x X X c
M

 = ∀ ∈ =
= 


��
. We define i

i

N c=∑ as the total number of clicks in the 

validation set.  Therefore, 
1

~ ( , )
N

i

i

M M Bin N p
=

=∑ and we test whether p is less than or equal to a 

predefined probability 0p .We test the following hypothesis  
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                                                        0 0 1 0:  vs :H p p H p p≤ >                                                    (25) 

Thus the binomial test rejects the null hypothesis if 
0 0

( ) (1 )
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m N m

m k

N
P M k p p

m
α−

=

 
≥ = − < 

 
∑ where α  

is the significance level. 

Since, M is the sum of independent random variables from the same distribution, by the Central Limit 

Theorem, for large N ,
M

N
is approximately normal with mean 0p and variance 0 0(1 )p p− . Then 

0

0 0

~ N(0,1)
(1 )

M
p

N

p p

−

−
. Furthermore, if we train  �  on X�   and validate on \X X� ,  K  times then we 

obtain the probability of correctly classifying clicks from each of the K  validation sets i.e , 1,...,
i

p i K=

where 1
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==
∑
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21 1

( )

;
1

K K

i i

i i

p p p

p S
K K

= =

−

= =
−

∑ ∑
. Therefore, 

                                                                            0
1

( )
~ k

K p p
t

S
−

−
                                                                   (26) 

We reject the alternate hypothesis that the classification algorithm can predict clicks with probability 

more than 0p  when [26] is less than
, 1Ktα −  [44]. 

Similarly, we can compare the performance of two classifiers, validated on K validation sets, using a 

paired t-test [44]. We define 
1 2

i i ip p p= −  as the difference in the proportion of clicks classified by two 

classifiers. Therefore  

2

21 1

( )

;
1

K K

i i

i i

p p p

p S
K K

= =

−

= =
−

∑ ∑
 and we test the null hypothesis 0 : 0H µ =  that the 

distribution of the difference of proportion of correct classifications across two classifiers has mean 0. We 

reject the null hypothesis if 
K p

S
lies outside the interval

/2, 1 /2, 1( , )K Kt tα α− −− . 

3.12 Feature Selection 

The feature selection problem is defined as ‘the process of selecting a subset A A⊂�  of original features 

according to certain criteria’ [7] [9]. Therefore, the feature selection process results in a 

( 1) :I K K Jℵ = × + ⊂  where J is the number of features in the original feature space. On the other 

hand feature extraction is defined as ‘the process of constructing a new set of K dimensional features 

space out of the original J features’. Some of the widely used feature extraction techniques are Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) [44].However feature extraction 

is out of scope for this research and we only focus on the problem of feature selection. 
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Feature selection algorithms are often used as a dimensionality reduction technique. The central 

assumption when using a feature selection algorithm is that the training data contains many redundant 

and irrelevant features [9]. 

 

 

A redundant feature is defined as  

 

 

                                     \ : ( 1| ) ( 1| ( ))j jA A A A A P C A P C A A∃ ⊂ ∀ ⊂ = = = ∪� � � �                            (27) 

 

An irrelevant feature is defined as  
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Irrelevant features are those that provide no useful information in any context whereas Redundant 

features are those which provide no more information than the currently selected features [7]. 

A feature space of J features can have 2J
possible subsets of feature J but for large J , training and 

validating a classifier on each of the 2J
possible combinations wherein the number of instances in both 

the training and validation sets is large, is computationally intractable. We therefore resort to heuristic 

methods to get a reasonable (but not optimal) solution in reasonable (polynomial) time [44]. 

3.12.1 Feature Selection Methods 

3. 12.1.1 Wrapper Methods 

 Wrappers utilize the learning model of interest as a black box to score subset of variables according to 

their predictive power [45]. Two commonly used wrapper techniques are  

3. 12.1.1.1 Forward Selection 

In forward selection, we start with no features and add them one by one, at each step adding the feature 

that increases the AUC the most, until any further addition does not increase the AUC [44]. Therefore 

starting with F φ=  we iterate over the following steps  

� Step 1:     Find j  such that     arg max ( )
j

j

AUC F A∪  

� Step 2:    Add 
jA to F if ( ) ( )jAUC F A AUC F∪ >  

As is evident, the computational complexity of this algorithm is 
2( )O J and again for large J the 

computation time increases quadratically. For the Naïve Bayes model, the prior [equation 5] probabilities 

and likelihood [equation 8] need not be re-estimated from the training set for each step of the forward 

selection algorithm as addition or removal of feature only involves multiplying or not multiplying the 

conditional feature probability in computation of the posterior. This saves a considerable amount of 

computational overhead when the prediction model is Naïve Bayes. However, for Logistic Regression 

and Support Vector Machines, each addition of feature requires the model to be re-trained on the training 
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set as well. Furthermore, forward selection is a local search procedure and does not guarantee finding the 

optimal subset, namely the minimal subset that maximizes the AUC [44].  

3. 12.1.1.2 Backward Selection 

In backward selection, we start with all features and remove them one by one, at each step removing the 

one that increases the AUC the most until any further removal does not increase the AUC any further 

[44].Therefore, starting with the full feature set F A= , we iterate over the following steps  

� Step 1: Find j  such that  arg max ( )
j

j

AUC F A−  

� Step 2: Remove 
jA from F if ( ) ( )jAUC F A AUC F− >  

The computational complexity computational overhead of training the model at each backward selection 

step is same as that of forward selection. 

It is important to note that in step 1 of both forward and backward selection the feature selection 

algorithm tries to identify whether a feature is irrelevant [equation 36].However irrelevant features can be 

efficiently identified and excluded in bulk from the feature set which are described in the next section. 

3. 12.1.2 Filters Methods 

Filters select subset of variables as a pre-processing step, independently of the chosen predictor and are 

faster when compared to wrappers [45]. The commonly used filter techniques measure the association 

among features using an association matrix. The Measure of Association Method evaluates subsets of 

features on the basis of the following hypothesis “Good Feature subsets contain features highly 

associated with the classification , yet unassociated with each other “.This approach is useful in 

identifying and removing  multicollinearity in generalized regression models and for reinforcing the 

independence assumption of Naïve Bayes. Generally the association between two features is measured 

by computing the correlation between them. However, it is only possible to measure correlation between 

two features if they are on the ordinal, interval or ratio scale. For features measured on the nominal scale 

we compute the measure of association using Cramer’s V. 

3. 12.1.2.1 Cramer’s V 

Cramer’s V measures the strength of association between the features and the outcome (click/no-click) 

and the association among features for training set kℵ� [47].  Cramer’s V for feature v/s outcome results in 

a | |
ij

i
x C∩ ×  contingency table for each attribute 

jA .Where ij
i

x∩ is the number of attribute values for 

attribute 
jA .Since {0,1}C ∈ , | | 2C =  .Therefore; the contingency table has the following general 

structure.  

Table [2]: Contingency Table for attribute Aj and Clicks 

 Outcome  

C=0 C=1 Total 

Attribute

jA  

1 
10

n  
11

n  
1.

n  

2 
20

n  
21

n  
2.

n  

… … … … 
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r= ij
i

x∩  0r
n  

1r
n  

r.
n  

Total 
.0

n  
.1

n  
..

n  

 

 

The Crammer’s V given in equation [37] produces a value in the range [ 1,1]−  where 0 is no association, 

+1 is strong positive association and -1 is strong negative association [47]. Moreover 
..

N n= and 
2χ  is 

computed from the contingency table shown in Table [2]. 

 

                                   

2 21 1

min{( 1), ( 1)} min{( 1),1}
ij

i

V
N r c N x

χ χ
= =

− − ∩ −
                                  (29)            

 

On the other hand, in order to measure the association between two features, we need to construct a 

ij ik
i i

x x i k∩ × ∩ ∀ ≠   contingency table as shown in Table [3] 

 

Table [3]: Contingency Table for attribute Aj and Ak 

 Attribute 
k

A   

1 2 … 
c= ik

i
x∩  

Total 

Attribute

jA  

1 
11

n  
12

n   
1c

n  
1.

n  

2 
21

n  
22

n   
2c

n  
2.

n  

… … …  … … 

r= ij
i

x∩  1r
n  

2r
n   

rc
n  

r.
n  

Total 
.1

n  
.2

n   
.c

n  
..

n  

 

The computation of V is then done using the same formula as in ().Moreover, we compute the Cramer’s V 

for each of the K training sets, 
kℵ�  and test its statistical significance for the population. We therefore 

define the following hypothesis   

                                 
0 :      /    ,j lH there exists no association b w A and A j l∀ ≠                                                 

                                  
1 :      /    ,j lH there exists an association b w A and A j l∀ ≠                                  (30) 

The statistical significance test for Cramer’s V is same as that of chi-square test of independence i.e 
2

( 1)( 1),1r c
V αχ − − −∼   [46]. Therefore we reject the null hypothesis 

0
H  if the p-value  

2( )P χ>  is less than 
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the significance level / Kα  where / Kα is the Bonferroni correction for significance testing with K 

samples [44].  

However, it is important to note that for large ,r m  (for attributes like Domain and IP address) the 

computation of Cramers’V becomes computationally intractable. In such cases, a better approach would 

be to group the attribute into values using the techniques described in Section [3.8], rank them in 

ascending order of the estimated click probabilities, produced by training a Naïve Bayes algorithm only 

on the feature under consideration and the corresponding outcome. Rank ties are assigned a rank equal to 

the average of their positions in the ascending order of the values. We then compute the Spearman’s 

Rank Correlation Coefficient which has the same formulation as that outlined in section [3.14.1.2]  

3. 12.1.2.2 Pearson’s Correlation Coefficient 

When the attribute values are defined on the interval or ratio scale, the irrelevant attributes can be 

identified by testing whether the Pearson correlation coefficient 0r = .The Pearson correlation coefficient 

for measure of correlation between attributes 
jA  and the outcome (click/no click) is given by the formula 

                                                      

.

1

2 2

.

1 1

( )( )

( ) ( )

I

ij j i

i

I I

ij j i

i i

x x c c

r

x x c c

=

= =

− −

=

− −

∑

∑ ∑
                                               (31) 

Where I  is the number of impressions in the training set \ℵ ℵ� .The measure of correlation between two 

attributes 
jA  and 

k
A  is given by the formula  

                                                   

. .k

1

2 2

. .k

1 1

( )( )

( ) ( )

I

ij j ik

i

I I

ij j ik

i i

x x x x

r

x x x x

=

= =

− −

=

− −

∑

∑ ∑
                                               (32) 

When the sample size is large i.e 25I > , the sample correlation coefficient
1

~ 0,
2

r N
I

 
 

− 
. Therefore 

an approximate confidence interval for K samples can be defined to assess whether ' 'r  is statistically 

different from zero [48]. 

                                                     /2 /2 1
2 2

K K
Z Z

P r
KI I

α α α− 
< < = − 

− − 
                                                    (33) 

Finally, the test hypothesis for the population correlation coefficient ρ  is defined as  

                                                             
0 1

: 0 vs : 0H Hρ ρ= ≠                                                              (34) 
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Therefore we reject the null hypothesis  if the computed sample correlation coefficient is lies outside the 

confidence interval defined in equation [33]. 

The feature selection algorithm now created as an ensemble of a filter and a wrapper is defined next 

� Step 1: Set F φ= . Construct an upper (lower) triangular matrix A  of dimension J J×

,containing the measure of association between two attributes  

� Step 2: Construct a 1J ×  matrix named B wherein 
jB  indicates the degree of association 

between attribute 
jA  and the outcome (click/no-click) 

� Step 3: Select arg min   arg maxij j
ij j

A and B  and add to F  

� Step 4: Call the Backward Selection Algortihm described in Section [3.13.1.1.2] 

The obvious advantage of combining a filter with a wrapper is that it reduces the computational 

complexity of the feature selection algorithm. 

3. 12.1.3 Embedded Methods 

Embedded methods perform feature selection in the process of training [45].This is a useful feature 

selection technique for logistic regression and support vector machines when the training costs are high. 

Feature selection in logistic regression models can be done by computing the t-ratio which is the estimate 

of 
jβ  computed by the logistic regression model divided by the estimated standard deviation. Therefore 

we formulate the null hypothesis 

                                              (35) 

And accept it if the t-ratio is significant at 
1 /2,I J 1t α− − − .Accepting the null hypothesis results in the removal 

of features that are irrelevant. 

The reduced model can be further assessed by computing the Akaike Information Criterion (AIC) given 

in equation [36] 

                                                                 ( ) 2 ( )AIC J J D J= +                                                   (36) 

Where J  is the number of features in the model and ( )D J  is the measure of goodness of fit of the model 

with J  features to the data and is measured as the difference between the fitted model and the residual 

model. Alternately, Bayes Information Criterion (BIC), can be computed in which 2J  in equation [36] is 

replaced with logJ I .The set of features which minimize the AIC or BIC are considered relevant. Once 

the relevant attributes have been identified with retrain the model with these attributes and then cross 

validate on the validation sets. 

 

 

 

0 : 0 1,...,jH j Jβ = ∀ =
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4. Results 
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5. Conclusions and Recommendations 
The Insights System was evaluated for its ability to process large data sets and computation of various 

attributes. The system could successfully process 22 M impressions and 100 M bid requests. It could 

further create a viewer profile of 10M viewers and computed the values of attributes for each these 

viewers. A total of twenty-five derived attributes were computed on the Insights System. After the data 

processing stage, a subset of the data was used to train different machine learning and feature selection 

algorithms in order to build a model that can predict the likelihood of an impression being clicked or not. 

In this regard, a number of classification algorithms and feature selection algorithms were evaluated. For 

the task of predicting the outcome of an impression, algorithms like Naïve Bayes, Logistic Regression 

and Support Vector Machines were used. For the task of identifying the relevant attributes from the full 

attribute set, Filter, Wrapper and Embedded methods were used. The predictions of the models were 

validated against the actual outcome of seven distinct validation sets and methods like ROC analysis and 

statistical significance tests were used to draw conclusions on the performance of the models. 

5.1 Conclusions 

During the data processing stage, it was observed that the use of MongoDB as a central data store seems 

to lead to a performance bottleneck due to its high latency for write transactions. In order to boost 

performance, new shards were added to the Mongo cluster. However, addition of Mongo shards during 

the data processing stage further slowed down the process as all read and write transactions were locked 

until the mongo router had redistributed all data to the new shards.  

During the data analysis stage, it was observed that exploratory data analysis reveals to a good extent how 

different features are related to the outcome (click/no click) and the shape of the conditional density 

function of each attribute. Due to the high dimensionality and large number of impressions, it was found 

that wrappers have a high time complexity .Therefore, a combination of filter and wrapper methods were 

found to work best wherein a filter method was used to reduce the dimensionality of the dataset by 

selecting attributes that have a high correlation with the outcome while a low correlation among 

themselves. To measure existence of multicollinearity among attributes and correlation with the outcome, 

association matrices can be constructed. The reduced feature set was then passed to a wrapper method to 

identify the set of relevant features. It was observed that the Naïve Bayes algorithm when trained on the 

data set containing only the relevant features, has the best accuracy in predicting, whether an 

impression will result in a click or not. However, it has been observed that Naïve Bayes estimates very 

low click probabilities for impressions, due to the existence of class skew and this leads us to consider 

impressions that have an estimated click probability greater than 0.  

On the other hand, Logistic Regression when trained on the full feature set estimates higher click 

probabilities for impressions than Naïve Bayes but the estimated click probabilities are either ≈0 or ≈1 

which in turn leads to a large number of false negatives. However, using an embedded feature selection 

algorithm to identify relevant features and then training a Logistic Regression algorithm on the relevant 

feature set results in a more continuous probability estimate but the probability estimates are lower as 

compared to the ones from the full feature set. While Naïve Bayes could be trained on a very large 

training set owing to its low computational complexity whereas the Logistic Regression algorithm had to 

be trained on smaller training sets as it has a higher computational complexity than Naïve Bayes. 

Moreover, it was observed that altering the distribution of %of clicks in a training set from 0.1% to 0.9% 

does not really improve the performance of the model, nor does scaling down of numeric feature to the 
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interval [0,1]. Finally, it was concluded that Logistic Regression with feature selection does not perform 

as well as Naïve Bayes with feature selection mainly because of  the suboptimal grouping of features like 

DOMAIN into categories based on their estimated click probabilities. To verify this claim, the Naïve 

Bayes model was used to estimate the click probabilities without the DOMAIN feature and it was 

observed that the AUC dropped significantly, implying poor model performance. 

Finally, training a Support Vector Machine showed that it has a higher computational complexity than 

both Naïve Bayes and Logistic Regression and therefore estimating the penalty parameter, C  and kernel 

parameter, γ  turned out to be infeasible for large training sets. We therefore had to train an SVM on the 

full feature set, with 1C =  and 1/ 36γ =  which resulted in a model that could classify clicks from non-

clicks unlike Naïve Bayes and Logistic Regression models which did not perform well as classifiers and 

we therefore had to rely on the probability estimates returned by them. However, the inability to train an 

SVM with large penalty parameter, C  because of its high computational complexity prevented us from 

improving the performance of SVMs. Moreover, using an embedded feature selection method to improve 

the performance of SVM reduced the computational complexity of training an SVM but also reduced the 

accuracy of the model, thereby leading us to conclude that embedded feature selection methods don’t 

work well with SVMs. 

5.2 Recommendations 

It is recommended to segregate the data processing and attribute computation tasks on the Insights System 

into two parts namely (a) batch writes and (b) aggregated writes The batch writes should include tasks 

that require a large number of writes to the disk and should use an alternate database to MongoDB. This 

means that all the Extract and Transform tasks of the ETL process as explained in this report, should use a 

database that offers low write latency.  

The Naïve Bayes model used in this research used a normal kernel function to estimate the conditional 

probability densities of various attributes. It would be interesting to evaluate the performance of the 

model using alternate kernel functions. Moreover, alternate feature selection algorithms like entropy 

based methods (Kullback-Leibler measure) and unsupervised learning methods (Relief) could be 

investigated.  Similarly, statistical properties of AUC should be further investigated so that confidence 

intervals can be constructed for the AUC which would enable us to draw statistically relevant conclusions 

can be drawn from the AUC. Moreover, ANOVA and non-parametric tests can be used to compare the 

performance of multiple classifiers. The Logistic Regression model falls behind Naïve Bayes in terms of 

performance because of the suboptimal grouping of features with large number of values into groups. 

Therefore alternate methods need to be investigated into for categorizing features with large number of 

values. Similarly, parallelizing the Fisher Scoring/Batch Gradient Descent method of Logistic Regression 

could improve its training time. Moreover, alternate transformation methods need to be investigated for 

transformation of features with large numeric ranges and their impact on model performance should be 

evaluated. Similarly, if alternate methods are found that can estimate the penalty and the kernel 

parameters of SVMs, at a lower computational complexity, it would then be interesting to see the 

prediction accuracy of these models. 
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6. Appendix 

6.1 Appendix A-Data Flow Diagram (Extraction Process)  
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6.2 Appendix B-Data Flow Diagram (Transform Process) 
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6.3 Appendix C-Entity Relationship Diagram 
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6.4 Appendix D-Class Diagram 
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