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ABSTRACT
This research project examined the utilization of top-down and
bottom-up human pose estimation models in the classification of
football actions captured by a single-view, monocular camera. The
study developed a pipeline that integrated, in addition to the hu-
man pose estimation models, multiple other algorithms, includ-
ing field registration, player detection and tracking, ball detection
and tracking, and team classification. These components were in-
corporated into Long Short-Term Memory (LSTM) models, which
were designed to categorize short video clips into five primary ac-
tion classes and their respective sub-classes. The primary objective
was to evaluate the impact of the distinct methodologies of top-
down and bottom-up pose estimation on classification performance
within this machine learning system. The results demonstrated
that integrating these HPE models into the pipeline enhanced the
classification models’ performance. Both pose estimation models
exhibited distinct advantages. The top-down model achieved a
marginally superior score on the hierarchically higher level of pri-
mary events. However, at the attribute level, the bottom-up model
demonstrated superior performance. Future research could inves-
tigate the influence of both HPE methods on classification in the
case of multi-camera systems.

1 INTRODUCTION
The utilisation of data and statistics has been of significant benefit
in the domain of sport over the past decade. Various organizations
within the sporting industry employ performance data and analyti-
cal tools to gain insight into tactics, player performance, and other
pertinent aspects, with the objective of attaining a competitive ad-
vantage over their rivals. In response to this heightened interest
from the sports sector, a greater investment of time and resources
has been dedicated to the investigation of diverse methodologies
for the collection and processing of this information into actionable
insights for individuals within the sports industry.

Predictive analytics has been studied and applied in the context
of several sports over the past decades [74], including basketball,
tennis and baseball. Although the statistical analysis of data has
produced impressive results in various sports, football has been a
late adopter of this data collection. Several factors have influenced
this late arrival.

Firstly, collecting data from football matches requires a lot of
manual labour and sometimes expensive equipment. The privilege
of obtaining such insights is limited to high-profile sporting events
and prestigious football clubs that can afford such costs [40].

Secondly, due to its outdoor and highly dynamic nature, foot-
ball is played under far less controllable conditions than other
sports, with a larger pitch, a large number of players involved,

a low number of player substitutions and longer uninterrupted
game sequences than other sports. Only recently have major break-
throughs been made in deep learning, providing techniques that
can handle such high-dimensional data sets [58].

In addition, the credibility of decision-making depended pri-
marily on human specialists such as managers, retired players and
scouts, all of whom had track records and experience in professional
football. [35] highlighted a cultural hesitancy to integrate data sci-
ence into football and an over-reliance on gut instinct, noting that
’until very recently, football had escaped the Enlightenment’.

The combination of these reasons has meant that football ana-
lytics companies have only relatively recently started to collect big
data (e.g. high-resolution video, annotated event streams, player
tracking and pose information). The player tracking and pose in-
formation is done using deep learning techniques, but for specific
actions, such as passing, shooting, etc., and their outcomes or at-
tributes, such as accuracy or the leg used in the action, manual
annotation must be done. These annotations are only done for spe-
cific high-level games, and the companies sell this information at
high prices, making it unattractive for individuals to get it done for
their own games or training sessions. Therefore, this research takes
a first step towards specific action classification, in an attempt to
make it possible to automate more than just player and ball track-
ing, and to take a first step towards replacing the need for manual
annotation of in-game actions.

The main contributions of this work are the following:

• A unified video processing pipeline, comprising a combina-
tion of existing and self-developed methods, is employed
for the extraction of information from football matches. The
existing methods employed in this research are used for the
purposes of field localizaton, object detection and tracking,
and human pose estimation. The self-developed method has
been developed with the objective of team classification and
has been designed to align with the data used in this research.
Furthermore, the potential for the host organisation to adapt
this team classification model for implementation with new
data is also discussed.

• The shortcomings of the current methodologies are dis-
cussed.

• This study compares and contrasts two methods of human
pose estimation: top-down and bottom-up. The aim is to
highlight the differences in their use and performance.

• This study presents a novel hierarchical classification pipeline
for the detailed analysis of short football clips. The approach
utilises computer vision to extract comprehensive perfor-
mance data, bridging the gap between human perception
and automated analysis.
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In conclusion, this thesis presents a pipeline that can classify a
short (0-20 second) video clip representing a specific action in a
football match, captured using a monocular view. The classifica-
tion is done on different levels/attributes of certain actions. The
monocular view is a camera placed on the long side of the football
field, which is often zoomed out and captures a large part of the
football field. No additional hardware or sensors are required. The
proposed data processing pipeline is illustrated in Figure 1

The remainder of the paper describes the overall research pro-
cess of this project and is structured as follows: Section 2 provides
an introduction to the host organization and department, presents
the problem statement and discusses the relevance of the prob-
lem to the host organization. Section3 describes the current use
of computer vision in sport and discusses the literature that cur-
rently forms the basis for the different computer vision methods
used in this thesis. This is followed by Section4 which describes
the collection, exploration and initial pre-processing of the data.
Chapters 5 and 6 describe the methods used to extract information
from the video clips and are evaluated on a subset of the data to
show how they perform in different situations. Section7 describes
the development of the classification model, which is followed by
Section8 which reviews the results obtained. Section9 then sum-
marizes the findings and discusses the implications of the research,
followed by Section10 which makes both practical recommenda-
tions and suggestions for future research/implementation for the
host organization.

2 PROBLEM DESCRIPTION
This section introduces the host organisation and department where
the research was conducted in Section 2.1. Section 2.2 presents the
problem statement, which is then followed by a discussion of the
scientific foundation and an analysis of how this research differs
from existing research in the field. Finally, Section 2.3 discusses the
relevance of the problem to the host organization.

2.1 Host organization
Ajax was founded in Amsterdam on 18 March 1900. The club de-
veloped into a listed football club with international appeal and
recognition. Since the introduction of professional football in the
Netherlands (1956), Ajax has played continuously at the highest
level, the current Eredivisie. Ajax is currently run by a four-man
board, consisting of an interim general manager, a financial direc-
tor, a technical director and a director of football, all of whom are
approved by the RvC. AFC Ajax (NV) has been listed on the stock
exchange since 1998, making it the only Dutch football club with
a stock market presence. It has a complex shareholder structure,
with 73 per cent of the shares controlled by the AFC Ajax Associa-
tion. Ajax’s financial year runs from 1 July to 30 June. The income
stream can be divided into three different sections: Football income,
sponsorship and TV rights (approximately 50 per cent, 25 per cent
and 15 per cent respectively).

AFC Ajax’s slogan is ’For the Future’, which reflects the club’s
commitment to nurturing young players and developing them into
successful footballers. This philosophy is important to AFC Ajax
as it provides a vital source of income, closing the financial gap
between Ajax and clubs in bigger football leagues (such as the

Premier League), fuelled by lucrative TV rights deals. To illustrate
the significant financial difference, AFC Ajax received the largest
share of Dutch TV rights revenues, totalling 9.5 million euros in
2023, compared to the lowest earning English Premier League team,
Sunderland, which received 128.2 million euros in TV rights in
the same period [14]. This significant difference underlines the
financial disparity Ajax faces in competing with bigger league clubs
and highlights the need for alternative revenue streams, such as
talent scouting and development, to remain competitive.

This internship took place within the International Youth Scout-
ing Department of AFC Ajax. The process of developing young
talent into quality footballers begins with identifying potential
from an early age. AFC Ajax scouts talent from as young as 6 years
old and players must meet certain performance criteria to be consid-
ered. With around 10 professional scouts and around 140 volunteer
scouts, Ajax’s scouting department carefully evaluates players on
Dutch football pitches to determine their suitability for the club.
However, the recruitment of international players follows different
protocols and faces different challenges [45]. International players
are allowed to join Ajax from the age of sixteen, with a limit of two
new international players per year. Unlike the scouting of Dutch
footballers, the scouting of international prospects is logistically
challenging. The initial challenge that the international scouting
department must overcome is the identification of talented individ-
uals. Ajax has established connections with a number of scouts in
various countries, who possess knowledge and insights regarding
talent within their respective regions. However, this network does
not encompass all countries. In order to gain insights into the youth
market in countries with no connections, the international scouting
department relies on the utilisation of data that is accessible on the
aforementioned scouting platforms. The data available on these
scouting platforms is limited to basic information on player perfor-
mances unless an expensive subscription is purchased, which allows
for more comprehensive data analysis on those players. The various
data packages are discussed in more detail in Section 4.1. The more
comprehensive the data available on player performances, the more
effectively the international scouting department can identify and
assess talent within a region or competition, and the more efficient
the search for talent will be. Furthermore, the scouting platforms
provide access to match footage. These videos can be viewed on-
line by designated "video scouts" on a weekly basis. Match footage
from over 600 competitions worldwide is uploaded to the scouting
platforms utilized by Ajax. However, the number of video scouts
available to watch these games and write reports on the players is
limited. Therefore, it is essential to select the games to be watched
by the video scouts with careful consideration. With more sophisti-
cated data on player performances, more informed decisions can
be made regarding which games require direct observation.

2.2 Problem Statement
This research represents an initial attempt to develop a compre-
hensive advanced data collection system based on video footage of
in-game football events. Multiple Long Short TermMemory (LSTM)
classification models are trained to categorize short video clips into
5 distinct main classes, and multiple sub classes. This research and
the resulting models can then be employed as a foundation for a

2



Figure 1: Visualization of Project Pipeline

more comprehensive system for the collection of data from the
entirety of a match. This research will involve the creation of a
pipeline comprising a variety of existing and self-designed methods
for the gathering of features from the input clips, which are sub-
sequently used in the classification process. The aforementioned
methods comprise a field registration algorithm, a player detection
and tracking algorithm, a ball detection and tracking algorithm, a
team classification algorithm and two distinct human pose estima-
tion algorithms.

In this research, the algorithms are evaluated in a variety of sce-
narios, with a focus on their strengths and limitations. In particular,
the performance of both human pose estimation models will be
examined in relation to the following research question: "How will
the utilization of distinct 2D human pose estimation algorithms,
encompassing top-down and bottom-up methodologies, coupled
with models for field registration, player and ball detection and
tracking, and team classification integrated in a machine learning
system, impact the capacity to classify actions in football using
footage from a monocular, action-tracking camera?"

2.2.1 Scientific Foundation. In Section 3.3 the current and newest
studies on football action recognition are mentioned. The major-
ity of these studies addressed a challenge proposed by Soccernet
[63], which focused on the recognition of sparse football actions
(goals, red cards, substitutions). These actions can most of the time
easily be distinguished by discernible changes in camera view. The
objective was to automatically summarise an entire match by recog-
nising the most important moments. This involved the recognition
of these sparse actions. Such methods may then be employed to
automatically generate highlights from matches. A limited number
of studies have addressed the classification of frequently occurring
actions that are more challenging to distinguish within the context
of a game. This is due to the unavailability of annotated data on this
subject. The data used in this study, which is described in Section
4.1.1, is drawn from a paid service that is accessible to a limited
number of individuals. One limitation of this annotated data is that
it was not originally designed for action recognition. Instead, it

was created for the purpose of tracking statistics, and thus it is
not fully suitable for the task of action recognition. Furthermore,
a review of the literature for this thesis revealed no studies that
have compared top-down and bottom-up human pose estimation
models for action classification in sports from a monocular per-
spective. However, the recent release of a new challenge on action
recognition by SoccerNet [64], has prompted the annotation of a
greater number of in-game actions, as previously described. This
development suggests that significant advancements in this field
may be expected in the near future.

2.3 Relevance of the problem to the
organization

This research is the first step into creating an automated advanced
data collection system based on video footage. The implementation
of such an automated advanced data collection system can confer a
number of advantages to the host organization. Firstly, the scouting
process can be optimised by processing the vast quantity of games
with the system, thereby reducing the number that require in-depth
analysis within the limited time afforded by the available personnel.

Moreover, the implementation of such a system has the poten-
tial to enhance the operations of other departments within the
organization as well.

A team of analysts analyse the matches played by the first team.
During the course of the matches, the analysts analyse the games
in order to provide the trainer with the opportunity to, for example,
during half-time, demonstrate to the players a variety of scenar-
ios in order to explain certain aspects of the game. A system that
transforms video footage into data and is capable of identifying
specific scenarios from the collected data can automatically provide
the trainer with footage of these scenarios, thus allowing match
analysts to dedicate their attention to other, more complex tasks.
Moreover, the monitoring of player performance in each match
enables the organization to gain insight into the status and progres-
sion of the player in question. At present, the analysis of matches
involving youth teams is frequently conducted manually by trainers
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[45], a process that is both time-consuming and incomplete, as it
does not encompass the full range of statistics pertaining to the
players in question. The implementation of an automated system
that could record these statistics and present a comprehensive view
of the performance of youth players over a longer period of time
would therefore provide trainers with invaluable insight into the
areas requiring training.

In addition to providing enhanced value to the coaching and
playing staff of AFC Ajax, the successful implementation of such a
system is also an attractive proposition for players from other clubs.
The implementation of this digital innovation affords AFC Ajax the
opportunity to establish a competitive advantage over other clubs,
thereby enhancing its attractiveness to top-talented individuals.

3 RELATEDWORK
In this section, existing literature on various computer vision meth-
ods designed for applications in sports and football, and of high
value in this research, are discussed.

3.1 Field Localization
Field localization in football refers to the process of accurately es-
timating the correspondence between the playing field seen by
the camera and the metric model of the field. In field localization
for football, it is assumed that the playing surface is flat, so the
process of field localization involves determining a homography
matrix H for the transformation of an image from the camera into
two-dimensional sports field coordinates [71]. A homography trans-
formation can be estimated given a set of feature matches between
two images, or in this case between an image and a 2D planar
coordinate system [25]. Four or more point correspondences pro-
vide enough constraints to obtain the homography using the DLT
algorithm [17].

A variety of techniques have been developed for the registration
of sports fields using monocular cameras. These techniques can be
grouped into the following categories: those that rely on horizontal
and vertical lines, those that utilize existing dictionaries of camera
views, and those that directly predict camera parameters from an
image.

The method of [30] is part of this first category. [30] leverages
the segmentation of horizontal and vertical lines to derive a set of
plausible field poses from the vanishing points, and selects the best
field after a branch-and-bound optimization. The method needs at
least two of both the horizontal and vertical lines, which makes it
in practice often unusable, since for broadcast views, not all frames
contain at least two of those.

The works of [59] and [9] can be categorized under those that
utilize existing dictionaries of camera views. [59] uses a conditional
generative adversarial network (CGAN) [49] to directly generate
edge images from an RGB image. Edge images are represented
by features that are much more efficient than raw edge images in
search. Besides that, [59] used Chamfer transformation and HOG to
represent edge images for soccer games. Based on this and on the
research on color-based kernel [27] and line and ellipse detection
[51] to distinguish field-marking pixels from other pixels, Chen
and Little [9] propose a novel sports camera pose engine with
only three significant free parameters, with an effective feature

extraction method for edge images and an end-to-end two-GAN
model to detect field markings. Asmentioned before, the methods of
[59]. and [9] Little make use of a database of edge images generated
with known homographies to extract the pose. The bottleneck of
these two methods is the necessity of a database, which hinders
their scalablitiy.

[15] can be categorized as technique that directly predicts camera
parameters from an image. [15] proposed a strategy that involved
segment detection to discard most unwanted edge data, classifica-
tion by using a probabilistic decision tree that identifies the most
probable classification for the set of all detected lines, a combination
of a region growing algorithm and a Least Square Fitting algorithm
to efficiently model the center circle of the field of play, and a
three-step validation stage to determine whether the registration is
correct.

3.2 Detection and Tracking
Object detection, as one of the most fundamental and challenging
problems in computer vision, has received great attention in recent
years [88]. It is a task that deals with detecting instances of visual
objects of a certain class in digital images. Besides prediction of
location, object detection also implies the prediction of the class
the object belongs to. Object detection is commonly used in many
applications of computer vision, such as image retrieval, security
and surveillance, autonomous car driving, and many industrial
applications but a single best approach to face that problem does not
exist: the choice of the right object detectionmethod depends on the
problem that needs to be solved and on the set-up of the experiment
[5]. For action recognition in team sports, such as football, object
detection should be as accurate as possible with reliable detection
of relevant players, the ball, and of other objects of interest [65].
Object detection and tracking in sports videos brings some extra
challenges in comparison with other object detection and tracking
appliances. It should be able to deal witch challenging conditions
like the variable number of objects with a wide range of possible
sizes ranging from players that can cover most of the image to the
objects that are far away from the observer, that are occluded or
those that can be as small as few pixels yet carry a lot of information,
such as the ball.

[44] proposed a novel approach called DeepPlayer-Track to track
the players and referees, by representing the dep features to reatin
the tracking identity. The proposed methodology consists of two
parts: the You Only Look Once (YOLOv4) for detection and a modi-
fied deep feature association with a simple online real-time (SORT)
tracking model which connects nodes from frame to frame to cor-
relate the coefficient of the player identities. The limitation of this
method is that, when a player with the same jersey color is oc-
cluded, the ID of the player is switched. [57] explored the usage of
a Histogram of Oriented Gradients (HOG) trained on pedestrian
detection in combination with a color based detector. [77] propose a
Player Tracking algorithm that combines a CNN-based multibox de-
tector from [69] and a Kanade Lucas Tracking (KLT) tracker inspired
by the implementation of [79], which is an approach to feature ex-
traction and is dealing with the problem that traditional image
registration techniques are generally computational expensive. [79]
proposed a novel deep learning approach for 2D ball detection and
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tracking (DLBT). 2-stage buffer median filtering background mod-
eling is used for moving objects blob detection in combination with
a deep learning approach for classification of an image patch into
the classes ball, player and background. For robust ball tracking a
probabilistic bounding box overlapping technique is proposed and
novel full and boundary grid concepts are implemented to resume
tracking in so called ball-track-lost and ball-out-of-frame situations.
It achieved an accuracy of 87.45 but according to the review of
[43], it could not detect when the ball moved out of play in the
fields, in the stands region, or from partial occlusion by players, or
when ball color matched the player’s jersey. [2] Proposed a particle-
filter-based approach in which they introduced the notion of shared
particles densely sampled at fixed positions on the model field. They
globallly evaluate targets’ likelihood of being on the model field
particles using a combined appearance and motion model. Their
proposed tracking algorithm is embedded in a real-life soccer player
tracking system called Sentioscope.

3.3 Human Action Recognition in Football
Human Action Recognition (HAR) is a challenging task used in
sports to detect players and recognize their actions and teams’ activ-
ities during training, matches, warm-ups or competitions [31]. HAR
aims to detect the person performing the action on an unknown
video sequence, determine the action’s duration, and identify the
action type.

HAR in football is a typical supervised learning task on sports
data. It begins with collecting and annotating data for a task of
interest, preprocessing such as removing digital noise, and extract-
ing features. Feature extraction in traditional machine learning
(ML) techniques was manual, but with the advent of deep learning,
it was automated [50]. Feature extraction can be described as a
pre-processing part to remove the redundant part from the data.
Features are divided into low-level and high-level features. The
key points for low-level features are corners, edges, or contours.
High-level features in action recognition represent an action by de-
tecting high-level concepts and often build upon local features. The
main idea is to preserve structural information of actions. These
high-level features can be a spatio-temporal volume (STV) gener-
ated by 2D contours, 3D shapes induced by silhouettes, motion
descriptor based on smoothed and aggregated optical flow, kine-
matic features and so on [65]. The feature extraction step in HAR
is used for description, but does not explain the action. [52] uses
Support Vector Machine in the classification process, [8] use the
K-nearest neighbour, [24] the K-means algorithm. Besides machine
learning, as mentioned before, actions in HAR can also be classi-
fied using Deep Learning based methods, which include automatic
feature extraction, description and classification. The most pop-
ular models being used in DL-based implementation of HAR in
sports are the Convolutional Neural Networks (CNN) and the Long
Short-Term Memory (LSTM) [55]. LSTM’s are part of the family of
Recurrent Neural Networks, which feeds activations from an input
in a previous time step back into the network to affect the output
for the current input. This property makes the RNNs suitable for
modeling sequences, such as video frames in action recognition.

[18] introduced a pose-projected action recognition hourglass
network which performed action recognition on player-level. It in-
cludes an embedded pose projection component that regularizes the
player’s pose vector’s range and incorporates the temporal informa-
tion. A parallel structure is obtained for extracting projected pose
vectors from all frames of an input sequence and using LSTM layers
to integrate the pose vectors across the input frames. [1] leveraged
the spatiotemporal learning capability of three-dimensional CNN
and and LSTM for summarizing long soccer videos. To summarize
a soccer match video, they modeled the video input as a sequential
concatenation of video segments whose inclusion in a summary
video production is based on its validated relevance. They recog-
nized five actions: centerline, corner-kick, free-kick, goal action and
throw-in to create a highlight recognition framework, and were
assessed using Mean Opinion Scores from 48 soccer enthusiasts
and received a 4 of 5 MOS. [56] considered the problem of explicityl
modeling interactions between players and ball. For that, they pro-
posed self-attention models to learn and extract relevant infrmation
from a group of soccer players for activity detection from both tra-
jectory and video data. Their results show that most events can be
detected using either vision or trajectory based approaches with a
temporal resolution of less than 0.5 seconds, and that each approach
has unique challenges. [75] used the extraction of histogram of ore-
itned gradient (HOG) features for feature extraction and a Support
Vector Machine for classification to classify soccer videos of 5-9 sec-
onds into one of six events: Goal, Head goal, Penalty save, Penalty
goal, Red Card and Substitute. Following the action spotting chal-
lenge of Soccernet [63], which was based on spotting temporally
sparse actions within a complete soccer game, such as goals, player
substitutions, and card scenes, [41] implemented a Transformer
model, which allows capturing important features before and after
action scenes. [72] proposed a lightweight and modulare RMS-Net
for the same challenge, and [39] proposed a dilated recurrent neural
network with LSTM units, grounded on Two-stream CNN features
to model long-range and mid-range dependencies, for that same
challenge also.

3.4 Human Pose Estimation Models
Human Pose Estimation (HPE) is a significant issue that has been
taken into consideration in the computer vision network for recent
decades. It is a vital advance toward understanding individuals in
videos and still images [16]. HPE aims to locate the human body
parts and build human body representations from input data such
as images and videos.

HPE models can be categorized between 2D or 3D HPE. 2D HPE
is used to estimate the 2D position or spatial location of human body
keypoints. 3D HPE on the other hand is used to predict the locations
of body joints in the 3D space. Motion capture systems can collect
3D pose annotations in controlled lab environments; however, they
have limitations for in-the-wild envirionments. For 3D HPE from
monocular RGB images and videos, the main challenge is depth
ambiguities [87]. In this research, 2D HPE will be used.

Traditional 2DHPEmethods adopt different hand-crafted feature
extraction techniques for body parts, and these early works describe
the human body as a stick figure to obtain global pose structures.
Recently, deep learning-based approaches have improved results
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on HPE significantly. HPE can be done in single-person and multi-
person scenarios.

For single-person pipelines, there are two categories that employ
deep learning techniques: regression methods and heatmap-based
methods. Regression methods apply an end-to-end framework to
learn a mapping from the input image of the positions of body
joints or parameters of human body models [70]. Heatmap-based
methods predict approximate locations of body parts and joints
[10] [46] which are supervised by heatmaps representation.

Due to the impressive performance of the model ’DeepPose’ pre-
sented in [73], which is based on the regression framework, the
research paradigm of HPE began to shift from classic approaches
to the use of CNNs. Instead of using the traditional joint-based
representation,[67]introduced a structure-aware regression method
which adopts a bone-based representation that contains human
body information and pose structure. [36] first designed a transformer-
based cascade network in which the spatial correlation of joints and
appearance is captured by self-attention mechanisms. A popular
strategy to learn better feature representation, which is critical
for regression-based methods, is sharing representations between
related tasks so that the model can generalize better on the origi-
nal task. Following this, [37] proposed a heterogeneous multi-task
framework that consists of two tasks: predicting joint coordinates
from full images by a regressor and detecting body parts from image
patches.

Instead of directly predicting the 2D coordinates of human joints,
heatmap-based methods for HPE focus on estimating 2D heatmaps.
These heatmaps are created by placing 2D Gaussian kernels at each
joint’s location, resulting in a set of 𝐾 heatmaps {𝐻1, 𝐻2, . . . , 𝐻𝐾 }
corresponding to𝐾 keypoints. Each pixel value𝐻𝑖 (𝑥,𝑦) in a heatmap
represents the probability of the keypoint being at the position
(𝑥,𝑦). The ground-truth heatmap for each keypoint is a 2D Gauss-
ian centered at the joint’s true location. Pose estimation networks
are trained to minimize the difference, often measured using Mean
Squared Error (MSE), between the predicted and ground-truth
heatmaps. This approach retains spatial location information and
typically results in a smoother training process compared to directly
predicting joint coordinates. Therefore, the interest in leveraging
heatmaps to represent the joint locations recently grew. [80] intro-
duced a sequential framework based on convolutional networks
called Convolutional Pose Machines, which predicts the locations
of keypoints using a multi-stage process. [46] proposed an encoder-
decoder network known as the "stacked hourglass." In this model,
the encoder compresses features through a bottleneck, and the de-
coder expands them for further processing. Complex variations of
the stacked hourglass architecture have been developed, such as
the Hourglass Residual Units by [13], which extend the original
design by capturing features at multiple scales.

[66] presented the High-Resolution Net (HRNet), a novel archi-
tecture that learns reliable high-resolution representations by con-
necting multi-resolution subnetworks in parallel and performing
repeated multi-scale fusions. This approach leads to more accurate
keypoint heatmap predictions. Inspired by HRNet, [85] introduced
Lite-HRNet, a lightweight version that uses conditional channel
weighting blocks to facilitate information exchange between chan-
nels and resolutions. Due to their superior performance, HRNet

[66] and its variations [85], [12] [86] have been widely adopted in
HPE and other pose-related tasks.

In addition to these efforts in designing effective networks for
HPE, body structure information has also been explored to provide
better supervision for building these models. [84] developed an end-
to-end CNN framework that improves HPE by incorporating spatial
and appearance consistency among human body parts, allowing it
to identify challenging examples more effectively.

Multi-person pipelines, which are used in this research, are more
difficult and challenging because it is necessary to work out how
many people are present in the image and how to group the key
points for these different people. Multi-person HPE methods can
be divided into top-down and bottom-up methods. This distinction
is also the difference between the two HPE models used in this
research. Top-down methods use person detectors to obtain a set of
bounding boxes, with one bounding box for each individual person,
from the input image, and then apply single-person pose estimators
to each bounding box to estimate individual human poses, and then
concatenate the results to generate multi-person poses. Bottom-up
methods, on the other hand, first locate all body joints in an image
and then group them into individual subjects. Unlike the top-down
pipeline, where the number of people in the input image directly
affects the computation time, this does not happen with the bottom-
up method, so the computation speed for bottom-up methods is
usually faster than for top-down methods [42].

The bottom-up pipeline has two main steps, namely body joint
detection (extracting local features and predicting body joint can-
didates) and the assembly of these body joint detections into in-
dividual bodies. One of the first two-step bottom-up approaches,
Deepcut [53], first detects all candidate body parts, then labels each
part, and assembles these parts into a human pose using integer lin-
ear programming. [6] developed an algorithm using Convolutional
Pose Machines [80] to predict keypoint coordinates using heatmaps
and Part Affinity Fields, a set of 2D vector fields with vector maps
that encode the position and orientation of limbs. This algorithm
provides a significant speed improvement over Deepcut. Many ex-
isting bottom-up HPE methods are based on OpenPose. Although
they have achieved impressive results on high resolution images,
they have poor performance on low resolution images. [34] pro-
posed a new bottom-up method, named PifPaf, which combines the
part affinity fields designed in OpenPose with a part intensity field
to predict the positions of body parts. This method outperforms
other OpenPose-based approaches on low-resolution images.

In addition to the difference in dimensions and pipelines, there is
also a difference in the way the human body is estimated. A human
pose estimator can be either a skeleton-based, a contour-based or a
volume-based model. A skeleton-based model represents a set of
joint locations (typically between 10 and 30) and corresponding limb
orientations that follow the skeletal structure of the human body
[11]. It is also known as a stick figure model and can be described
as a graph where vertices represent joints and edges represent
constrictions or previous connections of joints within the skeletal
structure [19]. This topology is very simple and flexible and is used
in both 2D and 3D HPE. Despite the obvious advantages of simple
and flexible representation, it also has many shortcomings, such
as the lack of texture information, which means that there is no
width and contour information of the human body. A contour-based
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model contains the approximate width and contour information
of body limbs and torso. Human body parts are represented by
multiple rectangles that approximate the human body contours. It
can capture the connection of body parts, which is not possible with
skeleton-based models. The volume-based model is more advanced
than the previous models and represents the human body as a 3D
volume. Where the contour-based model is represented by multiple
rectangles, the volume-based model consists of geometric shapes
such as cylinders and cones to create a realistic representation of
body poses.

4 DATA
In this chapter, Section 4.1 describes the process of collecting data
from the various data sources used for the study. In order to get
a better overview of what is contained in the collected data sets,
the process of data exploration is described in Section 4.2, followed
by an initial phase of data preprocessing to filter useful data from
redundant data in Section 4.3.

4.1 Data Collection
This study employs two distinct data sources. The first originates
from a paid service scoutings platform utilized by AFC Ajax to
monitor potential future players and is described in Subsection
4.1.1. The second data stream consists of manually gathered data
from different sources and is described in Subsection 4.1.2.

4.1.1 Wyscout event data. Wyscout is an Italian company that
supports football scouting, match analysis and transfer dynamics.
It provides video analysis tools and digital databases regarding
performances and matches for football coaches, teams and players.
Wyscout has worldwide coverage, play by play data on more than
600 competitions globally, from the biggest leagues to the most
promising youth tournaments all over the world [82].

Wyscout offers different packages for different types of data
and services. Currently AFC Ajax makes use of the Videos Pack
[45], which allows accessing to the video footage API of Wyscout.
With this package, basic statistics of a player’s match performances
can be displayed and video footage can be downloaded to be later
reviewed by videoscouts.

For this research, a trial version of the "Events Pack" [81] was
requested fromWyscout, which consists of a detailed analysis of ev-
ery event that happens in a match. The data was obtained through
Wyscout’s API and consists of both the ’event data’ and the video
footage of almost all matches of the first 30 rounds of play of the
Serie A season 2023/2024. The Serie A is Italian’s top football divi-
sion in the pyramid structure of four professional leagues in Italy
[7]. This dataset amounts to a total of 295 matches. Since the video
footage of a game takes up a lot of memory, and in most preprocess-
ing of used methods in this research the resolution of the images
is often reduced, the videos were not downloaded in the highest
possible resolution, but in hd-format with a resolution of 1280x720
pixels.

In the course of this research, a trial version of the "Events
Pack" [81], was requested from Wyscout. This comprises a com-
prehensive analysis of each occurrence within a given match. The
data was obtained via Wyscout’s application programming inter-
face (API) and comprises both the event data and video footage of

nearly all matches from the first 30 rounds of Serie A play during
the 2023/2024 season. The Serie A is Italy’s highest-level football
division within the nations’ pyramid structure comprising four pro-
fessional leagues [7]. The dataset comprises a total of 295 matches.
Given the considerable memory requirements of video footage and
the prevalent reduction in image resolution during the preprocess-
ing phase of most methods used, the videos were not downloaded
in the highest possible resolution. Instead, they were downloaded
in HD format with a resolution of 1280x720 pixels.

4.1.2 Manually collected data. In addition to the extracted datasets,
this research also involved the collection of some manually-derived
data. This was carried out in two distinct ways, corresponding to
the team classification and field localization, respectively.

Manually collected data: Team Classification: The initial manual
collection is designed to facilitate the classification of players into
teams. This process is elaborated upon in Section 5.5. In order to
facilitate the classification process, data has been collected on the
outfits worn by the teams during each match. Each team in Serie A
has a range of different kit options that can be worn during a match.
The number of different kits varies between three and four for play-
ers and two and five for goalkeepers [20] . For a match, a selection
of kits is made based on the distinctiveness of the different options,
taking into account that the team playing on their home field can
play in their first/home kit. For classification purposes, each match
between team A and team B in the dataset is manually annotated
with the jersey worn by the respective team, the goalkeeper, and
the team of referees. The manually collected data on the worn kits
can be found on the github page under data.

Manually collected data: Field Localization: The other manual
collection is in correspondence with field localization, which is
further explained in section 5.2. For precisely locating positions on
the field during the process of field localization, the dimensions
of every football field used in the dataset had to be annotated. Ac-
cording to FIFA’s Laws of the Game [21], the in-field line markings
have standard and non-changeable sizes, whereas the length of the
touchline and goal line can differ per field of play and have to be in
the range of 90-120m and 45-90m respectively. The different sizes
for each playing field in the Serie A can be found in Table 1.

4.2 Data exploration
4.2.1 Event-Related Data Exploration. This section provides a more
detailed examination of the Wyscout event data. Each match is
represented by its own event data set, in which every event that
occurred during that match has been annotated with detailed in-
formation. The mean number of events per match is 1681. Each
event is identified by a unique event ID, the corresponding match
ID, a description of the timestamp in-game (including a match
timestamp and video timestamp), information on possible related
events, the type of event, the location of the event, the players and
team involved, and detailed statistics on the event. Additionally,
information on the current play of ball possession is included. An
instance of the manner in which an event is documented within the
events dataset can be observed in Figure 63. This particular event
is of the primary type ’pass’ and initially presents the general in-
formation, followed by the detailed information regarding the pass
(accuracy, angle, height, length, recipient and end location). This is
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Team Length touch line (meters) Length goal line (meters)
AC Milan, Atalanta, Bologna,
Fiorentina, Frosinone, Genoa, Hellas
Verona, Inter Milan, Juventus, Lazio,
Lecce, Monza, Roma, Salernitana,
Torino

105 68

Cagliari 105 65
Empoli, Udinese 105 67
Napoli 110 68

Table 1: Dimensions of playing field for different teams in Serie A

Figure 2: Number of occurrences of each primary event

subsequently followed by information on the possession statistics,
which contains information on all events during this possession
play, as well as the specific event’s role within it.

The type of event is classified in primary types, and then de-
scribed further by secondary types. An event can only have one
primary type, which is always present, but may also contain one
or more secondary types, including no secondary types at all. The
dataset counts a total of 19 different primary types and 63 different
secondary types. The different primary types and their occurences
in the dataset are displayed in Figure 2. In the github repository for
this project [78], the occurrences of different secondary types in
combination with primary types can be found.

As previously stated, the event data comprises specific detailed
statistics for certain primary types, classified according to a group
of primary types (pass, shots, ground/aerial duels, infractions and
carries). The aforementioned detailed statistics are presented in
Table 11.

From these primary types, secondary types and detailed statistics,
it is possible to identify a number of interesting distinctions that
can be used to classify clips. The classification hierarchy employed
in this research is illustrated in Figure 1. The actions to classify on
have been selected based on three criteria: firstly, a threshold on
the number of times they occur in the dataset; secondly, whether
they occur during play of the game (and not when the game is
interrupted); and thirdly, their importance in estimating a player’s
performance during a match. Subsequently, the descriptions of the

Figure 3: Visualization of classification hierarchy

various primary event classes are provided, based on the defini-
tions of the actions as set forth in the Wyscout Glossary [83]. For
additional details regarding each primary type, secondary type, or
attribute, this glossary should be consulted.

• Duel: A challenge between two players to gain control of the
ball, progress with the ball or change its direction. The duel
is always a paired event, so for every offensive duel there
will always be a defensive duel for another player. Possible
types: offensive/defensive duel, loose ball duel, aerial duel.

• Pass: An attempt to pass the ball to a teammate. A pass can
be either a cross or a non-cross pass.

• Shot: An attempt towards the opposition’s goal with the
intention of scoring.
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• Interception: An act of player intercepting the ball by antici-
pating its movement when the opponent is shooting, passing
or crossing.

• Touch: A touch (or missed touch) of the ball when the player
is not doing a Pass or other clearly identifiable action.

4.2.2 TimeStamp-Related Data Exploration. An important decision
within the classification process is the criteria used to determine
the length of the input clips. The question thus arises as to the
extent of the frames that must be included, both before and after
the event timestamp, in order to facilitate the classification process.
In order to arrive at an informed decision, it is essential to consider
the following aspects: the degree of accuracy associated with the
event timestamps; the manner in which the timestamps of consec-
utive events behave; the information that is necessary for specific
classifications, and the extent to which the length of the clips affects
this. This section seeks to examine and provide answers to these
questions.

Accuracy of the event timestamps: The data pertaining to events
observed by Wyscout is generated through the manual annotation
of each event within the context of the game. A policy governing the
placement of timestamps for different events during the annotation
process has yet to be published by Wyscout. The annotation of
different games is conducted by various individuals, who adhere
to different standards for annotation, resulting in variations in the
placement of timestamps. In addition, it is essential to determine
the precise moment in time that the timestamp is being made. For
instance, is the timestamp of a pass annotated as the moment that
the ball propelles from the foot of the player passing the ball, or
as the moment when the ball is halfway through the pass? To
gain a comprehensive understanding of the general approach to
annotation timestamps for events, the following test is conducted.

For each primary type event used in the classification process,
50 clips are randomly selected. The clips start at the timestamp of 2
events earlier and end at the timestamp of 2 events later. The clips
are played frame by frame and a timestamp annotation is made
when the event begins and ends according to the author’s standards.
The following standards are used as a policy for this:

• Pass: Timestamp start: when the ball leaves the foot of the
passing player.

• Shot: Timestamp start: when the ball leaves the foot of the
player taking the shot.

• Duel: Timestamp start: the moment when both players are
fighting for the ball, or when one player decides to dribble
against the other.

• Touch: Timestamp start: player touches the ball for the first
time.

• Interception: Timestamp start: player touches the ball for
the first time

The results are shown in Table 2 From these results, it can be
concluded that the timestamps of the events are quite accurate, but
most of the time are annotated a bit later than the event actually
starting.

Behaviour of consecutive timestamps: To decide on the criteria for
selecting the length of the input video clip, it is important to know
how long the events last. How long does each event take before
the next event occurs, and does this differ for different successive

Event Mean Time Difference Standard Deviation
Shot 0.0687 0.0693
Pass 0.1436 0.2078
Duel 0.2152 0.3195

Interception 0.0978 0.1159
Touch 0.0403 0.1156

Table 2: Mean time differences and corresponding standard
deviations in seconds between the annotated starting times-
tamps from the dataset and the original start timestamps
made by the author

events? Table 3 and Table 4 show the mean and standard deviation
of the duration for each primary event before the next timestamp
and previous timestamp, respectively, is annotated for each of the
other primary events.

As evidenced in Table 4, the mean time of duration when the
previous event is a ’game interruption’ is notably elevated. In accor-
dance with the definitions provided in the Wyscout Glossary [83],
a game interruption is annotated when the referee ceases play for
reasons unrelated to the game itself. These include instances where
an injured player requires medical attention, smoke is present, or
fans invade the pitch. The elevated mean time required for the sub-
sequent event to occur is an expected consequence. Furthermore,
as can be found in Table 4, the mean time of duration when the
previous event is an infraction is also considerable. According to
the Wyscout Glossary, an infraction is defined as a foul. Following
the occurrence of a foul, it often takes a brief interval before the
match is continued the ball is returned to play.

The Wyscout Glossary defines the term "fair play" as a clearance
of the ball when a player requires medical attention or when the ball
is returned to the opposing team in accordance with the principles
of fair play. These two occurrences invariably occur in the same
order, thereby affording the annotator the option of choosing when
to put the timestamp for ’fair play’. As illustrated in Table 3, the
mean duration of the event "fair play" is 13.3 seconds, with a high
standard deviation of 26 seconds when preceded by an interception.
This elevated standard deviation is a consequence of giving the
annotator’s that choice. The ’fair play’ annotations are occasionally
made at the moment the ball is cleared, and at other instances
at the moment the ball is returned to the opponent. In the latter
case, this frequently occurs after the medical treatment has been
administered, which often takes a while, thus resulting in a high
standard deviation.

4.3 Data preprocessing
This section describes the steps taken to preprocess the data to
make it ready for use in the contextual feature derivation methods,
HPE methods and classification model. This section is divided into 3
subsections. In subsection 4.3.1 it is described how the information
obtained in section 4.2 is used to edit the dataset to make it suitable
for classification. Subsection 4.3.2 describes the various options for
slicing the clips as input for classification, outlining the advantages
and disadvantages of each approach. Subsection 4.3.3 describes the
process used to make a selection of clips that are appropriate for
the research goals of this study.
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Next type Duel Pass Interception Touch Shot
mean std count mean std count mean std count mean std count mean std count

Acceleration 1.72 0.81 630 1.89 0.91 1965 2.11 1.12 203 1.64 0.86 91
Clearance 1.44 0.85 927 2.32 1.22 1047 1.62 0.89 449 1.33 0.79 375 1.78 0.82 27

Duel 0.37 0.79 69918 2.24 1.33 30185 2.21 1.51 3684 2.32 1.95 6401 2.94 1.91 18
Fairplay 5.44 1.49 6 4.03 2.49 109 13.3 26.50 9 5.72 3.21 25

Game Interruption 4.10 5.04 4625 4.79 4.57 3451 4.15 4.33 4795 4.55 8.33 1255 4.82 4.02 2387
Goalkeeper Exit 0.75 0.77 108 1.74 0.69 340 1.73 0.94 23 0.45 0.37 10

Infraction 1.68 0.94 6839 2.34 1.69 12 1.74 1.86 132 2.07 5.68 120 3.56 1
Interception 1.15 1.33 1226 1.37 1.17 15949 1.74 1.36 507 1.10 2.12 570 0.88 0.50 1792

Offside 1.96 1.25 48 2.60 1.88 720 2.48 2.26 67 2.18 1.46 22 4.15 1.29 4
Own Goal 0.26 0.08 2 0.56 0.31 7 0.71 0.22 5 0.90 0.53 5

Pass 1.94 2.28 28526 2.71 1.61 160198 2.92 4.04 9293 3.60 3.18 27984 4.44 3.05 56
Shot 1.10 0.71 2661 1.65 0.82 2269 1.64 0.88 538 1.42 0.69 29

Shot Against 1.31 0.99 16 1.36 0.57 32 1.13 0.54 33 0.68 0.48 14 1.23 0.65 2204
Touch 1.62 3.68 2752 1.72 0.94 29826 1.69 1.45 2167 1.75 2.98 1015 1.85 1.19 65

Table 3: Mean, standard deviation and occurences of time differences for every primary type and the type of the next action

Previous Type Duel Pass Interception Touch Shot
mean std count mean std count mean std count mean std count mean std count

Acceleration 3.64 1.66 1010 4.32 1.70 1807 5.92 1.29 2 3.45 1.94 16 3.78 1.35 96
Clearance 2.61 1.59 245 4.31 2.48 646 1.73 4.74 63 2.72 1.85 153 1.70 0.65 142
Corner 1.50 0.86 1130 2.15 1.14 526 1.44 0.73 652 1.31 0.52 209 1.82 0.65 142
Duel 0.37 0.79 69918 1.94 2.28 28526 1.15 1.33 1226 1.62 3.68 2752 1.10 0.71 2661

Fairplay 8.22 13.87 147 5.51 13.13 44
Free Kick 2.73 1.41 1384 3.17 2.08 4781 1.75 1.06 461 2.11 1.38 733 1.69 0.59 91

Game Interruption 25.15 23.00 4 52.28 46.72 328 47.34 41.80 21
Goal Kick 3.31 1.01 1336 3.56 2.06 2380 3.63 1.62 89 2.20 1.41 665

Goalkeeper Exit 1.56 3.63 227 9.69 7.30 362 0.50 0.63 8 4.22 5.64 31 1.87 0.89 26
Infraction 0.26 1 43.17 28.60 34
Interception 2.21 1.51 3684 2.92 4.04 9293 1.47 1.36 507 1.69 1.45 2167 1.64 0.88 538

Pass 2.24 1.33 30185 2.71 1.61 160198 1.37 1.17 15949 1.72 0.94 29826 1.65 0.82 2269
Penalty 3.20 1 4.55 1 1.81 0.19 2
Shot 2.94 1.91 18 4.45 3.05 56 0.88 0.50 1792 1.85 1.19 65 1.42 0.69 29

Shot Against 12.04 15.94 111 41.72 37.82 1511 1.92 4.97 61 8.19 13.85 109 1.10 0.57 104
Throw In 1.78 1.15 2718 2.62 1.76 7094 1.67 0.63 572 1.85 1.22 736 2.74 0.92 14
Touch 2.32 1.95 6401 3.60 3.18 27984 1.10 2.12 570 1.75 2.98 1015 1.56 1.01 573

Table 4: Mean, standard deviation and occurences of time differences for every primary type and the type of the previous action

4.3.1 Editing the dataframe. The exploration done in 4.2 is used to
edit the dataset. The subsequent modifications to the dataset are as
follows:

• Cross: The Wyscout Data Glossary illustrates the various
options for the ’flank’ attribute (representing the flank at
which the cross originates) as left, right, and centre. Con-
versely, an examination of the 8636 crosses present in the
dataset revealed that 741 rows exhibited a ’nan’ value for
the flank attribute. Upon closer inspection of the starting
coordinates associated with these crosses, the reason for
the absence of a flank annotation was not found, given that
they did, in fact, have starting coordinates within one of the

flanks. Consequently, these rows were excluded from further
consideration.

• Pass: The event data records the direction of the passes. A
pass may be classified as either forward, backward, or lateral.
The direction of a pass can be classified as forward (between
-45 and 45 degrees, as seen from a player facing the oppo-
nents’ goal), backward (between -135 and -180 and 135 and
180 degrees), or lateral (any area outside the aforementioned
ranges). The Wyscout glossary specifies that lateral passes
are defined as those exceeding a length of 12 metres. In the
context of our dataset, all lateral passes that are 12 metres
or shorter are also annotated as lateral. Of the 78,402 for-
ward passes, 185 were not within the expected interval for a
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forward pass. Similarly, 123 of the 36,181 backward passes
and 1,343 of the 87,778 lateral passes were not within the ex-
pected interval. These passes were removed from the dataset
to ensure clear distinction between the different types of
passes.

• Consecutive events: As described in section 4.2.2 a few con-
secutive actions result in very high mean time difference
between two events. These combinations of events are re-
moved from the dataset to exclude long duration clips.

• Long duration events: After removal of the aforementioned
long combinations, still a handful events in the dataset have a
duration of more than 20 seconds. Since the events on which
classification is performed almost never have a duration
this long, these events are probably some kind of wrong
annotation, and are dismissed from the dataset.

Following the aforementioned edits to the data frame, a random
sample of 8,000 instances was selected to contribute to the training,
validation, and test sets. This is due to the fact that, subsequent
to the implementation of all requisite models, it became evident
that not all 26,000+ clips originally sampled could be processed,
given the computational resources that would be required. Figure
4 illustrates the distribution of the primary events of the 8,000
randomly sampled clips.

Figure 4: Distribution of the Primary Types of the 8000 ran-
dom sampled events

4.3.2 Slicing Clips. As outlined in section 4.2.2, the duration of
different actions varies, depending on the action itself and the action
that follows it. In order to create an effective classification schedule,
it is essential to consider the specific information streams from
different moments in the clip, as each contributes to the overall
classification process in a unique manner. To illustrate, in order to
classify the degree of success of a shot, it is necessary for the clip
to contain the moment at which the ball reaches the goal or the
backline. In order to classify the body part, the clip must contain the
moment at which the ball is released by the player who is taking the
shot. An additional example of the necessity for specific information
is the classification between a touch and an interception. In order
to distinguish between these two actions, it is necessary to consider
the preceding action. If a teammate passes the ball in the preceding
action, the action is classified as a touch; however, if an opponent

passes the ball in the preceding action, the action is classified as an
interception.

In order to make an informed decision regarding the selection of
clips from the game footage, it is essential to consider the aforemen-
tioned two aspects. Subsequently, three distinct slicing methods
are presented, accompanied by an analysis of their respective ad-
vantages and disadvantages.

Slicing method 1: Stationary Slicing: The stationary slicing
method is designed to treat the slicing of each clip in a uniform
manner, irrespective of the temporal stamps associated with the
preceding and subsequent events. The aforementioned method is
illustrated in Figure 5. As can be observed, the clip is sliced at a
cut-off timestamp that is 𝑥 length units from the current event. The
value of 𝑥 is consistent for each event. The advantage of utilizing a
stationary slicing method is that each training clip is of an identical
length, simplifying the processing of the data through the pipeline.
It should be noted that stationary slicing also has a number of
disadvantages. The stationary slicing method may result in the
occurrence ofmultiple eventswithin a given time period, potentially
complicating the process of identifying the event to be classified.
Furthermore, the utilization of a stationary cut-off results in the
incomplete execution of certain actions prior to the designated
cut-off time. To illustrate, if the cut-off time for a shot is 1.5 seconds,
but the shot exceeds this time threshold to reach the goal, the clip
may lack clarity regarding whether the shot was successfully saved
by the goalkeeper.

Figure 5: Timeline displaying the cut-off procedure of sta-
tionary slicing

Slicing method 2: Dynamic slicing method 0.5: A second
slicing method, which can be seen in Figure 6, employs a dynamic
approach whereby the cut-off point occurs exactly in the center,
with reference to both the preceding and the subsequent event.
This slicing method has the advantage of ensuring that the event
on which the classification is based is always the only event visible
in the clip. However, this approach presents a disadvantage in that
the preceding action is not visible in the clips, and the conclusion
of the ongoing action is frequently not observable as well. This
slicing method is particularly useful for the classification of the
three primary types of shot, pass and duel but is less effective for
the primary types of touch and interception, as it is not possible to
identify which team was in possession at the time of the previous
event. Additionally, this cutting method is not optimal for classify-
ing several secondary types, such as shot accuracy, due to the lack
of visibility of the end of the action.

Slicing Method 3: Dynamic slicing method 1.25: The third
slicing method is a dynamic slicing method, depicted in Figure 7,
which extends the previous slicing method by performing the cut-
off at 1.25𝑥 rather than at 0.5𝑥 . This ensures that there will always
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Figure 6: Timeline displaying cut-off procedure of dynamic
slicing method: 0.5

be three events in the clip, and that the start and end of each event
will always be fully visible.

Figure 7: Timeline displaying cut-off procedure of dynamic
slicing method: 1.25

In this research, the dynamic slicing method with a 1.25 cutoff is
selected. All clips have their own length, which can be formulated
as 1.25×𝑥 + 1.25×𝑦, with 𝑥 being the duration in seconds between
the timestamp of the previous event, and 𝑦 the duration in seconds
between the timestamp of the next event. The clips are processed
through the pipeline with this clip length.

4.3.3 Classify Monocular View. As stated in the research objective,
the classification of actions is to be conducted using a single-view
monocular camera. The dataset obtained from Wyscout differs in
that it comprises broadcast videos incorporating footage from mul-
tiple cameras, replays, and visual enhancements. To ensure the
robustness of the classifying model with respect to the monocu-
lar viewpoint, the clips sliced in Section 4.3.2 undergo a selection
process to exclude those containing footage obtained from sources
other than the monocular viewpoint.

The selection procedure is as follows: 5 different frames are taken
from each clip. The initial frame, the 1

4𝑁 th frame, the 1
2𝑁 th frame,

the 3
4𝑁 th frame, and the concluding frame (with 𝑁 representing

the total number of frames in within the given clip). The afore-
mentioned five frames are then subjected to the keypoint detection
algorithm delineated in Section 5.2.1. If all five frames return at
least four keypoints with a confidence value exceeding 0.5, the
clip is deemed to have successfully completed the selection proce-
dure. The frames at different positions are selected because they
are distributed evenly over the entire clip length. Furthermore, in
the case that the preceding action results in the ball being taken
out of play, or if the current action is of a similar nature, there is a
high probability that a replay, zoom-in, or visual add-on will occur.
It is therefore important to perform keypoint detection on both the
first and last frame.

Figure 8 shows the distribution of the primary events after the
appliance of the selection procedure. It is noteworthy that the
distribution of the five primary events remained largely unchanged
in terms of proportion, contrary to expectations that the proportion

of shots would decline. The dataset did experience a slight reduction
when compared to the sample size before applying the selection
procedure. 65.4% of the samples passed the selection procedure.

Figure 8: Distribution of primary types after selection proce-
dure described in 4.3.3

5 CONTEXTUAL DATA DERIVATION
METHODS

This Section is used to describe the different computer visionmodels
used and how these are implemented on the data of this research
to create data suitable for feature engineering for the classifica-
tion model. Firstly in Section 5.1 the process of creating a suitable
evaluation set is described. This is followed by Section 5.2, which
discusses the process of field registration and homography map-
pings. This is followed by Sections 5.3 and 5.4 which describe the
existing models used and their appliance in this research for the
detection and tracking of respectively players and ball. Section 5.5
concludes by presenting a self-designed team classification model.

5.1 Creating the evaluation set
As the field localization algorithm, player detection, ball detec-
tion and human pose estimation algorithms are pretrained models,
trained on datasets that differ from the one used for training the
classification algorithm, it is necessary to assess their performance
on the data used in that process. The evaluation set is representative
of the data employed in the training process of the classification
model. It is essential to evaluate the models against a range of
scenarios and circumstances that may present visibility challenges.

The models must be tested against a variety of weather scenarios.
This includes smog at the start of the game as a result of fireworks
used by fans just before the start, heavy difference in shadows on
the field, games lighten up by artificial light and games lighten up
by daylight

Secondly, model specific difficulties need to be addressed and
evaluated. Lets start with occlusions. Is the player detection model
able to detect an occluded player? Is the human pose estimation still
able to detect a visible arm while the rest of the player is occluded?
Is the ball detectionmodel able to detect a ball that is partly occluded
by a player? Another difficulty that needs to be addressed is color
similarity. Is the ball detection model able to detect a ball when
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a player has it at its feet, where the ball and the shoes have the
same color? Is the ball detection model able to detect the ball when
it is in the air, and visually is in front of the public? Is the player
detection model able to detect players wearing green kits, similar
colored to the field itself? Another difficulty could be the detection
of people who are not players or part of the referee staff. Is the
player detection model detecting people in the stands? Or coaches
at the sideline?

This evaluation set consists of 120 images that highlight these
different scenarios/difficulties. By evaluating the different models
on this evaluation set, we gain knowledge on when the models
perform poorly and how we should anticipate on that to smooth-en
the classification process. The different models will be tested on
this evaluation set and the important findings will be mentioned.
An example image from all seven different scenarios can be found
in Figure 9

5.2 Field Registration
Many features, like velocity, distance to goal opponent and number
of players within 10 meter radius, that are used within the action
classification process are based on location. In this research, a dif-
ference is made between pixel location, and pitch location. Pixel
location regards the absolute location of a detection on the image
in pixel values. Pitch location is the pixel location transformed to a
location on the 2D planar field that represents the pitch.

To transform the pixel location of a player detection correctly
into a location on the 2D planar field, homography is used. [26]
describe a homography as an invertible mapping from P2 to itself
such that three points lie on the same line if and only if their mapped
points are also collinear. In other words, a homography describes
the relation between two images of the same plane. It can be used
for image registration, image rectification and for calculating the
movement of the camera that took the images. In the context of
our research, homographies are used to map a frame of the footage,
onto the top-down view of a football field.

[26] also gave an algebraic definition by proving the following
theorem: A mapping from P2 → P2 is a projectivity if and only if
there exists a non-singular 3× 3matrix𝐻 such that for any point in
P2 represented by vector x, its mapped point equals 𝐻x. This tells
us that in order to calculate the homography that maps each x𝑖 to its
corresponding x′

𝑖
, it is sufficient to calculate the 3 × 3 homography

matrix 𝐻 [4].
Homographies can be estimated by finding feature correspon-

dences between images, or in our case, feature correspondences
between images and planar projection of a football field. Homog-
raphy estimation algorithms can make use of point feature cor-
respondences, or other features such as lines or conics. All three,
points, lines and conics, are available on a football pitch. Since the
broadcast view does not include the whole field in every frame,
it is possible that the totality of lines and conics are not visible
each frame. That is why in this research is chosen to estimate the
homography using point feature correspondences.

This section is further divided into three subsections. In Sub-
section 5.2.1 the model used to detect keypoints in each frame is
described and evaluated against our test set. This is followed by

Subsection 5.2.2, in which the process of using the detected key-
points to create a homography matrix for different planar field sizes
is described and examples of field localization are shown.

5.2.1 Keypoints Detection. The pre-existing model used in this
research for the keypoints detection is a component of the Soc-
cerNet Camera Calibration Challenge 2023 [62] winner, developed
by Sportlight Technology team. The SoccerNet Camera Calibra-
tion Challenge 2023 aimed to generate accurate camera calibration
parameters, including both intrinsic and extrinsic values, using in-
dividual frames extracted from football broadcast videos. The team
constructed a hybrid approach that combines a keypoint detection
model and a line detection model. In this research, their keypoint
detection model has been used in the process of field registration.

The keypoint detection model of the Sportlight Technology team
distinguishes itself from other field localization methods like [29]
and [30], by making predictions on more keypoints on the pitch.
While a minimum of four keypoints is required to create a homog-
raphy matrix, this increased number of predicted keypoints makes
the model more practical for use in broadcast view settings, where
complete lines or conics are often not visible.

The model predicts 57 keypoints, categorized as follows:

• Intersections: These are the 30 visible intersections of the
straight pitch lines. These intersections are marked with
a red dot in Figure 10. These points were included in the
annotation of the SoccerNet dataset.

• Conic Intersections: These are the 6 visible intersections be-
tween the straight and conic pitch lines. These intersections
are marked with a blue dot in Figure 10. These points were
included in the annotation of the SoccerNet dataset.

• Tangent points: These are the 8 tangent points of tangent
lines from a known point to the circles. The tangent lines
used are the lines from the top and bottom of both penalty
boxes onto its circles, and the lines from the both the top
as bottom intersection of the middle line with the sidelines
onto both sides of the middle circle. These tangent points are
marked with a purple dot in Figure 10. These points were
not included in the annotation of the SoccerNet dataset, but
were analytically derived using the ellipse equation and the
known location of an external point.

• Additional points: These are the 13 dark-green dots in Figure
10. These points were not included in the annotation of the
SoccerNet dataset but were derived using the homography
created with the points from the previous categories, and
via that way added as annotations to the dataset.

A detailed description of the network architecture can be found in
Appendix A.1.

Performance of the keypoints detection model: The keypoint detec-
tion makes a prediction on the pixel location of every keypoint with
an attached confidence score. This confidence score should ideally
be close to 0 for keypoints that are not visible in the frame and
close to 1 for keypoints that are. The keypoint detection algorithm
was performed on the evaluation set. In Figure 11 the distribution
of the confidence values is shown. As expected there are a lot of
confidence values close to zero, since in every frame, most key-
points will not be visible. Two other things can be observed. Firstly,
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(a) (b) (c)

(d) (e) (f)

Figure 9: Example images of evaluation set for different scenarios. With in 9a scenario day-light, in 9b scenario artificial light,
in 9c scenario fog, in 9d scenario of ball occlusion, where the ball is vaguely visible since it as the foot of a player, in 9e an
example of both scenarios player and keypoint occlusion, where both a few players are partly visible and a field-keypoint
(touch of penalty box and its circle) completely occluded because of other players standing in front of them, and in 9f scenario
green-kit, in which a team wears a partly green kit, making them hard to distinguish from the field.

Figure 10: The 57 keypoints predicted by the model and their
corresponding place in the prediction vector. Red dot: line-
line intersection. Blue dot: line-conic intersection. Purple
dot: conic tangent point. Dark-green dot: additional points
projected by homography

there is a small cluster of higher confidence values (ranging approx-
imately from 0.7 to 1.0) towards the right side of the histogram,
these probably are the keypoints that are visible in the frame, and
they are predicted with quite a high confidence. Secondly, there
is a noticeable gap or low frequency of keypoints with midrange
confidence values (between 0.1 and 0.6). This shows that most key-
points are either detected with very low confidence or very high
confidence.

In order to create a homography matrix with high precision,
it is necessary to identify as many keypoints as possible. This is

Figure 11: Distribution of the confidence values of the pre-
dicted keypoints on the evaluation set

described in greater detail in Subsection 5.2.2. However, it is also
necessary to ensure a certain degree of reliability in the selection of
keypoints for this purpose. It is therefore essential to consider the
confidence value assigned to each keypoint. Different minimum
confidence values to be selected as a keypoint are tested against
each other. In Figure 12, two examples are given of prediction of
keypoints on the same frame, with different confidence values to ac-
cept it as a keypoint. As is illustrated in Figure 12a, for a confidence
value of 5 percent, multiple keypoints are predicted at the same
location, of which one is the correct keypoint and the other is a
similar keypoint (typically a mirrored keypoint in either horizontal
or vertical mirror direction). With an increase in the confidence
value to 0.2, as can be seen in Figure 12b, this double keypoint
prediction on one location disappeared. An examination of Figure
12d, reveals that a confidence value of 0.05, predicts keypoints in
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the stands. A number of these points appear to be similar to the
keypoints on the goalposts, which is why they are considered as
keypoints at this low confidence level. An increase in the confi-
dence value to 0.2 (see Figure 12e) reveals that the least plausible
of the predicted keypoints at 0.05 have been eliminated, although
an invalid prediction persists. Further elevation of the confidence
value to 0.5 (see Figure 12f) demonstrates the complete removal of
this prediction.

To balance the reliability of the keypoints with the need for at
least four keypoints for homography and for precizer homography
(See Section 5.2.2), the confidence threshold to consider a prediction
as valid is set to 0.5.

As mentioned in the detailed description on homography in
Appendix A.1, the training dataset is very similar to the dataset
used in this research. Despite this, it is always good to check its
performance on the data used in this research. The keypoints de-
tection method was tested on manual annotated data on the three
scenarios of ’Fog’, ’Natural Light’ and ’Artificial Light’. Since this
data is manual annotated, only the keypoints on the Intersections
and Conic Intersections are annotated as they are detectable with
the eye. These annotations also include keypoints that were not
visible because of players standing in front of them. The results
achieved by the keypoint detector are shown in Table 5

The keypoint detector achieves high confidence scores on all
three scenarios. In these evaluation scenarios, keypoints that are
occluded due to players standing in front of them are also included.
Figure 13 is an example of such an occluded keypoint. As can be
seen, the keypoint detector is capable of detecting the occluded
keypoint, as it has sufficient information by recognizing the clearly
visible lines that create the intersection of the keypoint.

5.2.2 Homography Estimation. TheKepypoint Detection algorithm,
as described in Section 5.2.1, returns the prediction of the pixel-
location of the 57 different keypoints, together with the confidence
score of the prediction.

A homography is a 3x3 matrix 𝐻 that describes a projective
transformation between two planes. It allows you to transform
points from one plane (e.g., an image) to another plane (e.g., a sports
field). If p = (𝑥,𝑦, 1) are the homogeneous coordinates of a point
in the image and P = (𝑋,𝑌, 1) are the corresponding coordinates
on the field, the relationship can be written as:

P = 𝐻p

where 𝐻 is the homography matrix.
To compute 𝐻 , we need at least four pairs of corresponding

points between the two planes. Let (𝑥𝑖 , 𝑦𝑖 ) be the coordinates in the
image and (𝑋𝑖 , 𝑌𝑖 ) be the coordinates on the field for 𝑖 = 1, 2, 3, 4.
The relationship can be written as:
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Further detailed information and mathematical formulation of

the homography matrix can be found in Appendix A.2
Subsequently, the homography matrix 𝐻 can be employed to

map the pixel positions of the identified player and ball objects onto
the planar field. This enables the calculation of features, including

ball velocity and distances to specific points, which are utilized in
the classification process. It is important to consider the variation
in field dimensions, as outlined in Section 4.1.2. The variations in
the dimensions of the pitch, in terms of length and width, results
in a distinct position within the coordinate system for each key-
point. Accordingly, a distinct pitch coordinate system is required
for the homography mapping, depending on which team is playing
at home in the given clip. In each coordinate system, a unit on
the x and y axes represents a length of 1 metre in real life. This
implies that the various field types have distinct maximum values
within the coordinate system, and that the keypoints are situated at
disparate coordinates for each type. By employing the official pitch
dimensions as delineated in the FIFA official rules book [21] and
the disparate width and height measurements for each type, the
planar pitch coordinates can be derived. Table B.2 presents the var-
ious planar coordinates for the different field types. The keypoints
numbered 0, 1, 24 and 25 are disregarded, as they correspond to the
upper surfaces of the goal and fall outside the boundaries of the 2D
planar field.

5.2.3 Appliance of the homography matrix. In this research project,
the accurate estimation of the homography matrix for each frame
in a video clip is a crucial component of the processing pipeline.
This section outlines the procedure employed for the estimation of
homography matrices.

Due to constraints in computational resources, keypoint detec-
tion is performed on every third frame of the video clip. Given
a frame rate of 25 frames per second (fps), this approach results
in keypoint detection occurring approximately 8.3 times per sec-
ond, which subsequently leads to homography estimation at the
same frequency. In order to obtain the homography matrix for the
two intervening frames between each detected keypoint frame,
the known homography matrices from the surrounding frames are
interpolated.

The homography estimation process is contingent upon the de-
tection of keypoints with a confidence score exceeding 0.5. The
accuracy of the homography estimation is enhanced with the avail-
ability of a greater number of reliable keypoints. The estimation
process is conducted using RANSAC [48], which chooses subsets of
4 points from the available keypoints, calculates the homography
for those,count the number of inliers, and keep the homography if
it is better than any homography yet found for that frame. This way,
the homography estimation process is designed to be robust, ensur-
ing that erroneously detected keypoints are identified as outliers
and excluded from the homography computation.

In certain instances, some frames contain fewer than four pre-
dicted keypoints with a confidence score greater than 0.5. In these
cases, a direct homography estimation is not feasible. For such
frames, the homography is estimated by interpolating between the
closest known homographies from previous and subsequent frames.
If a frame lacks either a prior or subsequent known homography,
the homography from the closest known frame is used directly.

As explained in Section 4.1.2, the dimensions of the football
fields in the clip differ based on the home-playing team. For every
match in the dataset, it is manually annotated in which stadium the
match is played. So for every clip in the dataset the field dimensions
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(a) confidence = 0.05 (b) confidence = 0.2 (c) confidence = 0.5

(d) confidence = 0.05 (e) confidence = 0.2 (f) confidence = 0.5

Figure 12: Keypoints detection at different minimum confidence values

Table 5: Statistics of Keypoint Predictions by Condition

Condition Total Annotated Keypoints Correctly Predicted Keypoints Accuracy Percentage

Fog 54 52 96.30%
Natural Light 168 159 94.64%
Artificial Light 136 131 96.32%

Figure 13: Illustrative example of the capacity of the keypoint
detectionmodel to identify keypoints despite their occlusion
by a player.

of that field are known. These different field dimensions are also
incorporated into the homography estimation.

The homography estimation is used to project the detections of
objects, specifically the ball and players, into planar coordinates
corresponding to the football pitch. This transformation uses a
single pixel coordinate for each object.

For the player objects, the selected pixel is located at the centre
of the bottom of the bounding box. This pixel corresponds to the
point at which the player’s feet make contact with the ground,
thereby accurately representing the player’s position on the two-
dimensional pitch. It is of critical importance to select this particular
pixel, as selecting the pixel corresponding to the player’s head

would inevitably result in an erroneous planar coordinate on the
pitch. Given that players can be quite tall, selecting the head would
result in the corresponding point on the pitch being positioned
further away than the player’s actual standing position in real life.

In the case of the ball, due to its relatively small size, the pixel
at the center of the ball is used to represent its position on the 2D
pitch. Some drawbacks that occur when projecting the detection
of players and ball into the planar coordinates are discussed in
Sections 5.3 and 5.4 respectively.

5.3 Player Detection and Tracking
It is crucial to ascertain the locations of players, as their trajectories,
velocities, and distances between each other and with the ball con-
tain vital information for the classification of certain actions. This
section outlines the model employed for detection and tracking,
its advantages and limitations, with illustrative examples from the
evaluation dataset, and the manner in which the detections and
tracking outcomes are processed for the classification model.

5.3.1 Used Model. As previously outlined in Section 3.2, a num-
ber of models have already been developed for the detection and
tracking of soccer players. However, the majority of these models
are not appropriate for the scenario under consideration in our
research, which focuses on a challenging single-view camera setup.
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Furthermore, the classification model is intended for use on cam-
era footage from Ajax youth games, which often feature a more
zoomed-out view compared to TV broadcasts. This results in player
objects having lower resolution. The majority of existing player
detection and tracking models are trained on broadcast footage
with high resolution, which can present difficulties in detecting
players of smaller sizes.

To address these challenges, this research utilizes the player
detection and tracking model proposed by Hurault et al. in their
paper "Self-Supervised Small Soccer Player Detection and Tracking
Algorithm." Their model is well-suited for wide-angle video games
as it is robust to small player sizes. The method is specialized for
soccer and does not require any labeled data. The pipeline involves
two steps: first, player detection, followed by tracking based on the
detection results. The following subsections describe the process
of training their detection and tracking algorithms.

Detection Algorithm: To develop an accurate soccer player de-
tector, Hurault et al. employ a three-step process leveraging a pre-
trained object detection model without requiring any manual anno-
tations on the target dataset. First, they apply a pretrained human
detector, based on the Faster-RCNN network [54] in combination
with the Feature Pyramid Network [38], referred to as the initial
teacher network 𝑇init. This model is used to automatically gener-
ate preliminary annotations on a set of unlabeled soccer images
𝑋 taken from a subset of the SoccerNet dataset [22]. These initial
annotations𝑇init (𝑋 ) contain noise in the form of false positives and
false negatives.

The annotations are refined by removing false positives, such as
detections of supporters and coaches, through a field detection pro-
cess that uses green filtering, contour detection, and line extraction,
as used in [9]. Conversely, missed detections are added using a blob
detection strategy, which is realized via green filtering, contour
detection, and human detection in the regions of the contours with
appropriate sizes. This correction process results in a new set of
labels𝑌𝑐 , which is then used to fine-tune the initial teacher network,
creating a more accurate teacher model 𝑇𝑓 .

The fine-tuned teacher model 𝑇𝑓 is subsequently used to train
a smaller, more efficient student network 𝑆 through knowledge
distillation. Inspired by the idea of [54], the student network archi-
tecture is slightly modified to incorporate contextual information
around detected objects, thereby improving detection accuracy for
small players. This is achieved by concatenating feature maps from
regions of interest with those of an enlarged surrounding region.
To ensure robustness to varying player sizes, especially for smaller
players that often appear in full-field views, the training data is aug-
mented by randomly downscaling each image by a factor between
0.1 and 1, applying zero-padding to maintain the original image size.
This comprehensive approach enables the final student network
to effectively detect soccer players of different sizes and contexts.
An illustration of the soccer player detection method proposed by
Herault et al., can be found in Figure 14

Tracking Algorithm: To effectively track soccer players across
video frames, Hurault et al. propose an unsupervised, fast, and ac-
curate tracking framework that leverages the previously described
player detector model. The goal is to associate player detections
between consecutive frames in a video sequence {𝑢𝑡 }𝑡 , where 𝑡
denotes time. A player trajectory is defined as an ordered list of

Figure 14: Illustration of the soccer player detection method.
Each column corresponds to one step of the proposedmethod
explained in Section 5.3

bounding boxes 𝑇𝑘 = {𝑏𝑘𝑡1 , 𝑏
𝑘
𝑡2
, . . .}, with 𝑡1 < 𝑡2 < . . .. At each

frame 𝑢𝑡 , the player detector 𝑆 is used to compute a set of potential
bounding boxes 𝐵𝑡 = {𝑏𝑘1𝑡 , 𝑏𝑘2𝑡 , . . .} by extracting detections with
confidence higher than a threshold 𝜎track > 0.

The tracking approach then consists of two main steps. First, a
spatial consistency association is applied, where bounding boxes
from the current frame are matched to those in the previous frame
based on their spatial overlap. Specifically, if the Intersection-over-
Union (IoU) between a bounding box 𝑏𝑖𝑡 in the current frame 𝐵𝑡
and a bounding box 𝑏 𝑗

𝑡−1 in the previous frame 𝐵𝑡−1 exceeds a
threshold 𝜏IoU, these boxes are considered part of the same track. If
a bounding box from a previous frame is associated with multiple
detections in the current frame, such associations are discarded to
maintain consistency. However, as explained in [47] and [3], this
criterion assumes significant overlap between tracked targets in
successive frames, which may not hold in cases of low frame rate,
fast player movements, or intense camera shifts.

To handle such scenarios, Hurault et al. implemented a visual
consistency measure. This involves extracting visual embeddings
from the player detector model and matching bounding boxes based
on their visual similarity to previously deactivated tracks. This addi-
tional step improves tracking robustness in challenging conditions.

However, for the purpose of this research, where the frame rate
is 25 fps, the spatial association measure is sufficient. To conserve
computational resources, the visual embeddings measure is there-
fore omitted. To conserve lost identities of players by being not
detected for a few frames, a different re-identification is used, which
will be described in Section 5.3.3

5.3.2 Players detection on the evaluation dataset. As the tracking
branch of the player detection and tracking is based on the exist-
ing detections, it is essential to understand the functioning of the
detection algorithm on the data set in order to ensure the accuracy
and reliability of the results. What are the shortcomings of this ap-
proach and how should they be addressed in subsequent processing
before being incorporated into our classification model? The player
detection algorithm has been evaluated using the aforementioned
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evaluation set, as outlined in Section 5.1. The following findings
are important to mention.

The detection algorithm can be set to a range of confidence scores
to identify instances of detection. It is essential that the confidence
score strikes a balance between the ability to detect players and the
capacity to make accurate identifications. A variety of confidence
scores have been subjected to testing. Figure 15 illustrates several
instances of confidence equal to 0.2. A confidence score of 0.2 allows
the detection algorithm to make a significant number of detections,
which is beneficial in terms of identifying players across multiple
frames.However, as can be seen in Figures 15c, 15c and 15c multiple
detections are made on one player. Figure 15d displays that with a
low confidence as 0.2 even the ball is detected as a player object.

Given that at confidence level 0.2 there is an absence of balance
between the quantity of detected objects and the quality of the
detected objects, it is evident that higher levels of confidence are
required. Figure 16 shows two frames with its detections at different
confidence level 0.95 and 0.8 respectively. As can be seen in figures
16a and 16c the detection of partly occluded players does not happen
at that confidence level. In contrast, this does happen at a confidence
level of 0.8 as can be seen in 16b and 16d.

Following an evaluation of the balance between quality and quan-
tity of the detected player objects for varying confidence thresholds,
the decision has been taken to pursue further research with a player
detection confidence level of 0.8.

The detection model demonstrates robust performance across a
range of weather conditions, including natural light, artificial light
and fog. Figure 17a illustrates the effectiveness of the detection
model in foggy weather conditions. The figure demonstrates that
the algorithm is capable of accurately identifying players in such
environments.

Nevertheless, an initial limitation of the detection algorithm is
apparent in Figure 17a. It is evident that the linesman positioned
in front of the advertising boards has not been identified. The
detection algorithm displays inconsistency in the case of objects
situated in front of the aforementioned advertising boards. This is
illustrated in Figure 18, which depicts two scenarios. In scenario
18a, the algorithm identifies a player object with similar colours
to its background advertising board. However, in scenario 18b, the
algorithm is unable to detect a referee object with different colours
to its background. However, in the same figure, another player
object with a similar background is correctly identified. Overall, the
detections in this region are somewhat inconsistent, with a higher
frequency of correct detections than false negatives. As this often
concerns the linesman, who is not involved in the game, the impact
of this inconsistencywill beminimal to the final classificationmodel
but still important to note.

Another potential limitation of the detection model is illustrated
in Figure 17b. The image displayed in this frame was captured dur-
ing a sequence in which the camera was in motion at a relatively
high speed, resulting in a somewhat indistinct visual representa-
tion. It can be observed that the majority of players are correctly
identified; however, some players situated at a greater distance and
exhibiting less contrasting colours are not detected.

Given that players may occasionally be positioned differently
from those typical of standing or running, for instance following a
duel where they fall to the ground, it is essential to understand how

the detection model responds in such circumstances. As illustrated
in Figure 19a, the detection model demonstrates the capacity to
accurately identify players in non-standard positions.

It is also important to consider the detection of non-player or
non-referee objects, as this will have implications for subsequent
processing. Firstly, it is notable that the detection model is able to
successfully identify and exclude the public in the stadium from its
object detection capabilities. However, as illustrated in Figure 20,
the model does detect coaches situated adjacent to the field on the
camera’s side. In accordance with the regulations set by the FIFA
[21], coaches are prohibited from entering the playing area and
are required to maintain a designated position on the sidelines, as
illustrated in the figure by the dotted lines. Such designated areas
are situated at a distance from the playing area. Section 5.3.3 briefly
explains how the exclusion of coaches is handled.

It is also noteworthy to observe the manner in which the detec-
tion method responds to instances of player occlusion. Given that
players are frequently engaged in duels for the ball and positioned
in close proximity to one another, it is not uncommon for one player
to occlude the other from the camera’s view. Figure 19 illustrates
two of these aforementioned occlusions. In Figure 19b, it can be
observed that players engaged in duels are accurately detected,
provided that the occlusion is not excessive. However, in Figure
19c, where the player in the red kit is largely obscured by the player
in the white kit, the player detector fails to recognize the red kit
player as a player object.

A limitation of the tracking algorithm is its potential to misiden-
tify player objects when two player objects move in close proximity
to each other and then move away from each other. An illustrative
example of this phenomenon can be observed in Figure 21. The fig-
ure illustrates this in four successive frames, with a particular focus
on the two players situated in the two most rightward positions.
The first frame illustrates that both players have distinct PlayerIDs,
6 and 11, respectively. In the subsequent frame, player 6 is occluded
to such an extent by player 11 that it is no longer possible to detect
it, resulting in the disappearance of the detection. Subsequently, in
the next frame, the two distinct players are identified as a single
entity and attributed to player 11 due to spatial consistency asso-
ciation with the detection of player 11 in the preceding frame. In
the final frame, the two distinct players are once more identified
individually. However, the player in red has now been assigned the
detection ID of the player in white, who originally had the PlayerID
11. Consequently, the white player, which initially had the PlayerID
11, is now recognized as a new player object with the PlayerID 19.

5.3.3 Appliance of the detection algorithm. Once detected, the next
goal is to establish a frame by frame positioning of the individual
players in order to understand the play in total. Thus, the tracking
algorithm described in Section 5.3.1 keeps track of the identified
objects’ movements. This tracking algorithm uses the information
from the previous frame for initial conditions on tracking, and bases
its location-wise re-identification on an IoU. But since this tracking
algorithm bases this only on the previous frame, a problem arises in
the following scenario. Once the players have been identified, the
next objective is to establish a frame-by-frame positioning of each
individual in order to gain a comprehensive understanding of the
play as a whole. Accordingly, the tracking algorithm, as described in
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(a) (b) (c) (d)

Figure 15: Illustration of player detections at confidence level 0.2. As can be seen, at this confidence level, multiple detections
are made at one player

(a) confidence = 0.95 (b) confidence = 0.8 (c) confidence = 0.95 (d) confidence = 0.8

Figure 16: Illustration of player detections on two different frames with confidence score 0.95 and 0.8. As can be seen, the partly
occluded players are not detected at confidence level 0.95, but are detected at confidence level 0.8

(a) Detections during fog (b) Detections during rapid camera movement

Figure 17

Section 5.3.1, maintains a record of the movements of the identified
objects. The tracking algorithm utilises the data from the preceding
frame to establish the initial conditions for tracking and bases its
location-wise re-identification on an IoU. However, as this tracking
algorithm is based solely on the preceding frame, a potential issue
arises in the following scenario.

A player who had been previously identified by the detector and
was tracked by the tracking algorithm was dropped since it was
not detected for a frame. This can occur when players of the same
team merge together, as described in reference 5.3.1, or if a player
is occluded by another player. In such cases, re-identification via
visual similarity should facilitate the re-identification of a specific
player object and reconnect the new detection to the preceding

tracking path. During the process of detection and tracking, it was
observed that the visual similarity re-identification method was not
particularly effective.

A minimum distance correlator, inspired by the methodology
outlined in [57], is proposed as a solution to this problem. The
locations of the bounding boxes are recorded for each individual
frame. In the event of a player being dropped, the detection model
will subsequently identify the player after a designated period of
time. In the absence of a correlation between a box from the previ-
ous frame and the player in question, no established position can
be attributed to him. The algorithm then determines whether the
player who has been dropped before is situated in close proximity
to the position of the player in question. The permitted distance is
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(a) Player in front of advertising board suc-
cesfully detected

(b) Linesman (left) and Player (right) in
front of advertising board, respectively un-
successfully and successfully detected

Figure 18

a fixed value multiplied by the number of frames elapsed since the
player was last observed. The maximum distance is 100 pixels, with
a minimum frame difference of 2 and a maximum frame difference
of 10. Furthermore, the algorithm determines whether the classi-
fication of the two player objects belong to the same team. If the
player was within the distance of any previously dropped players,
he is then correlated back to the original player, addressing the
issue of players being dropped. Given that a back-and-forth move-
ment of the camera could result in the loss of two older detections
that have exited the frame and share the same last pixel position,
the youngest lost detection will be the first in the sequence to be
assigned to a new detection.

The pitch location of the player for the intermediate frames in
which he is not detected is calculated by means of an interpolation
process. This involves the use of the pitch location of the detection
in the preceding frame, as well as that in the subsequent frame
where re-detection and re-identification occur. The resulting lo-
cation is interpolated on an even basis, taking into account the
distance between the aforementioned locations and the number of
frames during which the player object was not detected.

It should be noted that the re-identification method does, in
fact, present a potential issue. An illustrative example of such a
pitfall can be observed in Figure 22. In Figure 22a, the relevant
players are indicated by red detection bounding boxes. In Figure
22b illustrates the failure of the detection process in the case of the
linesman. Figure 22c is a subsequent frame, which demonstrates
that the detection of the original player 10 has been unsuccessful.
This is likely due to the occlusion caused by player 9. The track ID
of player 10 is now available for re-identification. A new detection
of the linesman is made, which is in pixel distance closer to the one
of player 10 before he became lost than his own last known pixel
position. As a result, the re-identification model now assigns the
player object with PlayerID 10 to the linesman, as the new detection
of the linesman. (In this example, the linesman was falsely classified
as a team-mate of player 10)

The detected bounding boxes are transformed into pitch loca-
tions. The aforementioned computations are performed by con-
verting the midpoint of the lower side of the bounding box. Given

that the players are three-dimensional objects situated on a two-
dimensional planar field, this is the point of connection between the
two. If, in contrast to the aforementioned methodology, the upper
side of the bounding box were to be employed, the homography
transformation would direct the pitch location to the pixel of the
grass situated immediately above the head of the player, which
would be situated at a greater elevation along the pitch than the
subject’s actual position.

As mentioned in Section 5.3.2, the detection algorithm also de-
tects the coaches standing outside of the field of play but within the
view of the camera. To not influence the classification algorithm,
the detected objects that have a pitch location of more than 0.5
meters off the field, are removed.

5.4 Ball Detection and Tracking
This section outlines the model employed for detection and tracking
of the ball, its advantages and limitations, with illustrative examples
from the evaluation dataset, and the manner in which the detections
and tracking outcomes are processed for the classification model.

5.4.1 Used model. The model used in this project to perform ball
detection and tracking is a YoloV8 model based detection algorithm
trained by [33]. YOLOv8 or "You Only Look Once" is a prevalent
multi-class object detection model created by Ultralytics [76]. The
model works by splitting the image into m cells on a matrix and
ascertains whether a given cell carries the central coordinates of
a classifiable and identifiable object /. The preference of YOLO
models over the existing R-CNN and Fast R-CNN models is due to
its efficiency and speed at detecting smaller objects [77] which is
especially useful as it involves the detection of a football which is
of a relatively smaller size in comparison to the rest of the scene.

[33] trained the model to do both detection and classification on
4 different classes: ball, goalkeeper, player and referee, but for this
research only the detections of the ball were used. The model was
trained on 572 images for 120 epochs, leading to a total of 68,672
images processed. Each image was processed through the network
multiple times, but the data augmentation methods in the form of
HSV augmentation, translation augmentation, scale augmentation,
horizontal flip and mosaic augmentation were applied before it was
fed again in the network to prevent overfitting. The scale augmen-
tation appliance makes the model robust to different situations,
where some footage of football matches can be quite zoomed in,
while other, especially from a monocular camera is quite zoomed
out.

5.4.2 Evaluation of ball algorithm. While implementing the ball
detection algorithm, a few implementation choices and challenges
had to be made and overcome. Primarily, the selection of a suitable
confidence value for a detection to be deemed valid was a crucial de-
cision point. Additionally, the mitigation of errors in detection and
the navigation of trajectory-related issues proved to be significant
challenges.

Confidence score: The initial step is to identify the most appropri-
ate confidence threshold. The confidence threshold represents the
point at which a detection is deemed to be valid. The detection algo-
rithm was evaluated using a series of confidence scores, including
0.01, 0.05, 0.1, 0.25, and 0.5, with each score tested on five distinct
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(a) (b) (c)

Figure 19: Three examples of challenging conditions for the player detection algorithm

Figure 20: Detections of coaches/people outside the dimensions of the field

Figure 21: Four subsequent frames, illustrating a failure in re-identification using spatial consistency within the tracking
procedure

(a) (b) (c)

Figure 22: An illustrative example of a pitfall of re-identification

video clips. Table 6 presents the results of these different confidence
scores. It is necessary to consider the number of correct detections
in relation to the number of false detections. A confidence of 0.01
results in an average of 64.2% of frames having a correct detection
(see Table 6), but also demonstrates a high incidence of false de-
tections, (see Table7), which could potentially impede the accurate
tracking of the ball’s trajectory. With such a low confidence score,
footwear worn by footballers is frequently misidentified as the ball,
as illustrated in Figure 24b

In order to achieve optimal accuracy in detection, it is recom-
mended that a high confidence score of 0.5 or 0.25 os used. As
evidenced in Table 7 , this approach results in a minimal number
of false detections. This consequently results in a reduction in the
amount of noise that must be taken into account when estimat-
ing the trajectory of the ball. One disadvantage of such a high
level of confidence is that it may result in a lower percentage of
frames with a correct detection of the ball. The aforementioned
high confidence score can be achieved when the object of interest
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Figure 23: Number of ball detections per frame of event
2135530170

is easily discernible. However, in scenarios characterised by high
visual clutter, the reliability of the detection may be compromised.

In order to balance the trade-off between the frequency of ball
detection and the number of false positives, it is necessary to choose
a confidence score between 0.10 and 0.05. The average rate of cor-
rect detections with a confidence score of 0.10 remains relatively
high (57.2%), exhibiting only a slight decline in comparison to the
confidence score of 0.05 (59.2%). However, in the five clips, the
proportion of false detections is significantly lower (59.9%) when
a confidence score of 0.10 is applied, as opposed to a confidence
score of 0.05. Consequently, in the remainder of this research a
confidence score of 0.10 is selected as a threshold for ball detection.

Detection challenges In order to demonstrate the challenges in-
herent in the detection of the ball, the clip from event 2135530170
(the complete sequence of frames can be accessed via the GitHub
repository [78]) is subjected to further analysis. In these frames,
the frame number is displayed in the upper right-hand corner of
the screen. The colour of the frame number indicates the number
of detections that occurred at that frame. Red indicates that mul-
tiple detections were made, yellow indicates the presence of one
detection, and white indicates no detections.

Furthermore, the number of detections per frame is plotted in
Figure 23. A review of the frames of the clip containing the detec-
tions and the figure reveals four distinct scenarios pertaining to the
detection of the ball.

Initially, it can be observed that in some frames, a detection is
made, but it does not correspond to the ball. An illustrative example
is provided by Figure 24a Secondly, in some instances, multiple
detections are made, of which one is identified as the ball. This is
illustrated in Figure 24b Thirdly, as can be seen Figure 23 in some
instances, no detection is made at all. Examples are frame 0 to 4.
Fourthly, in some instances, a single, accurate detection of the ball
is made. An illustrative example is shown in Figure 24c

Figure 25a depicts the pixel coordinates of the disparate ball
detections, presented in a 1280 x 720 diagram, with the colour
representing the temporal sequence of the frames. It is expected that
the representation of the correct ball location will exhibit a linear
correlation. In light of the fact that the camera is also in motion, it is
possible that the ball may remain at the same pixel location as in the
previous frame while moving in the real world. However, it is not
possible for the ball to occupy a completely different pixel location
in the subsequent frame. Upon closer examination of Figure 25a, a
distinct separation becomes evident. Some data points are randomly
distributed, while others demonstrate a clear correlation and appear

to follow a linear relationship. Figure 25b illustrates the same data
points, with the addition of coloured circles in the following cases:
In the event of an erroneous detection in a given frame, this is
indicated by a red circle. In the event of multiple detections within
a single frame, the correct one is indicated by a yellow circle, while
the incorrect one is marked with an orange circle. As illustrated in
the figure, all points that do not exhibit correlation with the linear
function are indicated by orange or red circles, signifying erroneous
detections. However, the accurate representation of the ball in frame
5 does not align with the linear correlation, as no detections were
made for the ball in preceding frames 0-4 and succeeding frames
6-19.

In order to eliminate the erroneous detections, an outlier detec-
tion procedure is employed, as outlined below. The data is sorted by
frame number in order to maintain temporal order, and a moving
window of size 10 is applied in order to compute rolling averages
for the x and y centre positions. Deviations from the aforemen-
tioned rolling averages are calculated, and an interquartile range
(IQR)-based threshold is employed to identify points that deviate
significantly from their anticipated positions, thus marking them as
outliers based on spatial movement. The aforementioned detections
are indicated by a red colouration in Figure 25c. In addition to the
aforementioned deviation-based method, a density-based cluster-
ing algorithm, DBSCAN, is employed for the purpose of grouping
spatial-temporal data points. Any point not assigned to a cluster
is labelled as noise or an outlier. The final outlier detection is a
combination of both the deviation-based and DBSCAN-based ap-
proaches, capturing anomalies that either deviate significantly from
their neighbours or fail to fit into clusters. Figure 25d illustrates the
detections following the removal process.

It can be observed that, thus far, only two accurate detections
have been erroneously removed. Some incorrect detections remain
in the dataset; these are the detections that are in close proximity
to the actual ball location and thus were not removed as outlier.
Some of these erroneous detections also have a correct detection
at the same frame. In order to distinguish between the correct and
incorrect detections in those frames, the last known preceding and
first known succeeding single ball detection are used to interpolate.
The detection in the current frame with the pixel location closest
to that interpolated position is selected as the true ball detection.

Now we are left with detections of the ball, from which outliers
or double wrongfully detections are removed. We are left with
detections that have a high probability of being right. As can be
seen in table 6, not all frames have a (correct) detection. To still get
information on an approximate ball position for the frames without
a detection, interpolation is applied between the two frames with
a known location before and after the frame. For frames that only
have a previous or next known location, that location is used. The
results of this interpolation on the clip can be found at the github
page. To give an indication for feature calculation described in 7
that a ball location is interpolated and thus is not totally accurate,
an attribute ’interpolated’ is added to the ball locations whether a
location is interpolated or not.

5.4.3 Trajectory of the ball. A new issue emerges when converting
the pixel location of the ball detection into pitch location using
homography. Given that homography performs the mapping on a
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Clip Frames Correct Detections

0.5 0.25 0.10 0.05 0.01

1 180 102 (56.7%) 121 (67.7%) 140 (77.7%) 143 (79.4%) 154 (85.6%)
2 115 87 (75.6%) 103 (89.6%) 107 (93.0%) 107 (93.0%) 110 (95.7%)
3 88 22 (25.0%) 26 (29.5%) 33 (37.5%) 37 (42.0%) 42 (47.7%)
4 87 8 (9.2%) 16 (18.4%) 27 (31.0%) 31 (35.6%) 39 (44.8%)
5 67 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Table 6: Correct Detections for Different Clips at Various Confidence Levels (with percentages)

(a) Frame 20: Wrong detection of the ball (b) Frame 21: Multiple detections, one correct (c) Frame 26: Correct detection of the ball

Figure 24: Three different frames illustrating different kind of detections

Clip Frames False Detections

0.5 0.25 0.10 0.05 0.01

1 180 2 7 18 34 80
2 115 1 11 24 38 142
3 88 9 26 57 100 198
4 87 7 18 32 49 104
5 67 1 5 15 23 78

Table 7: False Detections for Different Clips at Various Con-
fidence Levels

two-dimensional field, this approach is only applicable when the
detection occurs within that same two-dimensional field. As player
objects are bound by gravity and only move from the 2D plane
for a limited time and height when they jump, the homography
transformation is accurate for players. However, as the ball is less
bound by gravity and can reach greater heights when shot into
the air, the homography mapping is not accurate on the top-down
position of the ball.

An illustration of this phenomenon can be found in Figure 26 ,
where in Figure 26a a frame is shown in which the ball is positioned
in the air and off the 2D planar field. Figure 26b illustrates two
distinct locations where the ball may be situated. The red location
is the position recorded by the homography mapping as the pitch
location, while the blue location shows the actual top-down position
of the ball. Incorrect homography mapping is unavoidable when the
ball is in the air. However, as described in Section 7.1, the addition of
a feature provides supplementary information to the classification
model, which can help tot distinguish between a ball being in the
air and or being on the ground.

5.5 Team Classification
Team membership classification (i.e. labeling each person on a
playing surface as a member of team A, team B, goalkeeper of team
A, goalkeeper of team B or a referee) is an important task in sports
video analytics: The majority of inferences and statistics are reliant
on this information, as it determines which players are on each
team and, subsequently, which teams are involved in a particular
situation or event. In the context of our classification network, the
team assignment of players is a crucial factor in almost every aspect
of classification. A r example of this is in the classification of an
event such as a duel. The presence of two players from different
teams in close proximity indicates the potential for a duel, whereas
when they are on the same team, it can’t possibly be a duel.

A number of team classification algorithms have been devel-
oped with the objective of completing this task. For example, [32]
constructed a CNN to learn a descriptor that is similar for pixels
depicting players from the same team and dissimilar when pixels
correspond to different teams. The advantage of this approach is
that it does not require per-game learning, thereby enabling ef-
ficient team discrimination for multiple games. The model was
constructed for the purpose of team classification in basketball;
however, the limitations of this approach become evident when it
is applied to football. In basketball, there are two teams and a set
of referees. All members of the same team are attired in identical
jerseys, as are the referees. Given the smaller dimensions of the
basketball court, there are typically more basketball players of ei-
ther team than there are referees in each frame. Accordingly, the
classification algorithm could effortlessly categorize the identified
entities as belonging to Team A, Team B, or the Referee category.
In contrast, in football, not all members of the same team wear
the same jersey. The goalkeeper, for instance, wears a different
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(a) Pixel locations ball detections

(b) Pixel locations with additional true/false mark-
ers

(c) Outliers detected by moving average

(d) Outliers detected with addition of DBSCAN

Figure 25: Depiction of the different stages in the ball detec-
tion and outlier removal process

jersey to the players. The goalkeeper is the sole individual wearing
the aforementioned jersey, and thus, he is not part of a majority
from which the classifier can distinct between referee or players.
If the team classification algorithm of [32] were to be applied and
increased to five classes (i.e., ’team A’, ’team B’, ’goalkeeper team A’,
’goalkeeper team B’, and ’referee’), it would be unable to determine
whether the goalkeeper should be classified as ’referee’, ’goalkeeper

(a)

(b)

Figure 26: Visualization of the challenge that arises withmap-
ping the detection of the ball to the correct pitch coordinate
when the ball is positioned in the air

team 1’, or ’goalkeeper team 2’. Furthermore, the distinct jersey
worn by the goalkeeper from that of the rest of the team would also
present an ambiguity for the team classifier, in terms of determining
whether the goalkeeper should be classified as belonging to Team
A or Team B. The typical process for analyzing a single game in-
volves the detection of players in several frames, their classification
into a team, and the application of k-means clustering to assign
each detected object in other frames to a team. However, given that
this project encompasses footage from approximately 300 distinct
games, devising a unique classification model for each match would
necessitate a vast amount of data collection, training, and model
storage. To address this challenge, a customized team classification
model tailored to this data set has been developed.

5.5.1 Classification in this project. In this project, the team classifi-
cation algorithm is designed to accurately identify and differentiate
between teams, goalkeepers and referee in each event video clip.
The classification algorithms categorizes all detections into one
of five distinct classes: ’Team A’, ’Team B’, ’Goalkeeper Team A’,
’Goalkeeper Team B’ or ’Referee’.

Instead of training individual models for each game, a single
model is trained on the various kits worn across all games. For
each clip, the model is then given five classification options it can
choose from. According to Serie A regulations (and standard football
rules), all team kits must be easily distinguishable from one another.
While there is a slight possibility that a goalkeeper might wear
a kit similar to the referee or another goalkeeper, this scenario
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is uncommon. Therefore, the classification model should reliably
distinguish between these classes.

This section provides a detailed explanation of the custom team
classification algorithm. It will first describe the dataset used for
training and validation, then delve into the model architecture, and
finally, present the model’s performance, including comparisons
with simpler classification models.

5.5.2 Dataset. As previously mentioned, the choice of which kit a
team wears is based on whether the team is playing at home and
the colors that make up the home team’s kit. Every team in Serie
A designs its kits before the season starts, typically offering three
different sets (Home, Away, and Third kits). Occasionally, teams
design a fourth or even fifth kit, often for special occasions or cele-
brations. Goalkeepers generally have between 2 to 5 different kits,
while referees have four. The player detection algorithm, described
in Section 5.3, is used to collect bounding boxes of players wearing
each kit. This results in a total of 132 different classes, with 50
images used for each class during training, yielding a dataset of
6,600 images.

In addition to building the dataset, it was necessary to gather
information on which kits were worn in each match to ensure the
classification algorithm functioned correctly. This specific infor-
mation is not readily available online, so it had to be manually
collected. This involved reviewing footage from approximately 300
games and annotating which kits were worn by each of the five
classes (Team A, Team B, Goalkeeper Team A, Goalkeeper Team B,
and Referee) for every match.

To further enhance the dataset, images were carefully selected to
include various lighting conditions, camera angles, and player poses.
This additional variety ensures that the model generalizes well
across different scenarios, improving its robustness and accuracy
of the model for the different lighting conditions the games are
played in. Next to this, before feeding the data into the model, the
following pre-processing steps were applied to even more diversify
the training set:

• Contrast: from the Keras library, the Random Contrast layer
with lower bound 0.95 and upper bound 1.05 was applied.

• Rotation: from the Keras library, the Random Rotation layer
with factor 0.05 was applied. Resulting in images being ran-
domly rotated between -18 degrees and +18 degrees.

• Brightness: from the Keras library, the Random Brightness
functionwas applied, with parameter 0.2, adjusting the bright-
ness of the image randomly with a maximum relative change
in brightness

5.5.3 Model architecture. Themodel is build of two different branches:
a branch using the VGG16-model, and a branch using color his-
tograms.

Color Histogram Branch: The first branch of the classification
model relies on color histograms. A color histogram quantitatively
represents the distribution of color intensities in an image, making
it particularly useful for textured images that may not be easily
segmented using traditional techniques. Color histograms are in-
variant to translation and rotation around the view axis and exhibit
only gradual changes under variations in viewing angle, scale, and
occlusion [68]. In this model, colors are represented in RGB space.

A 256-bin histogram is generated, where each bin represents the
number of pixels for each of the 256 intensity levels across the three
RGB channels. An example histogram is shown in Figure ..., where
the distribution of RGB colors is represented by separate lines for
each channel.

The use of square bounding boxes for player detection results
in a significant number of pixels within each detection represent-
ing the surrounding grass, thereby rendering green the dominant
colour. Inclusion of this green within the colour histogram can
result in distortion of the data, thereby reducing its representative-
ness of the actual kit colours. To address this issue, a green filter
is applied to each detection image prior to the calculation of the
colour histogram. The green filter is applied to every pixel within
the RGB range (0, 70, 0) and (100, 255, 100). Figures 27 and 28 illus-
trate the application of green filtering to kits of different colours. As
shown in 28, where a green filter is applied to a detection image of
a player wearing a green kit, the green parts of the kit itself are also
filtered. This filtering tends to make the histograms of the green
kits look similar, which could be problematic if several green kits
were among the classification options. However, as the five kits in
each game are always different, this problem is unlikely to occur.

The histogram values of the images are fed into the network as
a !shape! Tensor, which is fed through a series of fully connected
(Dense) layers with ReLu activations, as well as a batch normaliza-
tion and dropout layer (0.5 dropout).

(a) (b)

(c) (d)

Figure 27: Green filter appliance on green jersey. 27a and 27b
show the detection bounding box images before and after
green filter appliance respectively, while 27c and 27d show
the corresponding color histograms.

VGG16 branch: The other branch of the classification model is
based upon a VGG16 architecture. VGG16 is a convolutional neu-
ral network architecture introduced by [60]. This architecture has
proven to be highly effective, achieving a test accuracy of 92.77
percent on ImageNet, a dataset containing 14 million images across
10,000 classes. The architecture of VGG16, as shown in Figure 29,
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(a) (b)

(c) (d)

Figure 28: Green filter appliance on green jersey. 28a and 28b
show the detection bounding box images before and after
green filter appliance respectively, while 28c and 28d show
the corresponding color histograms.

starts with input images of size 224 x 224 x 3, which pass through
two convolutional layers followed by a max-pooling layer. This
sequence is repeated twice more, with the number of convolutional
layers increasing in each block, culminating in three fully connected
layers and ReLU activation functions. The convolutional layers use
3x3 filters with a stride of 1, while the max-pooling layers have 2x2
filters with a stride of 2. The use of repetitive small convolutional
layers (instead of large ones) allows the model to capture more de-
tailed patterns. The VGG16 model used in this classification model
is pretrained on the ImageNet dataset, which significantly reduces
the need for extensive training data and computational resources.
Where the color histogram branch is mainly used to distinguish
the colors of kits from each other, the VGG16 branch is used to
extract some deeper features and be able to distinguish shirts on
for example design. The fully connected layers at the top of the
VGG16 are excluded in this classification model to instead focus
on extracting features from convolutional layers. The last 8 layers
are set to be trainable. This allows the model to adapt to the new
data while leveraging the powerful pre-trained features from earlier
layers.

Combining of branches and loss function: The feature vectors
from both the image and histogram branches are concatenated and
passed through a Dense layer with 512 units and ReLU activation.
After this, a Dropout layer with a rate of 0.2 is applied to reduce
overfitting. The final layer is a Dense layer with 132 units and a
softmax activation function, which outputs the class probabilities
for classification.

Given that the model is designed to classify between 5 distinct
jersey kits that are not visually similar in terms of color, it is crucial
for the model to accurately distinguish colors. For instance, if the
input is a white jersey, the model should predict a white jersey.

Figure 29: Architecture of VGG16

It is not necessary for the prediction to be the exact white jersey,
but the probabilities of all white jersey classes should be relatively
high compared to non-white jerseys. This ensures that the model
effectively differentiates between jerseys based on color.

Using a standard categorical cross-entropy loss function, where
every misclassification is penalized equally, would prevent the
model from learning that, for example, when the true label is a
white jersey, that predicting a different white jersey in training is
better than predicting a red jersey. This would result in the model
not understanding the importance of color. Therefore, a custom
loss function is applied.

The custom loss function assigns different penalties based on the
similarity between classes. This is achieved by creating a penalty
matrix 𝑃 , where each entry (𝑖, 𝑗) represents the penalty for mis-
classifying class 𝑖 as class 𝑗 . Similar jerseys (e.g., different white
jerseys) incur a lower penalty (factor 0.3), compared to dissimilar
jerseys (e.g., a white jersey misclassified as a black jersey), which
incur a higher penalty (factor 1.0).

The similarity between classes is determined by the main color
of their jerseys. All jerseys are grouped into 13 different categories
based on their main color, and for the entries (𝑖, 𝑗) where 𝑖 and 𝑗
belong to the same category, the lower penalty is applied.

The penalty matrix 𝑃 (𝑖, 𝑗) is defined as:

𝑃 (𝑖, 𝑗) =

0 if 𝑖 = 𝑗

1 if 𝑖 ≠ 𝑗 and 𝑖 and 𝑗 are in different subgroups
0.3 if 𝑖 ≠ 𝑗 and 𝑖 and 𝑗 are in the same subgroup

• When 𝑖 = 𝑗 : 𝑃 (𝑖, 𝑗) = 0, meaning there is no penalty if the
prediction is correct.

• When 𝑖 ≠ 𝑗 and 𝑖 and 𝑗 are in different subgroups: 𝑃 (𝑖, 𝑗) = 1,
imposing a penalty of 1 for misclassifications across different
subgroups.

• When 𝑖 ≠ 𝑗 and 𝑖 and 𝑗 are in the same subgroup: 𝑃 (𝑖, 𝑗) =
0.3, imposing a smaller penalty of 0.3 for misclassifications
within the same subgroup.

This custom loss function helps the model understand the im-
portance of color in training.

5.5.4 Model Training and Appliance. The model was trained for
15 epochs, and achieved a validation accuracy of 57.80 percent.
This validation accuracy is for the prediction over all classes, thus
the model predicts out of all classes including classes with similar
jersey. As mentioned before, in this project, the team classification
model only needs to predict from 5 quite distinctive classes. Figure
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30 shows images of four player objects in the match Napoli - Monza
In this match, Napoli was playing in their first kit (blue), Monza in
their second kit (black), the keeper of Monza in his red kit, and the
referee in the orange kit. The team classification algorithm made
the following predictions on the bounding boxes with the following
options [napoli 1, monza 3, napoli goalkeeper 3, monza goalkeeper
3, referee 3] (referring to the kit the teams were wearing during
the match) For figure 30a the algorithm predicted: [5.1530376e-
05 4.2695913e-01 1.8463358e-04 1.2978206e-04 7.3700268e-03]. A
42.69 percent prediction over all classes that it is Monza’s third kit.
The argmax function over the possible kits predicts Monza 3. For
figure 30b the algorithm predicted: [1.1929249e-07 3.2544140e-05
2.2554076e-03 2.3877260e-03 9.9542014e-02]. The argmax function
over the possible kits predicts referee 3, with a prediction of 9.95
percent prediction over all classes. For figure 30c the algorithm
predicted: [2.6970711e-01 1.7771117e-09 3.1345323e-07 2.9126181e-
08 3.6916969e-08]. Argmax concludes Napoli First kit. For figure 30d
the algorithm predicted: 1.5567072e-06 6.7154865e-06 4.3437511e-05
2.6892889e-01 9.9851545e-03]. Argmax concludes Monza Keeper
third kit.

(a) PL:Monza3.
TL:Monza3

(b)
PL:Referee3.
TL:Referee3

(c) PL:Napoli1.
TL:Napoli1

(d)
PL:MonzaGK3.
TL:MonzaGK3

Figure 30: Cropped bounding boxes from the match Napoli-
Monza with their predicted label (PL) and true label (TL)

6 HUMAN POSE ESTIMATION
6.1 Research Objectives and Hypotheses
As stated in Section 2.2 the research question of this study is "How
will the utilization of distinct 2D human pose estimation algorithms,
encompassing top-down and bottom-up methodologies, coupled
with models for field registration, player and ball detection and
tracking, and team classification integrated in a machine learning
system, impact the capacity to classify actions in football using
footage from a monocular, action-tracking camera?". The two hu-
man pose estimation models that are to be compared are the bottom-
up method, known as ’PifPaf’, and the top-down method, known
as ’HRNet’. In order to evaluate the two different HPE models, the
following criteria will be considered: Firstly, the accuracy of the
models is evaluated, which refers to their ability to correctly detect
and localise the keypoints of the human body. Secondly, the robust-
ness of the models will be evaluated, examining their performance

Figure 31: 17 body keypoints of COCO dataset

across diverse conditions, including variation in lighting, occlusion,
different poses, and varying scales of the human body. Thirdly, the
inference time, defined as the time taken for the model to process a
clip, will be considered. Due to the lack of annotated data on human
body estimates in our dataset and the low resolution of players in
the background, which makes manual annotation of human key-
points impractical, the accuracy and robustness of the models will
be evaluated qualitatively. In this section, both models will first be
described in Sections 6.2 and 6.3 followed by an evaluation of their
performance in Section 6.5.

6.2 Bottom-Up Pose Estimation Model
As described in Section 3.4, in the bottom-up approach, initially,
all the key points of the targets are detected, and later in the op-
timization stage, the detected keypoints are associated with the
corresponding targets. The bottom-up Pose Estimation Model used
in this research is the method proposed by Kreiss et al. (2019) in
their paper: "PifPaf: Composite Fields for Human Pose Estimation"
[34]. Their method, PifPaf, uses a Part Intensity Field (PIF) to lo-
calize body parts and a Part Association Field (PAF) to associate
body parts with each other to form full human poses. In their paper,
they state that their method outperforms previous methods at low
resolution and in crowded, cluttered and occluded scenes, by using
(i) their new composite field PAF encoding fine-graied information
and (ii) the choice of Laplace loss for regressionws which incorpo-
rates a notion of uncertainty. Their model performed on the same
level with existing state-of-the-art bottom-up methods on the stan-
dard COCO keypoint task and produced state-of-the-art results on
a modified COCO keypoint task on the transportation domain. This
is interesting for this research, since the transportation domain
includes often crowded images, in which pedestrians are occluded
by other pedestrians, where bounding boxes clash and top-down
methods particularly struggle. These occlusions of pedestrians can
be compared to football players in duels or crowded areas excluding
each other as well. A more detailed description of the PifPaf model
can be found in A.3

The PifPaf model has been developed with the objective of pre-
dicting 17 body keypoints as defined by the COCO dataset. Figure
31 provides an illustration of these 17 keypoints. The OpenPifPaf
documentation presents a comprehensive list of tunable parame-
ters, including the seed and instance thresholds and the Cif-th and
Caf-th parameters. The seed threshold establishes the minimum
threshold for selecting candidate points, or "seeds," which serve
as the initial point of body keypoint detection. The seeds act like
anchors for detecting entire poses. A higher seed threshold ensures
that only the most robust candidates are selected, thereby reducing
the number of false positives while potentially overlooking weaker
body keypoint predictions. The instance threshold serves to filter
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entire detected poses based on the total confidence score of de-
tected keypoints. Lower values permit a greater number of person
detections, but this increases the probability of false positives.

The Cif-th parameter defines the threshold for Composite Inten-
sity Fields (Cif), determining the strength of individual keypoint
detections. Higher thresholds prioritise strong detections, but may
result in the omission of weaker signals. The Caf-th parameter con-
trols the threshold for Composite Association Fields (Caf), which
link keypoints together to form complete poses. A higher Caf-th
ensures more reliable connections, but may result in the exclusion
of keypoint pairs. Conversely, a lower threshold allows for more
connections, but may introduce inaccuracies.

A variety of parameter combinations are evaluated to determine
their impact on the HPE process. Figure 32 depicts the pairing
of the seed with instance thresholds and the Cif-th with Caf-th
parameters. The figure presents the HPE results for the four distinct
combinations of these pairs, for values of 0.25 and 0.05.

As can be observed in Figures 32a and 32b, a reduction in the
values of the confidence thresholds for Cif-th and Caf-th results in
the incorporation of additional keypoints into existing detections.
An illustrative example can be observed in the incorporation of an
additional head keypoint for the player with kit number 9 in Figure
32b.

A reduction in the seed and instance thresholds (see Figures (32b
and 32d) indicates an increase in the number of body pose detections.
However, the number of keypoints detected in previously identified
body poses remains unchanged. To gain further insight into the
individual contributions of the seed and instance thresholds, Figure
33 illustrates the same frame with varying values for each of these
parameters. As can be observed in the comparison of Figures 33a
and 32b, a reduction in the seed threshold does not result in an
increase in the number of pose detections. This is because, when
the instance threshold is maintained at a higher level, the total
confidence score of the detected keypoints for the body pose does
not rise sufficiently.

Figure 33b illustrates that the instance threshold exerts the great-
est influence on the number of distinct poses that can be identified.
However, a comparison with Figure 32d reveals that a reduction in
the seed threshold, when the instance threshold is maintained at a
low level, leads to an increase in the number of keypoint detections
per pose. This is exemplified by the linesman in the top right corner,
which exhibits a greater number of predicted keypoints for a lower
seed threshold.

Based on the aforementioned comparisons and reviewing differ-
ent threshold values than illustrated in this paper, the decision was
taken to select the values of (Seed threshold, Instance threshold, Cif-
th, Caf-th) = (0.05, 0.05, 0.05, 0.05). The results of these can be found
in 32d. As illustrated in the figure, there are still instances where not
all keypoints are detected at the specified confidence levels for some
of the detected poses. This is why the PifPaf model incorporates an
additional parameter, named ’force complete pose’, which prompts
to generate a complete pose even when certain keypoints have not
been identified with sufficient confidence. In essence, the objective
is to prompt the model to complete any missing or incomplete
elements of a detected pose, utilising the available keypoint data.
This can assist in situations where certain body parts are obscured
or beyond the camera’s field of view. It should be noted that the

force-complete-pose does not replace the Cif and Caf thresholds;
rather, it functions in conjunction with them, filling in incomplete
poses subsequent to the application of the thresholds. It is important
to note that the Cif/Caf thresholds continue to play a pivotal role
in determining the quality and confidence of the initial detection.
Figure 34 the application of the ’force complete pose’ parameter.
As can be observed, all previously detected poses have now been
completed with predictions for every keypoint. However, there
is a discrepancy in the top left of the figure, where a non-player
object outside the field was detected. This issue can be resolved by
applying the same procedure as for player detections outside the
boundaries of the field, as described in Section 5.3.3.

6.3 Top-Down Pose Estimation Model
As described in Section 3.4, top-down human pose estimation is
a single-person pipeline and relies on a detection algorithm for
the bounding box of an object to estimate in. There are regression
and heatmap-based methods. The top-down method chosen in this
research is a heatmap-based model and will be described in further
detail now.

The method used for top-down human pose estimation in this
research is published on [61] and is an implementation of the al-
gorithm presented in the paper ’Deep High-Resolution Represen-
tation Learning for Human Pose Estimation’ [66]. Their top-down
method, called HRNet, differs from existing classification networks
that are build on Deep convolutional neural networks (DCNNs).
Existing methods gradually reduce the spatial size of feature maps,
by connecting convolutions from high resolutions to low resolu-
tion in series, and lead to a low-resolution representation, which is
further processed for classification. For position-sensitive tasks as
human pose estimation, high-resolution representations are needed,
and thus adopt these methods a high-resolution representation re-
covering subnetwork, which is formed by connecting low-to-high
convolutions in series. A representation of such a network can be
found in Figure 35. HRNet differs from this in the fact that this
architecture is able to maintain high-resolution representations
through the whole process. The process starts with a high reso-
lution convolution stream, and gradually high-to-low resolution
convolution streams are added one by one, and connect the multi-
resolution streams in parallel. The resulting network consists of
4 stages, where the nth stage contains n streams corresponding
to n resolutions. Repeated multi-resolution fusions are conducted
by exchanging the information across the parallel streams over
and over, which boosts the high-resolution representations with
the help of the low-resolution representations, and vice versa. A
representation of their high-resolution network can be found in
Figure 36

HRNet uses a heatmap-based framework, as described in 3.4,
which estimates heatmaps of size 𝑊4 × 𝐻

4 , {𝐻1, 𝐻2, . . . , 𝐻𝐾 }. Each
heatmap represents the probability distribution of the correspond-
ing body joint, with the peak of the heatmap indicating the most
likely location of the joint. The key advantage of this approach lies
in the ability to maintain high-resolution feature maps through-
out the network. This leads to precise spatial predictions, which is
essential for accurate human pose estimation, especially in com-
plex poses or crowded environments. The implemented top-down
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(a) (Seed threshold, Instance threshold, Cif-th, Caf-th) = (0.25, 0.25,
0.25, 0.25)

(b) (Seed threshold, Instance threshold, Cif-th, Caf-th) = (0.25, 0.25,
0.05, 0.05)

(c) (Seed threshold, Instance threshold, Cif-th, Caf-th) = (0.05, 0.05,
0.25, 0.25)

(d) (Seed threshold, Instance threshold, Cif-th, Caf-th) = (0.05, 0.05,
0.05, 0.05)

Figure 32: PifPaf HPE detection on the same frame for 4
different combinations of pairs of parameters

(a) (Seed threshold, Instance threshold, Cif-th, Caf-th) = (0.05, 0.25,
0.05, 0.05)

(b) (Seed threshold, Instance threshold, Cif-th, Caf-th) = (0.25, 0.05,
0.05, 0.05)

Figure 33: PifPaf HPE detection on the same frame for dif-
ferent values for seed and instance threshold

Figure 34: HPE detections with parameter ’force complete
pose’

Figure 35: Representation Low to High
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Figure 36: Representation HRNET

method was tested for various thresholds for the variables confi-
dence thresholds and IOU-thresholds, but no changes were found
in the detected keypoints when varying these.

6.4 Advantages and Limitations of both
approaches

The existing research literature tends to favor bottom-up meth-
ods over top-down methods. Top-down methods are considered
unreliable in situations where multiple individuals occlude each
other, as the detection models, which are a key component of top-
down methods, often have difficulty making accurate detections
in such circumstances. Furthermore, when target individuals are
in close proximity to one another, the top-down pose estimator
may be misled by the presence of nearby individuals, resulting in
the prediction of joints belonging to a nearby non-target individ-
ual. Bottom-up methods do not utilize any human detection, and
thus are capable of producing results with higher accuracy when
multiple individuals interact with each other. However, bottom-up
methods are susceptible to scale variations. If the keypoints de-
tected are at disparate scales, the model may encounter difficulties
in grouping the keypoints correctly. Given that the discrepancy in
scale from the broadcast view of football games is relatively minor,
it is hypothesised that this does not exert a significant influence in
this research.

6.5 Evaluation of the Human Pose Estimation
Models

The two implemented models described above have been trained,
as most HPE models on the COCO dataset. To compare the methods
for their performance in the field of football, their performance on
some clips from this research’s data are evaluated.

The bottom-up method has the potential to accept whole images
as input directly to perform HPE on. In contrast, the top-down
method requires the detection bounding boxes output by the player
detection algorithm, as described in 5.3, as input in order to estimate
the human pose. This dependency on the detection model is both an
advantage as a disadvantage. The bottom-up method is constrained
by the performance of the detection model, and will not detect
human body keypoints from the image that are not contained in
these detections. Conversely, it draws upon the expertise of a robust
algorithm, trained for the specific purpose of detecting football
players, whereas the bottom-up method is trained on recognizing
body parts from humans, not per se from football players. This
enables the top-down method to retrieve information from a source
that is well-suited to identifying keypoints. The advantage side
of recipocitry can be found in the comparison of the Figures 37,
37. Those figures illustrate the HPE of player objects within the
same frame. As can be observed, the bottom-up method does not
identify keypoints on players situated on the opposing side of the

field. Conversely, the top-down method obtained the bounding
boxes from the player detection, thereby indicating the necessity
for detection on the human key points in that part of the image,
and successfully identified such points.

With regard to the precision of the predicted human body key-
points, a comparison is presented in Figure 39. Figure 39a depicts
a section of a frame comprising a considerable number of players.
Figures 39b and 39c illustrate the HPE detections in successive in-
stances. It is evident that both models were unable to detect two
partially hidden players. An examination of the precision with
which both models predict the keypoints of the remaining players,
reveals that the top-down model is considerably less accurate in
its predictions and also fails to consistently predict entire body
poses. The bottom-up method is accurate in all predictions, with
the exception of a correct prediction of the knee and corresponding
foot of the player in the middle. Based on the results of the clips in
which both HPE models are evaluated, it can be concluded that the
bottom-up method predicts keypoints with a bigger precision than
the top-down method.

Figure 37: HPE performed by bottom-up method PifPaf

Figure 38: HPE performed by top-down method HRNet

In addition to a comparison of the models’ accuracy in detection,
a comparison of their processing times is also required. As previ-
ously stated in 3.4, for the top-down pipeline, the number of people
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(a) (b) (c)

Figure 39: Example part of frame in 39a with the HPE detections of the top-down and bottom-up methods in 39b and 39c
respectively

in the input image directly affects the computation time. This phe-
nomenon does not occur with the bottom-upmethod. Consequently,
the computational speed of bottom-up methods is typically superior
to that of top-down methods. Table 8 presents the processing times
for six different video clips, with data for both HPE models. It is
noteworthy that the processing times of the top-down models are,
in fact, lower for each clip than those of the bottom-up models,
which is not in accordance with existing literature. It should be
noted that the aforementioned processing times pertain solely to
the estimation of human poses and do not include the detection
of player objects. As player detection and tracking constituted a
discrete branch of the pipeline, it can be stated that the top-down
method exhibited superior processing speeds to the bottom-up
method in this research.Furthermore, the processing times for the
player detection and tracking model are included in Table 8. When
considered outside the pipeline of this research, these should be
incorporated into the top-down processing time to obtain the to-
tal time required for top-down HPE. It should be noted that, for
top-down, the tracking component of the detection and tracking
process would not be necessary, which would result in a slight
reduction in the overall processing time.

7 CLASSIFICATION MODEL DEVELOPMENT
This section describes the process of the classification of the sliced
clips. In Section 7.1 the process of turning the data obtained from
the different implemented models into useful features is described.
In Section 7.2 the outline of the hierarchical classification algorithm
is explained, followed up by Section 7.3 in which its architecture is
described. In Section 7.4 the training process is described.

7.1 Feature Integration
Once the pre-defined models have been applied to each data frame,
the resulting information must be transformed in order to generate
additional insights that are useful for the classification process.

Following the application of the field localization, player detec-
tion and tracking, ball detection and tracking, team classification
and the two HPE models, the following information is available for
each frame: In the case of the player/referee objects, the following
information is available:

• Object location: The coordinates of the bounding box of
each object are provided in the format (xmin, ymin, xmax,
ymax), as well as the pitch coordinates transformed by the

homography matrix. These coordinates refer to the location
of the pitch, with (0,0) denoting the top left corner from the
camera viewpoint.

• Object Human Pose Estimation: The human pose estimation
is available for all objects. The various human pose keypoints
identified are presented in a format comprising the x and y
coordinates, along with the associated confidence value.

• Object team classification: The team classification of each ob-
ject is also available and can be one of the following: ’"Team
1", "Team 2", "Goalkeeper Team 1", "Goalkeeper Team 2",
"Referee

The following category is available for the ball object:

• Object location: As described in 5.4, a ball detection is avail-
able for every detection. It contains a pixel location bounding
box in format (xmin, ymin, xmax, ymax), a pitch location in
format (x coordinate, y coordinate) and an attribute called
’interpolation’ that is 0 if the ball was detected in that frame,
and 1 if the ball was either inter- or extrapolated for that
frame.

As previously stated, additional features were devised and calcu-
lated from this available data, which were then used as input into
the classification model. These additional features can be classified
into four distinct categories: player-related features, ball-related fea-
tures, player-to-player related features, and player-to-ball related
features.

The term "player-related features" is used to describe those fea-
tures that are concerned with the object of a single player. The
following features were identified and subsequently derived:

• The velocity features, comprising the distance travelled,
mean velocity, and acceleration, were calculated for the dif-
ferent intervals of 1, 3, 5, 10, and 20 frames. These calcula-
tions were based on the pitch positions of the player.

• Direction features: These pertain to the angle of the player
in relation to their position at the preceding 1, 3, 5 and 10
frames.

• Distance features: The distance, in pitch coordinate system
units, of the player to specific points of interest on the field
is calculated. The following keypoints were identified as
being of particular significance: [2, 3, 26, 27, 8, 9, 16, 17, 42,
12, 13, 28, 29]. These are key points that represent points
of significant importance. To illustrate, keypoints 26 and 27
represent the goalposts of the right goal, while keypoint 42
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Event Number of Frames Bottom-Up Top-Down Player Detection
1742405812 310 27,202 21,198 24,48
2120719407 253 20,205 17,759 14,32
2135530621 56 8,486 3,751 14,25
2099524950 243 17,243 15,737 44,24
2106036784 100 10,310 8,221 24,34
2120719072 88 10,234 5,948 4,67

Table 8: Processing times of HPE methods for different events

represents the middle of the field. As an example to why
these features are important: if a player in possession of the
ball is in close proximity to keypoint 42 but distant from 26
and 27, the probability of the clip being a shot is minimal. The
remaining keypoints represent other significant locations,
such as corners or the boundaries of the penalty box.

Ball-related features pertain to the ball object and bear resem-
blance to player-related features. The following features were de-
rived:

• Distance features: The distance of the ball to specific points
on the field is calculated in pitch coordinates. These are the
same key points that were employed for the players’ distance
features.

• Velocity features: Similarly to the player-related features, the
distance traversed, velocity and acceleration of the various
intervals of 1, 3, 5, 10 and 20 frames were calculated.

• Direction features: The angle of the ball from its preceding
pitch positions, at 1, 3, 5 and 10 frames, is calculated. This
feature is of greater importance for the ball than for players,
as highlighted in Section 5.4, since the pitch coordinates of
the ball do not represent its actual location when it is in
the air. The direction features also allow the calculation of a
further feature, namely the consistency of a ball’s trajectory.
The trajectory consistency categorizes the trajectory of the
ball’s pitch coordinates over an interval of 2, 6, 10, and 20
frames into one of three categories: ’straight’, ’semi straight’
or ’not straight’. This is achieved by comparing the direction
of the first half of the interval to the second half of the
interval. If the angle of the direction change is less than 5, it
is labeled ’straight’, between 5 and 15, ’semi straight’, and
greater than 15, ’not so straight’. This feature allows for a
more accurate determination of whether a ball is in the air
or on the ground. In the former case, the pitch coordinates
may not be accurate, whereas in the latter, they are likely to
be correct, given that passing or shooting often occurs in a
relatively straight line.

• Area checks: These features state if a ball is in one or multiple
of the following areas: middle third, left or right penalty area,
left or right deep completion area. These location of these
areas can be found in [83]

The term "player-ball related features" is used to describe those
features that pertain to the relationship between the ball and a
player object. These features are derived for each existing player
object. The following features can be classified under this category:

• Object distance features: This is the distance from the player
object to the ball, both in pixel distance as in pitch distance.
For the purpose of calculating pixel distance, the distance to
the lower middle pixel of the player object is used.

• HPE keypoints distance features: The HPE keypoints dis-
tance features concern the distance from every detected HPE
keypoint of the player object to the ball, expressed in pixels.
Only the pixel distance is derived, as the pitch coordinates
of the HPE keypoints would not represent the actual value
accurately, given the 3D nature of the player on a 2D planar
field on which the homography estimation is conducted.

The aforementioned features are collectively represented by a
single feature vector for each frame. This feature vector comprises
a vector for each detected object within that frame, which encom-
passes 130 features. Features that are not pertinent to the object in
question, such as ball-related features for a player object and vice
versa, are masked.

7.2 Hierarchical Classification
The goal of the classification model is to classify clips into different
classes following the classification hierarchy depicted in 3. The
main and most important classification is done in the classification
of the primary types ’Duel’, ’Pass’, ’Shot’, ’Interception’ and ’Touch’,
but it is interesting to see if the model can further classify these
clips into more detailed descriptions.

To do this, the model for the main classification is trained on
every instance of the dataset. The other classification models, which
are on more detailed attributes, are only trained on the clips con-
cerning that action. In Table 9, the lengths of the training, validation
and test sets of the different classifications are shown.

7.3 Model Architecture
The model is a Long Short Term Memory (LSTM)-based classifi-
cation model with attention and dropout mechanisms. The model
starts with n (hyperparameter) LSTM layers, followed by an at-
tention mechanism, which is used to make the model learn which
frames to focus on. This is useful because the input of the clip is not
only the action itself, but also the preceding and following actions.
Using this attention mechanism, the model learns which frames to
focus on during training, which hopefully leads to it recognising
that it should not focus on the beginning and end of the clip, but
rather the middle. The attention layer is followed by a dropout
layer. The value of this dropout rate is a hyperparameter and is de-
cided during hyperparameter tuning (see Section 7.4). The dropout
layer is used to prevent overfitting, as the training data is quite
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unbalanced. The dropout layer is followed by 2 fully connected
layers that reduce the dimensionality of the data. The first applies
a ReLU activation and dropout. The second outputs the logits for
classification into the number of classes.

The data instances are fed into the model in batches. Since the
model can only handle one specific input size per batch, all instances
get the same number of objects and the same number of frames as
the maximum of those found in that particular batch. These extra
objects and frames are masked so as not to influence the training
process.

7.4 Training process
Three distinct models have been developed. The initial model may
be employed as a reference point for the comparison of the two
distinct HPE methodologies, as it is founded upon characteristics
that do not encompass any HPE detection. It should be noted that
the aforementioned features do not encompass any information per-
taining to the locations and distances of human pose keypoints. The
model employs 79 distinct features for each player-object pairing.

The remaining two models are trained on the complete feature
set and thus include the aforementioned HPE-based features. The
feature sets of both models comprise 130 features per player object.

The basemodel is subjected to hyperparameter optimisationwith
respect to the primary classification. The optimal hyperparameters
identified are subsequently employed in the training process for the
other twomodels, thereby establishing an equivalent framework for
comparison between the two. The aforementioned hyperparameters
are employed in both the classification of the primary attributes
and that of the more detailed attributes.

Since the training data consist of quite imbalanced data, aweighted
data sampler is applied. The weighted data sampler assigns sam-
pling probabilities to each data point based on class frequencies, en-
suring that underrepresented classes are sampled more frequently.
This helps address this class imbalance during model training by
providing more balanced input batches.

The hyperparameter optimization is conducted via grid search.
The grid search is constrained by the following values within its
search space: Learning rates=(0.0001 0.001 0.01 0.1) Batch sizes=(32
64) Dropout rates=(0.5 0.3) Layers=(2 3 4) Hidden units=(64 128 256)
Given that the search space of the grid search would entail 144 dis-
tinct combinations, a random grid search was employed, resulting
in the generation of 32 unique hyperparameter configurations.

The model was trained for 100 epochs. The results are presented
in Table 12. The impact of the various hyperparameters on the accu-
racy and F1 score can be observed in Figures 40 and 41, respectively.

Table 12 depicts the highest accuracy (40.11%) and F1-score
(0.3808) for a configuration comprising 64 hidden units, four lay-
ers, 0.3 dropout, a batch size of 64, and a learning rate of 0.001. It
is notable that the validation set is somewhat imbalanced. Conse-
quently, there is greater interest in the F1 score than in the accuracy,
as the former provides a more nuanced insight into performance.
Although the aforementioned combination of hyperparameters
yielded the highest F1-score, an examination of Figure 41 suggests
that modifications to the parameters of the layers and dropout rate
may be warranted. The application of a dropout rate of 0.5 has been
observed to yield higher averages for the F1 score in comparison to

a dropout rate of 0.3. Furthermore, the application of three LSTM
layers has been observed to yield the highest average F1 score,
while simultaneously exhibiting the lowest average training time.

It can be concluded that the following hyperparameters should
be used during the training of the models on the detailed attributes
with the basic features, as well as during the training of the models
for both kinds of HPE features. The learning rate should be set to
0.001, the batch size to 64, the number of hidden units to 64, the
number of LSTM layers to 3, and the dropout rate to 0.5.

Table 9: Classification Data: Training, Validation, and Test
Splits for Three Models in format (base, top-down, bottom-
up)

Classification Type Training Validation Test

Primary 3168/3171/3168 905/905/905 452/452/452
Shot Body Part 304/320/320 89/83/80 51/41/44
Duel 691/675/687 170/203/177 106/89/103
Normal Pass or Cross 1098/1087/1084 326/333/329 159/163/169
Accuracy Cross 410/398/387 122/123/122 46/57/69
Direction Cross 410/398/387 122/123/122 46/57/69
Flank Cross 410/398/387 122/123/122 46/57/69
Accuracy Pass 688/689/697 204/210/207 113/106/100
Direction Pass 688/689/697 204/210/207 113/106/100
Distance Pass 688/689/697 204/210/207 113/106/100
Progressive Pass 688/689/697 204/210/207 113/106/100
Through Pass 688/689/697 204/210/207 113/106/100
On Target Shot 304/320/320 89/83/80 51/41/44

8 RESULTS
The variousmodels for the different classification tasks were trained
for 100 epochs. For each classification task, the epoch exhibiting
the highest validation score was subsequently evaluated on the test
sets. This section presents the results that were obtained.

8.1 Primary classification
With regard to the shot events, it is evident that a considerable
proportion of the shots are classified as such for all three mod-
els, with the base model and bottom-up model outperforming the
top-down model. It is also evident that a considerable number of
false positives are predicted for shots. The predicted shot events
of both the top-down and bottom-up models are presented in Fig-
ure 45. The subfigures illustrate the initial location of the event,
as indicated by the event data, and its corresponding true label.
In the event data, the location coordinates are indicated with the
x-coordinate set to zero in relation to the goal of the team that
takes the shot. Consequently, all genuine shots are located on the
right side of the field. Both models demonstrate an understanding
of the concept that for an event to be classified as a shot, it must be
situated in close proximity to the goal. On the left side of the field,
the predominant occurrences are duels and interceptions. Given
that duels are notated in the event dataset for all players involved
in the duel, it can be inferred that these events are likely associated
with the defending player, resulting in low x-coordinates. It is also
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(a) Learning rate against accuracy (b) Batch size against accuracy (c) Hidden units against accuracy

(d) Layers against accuracy (e) Dropout against accuracy

Figure 40: Influence of different performance measures on the accuracy

(a) Learning rate against F1-score (b) Batch size against F1-score (c) Hidden units against F1-score

(d) Layers against F1-score (e) Dropout against F1-score

Figure 41: Influence of different performance measures on the F1-score

possible that interceptions may be linked to shots, given that inter-
ceptions are notated at the defender’s coordinates, who have likely
just blocked a shot from the opposing team. Therefore, although
the event is classified as an interception, a shot may have occurred
just before and was also visible in the clip, indicating that the model
is capable of recognizing shots.

In regard to pass events, the top-down model demonstrates supe-
rior performance in comparison to the base and bottom-up models.
The base and bottom-up models appear to encounter difficulties
in differentiating between a touch and a pass. This is not entirely
unexpected, given that the action of a touch is often immediately
preceded and followed by a pass, which is then also observed in
the clip due to the slice method employed.
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Figure 42: Confidence matrices for base (42a), top-down (42b),
and bottom-up (42c) classification models. In the cells un-
der/next to the columns/rows the percentage of the correct
classifications of the total within that column/row are shown.

With regard to duel events, all three models exhibit a lack of
capacity to distinguish them from the other classes, resulting in
a low accuracy score. The base and bottom-up models frequently
categorise these as touches, whereas the top-down model often
identifies them as passes.

With regard to touch events, the base and bottom-up models
achieve considerably higher scores than the top-down model. The
top-down model exhibits a striking lack of capacity to classify
actions as touches, whereas the base and bottom-up models demon-
strate a considerably higher propensity to do so. Moreover, this

Figure 43: Accuracy’s of the three models per classification
type

Figure 44: F1-scores of the three models per classification
type

occurs with greater frequency than is necessary, as previously men-
tioned in the context of passes.

8.2 Duel-related classifications
In terms of duel-related classification, there is the classification
between an ‘aerial duel’, ‘loose ball duel’ and ‘ground duel’. Table 62
shows the confusion matrices of the three different models. Figure
43 shows that the base and bottom-up model show higher accuracy
and F1-score than the top-down method. The confusion matrix
shows that both base and top-down model do not do predictions
on ground duels, whereas the bottom-up model does.

8.3 Shot-related classifications
In terms of shot-related classification, there are two different classi-
fications to make. First of all the classification whether a shot is on
target, or whether the shot goes wide or is blocked. In addition to
that, the classification on with which body-part the shot is done.

In terms of assessing shot accuracy Figures 43 and 44 show
similar accuracy’s and F1 scores for all three models. Table 54 shows
that the base model and the top-downmodel both have a preference
to classify a shot as ’not on target’, while the bottom-up model does
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(a) Predicted shot events top-down model and its true labels

(b) Predicted shot events bottom-up model and its true labels

Figure 45: Main caption describing both subfigures.

consider both options, but often makes the wrong choice in doing
so.

Figure 44 illustrates that the basemodel, contrary to expectations,
attains a considerably higher F1 score than the two HPE-based
models. However, as can be seen in Table 60, the base model selects
only two options, namely "right" and "left." The top-down model
demonstrates a clear preference for the left foot. The bottom-up
based model, however, does in fact select from all three options,
but appears to lack the ability to determine which is the correct
option to choose. One potential explanation for these suboptimal
predictions with these models, despite the fact that this should have
been predictable for the HPE-based models, is that ball detection
often fails when it is in close proximity to a player. Subsequently, the
location is interpolated, which does not yield an entirely accurate
result.

8.4 Pass-related classification
Regarding pass-related classification, a first distinction can be made
between a cross and a normal pass. As evidenced in Table 57, all
three models demonstrate high accuracy in differentiating between
these two types of passes.

With regard to the categorisation of the distance of a pass, as
illustrated in Table 53, the base model demonstrates a notable de-
ficiency in predictive accuracy, classifying all passes as ’long’. In
contrast, the other two models exhibit superior performance in this
regard, achieving commendable results.

Upon examination of the classification of pass accuracy, it is
evident that all three models exhibit high scores. However, an ex-
amination of Table 52 reveals that all three models exhibit a lack
of capacity to predict the inaccuracy of a pass, thereby prevent-
ing them from discerning the distinction between accurate and
inaccurate outcomes. This may be due to the fact that an accurate
pass frequently occurs prior to a misplaced pass and is therefore
also captured in the video footage. With regard to the classification
of the success of a cross, it can be observed in Table 51 that both
the base model and the bottom-up model predict all instances as
unsuccessful. In contrast, the top-down model makes predictions
on both classes.

With regard to the classification of through and progressive
passes, an examination of Tables 55 and 56 reveals that the base
model does not make a distinction and consequently classifies all
instances as non-through or non-progressive. The bottom-up model
also exhibits a strong tendency to classify both as "not". In contrast,
the top-down model attempts to differentiate between the two
options for both classifications, although this approach is not always
effective.

With regard to the classification of the direction of the pass, it
can be observed in Figure 43 that the base model achieves a high
level of accuracy. However, an examination of the Table 59 reveals
that this model predicts almost every instance as a lateral pass. The
other two models exhibit a lesser tendency to make this error, but
they frequently misclassify lateral passes as forward passes. Figure
46 illustrates the wrong predictions on direction of passes and their
respective start and end points according to the event data. It can
be observed that the direction of many of these passes does not
even come close to the predicted direction, indicating that both
models are unable to accurately identify the decisive factor in this
classification task.

In terms of classifying the models on cross direction, Table 58
reveals that the base model and bottom-up model both achieve satis-
factory results. However, the top-down model frequently confuses
lateral crosses with backward crosses.

As illustrated in Figures 43 and 44, the top-down model demon-
strates superior performance in predicting the flank from which
a cross originates compared to the other two models. However,
its confusion matrix in Table 61 indicates that this model exhibits
lower accuracy in identifying crosses from the center of the field.

9 CONCLUSION AND DISCUSSION
9.1 Conclusion
The objective of this research was to establish the preliminary
stages of developing an advanced data collection system based on
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(a) False predictions of direction of passes top-down model

(b) False predictions of direction of passes bottom-up model

Figure 46

video footage of in-game football events obtained from a single,
monocular camera. The objective was to develop and train LSTM
classification models with the capacity to categorise brief video
segments into five principal classes, along with an array of sub-
classes. To this end, a comprehensive pipeline was constructed,
integrating a variety of existing and self-designed methods, includ-
ing field registration, player and ball detection and tracking, team
classification, and human pose estimation algorithms. The primary
objective of this research was to evaluate the impact of diverse HPE
techniques on the efficacy of clip classification. This was achieved
by integrating a top-down and a bottom-up HPE method into the
pipeline and comparing their results with one another and with a
’base’ model that did not incorporate human pose estimation.

The results demonstrate that all three models exhibit significant
challenges in classifying at both event and attribute levels. However,
the classification models of both HPE-based models demonstrate
superior performance compared to the base model in each type
of classification. It can thus be concluded that the incorporation
of HPE data facilitates the classification process. In comparing

the two HPE-based models, the top-down based model achieves
a slightly superior score on the hierarchically higher level of pri-
mary events. However, on the attribute level, the bottom-up model
appears to perform slightly better with greater frequency. This
research contributes to the scientific field by demonstrating the
impact of employing two distinct types of HPE on the classifica-
tion of actions. Based on the findings presented in Section 7 and
the insights derived from Section 6, it is recommended to utilize
bottom-up methodologies within the context of HPE models for
the classification of football actions.

9.2 Discussion
The findings of this study provide a foundation for further research
on the recognition of in-game football actions. The findings of this
study can be used to inform the deployment of a specific HPEmodel
at a specified depth of recognition of actions or attributes.

The classification of football actions from a single monocular
viewpoint is a challenging endeavour, due to a number of practi-
cal considerations. Firstly, the image quality provided by a single
monocular viewpoint from the opposing side of the pitch is insuffi-
cient for the accurate recognition of specific actions. Furthermore,
the images captured from a single viewpoint frequently result in oc-
clusions of the ball or player. Additionally, due to the limited angle
of filming, it is challenging to accurately determine the location of
the ball when it is in flight. To address this, it is essential to obtain
footage from multiple angles to create a 3D model.

It is essential to acknowledge certain limitations in the methodol-
ogy which may have influenced the outcomes. Firstly, in this study,
the data set employed for the purposes of training, validating and
testing the trained classification models is distinct for each classifi-
cation model. The entirety of the dataset comprises the identical
video segments; however, the manner in which these segments
are distributed across the datasets differs for each classification
model. The distribution in terms of numbers, as indicated in 9,
is approximately equivalent. However, to facilitate a meaningful
comparison between different models, it is essential that they are
trained, validated and tested on an identical data set. This was not
done in this study. It could be possible that a specific model has
only been trained on simple and frequently occurring instances of
a particular event, which may limit its ability to recognize slightly
varied instances of this same event. Alternatively, it is conceivable
that one model’s test set of a particular event contains instances
that are more easily recognisable, which may result in a higher test
score.

A considerable proportion of the classifications were confronted
with the challenge of imbalanced data. This issue can be attributed
to two underlying factors. Firstly, the reduction in a particular type
of data following the classification process, as outlined in (REF to
classify clips), should have been anticipated on with the introduc-
tion of a new supply of the affected data until it reaches a level
commensurate with the remaining data. Secondly, this can be attrib-
uted to the fact that some specific instances of a given event occur
with much lower frequency than other instances. To illustrate, in
the case of a cross-event, the vast majority of crosses are made in
a lateral direction. Due to the methodology employed in this re-
search, if an equal number of lateral, backward, and forward crosses
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were to be sampled, to create a balanced dataset for the classfici-
ation of the direction, the resulting data would be an inaccurate
representation of the average cross for the classification between
a pass and a cross. In this research, the issue is addressed through
the use of a weighted sampler, which ensures an equal number of
training instances for each class. However, this approach results in
the repetition of training instances from less represented classes.
It would be optimal for each classification task to have its own
balanced dataset, which should also be representative of the typical
appearance of that kind of event in a real match. To examplifie
this, with regard to the classification between cross and pass, the
ratio of the direction of the crosses in the training dataset could
be represented as follows: (0.90; 0.05; 0.05) for (lateral, backward,
forward). Conversely, for the classification of direction, the ratio
should be as follows (0.33; 0.33; 0.33).

Besides this, the absence of cross-validation in this study repre-
sents a limitation in the generalisability of the models.

9.3 Future research
Although the proposed method provides a suitable means of fair
comparison, the process of fixing the training hyperparameters of
both the HPE-based classification models based on the optimals of
the non-HPE-based model may have had an impact on the perfor-
mance of the HPE-based models. Further research could investigate
the impact on the performance of the various HPE-based classifica-
tion models of tuning the hyperparameters on a model-by-model
basis.

Furthermore, the choice of clip slicing method has a significant
impact on the outcomes of this research. Future studies could ex-
plore whethermore accurate results could be achieved bymodifying
the slicing clip method. Additionally, research could be conducted
on the detection of the start and end of an action or event, which
would represent a significant advancement in the ability to classify
all actions throughout an entire match.

Finally, this research is based on footage from a single, monoc-
ular view camera of a match. Future research could investigate
the performance of different HPE models within classifying or
recognising football actions when footage is present from different
angles, allowing the entire pitch to be imaged and creating a 3D
representation instead of a 2D representation.

10 RECOMMENDATIONS
As evidenced by the results and the conclusion, utilising computer
vision as a method for monitoring player performance from a
monocular camera perspective is a challenging endeavour. In this
study, the classification process is based solely on the analysis of
feature information, rather than on the direct utilisation of camera
footage as input to the classification system. The incorporation of
camera footage into the classification model could potentially en-
hance the classification process; however, this would also result in
an increase in computation time. However, this would only enhance
it to a certain degree, as the feature extraction methods indicate
that in certain situations, the detection or tracking is insufficient
or invalid. The primary reason for this is the paucity of detail in
the footage. The monocular viewpoint camera is insufficient for
providing the requisite information and detail about the actions

occurring on the field, thereby hindering consistent classification
accuracy.

Therefore, it is not feasible to implement a player performance
tracking system based on computer vision for the scouting process.
It may be feasible to implement a player performance tracking
system on the training grounds of AFC Ajax. However, a number
of adaptations and additions are required. Primarily, additional
cameras have to be positioned around the field, with the potential
for supplementary cameras to be installed above the field as well.
This allows for the capture of more detailed information from the
cameras, which in turn facilitates the classification process. Further-
more, this allows a three-dimensional representation of the field to
be generated, thereby enabling the precise location of the ball to
be determined for each frame, even when it is in flight. This study
focuses on action classification. However, to develop a performance
tracking system, it is necessary to investigate the ability to identify
the start and end points of actions as well.

Despite the lengthy process of implementing a functional perfor-
mance tracking system in practice, given the multitude of diverse
and intricate actions inherent to football, the computer vision al-
gorithms employed can be utilized at an earlier stage for other,
somewhat less complex applications. For example, they can be
employed to identify specific formations and the compositions of
positions of players on the field. Moments of high pressure, game
replays, or switch-overs can be identified by a model. This can then
be utilized as an automated process for video analysts or coaches,
to quickly find certain situations from a variety of games. With
regard to the utilization of data within scouting processes, it is
recommended to utilize Wyscout’s event-data package, and that all
new event-data files undergo processing on a weekly basis. This
will convert the event information into the necessary statistics,
which can then be used in the scouting process.
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A DETAILED DESCRIPTIONS
A.1 Network Architecture Keypoints Detection

Model
The architecture for the keypoint detection is displayed in Figure 47.
The network takes as input a batch of images, each with dimensions
[3, 540, 960], representing RGB channels, height and width respec-
tively. The network outputs heatmaps indicating the locations of
various keypoints on the pitch. The network is composed of several
layers and components, and its architecture can be described as
follows: The input image passes through an initial convolutional
layer, employing a 2D convolution with a kernel size of 3 and a
stride of 2. The layer uses 64 filters and is followed by batch nor-
malization and a ReLU activation function. The output of this layer
either goes into a second convolutional layer identical to the first
one, or awaits for later concatenation. The output from the first two
convolutional layers is fed into the HRNetV2-w48 backbone. Wang
et al. [2] proposed their High-Resolution Network (HRNet) as a
framework that maintains high-resolution representation through
the whole process, whereas other already existing frameworks first
encode the input image as a low-resolution representation through
a subnetwork that is formed by connecting high-to-low resolution
convolution in series and then recover the high-resolution represen-
tation from the encoded low-resolution representation [2]. In this
architecture, the backbone outputs a feature map of size [Batch, 720,
135, 240], which contains rich spatial and contextual information.
The output of the HRNet-V2-w48 is subjected to a 2x upsampling
operation to enhance the spatial resolution of the feature map. This
feature map then is concatenated with the other output branch of
the initial convolutional layer. This concatenation with the feature
map from the earlier layer ensures that the high-resolution infor-
mation from that layer is preserved and integrated into this later
stage of the network. This produces a combined feature map size
of [Batch, 784, 270, 480]. This feature map is then fed through two
convolutional layers with 784 and 58 filters respectively. The final
convolutional layer outputs a tensor of size [Batch, 58, 270, 480],
where 58 corresponds to the number of keypoints plus one extra
target channel, which ensures that the final target tensor sums to
1.0 at each spatial point. Softmax is employed as the final activa-
tion function to ensure the output is probabilistic and suitable for
heatmap interpretation.

The network is initially trained using Mean Squared Error (MSE)
loss, which compares the predicted heatmaps with the ground
truth, and the Adam optimizer with a learning rate of 0.001, which
is halved after 8 epochs of non-improvement, continuing until no
further gains are seen over 32 epochs to prevent overfitting. It
is then fine-tuned with Adaptive Wing Loss, applying the same
learning rate strategy starting at 5e-4, with the best model selected
based on a combined accuracy and completeness metric on the
validation dataset. The model was trained on 16463 images of the
SoccerNet Dataset. Accuracy measures on the keypoint detection
were not mentioned since they were not all included in the Soccer-
Net Dataset, but the end model on predicting camera calibration
parameter reached an accuracy (RMSE <5 pixels) of 76.675 finishing
first on the leaderboard of the Soccernet Camera Calibration Chal-
lenge indicating a good keypoint estimation model. The images in
the Soccernet Dataset are as in our dataset broadcast images, from

Figure 47: Architecture of the Keypoints Detection model

various European Competitions covering three seasons from 2014
to 2017. So a little older than our dataset but very similar.

A.2 Homography Estimation
The Kepypoint Detection algorithm, as described in subsection
5.2.1, returns the prediction of the pixel-location of the 57 different
keypoints, together with the confidence score of the prediction.

A homography is a 3x3 matrix 𝐻 that describes a projective
transformation between two planes. It allows you to transform
points from one plane (e.g., an image) to another plane (e.g., a sports
field). If p = (𝑥,𝑦, 1) are the homogeneous coordinates of a point
in the image and P = (𝑋,𝑌, 1) are the corresponding coordinates
on the field, the relationship can be written as:

P = 𝐻p

where 𝐻 is the homography matrix.
To compute 𝐻 , we need at least four pairs of corresponding

points between the two planes. Let (𝑥𝑖 , 𝑦𝑖 ) be the coordinates in the
image and (𝑋𝑖 , 𝑌𝑖 ) be the coordinates on the field for 𝑖 = 1, 2, 3, 4.
The relationship can be written as:

©«
𝑋𝑖
𝑌𝑖
1

ª®¬ = 𝐻 ©«
𝑥𝑖
𝑦𝑖
1

ª®¬
Expanding this equation, we get:

ℎ11𝑥𝑖 + ℎ12𝑦𝑖 + ℎ13 = 𝑋𝑖 (ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33)
ℎ21𝑥𝑖 + ℎ22𝑦𝑖 + ℎ23 = 𝑌𝑖 (ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33)

The above equations can be rewritten as a system of linear equa-
tions. For each point correspondence, we get two equations. For
four points, we have eight equations. The system can be represented
as:

𝑋𝑖 = ℎ11𝑥𝑖 + ℎ12𝑦𝑖 + ℎ13 − 𝑋𝑖 (ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33)
𝑌𝑖 = ℎ21𝑥𝑖 + ℎ22𝑦𝑖 + ℎ23 − 𝑌𝑖 (ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33)

Or in matrix form 𝐴h = 0:
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𝐴 =

©«

𝑥1 𝑦1 1 0 0 0 −𝑋1𝑥1 −𝑋1𝑦1 −𝑋1
0 0 0 𝑥1 𝑦1 1 −𝑌1𝑥1 −𝑌1𝑦1 −𝑌1
𝑥2 𝑦2 1 0 0 0 −𝑋2𝑥2 −𝑋2𝑦2 −𝑋2
0 0 0 𝑥2 𝑦2 1 −𝑌2𝑥2 −𝑌2𝑦2 −𝑌2
𝑥3 𝑦3 1 0 0 0 −𝑋3𝑥3 −𝑋3𝑦3 −𝑋3
0 0 0 𝑥3 𝑦3 1 −𝑌3𝑥3 −𝑌3𝑦3 −𝑌3
𝑥4 𝑦4 1 0 0 0 −𝑋4𝑥4 −𝑋4𝑦4 −𝑋4
0 0 0 𝑥4 𝑦4 1 −𝑌4𝑥4 −𝑌4𝑦4 −𝑌4

ª®®®®®®®®®®®¬
And the vector h containing the elements of the homography

matrix 𝐻 :

h =

©«

ℎ11
ℎ12
ℎ13
ℎ21
ℎ22
ℎ23
ℎ31
ℎ32
ℎ33

ª®®®®®®®®®®®®®¬
To find the solution for h, we use Singular Value Decomposition

(SVD). The solution is the singular vector corresponding to the
smallest singular value of matrix 𝐴. This vector represents the
flattened homography matrix 𝐻 .

Finally, the 9-element vector h can be reshaped into the 3x3
homography matrix 𝐻 :

𝐻 =
©«
ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

ª®¬
A.3 PifPaf: Detailed Description
The PifPaf model representations can be found in figure 48. It can
be described as a shared ResNet base network, a residual learning
framework designed by [28] to ease the training that are substan-
tially deep, with two head networks: a head network called Part
Intensity Field (PIF), which predicts a confidence, precise location
and size of a joint, and a head network called Part Association Field
(PAF), which predicts associaton between those parts. The output
feature maps of these two head networks are then decoded to create
a set of 17 coordinates that compose into the human pose estimate.
In this section, the two head networks are described in more detail,
followed by a more detailed description of the decoding process.

Part Intensity Fields (PIF) are designed to detect and precisely
localize specific body parts within an image by utilizing a com-
posite structure. The PIF’s combine multiple components: a scalar
field 𝑝𝑐

𝑖 𝑗
representing the confidence value, a vector field {𝑝𝑥

𝑖 𝑗
, 𝑝
𝑦

𝑖 𝑗
}

pointing towards the closest body part, and another scalar field
𝑝𝜎
𝑖 𝑗
representing the size of the joint. In this context, the indices

𝑖, 𝑗 refer to the discrete spatial locations on the output grid of the
neural network, while 𝑥,𝑦 represent real-valued coordinates within
the image. The PIF at each location can be formally expressed as a
composite field 𝑝𝑖 𝑗 = {𝑝𝑐

𝑖 𝑗
, 𝑝𝑥
𝑖 𝑗
, 𝑝
𝑦

𝑖 𝑗
, 𝑝𝑏
𝑖 𝑗
, 𝑝𝜎
𝑖 𝑗
}.

The confidence map generated by PIFs, represented by the scalar
field 𝑝𝑐

𝑖 𝑗
, tends to be quite coarse. An example of a confidence map

Figure 48: PifPafModel architecture. The input is an image of
size (H, W) with three color channels, indicated by “x3”. The
neural network based encoder produces PIF and PAF fields
with 17×5 and 19×7 channels. An operation with stride two
is indicated by “//2”. The decoder is a program that converts
PIF and PAF fields into pose estimates containing 17 joints
each. Each joint is represented by an x and y coordinate and
a confidence score.

on localizing the left shoulder generated by PIF’s can be seen in
Figure 49a. As can be seen, the confidence map is in very low resolu-
tion. To enhance localization, this confidence map is fused with the
vectorial components {𝑝𝑥

𝑖 𝑗
, 𝑝
𝑦

𝑖 𝑗
}, which are shown in Figure 49b to

create a high-resolution confidence map 𝑓 (𝑥,𝑦). This map, shown
in figure c 49c is generated by convolving the regressed vector
fields, weighted by the confidence scalar field, with an unnormal-
ized Gaussian kernel. This emphasizes the grid-free nature of the
localization process, improving the coarsiness of the confidence
map generated before, allowing for precise identification of joint
locations.

Part Association Fields (PAF) extend the concept of fields to
associate detected joints into complete human poses. PAFs operate
by predicting a composite field

𝑎𝑖 𝑗 = {𝑎𝑐𝑖 𝑗 , 𝑎
𝑥1
𝑖 𝑗 , 𝑎

𝑦1
𝑖 𝑗
, 𝑎𝑏1𝑖 𝑗 , 𝑎

𝑥2
𝑖 𝑗 , 𝑎

𝑦2
𝑖 𝑗
, 𝑎𝑏2𝑖 𝑗 }

at each output location (𝑖, 𝑗). Here, 𝑎𝑐
𝑖 𝑗
is a scalar field representing

the confidence of the association, {𝑎𝑥1
𝑖 𝑗
, 𝑎
𝑦1
𝑖 𝑗
} and {𝑎𝑥2

𝑖 𝑗
, 𝑎
𝑦2
𝑖 𝑗
} are

vector fields representing the locations of the two joints being
connected, and 𝑎𝑏1

𝑖 𝑗
and 𝑎𝑏2

𝑖 𝑗
are scalar fields representing the spatial

precisions of these regressions.
The construction of PAFs involves identifying the closest joint

of the required type to determine the first vector field component
{𝑎𝑥
𝑖 𝑗
1, 𝑎𝑦

𝑖 𝑗
1}, while the second vector component {𝑎𝑥

𝑖 𝑗
2, 𝑎𝑦

𝑖 𝑗
2} is de-

termined by the ground truth pose, even if it points to a joint further
away. This ensures that the fields correctly represent the associa-
tion of parts, allowing for precise joint localization even in crowded
scenes where multiple people may occlude one another.

Human Pose estimation algorithms tend to struggle with the
diversity of scales that a human pose can have in an image. The re-
gression outputs of the PIFs and PAFs are trained using an adaptive
L1-type loss function that accounts for varying scales of human
bodies within an image. This is important since the same absolute
localization error for the joint of a large person can be minor, while
for a small person in the background of the image, this error can be
major. The L1-type loss is accountable for this since it is injected
with a scale dependence with the SmoothL1 [23] loss. This loss
allows to tune the radius 𝑟smooth around the origin where softer
gradients are produced, with 𝑟smooth being proportional to

√︁
𝐴𝑖𝜎𝑘 ,
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(a)

(b)

(c)

Figure 49: Visualization of the different components of the
PIF of the left shoulder. In 49a the still coarse confidence
map is shown. In 49b the vectorial components are shown. In
49c fusion of the convidence, vector and scale components
are shown

where 𝐴𝑖 is the area of the person instance’s bounding box and 𝜎𝑘
is the keypoint size.

The decoding process converts the neural network’s output fea-
ture maps into a set of 17 coordinates representing human pose
estimates. This process begins by identifying PIF vectors with the
highest values in the high-resolution confidence map 𝑓 (𝑥,𝑦) gener-
ated earlier. Starting from these high-confidence seed points, PAFs
are used to form connections to other joints, effectively building the
pose. The decoding algorithm is based on the fast greedy algorithm
used by [34], meaning that once a connection is made, it is final. The
scores 𝑠 (𝑎, x) for PAF associations 𝑎 are calculated by considering
the confidence scalar field 𝑎𝑐

𝑖 𝑗
, the distance between the current

joint position x and the vector field component {𝑎𝑥
𝑖 𝑗
1, 𝑎𝑦

𝑖 𝑗
1}, and the

high-resolution confidence at the target location {𝑎𝑥
𝑖 𝑗
2, 𝑎𝑦

𝑖 𝑗
2}. Non-

maximum suppression is applied at the keypoint level to finalize
the pose, with the suppression radius being dynamically adjusted
based on the predicted scale field 𝑝𝜎

𝑖 𝑗
.

By leveraging these different fields, PIFs and PAFs provide a
robust framework for human pose estimation, enabling precise
detection and association of body parts even in complex scenes.
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B TABLES
B.1 A

Primary Type Secondary Type Count Secondary Type Count

acceleration

carry 2047 progressive_run 1744
linkup_play 45 third_assist 2

clearance

loss 973 head_pass 588
under_pressure 341 recovery 146
counterpressing_recovery 54 carry 19
linkup_play 1

corner

shot_assist 524 loss 489
assist 26 opportunity 15
carry 11 second_assist 10
third_assist 5 shot 2
progressive_run 1

duel

ground_duel 78226 defensive_duel 39113
offensive_duel 39113 aerial_duel 20566
loose_ball_duel 19582 recovery 17894
loss 17106 dribble 14614
carry 10169 counterpressing_recovery 8530
foul_suffered 6545 dribbled_past_attempt 5996
linkup_play 2294 sliding_tackle 1677
progressive_run 1318 interception 880
second_assist 29 assist 17
opportunity 10 third_assist 6
shot_block 2

fairplay
loss 153 hand_pass 7
recovery 3 interception 2

free_kick

free_kick_cross 890 free_kick_shot 265
shot 265 shot_assist 163
opportunity 148 carry 37
assist 19 goal 12
progressive_run 3 second_assist 3
third_assist 3

game_interruption ball_out 19045 whistle 451

goal_kick loss 254 carry 53
second_assist 1

goalkeeper_exit carry 58

infraction

foul 7068 yellow_card 1290
penalty_foul 106 red_card 54

interception

recovery 11248 pass 7522
short_or_medium_pass 6757 loss 6157
head_pass 4974 forward_pass 3910
counterpressing_recovery 3863 shot_block 1829
progressive_pass 1750 lateral_pass 1648
carry 872 long_pass 757
pass_to_final_third 753 back_pass 658
hand_pass 236 touch_in_box 193
acceleration 137 progressive_run 127
pass_to_penalty_area 99 under_pressure 67
deep_completion 41 through_pass 35
shot_assist 33 key_pass 15
cross 9 assist 5
smart_pass 5 second_assist 4
third_assist 3 cross_blocked 2
deep_completed_cross 1
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Primary Type Secondary Type Count Secondary Type Count

own_goal

interception 16 recovery 10
shot_block 5 pass 3
short_or_medium_pass 3 back_pass 2
counterpressing_recovery 2 head_pass 2
under_pressure 1

pass

short_or_medium_pass 213353 lateral_pass 94132
forward_pass 78835 progressive_pass 37744
back_pass 36345 loss 28135
pass_to_final_third 27661 long_pass 24686
recovery 16784 under_pressure 11959
pass_to_penalty_area 11034 head_pass 9893
cross 8627 counterpressing_recovery 8051
linkup_play 6370 touch_in_box 4440
deep_completion 4029 shot_assist 3474
through_pass 3139 deep_completed_cross 2954
key_pass 1915 hand_pass 1672
smart_pass 1576 cross_blocked 1462
carry 931 assist 361
second_assist 179 third_assist 129
progressive_run 94

penalty
shot 106 goal 80
penalty_goal 80

shot

opportunity 4841 touch_in_box 3941
head_shot 1126 shot_after_corner 997
goal 649 shot_after_throw_in 480
shot_after_free_kick 316 interception 38
shot_block 7 assist 2

shot_against

save 1720 save_with_reflex 1055
conceded_goal 762 penalty_conceded_goal 80
penalty_save 15

throw_in

loss 976 carry 101
shot_assist 46 progressive_run 6
third_assist 3 second_assist 1

touch

carry 26262 progressive_run 5908
loss 3843 touch_in_box 1549
under_pressure 483 opportunity 238
second_assist 5 third_assist 4
assist 1

B.2 B

Primary Type Attribute Description

pass

accurate True/False
angle degrees
height high/low/blocked/null
length Euclidean distance in coordinates
recipient ID, name, position
end Location x-coordinate, y-coordinate

shot

body-part right foot/ left foot/ head or other
isGoal true/false
onTarget true/false
goalzone glt/gt/grt/gl/gc/gr/glb/gb/grb/olt/ot/ort/or/orb/ol/olb
xg 0-1
postshotxg 0-1
goalkeeperaction id ID
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Primary Type Attribute Description
goalkeeper ID

ground duel

opponent ID, name, position
duelType offensive, defensive, dribble
keptPossession true/false for offensive and dribble, null for defensive
progressedWithBall true/false for offensive and dribble, null for defensive
stoppedProgress true/false for defensive, null for offensive and dribble
recoveredPossession true/false for defensive, null for offensive and dribble
takeOn true/false
side right/left for dribble and defensive, null for offensive
relatedDuelID ID

aerialDuel

opponent ID, name, position, height
firstTouch false/true
height centimeters
relatedDuelID ID

infraction

Yellow Card True/False
Red Card True/False
Type regular foul/ protest foul
Opponent ID, Name, Position
end location x-coordinate, y-coordinate

Table 11

Keypoint Type 1 (X, Y) Type 2 (X, Y) Type 3 (X, Y) Type 4 (X, Y)

0
1
2 (0, 37.65) (0, 37.15) (0, 36.15) (0, 37.65)
3 (0, 30.35) (0, 29.85) (0, 28.85) (0, 30.35)
4 (5.50, 43.15) (5.50, 42.65) (5.50, 41.65) (5.50, 43.15)
5 (5.50, 24.85) (5.50, 24.35) (5.50, 23.35) (5.50, 24.85)
6 (0, 43.15) (0, 42.65) (0, 41.65) (0, 43.15)
7 (0, 24.85) (0, 24.35) (0, 23.35) (0, 24.85)
8 (16.50, 54.15) (16.50, 53.65) (16.50, 52.65) (16.50, 54.15)
9 (16.50, 13.85) (16.50, 13.35) (16.50, 12.35) (16.50, 13.85)
10 (0, 54.15) (0, 53.65) (0, 52.65) (0, 54.15)
11 (0, 13.85) (0, 13.35) (0, 12.35) (0, 13.85)
12 (0, 68) (0, 67) (0, 65) (0, 68)
13 (0, 0) (0, 0) (0, 0) (0, 0)
14 (52.50, 68) (52.50, 67) (52.50, 65) (55, 68)
15 (52.50, 0) (52.50, 0) (52.50, 0) (55, 0)
16 (88.50, 54.15) (88.50, 53.65) (88.50, 52.65) (93.50, 54.15)
17 (88.50, 13.85) (88.50, 13.35) (88.50, 12.35) (93.50, 13.85)
18 (105, 54.15) (105, 53.65) (105, 52.65) (110, 54.15)
19 (105, 13.85) (105, 13.35) (105, 12.35) (110, 13.85)
20 (99.50, 43.15) (99.50, 42.65) (99.50, 41.65) (104.50, 43.15)
21 (99.50, 24.85) (99.50, 24.35) (99.50, 23.35) (104.50, 24.85)
22 (105, 43.15) (105, 42.65) (105, 41.65) (110, 43.15)
23 (105, 24.85) (105, 24.35) (105, 23.35) (110, 24.85)
24
25
26 (105, 30.35) (105, 29.85) (105, 28.85) (110, 30.35)
27 (105, 37.65) (105, 37.15) (105, 36.15) (110, 37.65)
28 (105, 68) (105, 67) (105, 65) (110, 68)
29 (105, 0) (105, 0) (105, 0) (110, 0)
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Keypoint Type 1 (X, Y) Type 2 (X, Y) Type 3 (X, Y) Type 4 (X, Y)

30 (61.33, 31.54) (61.33, 31.04) (61.33, 30.04) (63.83, 31.54)
31 (43.67, 31.54) (43.67, 31.04) (43.67, 30.04) (46.17, 31.54)
32 (61.33, 36.46) (61.33, 35.96) (61.33, 34.96) (63.83, 36.46)
33 (43.67, 36.46) (43.67, 35.96) (43.67, 34.96) (46.17, 36.46)
34 (58.96, 27.54) (58.96, 27.04) (58.96, 26.04) (61.46, 27.54)
35 (46.04, 27.54) (46.04, 27.04) (46.04, 26.04) (48.54, 27.54)
36 (58.96, 40.46) (58.96, 39.96) (58.96, 38.96) (61.46, 40.46)
37 (46.04, 40.46) (46.04, 39.96) (46.04, 38.96) (48.54, 40.46)
38 (61.65, 34) (61.65, 33.50) (61.65, 32.50) (64.15, 34)
39 (43.35, 34) (43.35, 33.50) (43.35, 32.50) (45.85, 34)
40 (52.50, 24.85) (52.50, 24.35) (52.50, 23.35) (55, 24.85)
41 (52.50, 43.15) (52.50, 42.65) (52.50, 41.65) (55, 43.15)
42 (52.50, 34) (52.50, 33.50) (52.50, 32.50) (55, 34)
43 (20.15, 34) (20.15, 33.50) (20.15, 32.50) (20.15, 34)
44 (16.50, 41.31) (16.50, 40.81) (16.50, 39.81) (16.50, 41.31)
45 (16.50, 26.69) (16.50, 26.19) (16.50, 25.19) (16.50, 26.69)
46 (19.94, 32.05) (19.94, 31.55) (19.94, 30.55) (19.94, 32.05)
47 (19.94, 35.95) (19.94, 35.45) (19.94, 34.45) (19.94, 35.95)
48 (11, 34) (11, 33.50) (11, 32.50) (11, 34)
49 (16.50, 34) (16.50, 33.50) (16.50, 32.50) (16.50, 34)
50 (84.85, 34) (84.85, 33.50) (84.85, 32.50) (89.85, 34)
51 (88.50, 41.31) (88.50, 40.81) (88.50, 39.81) (93.50, 41.31)
52 (88.50, 26.69) (88.50, 26.19) (88.50, 25.19) (93.50, 26.69)
53 (85.06, 32.05) (85.06, 31.55) (85.06, 30.55) (90.06, 32.05)
54 (85.06, 35.95) (85.06, 35.45) (85.06, 34.45) (90.06, 35.95)
55 (94, 34) (94, 33.50) (94, 32.50) (99, 34)
56 (88.50, 34) (88.50, 33.50) (88.50, 32.50) (93.50, 34)
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Hidden Layers Dropout Batch_Size Learning Rate Epoch Total Training Time Accuracy Precision Recall F1_Score

128 4 0.3 32 0.001 35 2300.90 35.58 0.3603 0.3558 0.3423
128 3 0.5 32 0.0001 91 2232.37 35.80 0.4000 0.3580 0.3405
128 2 0.3 32 0.1 57 2176.36 37.46 0.2168 0.3746 0.2605
128 2 0.3 64 0.1 46 2075.55 34.92 0.2130 0.3492 0.2631
128 4 0.5 32 0.001 44 2252.65 36.57 0.3722 0.3657 0.3609
64 3 0.5 64 0.0001 93 1945.63 36.24 0.3852 0.3624 0.3336
128 2 0.5 32 0.0001 51 2123.33 37.57 0.3905 0.3757 0.3583
128 3 0.5 32 0.0001 60 2238.44 37.24 0.3902 0.3724 0.3513
256 2 0.5 32 0.0001 63 2448.51 38.34 0.3917 0.3834 0.3787
128 4 0.3 32 0.1 12 2322.88 29.50 0.2312 0.2950 0.2501
64 3 0.5 32 0.0001 85 2179.55 37.68 0.3837 0.3768 0.3743
256 2 0.5 64 0.01 82 2433.99 39.78 0.3929 0.3978 0.3558
128 3 0.3 32 0.01 40 2196.80 36.46 0.2428 0.3646 0.2890
64 4 0.3 64 0.01 44 1990.86 35.03 0.3876 0.3503 0.3274
128 3 0.3 64 0.01 46 2110.83 35.25 0.3456 0.3525 0.3236
256 3 0.5 32 0.001 43 2477.11 35.58 0.3647 0.3558 0.3433
64 3 0.5 64 0.001 41 1997.77 38.90 0.3937 0.3890 0.3764
128 3 0.3 64 0.001 43 2115.79 37.24 0.3822 0.3724 0.3581
64 3 0.3 64 0.01 23 1972.81 36.91 0.3753 0.3691 0.3678
256 4 0.3 64 0.001 48 2471.69 38.12 0.3643 0.3812 0.3634
64 4 0.3 64 0.001 28 1995.35 40.11 0.3869 0.4011 0.3808
64 4 0.5 64 0.0001 95 2000.23 34.59 0.3916 0.3459 0.3176
64 3 0.3 64 0.1 61 1952.04 38.23 0.2166 0.3823 0.2681
256 2 0.3 64 0.0001 61 2403.12 36.35 0.3906 0.3635 0.3479
256 4 0.5 32 0.001 33 2549.18 31.71 0.3455 0.3171 0.2688
64 2 0.3 64 0.1 75 1932.72 36.02 0.2090 0.3602 0.2562
256 4 0.5 64 0.01 23 2510.86 36.24 0.1969 0.3624 0.2438
64 4 0.5 32 0.01 22 2329.71 32.82 0.3085 0.3282 0.2980
256 2 0.5 64 0.001 28 2403.31 38.78 0.4004 0.3878 0.3608
256 3 0.5 32 0.01 40 2542.79 25.75 0.2706 0.2575 0.2434
256 3 0.3 32 0.0001 34 2452.56 36.24 0.5029 0.3624 0.3145
128 2 0.3 64 0.001 21 2102.13 40.00 0.3755 0.4000 0.3758

Table 12: Training results of base models during hyperparameter tuning
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Pred Shot Pred Pass Pred Duel Pred Interception Pred Touch %
True Shot 39 3 1 7 1 76.47%
True Pass 14 32 24 7 1 19.75%
True Duel 29 12 35 6 24 33.02%

True Interception 16 5 7 6 8 14.29%
True Touch 10 18 21 4 38 41.76%

% 36.11% 45.71% 39.77% 13.64% 26.76%

Pred Shot Pred Pass Pred Duel Pred Interception Pred Touch %
True Shot 34 4 3 3 0 77.27%
True Pass 17 47 15 4 93 26.70%
True Duel 17 23 26 3 34 25.24%

True Interception 7 14 6 3 19 6.12%
True Touch 10 20 8 0 42 52.50%

% 40.00% 43.52% 44.83% 23.08% 22.34%

Pred Shot Pred Pass Pred Duel Pred Interception Pred Touch %
True Shot 27 2 3 9 0 65.85%
True Pass 20 108 21 19 2 63.53%
True Duel 15 39 28 4 3 31.46%

True Interception 9 21 14 7 0 13.73%
True Touch 7 70 18 4 2 1.98%

% 34.62% 45.00% 33.33% 16.28% 28.57%

Figure 50: Confusion matrices on primary classification
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Pred Accurate Pred Not Accurate
True Accurate 0 15

True Not Accurate 0 31

Pred Accurate Pred Not Accurate
True Accurate 0 31

True Not Accurate 0 38

Pred Accurate Pred Not Accurate
True Accurate 15 4

True Not Accurate 24 14

Figure 51: Prediction on Accuracy of Cross

Pred Accurate Pred Not Accurate
True Accurate 101 1

True Not Accurate 10 1

Pred Accurate Pred Not Accurate
True Accurate 86 1

True Not Accurate 13 0

Pred Accurate Pred Not Accurate
True Accurate 85 1

True Not Accurate 18 2

Figure 52: Prediction on Accuracy of Pass

Pred Long Pred Short/Medium
True Long 14 0

True Short/Medium 99 0

Pred Long Pred Short/Medium
True Long 12 3

True Short/Medium 10 75

Pred Long Pred Short/Medium
True Long 12 10

True Short/Medium 8 76

Figure 53: Prediction on Distance of Pass

Pred on Target Pred Not on Target
True on Target 1 17

True Not on Target 1 32

Pred on Target Pred Not on Target
True on Target 11 5

True Not on Target 18 10

Pred on Target Pred Not on Target
True on Target 2 15

True Not on Target 4 20

Figure 54: Prediction on accuracy of shot

Pred Through Pred Not Through
True Long 0 32

True Short/Medium 0 81

Pred Through Pred Not Through
True Through 8 29

True Not Through 10 53

Pred Through Pred Not Through
True Through 23 21

True Not Through 26 36

Figure 55: Prediction on if a pass is a through pass

Pred Progressive Pred Not Progressive
True Progressive 0 20

True Not Progressive 0 93

Pred Progressive Pred Not Progressive
True Progressive 2 20

True Not Progressive 9 69

Pred Progressive Pred Not Progressive
True Progressive 12 12

True Not Progressive 38 44

Figure 56: Prediction on if Pass is progressive

Pred Pass Pred Cross
True Pass 103 10
True Cross 4 42

Pred Pass Pred Cross
True Pass 93 7
True Cross 2 67

Pred Pass Pred Cross
True Pass 98 8
True Cross 7 50

Figure 57: Prediction on Pass or Cross

Pred Forward Pred Backward Pred Lateral
True Forward 1 0 4
True Backward 1 1 1
True Lateral 5 0 33

Pred Forward Pred Backward Pred Lateral
True Forward 0 0 3
True Backward 2 0 6
True Lateral 8 0 50

Pred Forward Pred Backward Pred Lateral
True Forward 1 1 0
True Backward 1 2 2
True Lateral 9 22 19

Figure 58: Prediction on the direction of the Cross
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Pred Forward Pred Backward Pred Lateral
True Forward 5 0 2
True Backward 3 0 17
True Lateral 4 0 57

Pred Forward Pred Backward Pred Lateral
True Forward 28 4 5
True Backward 7 4 1
True Lateral 36 7 8

Pred Forward Pred Backward Pred Lateral
True Forward 29 6 9
True Backward 3 4 2
True Lateral 33 8 12

Figure 59: Prediction on the direction of the Pass

Pred right foot Pred left foot Pred head/other
True right foot 7 12 0
True left foot 12 13 0

True head/other 4 3 0

Pred right foot Pred left foot Pred head/other
True right foot 4 6 5
True left foot 7 3 10

True head/other 0 5 4

Pred right foot Pred left foot Pred head/other
True right foot 0 21 1
True left foot 0 16 1

True head/other 0 2 0

Figure 60: Prediction on the body part the shot is taken with

Pred Right Pred Left Pred Center
True Right 19 3 0
True Left 18 1 1

True Center 1 0 3

Pred Right Pred Left Pred Center
True Right 14 11 5
True Left 14 12 8

True Center 2 1 2

Pred Right Pred Left Pred Center
True Right 23 2 4
True Left 0 19 3

True Center 3 2 1

Figure 61: Prediction on the Flank of the Cross

Pred Aerial Pred Loose Pred Ground
True Aerial 25 7 0
True Loose 9 32 0
True Ground 25 8 0

Pred Aerial Pred Loose Pred Ground
True Aerial 16 8 7
True Loose 13 21 2
True Ground 20 4 12

Pred Aerial Pred Loose Pred Ground
True Aerial 19 9 0
True Loose 11 18 0
True Ground 22 10 0

Figure 62: Prediction on the kind of duel
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C FIGURES
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Figure 63: Example of event data as presented in the event data package. This event information is regarding the action of a
pass, giving detailed information about the pass
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