
Vrije Universiteit Amsterdam

Thesis

A comparison of machine learning
algorithms using an insufficient number

of labeled observations

Author:
Mark Menagie

Supervisors:
Wouter Pepping

Mark Hoogendoorn

Second reader:
Sandjai Bhulai

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

March 2018

http://www.vu.nl


Vrije Universiteit Amsterdam

Thesis

A comparison of machine learning
algorithms using an insufficient number

of labeled observations

Author:
Mark Menagie

Supervisors:
Wouter Pepping

Mark Hoogendoorn

Second reader:
Sandjai Bhulai

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

March 2018

Vrije Universiteit
Faculty of Sciences
De Boelelaan 1105

1081 HV Amsterdam

Deloitte North-West Europe
Risk Advisory

Technology & Data Risk
Gustav Mahlerlaan 2970

1081 LA Amsterdam

http://www.vu.nl


i

Declaration of Authorship
I, Mark Menagie
, declare that this thesis titled, “A comparison of machine learning algorithms using
an insufficient number of labeled observations
” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:



ii

“There are two ways to get enough. One is to continue to accumulate more and more.
The other is to desire less.”

G.K. Chesterton



iii

Vrije Universiteit Amsterdam

Abstract
Faculty of Science
Business Analytics

Master of Science

A comparison of machine learning algorithms using an insufficient
number of labeled observations

by Mark Menagie

Despite the growing interest of organizations to apply machine learning models within
their core processes, they often face the problem of having insufficient labeled data
available. Labeling data can be a difficult, time-consuming and expensive process,
which makes it hard to apply supervised models in such situations. Semi-supervised
learning and active learning can be applied to overcome this problem. Both techniques
aim to improve classification performance by incorporating unlabeled observations
into the training process.

This study provides insights in the performance of committee-based algorithms within
semi-supervised learning and active learning. These algorithms use well-known en-
semble techniques bagging and boosting, which makes them easily applicable in prac-
tice. Despite their common objective of using unlabeled data to improve classification
performance, little effort has been made to compare them in literature so far.

In order to study their performance in different realistic situations, multiple committee-
based algorithms were applied on four datasets using various percentages of labeled
observations. In the extreme situation where only 5% of the data was labeled, it
was found that the algorithms which use bagging provide most accurate predictions.
The active learning algorithm Query-by-Bagging significantly outperformed the other
algorithms in eight out of twelve experiments. However, it was shown that the active
learning algorithms suffer most from the presence of outlying observations.
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Chapter 1

Introduction

Nowadays, many organizations recognize the importance of using predictive analy-
sis within their core processes. They use data analytics to obtain insights about
what drives their business or their clients. James McCormick [66] forecasts that such
insights-driven organizations will grow from $333 billion in revenue in 2015 to $1.2
trillion in 2020. With the increasing interest in insight-driven decision making, com-
panies invest more in artificial intelligence and machine learning every year. Following
the survey in [78], 30% of the attendants think that artificial intelligence will be the
most disruptive technology in their industry in the next five years. Deloitte recently
opened the Artificial Intelligence Center of Expertise (AICE) in order to meet the
rapidly increasing demand for artificial intelligence [95]. Despite this growing inter-
est, they often face complex client assignments due to the lack of available data in a
manageable structure.

Many machine learning algorithms are available to construct predictive models. Ma-
chine learning is a field in data analytics that focuses on the development of math-
ematical algorithms to predict future events. These algorithms seek to find hidden
patterns in large sets of historical data, without being explicitly programmed [83].
A considerable amount of literature within machine learning has been published on
classification problems. Classification algorithms aim to assign the correct category to
new observations by learning from previous observations. Learning from data where
the output value (label) is known for all observations can be considered as supervised
learning. This machine learning task aims to infer a function from labeled training
data, which can be used for mapping new observations [70]. In order to obtain sat-
isfying performance on unseen data, it is important that supervised algorithms are
able to generalize well using training data. Ensemble learning (or committee-based
learning) is a well known technique to combine multiple classification models into one
ensemble classifier. It has proven to outperform the generalization ability of single
classifiers [34].

Although supervised classification is a widely used machine learning technique, it
requires a fully labeled dataset. In many situations labeling data is a difficult, time-
consuming and expensive process which requires knowledge of domain experts [85,
19]. Suppose that the objective is to classify webpages to a category based on its
content. Webpage classification [51] is a domain where it is relatively easy to collect
unlabeled data by scraping webpages. However, assigning a category to each web-
page is highly time-consuming since pages need to be read manually. Semi-supervised
learning algorithms have been developed to overcome this problem. Semi-supervised
algorithms automatically exploit unlabeled observations to find hidden structures that
might improve the supervised learning process using limited data. Another technique
to improve classification models using insufficient labels is active learning. Instead
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of automatically selecting unlabeled observations to include in the model, a (usually
human) supervisor is involved in the training process within active learning. It as-
sumes that the supervisor is able to provide the correct label for a queried observation
[85]. By requesting information about observations which are most uncertain to the
classifier, it can be re-trained including newly labeled observations. The aim of active
learning algorithms is to request as least as possible manual annotations to achieve
a satisfying performance. Over the years, many different algorithms were introduced
within semi-supervised learning and active learning. Several promising studies were
conducted on so-called committee-based models within both fields [105, 104]. These
algorithms aim to obtain strong generalization by incorporating supervised ensemble
techniques into semi-supervised learning and active learning.

Since both fields share the same objective of incorporating unlabeled data in classi-
fication problems, they are suitable for comparison studies. Stikic et al. [89] com-
pared several state-of-art algorithms from both fields. Perzello et al. [76] focused
on SVM-based techniques while performing an extensive comparison between semi-
supervised learning and active learning. However, little effort has been made to
compare committee-based models so far. The aim of this thesis is to study the per-
formance of such committee-based algorithms within semi-supervised learning and
active learning using multiple data sets consisting of limited labeled observations.
This research can make an important contribution to solve problems with insufficient
labeled data and tries to find an answer to the following research-question:

Which committee-based classification techniques within semi-supervised
learning and active learning perform best using multiple data sets with
various percentages of labeled observations?

This research-question is supported by the following sub-questions:

• Which algorithms are available within semi-supervised learning and active learn-
ing to handle the problem of data with insufficient number of labeled observa-
tions?

• How much does the size of the initial labeled training set influence the perfor-
mance of active learning algorithms?

• Which committee-based algorithms are most robust to outliers in the data?

• How do semi-supervised learning and active learning algorithms perform in
comparison to supervised algorithms using various percentages of labeled ob-
servations?

This thesis will first discuss background information about ensemble learning, semi-
supervised learning and active learning. Next, the applied experiments will be ex-
plained in detail. Finally, the results of the research will be presented and further
discussed.
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Chapter 2

Background

This thesis will focus on committee-based algorithms within semi-supervised learn-
ing and active learning. Most of these algorithms are extended supervised ensemble
algorithms to be able to handle data with insufficient class labels. Therefore, some
necessary background of supervised ensemble techniques will be provided in this chap-
ter first. Next, the concept of semi-supervised learning will be explained and several
existing algorithms will be discussed. Finally, we will discuss previous work on active
learning and its relevance for this study.

2.1 Ensemble learning
Ensemble learning is a well known technique to combine multiple classification mod-
els into one ensemble classifier. An ensemble classifier is constructed by generating
multiple base classifiers on training data and then combining the separate predictions
using a voting system. The objective of ensemble learning is to develop a model
that is able to provide more accurate predictions than each of its single component
classifiers. Ensemble classifiers have proven to outperform the generalization ability
of single classifiers [34].

Dietterich [34] introduced three main reasons why ensembles can improve the accuracy
of its component classifiers:

• Statistical problem
The aim of classification algorithms is to learn from historical training data
to find the best classifier f . However, it can be hard to find f using a single
classifier when the available amount of training data is insufficient. When this
situation occurs, the problem of having a small training set can be addressed
by constructing an ensemble of multiple classifiers. By voting for the final
hypothesis, the ensemble can find a satisfying approximation of the best solution
f .

• Computational problem
Several algorithms perform local search like gradient descent to search for the
optimal solution. Even if there is enough training data available (so the statis-
tical problem does not occur), it is possible that these algorithms will converge
to a local optimum. Since the techniques to find the global optimum can be
computationally intensive, ensemble learning performs multiple local search al-
gorithms that use different starting points in search space. By using different
starting points, the ensemble might approximate the optimal solution better
than a single classifier.
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• Representational problem
It can occur that the optimal classifier f does not exist in the complete search
space defined by single classifiers. In such situations, a combination of these
classifiers might approximate f more accurately than the component classifiers
separately. Figure 2.1 shows an example of a classification problem with two
classes that are not separable by a single linear classifier. None of the linear
classifiers A,B and C succeed in separating the (+)-class from the (-)-class
perfectly. However, for every observation at least two of the classifiers agree
about their hypothesis. The ensemble classifier (bold line in Figure 2.1 from
[1]) that results from combining the single classifiers is capable of separating
both classes accurately.

Figure 2.1: An illustration of the representational problem using
three linear classifiers

Although these problems show that ensemble learning can outperform single classifiers
in many situations, ensemble classifiers require the presence of enough diversity in
the component classifiers to ensure good performance [55]. The aim is to combine
classifiers that make as few errors as possible, but they should make different errors
to be able to learn from each other. Diverse component classifiers examine a larger
space than one- or multiple identical classifiers. When nearly identical models vote
for a prediction, they would all agree and behave like a single classifier.

There are several methods to make classifiers more diverse. Bagging [16] and boosting
[42] are two well-known techniques that adjust the original training data to include
diversity in the training process. The former method uses different training sets
for every component classifier in parallel, while the latter method trains multiple
classifiers in sequence on training sets using different weighted observations. Both
techniques can be used to resolve the bias-variance trade-off. This is the problem of
simultaneously minimizing two types of error that limit supervised models to gener-
alize beyond training data [96]. We can decompose the expected error of an unseen
observation x into the following terms:

• Bias: an error caused by limitations in the learning method

• Variance: an error caused by limitations in the training data

• Irreducible error : an error resulting from noise in the problem itself

Both bagging and boosting aim to minimize the expected error, but they focus on
different problems. Bagging seeks to reduce variance by resampling the training data,
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while boosting aims to minimize the bias by constructing an ensemble that has lower
bias than the individual models [40].

2.1.1 Bagging
Bootstrap aggregating or bagging [16] is an ensemble method that trains multiple
classifiers on different bootstrap samples of the original training data. For every
classifier a random sample with replacement is drawn from training data, containing
the same number of observations. Since samples are drawn with replacement, the
bootstrap samples can contain duplicate observations. After training each component
classifier on a different bootstrapped sample, one of the classes can be assigned to
any observation x in the classification phase. In this phase the bagging algorithm
performs majority voting. All component classifiers {h1, h2, . . . , hN} vote for which
of the k classes in C should be assigned to unlabeled observation x. The class that
receives most votes will be assigned to x as final prediction.

Breiman [16] has shown that bagging can improve prediction accuracy of so-called
unstable algorithms or weak classifiers. Small changes to training data of such weak
classifiers can result in large changes in predictions. Breiman [16] explained that
Neural Networks and Decision Trees are such unstable algorithms for which bagging
could be a solution to improve performance. On the other hand, bagging will have
less effect on more stable algorithms like Naïve Bayes and K-Nearest Neighbor [16, 31]
since they will not allow enough diversity. The original bagging procedure is shown
in Algorithm 1.

Probably the most well-known algorithm that applies bagging is Random Forest [17].
The only difference between Random Forest and the bagging algorithm using decision
trees is the procedure for feature selection. If some features have great influence on
the prediction of the class variable, it is likely that they will be selected in most trees
in the ensemble. In order to generate a more diverse ensemble of classifiers Random
Forest selects a random subset of features at each candidate split, which is also called
feature bagging [17].

2.1.2 Boosting
In contrast to the independent training of classifiers with bagging, boosting aims to
build a sequence of classifiers that depend on each other. It trains multiple weak clas-
sifiers in sequence on different training sets L = {L1, L2, . . . , LN}. Each set contains
weighted observations to generate diversity in the learning process. Observations that
were misclassified by classifier hi−1 will be assigned higher weights than correctly clas-
sified observations to force the next classifier hi to focus more on observations that
are hard to classify.

Freund and Schapire [42] introduced one of the first boosting algorithms AdaBoost,
short for Adaptive Boosting. The objective in each iteration of this algorithm is to
reduce the training error of the classifier in the previous iteration. Each iteration
i ∈ {1 . . . N} observation weights Di+1 are updated for classifier hi+1 in the next
iteration. The weights Di+1 are multiplied with factor εi

1−εi for correctly classified
observations, while misclassified observations will keep the same weights as in the
previous iteration. In this way, the model will focus more on misclassified observations
from the previous iterations. Since the update of the weights depends on training
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Algorithm 1 Bagging
Input: Original training set L, Ensemble size N and the learning algorithm
Output: Ensemble classifier H

Training phase:
1: for i = 1 to N do
2: Si = BootstrapSample(L)
3: hi = Learn(Si)
4: Add classifier to ensemble H: H = H ∪ hi
5: end for
6: return ensemble H = {h1, h2, . . . , hN}

Classification phase (majority voting):
7: Classify unlabeled observation x using all component classifiers {h1, h2, . . . , hN}

8: Let vi,k =
{

1 if hi votes for class Ck
0 otherwise

9: Obtain votes for all classes Vk =
N∑
i=1

vi,k for k = 1, . . . , C

10: Choose class with most votes: H(x) = arg max1≤k≤C Vk for k = 1, . . . , C
11: return prediction H(x)

error εi, the weights are changed more heavily if the training error is high. In addition
to changing the weights of all observations, a weight wi (0 ≤ wi ≤ 1) is assigned to
classifier hi. Classifier weight wi is calculated by −log( εi

1−εi ) to ensure that classifiers
with lower training errors have more influence in the final majority voting procedure.
Note that training error εi must satisfy 0 < εi < 0.5 to make sure that the weights are
updated correctly. Therefore, the algorithm terminates if the model either obtains
perfect classification or when training error is at least equal to 0.5. This stop-condition
can be a drawback of the algorithm when available training data is sparse, since
the ensemble might converge to a perfect training error too quickly. Even when a
component classifier would be able to classify a small set of training data correctly,
it does not necessarily mean that the ensemble model cannot improve on test data
anymore.

Dietterich [33] compared AdaBoost with the C4.5 Decision Tree algorithm [80] as
base-learner to other ensemble methods and concluded that AdaBoost is very sen-
sitive to classification noise. If training data contains observations with incorrect
labels, AdaBoost seems to focus (i.e. assigns high weights) too much on these noisy
observations which causes the classifiers to perform poorly. Despite these comments,
several experiments [8, 33, 79] have shown that AdaBoost can be very successful
and especially when using decision trees as base learner. Breiman [14] stated that
AdaBoost is even one of the best off-the-shelf classification models available. The
AdaBoost algorithm is shown in Algorithm 2.

In 1998, Breiman [15] introduced a statistical framework to understand the success
of boosting algorithms like AdaBoost better. This framework was used by Friedman
[44], who introduced Gradient Boosting Machines (also called Gradient Boosting).
Gradient Boosting tries to generalize prediction models by optimizing any arbitrary
differentiable loss function L. The chosen loss function measures the costs for incorrect
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Algorithm 2 AdaBoost
Input: Original training set {L1, . . . , Lm}, ensemble size N and the learning
algorithm
Output: Ensemble classifier H

Training phase:
1: Initialize weights of all observations: D1(j) = 1/m, ∀j ∈ {1 . . .m}
2: for i = 1 to N do
3: hi = Learn(L,Di)
4: Obtain weighted training error of hi:

εi =
m∑
j=1

Di(j)× I(hi(xj) 6= yj)

5: if εi = 0 or εi ≥ 1/2 then
6: Set final number of iterations N = i− 1
7: break
8: end if
9: Adjust weight of hi based on training error: wi = −log( εi

1−εi )
10: Update weights of training observations:

Di+1(j) = Di(j)
Zi

× Ui where Ui =
{

εi
1−εi if hi(xj) = yj
1 otherwise ∀j ∈ {1 . . .m}

and Zi =
m∑
j=1

Di+1(j) as normalization constant

11: end for
12: return ensemble H = {h1, h2, . . . , hN}

Classification phase (weighted majority voting):
13: Classify unlabeled observation x to the class with highest weighted vote:

return prediction H(x) = arg max1≤k≤C P (vk|x)

where P (vk|x) = 1∑N

i=1 wi

∑
hi(x)=vk

wi for k = 1, . . . , C

predictions. Initially, one single weak classifier Fm(x) (where iteration m = 0) is
trained and makes predictions for a set of test observations. In every iteration gradient
boosting tries to improve the current model by adding another model h(x). This
results in a new model Fm+1(x) = Fm(x) + h(x). The objective is that this model
Fm+1(x) is able to predict the class variable y perfectly:

Fm+1(x) = Fm(x) + h(x) = y

We can rewrite this as:
h(x) = y − Fm(x)

This means that if we want to find the optimal h(x) to add to the current model, it
should equal y−Fm(x). This is the difference between predictions and actual values,
which are also called the residuals. To find h(x), a model is fitted to the residuals
to try to capture their structure. The minimization problem to find h(x) is solved
by applying steepest descent [77]. This calculates the negative gradient of the loss
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function L using the current model Fm−1:

Fm(x) = Fm−1(x)− γm
n∑
i=1
∇FL(yi, Fm−1(xi))

Where the step length γm is chosen using line search:

arg min
γ

n∑
i=1

L(yi, Fm−1(xi)− γ
∂L(yi, Fm−1(xi))

∂Fm−1(xi)
)

Recently, Chen [23] introduced Extreme Gradient Boosting (XGBoost). It follows
the principles of gradient boosting, but is implements several improvements in speed
and performance. The improvement in performance is mainly caused by the intro-
ducing more regularization into the gradient boosting model, which is better able to
avoid overfitting on training data. XGBoost became very popular after winning the
Higgs Machine Learning Challenge. In 2015, among 29 winning solutions on machine
learning competition site Kaggle, XGBoost was used in 17 of them [23].

2.2 Semi-supervised learning
As explained in Section 1, semi-supervised algorithms can be applied to combine
both labeled- and unlabeled data when insufficient labeled observations are avail-
able. Most of these algorithms automatically search for unlabeled observations that
can improve the performance of supervised base-learners, which are initially trained
on a limited number of labeled observations. In this section some basic definitions
within the semi-supervised setting will be introduced first. Next, the main assump-
tions on which semi-supervised algorithms depend will be explained and the history
of semi-supervised learning will be discussed. In addition, multiple state-of-the-art
semi-supervised algorithms will be introduced. Finally, an extensive description of
committee-based semi-supervised learning will be given.

2.2.1 Introduction
In the standard semi-supervised learning setting a dataset is provided, which contains
observations with a label and observations for which the label is not known. This
setting can be formulated as a set of l labeled observations

Xl = (x1, x2, · · · , xl) and its labels Yl = (y1, y2, · · · , yl)

and a set of u unlabeled observations without any known labels

Xu = (xl+1, xl+2, · · · , xl+u).

In a realistic semi-supervised learning application the number of unlabeled observa-
tions clearly outnumber the number of labeled observations u� l.

Much of the literature on semi-supervised learning distinguishes two main learning
types: inductive learning and transductive learning [108, 19]. Inductive learning is re-
ferred to as the general semi-supervised setting, where an algorithm learns a function
from a combination of labeled- and unlabeled data to classify unseen data. These new
observations can be either a separately stored test set or new data that is coming into
the system in an online manner. Transductive learning, introduced by Vapnik [94],
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uses unlabeled observations during training as well, but cannot handle unseen data.
Transductive algorithms are only able to predict the unlabeled observations that are
also included in the training process. In a more formal way, inductive learning uses
labeled set {Xl, Yl} and unlabeled set Xu for training and can predict a set of t unseen
observations

Xt = (xn+1, xn+2, · · · , xn+t) where n = l + u

Transductive learning also uses labeled set {Xl, Yl} and unlabeled set Xu for training,
but can only predict unlabeled observations Xu. Most graph-based semi-supervised
algorithms are transductive and will be explained in subsubsection 2.2.3.2 to make
transductive learning in practice more clear. A widely used example to illustrate the
difference between those two types of semi-supervised learning is as follows: suppose
students need to prepare for an exam and the teacher has provided multiple example
questions including the correct solutions (i.e. observations with known labels) and
some questions without solutions (i.e. unlabeled observations). In a transductive
setting, students have to make a take-home exam and answer the provided questions
for which no solutions were given. When they study, they will focus on these particular
questions to solve them as good as possible. In an inductive setting, students can
study the questions including solutions and test their gained knowledge by trying the
questions without solutions. They use these test questions to practice for an in-class
exam containing similar questions which they have not seen before.

The advantage of transductive learning is that it solves an easier problem than in-
ductive learning, as it only predicts the classes for the test points of interest [19].
However, when the purpose of the application is to make many predictions on large
datasets, transductive learning is computationally expensive since it needs to learn
on new data every time (new unlabeled observations to predict). Inductive learning
algorithms need to be trained once and can be used for new data. Therefore, this
thesis will focus on inductive learning to use labeled- and unlabeled data to find a
function that can classify unseen data accurately.

2.2.2 Underlying assumptions
Most semi-supervised algorithms depend on several underlying assumptions. In order
to use unlabeled observations in a model, some assumptions about the underlying data
distribution should be made. Most semi-supervised algorithms rely on at least one of
the underlying data assumptions described by Chapelle [19]. In reality it can be hard
to determine which model assumptions fit best to the data. It is always important
to investigate the problem structure and choose the algorithm that fits the structure
best. When it is hard to verify the model assumptions, it might be best to choose an
algorithm that is most robust to the underlying assumptions.

2.2.2.1 Smoothness assumption

The smoothness assumption indicates that if observations in a high-density region are
close to each other, they are more likely to belong to the same class. This assumption
seeks to generate a decision boundary in low-density regions, where not many obser-
vations are present. Figure 2.2 from [99] shows an example where this assumption
moves the decision boundary to a low-density region when incorporating unlabeled
data in the learning process. The observations in the top cluster are separated by a
low-density region from the observations in the bottom cluster. If the observations
within each cluster are close to each other according to a chosen distance metric, the
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(a) (b)

Figure 2.2: (a) shows the decision boundary when a classifier learned
from labeled data only. In (b) unlabeled data was incorporated in the

learning process.

smoothness assumption would indicate that the drawn decision boundary separates
observations from two different classes.

2.2.2.2 Cluster assumption

The cluster assumption is a special case of the smoothness assumption as it states
that observations are likely to belong to the same class if they are in the same cluster.
When a cluster algorithm has been able to separate data into different clusters, labeled
observations can be used to assign a class to each cluster. Since clusters are often
sets of observations which are located in high-density regions, this assumption can
be seen a special case of the smoothness assumption. Decision boundaries in high-
density regions would separate clusters in multiple segments, so this assumption also
seeks to move the decision boundary to low-density regions.

2.2.2.3 Manifold assumption

Curse of dimensionality is a common problem in machine learning problems. It
means that when high-dimensional data is available, many observations are needed to
ensure that the data contains all possible combinations of possible values. Many semi-
supervised algorithms assume that unlabeled observations are similar as ’close’ labeled
observations. The measurement of this distance highly depends on the distance metric
used. With high-dimensional data, it is very hard to choose a distance metric that
gives an accurate indication of the closeness of observations. For such data sets,
the manifold assumption can overcome this problem. Following [19], the manifold
assumption indicates that (high dimensional) data lie (roughly) on a low-dimensional
manifold. If we are able to reduce the number of dimensions drastically by finding an
underlying manifold of the data, the distance between observations can be measured
more accurately.

2.2.3 Algorithms
Over the years, many different semi-supervised algorithms were developed. All these
algorithms incorporate unlabeled observations to improve classification performance
when insufficient labeled observations are available. Despite the common objective,
the approaches to use unlabeled data differ strongly. Semi-supervised algorithms can
be divided into four different categories:

• Iterative models

• Margin-based models
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• Graph-based models

• Committee-based models

Please note that all categories will be explained in an inductive setting except graph-
based models as they are usually transductive.

2.2.3.1 Iterative models

2.2.3.1.1 Self-Training

Iterative models aim to build accurate classifiers by improving initial weak classifiers
in an iterative process. Self-Training [84], also known as self-labeling, is one of the first
iterative algorithms that was developed for semi-supervised learning. Self-Training
initially trains a classification algorithm on a set of labeled observations. The resulting
classifier makes predictions for the unlabeled observations. The observations that
are predicted with most certainty are added to the training set and the classifier is
trained on this new set again. This iterative process repeats until a stopping condition
is met, like a maximum number of iterations or a certain level of convergence. It
is unavoidable that the classifier makes misclassifications on the set of unlabeled
observations. If these misclassifications would be added to the training set, the added
noise will affect the classifier negatively. Therefore, the main challenge of Self-Training
is to find a metric to select high confidence predictions accurately.

The advantage of this method is that any classification algorithm can be used. Since
the model needs to be trained multiple times, it might be best to use models that are
not too computationally expensive though. Two main drawbacks of this algorithm
are the selection of non-informative observations and the algorithms sensitivity to
outliers [1]. The difference between a non-informative observation and an outlier is
that the former belongs to one of the classes, while the latter does not belong to any
class at all. As both type of observations tend to lie far from the decision boundary,
it is likely that Self-Training adds them to the training data.

The idea of self-training was introduced a long time ago in studies from Scudder [84]
in 1965, Fralick [41] in 1967 and Agrawala [4] in 1970. Later, several Self-Training
applications were performed for different classification tasks. In 1995, Yarowsky [102]
applied the algorithm for a natural language processing task. He tried to construct a
model for word sense disambiguation, where it seeks to classify the correct meaning of
words which are ambiguous. Riloff et al. [81] tried to improve information extraction
(IE) systems by building a Self-Training algorithm to identify subjective language,
which often causes IE systems to result in false hits. Rosenberg [82] developed a
Self-Training object detection model, since it is a very time-consuming and difficult
task to collect labeled objects in this field.

2.2.3.1.2 Generative models

Just like Self-Training models, generative models belong to the category of iterative
models. Generative models assume that the unlabeled data follows the same underly-
ing distribution as the labeled data. The model estimates each class by an identifiable
mixture model (i.e. Gaussian mixture) using labeled data. Next, unlabeled obser-
vations are used to estimate the parameters of the distributions. Since generative
models assume that both classes can be estimated by a different mixture model, they
follow the semi-supervised cluster assumption 2.2.2.1. Generative models are mostly
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applied in an iterative manner, where the iterative Expectation-Maximization algo-
rithm (EM) [32] is used to tune the model parameters. Initially, the mixture model
is trained on all labeled observations. The resulting model is used to classify all un-
labeled observations in the expectation step. In the maximization step the model
is re-trained on both originally labeled observations and newly labeled observations
(i.e. it maximizes the likelihood of the parameters). This procedure is repeated until
convergence. Although generative models can obtain accurate predictions using a
low number of labeled observations, Cozman et al. [29] have shown that classification
performance can degrade if the distribution of the unlabeled data does not follow
the model assumption. This makes it hard to apply generative models in realistic
situations. In real-life scenarios it is usually hard to find the underlying distribution
of a data set. In literature, the used mixture model differs for most applications. A
mixture of multinomial Naive Bayes distributions is usually used in text classification
applications [73, 26]. For image classification Gaussian mixture models are often used
to combine labeled- and unlabeled images [86, 101].

2.2.3.2 Margin-based models

Margin-based models follow the semi-supervised smoothness assumption 2.2.2, as
they aim to move the decision boundary to low-density regions by maximizing the
margin of both labeled- and unlabeled observations. Most of these models are based
on the supervised classification algorithm Support Vector Machine (SVM) [27]. The
first extension of SVMs to semi-supervised problems is the Transductive Support Vec-
tor Machine (TSVM) [52]. This algorithm implements a transductive setting [94],
where test data is included in the learning process to find a maximum margin. This
idea can also be used in an inductive setting, where the SVM combines labeled- and
unlabeled data to define a function to classify unseen observations. This inductive
version of the algorithm is called S3VM [10] and uses a mixed integer programming
approach to solve the corresponding optimization problem. A graphical illustration
of the S3VM algorithm is shown in Figure 2.3. Semi-supervised margin based mod-
els strongly depend on the assumption that unlabeled observations from different
classes are separated by a large margin. If data does not meet this assumption it is
not possible to shift the decision boundary to a low-density region. The computa-
tional expensive behavior is another difficulty of SVM-based approaches. Therefore,
several algorithms were studied which approximate the exact SVM solution [21, 20,
108]. Finally, Persello and Bruzzone proposed a semi-supervised algorithm Progres-
sive Semi-Supervised SVM (PS3VM) by integrating concepts from active learning
[76]. Besides a discussion about the results of PS3VM they have compared several
margin-based models from both semi-supervised learning and active learning, which
is obviously relevant for this research.

2.2.3.3 Graph-based models

Semi-supervised graph-based models construct a graph containing all labeled- and
unlabeled observations as nodes. The nodes are connected by edges, which repre-
sent similarity between the observations. Figure 2.4(a) from [92] shows a similarity
graph used by such algorithms. Graph-based algorithms try to distribute informa-
tion through the graph in order to label all observations [19]. Most graph-based
semi-supervised algorithms are transductive, since adding unseen observations to an
existing graph might change the graph structure and can change the predicted labels
of observations from set U again.
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Figure 2.3: An illustration of the S3VM algorithm. The dotted lines illus-
trate the margin using labeled data only, which separates the positive (+)
observations from the negative (-) observations. The solid lines illustrate
the margin when the green unlabeled observations are taken into account.

All existing graph-based algorithms use a given similarity graph as input and formu-
late an optimization problem to search for an optimal propagation of labels through
the graph. This type of algorithms highly depend on the similarity graph, but graph
construction is considered as a hard task and is not included in the algorithms [108].
Most existing graph-based algorithms estimate a function which minimizes the loss
on labeled examples and follow the smoothness assumption as explained in subsec-
tion 2.2.2. The different algorithms mostly differ from each other by the loss-function
that is minimized [108]. Label propagation [110] is one of the most well-known graph-
based algorithms within semi-supervised learning. It uses few labeled observations
as sources to propagate labels through the graph and predict unlabeled observations.
Another widely used graph-based algorithm is Markov Random Walks [92]. It starts
random walks from each observation through the connected graph and stops when it
ends up in a labeled observation. Eventually it calculates for each unlabeled node the
probability that it belongs to a certain class, based on many of such random walks.
Figure 2.4 shows a) the similarity graph used in the experiment by [92] and 2) the
resulting classification by the algorithm.

(a) (b)

Figure 2.4: (a) illustrates a similarity graph used for the experiments
in [92]. Two labeled observations are marked as a cross and a triangle
and the remaining unlabeled observations are marked as small dots.
(b) shows the resulting perfect classification using Markov Random

Walks.
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2.2.3.4 Semi-supervised learning with committees

As discussed in Chapter 1, this thesis will focus on committee-based algorithms within
semi-supervised learning and active learning. The main objective of machine learn-
ing algorithms is to be able to achieve strong generalization (Section 2.1). When
an algorithm learns from training data it is essential that the algorithm will not
build a complex model which can obtain satisfying predictive performance on the
training data only (i.e. overfitting the training data). Since both ensemble learning
and semi-supervised learning have proven to obtain strong generalization, the ques-
tion raised whether these successful approaches can be combined. In literature, the
combination of ensemble learning and semi-supervised learning is mostly referred to
as semi-supervised learning with committees [1] and semi-supervised learning by dis-
agreement [105, 104]. For the remainder of this report, we will use the expression
semi-supervised learning with committees.

In a study conducted by [105] and [104], it was shown why the use of unlabeled data
with multiple classifiers can improve classifier performance. First they reported that
classifier combination can improve results when single classifiers cannot improve using
unlabeled observations. They conducted several theoretical analyses that compare
semi-supervised algorithms using single classifiers and semi-supervided algorithms
using ensembles. Furthermore, they stated that unlabeled data can improve ensemble
classifiers by introducing more diversity in the learning process. They measured
ensemble diversity using multiple- data sets and diversity metrics. Their results show
that incorporating unlabeled data into an ensemble model increases diversity in most
of the cases, which is important for the performance of the ensemble models. Despite
these findings, only a few attempts were made to apply this field of semi-supervised
learning [106, 59, 63, 30, 22, 11].

2.2.3.4.1 Co-Training with natural views

The idea of using multiple classifiers in semi-supervised learning was first studied by
Blum and Mitchell with the Co-Training [12] algorithm. This algorithm assumes that
data can be split into two independent and redundant feature sets (also called views).
Each view x1 and x2 is assumed to be independent given the class label and should
contain enough information to construct a strong classifier. The latter assumption
should be satisfied since both classifiers learn from the different views and try to
exchange useful information to improve each other. Both classifiers aim to select the
most-confident predictions from unlabeled set U and add them to each others labeled
set. Figure 2.5 provided in [108], illustrates the usefulness of Co-Training when the
model assumptions are satisfied. The circles indicate high-confident observations
based on the x1 view, since they are located far from the decision boundary. However,
if these observations are plotted in the x2 view they are distributed more randomly. In
this way, the classifier learning from view x1 can add useful information to the other
classifier by providing these high-confident observations including predicted labels.
The algorithm can be found in Algorithm 3.

One field where Co-Training is often used is web-page classification, since web-page
data can be split into two independent views. One view contains features about the
text that is shown on the web-page, while the other view consists of anchor text in
hyperlinks on other web-pages that link to the specific page. It is easy to collect text
from web-pages by web scraping (unlabeled data), but it is a time-consuming task to
label web-pages by assigning the correct subject to the page based on its content. The
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Figure 2.5: The circles indicate high-confident observations based on fea-
tures from view x1. The same observations are plotted using features from

view x2 and show a different distribution.

availability of two different feature views and a limited number of labeled web-pages,
makes it a perfect application for Co-Training. Despite this example with two existing
feature sets, most data sets contain only one feature set in most realistic situations.
Nigam and Ghani [72] have studied the behavior of Co-Training on different data
sets. Some of these data sets contain a natural feature split, while others are general
data sets with just one natural feature set. Their results have shown that the results
highly depend on its assumptions about the available feature views. This causes the
Co-Training algorithm to have limited applicability in real-life problems.

Algorithm 3 Co-Training
Input: Labeled data L, unlabeled data U , feature sets (views) x1, x2 ,base learning
algorithm, maximum number of iterations T , selection size k
Training phase:
1: Train initial classification models h1

0 and h2
0 on views x1 and x2 respectively

2: L1 = L2 = L
3: for i = 1 to T do
4: if U is empty then
5: T = t− 1 and stop
6: end if
7: for v = 1 to 2 do
8: Predict observations in U using hvt−1

9: Select k most-confident observations Sv from hv
t−1 and add to L3−v

10: Remove Sv from U
11: end for
12: Re-train h1

t on L2 and h2
t on L1

13: end for

Classification phase:

14: return prediction h1(x)T + h2(x)T

2
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2.2.3.4.2 Co-Training with random views

Despite this shortcoming of the algorithm, Blum and Mitchell have laid an important
foundation for the use of multiple classifiers within semi-supervised learning. In addi-
tion to their research on the Co-Training assumptions, Nigam and Ghani [72] studied
the use of random feature splits. Instead of using data with natural feature splits,
they used standard data sets and generated two random feature splits to meet the
Co-Training requirement. Using these standard data sets, Co-Training with random
feature splits competed with the generative model EM. However, the results of Co-
Training using the natural feature splits did clearly outperform the random feature
splits. Since the splits are drawn randomly, it is likely that two random features are
correlated too much. This might make it hard for both classifiers to select useful
observations to improve each other.

2.2.3.4.3 Co-Training with artificial views

In order to obtain feature splits which meet the Co-Training setting better, Feger
and Koprinska [39] introduced the method maxInd to construct two artificial views.
MaxInd is a graph-based method which aims to minimize the dependence between two
feature sets. First, it constructs an undirected graph with features as nodes and the
conditional mutual information between features as the graph edges. The conditional
mutual information between two features, explained in [61], can be calculated using
multiple features and the class variable. Next, the graph is split into two equally sized
sub-graphs while minimizing the sum of the cut edges (i.e. minimizing the dependence
between both sub-graphs). Despite this minimization, experiments in [39] have shown
that maxInd does not outperform random feature splits on many datasets. One reason
might be that the available class variable is sparse. This causes the calculation of
the conditional mutual information to be inaccurate. Another possible reason for the
surprising results can be that the performance of Co-Training not only depends on
dependence between two views, but also relies on dependence within views [39]. If
the dependency between views is low but the dependency of features within views is
high, the classifiers might suffer from training on a highly correlated feature set. This
might cause classifiers to be inaccurate, which makes them unable to train each other
accurately.

2.2.3.4.4 Co-Training with single views

After several different approaches to split single view data into independent feature
sets to make data suitable for Co-Training, Goldman and Zhou [47] studied the idea
of using single view data in Co-Training style algorithms.

Statistical Co-Learning
First, they introduced the algorithm Statistical Co-Learning [47], which uses a single
feature set only. This Co-Training based algorithm trains two different classification
models on the initially labeled observations. Both classifiers select the most-confident
unlabeled observations and add them to the training set of the other classifier includ-
ing predicted label. In each iteration 10-fold cross validation is performed to construct
confidence intervals for the predictions of unlabeled observations. Using these confi-
dence intervals, statistical tests are performed to 1) dnde which observations should
be labeled and 2) which final prediction should be made by combining both classifiers.
One major drawback is that statistical tests are used to decide which observations
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to label, while usually the available labeled observations are insufficient in a semi-
supervised setting to perform such tests.

Democratic Co-Learning
To overcome these drawbacks, Goldman and Zhou [103] introduced Democratic Co-
Learning. This method has many similarities with their previous study, but instead of
two classifiers it uses an ensemble of at least three different algorithms. A combination
of majority voting and confidence measurements are used to select observations that
should be labeled and added to training data. This approach does not require any
statistical tests to select observations anymore. Confidence intervals are still being
constructed using 10-fold cross validation to find confident predictions. This causes
the algorithm to be still computationally expensive.

Tri-Training
In order to avoid the use of the expensive 10-fold cross validation in every iteration,
Zhou and Li [106] studied an approach that still combined concepts from Co-Training
but focused more on ensemble learning. They introduced the algorithm Tri-Training
that constructs an ensemble of three classifiers. All component classifiers include the
same algorithm (i.e. base learner), but the ensemble is made diverse by applying
bagging (described in subsection 2.1.1) in the first iteration. Let H = {h1, h2, h3}
be the ensemble initially trained on three bootstrapped samples of originally labeled
observations L. In each iteration a subset of unlabeled observations U are selected by
component classifiers hj and hk (j, k 6= i) under certain conditions and added to the
training set of hi if both hj and hk agree about their predictions. In the next iteration,
the classifiers are re-trained on the training sets including selected observations with
predicted labels.

Although Tri-Training neither depends on data with two independent feature sets nor
restricts the base learner to be a tree-based classifier, it still contains some important
drawbacks [59]. First, the algorithm restricts the ensemble size to three classifiers. If
the algorithm would allow to add more classifiers to the ensemble, it might improve
generalization. Furthermore, bagging on training sets is only performed in the first
iteration. This allows all component classifiers to become more similar every iteration,
which stops them from searching different areas of the solution space.

In [106] Tri-Training was compared to Co-Training (using random feature splits) and
to two Self-Training algorithms. In the experiments, multiple classification data sets
were used with 40%, 60% and 80% of unlabeled data. The performance metric was
the final improvement of each algorithm compared to the accuracy of the supervised
base learner. In the most extreme situation with 80% unlabeled data, Tri-Training
outperformed the other algorithms on 11 out of 12 data sets using J4.8 decision
trees as base learner. Using BP neural networks, Tri-Training obtained the highest
improvement for only 3 data sets and using Naive Bayes for 7 out of 12 data sets.

Co-Forest
Since they were aware of the shortcomings of Tri-Training, Zhou and Li [59] extended
their ideas by introducing the Co-Forest algorithm. In order to get more diversity
in the ensemble, Co-Forest is initialized with the well-known ensemble algorithm
Random Forest (subsection 2.1.1). First, all N random trees are trained on boot-
strapped samples from originally labeled observations L. Then for each classifier hi,
where i = {1, . . . , N}, the concomitant ensemble Hi is constructed by combining all
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component classifiers except hi itself. In every iteration, Hi predicts all unlabeled
observations from U and selects some of these observations to add to training data of
hi for the next iteration. Hi uses majority voting to estimate its confidence for each
observation x from U . The confidence should be higher than a predefined threshold
θ. However, even when the confidence meets this requirement, some additional condi-
tions should be met to avoid that too many observations from U will be selected. This
would increase the risk of adding misclassifications to training data and affect per-
formance negatively. These conditions are based on research conducted by Angluin
and Laird [6]. They studied the relationship between the size of training data m, the
noise rate in training data η and the worst-case error rate ε. Zhou and Li [59] used
this research to formulate some additional conditions in the Co-Forest algorithm.

Let êi,t be the error rate of concomitant ensemble Hi in iteration t. L′i,t is defined
as a set of unlabeled observations from U

′
i,t where the confidence of Hi exceeds a

predefined threshold θ and Wi,t is the sum of the confidences of the observations
in L

′
i,t. Following [59], the following condition should be met in every iteration to

continue the algorithm:
êi,t
êi,t−1

<
Wi,t−1
Wi,t

< 1

Even if êi,t < êi,t−1 and Wi,t > Wi,t−1 are satisfied, it might still occur that the
equation êi,tWi,t < êi,t−1Wi,t−1 is violated if Wi,t is much larger than Wi,t−1. There-
fore, L′i,t is subsampled to force Wi,t to be less than êi,t−1Wi,t−1

êi,t
. This avoids selecting

too many observations to predict for the next iteration. For more details on these
conditions, please refer to [59]. All steps of Co-Forest can be found in more detail
in Algorithm 4. The algorithm terminates when none of the component classifiers
has improved during an iteration. This is determined by the estimated error of each
concomitant ensemble in every iteration. During the initialization of the algorithm,
the error is calculated using the out-of-bag estimation [17]. In the next iterations the
error is measured using training data. This causes the error to be an underestima-
tion, which can force the algorithm to stop too early since it falsely expects that no
improvement can be made in further iterations.

Despite this comment, the experiments in [59] show promising results. For nearly all
data sets with various percentages of labeled observations, Co-Forest improves the
initial accuracy after incorporating unlabeled observations in the training process.
A pairwise two-tailed t-test was performed to show that these improvements are
significant under the significance level of 0.05. Furthermore, Co-Forest achieves higher
average accuracy than multiple supervised and semi-supervised algorithms for almost
all data sets. The average accuracy is measured using 10-fold cross validation. The
experiment did not include any statistical test to confirm the expectation that Co-
Forest outperforms the other algorithms significantly though.

2.2.3.4.5 Other committee-based algorithms

The previous committee-based algorithms were all extensions of the Co-Training al-
gorithm. These algorithms mostly differ in the approach to construct a set of initial
classifiers and methods to select confident predictions from a set of unlabeled observa-
tions, but all are methods that iteratively select unlabeled observations the ensemble
is most confident about. Not all algorithms that combine ensemble learning and
semi-supervised learning follow the structure of Co-Training though. This subsection
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Algorithm 4 Co-Forest
Input: Labeled set L, unlabeled set U , confidence threshold θ and ensemble size N
Output: Ensemble classifier H

Training phase:
1: Construct a random forest consisting of N random trees
2: for i = 1 to N do
3: êi,0 ← 0.5
4: Wi,0 ← 0
5: end for
6: t← 0
7: while at least one of the random trees changes do
8: t← t+ 1
9: for i ∈ {1, . . . , N} do

10: êi,t ← EstimateError(Hi, L)
11: L

′
i,t ← φ

12: if êi,t < êi,t−1 then
13: U

′
i,t ← SubSampled(U, êi,t−1Wi,t−1

êi,t
)

14: for each xu ∈ U
′
i,t do

15: if Confidence(Hi, xu) > θ then
16: L

′
i,t ← L

′
i,t ∪ {(xu, Hi(xu))}

17: Wi,t ←Wi,t + Confidence(Hi, xu)
18: end if
19: end for
20: end if
21: end for
22: for i ∈ {1, . . . , N} do
23: if êi,tWi,t < êi,t−1Wi,t−1 then
24: hi ← LearnRandomTree(L ∪ L′i,t)
25: end if
26: end for
27: end while

Classification phase (majority voting):
28: H∗(x)← arg maxy∈label

∑
i:hi(x)=y 1

explains some committee-based semi-supervised learning algorithms that deviate from
this structure.

Semi-Supervised MarginBoost (SSMBoost)
MarginBoost [64] is an extension of supervised ensemble algorithm AdaBoost (see
Algorithm 2). It aims to maximize a cost function based on the margin of all ob-
servations. The margin of an observation can be defined as the difference between
the total weight assigned to the correct label and the largest weight assigned to an
incorrect label [64]. The larger this margin, the more confident the ensemble is about
a classification. Since the definition of the margin depends on the actual label, it
cannot be calculated but should be estimated for unlabeled observations. Therefore,
MarginBoost was extended to a semi-supervised algorithm SSMBoost [30]. In this
algorithm the cost function of MarginBoost was updated to estimate the margin for
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unlabeled data as well. SSMBoost requires the base learner to be a generative model
in order to allow the EM algorithm to estimate the margin for unlabeled data. This
limits the applicability of the algorithm since it is not possible to use other supervised
algorithms as base learner. d’Alché et al. [30] performed experiments that show that
the algorithm is not able to improve AdaBoost on all datasets for various amounts of
labeled observations. When at least 10% of the data is labeled, AdaBoost en SSM-
Boost obtain similar results on three data sets. However, SSMBoost outperformed
AdaBoost when only 5% of the observations were labeled (which the authors indicate
as the most realistic situation). On the Ringnorm data set SSMBoost achieved an
average error rate of 6.9%, while AdaBoost obtained no less than an average error
rate of 28.7% with 5% labels.

ASSEMBLE
Bennet et al. [11] introduced the adaptive semi-supervised ensemble algorithm AS-
SEMBLE to solve some limitations of SSMBoost. ASSEMBLE does not require a
semi-supervised generative model as base learner, but suits any cost-sensitive classi-
fication model (i.e. a classification model that allows to weight observations). That
makes ASSEMBLE much more applicable in general. It also maximizes the margin,
but it does this by assigning pseudo-labels to unlabeled observations in every itera-
tion. Pseudo-labels are predicted labels that are assigned to unlabeled observations
by a chosen similarity metric and are considered as being correct. ASSEMBLE then
uses both labeled- and pseudo-labeled observations to boost the ensemble, by focusing
more on misclassified observations in the next iteration.

This basic idea of ASSEMBLE can be adjusted to many variations. One of the
variations Bennet et al. [11] proposed, is ASSEMBLE.AdaBoost. It adjusts AdaBoost
to allow unlabeled observations in the learning process by fitting it in the ASSEMBLE
structure. During initialization, pseudo-labels are assigned by performing Nearest
Neighbor [28] classification. Since no boosting has been performed yet, the initial
weights parameter β of labeled observations is set much higher than the weights of
unlabeled observations. It is likely that this will change during the boosting process,
as misclassifications (based on labels and pseudo-labels) are assigned higher weights
in the next iteration. As can be seen in Algorithm 5, the weights Dt+1 for the next
iteration t + 1 are calculated as in AdaBoost (Algorithm 2). Misclassifications get
higher weights in the next iteration, to focus more on observations that are hard
to predict. In step 15 of ASSEMBLE the unlabeled- and labeled observations are
sampled to the size l of the originally labeled observations. This allows the algorithm
to keep training times similar as AdaBoost. But due to the limited number of labeled
observations, it can hurt the performance of the algorithm.

ASSEMBLE.AdaBoost uses all good properties of AdaBoost and just provides a
framework to use boosting in a semi-supervised situation. In 2001 ASSEMBLE
won the NIPS Unlabeled Data Competition using a decision tree as base learner.
Experimental results from [11] also show that it performs as well or better than Ad-
aBoost on several datasets using various number of labeled observations. It should
be noted that this experiment does not include any statistical tests to verify whether
improvements were significant or not. For the remainder of this thesis, we will refer
to ASSEMBLE.AdaBoost as ASSEMBLE.

DECORATE
So far we have discussed ensemble methods bagging and boosting to construct diverse
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Algorithm 5 ASSEMBLE.AdaBoost
Input: Labeled set L, unlabeled set U , ensemble size N , misclassification cost
parameter β
Output: Ensemble classifier H

1: Let l := |L| and u := |U |

2: Let D1(i) :=
{

β/l if i ∈ L
(1− β)/u if i ∈ U

3: Let yi := c where c is the class of the nearest neighbor point in L for i ∈ U .
4: Let h1 := L(L+ U, Y,D1)
5: for t := 1 to N do
6: Let ŷi := ht(xi), i = 1, . . . , l + u
7: ε =

∑
iDt[yi 6= ŷi], i = 1, . . . , l + u

8: if ε > 0.5 then
9: Stop
10: end if
11: wt = 0.5 ∗ log(1−εt

εt
)

12: Let Ht := Ht−1 + wtht
13: Let yi = Ht(xi) if i ∈ U
14: Update weights of training observations as in AdaBoost:

Dt+1(i) = Dt(i)
Zt
× Ut where Ut =

{
εt

1−εt if ht(xi) = yi
1 otherwise ∀i ∈ {1, . . . , l}

and Zt =
l∑

i=1
Dt+1(i) as normalization constant

15: S = Sample(L+ U, l,Dt+1)
16: ht+1 = L(S, Y,Dt+1)
17: end for
18: return HT+1

ensembles that generalize well. Melville and Mooney [67] proposed a committee-based
semi-supervised algorithm that generates artificial observations to make ensembles
more diverse. DECORATE initially trains a classification model on labeled obser-
vations and then generates random artificial observations in each iteration. In order
to ensure that the artificial data increases the diversity of the ensemble, the artificial
observations are labeled so as to differ from the current ensemble. The artificial data
is first labeled by the current ensemble. Then the inverse of this resulting probabil-
ity is used to assign a label to each artificial observation. Next, a classifier learns
from both originally labeled- and artificially labeled data. This process ensures the
ensemble to be diverse, but artificial data can hurt performance as well. Therefore,
a classifier is only added to the ensemble if the accuracy of the ensemble on training
data does not decrease. Melville and Mooney [67] have shown that DECORATE
outperforms Bagging, Random Forest and AdaBoost if the number of labels is small.
On larger data sets, it still outperforms bagging and Random Forest and its results
are competitive to AdaBoost.

2.2.4 Summary semi-supervised learning
In order to develop accurate supervised machine learning models, a sufficient amount
of labeled observations is required. However, in many real-life scenarios it is time-
consuming, expensive or difficult to gather such labels. Semi-supervised learning
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algorithms aim to combine information from labeled- and unlabeled observations.
This makes it possible to apply classification models in much more applications. Many
semi-supervised algorithms have been developed, but most of them highly depend on
assumptions (subsection 2.2.2).

Since supervised ensemble learning (section 2.1) has proven to generalize well [34],
its ideas have been used in several semi-supervised algorithms over the years. It
all started with Co-Training [12], which performance relies on the presence of two
independent and redundant feature sets in the data. Next, some algorithms were
proposed that try to adjust data to the Co-Training format by generating random-
or artificial feature splits. In follow-up studies, limitations of these approaches were
solved by constructing diverse ensembles which can handle unlabeled observations.
Committee-based algorithms mostly deviate from each other in the way they intro-
duce and maintain diversity in the learning process. Bagging, boosting and artificial
observations are all studied and have shown promising results. The main question
we will try to address during this research is whether these algorithms can compete
with similar active learning algorithms.

2.3 Active learning
This final section of this background chapter will discuss the field of active learning.
This technique is developed to cope with problems where it is expensive or difficult
to obtain labeled data. Although active learning can be used in the same situations
as semi-supervised learning, both techniques differ substantially. As semi-supervised
learning seeks to use the distribution of large quantities of unlabeled data, active
learning aims to query a minimum number of labels to a (usually human) oracle [3]
to incorporate in the learning process of a classification model.

The oracle is supposed to provide the correct label for the queried observations based
on his/her domain knowledge. Active learning algorithms aim to query observations
that contain useful information for the classification model to add to the training
data including its correct label. Using the most informative training data only, mod-
els might be able to distinguish different classes earlier. The most challenging part
of active learning is to determine which unlabeled observations contain most useful
information to improve the classifier. Many different query strategies have been pro-
posed to select most informative observations from the unlabeled data. The query
strategy is the main difference between most active learning algorithms. Much lit-
erature available about active learning is discussed in the literature survey by Burr
Settles [85], which is highly recommended to read for more details on this topic.

Active learning algorithms have been applied in many different areas. Text classifi-
cation is an application where active learning is often used [65, 93]. It can be very
time consuming to classify large amounts of text into different groups based on its
content if it needs to be read and interpreted manually. For example, if entire textual
documents need to be reviewed manually to determine whether they meet certain
requirements or not, it can be an expensive task to have them read by domain ex-
perts. Another common application is speech recognition [48]. For instance, when
the objective is to translate audio files from rare languages, it can take quite some
time to translate such files manually. Active learning can help in such situations by
only requiring manual judgment for a few texts, documents or audio files.
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In this section, first three scenarios will be introduced in which active learning can
be used. Next, several query strategies will be explained which all search for the
most informative observations in a different way. Finally, multiple practical consid-
erations will be discussed that should be taken into account with any active learning
application.

2.3.1 Active learning scenarios
Following literature, active learning can be divided into the following three scenarios
[85, 3]:

• Membership query synthesis

• Stream-based selective sampling

• Pool-based sampling

In all scenarios the algorithm queries labels for unlabeled observations to an oracle.
However, in each scenario labels are gathered and processed differently. Within each
scenario, different query strategies can be used to search for the most informative
observations. These strategies will be discussed in section 2.3.1.3.

2.3.1.1 Membership Query Synthesis

Membership query synthesis is a scenario where the model actively synthesizes obser-
vations from the entire input space, and does not necessarily sample from the actual
data [5]. The problem of this technique is that such synthetic observations can be
hard to interpret by human oracles. For instance, for an image recognition task the
oracle is asked to provide a label to a selected image based on the content of the
image. However, when a group of pixels is combined to generate a synthetic image,
it is very likely that the new image is not meaningful for human oracles [85]. Stream-
based selective sampling and pool-based sampling were introduced to overcome this
problem.

2.3.1.2 Stream-based selective sampling

This technique randomly samples an observation from the available training data
[24]. Then the classification model decides whether this sample is informative or not
using a query strategy. If the sample meets the informativeness requirements of the
classifier, it will be queried to an oracle and added to the training data including the
provided label. The classifier can make this choice using different query strategies
(see Section 2.3.1.3). Since observations are sampled one by one, it can be seen as a
stream-based process.

The advantage of stream-based selective sampling compared to membership query
synthesis is that the sample comes from the actual training data. For applications with
limited memory or processing power, it might be beneficial to process observations
one by one [85]. However, since the classifier can only make a query decision based
on one sample, it cannot compare the sample to alternative samples that might be
even more informative [65].
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2.3.1.3 Pool-based sampling

Instead of sampling one observation at a time and deciding whether to query it or
not, pool-based sampling ranks all unlabeled observations from a pool of unlabeled
observations U based on the prediction uncertainty of the current model trained on
labeled pool L [58]. The observation with most uncertain prediction is then queried
to an oracle and added to labeled training set L including the provided label. The
general pseudo-code of pool-based sampling can be found in Algorithm 6. Within
this active learning framework there are many query strategies available.

Algorithm 6 Pool-based sampling
Input: Labeled data L, unlabeled data U , base learning algorithm h(x), query strat-
egy Q and number of observations to be queried v
1: Train initial classification model h(x) on labeled observations

of the form (xi, yi) from L
2: while stop-condition is not met do
3: Predict class labels for all observations in U using current classifier h(x)
4: Rank observations from U based on Q and store in R
5: Query the label for the v most uncertain observations from R to the oracle
6: Add v observations including new label to L and remove them from U
7: Train h(x) on L
8: end while
9: Return model h(x)

The advantage of pool-based sampling compared to stream-based selective sampling
is that it compares all unlabeled observations and it does not depend on random
sampling from the underlying distribution. Since it needs to compare all observations
from U every iteration, it is more computationally expensive though. Furthermore,
it is more likely to select outliers. Since outliers behave differently than the general
observations, the algorithm might be uncertain about their label and select them
[58]. Outliers do not contain useful information about the separation of class labels,
so they might influence the performance of the model negatively.

Despite these two limitations, pool-based sampling is the most common type of active
learning. The ranking of all observations in U may use more computation time, but
it is more likely to select informative observations that can improve classification
models [85]. Therefore, the remainder of this chapter will use the pool-based setting
to discuss active learning techniques.
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Figure 2.6: A schematic overview of three different active learning
scenarios.

2.3.2 Query strategies
The available pool-based active learning algorithms mostly differ from each other in
the query strategy that is used. These algorithms can again be divided into three
categories based on the query strategy that they use [3]:

• Heterogeneity-based models
Such models explore uncertain regions of unlabeled data or try to find observa-
tions that differ a lot from observations that have been used for training so far.
These models do not focus on the possible influence of additional observations
on the classifier performance.

• Performance-based models
In contrast to heterogeneity-based models, performance-based models mainly
focus on the possible effect of additional observations on the performance of the
current classifier. They aim to measure the effect of querying a new observation
to an oracle.

• Representativeness-based models
Representativeness-based models seek to query observations that follow the un-
derlying population of training instances as good as possible.

In section 2.2 we mostly focused on committee-based semi-supervised algorithms.
These type of algorithms aim to select the most confident unlabeled observations and
add them to the training set including their predicted label. This approach can be seen
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as the opposite of active heterogeneity-based models, as they seek to query the least
confident unlabeled observations including their provided label. Therefore, we will ex-
plain heterogeneity-based models like uncertainty sampling, query-by-committee and
expected model change in more detail in this section. The performance-based- and
representativeness-based models will be discussed more briefly.

2.3.2.1 Heterogeneity-based models

These models aim to query uncertain unlabeled observations in order to improve
classifier performance. The models measure the uncertainty of predictions in different
ways, which will be described in this section.

2.3.2.1.1 Uncertainty sampling

Probably the simplest and most common query strategy within active learning is
uncertainty sampling [56]. It assumes that the most informative observation is the
observation that the current classifier is most uncertain about. If the classifier would
know its label, it would be easier to distinguish different classes. First, it trains an
initial classification model using a small set of labeled observations L. This classifier
predicts the label for all unlabeled observations in U . The classifier queries its most
uncertain observation x∗ to an oracle. This observation including its correct label
y∗ is added to the initial training set and finally the classifier is re-trained on the
updated training set L = L ∪ (x∗, y∗). This process continues iteratively until a
chosen stop-condition is reached.

In order to measure the uncertainty of the predictions, it is most straightforward to
use probabilistic learning models as base learner. For binary classification, this would
indicate that the observation with posterior probability of being positive closest to
0.5 will be queried [56, 57]. For problems with K classes (K > 2), the most uncertain
point x∗ can be found by measuring uncertainty as follows:

x∗ = arg max
x

1− Pθ(ŷ|x) (2.1)

where ŷ = arg maxy Pθ(y|x) (i.e. the class label with the maximum posterior proba-
bility for observation x under model θ).

A drawback of this uncertainty measure for problems with more than two classes is
that it only takes the certainty of the most probable label into account. If the certainty
of more labels is considered as well, it can be measured whether the classifier is easily
able to chose between the most probable labels for an observation. Margin sampling
[85] considers the two most probable class labels ŷ1 and ŷ2 by measuring the difference
between their posterior probabilities. A small margin indicates that the classifier is
uncertain about the choice between class labels ŷ1 and ŷ2:

x∗ = arg min
x
Pθ(ŷ1|x)− Pθ(ŷ2|x) (2.2)

Probably the most used uncertainty measure is the entropy [87]. The entropy of
observation x can be measured by using the Shannon entropy:

Ent = −
K∑
i=1

Pθ(yi|x)log(Pθ(yi|x)) (2.3)
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The higher this entropy value, the higher the uncertainty about the prediction for
observation x. Therefore, the entropy in Equation 2.3 needs to be maximized to
obtain most uncertain observation x∗.

In order to calculate the prediction uncertainty, the algorithm should provide class
probabilities as output. Although the possibility exists to adjust certain algorithms
to provide probabilistic outputs [93, 45], this requirement limits the applicability of
uncertainty sampling. Another drawback is illustrated in Figure 2.7 from [85]. Since
uncertainty sampling is only focused on the uncertainty of classifier predictions, it
might occur that outliers are queried to the oracle. If such outliers are added to the
training data, it will not help the classifier to separate classes more accurately.

Figure 2.7: An example when selective sampling does not work.
Since outlier A lies on the decision boundary, selective sampling will
query it to the oracle. In this situation, unlabeled observation B con-
tains more information to separate the triangle-class from the square-

class though.

2.3.2.1.2 Query-by-committee

Another common query strategy within active learning is query-by-committee (QBC)
[43]. This algorithm trains a committee of classifiersH = {h1, . . . , hN} that is initially
trained on labeled observations from L. All component classifiers from H vote for
the labeling of unlabeled observations from U . The observation that the component
classifiers disagree most about is considered as most uncertain. If all component
classifiers would predict the same label for each observation, it would not make sense
to measure disagreement between them. Therefore, the committee should consist of
diverse component classifiers [7]. The first two proposed approaches for generating
a committee for QBC [7] are the version space approach and the random sampling
approach.

Following Mitchell [69], if two models of the same algorithm but with different param-
eters agree on the predictions for all labeled observations, but disagree on a unlabeled
observation, this unlabeled observation lies in the uncertainty region. Such observa-
tions are unknown to the overall model class (i.e. the version space) and will be
queried by the classifier. Finding the version space is a very computationally expen-
sive task, which makes it hard to use in practice. Random sampling is the standard
approach in QBC [7]. It generates a committee by sampling the model parameters
from a probability distribution which fits the training data. Fitting a probability
distribution to the labeled training data is not a straightforward procedure, which
limits the applicability of this approach as well.

To make QBC more applicable, Abe and Mamitsuka [2] used the well-known ensemble
methods bagging (section 2.1.1) and boosting (section 2.1.2) to generate a diverse
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committee for QBC. They introduced the algorithms query-by-bagging and query-by-
boosting [2], which combine bagging and boosting with uncertainty measurements
from QBC respectively. Melville and Mooney [68] proposed another technique to
create a diverse committees within the QBC framework. Their algorithm ACTIVE
DECORATE seeks to obtain diversity into the committee by incorporating synthetic
observations into training data. Despite the good performance of this algorithm in
experiments conducted by Melville and Mooney [68], synthesizing observations is
less straightforward than the use of well-known techniques bagging and boosting.
Therefore, especially QBag and QBoost are interesting for the purpose of this study
due to their applicability and their similar committee generation techniques as some
semi-supervised algorithms. Before discussing these algorithm in more detail, the
most common uncertainty measures within the QBC framework will be explained.

Vote entropy is one approach to measure disagreement within the committee predic-
tions and is related to the entropy measurement used within uncertainty sampling.
Suppose V (yi) are the number of votes for class yi (i ∈ {1, . . . ,K}) and N are the
total number of component classifiers within the committee. Vote entropy substitutes
the number of votes for a class label yi with respect to the committee size N into the
Shannon entropy from Equation 2.3. The higher the vote entropy, the more disagree-
ment exists within the committee. Maximizing it, would result in the observation x∗
with most disagreement:

x∗ = arg max
x
−
∑
i

V (yi)
N

log
V (yi)
N

(2.4)

One limitation of vote entropy is that it does not take the confidence of the predictions
into account, as it only considers a vote. Jensen-Shannon (JS) divergence [65] is
an approach to overcome this limitation as it also considers the confidence of the
predictions. Let wi be the weight of the ith classifier and Pi be the class probability
distribution for observation x by the ith classifier. Given the vote entropy Ent(P )
from Equation 2.3 and N component classifiers, JS divergence can be formulated as
follows:

JS(P1, . . . , PN ) = Ent(
N∑
i=1

wiPi)−
N∑
i=1

wiEnt(Pi) (2.5)

High values of the JS divergence indicate high uncertainty, so this function needs to
be maximized.

QBag
An important aspect of the QBC framework is to generate a diverse committee of
classifiers. QBag applies bagging (Section 2.1.1), which applies bootstrap sampling on
the originally labeled observations L. Each component learning algorithm is trained
on one of the T bootstrap samples from {L1, . . . , LT } and predicts the class labels
for unlabeled observations from U . In order to estimate the disagreement within
the committee about these predictions, QBag uses the margin disagreement measure
(see Equation 2.2). This is the difference between the number of votes for the most
predicted class and the second-most predicted class. It does not measure the dis-
agreement for all observations in U , but it draws a random sample of candidates of
size R first. The observation with highest disagreement measure is queried to the
oracle. After the oracle has provided the correct label for these observations, they
are added to the current labeled set L and removed from U . Finally, the component
classifiers are re-trained using new set L and this process continues until a predefined
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stop-condition is met. After the last query, majority voting is applied to obtain a
final hypothesis for a new observation. The pseudo-code of QBag can be found in
Algorithm 7.

Algorithm 7 Query-by-bagging
Input: Labeled data L, unlabeled data U , base learning algorithm h(x), number of
queries N , number of bootstrap samples T , number of query candidates R
Initialization:
1: Apply bagging on L and obtain bootstrap samples {L1, . . . , LT }

Training phase:
2: for i = 1, . . . , N do
3: Train h(x) on each bootstrap sample {L1, . . . , LT } and

obtain ensemble H(x) = {h1(x), . . . , hT (x)}
4: Construct a set D containing R random observations from U
5: Pick observation x∗ from D with smallest disagreement margin:

x∗ = arg minx∈D |
∑
ht(x)=0H(x)−

∑
ht(x)=1H(x)|

6: Query the label y∗ for x∗ to an oracle
7: Add (x∗, y∗) to each sample in {L1, . . . , LT } and remove from U
8: end for

Classification phase:
Apply majority voting and obtain prediction H(x)

QBag mainly differs from the standard QBC framework during the generation of a
committee. The variance of predictions in QBC is caused by the difference in model
parameters, while the variance in QBag is caused by training on different bootstrap
samples. Abe and Mamitsuka [2] have not explained why R candidates are sampled
randomly, instead of measuring disagreement for all observations in U . This choice
is probably made to reduce computation time of the algorithm, but it might have
negative influence on the performance due to the random candidate selection.

Abe and Mamitsuka [2] compared QBag to active learning algorithm QBoost and
supervised algorithms C4.5 [80] and boosted C4.5 using AdaBoost [42]. They defined
a target error rate and analyzed when each algorithm reaches this error for multiple
datasets. Their experiment shows that QBag reaches this target error much faster
than C4.5 and AdaBoost on all data sets and slightly faster than QBoost on 5 out
of 8 data sets. Although they conclude that QBag performs significantly better than
C4.5 and AdaBoost [42], they do not make any comments about statistical tests to
verify this statement. Besides that, they only focus on the comparison between active
learning algorithms and supervised algorithms, but they do not discuss the difference
between the results of QBag and QBoost.

QBoost
QBoost can be described as the active learning version of supervised algorithm Ad-
aBoost. It iteratively queries the unlabeled observation x∗ with the minimum dis-
agreement margin between both class labels, adds it to labeled set L and trains the
AdaBoost algorithm on the new set L = L ∪ (x∗, y∗). The difference with the QBag
algorithm is that QBoost does not sample the initial labeled set, but it generates vari-
ance in its predictions by the weighted voting scheme of AdaBoost (see section 2.1.2).
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In fact, QBoost trains a new AdaBoost model in each iteration and its predictions
are used to query an uncertain observation. In this way, the AdaBoost algorithm
is trained on a data set containing more useful observations every iteration. The
final hypothesis of QBoost for an unseen observation is obtained by majority voting
of the resulting AdaBoost classifier. The pseudo-code of QBoost can be found in
Algorithm 8.

QBoost has shown that it is able to achieve similar performance as passive learners
while using way less labeled data [2, 68, 88]. As mentioned in the previous section,
QBoost needs more labels to reach a target error than the QBag algorithm though.
No statistical tests were conducted for significant differences between algorithms.

Algorithm 8 Query-by-boosting
Input: Labeled data L, unlabeled data U , base learning algorithm h(x), number of
queries N , size ensemble model T , number of query candidates R

Training phase:
1: for i = 1, . . . , N do
2: Train an AdaBoost model using (L, h(x), T ) and get committee H(x).
3: Construct a set D containing R random observations from U
4: Pick observation x∗ from D with smallest disagreement margin:

x∗ = arg minx∈D |
∑
ht(x)=0H(x)−

∑
ht(x)=1H(x)|

5: Query the label for x∗ to an oracle
6: Add x∗ to L and remove from U
7: end for

Classification phase:
Apply majority voting and obtain prediction H(x)

2.3.2.1.3 Expected Model Change

This active learning approach differs from uncertainty sampling and QBC as is does
not seek to query the most uncertain observation but it aims to select the observation
that will have most effect on the current model if we would know its label. Aggarwal
[3] states that this model belongs to the heterogeneity-based model category, since
it queries the observations that are most different from the observations that the
classifier has seen so far. However, as it measures the expected change of the model,
it can be argued that it is linked to the performance-based models as well.

The expected effect on the current model can be measured by the change in the
gradient with respect to the current model parameters. Therefore, this approach is
only suitable for gradient-based models. Stochastic Gradient Descent is a well-known
technique to find model parameters θ that minimize a chosen loss function [18]. It
iteratively modifies parameters θ by calculating the negative gradient decent of the
loss function `(θ) with respect to each training observation (xi, yi):

θ := θ − α∂`xi(θ)
∂θ

for i = 1, . . . , N (2.6)

where α is the learning rate of gradient descent.
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Let’s consider now that we add a candidate observation x+ to labeled training set L,
and we are interested in the expected model change for new set L+ = L ∪ (x+, y+).
The expectation of the loss function can then be defined as the sum of the loss over
training observations and the expected loss of the candidate observation:

εL+ =
N∑
i=1

`[f(xi, yi)] + `x+ [f(x+, y+)]. (2.7)

Now the model change H(x+) after including x+ needs to be measured using the
gradient of the loss at x+:

H(x+) = α
∂`x+(θ)
∂θ

. (2.8)

H(x+) needs to be maximized over all observations from unlabeled set U to find the
observation that results in the maximum change of the current model:

x∗ = arg max
x∈U
||H(x)||. (2.9)

However, in the situation of active learning the actual class label of observations from
U is not known to measure the model change. Therefore, the expected change over
all possible labels y+ ∈ {y1, . . . , yK} is used to approximate the model change. The
observation with maximum model change can then be defined as follows:

x∗ = arg max
x∈U

K∑
k=1

P (yk|x)||∂`x+(θ)
∂θ

||, (2.10)

where P (yk|x) is the conditional probability of label yk given observation x using the
current model. For more details, please see [18].

Although it is an advantage that this query strategy measures the expected impact of
each unlabeled observation on the current model, it can be computationally expensive
if the data contains many features or if unlabeled set U is large [85].

2.3.2.1.4 Exponentiated Gradient Exploration for Active Learning

Recently, Bouneffouf [13] proposed a sequential active learning algorithm called expo-
nentiated gradient (EG)-active. He states that this algorithm can improve any active
learning algorithm by adding an optimal random exploration [13]. Earlier work from
Osugi et al. [74] proposed a method to balance between exploitation and exploration
in order to improve uncertainty sampling. Uncertain observations are often located
near the obtained decision boundary using the current model [74]. Heterogeneity-
based models exploit the region close to this decision boundary to provide more
information to the model about this uncertain region. However, if the model has not
seen any labeled observations from one of the classes, it can occur that the model
provides misclassifications for this entire class. This situation is illustrated in Fig-
ure 2.8 from [74]. The purpose is to separate the negative class (blue circles) from the
positive class (red crosses) as accurately as possible. Suppose that an active learning
algorithm has not seen any of the labeled negative observations from the class in the
lower-right corner of the input space. It will probably generate a decision boundary
that separates the negative class in the upper-left corner from all other observations.
Standard active learners will only exploit the region around this decision boundary
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to make it more accurate, but they will not explore further regions (the negative
observations in the lower-right corner).

Therefore, Osugi et al. [74] proposed a modification to uncertainty sampling. Every
iteration, a random choice is made between exploitation (e.g. active query strategy)
and random exploration (e.g. querying observations from unseen regions of the input
space). By adding exploration into the active learning process, unseen regions like the
lower-right negative class in the example might be learned better. The probability
of choosing exploration rather than exploitation is updated based on classification
improvement after adding explored observations in previous rounds. Despite this up-
dating rule, no optimization techniques were used to update the probability of using
exploration. Bouneffouf [13] proposed a method that applies exponentiated gradient
[53], which increases this probability if it leads to an improvement. Another improve-
ment compared to [74] is that (EG)-active can be used to improve any active learning
algorithm instead of uncertainty sampling only. This approach is most suitable when
the target classes are spread over many different regions in input space and the active
learner has not seen every region yet [74].

Figure 2.8: An example training set where it can be beneficial to
combine active- exploitation and exploration. The blue circles are
negative observations and the red crosses are positive observations.

2.3.2.2 Performance-based models

Instead of focusing on uncertain observations, performance-based models seek to mea-
sure the possible effect of adding new observations to the training data of the current
classifier. The advantage of this approach is that it is less likely to query outliers
which do not represent the labeled training set.

2.3.2.2.1 Expected Error Reduction

This model is not focused on measuring the expected model change, but it measures
the expected reduce of the models generalization error. It uses the unlabeled set
U as validation set and queries the observation that will minimize the error if it
would be added to labeled training set L. The problem of this approach is that the
current model adds each unlabeled observation from U to L iteratively to measure the
expected error. This means that for every query, the model needs to be re-trained for
all unlabeled observations in U . And for each of these observations the correct label
is not known, so the expected error needs to be measured for every possible labeling
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of the observations. This makes this model extremely computationally expensive,
which makes it hard to apply in practice [85, 3].

2.3.2.2.2 Expected Variance Reduction

In order to reduce the computational effort of expected error reduction, the model
can be adjusted by just focusing on variance reduction. The generalization error can
be expressed as the sum of the label noise, model bias and variance [46]. The noise
depends on the method to obtain labels, as it might occur that some effects in this
process add noise to the labels of the data. The bias term is the error caused by the
chosen model class. If the model class (e.g. a linear model) does not fit the data
perfectly (e.g. a non-linear), the related error is expressed in the bias term. Finally,
the variance term expresses the variance of the classification model. Changing the
parameters of a classifier can have effect on the variance term, but will not have effect
on the noise and bias. Since we have most influence on changing the parameters,
we can aim to only minimize the variance instead of the complete generalization
error. Since variance can be expressed in closed form for multiple classification models
[25, 62], computational complexity can be reduced compared to the expected error
reduction model. Despite this improvement, it should be noted that these models are
still much more inefficient than simpler techniques as uncertainty sampling and QBC
[85].

2.3.2.3 Representativeness-based models

The main drawback of heterogeneity-based models is their sensitivity to outliers.
Representativeness-based models are developed to overcome this problem. These
models seek to query unlabeled observations when they follow the general distribution
of all observations in U only. Density-based models can be used to estimate the
underlying distribution of U . If the current model is very uncertain about candidate
observation x+, but it deviates too much from the distribution of the other unlabeled
observations, it is less likely to be queried. The representativeness component is
multiplied to the loss function of a heterogeneity-based model H(U) like uncertainty
sampling or QBC:

O(x+, U) = H(x+)×R(x+, U) (2.11)

The term R(x+, U) can be any measure that defines the similarity between candi-
date observation x+ and the other unlabeled observations from U . McCallum and
Nigam [65] added the generative model EM to uncertainty sampling to capture the
distribution of unlabeled observations better. Nguyen et al. [71] performed a cluster
algorithm before applying uncertainty sampling. Under the assumption that ob-
servations from the same cluster are likely to belong to the same class [19], they
avoid querying observations from the same class every iteration. As these models are
based on heterogeneity-based models, they are less computationally expensive than
performance-based models. The applicability of these models highly depends on the
chosen similarity measure to verify the representativeness of a candidate observation.

2.3.3 Practical considerations for active learning applications
In order to meet the active learning objective to train classification models more effi-
ciently by focusing on informative observations, several choices should be considered
regarding the query strategy and the oracle. To make active learning useful in prac-
tice, there should be a trade-off between costs to query observations and classification
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performance. In this section the main practical considerations are discussed which
can have major effect on this trade-off.

2.3.3.1 Noisy oracle

One of the main assumptions of active learning is that the oracle is always able to
provide the correct label for any unlabeled observation. However, this assumption
might be violated in real-life situations. Observations can contain features that make
it hard to classify them. These features can be difficult to interpret by an automated
oracle (i.e. data is labeled by chemical- or biological experiments) or even by human
domain experts. Human oracles might also provide noisy labels because of tiredness
or distraction during the labeling process [85]. Donmez et al. [35] assigned different
noise levels to multiple oracles and took this into account in the query process. In
practice it might be good to consider to compensate for the risk of noisy oracles.
However, for the purpose of this thesis it is assumed that the oracle is able to provide
correct labels for each query.

2.3.3.2 Batch queries

Besides focusing on classification performance, the computational effort of active
learning algorithms is often of great importance in practice. If models are re-trained
after adding each queried observation, active learning can be computationally expen-
sive if the amount of features or observations is high. In such situations, one can
choose to query batches of observations instead of single observations each iteration.
In this way, more newly labeled observations are added to the training set every it-
eration and the number of times the model needs to be re-trained can be reduced.
Despite the computational advantages, classification performance might suffer from
batch querying. If a single observation is being queried, it can provide useful infor-
mation for a certain region in input space. The next iterations, the model can query
an observation from a different uncertain region using the obtained information from
previous queries. Using single queries is therefore more efficient, as it does not query
observations from the same uncertain region in one iteration.

2.3.3.3 Stop-condition

In most active learning algorithms we will discuss, the model keeps querying obser-
vations until it reaches a predefined maximum number of queries. This raises the
question after how many queries the model needs to stop. In every active learning
application, the ideal trade-off between labeling effort and classification performance
should be considered. Active learning algorithms can stop when the improvement of
the model within an iteration gets below a certain threshold. Another possibility is to
define a labeling budget which may not be exceeded. The active learning algorithm
will then proceed until the labeling budget has been reached. In real-life applications
this is the most common stop-condition [85], but it might also be combined with other
stop-conditions.

2.3.4 Summary active learning
Active learning is a machine learning field that is commonly used when it is expen-
sive or hard to label data. It follows the same objective as semi-supervised learning
as it incorporates unlabeled observations into the training of classification models
to improve their performance. There are major differences between both techniques
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though. Semi-supervised algorithms try to expand training data with unlabeled data
that follows the underlying distribution of the labeled data as good as possible. Ac-
tive learning explores uncertain regions of unlabeled data to expand the classifiers
knowledge of the input space. The available active learning algorithms mostly differ
from each other in the way they select informative observations (i.e. the query strat-
egy). This chapter introduced many terms used within active learning. In order to
make the discussed approaches more clear, we summarized them in Table ??. Please
note that this table only includes techniques within the pool-based sampling category
of active learning.

The performance of active learning algorithms highly depends on the application it is
used for. It is important to find a good trade-off between labeling costs, classification
performance and computational complexity. Performance-based models can be very
useful when focusing on querying as few as possible observations to the oracle. Sim-
pler heterogeneity-based models are much more applicable in real-life situations due
to the lower computational effort of the algorithms. For this reason, this thesis will
focus on heterogeneity-based models and in particular on algorithms that follow the
QBC framework. QBC algorithms use a disagreement measure within a committee of
classifiers to query labels for uncertain observations. This can be seen as the comple-
ment of semi-supervised committee-based algorithms, which use unlabeled data the
component classifiers do most agree about.

2.4 Summary
This chapter has discussed multiple algorithms within the fields of semi-supervised
learning and active learning. In order to compare algorithms from both fields in this
study, multiple algorithms were selected based on 1) their performance in previous
studies and 2) their applicability in real-life scenarios. Committee-based models in-
corporate well-known ensemble techniques into semi-supervised learning and active
learning, which makes them relatively easily applicable in practice. Furthermore,
little effort has been made to compare committee-based models so far. Therefore,
the aim of this thesis is to study the performance of committee-based algorithms
within semi-supervised learning and active learning in different scenarios regarding
the available labeled data.

First, the semi-supervised learning algorithms Co-Forest (Algorithm 4) and
ASSEMBLE (Algorithm 5) were selected for our experiments. Experiments [11, 59]
have shown that both algorithms are able to improve supervised algorithms and other
semi-supervised algorithms on average, although the results were not validated with
statistical tests. Co-Forest and ASSEMBLE generate diverse committees by apply-
ing well-known techniques bagging and boosting respectively. This makes them easier
to implement than algorithms like DECORATE (Section 2.2.3.4.5), which generates
artificial observations to construct diverse committees. Both algorithms seek to in-
corporate the most confident predictions from an unlabeled pool of observations into
the training process.

The complement of committee-based semi-supervised algorithms is the active learning
framework QBC (Section 2.3.2.1.2). Within this framework, several techniques are
available to generate a diverse committee first. Algorithms QBag (Algorithm 7) and
QBoost (Algorithm 8) use bagging and boosting respectively to construct the initial
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committee of classifiers. Abe and Mamitsuka [2] introduced these algorithms to make
QBC easier to implement in practice, which is the main reason that these algorithms
were chosen. In contrast to the chosen semi-supervised algorithms, QBag and QBoost
aim to select the most uncertain predictions and query their corresponding label to
an oracle. The selected algorithms and the corresponding ensemble techniques to
generate committees can be found in Table 2.1.

Committee generation Semi-supervised learning Active learning
Bagging Co-Forest QBag
Boosting ASSEMBLE QBoost

Table 2.1: The algorithms that were selected for this study
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Chapter 3

Experimental setup

To answer the research questions of this study, multiple selected algorithms were ap-
plied on various datasets. The algorithms were implemented using the open source
programming language Python, version 2.7.12. Due to the time expensive computa-
tions of the experiments, they were run on the Lisa system installed and maintained
by SURFsara [91]. The Lisa system is a cluster computer consisting of several hun-
dreds of multi-core nodes running the Linux operating system [91]. As a student at
the Vrije Universiteit, it was possible to gain access to this system.

3.1 Algorithms
As discussed in Section 2.4, multiple committee-based algorithms from semi-supervised
learning and active learning were selected based on their applicability and their per-
formance in previous studies. Since the selected algorithms use bagging and boosting
in combination with unlabeled data, the supervised algorithms Random Forest and
AdaBoost were used as benchmarks as they use these ensemble techniques as well. To
generate the initial committee, all algorithms make use of a base learner. Following
Breiman [16], weak classifiers are suitable to use as base learner to make committees
diverse, as small changes to training data can result in large changes in their predic-
tions. He explained that neural networks and decision trees are such weak algorithms
for which bagging and boosting can improve classification performance. Therefore,
a decision tree was used as base learner for all algorithms implemented in this re-
search. In all experiments the optimized version of the C4.5 algorithm, provided by
the Python package Scikit learn [75], was used to train decision trees. Besides using
the C4.5 algorithm as base learner, it was used as supervised benchmark as well.
However, the decision tree was able to use the fully labeled datasets.

3.2 Datasets
Multiple datasets were used in the experiments. The datasets Wisconsin Diagnos-
tic Breast Cancer (WDBC) and German credit were obtained from the UCI Machine
Learning Repository [60]. Both datasets originate from a different domain (i.e. health
care and banking) and have different data properties like number of observations,
number of features and balance between target classes. The artificial Two Moons
dataset was generated using the open source Python package Scikit-learn [75]. Ta-
ble 3.1 provides an overview of the properties of all datasets. More details about
each dataset can be found in the coming subsections and all features are listed in
Appendix A. No further data preparation tasks like feature engineering and outlier
removal has been performed, as it is assumed not to be relevant for the purpose of
this study.
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3.2.1 Wisconsin Diagnostic Breast Cancer
The WDBC dataset was first developed to increase the speed, correctness and ob-
jectivity of the diagnosis process for breast cancer [90]. In total, 569 images were
taken of small drops of fluid from breast tumors. All images were analyzed, which
resulted in ten real-valued features about the cell nucleus. The mean, standard error
and largest values of these features were computed, resulting in 30 numerical fea-
tures. These features can be found in Appendix A. The information was stored into
a dataset suitable for machine learning classification models. Out of the 569 tumors,
212 (37%) were labeled as malignant and 357 (63%) were labeled as benign. The
objective is to predict whether a tumor is malignant or benign.

3.2.2 German Credit
The german credit dataset was generated to predict whether a customer is ’good’ (i.e.
no credit risk) or ’bad’ (i.e. credit risk) according to personal- and credit features
[49]. The dataset contains 1000 rows, where every row represents a customer who
takes credit at a bank. The class distribution is imbalanced, as only 30% of the
customers is labeled as credit risk. The original dataset contains both numerical and
categorical features. Since the Decision Tree algorithm available in the Python Scikit-
learn package cannot handle categorical features, another available dataset was used
where the categorical features are converted to numerical features using label encoder.
The conversion of categorical features to numerical values when the categories have
no natural ordering, might result in a slight bias. Since the same dataset was used
for all algorithms, it was assumed that this would not affect the results in favor of
any algorithm. Appendix A shows all features and their possible values. Please refer
to [49] for more details about this dataset.

3.2.3 Two Moons
The two moons dataset can be generated using the Scikit-learn package in Python
[75]. This dataset consists of two artificially generated half circles. It is often used to
illustrate clustering and classification algorithms due to its simple two-dimensional
structure. Furthermore, it is possible to add Gaussian noise to the data to verify
whether classification models are prone to noisy data. For our experiments we gen-
erated the dataset Two Moons (0.08), where the noise parameter (i.e. the standard
deviation of the added Gaussian noise) was set to 0.08. In order to study the behavior
of the algorithms when both classes are less easily separable, the Two Moons (0.15)
was generated with the noise parameter set to 0.15. A visualization of both datasets
is shown in Figure 3.1.

(a) (b)

Figure 3.1: Visualization of the datasets (a) Two Moons (0.08) and
(b) Two Moons (0.15).
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Dataset Num. Num. Num. Percentage
observations features classes minority class

WDBC 569 32 2 37%
German credit 1000 20 2 30%
Two moons (0.08) 1000 2 2 50%
Two moons (0.15) 1000 2 2 50%

Table 3.1: Selected datasets including their properties used for this
study.

3.3 Experiments
In order to answer the research questions of this study, multiple experiments had to be
performed to compare semi-supervised learning and active learning as fair as possible.
As both techniques combine unlabeled- and labeled data in a different manner, it is
hard to compare them without giving any advantage to one of them. In this research,
it was assumed that the techniques were compared as fair as possible by providing
exactly the same number of labeled observations to both of them.

Semi-supervised algorithms are initially trained on the available set of labeled obser-
vations and add unlabeled observations including their predicted pseudo-labels to the
training set in each iteration. The active learning algorithms are initially trained using
only a few labeled observations and try to improve performance by requesting labels
until a certain labeling budget has been reached. The advantage of active learning
is that it can select useful observations to use for training, while the performance of
semi-supervised learning algorithms depend on the randomly selected initial training
set. However, semi-supervised learning is able to use additional confident predictions
to enhance its training data, while active learning is restricted to use the selected
labeled data only. In order to minimize the influence of the random initial training
set for semi-supervised learning, all experiments were performed 500 times.

In order to validate the performance of each algorithm, the entire dataset was ran-
domly split into a training set containing 80% of the data and a test set containing the
remaining 20% of the data using stratified sampling to ensure that the class distribu-
tions remained the same. These training- and test sets for each dataset were used in
all experiments, to ensure that model validation was always performed on indepen-
dent observations that were not used to train the models before. Since these datasets
are usually used for supervised classification tasks, a certain amount of known labels
were randomly removed in each run to make it suitable for the purpose of this study.
The experiments were performed using 5%, 10% and 20% of the available labels in the
training set. For the remainder of this thesis, we will correspond to these percentages
as the ’labeled rate’ or ’budget’.

3.3.1 Performance metric
Since some of the datasets have an imbalanced class distribution, the accuracy para-
dox [109] might occur when the accuracy (i.e. the ratio of correct predictions to the
total number of predictions) is used as performance metric. Therefore, the F1-score
(also known as the F-measure) was used as performance metric in all experiments.
The F1-score takes the balance between true positives (TP), false positives (FP), true
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negatives (FN) and false negatives (FN) into account, which can make the perfor-
mance measure fairer. The F1-score can be calculated as follows:

F1-score = 2× precision× recall
precision + recall

where
precision = TP

TP + FP and recall = TP
TP + FN

Since the WDBC dataset and the German Credit dataset have imbalanced class
distributions, it is important to define which target class is assumed to be the ’positive’
class. For the WDBC dataset the objective is to use machine learning to detect
malignant tumors. Therefore, the malignant target class was assumed to be the
positive class. For the German Credit dataset, the main focus is to identify customers
who might have a credit risk. The customers with credit risk were therefore assumed
to be the positive class for this dataset.

3.3.2 Size of initial training data active learning
In the standard active learning setting, the algorithms would initially be trained using
just a few labeled observations and they would request labels for unlabeled observa-
tions until the predefined budget has been reached. Suppose the initial training set
consists of only 10% of the total (limited) labeling budget. Using such a limited
initial training set, it might be hard for committee models to select unlabeled obser-
vations that can provide useful information to distinguish the target classes. In some
situations, it might be beneficial for active learning algorithms to start with more
randomly selected labeled observations to be better able to query informative data
from the start of the algorithm. Therefore, an additional experiment was conducted
to find the best starting point for each active learning algorithm. For all labeled
rates (5%, 10% and 20%), QBag and QBoost were provided 10%, 25%, 50% and 75%
random observations from these labeled rates as initial training set. For instance,
using a labeled rate of 5% the starting points of 10%, 25%, 50% and 75% are equiv-
alent to 0.5%, 1.25%, 2.5% and 3.75% of the total training data respectively. From
these starting points, the algorithms could request labels until the labeled rate was
reached. Table 3.2 shows all label percentages used in this experiment. It should
be noted that this additional analysis was performed using the separate test set as
performance validation. This might cause that the chosen sizes of the initial training
data were not entirely independent of the final performances of the algorithms.

Labeled rate
5% 10% 20%

In
iti
al

siz
e 10% 0,5% 1% 2%

25% 1,25% 2,5% 5%
50% 2,5% 5% 10%
75% 3,75% 7,5% 15%

Table 3.2: All labeled percentages used in active learning experi-
ments
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3.4 Hyperparameter tuning
In order to boost the performance of each algorithm, their hyperparameters were
optimized first. Grid-search was used to find the best set of hyperparameters from a
manually chosen subset of the hyperparameter space of each algorithm. These candi-
date hyperparameter values for supervised algorithms C4.5, AdaBoost and Random
Forest were chosen based on recommendations from Scikit-learn [75], as their im-
plementations were used in our experiments. The subsets of hyperparameter values
for the semi-supervised learning and active learning algorithms were obtained from
literature [11, 59, 2]. Grid-search uses brute-force search to enumerate all possible
candidate sets of hyperparameters [97] and validates their performance using cross-
validation on the 80% training data [50].

Since we were mostly interested in the hyperparameters that result in best perfor-
mance using limited number of labels, grid-search was performed for each algorithm
on every dataset using labeled rates 5%, 10% and 20% separately. This resulted in
many different sets of hyperparameters, which can be found in Appendix B. In some
cases multiple hyperparameter sets achieved similar results in terms of the F1-score,
but differed in terms of computational effort. In such situations, the hyperparameters
with lowest runtime were selected.

3.4.1 Hyperparameters base learner
Besides the use of the C4.5 algorithm as supervised benchmark, it was also used as
base learner for all other algorithms. Preliminary runs showed that the resulting
hyperparameters values from the grid-search in the fully supervised scenario did not
necessarily yield the best results for the other algorithms with C4.5 as base learner.

Boosting algorithms AdaBoost, ASSEMBLE and QBoost seemed to perform best
when the decision tree hyperparameters did not allow the tree to become very large.
If the size of the decision tree is not limited by its hyperparameters and the avail-
able training data is sparse, it is very likely that it will overfit the training data. As
explained in Section 2.1.2, AdaBoost assigns weights to the observations and to its
component classifiers using the training error. If the component classifiers (i.e. deci-
sion trees) overfit on the training data, the training error might be extremely small or
even equal to zero. In the latter scenario, the weights will not be updated properly.
As shown in Algorithm 2, the update rule for the weights of each component classifier
is:

−log
( εi
1− εi

)
If the training error εi would be equal to zero, this update rule would be undefined. In
this scenario, the AdaBoost implementation of Scikit-learn [75] assigns a weight of zero
to the component classifier that achieves perfect training accuracy. If all component
classifiers obtain perfect classification, the implementation assigns a weight of one to
the first component classifier and no weight to the remaining component classifiers.
This indicates that the committee consists of only one overfitting decision tree, which
can limit the performance of the model heavily. To avoid using decision trees with a
training error of zero, it is important to force the C4.5 algorithm to generate decision
trees of limited size.
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In contrast to boosting, the bagging algorithms QBag and Co-Forest suffered from
limitations on the size of decision trees. Although preliminary runs showed that
the random component trees do overfit the small set of training observations, the
combination of these random trees performed much better when trees were allowed to
become large. Since all random component trees were trained on different bootstrap
samples, it often occurred that multiple trees disagreed about their predictions. In
this way, the combination of multiple overfitting component classifiers resulted in a
committee model which did not overfit the small training set.

Due to this different behavior of the algorithms regarding the hyperparameters of the
C4.5 algorithm, the values for hyperparameters max_depth and min_samples_leaf
were adjusted for the boosting and bagging algorithms separately. As the name indi-
cates, the max_depth limits the maximum depth of the tree. If no value is assigned
to max_depth, nodes are expanded until all leaves are pure or until leaves contain
less than the minimum number of samples required to split an internal node [75].
The hyperparameter min_samples_leaf denotes the minimum number of samples re-
quired to split an internal node [75]. For boosting algorithms max_depth was set
to 2 and min_samples_leaf was set to 5 to avoid overfitting of the separate decision
trees. For bagging algorithms Co-Forest and QBag the max_depth was not limited,
while the min_samples_leaf was set to 1.

3.4.2 Committee size
The committee size is another important hyperparameter to be taken into account.
Following Zhou et al. [107], large committees do not always obtain better perfor-
mances than small committees. If the committee consists of many component classi-
fiers while the training data is sparse, the risk of overfitting the training data can be
higher than when using smaller committee sizes. Besides that, using large committees
results in more computational effort. To limit the runtime of the many experiments
and to lower the risk of overfitting the small training sets, the possible committee
sizes in the grid-searches were set to 10, 20 and 50.

3.4.3 Initialization of the ASSEMBLE algorithm
Besides the hyperparameters of its component classifiers, multiple hyperparameters
need to be set for the initialization of ASSEMBLE. During the initialization, nearest
neighbor classification is used to assign labels to unlabeled observations. During the
grid search, nearest neighbor classification using majority voting from Scikit-learn
[75] and KD Trees [98] were used to find the nearest neighbors of each unlabeled
observation. For both techniques, the number of neighbors were taken into account
in the grid search. For the KD Trees, the leaf size was varied in the grid search as
well. Finally the values for hyperparameter β (see Section 2.2.3.4.5) were varied to
estimate the best initial weights for the unlabeled observations.

3.4.4 Number of active learning queries per iteration
In Section 2.3.3.1 the concept of batch querying was introduced. In each iteration,
active learning algorithms select the most uncertain predictions and query them to
an oracle. One important question is how many observations should be queried each
iteration. To speed up the labeling process, multiple observations can be queried at
a time. The risk is that the algorithm selects multiple observations from the same
uncertain area of the input space [85]. In this way the labeling budget would not be
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used as efficient as the algorithm does not explore different uncertain regions each
iteration. Figure 3.2 illustrates the possible problem of inefficient batch querying that
might occur. This figure was generated during one of the QBoost runs on the Two
Moons (0.08) dataset. In figure (a) it is obvious that the current model is not able
to separate the red observations from the green observations accurately yet. QBoost
queries the yellow marked observations to an oracle and adds them including their
correct (green) labels to the training set. Although figure (b) shows that the decision
boundary has improved for that specific region, it might have gained the same result
by querying only one of these uncertain observations. This would have saved budget
to label two labels in different uncertain regions.

However, batch querying might be useful when the model forces the queried observa-
tions to be located in different areas of the input space. In this way different uncertain
areas can be explored, while saving computational effort by reducing the number of
times the model needs to be retrained. However, since we have not further investi-
gated any possibilities to achieve this, both active learning algorithms were allowed
to query one label per iteration in all experiments.

Figure 3.2: An illustration of inefficient batch querying for active
learning. The border between the red plane and green plane is the
decision boundary of the current classification model. Figure (a) il-
lustrates the decision boundary of the model before querying three
new labels. Figure (b) illustrates the adjusted decision boundary after

re-training including newly gathered labels.

3.5 Model validation
The experiments described in Section 3.2.3 resulted in 500 F1-scores for each al-
gorithm, each dataset and each labeled rate. To validate the performance of each
algorithm, the average F1-scores with a 95% confidence intervals were calculated for
each situation first. Bootstrapping [38] was used to estimate the confidence intervals,
as this technique does not assume normality of the samples. Every sample of 500 F1-
scores was obtained using a different subset of labeled- and unlabeled observations
from the training set, which is equivalent to bootstrapping. The 95% confidence
intervals were then computed for each sample X as follows:
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CIlower(X) = max(0, percentile(X, 2.5%))

CIupper(X) = min(1, percentile(X, 97.5%))

Although the average F1-scores and confidence intervals certainly give insight in the
performance of each algorithm, no conclusions can be drawn about any significant
difference between their performances without any statistical tests. The usual ap-
proach to test for significant difference between two groups (i.e. algorithms) without
assuming normality of the groups is the Wilcoxon Signed-Rank test. As six algo-
rithms were compared in this study, this test cannot be used. The Kruskal-Wallis
test [54] is a non-parametric test (i.e. it does assume normality) and can be used
for comparing two or more independent groups of equal or different sizes [54]. The
null-hypothesis of this test is that the mean ranks of the groups are the same. Re-
jecting the null-hypothesis indicates that at least one group stochastically dominates
one another group [54].

The Kruskal-Wallis test does not provide information about which group is stochas-
tically dominant though. Since we are mostly interested which algorithm performs
best in each situation, post hoc Dunn’s test [37] was applied to analyze pairwise com-
parisons. For both the Kruskal-Wallis test and the Dunn’s test a significance level
of 5% was used. The problem of analyzing pairwise comparisons, is the risk of a
high Type I error. A Type I error is the incorrect rejection of a true null hypoth-
esis [100]. A high Type I error in this study would mean that there is high risk of
finding significant differences between two algorithms, while actually the difference is
not significant under a chosen significance level. When only one hypothesis is tested
under significance level 0.05, it means that there is a probability of 0.05 of making a
Type I error. However, we aim to test

(6
2
)

= 15 hypothesis in this study. This means
that there is a probability of making a Type I error of:

P (Type I error) = 1− P (no significant results)
= 1− (1− 0.05)15

≈ 0.54

There are several methods available to adjust the significance level to lower the prob-
ability of a Type I error. The Bonferroni method [36] corrects the significance level
by dividing significance level α by the number of hypothesis. However, the Bonfer-
roni correction can be quite conservative, which might lead to high false negatives [9]
(i.e. concluding non-significance while there is a significant difference between two
algorithms). The False Discovery Rate (FDR) [9] has proven to have less negative
effects on the false negative rate. The FDR estimates a rejection region by assuring
that FDR < α on average [9]. Therefore, the FDR correction was used to adjust the
p-values from Dunn’s test.
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Chapter 4

Results

In this chapter the results of this study will be discussed. First, the results of the
analysis on different starting points for active learning algorithms will be described.
Next, the performances of all algorithms will be compared for each dataset sepa-
rately. Finally, the results of the statistical tests will be explained to be able to draw
conclusions about the significance of the results.

4.1 Size of initial training data active learning
As explained in Section 3.3.1, we analyzed whether the initial number of available
labeled observations influences the performance of active learning algorithms. Fig-
ure 4.1 shows the average progress of QBag and QBoost on all datasets using labeled
rates (i.e. budget) of 5%, 10% and 20% and 500 runs. Interestingly, from both
Two Moons figures we can see that QBoost performed much better when using a
relatively large part of the budget as initial training set. This result is somewhat
counterintuitive, as QBoost was expected to be able to select a training set that is
more informative than a randomly selected initial training set (despite the fact that
these random training sets contained more observations). This might be partly ex-
plained by the inability of AdaBoost to correctly update the weights of the component
classifiers and the weights of the observations on extremely small training sets (see
Section 3.4.1), which is the component classifier of QBoost. If the initial committee
is not diverse enough due to overfitting, QBoost will not be able to select informative
unlabeled observations that can improve classification. The algorithm might then
select observations from the same area of the input space, while the random selected
training size is more spread out over different areas. The labeling starting point did
not have much effect on the performance of QBoost for datasets WDBC and German
Credit. A possible explanation for this might be that QBoost needs more budget than
10% anyway to obtain satisfying results. Changing the starting point for labeled rates
5% and 10% would therefore not have much effect on the algorithms performance.

Interestingly, QBag shows opposite results as QBoost. It obtained best results using
only 10% or 25% of the budget as starting point for datasets WDBC, Two Moons
(0.08) and Two Moons (0.15). This indicates that QBag only needs a few initial
labeled observations as initial training set. By requiring only a small part of its
labeling budget, the algorithm can spend it more efficiently by requesting useful
labels for the remaining budget. Only for the German Credit dataset QBag performed
slightly better using 75% of its budget as initial training set. This result may be due
the imbalanced class distribution of German Credit. The algorithm might tend to
overfit on the majority class when initial training data contains only a few examples
from the minority class.
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Besides the different results for both algorithms, it is worth mentioning that variation
in the labeling starting point did affect the results less severe when the labeled rate
was 20%. Even when QBoost starts with just a few labels, a budget of 20% seems to
be enough to request sufficient labels to achieve good performance. For the situation
with a labeled rate of 20%, QBag could only benefit from a low starting point on
the WDBC dataset. This result might be explained by the lower number of total
observations of this dataset compared to the others. Even with a budget of 20% of
the labels, a starting point of 75% for this dataset would be equivalent to an initial
training set of only 68 observations.

Please note that the starting points with highest average F1-score were used in the
experiment to compare all algorithms, described in the coming sections.

Figure 4.1: Each subplot illustrates the average F1-score of active
learning algorithms QBag and QBoost using different labeling starting

points.

The lack of influence of the labeling starting point when the active learning algorithms
have a budget of 20% raises the question whether they need the full budget to obtain
good performances. Figure 4.2 shows the average performance of 100 independent
runs, where the test score was measured after each time the models were re-trained
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on the updated training data. This clearly shows that both algorithms converge to
their maximum average F1-score far before using the final budget of 20% labels for
both Two Moons datasets. Budget wise, this is a very interesting finding. Although
Figure 4.1 shows that QBag and QBoost can also obtain good performances when
starting with 75% of the budget of 20% labels, it would not be efficient to use this
starting point. If such performances can be achieved earlier when initially using only
10% of the budget, it might save the oracle labeling work. This shows that it would
be useful to investigate different stop-conditions than a maximum budget. Another
stop-condition based on the training error improvement might avoid the waste of
labeling budget.

This early convergence was not found using the German Credit dataset. Due to the
hard classification task, both algorithms need the full budget to achieve their best
performance. This plot was not generated for WDBC since the performance of QBag
does depend on the starting point when using a budget of 20%.

(a) Two Moons (0.08) (b) Two Moons (0.15)

(c) German Credit

Figure 4.2: Convergence of QBag and QBoost using a total budget
of 20% budget and an initial training set of 10% of this budget (i.e.

2% labels)
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4.2 Wisconsin Diagnostic Breast Cancer
The average F1-scores after 500 runs of each algorithm using the WDBC dataset
are shown in Figure 4.3. When using a labeled rate of 5% and 10%, QBag clearly
performed best on average. Using only 10% of the data, the algorithm was already
capable of outperforming a decision tree that was allowed to use the fully labeled
dataset (the dotted line DT-S in Figure 4.3). The disappointing results of QBoost
are consistent with the findings from the analysis described in Section 4.1. The
algorithm failed to perform when the labeling budget was limited to only 5% or 10%
of the data. When a budget of 20% was available though, which is still just a fraction
of fully supervised learning, QBoost was able to outperform all other algorithms on
this dataset. The poor result with a labeled rate of 5% might be explained again by
the problem that weights of component classifiers and observations were not updated
correctly using such sparse training data. This can also explain the poor performance
of all algorithms that use boosting when having a labeled rate of 5%. In this situation,
the bagging algorithms Random Forest, Co-Forest and QBag obviously outperformed
the other algorithms.

Figure 4.3: The average F1-scores for all algorithms with the 95%
confidence intervals using the WDBC dataset and using different la-

beled rates.

It is somewhat surprising that the semi-supervised algorithms ASSEMBLE and Co-
Forest were not able to outperform their component classifiers AdaBoost and Random
Forest respectively. This rather unanticipated result may be due to this relatively
easy classification dataset. Despite several conditions (Section 2.2.3.4.4) that Co-
Forest uses to limit the number of selected predictions to add to the training set, it
still selects too many predictions for easy classification tasks. This is caused by the
initial value of parameter e, which is initially set to 0.5 before any predictions are
made. When sampling the predictions to limit the number of selected observations,
the algorithm uses the following sample size:

ei,t−1 ·Wi,t−1
ei,t

where ei,t is the training error of component classifier i in iteration t andWi,t−1 is the
set of observation weights for component classifier i in iteration t − 1. If the actual
training error in this first iteration (ei,1) is much smaller than 0.5 (ei,0), the sample
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size can become very large. This causes that many predictions are added to the
training data, while it is likely that some predictions are noisy. A possible solution
would be to assign more realistic initial values to ei,0.

As explained in section 2.2.3.4.5, ASSEMBLE assigns pseudo-labels to each unlabeled
observation based on their nearest (labeled) neighbors in the first iteration. When
only a small amount of initial labels is available, these pseudo-lables might be incor-
rect. Although the algorithm assigns small initial weights to these observations, the
noise might affect the performance of component classifier AdaBoost. These results
reflect those of Breiman [14], who stated that AdaBoost is sensitive to noise in labels.

Although the F1-scores for the algorithms did differ on average, we needed to verify
whether these differences are significant. First, the Kruskal-Wallis test was performed
to test the hypothesis whether the median F1-scores of all algorithms are equal using
5%, 10% and 20% labeled rates. The resulting Chi-Squared statistics and the p-values
can be found in Table 4.1. Since all p-values are much lower than significance level
0.05, we can reject the null-hypothesis and state that there are significant differences
between the median F1-scores of the algorithms for all labeled rates. The extremely
small p-values might be explained by the high number of performance samples for
each algorithm. Due to the 500 runs the p-values are all equal to only 2.2e−16, which
at least indicates that there is a substantial difference between the performances of
the algorithms.

Labeled rate Chi-squared p-value
5% 365.99 2.2e−16
10% 1039.8 2.2e−16
20% 1487.4 2.2e−16

Table 4.1: The results of the Kruskal-Wallis test for the WDBC
dataset. Each row shows the results of the test using a different labeled

rate

To obtain more information about the significance of the performances, multiple com-
parison Dunn’s test with False Discovery Rate correction was performed (as discussed
in Section 3.4.4). The p-values of the test for each pair of algorithms are shown in
Appendix C for labeled rates 5%, 10% and 20%. The null-hypothesis of pairs with a
p-value lower than significance level 0.05 can be rejected. This indicates that there
is a significant difference between the performance of a pair of algorithms. Since the
p-values of QBag compared to all other algorithms are lower than 0.05 using labeled
rates of 5% and 10%, we can conclude that QBag performed significantly better in
these scenarios. When more budget is available (i.e. labeled rate of 20%), QBoost was
able to significantly outperform all algorithms except QBag. There is no significant
difference between both active learning algorithms in that situation.

4.3 German Credit
The average F1-scores after 500 runs of each algorithm using the German Credit
dataset are shown in Figure 4.4. The most obvious finding to emerge from the results
is that none of the algorithms was able to classify the minority class (e.g. ’bad’
customers) accurately. Even the fully supervised decision tree obtained an average
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F1-score below 0.6, which indicates that the german credit dataset is hard to classify.
It is hard to verify the results on the German Credit dataset with other studies, as
different performance metrics were used [22, 68].

As with the WDBC dataset, the bagging algorithms outperformed the boosting al-
gorithms when having a limited labeled rate of 5% or 10%. Where Co-Forest was
not able to outperform its supervised counterpart Random Forest using WDBC, it
obtained higher F1-scores than Random Forest on this dataset. This difference might
be explained by the challenging classification task of the german credit dataset. In
contrast to its performance on WDBC dataset, Co-Forest is not too confident about
its predictions for the German Credit dataset. This causes the training error of the
algorithm to be closer to the initial value of 0.5 for the parameter e, which avoids Co-
Forest to sample too many of its predictions for training. Since the algorithm added
only a small set of pseudo-labels to its training set, it is less likely that it added noisy
predictions to the training data that could hurt the performance of the model.

Figure 4.4: The average F1-scores with the 95% confidence intervals
for all algorithms using the German Credit dataset and using different

labeled rates.

These QBoost results reflect its results on the WDBC dataset. It was not able
to compete with most other algorithms when using a budget of only 5% or 10%.
However, when a budget of 20% is available QBoost seems better able to distinguish
useful observations from other observations. In that situation, it outperformed all
supervised- and semi-supervised algorithms and it was able to compete with the
performance of QBag.

The Kruskal-Wallis test was performed to test whether there are significant differences
between the results for all algorithms. Table 4.2 presents the resulting Chi-Squared
statistics and the p-values obtained. Again all p-values are much lower than signif-
icance level 0.05, which is probably due to the high number of runs. The results of
multiple comparison Dunn’s test using False Discovery Rate corrections can be found
in Appendix C. These results confirm that Co-Forest significantly outperformed all
algorithms except QBag using labeled rates of 5% and 10%. The performances of
Co-Forest and QBag were not significantly different for labeled rate 5%, but QBag
did outperform Co-Forest when having more budget. Furthermore it is interesting
to note that even ASSEMBLE.AdaBoost outperformed QBoost significantly using
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a labeled rate of 5%, while both depend on AdaBoost. A possible explanation for
this finding might be that QBoost selected outliers, since it was not confident about
its predictions for these observations. In order to confirm this expectation, more
extensive research on the german credit dataset is needed.

Labeled rate Chi-squared p-value
5% 332.95 2.2e−16
10% 512.02 2.2e−16
20% 1997.4 2.2e−16

Table 4.2: The results of the Kruskal-Wallis test for the German
Credit dataset. Each row shows the results of the test using a different

labeled rate

4.4 Two Moons (0.08)
The artificial data set Two Moons (0.08) was mainly used because of its simplicity.
This enabled us to visualize the behavior of the active learning algorithms to under-
stand what makes them perform well or not. Figure 4.5 shows the average F1-scores
after 500 runs of each algorithm. Using a budget of only 5%, QBag clearly outper-
formed the other algorithms. Again, QBoost did not achieve comparable results as
the other active learning algorithm using 5% of budget.

Figure 4.5: The average F1-scores with the 95% confidence inter-
vals for all algorithms using the Two Moons (0.08) dataset and using

different labeled rates.

Figure 4.6 illustrates one iteration of the QBag algorithm using this dataset. It shows
the ability of QBag to query labels for observations close to the decision boundary of
the current model, as most component classifiers disagree about their predictions. In
this particular example, the decision boundary is shifted more to the red class, since
it was provided the green label for an observation close to the decision boundary.
Figure 4.7 illustrates three successive iterations of QBoost where three labels were
requested from the same region, far from the decision boundary. This shows that
QBoost was not able to explore different uncertain areas in this situation. Due to the
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lack of diversity within the AdaBoost committee, the model did not have the ability
to select useful observations. The requested labels did have only minimal effect on
the shape of the decision boundary of the model.

(a) (b)

(c)

Figure 4.6: Visualization of one QBag iteration using Two Moons
(0.08). The border between the green area and red area is the decision
boundary of the model at that moment. (a) shows the labeled observa-
tions only, (b) shows all training data and the selected observation by
QBag marked in yellow and (c) shows the adjusted decision boundary

after retraining the model.

Furthermore, although the average F1-score of QBag did increase only slightly when
raising the labeled rate from 10% to 20%, the size of its confidence interval decreased
a lot. Due to the simplicity of this dataset, QBag can nearly always achieve very high
performance.

Another result that stands out in Figure 4.5 is the poor performance of both semi-
supervised algorithms. Just as for the WDBC dataset, this result may be due to
the easy separable classes in this dataset. Co-Forest might have added too many
predicted labels to its training set, due to its high performance in the first iteration of
the algorithm. If ASSEMBLE.AdaBoost was not able to update its weights correctly,
it might have focused too much on correctly classified observations instead of focusing
on misclassifications.

Table 4.3 provides the results of the Kruskal-Wallis test for this dataset. As the
p-values are much lower than significance level 0.05 again, we can reject the null-
hypothesis and conclude that the median F1-scores for all algorithms significantly
differ. Again, it should be noted that the p-values are probably extremely low because
of the 500 runs. The results from Dunn’s test using False Discovery Rate corrections
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can be found in Appendix C. Although the average F1-scores in Figure 4.5 indicate
that the difference between QBag and QBoost is minimal, the difference is significant.
This can be caused by the extremely small confidence interval of QBag, while the
performance of QBoost variates more.

(a) (b)

(c)

Figure 4.7: Visualization of three successive QBoost iterations. The
border between the green area and red area is the decision boundary

of the model at that moment.

Labeled rate Chi-squared p-value
5% 1149 2.2e−16
10% 1573.9 2.2e−16
20% 1424.6 2.2e−16

Table 4.3: The results of the Kruskal-Wallis test for the Two Moons
(0.08) dataset. Each row shows the results of the test using a different

labeled rate
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4.5 Two Moons (0.15)
The Two Moons (0.15) dataset was used to study the performance of each algorithm
when the dataset contains more outliers. Figure 4.8 provides the resulting average F1-
scores after 500 runs for each algorithm including the 95% confidence intervals. One
interesting finding is that the performance of the active learning algorithms greatly
reduced compared to the performance on the Two Moons (0.08) dataset. This finding
reflects those of Settles [85], who stated that heterogeneity models are sensitive to
outlying observations (see Figure 2.7). As active learning algorithms aim to request
labels for observations close to the decision boundary, they might select observations
that are located close to the observations from the other class. Figure 4.9 illustrates
one iteration of QBag using this dataset. Following the shapes of both classes, the
current decision boundary should obviously be adjusted in some areas. QBag re-
quested the label of the yellow-marked observation due to its uncertain prediction.
Although this observation lies closer to the red class, it actually belongs to the green
class (caused by the added noise). This causes the algorithm to not shift that specific
part of the decision boundary more to the middle between both classes.

Figure 4.8: The average F1-scores with the 95% confidence inter-
vals for all algorithms using the Two Moons (0.15) dataset and using

different labeled rates.

Another result that stands out is the poor performance of Co-Forest on this dataset.
Due to its high confidence about most predictions, the algorithm selected many of
these predictions and added them to the training set as pseudo-labels. Due to the
noisy structure of the data, it is very likely that it selected some of the outlying
observations. This shows again that the major pitfall of Co-Forest is the selection of
too many unlabeled observations for relatively easy classification tasks.
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Figure 4.9: An illustration of the selection of an outlier by the QBag
algorithm. The border between the green area and red area is the

decision boundary of the model at that moment.

The p-values in Table 4.4 are all much lower than significance level 0.05. Despite the
fact that the extremely low p-values might be caused by the high number of runs,
that we can reject the null-hypothesis of the Kruskal-Wallis test and conclude that
the median F1-scores of all algorithms significantly differ using this dataset. The
results of Dunn’s test with False Discovery Rate corrections show that despite the
performance reduction of QBag, it still significantly outperformed all other algorithms
on this dataset.

Labeled rate Chi-squared p-value
5% 380.62 2.2e−16
10% 1392 2.2e−16
20% 1424.6 2.2e−16

Table 4.4: The results of the Kruskal-Wallis test for the Two Moons
(0.15) dataset. Each row shows the results of the test using a different

labeled rate

4.6 Summary
Table 4.5 shows the algorithms that performed significantly best for each experi-
ment following Dunn’s test. This clearly shows that QBag outperformed all other
algorithms in eight out of twelve situations. Three experiments resulted in a draw
between QBag and another algorithm, while QBag was outperformed by QBoost in
only one scenario. QBag has shown to be able to obtain consistent results when
insufficient labeled observations are available.
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Dataset 5% 10% 20%
WDBC QBag QBag QBag and QBoost
German Credit QBag and Co-Forest QBag QBag and QBoost
Two Moons (0.08) QBag QBoost QBag
Two Moons (0.15) QBag QBag QBag

Table 4.5: An overview of all results for each dataset and labeled
rate. In cases with two algorithms, there was no significant difference

found between them
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Chapter 5

Conclusion & Future work

The main purpose of this study was to study the performance of semi-supervised
algorithms and active learning algorithms in different situations. First, literature
study was performed to investigate which techniques are available within both fields.
Several promising studies were conducted on committee-based models, which use su-
pervised ensemble techniques within semi-supervised learning and active learning.
Despite that these techniques have proven to obtain strong generalization and to be
relatively easy to apply, little effort has been made to compare committee-based mod-
els from both fields. Therefore, the research question of this thesis was:

”Which committee-based classification techniques within semi-supervised learning and
active learning perform best using multiple data sets with various percentages of la-
beled observations?”

In order to answer this question, several experiments were performed. First, multiple
algorithms were selected from literature based on 1) their performance in previous
studies and 2) their applicability in real-life situations. We selected algorithms that
use well-known techniques bagging and boosting to generate a committee. Semi-
supervised algorithms ASSEMBLE (boosting) and Co-Forest (bagging), active learn-
ing algorithms QBoost (boosting) and QBag (bagging) and supervised ensemble algo-
rithms AdaBoost (boosting) and Random Forest (bagging) were implemented. Since
the decision tree algorithm C4.5 was used as base learner for all these algorithms,
this algorithm was used as benchmark using all labeled data.

Second, it was studied whether the performance of the active learning algorithms
depends on the size of the initial training set. Using budgets of 5%, 10% and 20%,
the algorithms were provided 10%, 25%, 50% and 75% of their budget as starting
points for labeling. The results of this analysis show that QBoost obtains best re-
sults when initially using a relatively large part of its budget, while QBag is able to
achieve its highest average F1-scores when it is initially trained on just a few labeled
observations. The findings for the German Credit dataset deviate from this, which
might be explained by the fact that it is a more challenging classification dataset.

Interestingly, the size of the initial training set did not influence the results much
when a budget of 20% was available. Further analysis showed that when initially
only 10% of this budget was provided, both QBag and QBoost converged to their
best performance much earlier using both Two Moons datasets. For the more chal-
lenging German Credit classification, the full budget was required to obtain best
results. This shows that it would be useful to investigate different stop-conditions
besides terminating when reaching the provided labeling budget. When considering
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the improvement of the model after each query, the algorithms might be terminated
when the improvement stagnates.

Next, all algorithms were performed 500 times using all datasets and labeled rates
5%, 10% and 20%. The results of these experiments have shown that committee-
based algorithms within semi-supervised learning and active learning are generally
able to improve the performance of supervised algorithms AdaBoost and Random
Forest by incorporating unlabeled data. The most obvious finding is that QBag
significantly outperformed all other algorithms in eight out of twelve situations. In
three of the remaining four situations there was no significant difference between
QBag and another algorithm. In only one situation QBoost performed significantly
better than QBag.

The second major finding is the poor performance of the boosting algorithms com-
pared to the bagging algorithms. For nearly all datasets with a labeled rate of 5%, the
bagging algorithms outperformed their boosting counterparts within their fields (e.g.
QBag compared to QBoost). This might be explained by the inability of the com-
ponent classifier AdaBoost to update its classifier weights and observations weights
properly when training data is sparse. A further study could assess this problem
by trying more sophisticated boosting component classifiers like XGBoost. Another
option is to investigate the possibilities to improve the ability of AdaBoost to update
its classifier- and observation weights when its component classifiers obtain perfect
classification on sparse data.

Furthermore, this study has confirmed that active learning algorithms are prone to
outliers. Besides the performance reduction when adding additional noise to the Two
Moons dataset, visualizations of the learning process of QBag and QBoost have shown
that both algorithms might focus too much on outlying observations. This would be
a fruitful area for further work, as several questions still remain to be answered. It
would be interesting study the behavior of the algorithms on datasets with different
types of outliers (e.g. local or global outliers) and whether proper data preparation
might solve these issues.

The inconsistent results of the Co-Forest algorithm was also an interesting finding.
Using datasets WDBC and German Credit, the algorithm was able to outperform
most algorithms using budgets of 5% and 10%. However, when target classes were
relatively easily separable like with the Two Moons datasets, it suffered from adding
too many pseudo-labels to its training set. This study should be repeated using more
datasets of varying classification difficulty to verify whether Co-Forest only fails to
perform on easy synthetic datasets, or that it is a problem of the algorithm for more
datasets.

The final finding is the lack of performance of ASSEMBLE. The developers of the
algorithm only tested the algorithm for situations where more budget was available
than in this research. Especially using only 5% or 10% of labeled data, it often did
not obtain better results than its supervised component classifier AdaBoost. This
might be explained by the use of pseudo-labels, which are likely to be noisy when
they are provided using sparse training data. Since AdaBoost is prone to labeling
noise, the semi-supervised algorithm might suffer. These findings provide insights for
future research as it would be interesting to study the use of different component
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classifiers in the ASSEMBLE framework and to investigate more accurate techniques
to assign pseudo-labels to unlabeled data in the first iteration.

One possible limitation of this study is the possible slight advantage of active learn-
ing in the experiments. These algorithms were able to select their labeled data for
training, while the supervised- and semi-supervised algorithms were dependent on
the randomly selected initial training data. However, the disadvantage of the semi-
supervised algorithms may be limited since 1) they use additional unlabeled data
besides the labeled training set and 2) the experiments were performed 500 times to
limit the effect of the random initial training data.

Notwithstanding this comment, this thesis has provided deeper insight into the perfor-
mance of committee-based algorithms using insufficient labeled observations. These
findings can be of interest to realistic situations with limited available labeled data.
The studied algorithms have proven to be suitable for business use cases with a limited
labeling budget in terms of performance and applicability.
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Appendix A

Dataset properties

Features Values
Patient ID ID number
Radius Numerical
Texture Numerical
Perimeter Numerical
Area Numerical
Smoothness Numerical
Compactness Numerical
Concavity Numerical
Concave points Numerical
Symmetry Numerical
Fractal dimension Numerical
Class 1 = Malignant,

0 = Benign

Table A.1: Features WDBC dataset
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Features Values
Status existing checking account 1 - 4
Duration in month Numerical
Credit history 1 - 5
Purpose 1 - 11
Credit amount Numerical
Savings account/bonds 1 - 5
Present employment since 1 - 5
Installment rate in percentage Numerical

of disposable income
Personal status and sex 1 - 5
Other debtors / guarantors 1 - 3
Present residence since Numerical
Property 1 - 4
Age in years Numerical
Other installment plans 1 - 3
Housing 1 - 3
Number of existing credits at this bank Numerical
Job 1 - 4
Number of people being liable Numerical

to provide maintenance for
Telephone 1 - 2
Foreign worker 1 - 2
Class 1 = Good,

2 = Bad

Table A.2: Features German Credit dataset
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Appendix B

Hyperparameters

As discussed in Section 3.4.1, the value for hyperparameter max depth was set to 2 for
boosting algorithms ASSEMBLE, QBoost and AdaBoost and to ’None’ for bagging
algorithms Co-Forest and QBag. The value for hyperparameter min samples leaf was
set to 5 for the boosting algorithms, while it was set to 1 for the bagging algorithms.

Dataset Hyperparameters 5% 10% 20%

WDBC
Max. leaf nodes 20 10 5
Criterion Entropy Entropy Entropy
Min. samples split 10 2 2
Class weight None None None

German Credit
Max. leaf nodes 5 5 None
Criterion Gini Entropy Entropy
Min. samples split 10 2 20
Class weight Balanced Balanced Balanced

Two Moons (0.08)
Max. leaf nodes 20 20 20
Criterion Entropy Entropy Entropy
Min. samples split 2 2 2
Class weight None None None

Two Moons (0.15)
Max. leaf nodes None None None
Criterion Entropy Entropy Entropy
Min. samples split 2 2 2
Class weight None None None

Table B.1: Hyperparameter values used for the C4.5 algorithm

Dataset Hyperparameters 5% 10% 20%

WDBC No. of estimators 50 20 50
Learning rate 1.0 1.0 1.0

German Credit No. of estimators 20 20 20
Learning rate 1.0 1.0 1.0

Two Moons (0.08) No. of estimators 20 50 50
Learning rate 0.1 1.0 1.0

Two Moons (0.15) No. of estimators 50 50 20
Learning rate 0.1 0.1 1.0

Table B.2: Hyperparameter values used for the AdaBoost algorithm
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The hyperparametermax features could become
√
numberoffeatures or log2(numberoffeatures)

using grid search. These values are represented as sqrt and log2 in Table B.3 respec-
tively.

Dataset Hyperparameters 5% 10% 20%

WDBC

Min. samples leaf 5 10 1
No. of estimators 50 50 50
Min. samples split 10 10 2
Criterion Gini Entropy Entropy
Max. features log2 sqrt sqrt
Max. depth 2 5 5
Class weight None None None

German Credit

Min. samples leaf 5 5 1
No. of estimators 20 50 50
Min. samples split 10 2 2
Criterion Gini Gini Gini
Max. features sqrt log2 sqrt
Max. depth 2 5 2
Class weight Balanced Balanced Balanced

Two Moons (0.08)

Min. samples leaf 1 1 1
No. of estimators 50 50 50
Min. samples split 2 2 2
Criterion Entropy Entropy Entropy
Max. features sqrt sqrt log2
Max. depth 5 5 None
Class weight None None None

Two Moons (0.15)

Min. samples leaf 1 1 1
No. of estimators 50 50 50
Min. samples split 2 2 2
Criterion Entropy Entropy Entropy
Max. features sqrt sqrt sqrt
Max. depth None None None
Class weight None None None

Table B.3: Hyperparameter values used for the Random Forest al-
gorithm
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Dataset Hyperparameters 5% 10% 20%

WDBC
Nearest Neighbor method KDTree KNN KNN
Leaf size 2 5 5
No. neighbors 1 1 3
Initial labeled weights 0.95 0.95 0.95

German Credit
Nearest Neighbor method KNN KDTree KDTree
Leaf size 5 2 5
No. neighbors 1 3 1
Initial labeled weights 0.95 0.8 0.95

Two Moons (0.08)
Nearest Neighbor method KNN KDTree KDTree
Leaf size 2 2 5
No. neighbors 3 1 3
Initial labeled weights 0.95 0.95 0.95

Two Moons (0.15)
Nearest Neighbor method KNN KDTree KDTree
Leaf size 5 5 5
No. neighbors 3 3 1
Initial labeled weights 0.95 0.95 0.95

Table B.4: Hyperparameter values used for the ASSEMBLE algo-
rithm

Dataset Hyperparameters 5% 10% 20%

WDBC No. of estimators 50 50 50
Confidence threshold 0.8 0.85 0.85

German Credit No. of estimators 20 20 20
Confidence threshold 0.85 0.85 0.85

Two Moons (0.08) No. of estimators 50 50 50
Confidence threshold 0.7 0.7 0.7

Two Moons (0.15) No. of estimators 50 50 50
Confidence threshold 0.7 0.7 0.75

Table B.5: Hyperparameter values used for the Co-Forest algorithm

Dataset Hyperparameters 5% 10% 20%
WDBC Disagreement measure Vote Entropy JS Divergence Vote Entropy

German Credit Disagreement measure Vote Entropy Vote Entropy Vote Entropy
Two Moons (0.08) Disagreement measure Vote Entropy Vote Entropy Vote Entropy
Two Moons (0.15) Disagreement measure Vote Entropy Vote Entropy Vote Entropy

Table B.6: Hyperparameter values used for the QBoost algorithm.
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Dataset Hyperparameters 5% 10% 20%

WDBC Disagreement measure Vote Entropy JS Divergence Vote Entropy
No. of estimators 50 50 50

German Credit Disagreement measure Vote Entropy Vote Entropy Vote Entropy
No. of estimators 50 50 50

Two Moons (0.08) Disagreement measure JS Divergence Vote Entropy Vote Entropy
No. of estimators 20 50 50

Two Moons (0.15) Disagreement measure Vote Entropy JS Divergence JS Divergence
No. of estimators 50 50 50

Table B.7: Hyperparameter values used for the QBag algorithm
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Appendix C

Dunn's test

C.1 Wisconsin Diagnostic Breast Cancer

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 0.00905
Co-Forest 9.1e−06 1.5e−12
QBag 2e−16 2e−16 2e−16
QBoost 0.38472 0.00053 0.00032 2e−16
Random Forest 2e−16 2e−16 6e−06 4.6e−05 2.5e−16

Table C.1: P-values resulting from Dunn's test using False Discovery
Rate corrections for the WDBC dataset using a labeled rate of 5%.

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 0.04090
Co-Forest 0.00252 3e−07
QBag 2e−16 2e−16 2e−16
QBoost 0.07405 0.00011 0.20366 2e−16
Random Forest 1.8e−06 5.7e−12 0.08298 2e−16 0.00305

Table C.2: P-values resulting from Dunn's test using False Discovery
Rate corrections for the WDBC dataset using a labeled rate of 10%.

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 4.5e−11
Co-Forest 1.9e−08 0.350
QBag 2e−16 2e−16 2e−16
QBoost 2e−16 2e−16 2e−16 0.381
Random Forest 3.9e−05 0.015 0.145 2e−16 2e−16

Table C.3: P-values resulting from Dunn's test using False Discovery
Rate corrections for the WDBC dataset using a labeled rate of 20%.
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C.2 German Credit

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 0.07348
Co-Forest 9.9e−10 2e−05
QBag 1.7e−13 3.3e−08 0.21587
QBoost 0.11582 0.00065 1.4e−14 2e−16
Random Forest 0.02270 0.61809 0.00015 4.9e−07 0.10001

Table C.4: P-values resulting from Dunn's test using False Discovery
Rate corrections for the German Credit dataset using a labeled rate

of 5%.

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 0.075
Co-Forest 2e−16 1.9e−15
QBag 2e−16 2e−16 4.5e−07
QBoost 0.407 0.367 2e−16 2e−16
Random Forest 0.012 0.464 5.3e−13 2e−16 0.102

Table C.5: P-values resulting from Dunn's test using False Discovery
Rate corrections for the German Credit dataset using a labeled rate

of 10%.

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 0.076
Co-Forest 2e−16 2e−16
QBag 2e−16 2e−16 2e−16
QBoost 2e−16 2e−16 2e−16 0.073
Random Forest 2e−16 2e−16 0.648 2e−16 2e−16

Table C.6: P-values resulting from Dunn's test using False Discovery
Rate corrections for the German Credit dataset using a labeled rate

of 20%.
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C.3 Two Moons (0.08)

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 8e−07
Co-Forest 1.2e−09 0.2687
QBag 2e−16 2e−16 2e−16
QBoost 0.0094 3.2e−14 2e−16 2e−16
Random Forest 0.0476 3.3e−12 5.8e−16 4.9e−07 0.5265

Table C.7: P-values resulting from Dunn's test using False Discovery
Rate corrections for the Two Moons (0.08) dataset using a labeled rate

of 5%.

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 4e−12
Co-Forest 5.9e−09 0.280
QBag 2e−16 2e−16 2e−16
QBoost 2e−16 2e−16 2e−16 0.012
Random Forest 2.5e−15 0.327 0.041 2e−16 2e−16

Table C.8: P-values resulting from Dunn's test using False Discovery
Rate corrections for the Two Moons (0.08) dataset using a labeled rate

of 10%.

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 0.65088
Co-Forest 0.24553 0.45809
QBag 2e−16 2e−16 2e−16
QBoost 2e−16 2e−16 2e−16 5.3e−08
Random Forest 2e−05 0.00013 0.00231 2e−16 2e−16

Table C.9: P-values resulting from Dunn's test using False Discovery
Rate corrections for the Two Moons (0.08) dataset using a labeled rate

of 20%.
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C.4 Two Moons (0.15)

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 2.9e−10
Co-Forest 1e−11 0.610
QBag 2e−16 2e−16 2e−16
QBoost 0.058 2e−16 2e−16 5.5e−15
Random Forest 0.324 1.8e−13 4.2e−15 2e−16 0.388

Table C.10: P-values resulting from Dunn's test using False Discov-
ery Rate corrections for the Two Moons (0.15) dataset using a labeled

rate of 5%.

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 6.6e−07
Co-Forest 2e−16 2e−16
QBag 2e−16 2e−16 2e−16
QBoost 0.37 4.4e−05 2e−16 2e−16
Random Forest 8.1e−05 0.3109 2e−16 2e−16 0.0023

Table C.11: P-values resulting from Dunn's test using False Discov-
ery Rate corrections for the Two Moons (0.15) dataset using a labeled

rate of 10%.

AdaBoost Assemble Co-Forest QBag QBoost
Assemble 0.01307
Co-Forest 5.5e−10 2e−16
QBag 2e−16 2e−16 2e−16
QBoost 7.2e−16 2.4e−08 2e−16 2e−16
Random Forest 1.7e−09 0.00042 2e−16 2e−16 0.03950

Table C.12: P-values resulting from Dunn's test using False Discov-
ery Rate corrections for the Two Moons (0.15) dataset using a labeled

rate of 20%.
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