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Committing fraud is a financial burden for a company. Detecting fraud in an early stage

can reduce financial and reputational losses. Some fraudulent behavior (e.g. credit card

fraud) are assumed to be outliers in the dataset. This research proposes a new technique

to detect outliers in mixed-attribute datasets.

The proposed outlier detection technique uses outlier detection for categorical and

continuous dimensions separately. Infreqeunt pattern analysis is used for categorical

datasets and k-medians clustering for outlier detection in continuous datasets. These

two technique combined form the mixed-outlier detection algorithm, which was applied

on the multiple subsets created by attribute bagging.

The proposed algorithm is validated based on the NSL KDD dataset, which contains

intrusions in a network trafic, and the Wisconsin Breast Cancer dataset. The different

components of the algorithm were validated separately and combined for the NSL KDD

dataset. Based on the results we concluded that for this dataset the infrequent pattern

analysis was most accurate in detecting outliers. Attribute bagging added value for

the k-medians clustering. Infrequent pattern analysis and k-medians clustering were

compared by validating these algorithms with the Wisconsin Breast Cancer dataset.

These two algorithms show similar results.
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Chapter 1

Introduction

Committed fraud today is considered a serious financial burden to a company. Depend-

ing on the industry an organization is required to conduct an investigation, pay substan-

tial fines, or is subject to other types of damages (e.g. reputation damage). Research

shows that the cost of detected fraud on average is 5 percent of a company’s annual

revenue [1]. However, fraud is often never detected or under ”lucky” circumstances a

few years after the first event.

Almost every organization implements a form of an anti-fraud program in the attempt

of fraud control and prevention. Anti-fraud programs in general consist of fraud policies,

procedures and communication of these policies and procedures to employees [2]. Next

to these business controls, fraud prevention also includes the implementation of checks

built into software systems called IT-controls (e.g. enforced credit limits or technical

implemented segregation of duties). Although, in practice the currently implemented

controls by organizations show their weaknesses which still enable perpetrators in finding

new methods to commit fraud. Because fraud prevention alone does not eliminate

fraudulent behavior in a company, a company should also focus on fraud detection.

Detecting fraud is known as a time consuming effort. Early detection of fraud reduces

the aggregation of unnecessary involved financial and reputational losses. To date most

committed frauds were reported by whistleblowers, and afterwards detected by using

conventional research methods. Therefore the use of data analytics in fraud detection is

relevant and necessary.

Nowadays most companies are using Enterprise Resource Planning (ERP) systems to

support, register and manage their day-to-day business activities. As relevant transac-

tional and other data within these systems is being stored and logged the question arises

if fraud detection is possible using data analytics in ERP systems.
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Chapter 1. Introduction 2

Black’s Law Dictionary defines fraud as “a knowing misrepresentation of the truth or

concealment of a material fact to induce another to act to his or her detriment” [3].

The definition already explains that fraud is a comprehensive concept with different

characteristics and therefore different analytical methods.

Fraudulent behavior is assumed to be a not normal operation. For example, transactions

usually have similar characteristics, where patterns, like amount, bank-account, type of

transaction, etc., can be grouped together. Fraudsters deviate from this pattern and are

therefore not part of any group, and so outlying.

Outlier detection could be an innovative approach in detecting the existence of fraud-

ulent records, because we expect that a fraudulent case or record is an outlier in the

transactional dataset and that the ”normal” cases are often similar to each other. Outlier

detection can be both a supervised and unsupervised learning technique. This research

focuses on unsupervised outlier detection, because in almost all real dataset fraud is an

unknown case or record in the dataset.

Not all types of fraudulent behavior can be detected with outlier detection techniques.

Due to seemingly normal behavior clustered in the dataset, it is possible that the actual

outlier is not detected by the outlier detection method. For example, if the perpetrator

processes a non-remarkable transaction amount to a non-blacklisted bank-account within

a usual timeframe, the transaction will not be identified as irregular and therefore never

marked as outlier. Fraudulent behavior which can be detected with outlier detection

are: Credit Card fraud and intrusion in a network [4].

This research investigates an outlier detection technique, which can be useful in fraud

detection and tries to find an answer regarding the following research-question:

What outlier detection technique can be used to detect outliers in mixed-

attribute datasets?

This research-question is supported by a number of sub-questions:

• What are datasets with mixed-attributes?

• What is an appropriate technique for outlier detection in a continuous dataset?

• How are outliers detected in categorical datasets?

• What is an appropriate method for a high dimensional dataset with mixed at-

tributes?

This thesis first discusses related work of other researchers and the application of these

methods in our approach. Next, we introduce a new technique to detect outliers in
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categorical attributes. Subsequently, it will combine related work and our new technique

to detect outliers in mixed-attribute datasets. Finally, we will present our experimental

setup and results.



Chapter 2

Related work

2.1 General

Outlier detection has been studied by several researchers. Researchers studied two types

of outlier detection algorithms: supervised and unsupervised learning algorithms. Su-

pervised learning algorithms detect outliers using labeled data, which means that records

are classified as ”normal” or ”outlier”. Whereas unsupervised learning algorithms use

unlabeled data, which means that outliers (and normals) are unknown.

Supervised learning algorithms use examples and rules in order to determine what char-

acterizes an outlier and what characterizes normal behavior. New observations are

assigned to one of the two classes. Supervised learning algorithms are very popular in

fraud detection [8, 9]. However, supervised learning algorithms require examples of both

classes (”normal” and ”outlier”) and can merely detect type of outliers or frauds that

exist in the training dataset [10]. Therefore, a new type of fraud (or outlier) is not

likely to be recognized as an outlier. Additionally as real data might not be labeled,

an investigation is necessary to classify the outlier and normal records to create labeled

data for learning and validation purposes. Also, the identification of classes needs to be

accurate, which is often not the case due to human interpretations. Besides, unbalanced

ratio between the ”normal” and ”outlier” classes (e.g. scarcity of outliers) can cause

misclassification [8].

Unsupervised learning algorithms are based on how the data is distributed instead of

rules or examples. The distribution of data and the unsupervised algorithms identify

outliers in datasets based on variation of this distribution. Therefore, this algorithm

does not require labeled examples, which provides a more realistic process of fraud

detection since this information is not available. However, Lazarevic and Kumar state

4



Chapter 2. Related work 5

that using unsupervised learning the false positive rate could possibly increase because

new (normal) data is recognized as outlier [11]. Unsupervised learning is based on two

assumptions:

• the number of ”normal” records is considerably higher than the number of ”outlier”

records;

• Outlying behavior can be separated from normal behavior [12].

According to K. Yamanishi et. al. unsupervised learning is technically more difficult

[9]. This research focuses on unsupervised learning techniques. As stated, in fraud

detection the fraudulent behavior is unknown and it takes time and effort to investigate

these outlying examples that can be used in supervised learning. Besides, in comparison

to supervised learning unsupervised learning has the benefit of detecting new outlier

records which have not been discovered before.

Lazarevic and Kumar categorized four groups of unsupervised outlier detection tech-

niques [11]:

• Statistical approaches assume that the underlying distribution of the data is known.

Based on deviation of the distribution outliers are recognized. However, this type of

technique has limitations on high-dimensional data, because finding the underlying

distributions of each dimension is a complex exercise [4];

• Distance based approaches compute distances between points to detect outliers.

This technique has less limitations than the statistical approaches [11]. Distance

based models are a common technique in researching outlier detection of high

dimension data [13]. However, other literature states that distances in high-

dimensional data suffer from the ”curse of dimensionality”, where data points

become equidistant and similar [14];

• Profiling methods: These techniques create profiles of normal-behavior using heuris-

tics. Outliers are detected as deviations of the normal-behavior profiles [15].

Bolton and Hand investigated detection of credit card fraud using unsupervised

profiling methods. They introduce an analysis where a peer group is created by

measuring spending profiles [8].

• Model-based approaches: This category is characterized by predictive models to

detect anomaly behavior. Examples of predictive models are replicator neural

networks or support vector machines [11].
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In this research statistical approaches are not considered, because the underlying dis-

tribution is unknown and hard to investigate for multiple dimensions. The profiling

approaches are also not preferred, because there is no profile for true outliers. This is

why we use a combination of the distance and model based approach. As mentioned,

distance based approaches for high dimensional-data suffer from the ”curse of dimen-

sionality”. Section 2.3 discusses a technique, called attribute bagging, which handles

this problem and distances can be used for outlier detection in high-dimensional data.

2.2 Clustering techniques

Clustering techniques are unsupervised learning algorithms that classifies patterns in the

data and groups patterns which form ”clusters”. Clustering algorithms are investigated

by many researchers in different disciplines. Clustering techniques are also used in

outlier detection. Often outlier detection algorithms use k-Means clustering [6, 7]. An

alternative is k-median clustering.

The objective of a clustering technique is to find clusters in a dataset and although it

may detect outliers, it is not its primary purpose. However, if a distance between a

point and its centroid increases the probability of being an outlier increases. Therefore

clustering can help detecting outliers in datasets.

2.2.1 k-Means clustering

k-Means clustering starts by randomly initializing the k centroids prior to the first

iteration. During every following iteration all data points are assigned to their closest

centroid followed by a calculation of a new mean of the cluster which becomes the new

centroid. This process will be repeated until the centroid of the last iteration equals

the outcome of the current iteration which declares the model as stable. The algorithm

converges to a local minimum.

In general the algorithm has linear time complexity when the size of data increases.

However, k-means clustering is not resistant to and highly sensitive for outliers. Based

on these characteristics the algorithm cannot be perceived as robust [7, 16].

2.2.2 k-Median clustering

Whereas k-means clustering selects the mean of a cluster as centroid k-median selects

the median. Therefore we can conclude that k-median clustering is a more robust
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technique for outlier detection [17]. k-Median clustering minimizes the 1-norm distance

of every point to its assigned cluster centroid [17]. The 1-norm distance is also called

the Manhattan distance. It calculates the sum of differences between two vectors in a

dimensional space [18]. The algorithm converges to a local minimum of the Manhattans

distance between the centroid and its assigned points [19].

Definition 2.1. Manhattan distance calculates the sum of differences between two vec-

tors u and v in dimension n [18].

MD(u, v) =

n∑
i=1

|xi − yi| (2.1)

In k-median clustering the number of clusters, k, is specified by the user. Many re-

searchers have investigated how to select the appropriate number of clusters [20]. A

method to set an appropriate k is based on the heuristic of minimizing the intra-cluster

(within cluster) distance and simultaneously maximizing the inter-cluster distance (be-

tween cluster) [21]. A technique using this heuristic is the silhouette-index [22].

Definition 2.2. Silhouette-index maximizes the inter-cluster and minimizes the intra-

cluster distances [21].

S(i) =
bi − ai

max(ai, bi)
(2.2)

Where ai is the average distance of point i to the points in its cluster and bi is the

average distance of point i to each point of the nearest cluster.

The range of the silhouette-index is [−1, 1]. If the Silhouette-index is close to 1, point

i is assigned to a ”correct” cluster. Point i is misclassified when the Silhouette index is

near −1. A high average Silhouette-index value of all data points means that the data

is clustered appropriately.

In this research we first tried means-clustering, however with extreme values in the out-

liers the model was really sensitive. Therefore, we use k-median clustering algorithm for

outlier detection in continuous datasets, because in contrast to k-means this clustering

method is more robust for outliers. This is an example of a distance based approach.

2.3 Attribute Bagging

In recent years the amount of data is increasing exponentially. The inherent consequence

of this growth is an increased number of attributes. In order to reduce dimensionality

researchers investigated methods to carefully select attributes and remove the irrelevant
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or redundant attributes. In contrast to these regular approaches the research of Lazare-

vic and Kumar shows a method to handle the challenges of irrelevant or redundant

attributes, called attribute bagging [11].

This principle of attribute bagging is derived from ”bootstrapping”. Bootstrapping is

a statistical technique to measure accuracy. The bootstrapping technique creates many

random samples of the dataset with replacement. The estimators of all random samples

result in a confidence interval for the statistical estimator.

Attribute bagging has similarities with bootstrapping. In contrast to bootstrapping,

attribute bagging is a technique used for sampling of the attributes without replacement.

Researchers Lazarevic and Kumar prove that when a dataset has an increased number

of irrelevant or redundant attributes it is difficult to detect true outliers, due to these

noisy attributes [11]. Algorithm 1 shows the technique of attribute bagging.

Algorithm 1 Attribute Bagging algorithm

procedure Attribute Bagging(D,T, b)

subsets← NULL

for t in 1,..,T do
selected attributes = sample(1:numberOfAttributes, b)
subsets ← Add subset of selected attributes of D

end for

return subsets

end procedure

The attribute bagging algorithm creates many subsets by iteration of the following two

steps [11]:

• Take a random sample of the attributes without replacement. A random sampled

dataset Dt is created with all N records and a selection of d ∈ b attributes in the

tth iteration (b = maximum number of attributes in attribute bag).

• Use dataset Dt as input for the outlier algorithm, which creates a vector with

outlier scores for all records based on the attribute subset Dt.

Lazarevic and Kumar discuss two techniques to combine the results of attribute bagging:

• Breadth-First is a simple method where the ASt vector with the results for iteration

t ∈ T are ranked. The first element of the AS vectors, with the highest probability

for that algorithm of being an outlier, are set on the {1, ..., t}-place of ASFINAL
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• Cumulative sum computes the sum of the outlier scores of record i of all algorithms

and ranks these sums to create the ASFINAL

This research proposes an outlier detection technique which calculates multiple outlier

scores per attribute bagging iteration. The scores indicate the probability for an ob-

servation of being an outlier. In this research we use the Cumulative sum method to

combine the results of the different iterations. The research of J. Gao et al shows that

cumulative sum has more accuracy than Breadth-First, so in this research Breadth-First

is not considered [23]. in chapter 5 we will further discuss the attribute bagging used in

this research.



Chapter 3

Infrequent Pattern Analysis

In practice almost every dataset contains both continuous and categorical attributes, also

called mixed attribute dataset. Outlier detection methods merely focus on continuous

or categorical attributes. In order to create a dataset with a single attribute type,

sometimes all categorical attributes are transformed into multiple binary attributes [24].

This implies that the data becomes high dimensional because every categorical attribute-

value becomes a binary attribute, in particular when data contains categorical attributes

having many different attribute-values. This method is not preferred because in high

dimensional spaces the data points become equidistant and similar, which leads to the

”curse of dimensionality” [14].

This section focuses on outlier detection in categorical attributes. The research of Otey

et al. [25] and Koufakou [26] demonstrate a technique that searches for infrequent

patterns in datasets, which is called infrequent pattern analysis. Infrequent patterns are

combinations of categorical attributes that are irregular or outlying. Both researchers

defined a categorical score for outliers based on the frequency or support. However,

these researchers use every possible pattern combination and therefore, the amount of

patterns grows exponentially with the number of attribute-values causing complexity

and extensive processing time [27].

Important to the analysis of infrequent patterns is the frequency or support of an oc-

curring pattern. First we introduce the definition of support.

Definition 3.1. Support is the frequency of an occurring pattern d. The function for

support is defined as:

support(d) =
n∑

i=0

1|xi(D) = d (3.1)

Where n is the number of records in the dataset, d ∈ D is a categorical pattern where

attributes occur only once and xi(D) is the categorical values of point xi for attributes

10
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D. If the categorical values of this point are equal to d, the support increases with factor

1.

The definition of support has the following properties:

(a) If an attribute-value is added to the pattern, the support cannot increase. For

example, if pattern a,b has a frequency of 4, pattern a,b,c cannot occur more than

4 times. ∀P : ∀Q ⊇ P : support(Q) ≤ support(P ) where P and Q are patterns

[27];

(b) Supersets (e.g. I) of an infrequent pattern cannot be frequent. This follows from

property (a) ;

(c) All subsets of a frequent pattern are frequent. This also follows from property (a).

Data points have an infrequent pattern in their categorical attributes when a co-occurrence

of attribute-values is below a user specified threshold, σ. When the support of a pattern

is below σ percent of n (number of records in entire dataset) the pattern is infrequent.

The threshold is not changed during the infrequent pattern analysis. The research of

Otey et al [25] and Koufakou [26] uses σ = 5%. In the example in this section the used

threshold is also σ = 5%.

With infrequent pattern analysis xi receives an outlier score based on the support of

the pattern in the categorical attributes. If a pattern is infrequent, each superset of this

pattern is also infrequent, see property (b). The research of Otey et al [25] and Koufakou

[26] investigate all possible combination of attribute-values, which is time consuming and

complex. Therefore, this research considered an alternative for the infrequent pattern

analysis and proposes a new outlier detection technique for datasets with categorical

attributes, postponed outlier detection. This technique is based on property (b), which

makes it easier to process and is less time consuming.

3.1 Postponed outlier detection

Postponed outlier detection investigates infrequent patterns in the categorical attributes

of the data. The postponed outlier detection algorithm creates an attribute tree. This

tree is created with an iterative process, starting with a selection of first nodes where

the attribute is least discriminative, see definition 3.2.

Definition 3.2. the least discriminative attribute (LDA) is the attribute that contains

the maximum number of different attribute-values, where the minimum support of all
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attribute-values is frequent.

LDA = max
0<a≤|A|

La (3.2)

Where La is the number of unique attribute values for attribute a and |A| is the number

of remaining categorical attributes in the dataset.

Due to this definition the outliers are detected in a deeper level of the tree, hence we

call this postponed outlier detection.

With the definition of the least discriminative attribute the tree can be build. After

finding the first least discriminative attribute, the next can be calculated. In this fol-

lowing step the remaining attributes are combined with the first Least Discriminative

Attribute. Patterns are formed whereafter the support of every pattern is calculated

and the next LDA is established based on the new patterns and their support. This

process continues until the last LDA is added to the tree, see figure 3.1 for an example.

If an infrequent pattern presents itself in a tree, the superset of that infrequent pattern

is also infrequent. Therefore, that branch of the tree will not be further investigated

and the node is knotted from that point on. Figure 3.1 shows the knotted nodes with

red labels of support. This is a pruning technique, which reduces the size of a tree and

the run time of our algorithm.

3.1.1 Score

Until now, we have defined support, postponed outlier tree and infrequent patterns.

With support, the (in)frequent patterns and the depth of the tree the proposed infrequent

pattern analysis creates the outlier score for each record in the dataset. This research

suggests the following outlier score for categorical dataset:

Score1(xi) =
∑
|d|≥0

1

support(d) · |d|
(3.3)

Where d ∈ D is a categorical pattern where attributes are not duplicated and |d| is the

depth of the tree. d represents the minimum infrequent pattern following the LDA-tree.

The score uses the minimum infrequent pattern, because the supersets of d are also

infrequent and therefore not further investigated. The range of Score1 is [0, 1]. If the

score of xi is close to 1, xi has a high probability of being an outlier.

As already mentioned, the research of Otey et al [25] also calculates an outlier categorical

score. However, they suggest that only infrequent patterns get a score > 0 and frequent

patterns a score equal to 0. This research calculates a Score1 for every record, regardless
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Figure 3.1: set up of categorical attributes in a tree to find infrequent patterns.
Attribute D is the first LDA, after combining attribute D with C, C is the LDA. The
number in each node is equal to the support of the pattern, when this is marked red,
it is an infrequent pattern. Remark that after the number is red, the tree is knotted

because every superset is an infrequent pattern. In this figure σ = 5%

of a record has frequent or infrequent patterns. This technique is applied in order to

prevent all records from receiving a frequent pattern score 0, when the postponed outlier

detection does not detect infrequent patterns. This will be further explained in chapter

4.

Algorithm 2 shows the postponed outlier detection technique in combination with the

categorical scoring.
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Algorithm 2 Postponed Outlier Detection

procedure Postponed Outlier Detection(D, sigma)

mc ← numberOfCategoricalAttributes(D)

threshold = sigma · length(D)

Score1(X) = 0 . X: vector containing all records

LDA← NULL

patterns(x)← NULL

Xfreq = X

for a in 1,..,mc do

LDA = max(La)

patterns(Xfreq) = patterns(Xfreq) + xLDA

support(Xfreq) = support(patterns(Xfreq))

if support(Xfreq) ≤ threshold then

Xinfreq = support(Xfreq ≤ threshold)

Score1(Xfreq) = 1/(support(Xfreq) · a)

Xfreq = Xfreq −Xinfreq

end if

end for

Score1(Xfreq) = 1/support(Xfreq ·mc)

return Score1(x)

end procedure

3.1.2 Example

Consider two points xj and xk and their categorical attributes mcj and mck respectively.

This examples uses a user specified threshold for infrequent patterns, σ = 5%, the

number of records, n = 186 and figure 3.1 is the LDA-tree. Point xj has {D3, C2, B2, A3}
as categorical attributes and point xk has {D4, C1, B2, A3} as categorical attributes. If

we look at the tree we see that {D3, C2} is an infrequent pattern, see figure 3.1 node

”Attribute D3” followed by node ”Attribute C2” with a support of 5. Therefore, we can

conclude that point xj has an infrequent pattern. When looking at the path of record
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xk in the LDA-tree, we notice that xk has only frequent patterns, see figure 3.1 node

”Attribute D4” followed by node ”Attribute C1, B2 and A3” with a support of 14. This

support is above the threshold σ, which makes the pattern frequent. The outlier score

for xj is
1

5 · 2
= 0.1 and for xk is

1

14 · 4
= 0.018. In this example, xk has the lowest score

and is considered more an outlier than xj

Earlier research investigated infrequent pattern analysis for categorical attributes. This

research uses the knowledge from the previous investigated infrequent pattern analysis,

but proposes a new technique, called Postponed Outlier Detection. This new technique

introduces a LDA-tree, which searches for infrequent patterns. An infrequent pattern

occurs when the support is below a user-specified threshold, σ. Finally, an outlier score

defines the probability of being an outlier for every record.



Chapter 4

Mixed-attribute outlier detection

Previous chapters discussed techniques that can be used for outlier detection in different

datasets. Almost all datasets have both continuous and categorical attributes, also called

mixed-attribute datasets. With infrequent pattern analysis we avoid the transformation

of categorical attributes to binary attributes. In practice, continuous attributes can

also transform to categorical ranges, but this will inevitable lead to loss of information.

Therefore, different methods are applied on a the different subsets of the dataset.

Until now, this research discussed infrequent pattern analysis for datasets with categor-

ical attributes and k-medians cluster for outlier detection in datasets with continuous

attributes, chapter 2. But how can we combine the infrequent pattern analysis with

the k-median clustering algorithm to create a mixed-attribute outlier detection tech-

nique? To answer this question this section proposes a mixed-attribute outlier detection

method. In addition to the mixed-attribute outlier detection method, we also use the

attribute bagging technique, discussed in chapter 2.

Many researchers investigated possible outlier detection techniques for categorical or con-

tinuous datasets only, but few detected outliers in mixed-attribute datasets. Researchers

Otey et al [25] and Koufakou [26] have performed mixed-attribute outlier detection and

suggest to calculate two different scores: one for categorical data (categorical score) and

one for continuous data (continuous score).

4.1 Components of the mixed attribute outlier detection

technique

Although both researches [25, 26] show satisfying results, this research suggests a differ-

ent method, which will be explained below. The technique differs in three areas, which

16
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are the three pillars or components of the proposed mixed-attribute outlier detection

technique:

1. Attribute bagging

2. Categorical Score

3. Continuous Score

4.1.1 Attribute bagging

A way to handle the challenges of irrelevant or redundant attributes is using the attribute

bagging technique. By using this technique, we do not carefully select attributes, but

randomly create multiple subsets of the data (section 2.3). Attribute bagging is useful

in (high-dimensional) datasets with many redundant attributes. This technique is not

considered in the research of Otey et al and Koufakou. This research investigates the

use of attribute bagging in combination with mixed-attribute outlier detection.

The attribute bagging algorithm, see algorithm 1, has the following parameters:

• T : total number of iterations;

• b: maximum number of attributes in a subset or so called ”bag”.

4.1.2 Categorical Score

The proposed categorical score of both researchers [25, 26] is a variant of the infrequent

pattern analysis used in this research, chapter 3. The Postponed Outlier Detection

technique calculates a categorical score. This technique is proposed because it takes

the properties of the support in consideration, which generates a faster technique that

detect outliers in datasets with categorical attributes.

The research of Otey et al [25] and Koufakou [26] calculate the categorical outlier score

for a record with the support of infrequent patterns in the attribute-values. If a record

does not have infrequent patterns, the categorical score is equal to 0. We decided to

calculate a categorical score (Score1) for every record, because we also use attribute

bagging, which means that the results are handled a little different.

With attribute bagging the subsets can contain a various number of attributes up to

b (maximum number in subset). In the situation that the attribute bagging algorithm
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selects only few number of categorical attributes chances are that most patterns are

frequent. When all records have frequent patterns, still the support of frequent patterns

deviates. Therefore, we want to distinct a frequent pattern with a very large support

from those with a support that is just above the σ-threshold. When the support is

increasing, the Score1 will approach 0.

All categorical scores are ranked in decreasing order, which will be discussed in section

4.2.

4.1.3 Continuous Score

Apart from categorical score, the records get also a continuous score for the dataset with

continuous attributes. This continuous score is calculated with the use of k-Medians

clustering technique, see chapter 2.

Earlier research [25, 26] calculated the continuous score based on the continuous sim-

ilarities between records with similar categorical attribute-values. So, the researchers

assume that records with similar categorical attribute values share similar continuous

attribute values. We decided not to use this technique, because we don’t want to make

this assumption. Instead we use k-median clustering to calculate the continuous score,

where the continuous records showing similar behavior are already clustered without

considering categorical attribute-values.

When using k-Median clustering in outlier detection, a record with a large distance to

its closest cluster is considered to be more outlying than a datapoint located perfectly

within a cluster. Therefore, Score2(xi) is defined as the Manhattan distance from a

record to the closest centroid, see equation 4.1.

Score2(xi) = MD(xi, ck) =‖ xi − ck ‖1=
|mq |∑
j=1

|xij − ckj | (4.1)

Where ck is the closest centroid of point xi and |mq| is the number of continuous at-

tributes. Score2(xi) ≥ 0. If Score2(xi) increases, the closest centroid for record xi is

distant. This means that xi has an increased probability of being marked as outlier.

4.2 Ranking

In order to create a final ranking, the above described components are combined in the

outlier detection algorithms, called mixed-attribute outlier detection. The two scores,



Chapter 4. Mixed-attribute outlier detection 19

Score1 and Score2, have both different ranges and cannot be compared. This is why

we rank the scores, both in decreasing order. This results in two rankings per record: a

rank for categorical attributes, and one for continuous attributes. Eventually, the final

rank is equal to the average of the two rankings.

If datapoints have similar scores, called ties, the rank is calculated differently. For

example, when two records are both ranked as 1, so actually they have rank 1 and 2 the

rank is equal to
2 + 1

2
= 1.5.
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Experimental setup

5.1 Introduction

We implemented our algorithm using the R language. This is open source statistical

language. We ran the experiment on a computer with 2.50 GHz processor and 16,0 GB

of RAM.

Validating unsupervised learning algorithms is a challenge, because true-positives and

false-negatives are unknown. However, thanks to two datasets with labeled data we are

able to validate our proposed algorithm. These two datasets are the NSL KDD dataset

and the Breast Cancer dataset both from the UCI Machine Learning Repository [29].

These datasets are also used in other outlier detection research. The NSL KDD dataset

contains intrusions, where we assume that these intrusions are different (so outlying)

from normal entrance. In the Breast Cancer dataset the malignant cases are supposed

to be outliers.

The algorithm proposed in this research has multiple components to detect outliers in the

dataset. It uses infrequent pattern analysis to detect outliers in categorical dimensions

and k-median clustering technique in continuous dimensions. These two techniques are

combined resulting in a mixed-attributes outlier detection algorithm. Ultimately and

additionally mixed-attributes outlier detection is applied on all subsets resulting from

the attribute bagging method. Each component of the algorithm is validated, namely:

• Infrequent pattern analysis with all categorical attributes;

• k-median clustering with all continuous attributes;

20
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• mixed-attributes outlier detection with all attributes: infrequent pattern analysis

and k-median clustering;

• attribute bagging with categorical attributes and infrequent pattern analysis;

• attribute bagging with continuous attributes and k-median clustering;

• full model: attributes bagging combined with mixed-attributes outlier detection.

5.2 Validation methods

5.2.1 Kendall’s rank correlation

In order to validate our proposed algorithm we use the Kendall-rank correlation test. The

Kendall-rank correlation test computes a coefficient, τ , which explains the correlation

between two rankings.

Definition 5.1. The Kendall τ coefficient explains correlation between two rankings

and is defined as [31]:

τ =
C −D

1
2n(n− 1)

(5.1)

where n is the number of records, C is the number of concordant pairs and D is the

number of discordant pairs. The reach of the coefficient is −1 ≤ τ ≤ 1. When the

coefficient is close to 1 the two rankings are similar. When it nears −1 the rankings are

perfectly disagreeing. When it is close to 0 the rankings are independent. Please note

that this coefficient looks at the order of the list, not the exact number of the ranking.

The ranking of our algorithm is compared to a ranking of true-outliers, where the outliers

are ranked as 1st and the normals as 2nd. This means that there are ties (values with a

similar ranking) in the rankings. Kendall uses a different formula when ties exist in the

rankings, this is called τb, [31, 32].

Definition 5.2. The Kendall τb coefficient explains correlation between two rankings

with ties and is defined as [31]:

τb =
C −D√

(12(n(n− 1))− T )(12(n(n− 1))− U)
(5.2)

Where T is the number of ties in one of the rankings and U is the number of ties in the

other ranking.
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5.3 NSL KDD dataset

The dataset from the third international Knowledge Discovery and Data mining tool

competition of 1999 (KDD cup 1999 [28, 29]) is often used to validate outlier detection

algorithms. The training dataset covers 7 weeks of network traffic. Multiple intrusions

or attacks are simulated and added to the dataset. Depending if the activity is normal

or a type of intrusion, each record is labeled accordingly.

The dataset contains 5 million records, 41 attributes and 1 attribute with the classifi-

cation of the records (intrusion/attack or normal). The dataset allows us to validate

our outlier algorithm. There are many critics regarding this dataset. Researchers state

that the dataset suffers from redundant, duplicated records and other shortcomings.

They created a new dataset, called NSL KDD dataset [30]. In our research we use this

renewed dataset to validate our algorithm.

This dataset has approximately 150,000 records and the same number of attributes as the

KDD cup 1999 dataset. The dataset spotted 39 different types of attack, see appendix

A for all types of attacks and their frequency. 52% of the dataset records are identified

as normal activity, which means that 48% of the dataset are types of intrusions. This

is insufficient for validation of an outlier detection algorithm, because intrusions are not

rare in the dataset. Besides, 31% of the dataset records are identified as a ”Neptune”

attack. Therefore, the Neptune attack records do not qualify as outlier.

In order to validate the algorithm we selected 18 types of attacks with a low level of

support, see table 5.1. The outlier algorithm is applied to 18 different datasets, where

every dataset contains a type of intrusion combined with normal activity records. We

decided to use 18 datasets so we can compare the results of our algorithm applied on 18

different sets and to make sure we have a thorough validation. Please refer to chapter 6

for the results.

5.4 Breast Cancer Wisconsin

For our second validation we used the Wisconsin breast cancer dataset [29, 33]. Many

researchers use the Breast Cancer Wisconsin dataset as input for the validation of their

outlier detection algorithm [34–37]. The dataset has 699 records with 458 (66%) labeled

as benign and 241 (34%) as malignant. There are 10 different attributes available in the

dataset. All attributes are categorical attributes: one attribute is the id number of a

patient and the remaining attributes have a range between 1 − 10 and are categorical

indicators, see table 5.2.
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Table 5.1: attacks and their occurrences

intrusion frequency

spy 2
sqlattack 2
udpstorm 2
worm 2
xsnoop 4
perl 5
phf 6
xlock 9
ftp write 11
loadmodule 11
imap 12
xterm 13
sendmail 14
ps 15
named 17
land 22
rootkit 23
multihop 25

Table 5.2: Attributes of Wisconsin breast cancer dataset

Attribute Values

Sample code number id number
Clump Thickness 1 - 10
Uniformity of Cell Size 1 - 10
Uniformity of Cell Shape 1 - 10
Marginal Adhesion 1 - 10
Single Epithelial Cell Size 1 - 10
Bare Nuclei 1 - 10
Bland Chromatin 1 - 10
Normal Nucleoli 1 - 10
Mitoses 1 - 10
Class benign or malignant

5.4.1 Validate categorical outliers

Because of the categorical attributes, this dataset is suitable for validation of our post-

poned outlier detection algorithm based on infrequent pattern analysis. However, the

34% of the dataset is identified as malignant, it is likely that the malignant cases do not

qualify as outlier. Therefore we take a sample of 458 benign and 24 (4.9% of the entire

dataset) randomly picked malignant cases.
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5.4.2 Validate continuous outliers

Although the attributes are categorized, the categories have numeric characteristics. For

example, the clump thickness category 10 is larger than clump thickness category 1, so

the distance between categories is explanatory. To compare the results of the infrequent

pattern analysis with the k-median clustering algorithm, we also perform the k-median

clustering algorithm on the Wisconsin breast cancer dataset.

5.5 Model validation

In order to validate whether our algorithm is robust, we use K-fold cross validation. In

K-fold cross validation the data is split into K random samples of approximately the

same length. The outlier detection technique is applied K times on K − 1 random data

samples. In every iteration a different sample is excluded. This results in K rankings of

outliers where one value is missing, because each sample is excluded once in the K-fold

cross validation. Figure 5.1 shows a representation of the K-fold cross validation. The

figure shows that in every ith iteration, where i ∈ {1, .., k}, the k − 1 samples are used

as training set and that the ith sample is excluded.

Normally, k-fold cross validation use the training set to train the model. The excluded

sample is used to validate the trained model. However, this research does not train a

model on a dataset but simply detects outliers in the dataset. Therefore we use K-fold

cross validation to validate whether a recognized outlier in sample A is also a present

outlier in sample B.

With the Kendall correlation the K rankings are validated for correlation. If they are

correlated, the algorithm is robust and an outlier is identified in different samples.
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Figure 5.1: K-fold cross validation: each turn k− 1 samples are used as input for the
algorithm for validation.
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Results

6.1 NSL KDD

As described in the experimental setup, our algorithm has 3 three different component:

Attribute Bagging, Infrequent Pattern Analysis and k-median clustering. Every single

component and possible combination of components is applied on the 18 subsets of the

NSL KDD dataset. Table 6.1 shows all results. The table has 7 columns:

• Attack: type of intrusion in the dataset (type of outlier);

• Cluster: performance of the k-median clustering algorithm;

• IFP: performance of the Infrequent Pattern Analysis;

• Mixed: performance of the mixed-attribute outlier detection technique, which is

a combination of k-median clustering an Infrequent Pattern Analysis;

• Cluster AB: performance of the k-median clustering technique in combination

with attribute bagging;

• IFP AB: performance of the Infrequent Pattern Analysis in combination with

attribute bagging;

• Mixed AB: performance of the mixed-attribute outlier detection in combination

with attribute bagging.

26
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Table 6.1: Kendall correlation for every component of the algorithm

Attack Cluster IFP Mixed Cluster AB IFP AB Mixed AB

spy 0.002 0.008 0.006 0.007 0.007 0.007

sqlattack 0.001 0.008 0.007 0.006 0.007 0.007

udpstorm -0.001 0.007 0.005 0.008 0.008 0.005

worm 0.006 0.008 0.007 0.006 0.006 0.004

xsnoop 0.006 0.012 0.010 0.012 0.012 0.008

perl 0.006 0.012 0.010 0.009 0.009 0.008

phf 0.007 -0.004 0.004 -0.004 -0.004 0.005

xlock 0.011 0.018 0.014 0.014 0.016 0.013

ftp write 0.001 0.016 0.011 0.015 0.013 0.010

loadmodule 0.005 0.016 0.013 0.011 0.011 0.008

imap 0.008 0.021 0.015 0.019 0.020 0.017

xterm 0.014 0.018 0.016 0.012 0.016 0.016

sendmail 0.008 0.017 0.013 0.010 0.012 0.012

ps 0.002 0.020 0.013 0.016 0.016 0.015

named 0.009 0.022 0.018 0.023 0.022 0.015

land 0.000 0.027 0.019 0.029 0.029 0.024

rootkit 0.002 0.023 0.016 0.021 0.020 0.013

multihop 0.005 0.025 0.019 0.026 0.025 0.015

The results show that the Kendall correlation between the detected ranking and the true-

rankings is relatively small for every component. This means that the two rankings are

not correlated and that the outlier detection technique is not effective on these datasets.

However, comparing the clustering algorithm to the infrequent pattern analysis, the rank

correlation of infrequent pattern analysis is higher. Therefore we can conclude that the

infrequent pattern analysis is more accurate and has a better performance.

When the k-median clustering algorithm is combined with infrequent pattern analysis,

the rank correlation is lower than applying the single infrequent pattern analysis in

most datasets. This can indicate that the infrequent pattern analysis performs better

individually.

When looking at the influence of the attribute bagging technique, we see that the rank

correlation increases when the combination of attribute bagging and k-median clustering

is applied. Based on this finding we conclude that the attribute bagging technique is

adding value to the k-median clustering technique. Still, it does not extremely influence

the infrequent pattern analysis.
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Because of the differences between the infrequent pattern analysis and the k-medians

clustering, we also performed a Kendall correlation test on the rankings of these two

techniques. The result is that these rankings are not correlated, which means that infre-

quent pattern analysis detects different outliers than the k-median clustering algorithm.

This seems logical, because the different type of techniques are applied on different

datasets (categorical or continuous).

6.2 Breast Cancer Wisconsin

The Wisconsin Breast Cancer dataset is used to compare the Infrequent Pattern Analysis

with k-median clustering, as explained in the experimental setup. The Wisconsin Breast

Cancer dataset contains 10 categorical attributes. But in order to compare infrequent

pattern analysis with k-median clustering we transformed the dataset to a dataset with

continuous attributes.

6.2.1 Results infrequent pattern analysis

When we apply the infrequent pattern analysis on the categorical dataset, we discovered

that the best performance (Kendall’s rank correlation) of the outlier detection algorithm

is 0.303 with parameter σ = 0.80, 40 attribute bagging iterations and a maximum of 2

attributes per attribute-bag.

Figure 6.1 visualizes the rank correlation for various number of attribute bagging iter-

ations, T . Where the remaining parameters are set on σ = 0.05 and b = 2. It shows

that when the number of iterations increases, the rank correlation increases. However,

20 iterations already result in a stabilized rank correlation. Which means that using 20

attribute bagging iterations is optimal, because each additional iteration increases the

runtime of the algorithm. We prefer to minimize this.

Figure 6.2 shows the rank correlation of a various maximum number of attributes in

the attribute bags, b, where σ = 0.05 and T = 40. We can see in this figure that

the maximum number of attributes in an attribute bag equals 1 for the combination of

attribute bagging with infrequent pattern analysis.

Figure 6.3 visualizes the rank correlation for various sigma-values. The figure shows

that a diversification of sigma does not influence the correlation. This is actually very

logical because frequent patterns also receive Score1 and therefore only the depth of the

tree influences the outlier score for different sigma’s.
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Figure 6.1: Rank correlation for different number of attribute bagging iterations.
σ = 0.05 and maximum number of attributes in bag = 2

Figure 6.2: Rank correlation for different maximum number of attributes in the
attribute bags. σ = 0.05 and number of attribute bagging iterations equal to 40
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Figure 6.3: Rank correlation for different sigma’s. With number of attribute bagging
iterations equal to 40 and maximum number of attributes in an attribute bag equal to

2

6.2.2 Results k-medians clustering

To compare the previous results with the k-median clustering algorithm, we transform

the categorical attributes of the Wisconsin Breast Cancer dataset to continuous at-

tributes. After applying the algorithm on the continuous dataset, we discovered that

the best performance of the algorithm is 0.304 using 2 maximum attributes in an at-

tribute bag and 40 attribute iterations as parameters. Note that these are the only

parameters we need, because k-median clustering is used instead of infrequent pattern

analysis.

Figure 6.4 visualizes the rank correlation of various number of attributes in an attribute

bag, b, with T = 100 and maximum number of clusters is equal to 8. The figure shows

a peak in the correlation when the maximum number of attributes in an attribute bag

equals 2. With infrequent pattern analysis we found an optimum with a maximum

number of 1 attribute in the bags. So both techniques, infrequent pattern analysis and

k-medians clustering, prefer a low b.

Figure 6.5 shows the rank correlation of various number of attribute bagging iterations,

T , with b = 2 and maximum number of clusters is equal to 8. The rank correlation

stabilizes after 40 iterations. Comparing this to attribute bagging in combination with
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Figure 6.4: Rank correlation for different maximum number of attributes in an at-
tribute bag, with 100 attribute bagging iterations and the maximum number of clusters

is 8.

infrequent pattern analysis, where the rank correlation stabilizes at 20 iterations. There-

fore, we can conclude that k-medians clustering needs more iterations for an optimal

rank correlation.

Both continuous and categorical attribute bagging models have similar rank correlations,

which concludes that in case of the Wisconsin Breast Cancer dataset both techniques find

the same number of outliers. The rank correlation between the results of the maximum

infrequent pattern analysis and the maximum k-medians clustering is equal to 1. This

concludes that both algorithms have similar rankings, so we can conclude that it marks

the same records as outliers.

6.3 Model validation

The robustness of the model is validated using the technique of 5-fold cross validation.

The rankings of the outlier detection algorithm on the 5 different samples are similar,

correlation is 1. This means that the outlier detection algorithm is robust.
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Figure 6.5: Rank correlation for different number of attribute bagging iterations, with
2 maximum attributes in an attribute bag and the maximum number of clusters is 8.
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Conclusion

The objective of this research was to investigate an outlier technique that can be used

for datasets with mixed-attributes. The reason of creating an outlier detection model

is to detect fraudulent behavior in large datasets, assuming that fraudulent behavior is

outlying (e.g. credit card fraud or intrusion in a network). Due to the unlabeled data

in most investigations, we studied unsupervised learning techniques.

Nowadays, almost every real dataset contains both categorical and continuous attributes,

which is called mixed-attribute datasets. Most researchers that investigate outlier de-

tection merely use datasets containing categorical or continuous attributes. Only few

detected outliers in mixed-attribute datasets. This research found a technique that can

detect outliers in mixed-attribute datasets. First, we split the problem into two separate

problems: outlier detection in a dataset with continuous attributes and outlier detection

in a dataset with categorical attributes.

An appropriate and well investigated technique for datasets with continuous attributes

is k-median clustering. This technique is officially not used for outlier detection, but is

able to detect outliers by clustering similar records based on their continuous behavior.

A record with an increased distance to the closest cluster has a higher probability of

being an outlier.

Infrequent pattern analysis is an outlier detection technique that can be used for datasets

with categorical attributes. Infrequent pattern analysis investigates the occurrence of

patterns. If a pattern is below a user-specified threshold, the pattern is considered infre-

quent. This research proposes a new technique of infrequent pattern analysis, Postponed

Outlier Detection.

In recent years, the amount of data grows exponentially. Therefore, many datasets con-

tain many (redundant) attributes, which is called high-dimensional data. When datasets

33
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are high-dimensional they suffer from the ”curse of dimensionality” where all datapoints

become equidistant and similar. This makes it more complex to detect outliers. This

research investigated attribute bagging, which is a technique that can deal with high-

dimensional data.

The proposed outlier detection technique for detection of outliers in mixed attributes

uses a combination of continuous and categorical outlier detection. A variant of infre-

quent pattern analysis, called postponed outlier detection, is used for detecting outlier

in datasets with categorical attributes. Postponed outlier detection calculates a score

for all records, which indicates the probability of a record being an outlier. The pro-

posed technique uses k-Median clustering technique to detect outliers in a dataset with

continuous attributes. The Manhattan distance from a point to its centroid defines the

outlier score for this, continuous, subset. The outlier scores from both categorical and

continuous data algorithm results in a ranking with the most feasible outlier top-ranked.

The proposed technique uses attribute bagging as a possible attribute selection method.

Three different components drive the outlier detection algorithm: infrequent pattern

analysis; k-median clustering; and attribute bagging. These different algorithms are

validated separately and combined on two different datasets, NSL KDD and Wiscon-

sin Breast Cancer dataset. The separated components and different combinations of

components are validated applying the different algorithms on the NSL KDD dataset.

Infrequent pattern analysis and k-median clustering is compared applying both algo-

rithms on the Wisconsin Breast Cancer dataset.

Based on the results, we conclude that for the NSL KDD dataset the infrequent pattern

analysis is more successful than the k-median clustering. However, the correlation is

very low between the true-outliers and the outliers detected by the algorithm. So the

algorithm is not accurately detecting the outliers in the NSL KDD dataset.

The k-medians clustering detected the same outliers as the infrequent pattern analysis

in the Wisconsin Breast Cancer dataset. However, the correlation is low between the

detected outliers and true-outliers.

The proposed outlier detection technique is not able to detect all outliers for the NSL KDD

and Wisconsin Breast Cancer dataset. Therefore, to validate whether the proposed out-

lier detection technique is accurate in detecting outliers more research is necessary.

This research investigated an outlier detection technique that can detect outliers in

datasets, without knowledge about the attributes. Attribute bagging makes it possible

to randomly select attributes by the data scientist. Without this possibility selection

attributes would be very time consuming.
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The limitation of this research is that when the data is widely spread it is harder to

detect outliers, because of non-similarities. A possible way to avoid this problem is to

add additional explanatory attributes to the dataset.

It is difficult to validate the outlier detection algorithm on a dataset with supposed

fraudulent behavior. Detecting fraudulent behavior in datasets is the official background

of this thesis. Thorough investigation is necessary to validate the algorithm for these

datasets. These investigations require special qualified teams.

Further research could focus on validating the dataset for different datasets, preferable

datasets with supposed fraudulent behavior. Also, researchers could investigate a differ-

ent approach to set up the attribute tree for infrequent patterns. Perhaps this changes

the scores for categorical datasets.

Another possible future research suggestion is a different technique of selecting at-

tributes. Perhaps if attributes are not randomly selected, the outlier scores are more

accurate.

This research investigated a complex problem with a complex solution. We used an

alternative approach, which needs to be further investigated. This research adds value

in the area of unsupervised outlier detection techniques. This field is not fully discovered

yet.



Appendix A

Attacks in KDD cup 1999 dataset
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Type of attacks

spy 2

sqlattack 2

udpstorm 2

worm 2

xsnoop 4

perl 5

phf 6

xlock 9

ftpwrite 11

loadmodule 11

imap 12

xterm 13

sendmail 14

ps 15

named 17

land 22

rootkit 23

multihop 25

bufferoverflow 50

httptunnel 133

snmpgetattack 178

pod 221

mailbomb 293

saint 319

snmpguess 331

processtable 685

apache2 737

warezclient 890

teardrop 901

warezmaster 964

mscan 996

guesspasswd 1284

back 1300

nmap 1566

portsweep 3070

smurf 3108

ipsweep 3643

satan 4360

neptune 45716

normal 76967
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[14] H.P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Outlier detection in axis-

parallel subspaces of high dimensional data.

38



Bibliography 39

[15] Z. Ferdousi and A. Maeda. Anomaly detection using unsupervised profiling method

in time series data. 2006.

[16] Lior Rokach and oded Maimon. Clustering Methods.

[17] Benjamin J. Anderson, Deborah S. Gross, David R. Musicant, Anna M. Ritz,

Thomas G. Smith, Leah E. Steinberg. Adapting k-medians to generate normal-

ized cluster centers, 2006.

[18] A. Hasnat, S. Halders, A. Hoque, D. Bhattacharjee, M. Nasipuri. A fast epga

based on architecture for measuring the distance between two color images using

manhattan distance metric. International journal of electronics and communication

engineering and technology, Volume 4(Issue 3):pp. 01–10, May - June 2013.

[19] D. Pelleg, A. Moore. X-means: Extending k-means with efficient estimation of the

number of clusters.

[20] D.T. Pham, S.S. Dimov, and C.D. Nguyen. Selection of k in k-means clustering,

2004.

[21] S. Ray and R.H. Turi. Determination of number of clusters in k-means clustering

and application in color image segmentation.

[22] Tomas Borovicka, Marcel Jirina, Pavel Kordik, and Marcel Jirina. Selecting Repre-

sentative Data Sets.

[23] J. Gao and P. Tan. Converting output scores from outlier detection algorithms into

probability estimates, 2006.

[24] C. Aggarwal. Outlier Analysis.

[25] Matthew Eric Otey, Amol Ghoting and Srinivasan Parthasarathy. Fast distributed

outlier detection in mixed-attribute data sets, June 2005. URL http://web.cse.

ohio-state.edu/dmrl/papers/TR42.pdf.

[26] Anna Koufakou. Outlier detection for large distributed mixed-attribute data:

Odmad. In scalable and efficient outlier detection in large distributed data sets

with mixed-type attributes, 2009.

[27] C. Borgelt. Frequent pattern mining.

[28] Kdd cup 1999. URL http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html.

[29] M. Lichman. {UCI} machine learning repository, 2013. URL http://archive.

ics.uci.edu/ml.

http://web.cse.ohio-state.edu/dmrl/papers/TR42.pdf
http://web.cse.ohio-state.edu/dmrl/papers/TR42.pdf
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Bibliography 40

[30] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the

kdd cup 99 data set. 2009.

[31] M.G. Kendall. Rank correlation methods. 4th edition edition.

[32] E. Szmidt, J. Kacprzyk. The spearman and kendall rank correlation coefficients

between intuistionistic fuzzy sets, July 2011.

[33] W.H. Wolberg. Breast cancer (original) wisconsin.

[34] J. Lengt. A novel subspace outlier detection approach in high dimensional data

sets, 2010.

[35] A. L. S. Reddy, B. R. Babu, A. Govardhan. Outlier analysis of categorical data
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