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Abstract

Fraud detection is a critical task for financial institutions, tradition-

ally dominated by tree-based models such as XGBoost. This work in-

vestigates the potential of deep learning methods for fraud detection

by conducting a comprehensive benchmark study and exploring novel

self-supervised and supervised representation learning techniques. The

study evaluates two datasets: ULB300K, a publicly available dataset,

and PER40M, a proprietary, large-scale dataset representative of real-

world scenarios. First, we benchmark a selection of common methods

for fraud classification, highlighting XGBoost’s dominance due to its

strong performance and computational efficiency. Next, self-supervised

learning methods based on autoencoder architectures are tested to assess

whether meaningful representations can be learned without labeled data.

While these methods demonstrate potential, particularly on ULB300K,

their performance on PER40M is less competitive. In our second ex-

periment, we show that supervised representation learning using metric

learning and the triplet loss yields significant improvements in down-

stream classification performance. Transformer-based encoders, in par-

ticular, outperform traditional and self-supervised methods on PER40M,

demonstrating the capacity of deep learning models to capture intricate

patterns in large, high-dimensional datasets. This performance comes at

a cost, as the best performing transformer-based encoder requires two

OOM more FLOPs for inference than an XgBoost classifier.
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Chapter 1

Introduction

Recent advancements in computing and machine learning (ML) have led to signifi-

cant advancements in the performance of artificial neural networks (ANN) in a broad

range of applications. In particular, deep learning methods in computer vision and

natural language processing have achieved super-human performance on a variety

of benchmarks. The superiority of deep learning models in these areas is mostly

attributed to their capability of representation learning. This means that ANN

models learn informative features from raw input data without human intervention,

whereas traditional ML methods often require human-crafted features. These fea-

ture representations form the basis of their strong performance on downstream tasks

such as classification and regression. However, the application of deep learning to

domains beyond structured data, such as tabular data, remains less explored due to

inherent challenges.

One area where the usage of DL is less widespread is tabular data. Tabular data

consists of rows and columns, where each row represents an instance, and columns

correspond to potentially unrelated features. This structure is fundamentally differ-

ent from images or text, which exhibit significant local structure (pixels/words that

are structurally close are often related). Specialized neural network architectures

exploit this local structure, contributing to their superior performance. Another

difference between tabular data and other structures is the relatively low dimen-

sionality typically found in tabular data. Commonly, tabular data has an order of

magnitude lower dimensionality than, for example, image data, resulting in a po-

tentially lower signal-to-noise ratio. Combined, these factors often make traditional

machine learning methods, such as tree methods, favorable over DL methods (Ye

et al., 2024). More recently, interest in DL for tabular data has resurrected. A com-

bination of the ever-increasing size of datasets used in industry and the discovery of

new methods for supervised tabular learning have revived the potential of DL for

tabular data as they achieve superior performance on some benchmarks (Gorishniy

et al., 2023).
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Credit card fraud detection, a domain where tabular data is prevalent, is the focus

of this work. This is an extremely relevant application as fraud-induced chargebacks

cause hundreds of millions of losses yearly. Per illustration, credit-card fraud caused

£574 million of losses in 2021 in just the UK alone (Worobec, 2021). Industry-wide,

ML methods are applied to detect fraudulent transactions and avoid the associated

losses. The detection of fraudulent transactions is essentially a binary classifica-

tion problem. However, several factors make this a challenging problem. Firstly,

the data is heavily imbalanced as fraudulent transactions occur substantially less

frequently than valid transactions. This means that fraud detection systems need

to be trained using heavily imbalanced datasets. Secondly, fraudulent transactions

may go unnoticed or could be mislabeled, which requires ML methods to be robust

against data contamination.

In this work, we take a significant step in the direction of deep representation

learning for credit card fraud detection by conducting thorough experiments using a

supervised and self-supervised representation learning method on real-world trans-

action data. In the self-supervised setting, we train an autoencoder ANN and utilize

the obtained encoder in a downstream classifier. In the supervised training setting,

we train an ANN encoder in a triplet loss training framework, explicitly guiding the

embedding space towards a structure where the embeddings of fraudulent and valid

transactions are well-separated. For both training paradigms, an Isolation Forest

and K-nearest neighbors classifier are used to obtain final predictions.

This work makes several key contributions. Firstly, we conduct an in-depth

benchmark study comparing common methods for fraud classification. We obtain

benchmarks on both a public fraud dataset and a proprietary dataset used in in-

dustry by a multinational fraud-detection service provider. This provides insights

into the relevance of public datasets compared to proprietary industry datasets.

Secondly, we show how self-supervised learning can be used to obtain efficient fea-

ture encoders and how the performance behaves with respect to the scale of the

encoder model. Lastly, we demonstrate how a triplet loss-based supervised learning

framework structures the latent space to separate fraudulent and valid transactions

effectively. We also analyze its scaling properties and performance relative to self-

supervised learning.

1.1 Related work

This work lies on the intersection of a stream of applied research on credit card

fraud detection and the fundamental study of neural networks and representation

learning. On the applied research side, we can roughly divide current work in two

categories. One body of research uses open source datasets, which is almost exclu-
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sively a dataset published by Dal Pozzolo et al. (2014) in 2014. This dataset forms

the basis of a large body of literature on fraud detection. This dataset is used by

Yu et al. (2024) who show that a transformer architecture enhances classification

performance compared to a vanilla MLP architecture. Zhu et al. (2024) show that,

on this dataset, a SMOTE sampling technique improves the performance of a NN

classifier. Talukder et al. (2024) use a grid search method to find an ensemble of

classifiers that outperforms traditional methods such as KNN and Random Forest.

de Souza and Jr (2021) use an ensemble between a self-supervised learning method

(K-means clustering) and a supervised classifier and show that this reduces inference

complexity while maintaining accuracy. Porwal and Mukund (2019) approach the

problem from an anomaly detection setting and show the efficacy of an Isolation

Forest method on this fraud dataset. All the aforementioned work uses this same

dataset introduced by Dal Pozzolo et al. (2014). A downside is the small number

of records in this dataset and the even smaller number of fraudulent transactions in

this dataset (which is less than 500). First of all, this means that comparing many

different methods becomes infeasible from a statistical standpoint, as a low num-

ber of fraudulent transactions in the test set poses a substantial issue with regard

to statistical significance of the results. Furthermore, it cannot be assessed how a

method scales to a larger (real-world) dataset.

There is little public work on ML for fraud detection on large industry datasets.

Duan et al. (2024) use a private dataset consisting of 2M records from a Chinese

bank but focus on graph learning and do not include benchmarks for classifier mod-

els typical for tabular data. de la Bourdonnaye and Daniel (2021) use a proprietary

dataset containing 10M records but focus solely on gradient boosting methods and

methods for categorical feature encoding. Melo et al. (2023) use a large-scale (150M)

proprietary dataset but focus exclusively on attack propagation through adversarial

training. The work by Thimonier et al. (2023) is one of the few providing a compar-

ative benchmark study between different classification methods on a large (192M)

private industry dataset and show that the LightGBM gradient boosting algorithm

outperforms methods such as KNN and Isolation Forest. S. et al. (2023) is the

only work that uses a supervised representation learning approach on a large-scale

dataset, making it methodologically the most similar to the method proposed in this

thesis. However, their work focuses on malicious software session detection and is

based on a sequential model architecture.

All in all, there is little to no work that contains a complete benchmark study

on a large-scale fraud dataset. This is one gap that this work aims to solve. There

is, besides S. et al. (2023), also no work on (self-)supervised representation learning

on a large-scale fraud dataset. This thesis aims to fill this gap by exploring both su-

pervised and self-supervised methods on both a public and a large-scale proprietary

dataset.
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Chapter 2

Background

This section aims to provide the reader with the required background knowledge to

comprehend this work’s methodology. The section starts with a theoretical frame-

work for supervised learning and progresses to some applied methods for fraud clas-

sification and representation learning.

2.1 Supervised learning: the fundamentals

2.1.1 Risk Minimization

The ultimate purpose of supervised learning is to find a functional representation

for the unknown conditional distribution

ppy|xq

where y is some response variable and x are some features. In the case of binary

classification, y is binary s.t y P t0, 1u. Now, consider some universe of functions

{fpx, θq, θ P Θ} parametrised by θ that we can choose from to model ppy|xq. Our

goal then becomes to choose fpx, θq that behaves the most like ppy|xq. We define a

loss L py, fpx, θqq to quantify how well fpx, θqq mimics P py|xq. If we then take the

expectation

E
”

L
`

y, fpx, θq
˘
ˇ

ˇθ
ı

“

ż

L
`

y, fpx, θq
˘

dppx, yq

we obtain an expression for the total loss of the function fpx, θq over the whole data

distribution ppx, yq “ ppxqppy|xq. This expectation is often referred to as the risk

functional Rpθq (Vapnik, 1999). We could simply use this risk functional to choose

an θ that minimizes the risk functional:

θ0 “ argmin
θPΘ

Rpθq
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2.1.2 Empirical Risk Minimization

However, in practice, the exact specification of ppx, yq is unknown, making the

evaluation of Rpθq impossible. We therefore need to revert to evaluating Rpθq based

on sampled data. That is, we collect a set of samples tpxi, yiquNi“1
i.i.d.
„ ppx, yq and

construct the empirical risk functional

R̂pθq “
1

N

N
ÿ

i“1

Lpyi, fpxi, θqq

Now we can obtain an estimate θ̂0 of θ0 by minimizing the empirical risk functional:

θ̂0 “ argmin
θPΘ

R̂pθq

2.1.3 Consistency of ERM

Now, one fundamental assumption underlying empirical risk minimization is that

of uniform convergence of the empirical risk function to the (non-empirical) risk

function. Formally this convergence is defined as

lim
NÑ8

P

ˆ

sup
θPΘ

´

Rpθq ´ R̂pθq

¯

ą ε

˙

“ 0

If this convergence holds, R̂pθq approached Rpθq and θ̂0 approaches θ0 as the size

of the dataset grows. This implies that, given a large enough dataset, our learned

model will adequately generalize to the whole data distribution.

This convergence mostly relies on the Uniform Law of Large Numbers (ULLN).

Some other import conditions for this convergence to hold are stated in Vapnik and

Chervonenkis (1971). One noteworthy condition is that of the Vapnik and Chervo-

nenkis (VC) dimension. The VC dimension dVC is a measure of the complexity of

a set of classification functions, defined as the maximum number of input vectors

that the set of functions can shatter. Here, shattering means that for a set of n

input vectors, the hypothesis class can realize all 2n possible binary labelings of

those vectors. In order for the above convergence to hold, the VC dimension of our

function family tfpx, θq: θ P Θu must be finite. One can verify intuitively that a

family of functions with an infinite VC dimension (infinite complexity) can realize

every possible labeling of an infinitely large dataset, allowing it to overfit on any

arbitrarily large dataset, violating the convergence property.

2.1.4 VC-dimension and the Bias-Variance trade-off

The role of the VC dimension in the consistency of ERM discussed above may

suggest a model family with a low VC dimension is always favorable over those

with high VC dimension due to improved generalization capabilities. This is true
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to some extent, but the Bias-variance decomposition sheds a different light on this.

This trade-off, first introduced by Geman et al. (1992) states that we can decompose

a model’s expected loss into three parts; bias, variance and noise. They show that

the expected Mean Squared Error loss, as defined by L py, fpx, θqq “ py ´ fpx, θqq2,

can be decomposed into

MSEpf̂q “ Ex

„

´

f̂pxq ´ fpxq

¯2
ȷ

“ Biaspf̂pxqq
2

` Varpf̂pxqq ` σ2

The decomposition is less obvious for other loss functions, but several efforts

have been made over the years (Belkin et al., 2019; Domingos, 2000; Kohavi et al.,

1996). Bias is induced by the models incapability to correctly model the data.

Variance is induced by a models sensitivity to the training data, and the noise is

an irreducible part of the loss induced by noise in the data. Thus, models with a

high VC-dimension typically have low bias and models with a low VC-dimension

typically have a high bias.

2.1.5 Practical implications

The theoretical framework of statistical learning forms the basis for many experi-

mental methods used by machine learning (ML) practitioners. Firstly, it is standard

practice to use out-of-sample testing (such as cross-validation) to assess the gener-

alizability of models and diagnose overfitting, particularly for model families with

high complexity (i.e., high VC dimension). This ensures that the model performs

well on unseen data, not just the training set.

Secondly, statistical learning theory informs us that high-complexity models

(with higher VC dimension) should only be used when sufficient data is available.

Without enough data, these models are prone to overfitting. On the other hand, the

bias-variance trade-off suggests that more complex models typically have lower bias

than simpler models, making them more flexible in capturing underlying patterns in

data. However, this flexibility comes at the cost of higher variance, which increases

the risk of overfitting if data is limited.

To mitigate these challenges, data augmentation is commonly used to artificially

expand the dataset, helping to improve the generalization of complex models when

data is scarce. Additionally, regularization techniques (such as L2 or L1 regulariza-

tion) are employed to reduce the effective VC dimension of models by constraining

the model parameters, thereby reducing variance and helping prevent overfitting.
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2.2 Common model families

Many function families (models) for fpx, θq have been proposed and used over time.

This section will cover the most significant ones with respect to the fraud detection

problem.

2.2.1 Tree based models

Tree-based models are popular for both classification and regression tasks due to

their flexibility in handling different types of data (continuous and categorical) and

their ability to capture non-linear relationships in the feature space without the need

for extensive data preprocessing.

Decision tree

The simplest form is the decision tree (Quinlan, 1986; Salzberg, 1994), which it-

eratively partitions the feature space X by choosing, at each step, at node m the

feature i and threshold tm that maximize some measure of quality of the split Hp¨q.

For Hp¨q, typically, the gini-coefficient or Information gain is used for classification

tasks and variance reduction for regression tasks. For a continuous feature Xi, the

decision tree searches over all possible threshold values and selects the one that best

separates the data into two subsets with lower impurity (or variance). For a categor-

ical feature, it examines different groupings of categories. Node splitting continues

until all possible splits have been made or some stopping criteria is reached. One

can verify that a decision tree model on continuous features can continue splitting

the feature space until all datapoints in the dataset are isolated. This implies that

decision trees without adequate stopping criteria have infinite VC dimension. Stop-

ping criteria are needed to ensure generalization accuracy over the data distribution.

Common stopping criteria put a limit on the depth of the tree or a minimum on the

number of samples per leaf of the tree. A decision tree’s ability to fit to the training

data imposes a significant risk of overfitting, which is the main reason other variants

were developed.

Random forests

The Random Forest aims to overcome the risks of generalization inaccuracies of the

decision tree. Pioneered by Ho (1995) and formalized by Breiman (2001), this is an

ensemble method that combines multiple decision trees trained on randomly sampled

subsets of the datasets. Furthermore, at each node, a random subset of features is

considered. These tricks act as a de facto regularization technique that prevents

the model from becoming too complex and overfitting on the training set. Final

predictions are obtained by either averaging the result of all the trees (regression)

or using a majority vote to choose the predicted class (classification). A downside

is that Random Forests lose interpretability. Where decision trees can easily be
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visualized and interpreted, random forest make this more difficult, especially as the

number of trees in the ensemble grows.

Gradient boosted trees

Gradient boosting is an ensemble technique introduced by Friedman (2001) with

foundations laid by Freund et al. (1996, 1999); Breiman (1997), where multiple

decision trees work together in an additive manner. Intuitively, the idea is to have

a sequence of learners (trees) that correct the mistakes made by previous learners.

The gradient of the selected loss function with respect to the prediction is used to

decide the direction in which to correct the error. This is also referred to as gradient

descent in function space. Formally, the idea is to have M trees Fmpxq, m “ 1, ...,M

where

Fmpxq “ Fm´1pxq ` γmhmpxq

Here, hmpxq is a tree fitted to the pseudo-residuals

ỹim “ ´

„

BL pyi, Fm´1pxiqq

BFm´1pxiq

ȷ

and γm is a step size obtained by solving the minimization

γm “ argmin
γ

N
ÿ

i“1

L pyi, Fm´1pxiq ` hmpxiqq

The outcome of the last tree FMpxq is used as the final estimate ŷ.

The above specification represents the most essential form of the gradient-boosted

tree algorithm. Many different variations to the algorithm have been proposed over

the years (Ke et al., 2017; Prokhorenkova et al., 2019). Most noteworthy is the XG-

Boost algorithm (Chen and Guestrin, 2016). These modern variations combine a set

of features to improve generalization accuracy. Typically, a form of regularization

is used to penalize tree complexity and constrain the VC dimension of the model.

In particular, Chen and Guestrin (2016) introduces a regularization term in the loss

function which is defined as

Ω pFmpxqq “ γT `
1

2
λ||w||

2

where T is the number of leaves in the tree and w represents the parameters in the

leaves of the tree. γ and λ are hyperparameters that control the degree of regular-

ization. The L2 norm ||w||2 can be replaced by the L1 norm |w|.

Furthermore, the second-order derivative of the loss with respect to the predic-

tions is used for a more accurate estimation of the gradient of the loss. We must

note that none of these features was fundamentally novel about the XGBoost al-

gorithm. For example, both regularization and the use of second-order derivatives
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were mentioned as early as by Friedman (2001). XGBoost mainly gained popularity

due to its efficient software implementation, leading it to be the main tree-boosting

algorithm currently used.

2.2.2 Artificial Neural networks

Artificial neural networks have become the standard method for many modeling

tasks in a wide range of applications. The Multi-Layer Perceptron (MLP), as first

defined by Rosenblatt (1958), is the core of many different architectures. An ANN is

a highly complex mathematical function composed of linear and nonlinear functions

chained together in a layer-like structure. In particular, we define the output of

hidden layer l as a vector hplq, such that

hplq
“ gplq

`

W lhpl´1q
` bplq

˘

(2.1)

where gplq is the activation function used in layer l and W phq and bplq are the weight

matrix and bias for the linear transformation in layer l. hp0q is defined to be the

input of the function. Common choices for gp¨q are the ReLU function and the sig-

moid function.

ANN’s are commonly trained through error backpropagation (Rumelhart et al.,

1986). The update equation for the weights and bias at layer l are given by

W plq
Ð W plq

´ η
BL

BW plq
bplq

Ð bplq
´ η

BL

Bbplq

where η is the learning rate and BL
BW plq and BL

Bbplq are the gradient of the loss with

respect to the weight matrix and bias vector at layer l, respectively. In practice,

these are evaluated numerically using the chain rule.

An important result in the context of ANN’s for function approximation is that

of Cybenko (1989) and Hornik (1991), who provided a first proof for the Univer-

sal Approximation Theorem. Many versions of the theorem exist, but in general,

it tells us that for any function f P CpX ,RDq there exists f̂ P N g
d,D such that

sup
xPX

||f̂pxq ´ fpxq|| ă ε, under the right conditions for gp¨q and a sufficient number

of layers. Here, CpX ,RDq is the function space spanned by all continuous functions

that map X to RD, N g
d,D is the function space spanned by the ANN’s with d inputs

and D outputs, and ε ą 0 is a constant. Theoretically, this result implies that any

function P py|xq can be represented by an ANN function fpx, θq of sufficient com-

plexity. That is, this representation exists but we still have to find the parameter

set that creates it.
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The universal approximation theory also warns about generalization inaccura-

cies that may arise when a complexly structured ANN is used to model P py|xq.

The theory tells us that we can build ANN functions fpx, θq that can map any fi-

nite dataset exactly to its target label (sometimes referred as ”remembering” the

dataset). This is easier to deal with than for tree-based models, since we need to

fix the ANN structure a-priori (the ANN structure does not grow during the train-

ing procedure). This means we need to be careful to choose an ANN architecture

which complexity suits the dataset size. Another technique commonly used to tackle

generalization inaccuraies is early-stopping, which entails using an evaluation set to

determine whether overfitting is ocurring and stop the training procedure.

2.3 Evaluating binary classifiers

We previously discussed the role of the loss Lpy, fpx, θqq that measures the perfor-

mance of fpx, θq with respect to P py|xq. A common choice for the loss function in

binary classification setting is the classification accuracy

Lpy; fpx, θqq “

#

0, if y “ 1fpx,θqąt

1, if y ‰ 1fpx,θqąt

Where t P r0, 1s is some threshold value for our probability (commonly 0.5). Even

though this metric serves as a good proxy of classification performance, practical

applications often require a more sophisticated analysis of the classifiers behaviour.

This is because of two main reasons. Firstly, the dataset may be imbalanced. Imbal-

anced data refers to an imbalance in the data-distribution, where the unconditional

probability of observing a particular class P py “ c1q is substantially higher than the

probability of observing the other class P py “ c2q, such that P py “ c1q " P py “ c2q

for some class labels c1, c2. This means that a good classification performance based

on the accuracy can be fully attributed to good performance on one class, instead

of on both classes. Secondly, the application at hand might not equally weigh the

importance of the classes. A false positive may be valued differently from a false

negative. For these reasons, a range of other classification metrics have been pro-

posed over the years.

2.3.1 Confusion-matrix based metrics

The confusion matrix, a term coined as early as by Pearson (1904) is the matrix com-

posed of the number of true positives (P), false negatives (FN), false positives (FP)

and true negatives (TN) (from top-left to bottom right). Based on these elements,

a series of metrics can be defined that offer different perspectives to classification

performance. Table A.1 shows a selection of such metrics.
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As for the application of fraud detection, with an inherently imbalanced data

distribution (fraudulent transactions occur substantially less frequently than non-

fraudulent transactions) these metrics are essential for a complete picture of the

behavior of a classifier. However, as noted before, we typically use a threshold t that

determines the decision boundary of our classifier. This means that the confusion-

matrix-based metrics are, as a matter of fact, functions of t. The next section covers

ROC analysis, a method to quantify classification performance independent of t.

2.3.2 ROC analysis

We consider the FPR and TPR as a function of threshold t. Furthermore, we define

two probability density functions P pfpx, θq|y “ 1q and P pfpx, θq|y “ 0q, which

represent the unconditional distribution of the estimator fpx, θq given that the true

class is positive or negative. We can express the TPR function as

TPRptq “

ż 8

t

ppfpx, θq|y “ 1qdfpx, θq

(which is the blue area in figure 2.1) and the FPR function as

FPRptq “

ż 8

t

ppfpx, θq|y “ 0qdfpx, θq

fpxq

D
en
si
ty

P pfpxq | y “ 1qP pfpxq | y “ 0q

t

FPR

TPR

Figure 2.1: Visual representation of the PDF ppfpx, θq|y “ 1q and ppfpx, θq|y “ 0q.

The red and blue shaded are show the FPR and TPR respectively.

The ROC curve (Hanley and McNeil, 1982) is defined as the curve that plots the

TPR as a function of FPR, which we can formalize as

ROCptq “ TPR
`

FPR´1
ptq

˘

We can verify that in the case where there is no meaningful difference between

P pfpx, θq|y “ 1q and P pfpx, θq|y “ 0q (e.g if a random prediction label is assigned)

the two integrals for FPRptq and TPRptq will reduce to be equal and the ROC
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curve will the line where FPRptq “ TPRptq. Now, for any classifier of decent qual-

ity (that is, better than random), FPRptq will be larger than TPRptq for all t.

We now have a way to quantify the trade-off between the FPR and TPR for a

given value of t, as the ROC function gives us the TPR associated with any given

FPR for t. We can capture the total trade-off regardless of t by integrating the

ROCptq over t, giving us the ROC Area under the curve (AUC) (Fawcett, 2006):

AUC “

ż 1

0

TPR
`

FPR´1
ptq

˘

dt

it can furthermore be shown (Hanley and McNeil, 1982; Cal̀ı and Longobardi, 2015)

that the AUC is equal to the probability that a randomly chosen positive instance

will have a higher predicted score fpx, θq than a randomly chosen negative instance,

more formally defined as

AUC “ P
`

fpx`, θq ą fpx´, θq
˘

where x` iid
„ ppx|y “ 1q, x´ iid

„ ppx|y “ 0q

It can be observed that AUC “ 0.5 for a classifier that outputs random class labels

and that AUC “ 1 for classifiers that can fully separate all positive from negative

cases. All in all, the AUC metric proves to be an efficient metric to capture the

ability of a classifier to discriminate between positive and negative classes.

Some other variants of the AUC metric are used. For example, we could inte-

grate the ROC curve over any arbitrary range of f , resulting in the partial AUC

(pAUC) (McClish, 1989). This is useful in applications where it is known that some

areas in the ROC space are certainly irrelevant because of high FPR values.

The derivation of the ROC AUC metric above leans on a few assumptions that

are not feasible in practice. Firstly, it assumes we know the distribution ppfpx, θq|yq

and secondly it assumes this distribution is continuous. We must therefore rely on

an estimate of the AUC based on the empirical data distribution. This could be

done parametrically by fitting a distribution function to the empirical distribution

and computing the AUC analytically, but is commonly done in a nonparametric

way. One nonparametric way is to simply evaluate the integral numerically using a

trapezoid method. This means that the FPR and TPR are evaluated for a range of

values for t after which the area under the ROC curve is estimated by interpolating

linearly between points.

Another nonparametric method is closely related to the Mann-Whitney U test

(Mann and Whitney, 1947). This is a nonparametric test that tests wether two

samples originate from the same distribution. It uses the test statistic

U1 “
ÿ

x`P D`

ÿ

x´P D´

1fpx´,θqăfpx`,θq
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where D` and D´ and are our data samples of positive and negative instances re-

spectively. This test statistic can be transformed to the AUC metric according to
ˆAUC “ U1p|D`||D´|q´1, which is an unbiased estimator for the AUC.

In practice, estimated AUC values are often compared in order to compare model

performance. In some fields, such as the medical sciences, where datasets typically

have a low number of samples, inference methods are used to obtain significance of

conclusions (Qin and Zhou, 2006; Ekström et al., 2023). In the machine learning

world, where datasets typically have a large number of samples, this is often ne-

glected. It is simply assumed that the sample size is large enough for the estimate

of the AUC to have a sufficiently low variance.

2.4 Representation learning

We previously covered Artificial Neural Networks in the context of function estima-

tion, a paradigm in which they prove to be extremely powerful. One of the main

factors that this is commonly attributed to is the ability of an ANN to learn ”im-

plicit feature representations” of the input data (Bengio et al., 2014). This means

that no explicit (manual) feature engineering is required for the model to achieve

good performance. This phenomenon can be exploited to obtain efficient efficient

feature encoders that can be used as standalone models. We denote an encoder

G : Rd
Ñ Rr, x ÞÑ Gpxq, d " r

that maps a raw feature vector from the data space Rd to a low dimensional repre-

sentation in Rr, through some (nonlinear) transformation parametrized by an ANN.

The idea is that the encoder creates compact (low-dimensional) and informative

features that can be used in downstream learning tasks. Learned features are uni-

versal and can be used in a set of different applications. This section discusses some

methods for estimation of the encoder Gp¨q.

2.4.1 Self-supervised Representation Learning

In unsupervised learning, the goal is to learn informative features without any data

label. One method proposed to achieve this is self-associative learning (Rumelhart

et al., 1986), a paradigm more commonly referred to as auto-encoders (Hinton and

Salakhutdinov, 2006). The core idea is to train an encoder Gp¨q together with a

decoder Dp¨q. The encoder maps the input vector x to some compressed representa-

tion z, which is then decompressed by the encoder, s.t x̂ “ DpGpxqq. Intuitively, the

auto-encoder learns to compress input data, forced by an information bottleneck in

the network. Auto-encoders are trained by minimizing a reconstruction loss between

the original data x and the reconstructed data x̂.
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There is a noteworthy relationship between the auto-encoder ANN and Prin-

cipal Component Analysis (PCA). PCA, first proposed by Pearson (1901) is a

dimensionality-reduction technique where the principal component matrix Λ is the

result of the optimization problem

min
Λ

N
ÿ

i“0

||xi ´ ΛpΛ1xiq||
2 (2.2)

subject to

ΛΛ1
“ Ir

which is the minimization of the mean squared error (MSE) under orthogonality con-

straints. It is easy to see that, in the case of using an MSE loss in the auto-encoder

ANN paradigm, the optimization is essentially the same. Now, if we also take Gp¨q

and Dp¨q to be linear mappings, the space spanned by the learned representations

z spans the same space as the principal component latent space. A particularly in-

teresting result in this regard is presented by Bourlard and Kamp (1988), who show

that an autoencoder network, with one hidden layer and one nonlinear activation in

both the encoder and decoder, does not learn more informative representations zi

than PCA. We can consider autoencoders a form of non-linear PCA and this result

tells us that it is useless to use an autoencoder with one hidden layer for nonlinear

dimensionality reduction, as the obtained representations are not better than the

principal components.

Autoencoders have proven to be efficient feature learners, with applications span-

ning multiple domains from computer vision (CV) (He et al., 2021) to natural lan-

guage processing (NLP) (Oshri, 2015) and anomaly detection (Sakurada and Yairi,

2014). Several extensions have been proposed and used over the years. One exten-

sion is the denoising autoencoder. Proposed by Vincent et al. (2008), this method

adds some i.i.d noise to the input and trains the autoencoder to reconstruct the

original instance of the input. Another noteworthy example is the masked autoen-

coder (He et al., 2021), where a part of the input is masked and reconstructed by the

autoencoder. Both these techniques are de facto regularization techniques, aiming

to increase robustness in the encoder and obtaining better generalization accuracy.

2.4.2 Supervised representation learning

Supervised representation learning is an umbrella term for all those learning methods

where data labels are used to in some way to obtain informative feature encoders.

In its simplest form, this encoder could consist of the first set of hidden layers from

a multilayer perceptron (MLP) that was trained for a binary classification task. The

hidden state of the network can be considered a vector of implicitly learned features

of the input data. In more general terms, supervised representation learning aims to

obtain a well-structured embedding space of the input data where the structure is
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somehow guided by the labels associated with the input data. The resulting struc-

ture in the embedding space should then be more informative of the target label

than without supervision.

We focus the rest of this section on metric learning (Xing et al., 2002). A

fundamental idea in metric learning is to train an ANN by optimizing some distance

metric that provides a measure of similarity between two (or multiple) instance

embeddings. In its simplest form, we could have a distance metric dpzi, zjq that

accepts two embeddings zi, zj and outputs a single scalar indicating whether these

two instances are nearby or far apart in the embedding space. The data labels can

be used to determine whether we want them closeby or far apart in this space. We

define the loss function

li,jpxi, xjq “

#

d
`

Gpxiq, Gpxjq
˘

, if yi “ yj

´d
`

Gpxiq, Gpxjq
˘

, if yi ‰ yj

where Gp¨q is the encoder parameterized by an ANN and dp¨q is some distance met-

ric. This loss aims to nudge the encoder to push similar samples toward each other

and dissimilar samples away from each other. This technique is mostly used in the

CV domain, with the Siamese network (Chopra et al., 2005) as the most common

example. This is a metric-learning technique that learns image embeddings that can

be utilized to decide whether two images are similar, with applications such as face

recognition.

One common choice for the distance dpzi, zjq is the cosine similarity (Hinton and

Salakhutdinov, 2006)

dpzi, zjq “
zi ¨ zj

∥zi∥∥zj∥
which has range r´1, 1s, where a similar pair of vectors will result in a similarity

close to 1 and an extremely dissimilar (that is, pointing in the opposite direction)

pair of vectors will be close to ´1.

Schroff et al. (2015) propose a loss function that uses three sampled instances

from the training set instead of two, yielding the triplet-loss function. We define

a triplet of data instances pxa, xp, xnq. xa is some anchor instance. xp is an

instance that, together with xa forms a positive pair (that is, they belong to the

same class). xn is an instance that forms a negative pair with xa. For each data

instance in the triplet, the embedding is obtained using Gp¨q to obtain za, zp, zn
which is a representation of the triplet in embedding space, as displayed in figure

2.2 . Evidently, we desire za and zp to be close in embedding space and za and zn
to be distant. We can define the loss function

ℓipzi, zp, znq “ dpzi, zpq ´ dpzi, znq
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to capture how well structured the embedding space considering the triplet pxa, xp, xnq.

Schroff et al. (2015) furthermore add a margin α to this loss and define the triplet

loss function

ℓipzi, zp, znq “ rdpzi, zpq ´ dpzi, znq ` αs
`

where r¨s
`
is the hinge function that clips values below 0 to 0. This loss function

ensures that if dpzi, zpq ` α ă dpzi, znq holds, the loss is clipped to 0 and effectively

neglected. This effect ensures that only those triplets that are not well distanced

are considered in the loss function.

dpza
, zp

q

dpza, zpq

za

zp

zn

Figure 2.2: Visual representation of the triplet loss function in embedding space.

dpza, zpq indicates the distance between anchor and positive and dpza, znq indicates

the distance between anchor and negative. In this visualization the desired effect

of dpza, zpq ă dpza, znq holds. In practice, the embedding space is high-dimensional

rather than two-dimensional.

As distance metric, the triplet loss as proposed by Schroff et al. (2015) uses the

squared L2 norm dpzi, zjq “ ∥zizj∥22 but other norms could be used as well. The loss

function over the whole triplet sample is defined as
ÿ

pxa, xp, xnqPT

”

d
`

Gpxaq, Gpxpq
˘

´ d
`

Gpxaq, Gpxnq
˘

` α
ı

`
(2.3)

where T is some sample of triplets. The notion of a sample of triplets encom-

passes a range of sampling strategies. The final goal is to construct a set of triplets

T “ tpxa
i , x

p
i , x

n
i q | i “ 1, 2, . . . , Nu that, when used within the triplet loss learning

framework, results in a well structured embedding space. Several sampling strate-

gies for constructing T have been proposed over the years, which can be categorized

in offline and online sampling strategies.

Offline sampling strategies include all sampling strategies where T is constructed

without knowledge on the state of the encoder Gp¨q. This means the sampling pro-

cedure does not depend on the training procedure and T can be constructed before
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training starts. An example of such a sampling procedure is a procedure where for

each instance x P D we take xa “ x and sample xp „ D` and xn „ D´ to form the

triplet. A simple extension to this would be to not take every x P D but sample

N{2 instances from D` and N{2 from D´. This procedure would be suitable for

imbalanced class distributions.

The offline sampling procedures are inherently simple sampling strategies. Online

sampling allows for much more complex procedures, sampling triplets during the

training procedure using the state of the encoder Gp¨q at each training step. One

such procedure is Batch Hard mining (Hermans et al., 2017). The fundamental idea

underlying this strategy is to select positives for an anchor that are, for the current

state of the encoder Gp¨q, far apart in embedding space and negatives that are close

in embedding space. This means that at each training step, we select the triplets that

would produce a high loss ℓipzi, zp, znq. Mining the set of triplets requires inference

of Gp¨q and evaluation of the loss function, which is computationally complex. To

overcome this, the strategy is executed on mini-batches of data. We can formally

define the Batch Hard loss for a binary-class setting on a mini-batch B Ď D of size

|B| “ NB as

LBHpBq “
ÿ

xPB`

”

max
xpPB`

dpxa, xpq´max
xnPB´

dpxa, xnq`α
ı

`
`

ÿ

xPB´

”

max
xpPB´

dpxa, xpq´max
xnPB`

dpxa, xnq`α
ı

`

Other noteworthy online triplet mining strategies include Distance Weighted mining

(Wu et al., 2018), Easy Batch mining (Xuan et al., 2020).

2.5 Interpreting the embedding space

In the previous section, we discussed representation learning and the embedding

space. The embedding space offers a projection of feature instances x P Rd to

an embedding z P Rr. The exact dimensionality r is typically regarded as a hyper-

parameter and is commonly selected relative to the dimensionality of the input data.

A typical value of r lies in the range r8, 256s. Per illustration Hermans et al. (2017)

and Wu et al. (2018) use r “ 128 and Xuan et al. (2020) use r “ 64. It is often valu-

able to inspect an embedding space in order to confirm and understand the learned

representations. Unfortunately, high-dimensional spaces are ungraspable for human

cognition. We commonly try to overcome this by visualizing the r-dimensional em-

bedding space in two dimensions. Two mainstream methods are typically used to

do this.

One obvious method to reduce a high-dimensional space to a two-dimensional one

is PCA. PCA identifies the directions of maximum variance in the high-dimensional

space (called principal components). It then projects the data points onto a lower-

dimensional subspace (or plane) defined by the top principal components, thereby
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reducing the dimensionality while preserving the most significant variation in the

data. The exact optimization performed is defined in equation 2.2. A downside of

PCA is that it is a fundamentally linear projection, and can fail to capture nonlinear

high-dimensional local structures.

A solution to the linearity issue in PCA is found in the t-SNE method. t-

SNE (Van der Maaten and Hinton, 2008) is a stochastic neighbor embedding (SNE)

method that is useful for capturing the structure of non-linear high-dimensional

manifolds. The method, an extension to vanilla SNE (Hinton and Roweis, 2002)

defines the pairwise similarity pj|i to be the similarity between zi and zj in the

embedding space. A Gaussian distribution is chosen to model pj|i resulting in

pj|i “

exp
´

´
}zi´zj}2

2σ2
i

¯

ř

k‰i exp
´

´
}zi´zk}2

2σ2
i

¯

where σi is set by specifying a target complexity (we refer the reader to Van der

Maaten and Hinton (2008) for details on this). We observe that this is in fact the

probability that point j would be selected if we were at point i if the probabilities

were proportional to the distance from point i to j and followed a Gaussian dis-

tribution. It is obvious to set pi|i “ 0. Furthermore, we denote the symmetrized

conditional probability

pij “
pj|i ` pi|j

2n

where n is the number of data points. Next, we define qij to be the symmetric

conditional probability of zi choosing zj as its neighbor (and the other way around)

in the low-dimensional representation (typically two- or three-dimensional). One

fundamental principle underlying t-SNE is that qij and pij should be similar between

the high-dimensional and low-dimensional space for all data points because the

local structure should not change (points close to each other in high dimensional

space should be close in low dimensional space). In t-SNE, qij is parametrized by a

Student-t distribution with one degree of freedom (in the original SNE method by

Hinton and Roweis (2002) this was also a Gaussian), such that

qij “
p1 ` }vi ´ vj}

2q
´1

ř

k‰l p1 ` }vk ´ vl}2q
´1

where vi is the low-dimensional representation of point zi. We now have a formu-

lation for two probability distributions pij and qij that we desire to be similar. We

can trivially define the difference between the two distributions using the Kullback-

Leibler divergence to obtain

KLpP }Qq “
ÿ

i‰j

pij log

ˆ

pij
qij

˙
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where P and Q are the joint probability distributions related to pij and qij. The goal

now is to find the low-dimensional vectors vi i “ 1, ..., n that minimize KLpP }Qq.

Van der Maaten and Hinton (2008) derive the following gradient of the KLpP }Qq

with respect to yi:

BKLpP }Qq

Bvi
“ 4

ÿ

j

ppij ´ qijq pvi ´ vjq
`

1 ` }vi ´ vj}
2
˘´1

This expression can be used to perform gradient descent to find the low dimensional

representations vi i “ 1, ..., n that are produced through a non-linear transformation

with respect to the embedding space. The t-SNE projection of an embedding space

has proven to be extremely insightfull and is used in most work on representation

learning, amongst others Hermans et al. (2017),
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Chapter 3

Benchmark Study

Based on existing literature, we select a set of methods to serve as a benchmark

for the two datasets used in this work. This selection is based on a broad review

of the literature and includes the methods typically used in research and industry.

We note that, in the field of fraud detection, many industry leaders keep their

methodologies proprietary. However, we believe the methods in this benchmark

serve as an adequate representation of what is typically used in real-world systems.

3.1 Datasets

For a multitude of reasons, many payment processors across the industry do not

provide access to datasets for scientific research on fraud detection. On the one

hand, this payment data contains personally identifiable information (PII), which is

legally stipulated to be kept confidential and secure. Secondly, this data gives com-

petitors undesired insights into a company’s internals, diminishing the company’s

competitive advantage. Lastly, from a fraud-prevention point of view, data may be

used by harmful actors to analyze and circumvent fraud detection systems.

For these reasons, high-quality public fraud datasets are practically non-existent.

The best option currently available in the public domain is a dataset released by

Dal Pozzolo et al. (2014). This is a dataset (further denoted ULB300k), consisting

of 284,807 transactions including 492 fraudulent transactions, collected by a French

multinational payment processor in September 2013. The dataset counts 31 fea-

tures, for which the exact names and meanings are undisclosed. One row in this

dataset would look like rx1, x2 . . . x30, x31, ys where y P t0, 1u

This work further uses a proprietary dataset collected by a Dutch multinational

fraud-prevention company that offers a fraud detection system to a wide range of

merchants. The dataset consists of a subset of transactions spanning from 2015 to

2023. In total, the dataset (further denoted as PER40M) contains 40 million records

and 150 features. Among the features, we find both numerical and categorical

29



features. The dataset has a fraud rate of 0.7% (This is not necessarily representative

of the real-world class distribution).

3.2 Benchmark methods

This section introduced the methods used in the benchmark study. These methods

are selected based on a broad literature review and should serve as an accurate

representation of the current use in the industry. All these methods are used in

combination with the SMOTE (Chawla et al., 2002) technique for dealing with

class imbalance. We put a strong emphasis on the avoidance of hyperparameter

selection bias, where the baseline hyperparameters would be suboptimal due to a

poor selection effort, while the newly proposed method is heavily optimized. We

achieve this by selecting relevant hyperparameters to tune in each of the selected

benchmark methods. Hyperparameters are tuned using a 5-fold cross-validation

grid-search strategy. Table B.1 shows each benchmark method and the selected

parameters to tune, as well as a reference for the implementation details. In this

benchmark, the MLP classifier concerns shallow architectures (less than 2 hidden

layers). We do report a full set of results for larger MLP architectures. In our results,

we further report the values for each hyperparameter used in the final model.

Table 3.1: Benchmark Models and Hyperparameter Tuning Details

Model Tuned Variables Implementation Reference

XGBoost

max depth

n estimators

alpha

lambda

Chen and Guestrin (2016)

Logistic Regression
C

L1 ratio
Pedregosa et al. (2011)

Random Forest
max depth

n estimators
Pedregosa et al. (2011)

MLP
hidden layer sizes

activation
Pedregosa et al. (2011)

Decision Tree max depth Pedregosa et al. (2011)

3.3 Evaluation procedure

In section 2.1.5 we highlighted some practical implications arising from the the-

oretical ERM framework. One of these implications is the need for dealing with

generalization inaccuracies. In our experimental studies, we evaluate performance

based on a classical train-test split, which means a subset of the complete dataset
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is hidden from the training procedure and only used for model testing. One consid-

eration here is that, because of the unbalanced nature of the class distribution, we

need the test set to contain enough positive (fraud samples) to compute the desired

performance metrics.

For the ULB300K dataset, which contains only 492 fraudulent transactions, the

class imbalance forms an issue in the construction of the test set. For this dataset,

we therefore construct the training- and test datasets such that each dataset has a

fraction Nneg

N
of negative samples (this can arbitrarily be achieved by sampling the

positive and negative samples separately and concatenating the result sets). This

ensures that the class balance is equal between both sets.

For the PER40M dataset, this problem is less prevalent due to an abundance

of negative data samples. For this dataset, we choose a time-based test-split. This

means that we use the last rtest˚N records in the test set, where rtest is the fraction of

records used in the test set. This strategy ensures that methods are not only judged

based on their generalization accuracy with respect to sample size but also with re-

spect to time. Per illustration, a model could overfit to a certain period where some

pattern is overly present in the data. An alternative evaluation procedure would be

to use a rolling-window framework, where models are estimated sequentially on an

expanding training set through time. For simplicity and computational complexity

reasons, we opted not to use such a method.

We report the evaluation metrics ROC AUC, accuracy, precision and recall.

Precision and recall are reported for the positive label. We a focus on the ROC

AUC, as mentioned in 2.3.2, because is not dependent on the specific tuning of the

decision threshold (which precision and recall are). This metric is computed using

the trapezoidal method. The described evaluation procedure remains fixed through

the rest of this work.

3.4 Model complexity estimation

In order to reveal the trade-off between inference complexity and model performance

we make an estimate for each method inference complexity. We use two metrics for

this. Firstly, we consider the number of floating point operations (FLOPs) a model

requires to produce a prediction. This metric (not to be confused with floating point

operations per second) counts the number of elementary floating point operations

required to evaluate some computation. For each benchmark method, we report the

number of inference FLOPs. This number depends on the selected hyperparameter

configuration.
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3.5 Results

The resulting values for the hyperparameters for the benchmark models are shown in

table B.1. Table 3.2 shows the benchmark results for the ULB300K dataset. Table

3.2 shows the benchmark results for the PER40M dataset. We observe that, from

these baselines, the XGBoost method outperforms the other benchmarks for both

baselines. Logistic regression performs surprisingly well on the ULB300K dataset

and rather poorly on the PER40B dataset. Appendix C gives a brief overview of how

the inference FLOPs for each method are determined, while Appendix B.3 provides

an additional set of results for different MLP configurations. Figure 3.1 displays the

FLOPs-performance trade-off. These figures reveal that only Logistic Regression,

Decision Tree, and XGBoost can be considered efficient models. That is, there is no

model with better performance at lower inference complexity.

Table 3.2: Benchmark results on the ULB300k dataset.

Method ROC AUC Accuracy Precision Recall

XGBoost 0.9826 0.9996 0.9379 0.8120

Logistic Regression 0.9781 0.9809 0.8436 0.9060

MLP 0.9667 0.9993 0.9035 0.6912

Random Forest 0.9550 0.9996 0.9379 0.8120

Decision Tree 0.9023 0.9990 0.6818 0.8053

Table 3.3: Benchmark results on the PER40M dataset.

Method ROC AUC Accuracy Precision Recall

XGBoost 0.9703 0.9830 0.9216 0.7533

Random Forest 0.9114 0.9825 0.7926 0.4047

Decision Tree 0.8038 0.9899 0.5443 0.3906

MLP 0.7468 0.9897 0.6881 0.1829

Logistic Regression 0.7123 0.9892 0.4600 0.3462
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(a) ULB300K (b) PER40M

Figure 3.1: Inference FLOPs vs. ROC AUC for the benchmark methods on the

ULB300K and PER40M datasets. This plot compares the computational inference

cost (FLOPs) and predictive performance (ROC AUC) of different machine learning

models. The x-axis represents the inference FLOPs on a logarithmic scale, indicating

the computational effort required for each model to process a single input. The y-axis

shows the ROC AUC score, a measure of classification performance. Any method

that has both a lower ROC AUC and higher inference FLOPs can be considered

inefficient, as better performance can be achieved with lower inference complexity.
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Chapter 4

Self-supervised Representation

Learning

This chapter focuses on the application of self-supervised learning to fraud detection.

In this chapter we aim to answer the following questions:

1. Do feature encoders obtained through self-supervised result in useful features

for downstream fraud classification?

2. How does the performance of the encoder depend on the network size?

The chapter is structured as follows. Section 4.1 introduces the model framework.

Section 4.1.1 describes a method for dealing with class imbalance in the learning

setting. Section 4.2 discusses the experimental setup followed by 4.3 which contains

a detailed analysis of the results and findings.

4.1 Self-associative learning for fraud detection

As discussed in section 2.4.1, the main goal of self-associative learning is to train

a feature encoder Gpxq that efficiently encodes feature vector xi. The encoder is

trained in an autoencoder setting, which means that the embedding zi is obtained by

z “ Gpxiq and x̂i, and the reconstructed feature vector is obtained by x̂i “ DpGpxiqq.

The system is trained on the reconstruction loss

lpxiq “ pxi ´ DpGpxiqq
2

for feature vector xi. In this work, we exclusively use symmetric autoencoder struc-

tures, where the encoder and decoder are a vanilla MLP structure. The hidden layer

sizes of the decoder are equal to the encoder but in reversed order. Subsequently,

the embeddings produced by feature encoder Gp¨q are used to fit a classifier fpzq.

Several model options are common for fp¨q. These will be discussed in more detail

in 4.2.

34



4.1.1 Dealing with class imbalance

The problem of fraud classification is characterized by the inherent imbalanced class

distribution. A strategy to mitigate this issue is required. Several options have

been proposed and used over the years, most notable are SMOTE (Chawla et al.,

2002), a synthetic oversampling technique, and weighted loss functions (Fernando

and Tsokos, 2022). In this chapter, we use a basic oversampling procedure where

the infrequent class is oversampled so that each batch B P RNBˆd of size NB has

a fixed ratio between both classes, denoted rB “
N`

B
NB

, where N`
B is the number of

positive instances in the batch. Throughout the experiments in this chapter, we set

rB “ 0.5, such that there is an equal number of positive and negative samples in

the batch. The full training procedure, including this sampling strategy, is shown

in algorithm 1.

Algorithm 1 The training procedure for training encoder GθG , parametrized by θG
in an autoencoder setting.

Initialize θF , θG
for each epoch do

for batch B´ in dataset X´ do

sample B` from X` and construct B
compute batch loss LpBq “

ř

xiPBpxi ´ DpGpxiqq2

execute gradient step θG Ð θG ´ η BL
BθG

execute gradient step θD Ð θD ´ η BL
BθD

end for

end for
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Table 4.1: Experiment configurations evaluated for the auto-encoder setting. The

code is a unique identifier for the model configuration. The number of parameters #

Paramaters is the total number of weights in the autoencoder setup (both encoder

and decoder). The Encoder structure column indicates the sizes of the hidden layers

used in the encoder (and in the decoder but reversed.

Code Encoder structure #Parameters Classifier ULB300K PER40M

AE1K-ILF [16] 1.5K IF ✓
AE1K-KNN [16] 1.5K KNN ✓
AE30K-ILF [128, 64, 32] 29.2K IF ✓ ✓
AE30K0-KNN [128, 64, 32] 29.2K KNN ✓ ✓
AE100K-ILF [256, 128, 64, 32] 102.4K IF ✓ ✓
AE100K-KNN [256, 128, 64, 32] 102.4K KNN ✓ ✓
AE400K-ILF [512, 256, 128, 64, 32] 379.9K IF ✓ ✓
AE400K-KNN [512, 256, 128, 64, 32] 379.9K KNN ✓ ✓
AE1.5M-ILF [1024, 512, 256, 128, 64, 32] 1.5M IF ✓ ✓
AE1.5M-KNN [1024, 512, 256, 128, 64, 32] 1.5M KNN ✓ ✓

4.2 Experimental setup

The experimental setup is largely equal to the setup described in section 3.3. This

means that the train and test set are equal for both experiments, such that we can

safely compare the newly proposed methods and the benchmarks. From the training

set, a validation set is sampled at random which is used for diagnostic purposes.

As we are interested in the scaling properties of the auto-encoder learning meth-

ods, several model configurations are tested, each with increasing model size. The

ReLU nonlinearity is used in all configurations. We scale up the model architecture

by adding a hidden layer twice the size of the smaller model’s largest hidden layer.

For each configuration, a validation loss is tracked such that the loss curves for sev-

eral model sizes can be compared. We report the validation loss as a function of

training FLOPs, a quantification of the total training resources used by a model.

The FLOP count is obtained using the fvcore python package published by Face-

book Research.

We select K-nearest neighbors (KNN) (Fix and Hodges, 1989) and Isolation For-

est (IF) (Liu et al., 2008) as the two downstream classifier models. These are both

non-parametric methods that work well in continuous dense feature spaces. The

KNN method has one significant downside, which is that it cannot efficiently handle

large datasets. We therefore need to limit the number of records used for training

the KNN classifier for the PER40M dataset to 200.000 (for the ULB300K dataset
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this is not needed as the feature dimensionality is smaller).

Table 4.1 shows the experiment configurations used for both datasets. As the

table indicates, not all configurations are used for both models. In particular, the

smaller model is not used for the PER40M dataset. In that regard, we further note

that an embedding dimension r “ 8 for the ULB300K dataset and r “ 16 for the

PER40M dataset.

In the results, for both datasets, we also report a visual representation of a two-

dimensional t-SNE (see section 2.5) representation of the embedding space produced

by the encoder associated with the highest AUC score on the test set. This visual-

ization, which includes 1000 randomly sampled positive and 1000 sampled negative

instances from the validation set, allows us to interpret the learned embedding space.

In a well-structured, informative embedding space, we expect to see a noticeable dif-

ference between a cluster including the positive and a cluster including the negative

samples.

4.3 Results

4.3.1 Scaling properties

Figure 4.1 shows the validation reconstruction loss vs the number of training FLOPs

for the training procedures for both datasets. In general, we observe that the final

validation loss is lower for larger model sizes. However this scaling property does not

hold for the last model size, which, for both datasets shows a higher final validation

loss for both datasets. For the ULB300K dataset, we observe the presence of the

double-descent phenomenon (Nakkiran et al., 2019). This occurs when the valida-

tion loss increases during a critical period where the training procedure transitions

from the traditional regime to the modern regime.

A low reconstruction loss is only meaningful if it leads to a higher final classifica-

tion performance. Figure 4.2 shows the relation between the KNN test ROC AUC

and the auto-encoder validation loss. The size of each point represents the model

size. For the ULB300K dataset, we observe that the encoder with the lowest valida-

tion loss also obtains the highest ROC AUC, however this does not generally hold.

For the PER40M dataset, we see that the 2M model obtains the highest test ROC

AUC, while it does not achieve the lowest validation loss. This is easily explained

when one considers that the reconstruction loss is an average over both classes and

does not directly quantify the usefulness of the resulting embedding space.
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(a) ULB300K (b) PER40M

Figure 4.1: Validation loss vs. training FLOPs for both the autoencoder training

method for both datasets. The ULB300K dataset shows a particular form of double-

descent, where the validation loss first increases and then decreases again, whereas

the PER40M shows rather stable convergence. These figures show that for both

datasets, encoding performance does not scale linearly with model size, as the best

validation losses are obtained for the second-to-largest models and not the largest.

(a) ULB300K (b) PER40M

Figure 4.2: Test ROC AUC obtained by KNN classifications vs. validation loss for

the autoencoder training method for both datasets. These figures show that a lower

validation reconstruction loss does not always indicate a higher performance on the

downstream classification task.

38



(a) ULB300K (b) PER40M

Figure 4.3: Two-dimensional t-SNE representations of the embedding spaces for

1000 positive (red) and 1000 negative (grey) sampled instances for both datasets.

The ULB300K dataset shows an embedding space where positive and negative in-

stances are semi-separated, with the two clusters having significant overlap. As for

the PER40M dataset, the embedding space shows some degree of separation be-

tween the two classes but has areas with a large overlap.

4.3.2 Embedding visualizations

Figure 4.3 shows a two-dimensional t-SNE visualization of the embedding space for

a random sample of instances from the training set. The encoder is taken from the

best-performing model based on the ROC AUC. We observe a clear structure in the

ULB300K embedding space, where positive embeddings are visibly separated from

positive ones. However, there is still a large area where the negative and positive

clusters overlap. For the PER40M dataset, the embedding space is visibly different

from the ULB300K embedding space. In this embedding space, there is separation

to some extent, but the space also contains many small clusters of positive instances

cluttered around. Overall, these figures indicate that the learned features should be

relevant, at least to some extent, for the downstream classification performance.

4.3.3 Classification performance

Tables 4.2 and 4.3 report all the relevant classification metrics on the test set for the

configurations as introduced in 4.1. Overall, the KNN classifier works remarkably

well on the PER40M dataset, even though its training was limited by a smaller train-

ing set. On the other hand, the ILF method works poorly on the PER40M dataset,

as it does not beat KNN on any of the model sizes. Overall, the AE1.5M-KNN

method performs best based on the ROC AUC. It is noteworthy that, as displayed

in figure 4.2, this configuration did not achieve the lowest reconstruction loss.
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For the ULB300K dataset, this behavior is completely different. KNN performs

poorly and ILF is the better classifier across the board, with the AE400K-ILF con-

figuration obtaining the highest ROC AUC score. The AE30K configuration is a

remarkable outlier, as it performs significantly worse than its smaller variant AE1K

for both KNN (AE1K-KNN) and IF (AE1K-IF). This can be explained by a poor

convergence of the reconstruction loss as displayed in figure 4.1a.

Code ROC AUC Accuracy Precision Recall

AE1K-ILF 0.9743 0.9321 0.8882 0.9191

AE1K-KNN 0.9139 0.8995 0.9995 0.8080

AE30K-ILF 0.9119 0.8830 0.8979 0.8989

AE30K-KNN 0.8885 0.9992 0.9091 0.6969

AE100K-ILF 0.9623 0.9158 0.8981 0.9290

AE100K-KNN 0.9442 0.9994 0.9194 0.7373

AE400K-ILF 0.9876 0.8825 0.9983 0.9191

AE400K-KNN 0.9240 0.9993 0.9293 0.7870

AE1.5M-ILF 0.9821 0.9134 0.8982 0.9090

AE1.5M-KNN 0.8835 0.9992 0.9191 0.7777

Table 4.2: Results for the auto-encoder representation learning experiments for the

experiments as described in table 4.1, for the ULB300K dataset.

Code ROC AUC Accuracy Precision Recall

AE30K-ILF 0.8594 0.9504 0.3789 0.8277

AE30K-KNN 0.9056 0.9904 0.9588 0.8038

AE100K-ILF 0.8617 0.9613 0.5816 0.8227

AE100K-KNN 0.9164 0.9914 0.9502 0.8043

AE400K-ILF 0.8562 0.9546 0.5522 0.8217

AE400K-KNN 0.9210 0.9935 0.9535 0.8060

AE1.5M-ILF 0.8637 0.8876 0.2536 0.8273

AE1.5M-KNN 0.9396 0.9934 0.9350 0.7957

Table 4.3: Results for the auto encoder representation learning experiments for the

experiments as described in table 4.1, for the PER40M dataset.

Figure 4.4 shows the inference FLOPs vs ROC AUC tradeoff as introduced in

figure 3.1 including the models introduced in this section. Overall, none of the

configurations can be considered a breakthrough in efficiency. Nonetheless, for the

ULB300K dataset, a configuration of AE-IF obtains better performance than the
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highest benchmark (XGBoost). For the PER40M dataset, none of the models scores

better than the highest benchmark (XGBoost).

(a) ULB300K (b) PER40M

Figure 4.4: Inference FLOPs vs ROC AUC comparison between the self-supervised

autoencoder models and the baselines as established in table B.1. For the ULB300K

dataset, the AE-IF model family is shown (AE30K-ILF and AE100K-ILF omitted).

On this spectrum, AE400K-ILF can be considered an efficient method, as it obtains

higher inference performance at higher inference complexity compared to the base-

lines. For the PER40M dataset, the AE-KNN model family is shown. The smallest

configuration (the AE30K-KNN) can be considered efficient, although the XGBoost

model performs significantly better at slightly higher inference complexity.
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Chapter 5

Supervised representation learning

In chapter 4 we made use of the auto-encoder training paradigm to train a feature

encoder Gp¨q that maps the data features to an informative feature space without

the utilization of the true labels of the data. The effectiveness of this method

is remarkable, as one would expect the target labels to be extremely helpful in

learning efficient feature representations. In this chapter, we explore a supervised

learning method to train the encoder Gp¨q. We hypothesize that, guided by the

target labels, an encoder can be trained that results in an embedding space with

a better structure for downstream classification tasks. To that end, this chapter

focuses on the questions:

1. Do feature encoders obtained through supervised learning result in more useful

features for downstream fraud classification then self-supervised learning?

2. How does the performance of the encoder depend on the network size?

This chapter is structured as follows. Section 5.1 introduces the training frame-

work used in this chapter. 5.2 discusses the choice of encoder architecture. 5.3

introduces the data sampling strategy. 5.4 defines the setup of the experiments that

will be evaluated and section 5.5 covers the results for all these experiments.

5.1 Deep metric learning for fraud detection

In chapter 4, we trained a feature encoderGpxiq by minimizing the self-reconstruction

loss in an auto-encoder setting. As a result, the embedding space is structured im-

plicitly, according to whichever structure is optimal for reconstructing xi from the

embedding. The concept of metric learning, as described in section 2.4.2 involves

explicit structuring of the latent space. This means that the structure of the em-

bedding space is a direct result of the loss function used in the training procedure.

The loss function guides the embedding space to some desired structure. Inevitably,

the quality of the resulting structure is a result of the specification of the loss func-

tion as well as the convergence of the learning process. We hypothesize that an
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encoder Gpxiq trained through a supervised metric learning procedure, under the

right choice of the loss function, results in informative features for downstream clas-

sification tasks.

In the case of fraud detection, a binary classification problem, an obvious choice

for the loss function is a function that quantifies the distance between positive and

negative samples in the latent space. In the experiments conducted in this work,

we use the triplet-loss as defined in 2.3. A simplified description of the training

procedure is described in algorithm 2. The Adam optimizer Kingma and Ba (2017)

is used for weight updates.

Algorithm 2 The training procedure for training encoder GθG , parametrized by θG
in a supervised metric learning setting.

Initialize θF , θG
for each epoch do

for batch B´ in dataset X´ do

1. sample B` from X` and construct B
2. Evaluate zi “ Gpxiq for each xi P B
3. Construct batch T containing triplets pxa, xp, xnq through some

triplet mining strategy

4. compute batch loss

LpBq “ |T |´1
ř

pxa,xp,xnqPT

”

dpGpxaq, Gpxpqq ´ dpGpxaq, Gpxnqq ` α
ı`

5. execute gradient step θG Ð θG ´ η BL
BθG

end for

end for

5.2 Encoder architecture

Conceptually, Gp¨q is flexible and can be embodied by any differentiable transforma-

tion. In the setting of tabular data, there are a few obvious choices for this encoder

architecture. Firstly, a vanilla Multi-layer Perceptron is a sensible choice. In this

case, the encoder would effectively have the same specification as the encoder used

in the auto-encoder method in chapter 4. Another idea is the use of self-attention

in the encoder. In particular the transformer (Vaswani et al., 2023) architecture

has found an increased use in encoder architectures for tabular data in recent years,

some examples being Sreekar et al. (2023) and Huang et al. (2020). We include this

architecture in our experiments to analyze its performance compared to the regular

MLP encoder. In general, the transformer encoder works as follows. The input X

(batch of instances xi) is first projected to dimension d1 through a linear mapping

X 1 “ XWin ` bin. Subsequently, the batch flows through a series of encoder layers.
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In each layer, the query Q, keys K and values V are computed by

Q “ X 1WQ, K “ X 1WK , V “ X 1W V

next, scaled-dot-product attention is applied:

AttentionpQ,K, V q “ softmax

ˆ

QKJ

?
embedding dim

˙

V

The result is a weighted sum of the values V , where the weights are given by the

attention scores. In practice, we use multi-head attention. This means that the

above self-attention mechanism is applied in parallel for different query, key, and

value weight matrices. The output is concatenated to one single vector. The self-

attention module is followed by a feed-forward network with ReLU nonlinearity.

The final output of the encoder layer is a normalized sum of the input to the block

and the output of the block (residual connection). For a full specification of the

architecture, we refer to Vaswani et al. (2023). The encoder block with num heads

is repeated num layers times before the output is linearly mapped to the embedding

dimension r.

5.3 Triplet selection

The triplet selection strategy determines which triplets are used to evaluate the loss

for each batch. An intelligent sampling strategy is needed since it is impossible

to evaluate all triplets and random sampling leaves the usefulness of the selected

triplets to chance. Some triplet selection strategies are described in section 2.4.2. We

exclusively use the Batch Hard triplet mining strategy in this section. This means

that for each batch in the data, the embeddings for the batch are obtained by passing

the data through the encoder. Next, the pairwise distances are calculated between

the instances in the batch, after which each instance in the sample is matched with

its furthest positive and closest negative pair. From a sampling perspective, the

quality of the select triples increases as the batch size |B| increases (because there

are more instances to construct the triples with). However, triplet selection is a

fundamentally expensive Op|B|2q calculation, due to the distance matrix calculation

in the r-dimensional embedding space. Thus, in practice, the choice of batch size

is a trade-off between more training steps (epochs) or better triplet selection. After

initial manual tuning, we set the batch size to |B| “ 4.096.

5.4 Experimental setup

5.4.1 Down-stream classifier models

The experimental setup is largely equivalent to the one described in section 4.2 and

3.3. Furthermore, we select the same classifier model families for the supervised
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learning experiments as for the self-supervised learning experiments, as described in

4.2.

5.4.2 Experiment configurations

Table 5.1 shows the experiment configurations that will be evaluated. Similarly to

earlier experiments, the smallest configuration of the MLP encoder is only evaluated

for the ULB300K dataset. The three transformer-based encoder configurations are

evaluated for the PER40M dataset. In line with previous experiments, we are inter-

ested in scaling properties of the model. However, for this training regime, keeping

track of a validation loss is less straightforward than for the autoencoder method,

since the model is trained on sampled data and it is computationally infeasible to

evaluate the loss for all triplets. We revert to tracking the training loss over each

sampled batch and use this to diagnose the quality of convergence of the training

method.

5.4.3 Training details

The Adam Kingma and Ba (2017) optimizer is used with learning rate 4e´5 for the

MLP encoder and 3e´4 for the transformer-based encoder.
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Table 5.1: Experiment configurations evaluated for the auto-encoder setting. The

code is a unique identifier for the model configuration. The number of parameters #

Parameters is the total number of weights in the autoencoder setup (both encoder

and decoder). The Encoder structure column indicates the sizes of the hidden layers

used in the encoder (and in the decoder but reversed.

Code Encoder structure #Parameters Classifier ULB300K PER40M

MLP1K-ILF [16] 1.5K IF ✓
MLP1K-KNN [16] 1.5K KNN ✓
MLP30K-ILF [128, 64, 32] 29.2K IF ✓ ✓
MLP30K0-KNN [128, 64, 32] 29.2K KNN ✓ ✓
MLP100K-ILF [256, 128, 64, 32] 102.4K IF ✓ ✓
MLP100K-KNN [256, 128, 64, 32] 102.4K KNN ✓ ✓
MLP400K-ILF [512, 256, 128, 64, 32] 379.9K IF ✓ ✓
MLP400K-KNN [512, 256, 128, 64, 32] 379.9K KNN ✓ ✓
MLP1.5M-ILF [1024, 512, 256, 128, 64, 32] 1.5M IF ✓ ✓
MLP1.5M-KNN [1024, 512, 256, 128, 64, 32] 1.5M KNN ✓ ✓

Code num heads num layers #Parameters Classifier ULB300K PER40M

TF75K-ILF 1 1 75K IF ✓
TF75K-KNN 1 1 75K KNN ✓
TF150K-ILF 2 2 150K IF ✓
TF150K-KNN 2 2 150K KNN ✓
TF150K-ILF 4 4 300K IF ✓
TF150K-KNN 4 4 300K KNN ✓

5.5 Results

5.5.1 Scaling properties

Figure 5.1 shows the training loss trajectory for the experiments for both datasets.

These plots reveal that the larger model sizes do not necessarily achieve a lower train-

ing loss. This is a remarkable artifact that may indicate that these larger model sizes

require an alternated training procedure in order to obtain better loss convergence.

Figure 5.2 shows the test ROC AUC metric vs. the inference FLOPs of each model

configuration. This figure shows a clear scaling benefit for the ULB300K dataset,

whereas the PER40M performance does not scale beyond the 134M FLOPs model.

All in all, this is a sign that there is a complex interaction between the dataset, model

scale, the structure of the resulting embedding space, and the downstream classi-

fication performance. Depending on the dataset it does not necessarily hold that

a lower representation loss leads to better classification performance. Figure 5.4a

shows the test ROC AUC for the Transformer based encoder architecture, using the
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(a) ULB300K (b) PER40M

Figure 5.1: Training loss trajectory of the triplet loss method for both datasets and

different model sizes. In both cases, it can be observed that a larger model does not

necessarily always lead to lower loss values.

Isolation Forest downstream classifier. A clear scaling benefit is observed, as scaling

the model size leads to significantly higher downstream classification performance.

5.5.2 Embedding visualizations

Figure 5.3b shows a visualization of the embedding spaces of the encoder models

taken from the experiment with the best downstream classification performance.

For the ULB300K dataset, a clear difference is visible in the way the positive and

negative embeddings are positioned in the embedding space, compared to the self-

supervised experiments. The cluster containing the positive instances is now well-

separated from the negative cluster. As for the PER40M dataset, some visual differ-

ences are notable but it is hard to further reason about the quality of the embedding

space.

The embedding visualization for the Transformer-based encoder is visible in 5.4b.

This plot shows significant differences in the way the latent space is structured com-

pared to the MLP encoders used in chapter 4 and the experiments in this chapter.

The first notable difference is the variation between data points of the same class.

Whereas the points in the MLP embedding spaces seem to lie on a single mani-

fold, for the transformer-based embedding space they seem to form a point cloud

roughly following some manifold. Another difference is that there is a clear presence

of one cluster per class, instead of multiple smaller clusters as visible in the MLP

embedding spaces.
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(a) ULB300K (b) PER40M

Figure 5.2: Test ROC AUC vs. Inference FLOPs for the triplet mining training ex-

periments using the KNN classifier. The ULB300K dataset shows that larger model

sizes directly improve downstream classification performance. For the PER40M

dataset, this behavior is not present, as the best downstream classification test

ROC AUC is obtained at the second-smallest model size.

(a) ULB300K (b) PER40M

Figure 5.3: Two-dimensional t-SNE representations of the embedding spaces ob-

tained from the best-performing encoder in the triplet mining experiments, for 1000

positive (red) and 1000 negative (grey) sampled instances for both datasets. The

ULB300K dataset shows an embedding space where positive and negative instances

are well separated, with the two clusters having no significant overlap. As for the

PER40M dataset, the embedding space shows some degree of separation between

the two classes but has areas with a large overlap.
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(a) Classifier performance vs. encoder size (b) Embedding space visualization

Figure 5.4: Transformer complexity vs. downstream classification performance using

the Isolation Forest classifier (left). Two-dimensional t-SNE representations of the

embedding spaces for 1000 positive (red) and 1000 negative (grey) sampled instances

for the PER40M using the transformer-based encoder (right).

5.5.3 Classification performance

Table 5.2 shows the classification performance of the model configurations on the

ULB300K dataset. The MLP1.5M-KNN model outperforms both the self-supervised

methods and the best baseline. Table 5.3 shows the classification performance for the

experiment configurations on the PER40M dataset. The transformer-based encoder

combined with an Isolation Forest significantly outperforms the MLP-based encoder

with KNN classifier, based on test ROC AUC. It also outperforms the self-supervised

methods and the XGBoost baseline. A visualization of the complexity-performance

trade-off compared to the baselines is shown in figure 5.5.

49



Table 5.2: Results for the supervised representation learning experiments for the

experiments as described in table 5.1, for the ULB300K dataset.

Code ROC AUC Accuracy Precision Recall

MLP1K-ILF 0.8799 0.8857 0.8977 0.5850

MLP1K-KNN 0.9087 0.9994 0.8933 0.6760

MLP30K-ILF 0.9808 0.9968 0.8854 0.9696

MLP30K-KNN 0.9798 0.9998 0.9393 0.9393

MLP100K-ILF 0.9851 0.9965 0.9187 0.9393

MLP100K-KNN 0.9697 0.9999 0.9484 0.9292

MLP400K-ILF 0.9945 0.9987 0.9293 0.9595

MLP400K-KNN 0.9848 0.9999 0.9320 0.9696

MLP1.5M-ILF 0.9946 0.9979 0.9110 0.9595

MLP1.5M-KNN 0.9999 0.9998 0.9100 0.9191

Table 5.3: Results for the supervised representation learning experiments for the

experiments as described in table 5.1, for the PER40M dataset.

Code ROC AUC Accuracy Precision Recall

MLP30K-ILF 0.7839 0.9716 0.8198 0.8824

MLP30K-KNN 0.9125 0.9868 0.9171 0.8180

MLP100K-ILF 0.7265 0.9584 0.8959 0.8795

MLP100K-KNN 0.9614 0.9875 0.9397 0.8206

MLP400K-ILF 0.7139 0.9318 0.8918 0.8867

MLP400K-KNN 0.9136 0.9869 0.9349 0.8204

MLP1.5M-ILF 0.7412 0.9672 0.9197 0.8797

MLP1.5M-KNN 0.9280 0.9867 0.9263 0.8254

TF75K-ILF 0.7801 0.9179 0.7194 0.8998

TF75K-KNN 0.9428 0.9877 0.9504 0.8186

TF150K-ILF 0.9229 0.9139 0.7913 0.9079

TF150K-KNN 0.7613 0.9601 0.8524 0.7956

TF150K-ILF 0.9858 0.9907 0.8958 0.9288

TF150K-KNN 0.8640 0.9871 0.9378 0.7902
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(a) ULB300K (b) PER40M

Figure 5.5: Inference FLOPs vs ROC AUC comparison between the supervised

method and the autoencoder methods and baselines as established in table B.1. For

the ULB300K dataset, the MLP-KNN model family is shown. On this spectrum,

MLP1.5M-KNN can be considered an efficient method, as it obtains higher inference

performance at higher inference complexity compared to the baselines. For the

PER40M dataset, the TF150K-ILF and MLP100K-KNN configuration is shown.

TF150K-ILF is an efficient method as it obtains better ROC AUC than the XGBoost

baseline, even though it’s inference FLOPs is two orders of magnitude larger.
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Chapter 6

Conclusion

This work has explored the potential of deep learning methods for fraud detection,

a domain traditionally dominated by tree-based models, through two primary ob-

jectives. First, we established a benchmark comparing common fraud detection

methods on a public (ULB300K) and proprietary (PER40M) dataset. Second, we

evaluated self-supervised and supervised deep learning approaches to assess their vi-

ability and scalability in fraud detection tasks. Here, we summarize the key findings

and their implications.

The benchmark results highlight the dominance of XGBoost as the most ef-

fective method across both datasets, achieving superior performance in terms of

classification metrics and inference efficiency among the baselines. The analysis of

dataset representativeness revealed that while the public dataset (ULB300K) pro-

vides a reasonable proxy for academic evaluations, its low dimensionality and scale

limit its applicability for real-world fraud detection tasks. The proprietary dataset

(PER40M) offers a greater number of features and a much greater number of fraudu-

lent transactions. This contrast underscores the need for publicly available datasets

that better emulate industrial challenges to drive impactful research.

The self-supervised experiments demonstrated that autoencoder-based feature

encoders yield informative embeddings for downstream classification. On the ULB300K

dataset, self-supervised models like AE400K-ILF achieved competitive performance,

occasionally surpassing traditional baselines like XGBoost. However, on the PER40M

dataset, these methods struggled to outperform baselines, indicating limitations

in representational power. The embedding visualizations showed that the embed-

ding space created by autoencoders provided some degree of separation between

fraudulent and non-fraudulent transactions, as observed in the t-SNE visualizations.

Nonetheless, the observed overlap in clusters suggested that these embeddings lacked

the precision needed for robust downstream classification in the PER40M dataset.

The triplet loss-based supervised learning method demonstrated clear advantages
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in both performance and embedding quality. On the ULB300K dataset, supervised

models such as MLP1.5M-KNN outperformed the best self-supervised configurations

and the XGBoost baseline. On the PER40M dataset, the transformer-based encoder

paired with an Isolation Forest classifier achieved the highest ROC AUC score, out-

performing traditional and self-supervised methods. However, this comes at a large

cost, with the number of inference FLOPs being two orders of magnitude larger.

All in all, these results highlight the potential of supervised learning, particularly

when leveraging architectures like transformers, to capture complex relationships in

high-dimensional and imbalanced datasets. The structured separation observed in

t-SNE embeddings from supervised models further affirmed their ability to encode

meaningful representations for fraud classification.

Both self-supervised and supervised models demonstrated complex scaling be-

haviors. While increasing model size often improved performance, diminishing re-

turns were observed in larger configurations, particularly on the PER40M dataset.

This suggests that model design and training strategies need further optimization

to fully leverage the potential of large-scale models.

6.1 Limitations

This work faced several clear limitations, some of which include:

1. Limited availability of public data: The public dataset used in this work

has proven to be insufficient to properly benchmark fraud detection meth-

ods. Some methods obtain near-perfect scores, suggesting highly informative

features are available in the dataset. Yet, the feature names and meanings are

undisclosed, leaving high classification accuracy unexplained.

2. Incomplete set of benchmark methods: This work uses a set of benchmark

methods manually selected based on current literature. It cannot be ruled out

that there exists some method that outperforms the selected benchmarks on

the basis of inference complexity or classification performance.

3. Model selection bias: A large number of experiment configurations have been

evaluated in this work. It can be expected that, as the number of experiments

grows, favorable results could be obtained as a result of chance. However, we

believe, especially for the PER40M dataset, the test dataset has sufficient size

to prevent this bias.
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6.2 Future Directions

The findings of this work underscore the growing potential of deep learning in fraud

detection. While tree-based models remain strong contenders, particularly in the

low-complexity domain, deep learning methods have the potential to be competitive

in the high-complexity domain. The success of supervised representation learning

methods, especially transformer-based encoders, suggests that further research into

hybrid models and pretraining strategies could yield interesting results. Some ideas

for future work include:

1. Training strategies: Incorporating techniques like auxiliary loss functions to

stabilize training and improve generalization. This might lead to a solution to

the poor loss convergence in the larger MLP encoders in the triplet learning

setting.

2. Triplet sampling methods: Many triplet sampling strategies have been pro-

posed in the literature. Some of these may lead to better latent spaces or

more efficient training in the triplet loss training setting.

3. Dataset Augmentation: In the self-supervised setting, data augmentation

methods may yield more efficient feature encoders. One idea would be to

use a denoising auto-encoder framework.

4. Model explainability: This work put little emphasis on the explainability of

model decisions. Research on explainable methods for ANN encoders in com-

bination with the downstream classifier would be highly valuable.

In conclusion, this study has demonstrated the viability of deep learning methods

as an emerging paradigm in fraud detection. While traditional methods continue

to excel in certain contexts, the promising results of self-supervised and supervised

learning approaches pave the way for further research in this domain.
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Appendix A

Confusion-matrix based

classification metrics

Table A.1: A selection of confusion-matrix based metrics

Metric Definition Description

Accuracy TP`TN
TP`FP`TN`FN

Proportion of correctly classified instances.

Precision TP
TP`FP

Proportion of predicted positives that are actually positive.

Recall (Sensitivity) TP
TP`FN

Proportion of actual positives correctly identified.

Specificity TN
TN`FP

Proportion of actual negatives correctly identified.

F1-Score 2 ˆ PrecisionˆRecall
Precision`Recall

Harmonic mean of precision and recall.

False Positive Rate FP
FP`TN

Proportion of actual negatives incorrectly classified as positive.

False Negative Rate FN
FN`TP

Proportion of actual positives incorrectly classified as negative.

Positive Predictive Value TP
TP`FP

Probability that a positive prediction is correct.

Negative Predictive Value TN
TN`FN

Probability that a negative prediction is correct.

60



Appendix B

Benchmark Study

B.1 Hyperparameter results

Table B.1: Benchmark Models and Hyperparameter Tuning Details for the bench-

mark study. Indicated parameters are the hyperparameters tuned during the cross-

validation procedure.

Model ULB300k PER40M

XGBoost max depth: 16

n estimators: 50

alpha: 0

lambda: 0

max depth: 6

n estimators: 50

alpha: 0.1

lambda: 0

Logistic Regression C: 1

L1 ratio: 0

C: 1

L1 ratio: 0

Random Forest max depth: 16

n estimators: 100

max depth: 8

n estimators: 50

MLP hidden layer sizes: [20, 10]

activation: ReLU

hidden layer sizes: [20, 10]

activation: ReLU

Decision Tree max depth: 20 max depth: 20
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B.2 Additional results for MLP classifiers

Table B.2: Additional results for regular MLP classification models on the PER40M

dataset. These are experiments where a regular MLP is used to classify the class

label. The binary cross entropy is used as the loss function.

MLP structure ROC AUC Accuracy Precision Recall

[64,32,16,8] 0.8888 0.9911 0.7456 0.2660

[128,64,32,16,8] 0.8965 0.9914 0.7435 0.2999

[256,128,64,32,16,8] 0.9118 0.9916 0.7517 0.3205

[512,256,128,64,32,16,8] 0.9166 0.9916 0.7579 0.3201

[1024,512,256,128,64,32,16,8] 0.9171 0.9916 0.7648 0.3205

Table B.3: Additional results for regular MLP classification models on the ULB300K

dataset.

MLP structure ROC AUC Accuracy Precision Recall

[64,32,16,8] 0.8936 0.9984 0.7910 0.5217

[128,64,32,16,8] 0.9097 0.9984 0.8104 0.6512

[256,128,64,32,16,8] 0.9748 0.9992 0.870 0.5838

[512,256,128,64,32,16,8] 0.9779 0.9994 0.8571 0.7651

[1024,512,256,128,64,32,16,8] 0.983 0.9991 0.8431 0.577
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Appendix C

FLOPs estimation of benchmark

models

This appendix provides an overview of how the floating point operations (FLOPs)

were estimated for each machine learning model during inference. FLOPs are an

approximate measure of computational cost, and they are calculated based on the

model’s architecture, number of parameters, and the input data size. The following

describes the FLOP calculations for each model.

XGBoost

For XGBoost, the FLOPs are primarily determined by the number of trees, the

maximum depth of each tree, and the number of features in the input. Each tree

performs a series of comparisons as it traverses from the root to a leaf node.

• Assumptions:

– Maximum depth d “ 16, resulting in approximately 2d “ 65, 536 nodes

per tree.

– Number of trees = 50.

– Each feature comparison in a tree node requires 1 FLOP.

• Calculation:

– FLOPs per tree « d ˆ number of features.

– Total FLOPs « d ˆ number of features ˆ number of trees.

For 108 features, the total FLOPs per instance is approximately 16ˆ 108ˆ 50 “

86, 400.
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Logistic Regression

In logistic regression, inference involves a single matrix-vector multiplication be-

tween the input features and the weight vector, followed by an addition with the

bias term.

• Assumptions:

– Each feature-weight multiplication and addition (dot product) requires 2

FLOPs.

• Calculation:

– FLOPs « 2 ˆ number of features.

For 108 features, the total FLOPs per instance is 2 ˆ 108 “ 216.

Random Forest

Random Forest operates similarly to XGBoost in terms of FLOP calculations, but

typically has more trees, and each tree can be shallower or deeper depending on the

hyperparameters.

• Assumptions:

– Maximum depth d “ 16, resulting in approximately 2d nodes per tree.

– Number of trees = 100.

– Each feature comparison in a tree node requires 1 FLOP.

• Calculation:

– FLOPs per tree « d ˆ number of features.

– Total FLOPs « d ˆ number of features ˆ number of trees.

For 108 features, the total FLOPs per instance is approximately 16ˆ108ˆ100 “

172, 800.

Multi-Layer Perceptron (MLP)

The MLP used in this experiment has two hidden layers with ReLU activation. The

FLOPs are based on the number of neurons in each layer and the number of input

features.

• Assumptions:

– Layer 1 has 10 neurons, and Layer 2 has 20 neurons.
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– Each neuron computation involves a matrix-vector multiplication fol-

lowed by a ReLU operation.

• Calculation:

– FLOPs for Layer 1 « number of features ˆ 10.

– FLOPs for ReLU activations in Layer 1 « 10.

– FLOPs for Layer 2 « 10 ˆ 20.

– FLOPs for ReLU activations in Layer 2 « 20.

– Total FLOPs « FLOPs for Layer 1 + FLOPs for Layer 2 + ReLU FLOPs.

For 108 features, the total FLOPs per instance is approximately 108ˆ 10` 10`

10 ˆ 20 ` 20 “ 1, 310.

Decision Tree

The Decision Tree model performs inference by traversing from the root to a leaf,

making comparisons at each node. The FLOPs depend on the depth of the tree and

the number of features.

• Assumptions:

– Maximum depth d “ 20, resulting in approximately 2d nodes per tree.

– Each feature comparison requires 1 FLOP.

• Calculation:

– FLOPs « d ˆ number of features.

For 108 features, the total FLOPs per instance is approximately 20ˆ108 “ 2, 160.
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