
Master Thesis Business Analytics

Connecting the Dots
Developing an Algorithm for Consistency Checking in Military Intelligence

Author
Milou Anna Barbara Meeuwisse

2536188

A thesis submitted in fulfillment of the requirements for the degree
of Master of Science in Business Analytics

Supervisors
Dr. S.K. Smit (External supervisor)

Prof. dr. W.J. Fokkink (Graduation supervisor)
Prof. dr. R.D. van der Mei (Second reader)

February 2018 - August 2018

Host Organization University
TNO Vrije Universiteit Amsterdam

Modeling, Simulation and Gaming Faculty of Science
Oude Waalsdorperweg 63 De Boelelaan 1081a

2597 AK Den Haag 1081 HV Amsterdam

Preface

The final stage of the Master’s program Business Analytics is the Master Project Busi-
ness Analytics. This six-month graduation project has to be carried out within a com-
pany. I conducted my research at host organization TNO, department Modelling, Sim-
ulation & Gaming. Thanks to my supervisor there, I was able to perform my research
in the field of defence, safety & security. I want to thank Selmar Smit for his support
during the past six months. Your expert-knowledge and endless ideas have been a great
inspiration for my research. I would also like to thank Freek van Wermeskerken for his
additional supervision.

Besides, I would like to thank my supervisor from the Vrije Universiteit, Wan Fokkink,
for reviewing my thesis. Your feedback provided me to improve my research. Lastly, I
would like to thank Rob van der Mei for being the second reader of this thesis.

Milou Meeuwisse, August 2018

i

Executive Summary

Military Intelligence is a discipline that uses different information collection and anal-
ysis approaches to provide commanders with situational awareness and understanding
in order to support the decision-making process. Intelligence analysts have to deal with
deceptive information. Correctly identifying misleading information is of high impor-
tance to provide reliable intelligence products. The overall objective of this research is
to explore a technique to assist intelligence analysts in correctly identifying deceptive
information. Therefore, a use-case is defined focusing on moving entities. Entities leave
sightings while travelling. Concatenating these sightings creates movements of the entity
over time and in space. Deceptive or false information might be present in the entity
movement. Being able to filter the misinformation, leads to more reliable intelligence.
Therefore, the goal of this research is to design an algorithm which is able to detect
inconsistencies in observations of moving entities.

A framework is designed to generate and evaluate entity movements. An entity move-
ment is defined as a chain of chronologically ordered sightings. Each possible combi-
nation of sightings is referred to as a hypothesis. Therefore, the algorithm framework
consists of a hypothesis evaluator and hypothesis generator.

The hypothesis evaluator evaluates entity movements by Bayesian inference. Using
Bayes’ theorem the likelihood of a hypothesis can be computed. This likelihood de-
pends on the reliability of the sightings and the characteristics of the sighting chain.
The characteristics may consist of dependent variables. To model the dependency be-
tween variables, copula functions are integrated into the algorithm. Copula functions
are able to model the dependence structure of dependent variables separate from the
univariate marginals.

The hypothesis generator generates all possible combinations of sightings. These com-
binations can be presented in a search tree, respecting the chronological ordering of the
sightings. To reduce computation time, backtracking is used to traverse the search tree.
When a hypothesis is generated, it is passed on to the hypothesis evaluator. Depending
on the likelihood returned by the evaluator, the hypothesis is either expanded by the
next sighting in the tree, or pruned. In this way, only the promising hypotheses are
generated and evaluated.

The designed algorithm is first validated on simulation data, after which it is applied
to real-world data concerning fugitives. For both data sets the route characteristics and
source reliability are modelled using historic data. The results show that the designed
algorithm is able to correctly classify false and true sightings. However, the copula func-
tions might introduce noise, resulting in a poor performance of the algorithm.

The potential of the algorithm is demonstrated for both intelligence and crime analy-
sis. Due to the modularity of the framework, the algorithm can be applied to multiple
use-cases in these two fields. Besides, the algorithm can be applied to predict future
sightings. When hypothetical future sightings are added to a historic collection of sight-
ings, the likelihood of future entity movements can be evaluated.

ii

Table of Contents

Preface i

Executive Summary ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Objective . 1
1.3 Research Goal . 2
1.4 Structure . 2

2 Intelligence Background 3
2.1 Intelligence Cycle . 3
2.2 Analysis of Competing Hypotheses . 5
2.3 Critiques Intelligence Cycle . 5

3 Relevant Work 7

4 Connecting the Dots 10
4.1 Algorithm Design . 10
4.2 Hypothesis Evaluator . 11

4.2.1 Bayesian Inference . 11
4.2.2 Modelling Dependence . 14

4.2.2.1 Copula Functions . 14
4.2.2.2 Multivariate Kernel Density Estimation 18
4.2.2.3 Practical Comparison 20

4.2.3 Demonstrative Example . 22
4.3 Hypothesis Generator . 23

5 Validation 25
5.1 Simulator . 25
5.2 Hypothesis Evaluator . 27
5.3 Evaluation . 32
5.4 Experimental Results . 33

5.4.1 Test Set 1 . 34
5.4.2 Test Set 2 . 36

5.5 Benchmark . 38
5.6 Discussion and Conclusion . 39

6 Real-World Example 41
6.1 Hunted . 41
6.2 Hypothesis Evaluator . 42
6.3 Results . 45

6.3.1 Situation 1 . 45
6.3.2 Situation 2 . 46

iii

6.4 Discussion and Conclusion . 46

7 Overall Conclusion and Recommendations 48
7.1 Conclusion . 48
7.2 Recommendations . 49
7.3 Future Research . 49

APPENDIX 51

A Intelligence Cycle 51
A.1 Information Collection Methods . 51
A.2 Source and Information Reliability Matrix 52

B Copula Families 53

C Simulation Data 54
C.1 Statistics Simulation Test Set 1 . 54
C.2 Statistics Simulation Test Set 2 . 54

D Real-world Data 56
D.1 Exploratory Data Analysis . 56
D.2 Correlation Matrix . 57

Bibliography 59

iv

List of Figures

1 Chain of four sightings of a moving entity. 2
2 The intelligence cycle. 3
3 Two competing hypotheses. 5
4 Algorithm design consisting of a hypothesis generator and a hypothesis

evaluator. 10
5 Algorithm output consisting of multiple hypotheses. 11
6 Decomposition of a 4-dimensional joint density using C-vine. 17
7 Decomposition of a 4-dimensional joint density using D-vine. 17
8 Influence of bandwidth B on f̂X(x,B). 19
9 Histograms for random variables X and Y respectively. The red lines

represent the fitted normal distributions with µx = 0.988, σx = 0.399 and
µy = 0.981, σy = 0.405. 20

10 Estimated bivariate copula for random variables X and Y 21
11 Estimated kernel density for random variables X and Y 21
12 Search tree for dimension of 6. 24
13 Area of interest used in simulation. 25
14 Confusion Matrix and its corresponding conditional probabilities. 26
15 Rewritten Confusion Matrix using parameters p1 and p2. 26
16 Decomposition of the 3-dimensional effort density using regular vine. . . 28
17 Comparison parametric copula and kde-copula for effort variables. . . . 29
18 Distance characteristic using short-cut distance and travelled distance. . 31
19 Comparison parametric copula and kde-copula for distance variables. . . 31
20 Confusion Matrix false (F) and true (T) sightings. 32
21 Classify false and true sightings by the travelled distance variable. 33
22 Travelled distance versus short-cut distance for true (black) and false (red)

sightings. 34
23 Pareto fronts test set 1. 35
24 Example collections of sightings leading to different values of RecallF and

RecallT. 36
25 Pareto fronts test set 2. 37
26 Example collections of sightings leading to different values of RecallF and

RecallT. 38
27 Histograms of speed, distance and duration for move activities. 42
28 Pareto fronts situation 1. 45
29 Pareto fronts situation 2. 46
30 Histograms of speed, distance and duration for move activities in the re-

vised data set. 56

v

List of Tables

1 Example simulation data of one route. 26
2 Correlation matrix of simulated historic effort data. 28
3 Estimated marginal distributions for f(x1, x2, x3, x4). 30
4 The reliability probabilities assigned to the five different sources available

to the hunters. 43
5 Correlation matrix of historic speed variables. 44
6 Evaluation of Source Reliability. [3] . 52
7 Evaluation of Information Content. [3] 52
8 Three copula functions in the Archimedean family including their gener-

ator function ϕθ(t) and the parameter range. [19] 53
9 Distribution number of sightings per collection in test set 1. 54
10 Distribution number of false positive sightings per collection in test set 1. 54
11 Distribution number of sightings per collection in test set 2. 54
12 Distribution number of false positive sightings per collection in test set 2. 55
13 Correlation matrix of historic poi variables. 57
14 Estimated marginal distributions for the poi variables. 58

vi

1 Introduction

1 Introduction

This chapter provides a general introduction in the subject of this thesis. First, the
research problem is stated and the objective of this research is defined. Subsequently,
the research goal and its corresponding sub-questions are specified. The chapter finishes
with a brief description of the structure of this thesis.

1.1 Problem Statement

Military Intelligence is a discipline that uses different information collection and analysis
approaches to provide commanders with situational awareness and understanding in or-
der to support the decision-making process. Complete and accurate information about
the mission environment is essential to a military unit in order to operate effectively.
Intelligence is the result of dedicated collection and processing of information from dif-
ferent sources (e.g., imagery information, human information, open source information).
While these sources provide large volumes of information, its relevance and credibility
may be questionable. Intelligence analysts have to be aware of deceptive information
and misinformation both intentional and unintentional. These types of information are
misleading to intelligence analysts, causing unreliable intelligence products. In the end
this may lead to incorrect decisions during an operation. Correctly identifying mislead-
ing information assists analysts to filter out irrelevant and unreliable information. This
is however a challenging task, especially with the large volumes of available information
analysts have to deal with nowadays.

Santos et al. (2005) encountered the same problem in intelligence analysis and wrote the
paper A Cognitive Framework for Information Gathering with Deception Detection for
Intelligence Analysis. They developed an information retrieval (IR) application which
collects information based on the user’s interests. In addition, they incorporated auto-
matic document summarization enabling analysts to identify relevant documents more
effectively. The IR application provides a way to reduce the problem of information
overload in selecting relevant information [1]. Using this application, the analysts still
face the problem of evaluating the reliability and credibility of the information they re-
trieve. Santos et al. consider monitoring for inconsistencies in the retrieved information
to be the most useful approach in detecting mis- and disinformation.

1.2 Objective

The overall objective of this research is to explore an approach to consistency checking
in intelligence to assist intelligence analysts in identifying misleading and deceptive in-
formation. A use-case is defined to scope the objective. Therefore, this research focuses
on information concerning moving entities. Entity movements may contain important
information about, for example, the adversary or allies and where they might move.
Consider an entity moving through a mission area. The entity can be observed by mul-
tiple sources, at different places, at different moments in time, leading to observations
of the entity. Concatenating these observations creates movements of the entity over
time and in space. However, there might be intentionally or unintentionally misleading
information included in the observations. An example of a moving entity is the BUK
missile launcher which downed flight MH17. Open-source information is available about
the movements of the BUK missile. This open-source information includes both correct

1

1.3 Research Goal 1 Introduction

and incorrect information about the BUK. Being able to detect the misinformation,
might help to track down the origin of the missile launcher.

Figure 1 shows a fictive chain of four sightings of which the third is deceptive. Including
the deceptive sighting, the entity movement contains misinformation. Being able to
detect the deceptive sighting helps overcoming this problem and leads to more reliable
information.

Figure 1: Chain of four sightings of a moving entity.

1.3 Research Goal

Regarding the main objective of this research and the use-case used for it, the main goal
of this research is as follows:

Develop an algorithm which is able to detect inconsistencies
in observations of moving entities.

In order to achieve this goal the research is divided into multiple sub-questions:

1. Which techniques are suitable for evaluating entity movements?

2. How can characteristics belonging to a moving entity be integrated into the algorithm?

3. Which techniques are suitable for constructing entity movements?

4. Which characteristics belonging to a moving entity are required in order to apply the
algorithm to a real-world example?

NB: From this point on, entity movement(s) are referred to as route(s). Besides, the
words evidence, observations and sightings are used interchangeably in this research.

1.4 Structure

This thesis is structured as follows. First, Chapter 2 provides relevant background infor-
mation about military intelligence in order to be able to fully understand this research.
Next, Chapter 3 discusses relevant literature regarding the research problem. In Chapter
4 the algorithm design is given. Besides, its main components are theoretically described
and demonstrated. Next, the algorithm is validated on simulation data, which is de-
scribed in Chapter 5. After the validation phase, the algorithm is applied to a real-world
example. The real-world example and its results are described in Chapter 6. Chapter
7 provides the overall conclusion of the research. Besides, recommendations are given
and suggestions for future research are presented.

2

2 Intelligence Background

2 Intelligence Background

This chapter provides background information about military intelligence. The process
of intelligence is briefly described. The summary is based on the Joint Doctrine Pub-
lication 2 Intelligence of the Ministry of Defence The Netherlands [2]. In addition, a
commonly used intelligence analysis technique is described. The chapter concludes with
critiques on the intelligence cycle which emerged over the past decades.

2.1 Intelligence Cycle

Military operations are supported by means of intelligence. Intelligence provides com-
manders with situational awareness in order to support the decision-making process.
The intelligence cycle is an essential part of the intelligence process and consists of four
phases: Direction, Collection, Processing and Dissemination. The intelligence process
is supported by the management process of the cycle, called Information Requirements
Management and Collection Management (IRMCM). The cycle and its management
process are shown in Figure 2 and briefly described below.

Figure 2: The intelligence cycle.

Direction
The intelligence cycle process is driven by the commander of the associated military
operation. The objectives of an operation are defined in the so-called end state. In
order to achieve this end state, the operational commander needs to have situational
understanding (SU). Acquiring SU starts with having situational awareness (SA): being
aware of the operational environment and who is doing what and where. Based on the
SA intelligence requirements are determined to eventually meet the objectives of the
operation. The intelligence requirements are contained in the Intelligence Collection
Plan (ICP). The ICP consists of the Primary Intelligence Requirements (PIRs). These
are a couple of broad questions representing the most important requirements. The
PIRs are divided into Specific Information Requirements (SIRs). These are multiple
specific sub-questions supporting the PIRs. Subsequently, the SIRs are translated to
Essential Elements of Information (EEIs). EEIs are statements or questions which can
actually be observed or recognised. Based on the EEIs, different collection orders can

3

2.1 Intelligence Cycle 2 Intelligence Background

be formulated. Each collection order is labelled by observable and recognisable indi-
cators bounded in time and space. During the direction phase the ICP is formulated
and the collection orders are issued to the collection means that are under command of
the own operational commander. Besides, it is possible to send a Request for Informa-
tion to other intelligence organs. The issued orders are executed in the Collection phase.

Collection
Once the ICP has been formulated and the collection orders are issued, the collection
phase starts. During this phase the recipient of a collection order designs a plan to ad-
dress the order. Based on the plan there is determined which source(s) are able to timely
execute the order. The different sources and their information collection methods are
described in Appendix A.1. The collected information might be pre-processed by single-
source analysts. Each analyst specialises in a certain source and is able to interpret and
evaluate the collected information of that source. Their processed information is called
single-source intelligence. The collected information and single-source intelligence will
be delivered to the processing phase.

Processing
During the processing phase the collected information is registered, evaluated, analysed,
integrated and interpreted. These steps are executed sequentially as well as in parallel.
First, the information is structured and compared with other collected information. Af-
ter that, it is systematically registered, which results in a database. This database can
be used for further analysing the information. Next, the collected information is evalu-
ated. The reliability of the source and the credibility of the information are evaluated
independently. This is because, information obtained from a generally reliable source is
not necessarily true and vice versa. The credibility- and reliability values are combined
to an alphanumeric value, which are explained in Appendix A.2. In the last three steps,
the information is analysed, integrated and interpreted using various analysis techniques.
During these steps, the structured and evaluated information is investigated and put in
context of the operation. At the same time, existing information and knowledge is taken
into account in order to detect trends and developments. Finally, the trends and de-
velopments are interpreted and conclusions are drawn regarding the current and future
state of the operation.

Dissemination
The last phase in the intelligence cycle is dissemination. During this phase the intelli-
gence needs to be distributed to the commander. There are various ways to present the
intelligence products. The four most common forms are: verbal by means of briefings,
written by means of reports, graphical by means of maps, and in data format. The value
of intelligence decreases by the passage of time. Therefore, the timely distribution of
intelligence is of high importance.

IRMCM
The coordination of all collection and processing activities in the intelligence cycle is
managed by IRMCM. It monitors both the progress of these activities and the timely
dissemination of the intelligence. IRMCM starts with an information requirements anal-
ysis and the investigation in which information is already available. In addition, it is
assessed which information can be collected by the collection means that are under com-
mand of the own operational commander and which information must be obtained by

4

2.2 Analysis of Competing Hypotheses 2 Intelligence Background

activities of other intelligence organs. IRMCM also ensures the information is properly
stored and communicates and coordinates with other intelligence staffs regarding the
collection and exchange of information.

Note that the intelligence cycle is a never ending process. The collected information and
intelligence are continuously evaluated and adjusted if necessary. Therefore, intelligence
activities can never be considered as completed. As long as a military operation is
running, the intelligence cycle is an active process.

2.2 Analysis of Competing Hypotheses

An analysis technique often used in the processing phase of the intelligence cycle is Anal-
ysis of Competing Hypotheses, also referred to as ACH. This technique helps intelligence
analysts judging issues that require careful weighing of alternative explanations (hy-
potheses). ACH was introduced by Heuer [5], a former CIA staff officer. The first step
of the analysis is to generate a set of alternative hypotheses representing for example,
potential answers to questions of the ICP. Subsequently, the hypotheses are system-
atically and simultaneously evaluated based upon the collected evidence. During this
evaluation there is a focus on evidence that tends to disconfirm rather than to confirm
each of the hypotheses. The most probable hypothesis is usually the one with the least
evidence against it, not the one with the most evidence for it [4].

Two common pitfalls in intelligence analysis are tunnel vision and confirmation bias. In
general, analysts are overly influenced by a first impression of the situation and fail to
explore other hypotheses. Besides, analysts tend to rely on evidence supporting their
favoured hypothesis and thereby discard evidence contradicting the same hypothesis.
ACH can help overcome these two common pitfalls.

In the use-case of this research, a hypothesis can be defined as an entity movement.
An entity movement is equal to a chain of observations of a moving entity. Therefore,
a hypothesis in this research is equal to a chain of observations. An example of two
competing hypotheses for the entity movement shown in Figure 1 is shown in Figure 3.

Figure 3: Two competing hypotheses.

2.3 Critiques Intelligence Cycle

The intelligence cycle has been discussed over the past decades. The discussion is more
or less two-fold. The first point of criticism is that the intelligence cycle is not well
defined. It would not be an accurate reflection of the way intelligence is produced.
The second point is about the cycle being old-fashioned. Considering the development
of (communication) technology and the abundance of available information, the cycle
would not meet today’s needs.

5

2.3 Critiques Intelligence Cycle 2 Intelligence Background

In 2006 Arthur Hulnick stated in his article What’s wrong with the intelligence cycle?
that the intelligence cycle is not a particularly good model. “It is really not a very good
description of the ways in which the intelligence process works [6].” He argues that
the intelligence cycle represents a sequential process and does not provide for iterations
between steps. Especially the collection- and processing phase should be considered as
operating in parallel rather than sequentially. Johnston & Johnston (2005) state that
because of this weakness, understanding the challenges and responsibilities of intelli-
gence analysis becomes much more difficult. They recommend to either redesign the
traditional intelligence cycle model to depict accurately the intended goal, or to discuss
explicitly its limitations whenever it is used [7].

Another reason to argue that the intelligence cycle should be redefined is that the model
is outdated. In 1949 Sherman Kent published the book Strategic Intelligence for Amer-
ican World Policy. With this book Kent was the first to define the different stages of
intelligence analysis. This means that the intelligence cycle has been defined more than
60 years ago. Ayden & Ozleblebici (2015) argue in their article Is Intelligence Cycle
Still Viable? that the traditional cycle does not meet today’s needs. The development
of technology and communication has resulted in an enormous increase in the amount
of available information. This information overload has fundamentally altered the way
intelligence organizations collect, collate and analyze their data, argue Knopp et al.
(2016). However, the development of tradecraft to exploit the information has lagged
behind [10]. Managing and processing these quantities of data is a challenge intelligence
analysts are facing today. At the time Kent defined the intelligence cycle the available
information was limited compared to the information available nowadays. The tradi-
tional cycle would not be able to anticipate today’s large volumes of data.

Several authors attempted to modify the intelligence cycle in order to rectify the weak-
nesses of the traditional cycle. Additionally, the proposed intelligence cycles aim to
improve the model by increasing the effectiveness and making it more realistic. How-
ever, Wheaton (2012) argues in his article Let’s Kill the Intelligence Cycle that “none of
the proposed models seek to discard the fundamental vision of the intelligence process
described by the cycle [8]” and so the discussion continues.

The mentioned critiques on the intelligence cycle have to be kept in mind when designing
and developing the algorithm of this research. The algorithm must be able to respond
to today’s intelligence needs. Especially the big data problem should be taken into
account. Handling large quantities of data should not be a problem to the algorithm.
Moreover, the timely dissemination of intelligence should be taken into consideration.
Despite the critiques on the cycle, the timely dissemination of intelligence will always
be of high importance. This means that the algorithm must be able to handle large
quantities of data on the one hand, and have a sufficient runtime on the other.

6

3 Relevant Work

3 Relevant Work

Chapter 1 introduced the general problem of identifying misleading information in in-
telligence analysis. This research focuses solely on sources providing information about
moving entities. Identifying inconsistencies in intelligence data describing entity move-
ments is a specific problem within a specific domain. Literature describing both con-
sistency checking and the military intelligence domain in a single research is scarcely
available. This does not necessarily mean that this kind of research is not conducted. In-
stead, it might not be publicly available. Alternatively, research concerning situational
awareness in military operations can be reviewed. This is relevant because the final
purpose of identifying misleading and deceptive information is to contribute to better
situational awareness. Approaches to provide situational awareness might be of interest
for the algorithm to develop in this research. Therefore, this chapter discusses various
approaches and techniques used in intelligence to contribute to better situational aware-
ness. In this way a reasonable decision can be made about the design of the algorithm.

In 1972 Zlotnick, a former analyst at the Central Intelligence Agency, wrote the article
Bayes’ Theorem for Intelligence Analysis. In this article he argued: “The very best
that intelligence can do is to make te most of the evidence without making more of
the evidence than it deserves. The best recourse is often to address the probabilities
[11].” The approach he suggests is Bayes’ Theorem in odds-ratio form. Intelligence
analysts often need to estimate the comparative merits of two competing hypotheses.
Using Bayes’ theorem in odds form, the estimate can be expressed in terms of the odds
favouring or disfavouring the hypothesis. In this way, the analyst does not take the evi-
dence as given. Nowadays, Bayesian analysis is a commonly used technique in creating
situational awareness in military- and crime intelligence. The following two articles are
examples in respectively both the domains.

Barros et al. (2014) introduce a near real-time intelligence technique in order to pro-
duce reliable and up-to-date situation awareness. This supports contemporary military
operations and especially those of which time is of the essence. For these operations
real-time analysis of potential threats is of vital importance. The analysis technique
is a combination of Bayesian Belief Networks (BBN) and spatio-temporal modelling.
The BBN is modelled by using the Hypothesis Management Framework (HMF). This
framework enables the simultaneous quantitative evaluation of possible hypotheses and
can be seen as the probabilistic counterpart of ACH [12]. The threats which need to be
analysed can be modelled as hypotheses. Therefore the HMF is a suitable approach to
quantify the probability of alternative threats based on available information. However,
the threats need to be assessed in a specific time and space. These spatio-temporal fac-
tors are not included in the HMF. Therefore, the HMF is extended by spatio-temporal
models in order to make the threat assessment space and time dependent.

Smit et al. (2016) also make use of Bayesian analysis in their research. They present
QUIN, a support system for crime analysts able to model different crime scenarios and
reason about what happened. This system helps analysts to overcome the challenge of
processing large volumes of information and selecting which information to attend and
which to ignore [13]. QUIN is a combination of crime-scripting and Bayesian reasoning.
Domain knowledge and expert knowledge about criminal activities is captured in the
crime scripts. This knowledge is used to reason about the likelihood of possible sce-

7

3 Relevant Work

narios based on available evidence. Based on the ACH technique different scenarios are
compared and assessed. For each defined scenario the given evidence is filled into the
scenario. By using multiple BBNs conditional probabilities are calculated resulting in
the likelihood of the scenario given the new element of information. Furthermore, one
can obtain how the likelihood of a scenario develops by adding more evidence. When
the same evidence is added to different scenarios, the development of the likelihood can
be compared in order to identify which scenario has truly happened.

Both the articles of Barros et al. and Smit et al. describe a Bayesian analysis based
on ACH. They start with defining possible threats or scenarios. Subsequently, these
hypotheses are evaluated simultaneously by one or more BBNs. This process has a
few important drawbacks. First, the analysis is totally dependent of properly defined
hypotheses. This means that expert knowledge is indispensable. Second, once a threat
is missing in the BBN or a scenario is not present in the knowledge base, it cannot be
taken into account. This could thereby force an analyst into tunnel vision. However,
these drawbacks are not relevant for our research. This is because we are not dealing
with hypotheses/scenarios for which expert knowledge is required. The hypotheses we
are dealing with are simple chains of sightings. Therefore, a BBN might be a suitable
approach for the algorithm of this research.

Bayesian reasoning is obviously not the only intelligence technique which might be suit-
able for creating situational awareness. Ceolin et al. (2013) describe a research in the
naval domain in which another technique is applied. In the naval domain Automated
Identification System (AIS) messages are exchanged to locate and to identify ships and
to avoid collisions. In this way it is possible to keep track of the positions of ships in
combination with their identity. The trustworthiness of the information provided by AIS
messages is questionable. Therefore, a model is designed to determine the reliability of
AIS messages. One of the techniques used to obtain these results is Subjective Logic
[15]. Subjective logic is a type of probabilistic logic that allows probability values to be
expressed with degrees of uncertainty. Arguments in subjective logic are called opinions,
represented by ωsubjectobject . The object can be interpreted as a proposition to which the
opinion applies, such as ‘the name of this ship is X’. The subject can be interpreted as
the source or the opinion holder, for example an AIS message. An opinion represents the
evidence that a certain subject has up to a certain moment by means of four parameters:
belief, disbelief, uncertainty and an a priori value. An important aspect of opinions is
that they are equivalent to Beta or Dirichlet distribution under a specific mapping [15].
This means that an opinion can be expressed as the probability of a proposition being
true. Subjective logic is useful in the maritime domain, because different subjects may
have different opinions about the same object. This makes it possible to compute the
ratio between agreeing and disagreeing observations, as an indicator of the trustworthi-
ness of observed values [14]. However, in our specific research subjective logic is not
applicable. The reason is that in our research hypotheses are defined as chains of obser-
vations. In terms of subjective logic, this means that the object consists of the subjects.
This leads to undesirable complexity. Nevertheless, subjective logic might still be useful
in the intelligence domain. Pope & Josang (2005), for example, discussed the usage of
subjective logic as an elaboration of the ACH process in [16].

In addition to the discussed probabilistic approaches, artificial intelligence (AI) might
also contain useful techniques for the algorithm to be designed. However, the current

8

3 Relevant Work

AI techniques are seen as uninterpretable black-boxes, generating solutions which might
be unexplainable [17]. An important requirement for techniques used in intelligence
analysis is to be explainable and transparent. Otherwise, a technique is hard to trust
and will not be accepted and used by analysts. Furthermore, there is not yet a strategy
for applying AI in intelligence analysis [17]. For these reasons, AI methods are not
investigated as potential approaches for the algorithm to design in this research.

9

4 Connecting the Dots

4 Connecting the Dots

In this chapter the algorithm is designed and theoretically explained. The first sec-
tion describes the design of the algorithm and the components it consists of. The two
subsequent sections theoretically explain the working of the algorithm components.

4.1 Algorithm Design

Inspired by the approaches and techniques discussed in Relevant Work, their pitfalls
and applications to our research, the algorithm can be designed. Recall that the aim of
the algorithm is to detect inconsistencies in observations of moving entities. In order to
detect inconsistencies in entity movements, multiple alternative movements have to be
compared. This means that the algorithm should at least contain two components: a
movement generator and a movement evaluator. Chapter 2 already stated that an entity
movement can be defined as a chain of observations. Each possible chain of observations
equals a hypothesis which can be evaluated. Therefore, the following algorithm design
is able to detect inconsistencies in entity movements:

Figure 4: Algorithm design consisting of a hypothesis generator and a hypothesis evalu-
ator.

The algorithm consists of two components: the hypothesis generator and the hypothesis
evaluator. Besides, the input for the algorithm is the collection of sightings concerning a
moving entity. This corresponds to the information collected in the Collection-phase of
the intelligence cycle. The hypothesis generator is fed with the evidence. Subsequently,
the generator generates a hypothesis, i.e. a route consisting of multiple observations.
The hypothesis is evaluated by the evaluator, resulting in a likelihood corresponding
to the hypothesis. Depending on the likelihood, the generator expands or adjusts the
route. Using this approach, more evidence can be collected given the generated hypoth-
esis. In this way, the design responses to the intelligence critiques mentioned in Section
2.3. Both the hypothesis generator and the hypothesis evaluator are further explained
in the upcoming two sections of this chapter.

As already discussed, the analysis techniques used in both the articles of Barros et al.
and Smit et al. were inspired by ACH. This is because in their research, hypotheses
need to be evaluated simultaneously. Using our algorithm hypotheses are generated and
evaluated one by one. Therefore, there is no reason to base the techniques used in the
generator and evaluator on ACH. However, since ACH is such an important and widely

10

4.2 Hypothesis Evaluator 4 Connecting the Dots

used technique in intelligence analysis, we still want to incorporate this in our tracking
algorithm. We therefore decided to output multiple routes with a high likelihood instead
of only the route evaluated as most likely. In this way the most likely routes can further
be analysed by other intelligence techniques, such as ACH. Moreover, it is impossible to
exactly track down the route an entity has travelled based on its sightings. Providing an
analyst with multiple highly likely possibilities is hence much more informative. Figure
5 shows the output principle of the algorithm.

Figure 5: Algorithm output consisting of multiple hypotheses.

4.2 Hypothesis Evaluator

This section discusses the hypothesis evaluation component of the algorithm. The aim
of this component is to provide a generated hypothesis with its corresponding likelihood
value. The technique used to accomplish this is described followed by a demonstration
of the evaluation technique using an example.

4.2.1 Bayesian Inference

Inspired by the papers of Barros et al. (2014) and Smit et al. (2016) a BBN might be a
suitable technique for the hypothesis evaluator of the algorithm. A BBN consists of a set
of nodes representing variables and a set of arcs representing conditional dependencies
between the nodes. The absence of an arc indicates independence. A BBN is commonly
presented as an acyclic directed graph. The extent to which the variables influence
each other is given by conditional probability tables. In these tables the probability
of occurrence of a variable given the state of another variable can be found. BBNs are
used to calculate new probabilities when new information or evidence becomes available.
The new information is applied to the network by setting a variable to a state that is
consistent with the new information. The probabilities of all variables connected to the
variable representing the new information are updated by Bayesian inference.

In order to use a BBN, first the variables of the network need to be defined. In case of the
hypothesis evaluator, these variables are not straightforward. Since a route is defined
as a chain of sightings, there is no other information about the route than the sightings
it is formed by. Creating a graph consisting of sightings is impossible since there are no
prior relations between them. Using a BBN as technique for the hypothesis evaluator
is therefore inappropriate. However, the Bayesian inference used in BBNs is still useful.

11

4.2 Hypothesis Evaluator 4 Connecting the Dots

Instead of applying inference to a network, one can iteratively apply inference.

Bayesian inference is a method to update the probability of a hypothesis as additional
data or evidence is collected. The basis for Bayesian inference is derived from Bayes’
Theorem. Bayes’ theorem describes the probability of an event based on its association
with another event. If we define H as some hypothesis and E as some newly collected
evidence, Bayes’ theorem can be stated as follows.

P(H|E) =
P(E|H)P(H)

P(E)
(1)

Explained in words, P(H|E) in equation (1) asks the question: “Given some newly col-
lected evidence, what is the probability for the hypothesis to be true?” In terms of this
research an exact same question can be posed: “Given a collection of observations, how
likely is the entity to really passed the positions belonging to the observations?” In
order to apply Bayesian inference, two terms have to be defined within the context of
this research.

Evidence
Let E{e1,...,en} be an ordered collection of n pieces of evidence of the moving entity of in-
terest. The ordering is in time, which means that e1 is the first observed piece of evidence
in the collection and en the last. For example, E{e1,e3,e7} is a collection of three pieces
of evidence with time ordering e1 ≤ e3 ≤ e7. ei can be interpreted as a single obser-
vation of the entity of interest by a certain source and is defined by spatio-temporal data.

Hypothesis
Let H{e1,...,en} be the hypothesis that the entity of interest passed the positions belong-
ing to {e1, . . . en} with time ordering e1 ≤ · · · ≤ en.

Using these definitions Bayes’ theorem can be put into context of this research:

P(H{e1,...,en}|E{e1,...,en}) =
P(E{e1,...,en}|H{e1,...,en})P(H{e1,...,en})

P(E{e1,...,en})
. (2)

Since a hypothesis can either be true or false, the denominator in equation (2) can be
rewritten to:

P(E{e1,...,en}|H{e1,...,en})P(H{e1,...,en}) + P(E{e1,...,en}|¬H{e1,...,en})P(¬H{e1,...,en}). (3)

On the right-hand side of equation (2) three probabilities are stated.
P(E{e1,...,en}|H{e1,...,en}) represents the likelihood that a collection of evidence will be
observed given the hypothesis. This equals the true positives regarding the sources of
the observations and can be obtained using historical data or expert knowledge.
P(H{e1,...,en}) is the likelihood of a hypothesis to be true, without considering the relia-
bility of evidence. How these probabilities can be computed will be discussed later.
P(E{e1,...,en}) is the likelihood of a collection of evidence without any context. This value
can be written in terms of P(E{e1,...,en}|H{e1,...,en}) and P(H{e1,...,en}) which are already
discussed.

12

4.2 Hypothesis Evaluator 4 Connecting the Dots

As discussed in Section 3.1, Zlotnick (1972) suggested to use Bayes’ theorem in odds
ratio form. This is useful if one needs to estimate the comparative merits of two com-
peting hypotheses. This is not the case for the hypothesis evaluator. The evaluator

needs to obtain P(H{e1,...,en}|E{e1,...,en}) instead of
P(H{e1,...,en}|E{e1,...,en})
P(¬H{e1,...,en}|E{e1,...,en})

. Therefore,

the evaluator does not use Bayes’ theorem in odds ratio. However, equation (2) can be
rewritten to a more useful form regarding the evaluator.

Equation (4) states Bayes’ theorem using (3). For readability we denote E{e1,...,en} by
E and H{e1,...,en} by H.

P(H|E) =
P(E|H)P(H)

P(E|H)P(H) + P(E|¬H)P(¬H)
(4)

Multiplying both the numerator and the denominator in Equation (4) by
1

P(E|¬H)P(¬H)
and rewriting the fraction, we end up with Equation (5).

P(H|E) =

P(E|H)
P(E|¬H)

P(H)
P(¬H)

1 +
P(E|H)
P(E|¬H)

P(H)
P(¬H)

(5)

All probabilities in equation (5) can be computed. As stated before, P(E|H) equals the
true positives regarding the sources of the observations. This means that the fraction
P(E|H)
P(E|¬H)

equals the true positive, false positive ratio and can be computed by historical

data or expert knowledge. The remainder term in equation (5) is
P(H)
P(¬H)

, which can be

written in terms of P(H) by
P(H)

1− P(H)
. By computing P(H) the reliability of evidence

cannot be taken into consideration. Therefore, all evidence belonging to the hypothesis
are assumed to be accurate. This means that the collection of observations forms a route
of which the likelihood can be computed. The likelihood of a route being travelled by
the entity of interest depends on its characteristics. For example a route with unpaved
roads might be less likely to be travelled by a certain entity than paved roads. Denote
the characteristics of a route formed by {e1 . . . , en} by c1

{e1...,en}, . . . , c
m
{e1...,en}, where

1, . . . ,m represent the index of the characteristics rather than an exponent. Now, the
likelihood of a hypothesis to be true can be stated as:

P(H{e1,...,en}) = P(c1
{e1...,en} × · · · × c

m
{e1...,en}) (6)

Computing this probability would be straightforward when all m characteristics are
assumed to be independent. However, this assumption might be invalid, since different
characteristics concerning the same route are likely to highly correlate with each other.
Therefore, an approach has to be determined which is able to model dependent variables.
This is further discussed in Section 4.2.2. How Bayesian inference exactly can be used
as hypothesis evaluation is demonstrated in Section 4.2.3.

13

4.2 Hypothesis Evaluator 4 Connecting the Dots

4.2.2 Modelling Dependence

As discussed in the previous section, the different route characteristics implied in
P(H{e1,...,en}) might be dependent. When this is the case, computing the likelihood of a
hypothesis is not as straightforward as the multiplication of the different characteristic
probabilities. Instead, the dependence between the characteristics needs to be modelled.
In this section two techniques are discussed to model dependence; Copula Functions and
Multivariate Kernel Density Estimation. Both techniques are theoretically described,
afterwhich they are demonstrated and compared using a practical example.

4.2.2.1 Copula Functions
Dependence between random variables can be modelled by Copula functions. Copula
functions are widely used to model dependence. Especially in the financial sector they
have proven to be a useful methodology. Copulae were first introduced by Sklar in 1959.
He stated that any multivariate cumulative distribution function can be separated into
two parts: the univariate marginal distribution functions (hereafter referred to as ’mar-
gins’) and the copula which describes the dependence structure between the variables.
This statement is now known as Sklar’s Theorem, which is formally stated below.

Sklar’s Theorem
Let F be an n-dimensional distribution function with marginal distributions F1, . . . , Fn,
then there exists an n-copula C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (7)

C is uniquely defined if all F1(x1), . . . , Fn(xn) are continuous.

The proof of Sklar’s theorem is sketched in [18].

In order to understand how a copula function describes the dependency between random
variables, Probability Integral Transformation (PIT) needs to be introduced. PIT re-
sults in the fact that any continuous random variable can be transformed to be standard
uniformly distributed. The theorem is formally stated below.

Probability Integral Transformation
Let X be a random variable with continuous cumulative distribution function FX(x) and
define the random variable Y as Y = FX(X). Then Y is standard uniformly distributed.

The proof for the PIT is given in equation (8).

FY (y) = P(Y ≤ y)

= P(FX(X) ≤ y)

= P(X ≤ F−1
X (y))

= FX(F−1
X (y))

= y

(8)

This equals the cumulative distribution function of a standard uniform random variable.

14

4.2 Hypothesis Evaluator 4 Connecting the Dots

Using the PIT one can define that X = F−1(U), where U is standard uniformly dis-
tributed. Similarly, we can obtain the copula function:

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

= P(F−1
1 (U1) ≤ x1, . . . , F

−1
m (Un) ≤ xn)

= P(U1 ≤ F1(x1), . . . , Un ≤ Fn(xn))

= C(F1(x1), . . . , Fn(xn))

(9)

Note that derivation (9) is only valid in the case that all F1(x1), . . . , Fn(xn) are con-
tinuous, because in this case each Fi(xi), i = 1, . . . , n has an inverse function. Besides,
derivation (9) implies that an n-dimensional copula can actually be defined as a func-
tion mapping C : [0, 1]n → [0, 1] which is a joint cumulative distribution function with
uniform marginals. In this way the problem of modelling dependence between random
variables is simplified to modelling dependence between uniform variables.

Copula Families
Different classes of parametric copula functions are available, also referred to as copula
families. The two most popular families are Elliptical and Archimedean. The Ellipti-
cal family represents copula functions which can be derived from multivariate elliptical
distributions having a symmetrical character. The two most important copulae in this
family are the Gaussian and Student-t copula derived from respectively the multivariate
Gaussian and the multivariate Student-t distribution. The Archimedean family con-
sist of copula functions admitting an explicit, closed form formula. These copulae can
be stated directly in contrary to the Elliptical copulae. Three examples of popular
Archimedean copulae are the Clayton, Frank and Gumbel copula.
Constructing copulae can be extended to any dimension. However, as the dimension of
a copula increases the construction becomes more and more difficult. This also holds for
the copula families: many examples of bivariate copula families are available, whereas
the multivariate generalizations are limited. The most popular bivariate copula func-
tions in the Elliptical and Archimedean families can be found in Appendix B.1.

Pair-copula construction
In order to still be able to construct multivariate distributions, Joe [20] introduced in
1996 the probabilistic version of the pair-copula approach. This approach decomposes
a joint multivariate cumulative distribution function into simple building blocks called
pair-copulae. In 2009 Aas et al. [21] extended this approach to a multivariate density
function to perform inference. Therefore, they used Sklar’s theorem defined in terms of
densities:

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn)) ·
n∏
i=1

fi(xi) (10)

where, c(F1(x1), . . . , Fn(xn)) represents the density of the n-dimensional copula func-
tion C(F1(x1), . . . , Fn(xn)). This equation is obtained by differentiating F (·) and C(·)
in equation (7) and applying the chain rule.

15

4.2 Hypothesis Evaluator 4 Connecting the Dots

Another way of writing a multivariate density is in terms of conditional densities:

f(x1, . . . , xn) = f(x1) ·
n∏
i=2

f(xi|x1, . . . xi−1). (11)

Combining equations (10) and (11) results in the pair-copula decomposition. To illus-
trate, the decomposition is shown for a trivariate density.

Example pair-copula construction for n = 3
Equation (12) states the multivariate density in products of the conditional densities.

f(x1, x2, x3) = f1(x1) · f2|1(x2|x1) · f3|1,2(x3|x1, x2) (12)

The first term on the right hand side of the equation is the density of x1. The second
term is the density of x2 conditioned on x1 and can be rewritten using the definition of
conditional probability for x1 and x2.

f2|1(x2|x1) =
f1,2(x1, x2)

f1(x1)
(13)

The denominator in equation (13) can be written in terms of a bivariate copula and its
marginal densities using Sklar’s theorem and equation (10):

f1,2(x1, x2) = c1,2(F1(x2), F2(x2)) · f1(x1) · f2(x2). (14)

Now, equation (13) can be rewritten to:

f2|1(x2|x1) =
c1,2(F1(x1), F2(x2)) · f1(x1) · f2(x2)

f1(x1)

= c1,2(F1(x1), F2(x2)) · f2(x2).

(15)

Similarly, the third term in equation (12), f3|1,2(x3|x1, x2), can be rewritten to:

f3|1,2(x3|x1, x2) =
f(x1, x2, x3)

f1,2(x1, x2)

= c1,3|2(F1|2(x1|x2), F3|2(x3|x2)) · f3|2(x3|x2)

= c1,3|2(F1|2(x1|x2), F3|2(x3|x2)) · c2,3(F2(x2), F3(x3)) · f3(x3).

(16)

Now, the two conditional densities in equation (12) are written in terms of bivariate
copulae and marginal densities. This results in the following pair-copula decomposition:

f(x1, x2, x3) =f1(x1) · f2|1(x2|x1) · f3|1,2(x3|x1, x2)

=f1(x1) · f2(x2) · f3(x3) · c1,2(F1(x1), F2(x2))

· c1,3(F1(x1), F3(x3)) · c2,3|1(F2|1(x2|x1), F3|1(x3|x1)).

(17)

16

4.2 Hypothesis Evaluator 4 Connecting the Dots

Equation (17), however, is not the only pair-copula construction for three dimensions. In
total there are six permutations of x1, x2, x3, which eventually results in three different
joint density distributions. This is due to the conditioning variables. For example, in
equation (16) variable x2 is the conditioning variable. Alternatively, one can condition
on variable x1, resulting in a different pair-copula decomposition. For three dimensions
the different decompositions are relatively easy to obtain. However, the number of de-
compositions grows rapidly with the dimension of the joint distribution function. A
dimension of seven already results in 2,580,480 different decompositions. In order to
organize all possible pair-copula constructions, Bedford and Cooke [22] introduced in
2002 a graphical method called regular vines.

Regular vines
Two special cases of regular vines are called C-vines and D-vines. C-vines are suitable
to model joint densities where an ordering in importance is present among the variables.
D-vines are suitable when a temporal ordering is present among the variables. Figures
6 and 7 give a representation of the C-vine and D-vine decomposition respectively. The
nodes in each tree Ti represent the marginals fi and the edges represent the pair-copula
functions ci.

Figure 6: Decomposition of a 4-dimensional joint density using C-vine.

Figure 7: Decomposition of a 4-dimensional joint density using D-vine.

Using C-vine and D-vine one can easily obtain the number of pair-copulas involved in an
n-dimensional multivariate density function. The edges in the trees represent the pair-
copulae. This means that summing the edges over all trees results in the total number
of pair-copulae. For both the C-vine and D-vine the first tree has n − 1 edges, where
n equals the dimension of the density. The second tree has n − 2 edges and the third

17

4.2 Hypothesis Evaluator 4 Connecting the Dots

tree n − 3. Therefore, the number of pair-copulas involved in the multivariate density
equals:

(n− 1) + (n− 2) + · · ·+ 2 + 1 =
(n− 1)n

2
. (18)

By equation (18) we know that the higher the dimension of a multivariate density, the
more pair-copulae are involved in the decomposition. Besides, the number of condi-
tional pair-copulae involved increases. The decompositions may be simplified by assum-
ing conditional independence. In the example decomposition for the trivariate density,
the conditional pair-copula equals c2,3|1(F2|1(x2|x1), F3|1(x3|x1)). If we assume that the
variables X2 and X3 are independent given X1, the conditional copula will be equal to
one: c2,3|1(F2|1(x2|x1), F3|1(x3|x1)) = 1. Therefore, equation (17) simplifies to:

f(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c1,2(F1(x1), F2(x2)) · c1,3(F1(x1), F3(x3)). (19)

Thus, assuming conditional independence reduces the number of terms involved in the
density and simplifies the decomposition. This is also known as the simplified pair-copula
decomposition. Whether assuming conditional independence is appropriate depends on
the concerned joint distributions and its variables. However, Haff et al. (2010) showed
that simplified pair-copula decomposition can always be used as an approximation. Even
when the simplifying assumption is far from being fulfilled, the approximation may be
in fact a good one [23].

Conclusion
Copula functions are able to model the dependence between random variables. There-
fore, P(H{e1,...,en}) = P(c1

{e1...,en}×· · ·×c
m
{e1...,en}) can potentially be modelled by copulae.

In order to make use of this technique, the characteristics have to be continuous random
variables. Besides, a sufficient amount of historical data about the characteristics has to
be available. If this is the case, the joint density of the characteristics can be obtained
enabling the computation of P(H{e1,...,en}).

4.2.2.2 Multivariate Kernel Density Estimation
Another way of modelling the dependence between random variables is by using Kernel
Density Estimation. Kernel density estimation (kde) is a form of estimating the under-
lying probability density function of a random variable. It works by creating a kernel
function at every data point in the sample of the random variable, where a kernel is
a probability density function. Adding all these kernel functions and dividing by the
sample size results in the estimated density.
Formally, the procedure of kde for univariate densities can be defined as follows:

Univariate kernel density estimation
Let X1, . . . , Xn be a random sample drawn from a density f(x). The density function
of X can be estimated by:

f̂(x,B) =
1

nB

n∑
i=1

K

(
x−Xi

B

)
(20)

18

4.2 Hypothesis Evaluator 4 Connecting the Dots

with n equal to the sample size, B represents the bandwidth and K is the univariate
kernel function.

The kernel K typically is a symmetric probability density function. It smooths out the
contribution of each observed data point over a local neighborhood of that data point.
Many examples of kernels are available. The most popular kernels can be found in
Appendix B.2. Even though there is a wide range of kernels, it is not the kernel function
that is crucial for the estimator. Instead, the bandwidth B has significant impact on
the estimate. The bandwidth controls the size of the neighborhood around the observed
data points. Determining the most appropriate value for B is known to be the hardest
task in kde, since the bandwidth is a very sensitive parameter. An often used default
value for the bandwidth is the following:

Bdefault = 1.06 · σX · n−
1
5 (21)

with σX being the standard deviation of the sample and n equals the sample size.

The procedure of kde and the sensitivity of B is illustrated in Figure 8 for a random
variable X.

Figure 8: Influence of bandwidth B on f̂X(x,B).

The dotted red lines are the kernel functions. In this example the kernels are chosen to
be Gaussian. The vertical red lines at the bottom of the graph represent the data points
at which the kernels are centered. The solid black line represents the estimated density.
In the left plot the value for B is set too small leading to a spiky estimate. In contrast,
the right plot is created with kernels having a bandwidth value which is set too large.
This results in an oversmoothed estimate. In the middle plot the value for B is set to
the default value computed by equation (21).

This univariate method of kde can be extended to obtain multivariate density functions.

Multivariate kernel density estimation
Let X1, . . . ,Xn be a d-variate random sample drawn from a density f(x). The density
function of X can be estimated by:

f̂(x,B) =
1

nB

n∑
i=1

K

(
x−Xi

B

)
(22)

19

4.2 Hypothesis Evaluator 4 Connecting the Dots

with K(·) the multivariate kernel function and B the d × d symmetric and positive-
definite bandwidth matrix. B can be diagonal as well as unconstrained.

4.2.2.3 Practical Comparison
In the previous two sections, two different approaches to model dependency between
random variables are discussed. In this section both the approaches are demonstrated
on sample data and their performances are compared. Two random variables are de-
fined, for which the bivariate joint density function needs to obtained. The dimension
equals two, since for higher dimensions visualizing densities becomes inconvenient.

Let ε0 = (ε0;1, . . . , ε0;1500), ε1 = (ε1;1, . . . , ε1;1500) and ε2 = (ε2;1, . . . , ε2;1500) be ran-
dom samples, where ε0, ε1, ε2 ∼ Unif(0, 1). Define the following two random variables:
X = ε0 + ε1 and Y = ε0 + ε2. Assume we want to obtain the joint density fX,Y (x, y).
Since both the random variables X and Y depend on the same random variable ε0, we
know that X and Y are dependent. Therefore, both a copula function and multivariate
kernel density estimation are appropriate to model this dependence.

X and Y are both the sum of two independent random variables. By the central limit
theorem we know that the sum of n independent random variables are approximately
normal when n is large. For X and Y n equals two, which is far from large. Nevertheless,
we expect X and Y to have the shape of a normal distribution. From figure 9 can be
obtained that this expectation is valid. Therefore, we expect for both the approaches
that the estimated density fX,Y (x, y) will look similar to a bivariate normal distribution.

Figure 9: Histograms for random variables X and Y respectively. The red lines represent
the fitted normal distributions with µx = 0.988, σx = 0.399 and µy = 0.981, σy = 0.405.

Copula function
Estimating the bivariate density fX,Y (x, y) using copula functions can be rewritten to:

fX,Y (x, y) = fX(x) · fY |X(y|x)

= fX(x) · fY (y) · cX,Y (FX(x), FY (y))
(23)

using the same derivation as in Section 4.2.1. This means that the marginal distributions
of both X and Y need to be estimated as well as the bivariate copula function of X
and Y . The marginal distributions are already estimated to be normal which can be
obtained from Figure 9. Copula functions can be estimated in R using the packages

20

4.2 Hypothesis Evaluator 4 Connecting the Dots

copula [24] and VineCopula [25]. Figure 10 shows the estimated cX,Y (FX(x), FY (y)),
which appears to have a shape similar to the bivariate normal as expected.

Figure 10: Estimated bivariate copula for random variables X and Y .

Note that Figure 10 shows the density of the copula function instead of the joint density
fX,Y (x, y). However, since both the densities of X and Y have a shape similar to the
normal distribution, the joint density will look similar to the copula density.

Kernel density estimation
Estimating the bivariate density fX,Y (x, y) using kernel density estimation can be rewrit-
ten to equation (22). This means that the bandwidth matrix and the kernel need to
be specified. The bandwidth matrix is chosen to be diagonal with BX and BY both
equal to the default value (see equation (21)). The kernels are chosen to be Gaussian.
Multivariate kernel density estimation can be implemented in R using the package ks
[26]. Figure 11 shows the estimated kernel density f̂X,Y (x, y), which appears to have a
shape similar to the bivariate normal as expected.

Figure 11: Estimated kernel density for random variables X and Y .

Conclusion
Copula functions and multivariate kernel density estimation are both able to model
the dependence between random variables. Therefore, P(H{e1,...,en}) = P(c1

{e1...,en} ×
· · ·× cm{e1...,en}) can potentially be modelled by these techniques. In order to make use of

21

4.2 Hypothesis Evaluator 4 Connecting the Dots

copulae, the characteristics have to be continuous random variables. Besides, a sufficient
amount of historical data about the characteristics has to be available. If these are the
case, the joint density of the characteristics can be obtained enabling the computation
of P(H{e1,...,en}). There has to be noted that both techniques have difficulties. For
multivariate kde it is the choice of the bandwidth matrix. In this example the default
bandwidth matrix was used, whereas a different choice would lead to different results.
For copula functions this is the pair-copula decomposition and the choice of the regular
vine. These were not demonstrated in this example, since a bivariate joint density
was estimated. At the same time, these difficulties are also the strengths of copula
functions. A good choice of the regular vine results in a joint density which takes
ordering of importance into account among the variables. Multivariate kde is not able
to model such an ordering. Therefore, copula functions will be used in this research to
model dependence instead of multivariate kde.

4.2.3 Demonstrative Example

Section 4.2.1 theoretically described how hypothesis evaluation can be conducted by
Bayesian inference using the following formula:

P(H|E) =

P(E|H)
P(E|¬H)

· P(H)
P(¬H)

1 +
P(E|H)
P(E|¬H)

· P(H)
P(¬H)

where H equals H{e1,...,en} and E equals E{e1,...,en}.

The two components in this formula are
P(E|H)
P(E|¬H)

and
P(H)
P(¬H)

. The first component

represents the reliability of the source which provided the evidence. When a sufficient
amount of historical data of the source is available, this probability can be computed.
Otherwise, this probability can be estimated by an expert having prior knowledge about
the reliability of the source. The second term represents the likelihood of a route. This
likelihood can be estimated by copula functions.

Each hypothesis generated by the hypothesis generator can be evaluated by Bayesian
inference. As an example, assume that the generated hypothesis consists of sightings
{e1, e2, e4}. This situation was also sketched in Figure 4 in Section 4.1. The hypoth-
esis evaluator therefore needs to evaluate hypothesis H{e1,e2,e4}. This means that the
following formula needs to be evaluated:

P(H{e1,e2,e4}|E{e1,e2,e4}) =

P(E{e1,e2,e4}|H{e1,e2,e4})
P(E{e1,e2,e4}|¬H{e1,e2,e4})

·
P(H{e1,e2,e4})

P(¬H{e1,e2,e4})

1 +
P(E{e1,e2,e4}|H{e1,e2,e4})
P(E{e1,e2,e4}|¬H{e1,e2,e4})

·
P(H{e1,e2,e4})

P(¬H{e1,e2,e4})

(24)

The two components in this formula, as discussed above, can be evaluated separately.

• The term
P(E{e1,e2,e4}|H{e1,e2,e4})
P(E{e1,e2,e4}|¬H{e1,e2,e4})

represents the total reliability of the sources which

provided {e1, e2, e4}. Therefore, the reliability of each source needs to be evaluated,

22

4.3 Hypothesis Generator 4 Connecting the Dots

resulting in three probabilities. These can either be obtained by historical data of
the sources or by expert knowledge. The multiplication of the three probabilities
results in the total reliability. Note that when all three sightings are provided by
the same source, all three probabilities are equal. On the other hand, when all three
sightings are provided by three different sources, three different probabilities have to
be obtained.

• The term
P(H{e1,e2,e4})

P(¬H{e1,e2,e4})
is dependent on characteristics of the route formed by

{e1, e2, e4}. Therefore, historical data of the different characteristics needs to be avail-
able. Using the historical data, the margins of the characteristics can be estimated.
When the characteristics are dependent, copula functions need to be estimated. Sub-
sequently, multiplying the marginals and the estimated copula functions will result in
the joint probability function. Using the joint probability function, the likelihood of
route {e1, e2, e4} based on its characteristics can be obtained. Note, that when the
characteristics are independent, the joint probability function can simply be obtained
by multiplying the marginals of the characteristics.

When the two terms are computed, they can be filled into equation (24). This results
in the likelihood of an entity travelled along the positions belonging to {e1, e2, e4}. De-
pending on the likelihood the generator either expands or adjusts the hypothesis. For
example, as illustrated in Figure 4, assume that P(H{e1,e2,e4}|E{e1,e2,e4}) = 0.87. Based
on this likelihood the generator might expand the hypothesis by for example, e5. Then,
the new hypothesis H{e1,e2,e4,e5} needs to be evaluated. This can be done in the exact
same way as described above. In this way, the hypothesis evaluator becomes an iterative
process of Bayesian inference.

In addition, there is a possibility to expand the evaluator. Up to now, the term
P(H)
P(¬H)

in the evaluator is only described by the characteristics of the hypothesis. Computing
this fraction can be expanded by additional modules. For example, the speed at which
the entity travelled a route might indicate inconsistency. Which module suits the al-
gorithm best depends on both the environment in which the algorithm is used and the
moving entity itself. It might also be the case that an evaluator is not expanded with
additional consistency check modules. Expanding the evaluator with additional modules
is discussed in more detail in Section 5.2.

4.3 Hypothesis Generator

This section discusses the hypothesis generator component of the algorithm. The aim of
this component is to construct entity movements from a collection of sightings. These
sightings are defined by place and time. A hypothesis is formed by a chain of multiple
sightings. Because of the time component of a sighting, this chain has to be ordered
chronologically. Generating a chronological chain of sightings can be represented as a
tree. Figure 12 shows an example of a tree for a collection consisting of six sightings.
ei corresponds to evidence i in the collection of sightings. Every edge, or combina-
tion of connected edges in the tree represents a possible hypothesis. This means that
{e1, e2, e3, e4, e5, e6} is a possible hypothesis as well as {e3, e4} or {e2, e6}. The larger
the collection of evidence, the higher the amount of possible hypotheses.

23

4.3 Hypothesis Generator 4 Connecting the Dots

Figure 12: Search tree for dimension of 6.

In order to find the most likely route, all possible hypotheses need to be generated and
evaluated. Therefore, the tree needs to be traversed. This can be done by a brute force
manner using depth-first search. However, for large collections this approach leads to a
high runtime. This is not preferable, since the algorithm should function in the intelli-
gence cycle. From Chapter 2 it is known that the timely dissemination of intelligence
is of high importance. Therefore, a technique reducing the runtime of the hypothesis
generator should be investigated.

Backtracking is a refinement of the brute force approach. This technique systematically
traverses the tree in depth-first order. The possible hypotheses can be represented by
vectors. The vectors correspond to the chains of evidence. It starts with a vector con-
sisting of the first sighting. At each stage the vector is extended with a new piece of
evidence. Each partial vector is evaluated by the hypothesis evaluator. When the like-
lihood of a partial vector is smaller than a certain threshold, the algorithm backtracks
by removing the last appended sighting. It then proceeds by extending the vector with
an alternative sighting. When, for example, the likelihood corresponding to hypothesis
{e1, e2} is sufficiently low, the sub-tree rooted at e2 can be pruned. Instead, the next
generated hypothesis will be equal to {e1, e3}. In this way, not all possible hypotheses
are necessarily generated; only the promising ones.

The value of the threshold determines how deep the tree is traversed and thus how
many hypotheses are generated. When the value is chosen too low, the tree might not
be traversed deep enough. On the other hand, when a threshold value is chosen too
high, no sub-trees will be pruned. This may lead to a high runtime. Hence, a trade-off
between the runtime and search depth has to be made in order to generate a sufficient
amount of hypotheses.

24

5 Validation

5 Validation

In this chapter the designed algorithm is validated. In the previous chapter the two
components of the algorithm are theoretically described. In order to investigate whether
these components function in practice, the algorithm is validated in a totally controllable
environment using simulated data. First, the simulator is discussed in more detail.
Second, the route characteristics used to model the hypothesis evaluator are described.
After that, the results of the algorithm are presented and evaluated. The aim of this
chapter is to discover whether the designed algorithm functions in practice and not to
obtain the best results. Therefore, the focus is more on evaluating the obtained results
than improving them. The chapter ends with a concluding section.

5.1 Simulator

The simulator used for the validation of the algorithm, generates evidence in a fictive,
hilly area. The terrain is a simplified representation of a real-world terrain; there are
no roads, no vegetation, no facilities et cetera. This results in a totally controllable
environment in which the algorithm can be validated. The simulation terrain is shown
in Figure 13.

Figure 13: Area of interest used in simulation.

In the simulation area, nine fictive sources of information are present which might ob-
serve the entity of interest. An entity travels through the simulation area by taking
routes with minimum effort. This means, that an entity travels between the hills rather
than across the top of the hills. The simulator returns per source where (x- and y-
coordinate) and when (time stamp) an observation took place. At most nine sightings
are returned. These sightings are not guaranteed to be correct. Instead of observing
the entity of interest, a source might observe another moving entity resulting in a false
sighting.

The reliability of the sources in the simulation area can be summarised by a confu-
sion matrix. The entries of the matrix should not be interpreted as counts. Instead,
they correspond to conditional probabilities. The confusion matrix and its conditional
probabilities are shown in Figure 14.

25

5.1 Simulator 5 Validation

Source

No Yes
A

ct
u

a
l

No TN FP

Yes FN TP

TN = P(no source observation | entity not present)
FP = P(source observation | entity not present)
FN = P(no source observation | entity present)
TP = P(source observation | entity present)

Figure 14: Confusion Matrix and its corresponding conditional probabilities.

The conditional probabilities in the confusion matrix can be computed by the two pa-
rameters of the simulator, p1 and p2. The parameters represent probabilities. These
probabilities as well as the rewritten confusion matrix are shown in Figure 15.

Source

No Yes

A
ct

u
a
l

No 0 p1 · p2

Yes p1 · (1− p2) 1− p1

p1 = P(incorrect source observation)
p2 = P(entity not present)

Figure 15: Rewritten Confusion Matrix using parameters p1 and p2.

Data
The simulator returns a collection of sightings. Depending on the parameter values
given to the simulator, it returns at most nine sightings, including whether a sighting is
true or false. Table 1 shows an example of the simulation data. The first two columns
represent the coordinate of the sightings. The third column represents the time at which
the observation took place. The last column indicates whether a sighting is true or false;
1 equals a false positive sighting and 0 equals a true positive. The example data set
consists of eight sightings of which two are false. The parameter values used are p1 = 0.3
and p2 = 0.7.

X Y Time FP

1 201.2849 207.8506 0.00 0
2 190.7019 216.8132 48.92 0
3 417.8686 299.3249 150.53 1
4 193.4109 198.3628 162.06 0
5 185.2104 209.7792 242.69 0
6 172.6069 201.2737 315.43 0
7 118.7394 251.5366 789.23 0
8 187.9189 187.7966 1536.16 1

Table 1: Example simulation data of one route.

The observations returned by the simulator can be evaluated by the algorithm designed
for this research. The characteristics used to model the simulation data are explained
in the upcoming section.

26

5.2 Hypothesis Evaluator 5 Validation

5.2 Hypothesis Evaluator

Recall the Bayesian inference formula obtained in Section 4.2.1:

P(H|E) =

P(E|H)
P(E|¬H)

P(H)
P(¬H)

1 +
P(E|H)
P(E|¬H)

P(H)
P(¬H)

Using this formula the routes generated by the hypothesis generator can be evaluated.

Source reliability

The first term of the hypothesis evaluator,
P(E|H)
P(E|¬H)

, is straightforward to compute.

As discussed before, the simulator has two parameters. These parameters describe the
reliability of all the sources used in the simulator. Using the confusion matrices presented
in Figures 14 and 15, one can easily obtain:

P(E|H)

P(E|¬H)
=
TP

FP
=

1− p1

p1 · p2

This means that the first term of the hypothesis evaluator is totally described by the
parameters of the simulator.

Route characteristics

The second term of the hypothesis evaluator,
P(H)
P(¬H)

, is dependent of the characteristics

of the simulation area. Since the surface used in the simulator is simplified, the terrain
has no explicit characteristics except for the differences in elevation. The elevation can
be expressed in terms of effort. The steeper the surface is, the more effort it takes to
travel over that surface. The simulator defines four different effort variables, effort1,
. . . , effort4. Therefore, P(H) can be rewritten to:

P(H) = P(effort1, effort2, effort3, effort4) (25)

How P(H) can be computed depends on the correlation between the four variables. The
correlation provides information about the dependence between the variables. When all
four variables appear to be independent, P(H) is straightforward to obtain. If two or
more variables appear to be dependent, P(H) can be obtained using copula functions.
In order to discover whether the variables are correlated, historic effort data needs to
be generated. Therefore, we simulated 500 routes using p1 = 0. This results in routes
consisting of nine observations without false sightings. In this way ordinary behavior
of the effort characteristic is modelled, making it possible to detect out-of-the-ordinary
behavior. For each generated route, the values of the effort variables per route segment
can be returned by the simulator. This means that a route consisting of nine sightings,
has eight route segments and thus eight times four effort variables. In total the historic
effort data consists of 500× 8 = 4000 route segments and their corresponding values for
effort1, . . . , effort4. Table 2 shows the correlation matrix for the historic effort data.

27

5.2 Hypothesis Evaluator 5 Validation

effort1 effort2 effort3 effort4

effort1 1
effort2 -0.0181 1
effort3 -0.0027 -0.01441 1
effort4 0.0707 0.6372 0.7451 1

Table 2: Correlation matrix of simulated historic effort data.

From the correlation matrix it can be concluded that both effort2 and effort3 are cor-
related with effort4. Besides, effort1 is nearly uncorrelated with the other efforts. This
means that P(H) can be obtained using a joint density consisting of two terms:

f(x1, x2, x3, x4) = f1(x1) · f2,3,4(x2, x3, x4) (26)

where xi represents effort i. The first term in Equation (26) equals the marginal of ef-
fort1. The second term is a joint density of the dependent variables effort1, . . . , effort4

and can be estimated by a copula function.

Copulae
The joint density that needs to be obtained by copulae is f2,3,4(x2, x3, x4). From the
correlation matrix it is known that both effort2 and effort3 are correlated with effort4.
This means that an ordering in importance is present among these three variables. The
regular vine suitable to model this ordering is a C-vine with effort4 corresponding to
the central variable. Note that in this situation, this is equal to a D-vine with effort4

as central variable. Figure 16 shows the decomposition of the regular vine, where 2
represents effort2, 3 represents effort3 and 4 represents effort4.

Figure 16: Decomposition of the 3-dimensional effort density using regular vine.

The regular vine immediately shows the pair-copula decomposition for the joint density.
Equation (27) explicitly states the decomposition.

f(x2, x3, x4) =f2(x2) · f3(x3) · f4(x4) · c2,4(F2(x2), F4(x4)) · c3,4(F3(x3), F4(x4))

· c2,3|4(F2|4(x2|x4), F3|4(x3|x4))
(27)

28

5.2 Hypothesis Evaluator 5 Validation

Since we are dealing with a simulation area, it is difficult to exactly interpret the four
effort variables. Therefore, it is unknown if the variables effort2, effort3 and effort4 are
conditionally independent. However, for simplicity we assume conditional independence
resulting in c2,3|4(F2|4(x2|x4), F3|4(x3|x4)) = 1.

Using the decomposition in Equation (27), the joint density of P(H) shown in Equation
(26) can be rewritten to the multiplication of the four marginals and the two bivariate
copulae:

f(x1, x2, x3, x4) =f1(x1) · f2(x2) · f3(x3) · f4(x4)

· c2,4(F2(x2), F4(x4)) · c3,4(F3(x3), F4(x4)).
(28)

The two bivariate copula functions that need to be estimated are c2,4(F2(x2), F4(x4))
and c3,4(F3(x3), F4(x4)). Besides, the four marginal densities need to be estimated.
These estimations are performed in R using the historic effort data. Two different R-
packages are compared for the estimation of the copula functions. One of the packages
was also used in Section 4.2.2.3 and estimates parametric bivariate copulae. However,
the parametric bivariate copula functions are limited and therefore not able to capture
all sorts of dependencies. The second package estimates bivariate copulae using kernel
density estimation (kde). These copulae are able to capture the non-standard dependen-
cies. Figure 17 shows the comparison between the two different packages. The two left
plots show the dependencies between effort2 and effort4, and effort3 and effort4. The
middle plots show two random samples generated by the estimated kde-copulae for both
dependencies. The right plots show two random samples generated by the estimated
parametric copulae for both dependencies.

Figure 17: Comparison parametric copula and kde-copula for effort variables.

29

5.2 Hypothesis Evaluator 5 Validation

The random observations generated by the kde-copulae resemble more closely the orig-
inal observations compared to the parameteric copulae. Especially the boundaries of
the dependencies are followed better by the kde-copulae. Therefore, the R-package
estimating copula functions using kernel density estimation is used to model the effort
dependencies. The distributions of the variables itself are estimated parametrically. The
estimated marginals are shown in Table 3.

Variable Distribution type

x1 Normal
x2 Uniform
x3 Uniform
x4 Normal

Table 3: Estimated marginal distributions for f(x1, x2, x3, x4).

Note that for the marginals the listed distributions are not the distributions that the
effort data exactly follow. Instead, the historic effort data is compatible with these cer-
tain distributions.

Using the estimated distributions and copula functions, the probability density functions
(pdf) of each term in Equation (28) can be obtained in R. R is not able to multiply
these pdfs in order to obtain f(x1, x2, x3, x4). Instead, the probability of each term in
the equation can be obtained separately. Multiplying these six probabilities lead to the
value corresponding to P(x1, x2, x3, x4). However, the effort variables are continuous
variables and continuous variables have a probability density instead of a probability.
This means that P(x1, x2, x3, x4) = 0 for every given effort value x1, . . . , x4. The pdfs
can therefore not be used to obtain the probabilities of each term in Equation (28).
Instead the cumulative distribution functions (cdf) can be used as an indication of each
probability. The cdfs of each term can also be obtained in R. For a given value x of
random variable X, a cdf returns the probability that the variable is less than or equal
to x: P(X ≤ x). Comparing this probability with the average probability of a cdf, which
equals 0.5, indicates whether P(X ≤ x) is an extreme value. When P(X ≤ x) ≥ 0.5, we
will use 1 − P(X ≤ x) as probability. When P(X ≤ x) < 0.5, we will use P(X ≤ x) as
probability. P(x1, x2, x3, x4) is thus equal to the multiplication of six estimated proba-
bilities using cumulative distribution functions. This multiplication will lead to a small
probability. To overcome this, the geometric mean is used. The geometric mean is
defined as taking the nth root of a product of n numbers. Since we are dealing with six
terms in order to estimate P(x1, x2, x3, x4), n is equal to 6.

Distance module
As discussed in Section 4.2.3 the probability of a certain route, P(H), can be expanded
by additional modules. Effort is the only characteristic present for the simulation area.
P(H) can therefore not be described by additional characteristics. However, the proba-
bility can be expanded by an additional module. The module chosen for the simulator
is a distance module. The principle of this module is explained in Figure 18.

30

5.2 Hypothesis Evaluator 5 Validation

Figure 18: Distance characteristic using short-cut distance and travelled distance.

Figure 18 shows a generated route consisting of five sightings. The third sighting seems
to be off-track in comparison with the other sightings of the route. This inconsistency
might indicate a false sighting. The dotted grey lines in the route represent the travelled
distance and the short-cut distance between sighting two and four as the crow flies. The
closer these two distance values are, the less likely it indicates an inconsistent sighting.
Note that this can only be measured for triplets of sightings.

The probability of inconsistency can be modelled using the two variables short-cut dis-
tance and travelled distance. In order to obtain whether these variables are dependent,
historic data needs to be simulated. The historic distance data is obtained using the
same 500 simulated routes as for the historic effort data. For each generated route, the
values of the distance variables are computed per sighting triplet. Each route consists
of nine sightings and thus has seven sighting triplets. In total, the historic distance data
consists of 500× 7 = 3500 sighting triplets and their corresponding values for short-cut
distance and travelled distance. The correlation between these two variables appears to
be equal to 0.9652. Therefore, a copula function needs to be estimated to obtain the
joint density of the two variables. This is performed using the same procedure as for the
effort copula, but using two variables instead of three. Figure 19 shows the comparison
between the two different copula estimations for the distance variables.

Figure 19: Comparison parametric copula and kde-copula for distance variables.

31

5.3 Evaluation 5 Validation

Again, the observations generated by the kde-copula resembles the original observations
more closely. The x = y boundary is not followed by the parametric copula. Instead, the
boundary of the parametric copula bends towards impossible values where the short-cut
distance exceeds the travelled distance. Therefore, the distance copula is also estimated
by using kernel density estimation. The distributions of the distance variables are es-
timated parametrically and appear both to be compatible with a normal distribution.
The final probabilities for the distance module are obtained in the same way as the effort
probabilities.

Now the probability of a certain route is expanded by a distance module, P(H) is
characterised by effort and distance. Equation (26) can therefore be rewritten to
P(H) = Peffort · Pdistance, with Peffort = P(effort1, effort2, effort3, effort4) and Pdistance =
P(distance, travelled distance). Therefore, the second term of the hypothesis evaluator
can be stated as:

P(H)

P(¬H)
=

Peffort · Pdistance

1− (Peffort · Pdistance)
. (29)

5.3 Evaluation

The function of the hypothesis evaluator is to correctly classify false and true sightings
in the simulated routes. A route is correctly returned by the algorithm when all true
sightings are included in the route and all false sightings are excluded. To measure the
performance of the algorithm, a confusion matrix concerning false and true sightings
can be used, see Figure 20.

Algorithm

F T

A
ct

u
al F TP FN

T FP TN

Figure 20: Confusion Matrix false (F) and true (T) sightings.

The confusion matrix shows two possible mis-classifications for the algorithm. Classify-
ing a false sighting as a true sighting, results in a false-positive (FP). Classifying a true
sighting as a false sighting, results in a false-negative (FN). The recall of both the true
and false sightings, measure the fraction of correctly classified sightings. Equations (30)
and (31) state the formulas of both recalls.

RecallF =
TP

TP + FN
(30)

RecallT =
TN

TN + FP
(31)

32

5.4 Experimental Results 5 Validation

The performance of the algorithm can be measured by the two conflicting recalls. When
both RecallF = 1 and RecallT = 1, a route is correctly returned by the algorithm.
This means that both recalls are to be maximized. The threshold value t used in
the hypothesis generator influences the value of the recall. When t = 0, all possible
hypotheses in the search tree are generated. This causes the evaluator to classify all
sightings in a route to be true, resulting in RecallF = 0 and RecallT = 1. On the other
hand, when t = 1, no hypotheses are generated. This causes the evaluator to classify
all sightings in a route to be false, resulting in RecallF = 1 and RecallT = 0. For all
threshold values between 0 and 1, the recall values can be computed. However, it is
impossible to state which of these different outcomes is the ‘best’, since both recalls are
to maximized. The results in the next section are therefore given in a Pareto front. This
front shows the optimal solutions for different threshold values.

5.4 Experimental Results

In this section the experimental results of the algorithm are shown. This section is
split into two parts in order to demonstrate the impact of using copula functions in the
algorithm. The section concludes with the lessons learned from the validation.

The characteristics chosen in the hypothesis evaluator are distance and effort. The aim
of these characteristics is to distinguish false sightings from true sightings. The char-
acteristics are made up of multiple variables. The dependence between the variables is
modelled by copula functions. The usage of copulae are only effective when the combi-
nation of its variables play a significant role in distinguishing false and true sightings.
Otherwise, just one of the involved variables could be used in isolation to classify true
and false sightings. To illustrate this, Figure 21 shows two different plots of the travelled
distance variable used for the distance characteristic. Recall that the travelled distance
is measured over three sightings.

Figure 21: Classify false and true sightings by the travelled distance variable.

The left plot shows that the travelled distance values of sighting triplets including a false
sighting are different from the values of triplets excluding a false sighting. High values
indicate that one or more false sightings are present in the triplet. This means that
the travelled distance variable on itself is able to distinguish false and true sightings.
No complementary variable is needed. The right plot shows that the travelled distance
values of sighting triplets including a false sighting are equal to the values of triplets
excluding a false sighting. The value of travelled distance is not an indicator for the

33

5.4 Experimental Results 5 Validation

presence of false sightings in a triplet. This means that the travelled distance variable
on itself is not able to distinguish false and true sightings. At least one complementary
variable is needed, for instance the short-cut distance. This means that using a copula
function for the left plot brings no added value, whereas for the right plot it does. The
same conclusions can be drawn from Figure 22. This plot shows the travelled distance
values versus the short-cut distance values. The black points indicate true sightings,
whereas the red points indicate false sightings. The same plots and conclusions can be
drawn for the effort characteristic.

Figure 22: Travelled distance versus short-cut distance for true (black) and false (red)
sightings.

To demonstrate the impact of using copula functions, two different simulation test sets
are used in the upcoming two sections. One containing disjunct variable values, as in
the left plot of Figure 21, and one containing overlapping variable values, as in the
right plot of Figure 21. Subsequently, two different Pareto fronts are generated for both
test sets using two variants of the algorithm. One variant uses copula functions for the
characteristics and the other only uses the marginals of the characteristics. Comparing
these Pareto fronts demonstrates the impact of using copula functions in the algorithm.

5.4.1 Test Set 1

In order to generate experimental results, a test set is simulated consisting of 100 col-
lections of sightings using parameters p1 = 0.3 and p2 = 0.7. The number of sightings
per collection range from 6 to 9. The number of false positive sightings per collection
range from 0 to 5. The exact distributions of these numbers can be found in Tables
9 and 10 in Appendix C.1. This first test set contains disjunct variable values for the
characteristics used in the hypothesis evaluator.

The algorithm is applied to each of the collections in the test set. The test set provides
whether a sighting is true or false. This means that RecallF and RecallT can be computed

34

5.4 Experimental Results 5 Validation

for each route in the test set. This is done for 11 different values of threshold value t:
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Figure 23 shows the Pareto fronts for both
the algorithms including and excluding copula functions. In these Pareto fronts the
RecallF - versus the RecallT values are shown for both versions of the algorithm. As
stated in Section 5.3, no outcome is better or worse than another outcome. The Pareto
front only shows the optimal recall values for different threshold values. However, the
performance of one version of the algorithm can be better or worse than the performance
of the other version of the algorithm. The higher the values for both RecallF and RecallT,
the better the performance of the algorithm.

Figure 23: Pareto fronts test set 1.

The plots in Figure 24 on the next page, show three illustrative examples of routes
from the test set. The black points in the plots represent the true sightings, whereas
the red points represent the false sightings. The sightings are connected in chronolog-
ical order. In the background of the plots, the contours of the simulation area are shown.

Figure 24a shows a simulation example where both RecallF and RecallT are equal to
1 for both algorithms. The first sighting corresponds to the point shown in the lower
right corner of the plot. The plot shows that the third sighting is false and thus the cor-
rect route equals {1, 2, 4, 5, 6, 7, 8, 9}. Both the algorithms returned this route correctly.
This is not surprising, since the false sighting is very inconsistent compared to the true
sightings.

Figure 24b shows a simulation example where RecallF = 1 and RecallT = 6
7 . The first

sighting corresponds to the upper left point in the plot. The plot shows that the third
sighting is false and thus the correct route equals {1, 2, 4, 5, 6, 7, 8}. The route returned
as most likely by both the algorithms equals {2, 4, 5, 6, 7, 8}. This means that the third
sighting is correctly classified as false. However, the first sighting is incorrectly classi-
fied. The first sighting seems a bit inconsistent in comparison to the other true sightings.
This might explain why this point is incorrectly classified.

Figure 24c shows a simulation example where RecallF = 2
5 and RecallT = 0. The first

sighting corresponds to the point shown in the lower right corner of the plot. The plot
shows that only the first and third sighting are true and thus the correct route equals

35

5.4 Experimental Results 5 Validation

(a) Example 1 (b) Example 2

(c) Example 3

Figure 24: Example collections of sightings leading to different values of RecallF and
RecallT.

{1, 3}. The route returned as most likely by both the algorithms equals {5, 6, 7}. The
classification of the algorithm seems to be wrong. However, regarding the characteristics
used in the algorithm, the classification is quite good. Sightings {5, 6, 7} are placed in
an area with low effort and the triplet is consistent in distance. This explains why these
sightings are classified as correct.

5.4.2 Test Set 2

The second test set also consists of 100 collections of sightings, generated using the
same parameters as the first test set; p1 = 0.3 and p2 = 0.7 The number of sightings
per collection range from 6 to 9. The number of false positive sightings per collection
range from 0 to 5. The exact distributions of these numbers can be found in Tables 11
and 12 in Appendix C.2. This second test set contains overlapping variable values for
the characteristics used in the hypothesis evaluator.

The algorithm is applied to each of the collections in the test set. The test set provides
whether a sighting is true or false. This means that RecallF and RecallT can be computed
for each route in the test set. This is done for 11 different values of threshold value t:
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Figure 25 shows the Pareto fronts for both
the algorithms including and excluding copula functions. The same threshold values as
for the first test set are used.

36

5.4 Experimental Results 5 Validation

Figure 25: Pareto fronts test set 2.

The plots in Figure 26 on the next page, show three illustrative examples of routes
from test set 2. The sightings are connected in chronological order, where the left point
always represents the first sighting.

Figure 26a shows a simulation example for which the algorithm including copula func-
tions outperforms the algorithm excluding copula functions for all values of t. Regarding
the characteristics used in the algorithm, this result is not surprising for this route. The
effort is low for all sightings. This means that the additional distance characteristic is
needed to distinguish the false and true sightings. The travelled distance as well as the
short-cut distance is comparable for all sighting triplets in the route. However, for the
first three sightings the combination of the distance variables indicates the false sighting.
This indicates why the algorithm including copula functions outperforms the algorithm
excluding copula functions.

Figure 26b shows a simulation example for which both variations of the algorithm per-
form equally for all values of t. The effort of all sightings is comparable. The distance
values however, differ much over the sighting triplets. The travelled distance for sightings
{3, 4, 5} is inconsistent with the rest of the triplets. This means that the inconsistency
can already be defined using only the travelled distance variable. Therefore, the algo-
rithm including and excluding copula functions perform equally.

Figure 26c shows a simulation example for which both variations of the algorithm per-
form poorly. The route shown has a complex structure. Regarding the characteristics
used in the algorithm, it is difficult to correctly classify false and true sightings. For
each value of t both algorithms returned other classifications. All classifications resulted
in a small value for both RecallF and RecallT. However, the recall values of the algo-
rithm excluding copulae exceed the recall values of the algorithm including copulae for
all values of t.

37

5.5 Benchmark 5 Validation

(a) Example 1 (b) Example 2

(c) Example 3

Figure 26: Example collections of sightings leading to different values of RecallF and
RecallT.

5.5 Benchmark

To examine the results shown in the previous two sections, the performance of the algo-
rithm is evaluated using a benchmark model. Since no models similar to the algorithm
are known, the results cannot be benchmarked against an existing model. Therefore, a
random model is used a benchmark.

The benchmark model used to evaluate the performance of the algorithm is a true-
random model. This model computes the probability that a route is returned correctly
by a binomial model. In other words, the true-random model computes the probability
of a route returning both RecallF = 1 and RecallT = 1. The model is applied to the
test set described in the previous section. The simulation parameters used to create
the test set were p1 = 0.3 and p2 = 0.7. Multiplying these parameters results in
FP = 0.3 × 0.7 = 0.21, which indicates that approximately one out of five sightings
equals a false positive. Given this value, the probability of a route returning RecallF = 1
and RecallT = 1 can be computed using a Binomial model. In a Binomial model, X is
defined as the number of successes in n trials. The probability of X can be computed
using the Binomial distribution with the following probability mass function:

P(X = k) =

(
n

k

)
pk(1− p)n−k (32)

38

5.6 Discussion and Conclusion 5 Validation

with k equal to the number of successes and p the probability of a single success.

Now, define success as correctly detecting a false positive sighting and n as the number
of sightings in a collection. Using Equation (32) the probability of generating a correctly
returned route with a random model can be computed. Consider the example route data
presented in Table 1. This route consists of eight sightings of which two are false. The
random probability of generating a result 1 for this route can be computed using k = 2,
n = 2 and p = 0.3× 0.7 = 0.21. This leads to the following probability:

P(X = 2) = 0.212(1− 0.21)8−2 = 0.0107. (33)

Note that the binomial coefficient of Equation (32) should be omitted, since we are
dealing with a chronologically ordered collection of sightings. This means that there is
only one way of distributing the false positives in the collection of sightings, resulting in(
n
k

)
= 1.

The true-random model computes the probabilities for all routes included in the test
set. The summation of all these probabilities results in the expectation of the number
of correctly generated routes by the random model. This expectation equals 3.8 for the
first test set and 2.4 for the second test set. The highest number of correctly generated
routes by the algorithm including copula functions equals 31 for t = 0.1, for the first
test set. The highest number of correctly generated routes by the algorithm excluding
copula functions equals 30, also for t = 0.1. For the second test set, the highest number
of correctly generated routes by the algorithm including copula functions equals 6 for
both t = 0.2 and t = 0.3. The highest number of correctly generated routes by the
algorithm excluding copula functions also equals 6, for t = 0.1 and t = 0.2.

5.6 Discussion and Conclusion

The results of the first test set show that the performance of both variations of the
algorithm is comparable. For each threshold value the recall values do not differ sig-
nificantly. This means that using copula functions for the first test set does not add
value to the performance of the algorithm. At the same time, the copula functions do
not harm the results. This is in accordance with our expectations. Moreover, the exam-
ple routes show that the behavior of both algorithms is explainable regarding the used
characteristics. Even when the algorithms seem to perform poorly, they in fact perform
well regarding the characteristics. Comparing the performance of both variations of the
algorithm with the benchmark model, one can conclude that the algorithm outperforms
the random model. Both variations of the algorithm perform approximately 8 times
better than the random model.

The results of the second test set show that the algorithm excluding copula functions
outperforms the algorithm including copula functions for most values of t. This con-
tradicts our expectation about the impact of copula functions. Moreover, the overall
performance of the algorithm is worse compared to the performance of the first test
set. The example routes show two routes of which the behavior of both algorithms is
perfectly explainable. However, for the third example the behavior of the algorithm
is difficult to explain regarding the route characteristics. This might indicate that the

39

5.6 Discussion and Conclusion 5 Validation

characteristics used in the algorithm are not suitable for the complex routes in the test
set. The algorithm excluding copula functions performs better for the complex routes.
This indicates that in some way the copula functions cause noise, resulting in a worse
performance. It appears that most routes in the second test set are comparable to the
complex route shown in the third example. This explains the overall poor performance
of the algorithms for the second test set. Comparing the performance of both variations
of the algorithm with the benchmark model, one can conclude that the algorithm out-
performs the random model. Both variations of the algorithm perform 2.5 times better
than the random model.

The overall performance of both test sets might be increased by further investigating
in additional characteristics and modules applicable to the simulation data. However,
the aim of this chapter was to discover whether the designed algorithm functions in
practice instead of optimizing the algorithm. Regarding the results, one can conclude
that the algorithm is able to perform in practice. Nevertheless, multiple lessons learned
should be kept in mind while applying the algorithm. First, it is important to choose
the right characteristics for modelling the likelihood of a route. The routes in the first
test set appeared to be explainable regarding the characteristics, leading to a reasonable
performance of the algorithm. Those characteristics appeared to be less applicable to
the complex routes in the second test, leading to a poor performance. Besides, the
usage of copula functions in the algorithm influences the performance. In fact, copula
functions might harm the results, as demonstrated for the second test set. Therefore,
both variations of the algorithm should be applied to a collection of sightings to indicate
which variation of the algorithm performs best.

40

6 Real-World Example

6 Real-World Example

In this chapter the validated algorithm is tested on real-world data. The data originates
from a television show where ordinary people go on the run and try to evade capture
from a professional investigation team. While being on the run, the participants leave
sightings. These sightings can be analyzed by the algorithm to check whether they are
consistent with each other. In this way, the algorithm is able to assist the investigation
team in tracking down the participants of the show. First, the television show is de-
scribed in more detail as well as the data used in it. Second, the characteristics used to
model the hypothesis evaluator are explained. After that, the results are presented and
conclusions about the real-world example are drawn.

6.1 Hunted

Hunted is a real-life television show where ordinary people, referred to as fugitives, go on
the run for 21 days. They try to evade capture from a professional investigation team;
the hunters, who all have a police, military or intelligence background. The hunters
have access to all tools the police has at its disposal nowadays. They interrogate friends
and family of the fugitives, undertake home searches, monitor bank- and phone records,
and make use of open-source intelligence. Furthermore, the hunters have access to all
Closed-Circuit Television (CCTV)- and Automatic Number Plate Recognition (ANPR)
cameras. Using all these surveillance powers, the hunters make every effort to catch the
fugitives within the 21 days. At the same time, the fugitives do everything to make
it the hunters as difficult as possible. They try to leave minimal evidence by avoiding
surveillance cameras and minimizing the usage of their mobile phone. Moreover, the
fugitives try to mislead the hunters by creating fake traces.

Data
Each fugitive is followed by a team to catch his or her journey. This team also records
exactly where the fugitive went at which moment of time. Besides, the team documents
whether the fugitive passed a CCTV/ANPR camera, made a call, or made a withdrawal.
This results in a document consisting of a fugitive’s timeline. The data used as real-
world example is a conversion of the raw timelines. The converted data contain ordered
activities of the fugitives defined by date-time stamps, locations and a short description
of the activity. Example activities are; making a call or sending a text message, moving
from one place to another using a mode of transportation, and spending the night at a
certain location.

In order to check the quality of the data, an exploratory data analysis is performed on
move activities. Each move activity in the data set has its own corresponding mode of
transportation; car, bicycle or walk. For all three modes of transportation, the speed,
distance and duration of the corresponding activities are analyzed. Figure 27 shows the
histograms of speed, distance and duration per mode of transportation. The first row
shows the histograms of speed, the second row of distance and the third row of duration.

41

6.2 Hypothesis Evaluator 6 Real-World Example

Figure 27: Histograms of speed, distance and duration for move activities.

Each histogram in Figure 27 shows impossible values. This indicates that the data
contains faulty values. This is not surprising, since the raw timelines are created by
hand. The conversion of the raw data is also done by hand. Hence, human errors in the
data are inevitable. To improve the data quality, we revised the data by focusing on
the impossible values indicated in the histograms of Figure 27. Afterwards, the same
histograms were created using the improved data which can be found in Figure 30 in
Appendix D. These histograms do not contain impossible values.

The revised data set contains activities of nine teams with a total of 119 days. These
activities do not contain misleading or false information. Therefore, these data can be
used as historic data set for creating route characteristics of a fugitive. In this way,
the ordinary behavior of a fugitive is modelled, making it possible to detect out-of-the
ordinary behavior. The choice of the characteristics and how they are build is discussed
in the next section.

6.2 Hypothesis Evaluator

The hypothesis evaluator of the algorithm is modelled similarly to the simulator. Again
the Bayesian inference formula is used. However, the effort characteristic is replaced
by two other characteristics more appropriate to fugitive behavior. Besides, the source
reliability is computed in a different way.

42

6.2 Hypothesis Evaluator 6 Real-World Example

Source reliability
Five different sources are available to the hunters to track the fugitives. First, the fugi-
tives can be observed by cameras. Two different types are possible: CCTV and ANPR.
CCTV is also known as video surveillance. The cameras are placed in public areas as
well as private. The surveillance footage is available to the hunters. ANPR cameras
store and read vehicle number plates. They are used to create vehicle location data. The
ANPR footage and location data is available to the hunters. Second, the fugitives can
be tracked by tapping telephones. In this way, any communication via telephones can
be monitored. The hunters have access to telephone conversations and text messages.
Lastly, the fugitives can be tracked when they make a cash withdrawal. The camera
footage of a cash machine is available to the hunters.

Each of the five sources have a different reliability. Therefore, each source is assigned a
reliability probability. These probabilities are defined using a hunter’s expert knowledge.
The probabilities are used to model the first component of the hypothesis evaluator:
P(E|H)
P(E|¬H)

.

Source P(E|H)/P(E|¬H)

Text message 0.1
Cash withdrawal 0.1
ANPR 0.2
CCTV 0.9
Phone conversation 0.9

Table 4: The reliability probabilities assigned to the five different sources available to the
hunters.

The text message and cash withdrawal are assigned the smallest probability, because
they are the least reliable. For both sources it is difficult to identify the person who
sent the text message or made the cash withdrawal. It is known to a fugitive that he
or she is filmed at a cash machine. Hence, the fugitives mostly disguise themselves by
wearing a helmet for example. The ANPR source is also assigned a low probability. This
is because recognizing a car familiar to a fugitive does not necessarily mean that the
fugitive is actually in that car. The CCTV source and phone conversations are assigned
the highest reliability, because identifying the fugitives is easier for these sources.

Route characteristics
The first route characteristic used for the fugitive data is speed. As described in the
previous section, the historic data contain activities with its corresponding mode of
transportation. However, the mode of transportation is not of interest for fugitive sight-
ings. Two consecutive sightings can have the same mode of transportation, but that does
not say anything about the mode of transportation used between these two sightings.
Therefore, the speed of each activity in the historic data set is computed, irrespec-
tive of the mode of transportation. The speed of an activity is computed by dividing
its distance travelled and duration. Therefore, three variables are used for the speed
characteristic: distance, duration and speed. Using these variables in the hypothesis
generator makes it possible to measure inconsistency between two consecutive sightings.

43

6.2 Hypothesis Evaluator 6 Real-World Example

Unrealistic distance, duration and speed values between two sightings might indicate a
false sighting. This can be detected by the speed variables. The values of the variables
are computed for the historic data set. Table 5 shows the correlation matrix for the
historic speed variables.

Distance Duration Speed

Distance 1
Duration 0.5026 1
Speed 0.5492 -0.1331 1

Table 5: Correlation matrix of historic speed variables.

From the correlation matrix can be concluded that both speed and duration are cor-
related with distance. This is comparable with the three dependent effort variables of
the simulator. Therefore, two bivariate copula functions need to be estimated as well
as the three marginals of the variables. The copulae are estimated using kernel density
estimation. The distributions of the speed variables are estimated parametrically and
appear all three to be compatible with an exponential distribution.

Distance to point of interest
The second characteristic used is the distance from a sighting to the nearest point of
interest (poi). The pois used are; gas stations, camp sites, hotels, bus and railway sta-
tions, highways, parking places, restaurants and large cities. The historic distributions
of the distances to these pois, might contain information about the likelihood of a sight-
ing. This characteristic consists of eight variables; the distance to each defined poi. The
values of the variables are computed for the historic data set. Table 13 in Appendix D.2
shows the correlation matrix for the historic poi variables. From the correlation matrix
can be concluded that multiple variables are correlated. The variables of which the cor-
relation value exceeds 0.5 are modelled using a copula function. In total four bivariate
copula functions are estimated using kernel density estimation. The distributions of the
poi variables are estimated parametrically. Table 14 in Appendix D.2 shows an overview
of the variables and its corresponding distributions.

Distance module
The additional module used for the fugitive data is the same module used for the sim-
ulator; the distance module. This module appeared to be effective for the simulation
data and might also be effective for the fugitive data. The values of the two variables
short-cut distance and travelled distance are computed for the historic data set. The
variables appeared to have a correlation coefficient equal to 0.9571. Therefore, a bivari-
ate copula function is estimated using kernel density estimation. The distributions of
the distance variables are estimated parametrically. Both variables are compatible with
the exponential distribution.

In total, two characteristics and one additional module are used to model the likelihood
of a route of a fugitive. Therefore, the second term of the hypothesis evaluator can be
stated as:

P(H)

P(¬H)
=

Pspeed · Ppoi · Pdistance

1− (Peffort · Ppoi · Pdistance)
. (34)

44

6.3 Results 6 Real-World Example

6.3 Results

The algorithm and its estimated characteristics is applied on two situations in which a
fugitive intentionally created false sightings. The two situations and the result of the
algorithm are described in this section. In response to the conclusions of the validation
phase, both the algorithm including and excluding copula functions are applied on the
two situations.

6.3.1 Situation 1

The first test set consists of two days with a total of ten sightings. On the first day, the
team leaves four sightings while walking through a city and making a cash withdrawal.
For the fifth sighting, the team asked an employee of a restaurant to make a phone call
to a team member’s wife, to mislead to hunters. At the time the employee made the
phone call, the fugitives were already 35 kilometers away. This means that the fifth
sighting of the test set is false. On the second day, the team leaves four sightings while
looking for a ride. The last sighting of the first test set is a number plate recognition
while getting a ride. To summarize, the first test set contains ten sightings, of which
one is false.

Figure 28 shows the Pareto fronts for test set 1 for seven different threshold values.
For t ≥ 0.6, no hypotheses were generated. This means that both RecallF = 1 and
RecallT = 0 for all those threshold value. Therefore, only the recall values for t ≤ 0.6
are displayed in the figure.

Figure 28: Pareto fronts situation 1.

The Pareto fronts show that both variations of the algorithm perform equally, except for
t = 0.3. For this threshold value, the algorithm excluding copula functions outperforms
the algorithm including copula functions. Besides, this is the only threshold value for
which the algorithm correctly classifies the false sighting. For all other threshold values,
the algorithms correctly classify some of the true sightings. Note that the correct route
is never returned by the algorithms.

45

6.4 Discussion and Conclusion 6 Real-World Example

6.3.2 Situation 2

The second test set consists of 18 days with a total of eight sightings. This team avoided
public areas as much as possible by moving and sleeping in the forest for most of the
time. This resulted in only eight sightings available to the hunters in 18 days. On the
first day, a friend of the team made a cash withdrawal for the team. This means that the
first sighting of the test set is false. On the third day, the team was observed twice by
CCTV while waiting for a ride. On the tenth and fourteenth day the team was observed
by ANPR-cameras. On the sixteenth day, the team created two false sightings. Two
friends of the team were asked to send a text message to a team member’s girlfriend.
One text message was send from a city 100 kilometers away from the team member’s
place. The other message was send 150 kilometers away from the team member’s place.
The last sighting of the test set is a phone call made by the team which was tapped by
the hunters. To summarize, the second test set contains eight sightings, of which three
are false.

Figure 29 shows the Pareto fronts for test set 2 for seven different threshold values. For
t ≥ 0.6, no hypotheses were generated. This means that RecallF = 1 and RecallT = 0
for all those threshold value. Therefore, only the recall values for t ≤ 0.6 are displayed
in the figure.

Figure 29: Pareto fronts situation 2.

The Pareto fronts show that the performance of both variations of the algorithm perform
equally, except for t = 0.3. For this threshold value, the algorithm including copula
functions outperforms the algorithm excluding copula functions. Besides, this is the only
threshold value for which the algorithm correctly classifies all true and false sightings.
It strikes that for all other threshold values both algorithms correctly classify all true
sightings. Note that only five points are displayed in the Pareto front. This is caused
by the fact that both t = 0 and t = 0.1 return RecallT = 1 and RecallF = 0.

6.4 Discussion and Conclusion

The results of both situations show that the algorithm is able to classify the hunted
data. For the first situation, the algorithm excluding copula functions performs bet-

46

6.4 Discussion and Conclusion 6 Real-World Example

ter, whereas for the second situation the algorithm including copula functions performs
better. Overall, the algorithms perform better for the second situation. This may be
due to multiple reasons. First, it might be caused by the fact that the false sighting of
the first test set is less inconsistent compared to the false sightings of situation two. As
described, the false sighting of the first situation is created 35 kilometers away from the
team. For the second test set, these distances are significantly higher. Therefore, the
values of the distance and speed variables might not stand out compared to the values
of the true sightings of the first test set. This could imply that the algorithm is not able
to detect false sightings close the actual position of a fugitive. It might also be the case
that the chosen characteristics are not sufficient to classify the true and false sightings
correctly. Additional modules or characteristics may improve the performance of the
algorithm. However, for the second test set the characteristics appear to be adequate.

47

7 Overall Conclusion and Recommendations

7 Overall Conclusion and Recommendations

This chapter answers the sub-questions formulated for this research, after which the
overall conclusion is drawn. Besides, recommendations anf suggestions for future re-
search are given.

7.1 Conclusion

The aim of this research was to develop an algorithm which is able to detect inconsis-
tencies in observations of moving entities. Four sub-questions were formulated which
are implicitly answered in this thesis. For convenience, the questions and their explicit,
concluding answers are stated below.

1. Which techniques are suitable for evaluating entity movements?
Entity movements are evaluated in the hypothesis evaluator component of the algo-
rithm. The technique used in this research to evaluate entity movements is Bayesian
inference. This technique was chosen based on a literature review. The results of
both the simulation and real-world example show that Bayesian inference is a suitable
technique to evaluate routes. However, the technique is highly dependent of the char-
acteristics chosen to model the likelihood of a route. When the chosen characteristics
are not suitable to evaluate entity movements, the Bayesian inference will neither
work. Other techniques might as well be suitable to evaluate entity movements. This
research explicitly stated that artificial intelligence techniques were not investigated,
because of their uninterpretable character. Still, this does not mean that AI tech-
niques are necessarily unsuitable. When a strategy for applying AI techniques in
intelligence analysis is clear, AI techniques can be investigated to implement in the
algorithm.

2. How can characteristics belonging to a moving entity be integrated into the algorithm?
Characteristics belonging to a moving entity are part of the hypothesis evaluator of
the algorithm. The chosen characteristics were modelled for historic data. When the
historic data only contains true entity movements, the ordinary behavior of an entity
can be modelled. In this way, it is possible to detect out-of-the-ordinary behavior
of the moving entity. Not all characteristics can be modelled historically. For the
real-world example, the source reliability is defined using expert-knowledge. In this
way the characteristic is rule-based. Characteristics can therefore be implemented
in both a data-driven and rule-based way. Depending on the characteristic to be
modelled, one approach might be preferred over the other.

3. Which techniques are suitable for constructing entity movements?
Entity movements are constructed in the hypothesis generator component of the
algorithm. The technique used in this research to construct entity movements is
backtracking. This technique iteratively constructs promising chains of sightings. It
was chosen because of the reduction in runtime in comparison with a brute force
approach. However, other techniques are available to reduce runtime. Branch-and-
Bound might for example also be suitable to construct entity movements.

4. Which characteristics belonging to a moving entity are required in order to apply the
algorithm to a real-world example?
The characteristics to be chosen depend on the concerned moving entity. The real-
world data used in this research originates from a television show where fugitives go

48

7.2 Recommendations 7 Overall Conclusion and Recommendations

on the run. Therefore, characteristics suitable to detect misleading fugitive behavior
were chosen. The results show that the algorithm is able to detect false sightings
created by a fugitive. However, the characteristics were not completely suitable for
the first situation. This shows that the suitable characteristics differ per concerned
moving entity. Developing and testing multiple characteristics will lead to the most
suitable configuration for the algorithm.

Regarding the results, discussion and answers to the sub-questions, we conclude that
the overall goal of this research is achieved. An algorithm for detecting inconsistencies
in observations of moving entities is designed, developed and tested on multiple test
sets. The algorithm is designed in a modular way. Depending on the area and entity
of interest, different modules can be implemented to evaluate entity movements. This
is demonstrated for two different fields. The results show the potential of the algorithm
in both military intelligence and crime analysis.

7.2 Recommendations

When inconsistencies have to be detected in entity movements, we recommend to use
the designed framework proposed in this research. The modular nature of the frame-
work causes the algorithm to be applicable in multiple ways for different scenarios. We
recommend to take advantage of this modularity by applying the algorithm to more
use-cases. Simultaneously, the potential and capabilities of the algorithm can be fur-
ther investigated. A use-case one could think of is the tracking of suspected vehicles in
both military intelligence and crime analysis. Another use-case for which the algorithm
can be applied is alibi checking. During interrogations, information is collected about
the alibis of suspects. Using the algorithm, there can be checked whether or not the
information of multiple interrogations are consistent. Besides the consistency checking,
the algorithm can also be adjusted to predictive tracking. Hypothetical future sightings
can be added to the collection of historic sightings. In this way, the likelihood of future
entity movements can be evaluated. At last, we recommend to keep in mind the lessons
learned stated in the previous section, when adjusting the algorithm.

7.3 Future Research

The goal of this research is achieved, but further research is recommended to improve
the performance of the algorithm. As already mentioned in the answers to the sub-
questions, it might be useful to investigate other techniques for both the hypothesis
evaluator and generator. Besides, the distance module used for both the simulation
and real-world data can be improved. The distances used in the module are based on
movements as the crow flies. In reality entities move across a road network. Further
research is required to investigate how to incorporate a road network into the algorithm.

This research suggested two techniques to model dependent variables of route character-
istics. Copula functions were implemented and tested in the algorithm. The algorithm
was also tested without the usage of copula functions. Theoretically, the algorithm in-
cluding copula functions should at least perform as good as the variant excluding copula
functions. However, this is not demonstrated for all results. Further investigation is re-
quired to clarify this odd result. Furthermore, multivariate kernel density estimation

49

7.3 Future Research 7 Overall Conclusion and Recommendations

can be implemented to model the dependence of variables.

The sightings used in this research were points defined by exact locations and time
stamps. In reality, the location and time of a sighting may have a range. Generating
hypotheses becomes more complex for this type of sightings. Instead of a fixed chrono-
logical order of sightings, the sightings might overlap. Investigating in a technique able
to deal with overlapping sightings is recommended. Because then, the algorithm be-
comes even more widely applicable.

At TNO, the framework is now being further investigated. They are developing their own
versions of the hypothesis evaluator and hypothesis generator, and apply the algorithm
to new use-cases. Also some suggestions for future research mentioned in this section,
are further investigated and implemented.

50

A. Intelligence Cycle Appendix

A Intelligence Cycle

A.1 Information Collection Methods

Acoustic Intelligence (ACINT)
Intelligence derived from the analysis of information about and from acoustic sources.

Geospatial Intelligence (GEOINT)
Intelligence derived from the analysis of geospatial and imagery information.

Human Intelligence (HUMINT)
Intelligence derived from the analysis of any type of information collected or provided
by human sources.

Imagery Intelligence (IMINT)
Intelligence derived from the analysis and interpretation of imagery information.

Measurement and Signature Intelligence (MASINT)
Intelligence derived from the quantitative and qualitative analysis of scientific and tech-
nical information. This information is obtained by sensors able to identify characteristics
of a target, emitting source or transmitter.

Medical Intelligence (MEDINT)
Intelligence derived from the analysis of medical, biomedical, epidemiological and envi-
ronmental information.

Open Source Intelligence (OSINT)
Intelligence derived from the analysis of publicly accessible information e.g. radio, tele-
vision, internet.

Signals Intelligence (SIGINT)
Intelligence derived from the analysis of information obtained in the electromagnetic
spectrum. This includes Communications Intelligence (COMINT) and Electroninc In-
telligence (ELINT).

51

A Intelligence Cycle Appendix

A.2 Source and Information Reliability Matrix

Reliability of the source is designated by a letter between A and F signifying various
degrees of confidence as indicated in Table 6.

Code Valuation Explanation

A Reliable No doubt of authenticity, trustworthiness, or compe-
tency; has a history of complete reliability.

B Usually reliable Minor doubt about authenticity, trustworthiness, or
competency; has a history of valid information most
of the time.

C Fairly reliable Doubt of authenticity, trustworthiness, or compe-
tency but has provided valid information in the past.

D Not usually reliable Significant doubt about authenticity, trustworthi-
ness, or competency but has provided valid informa-
tion in the past.

E Unreliable Lacking in authenticity, trustworthiness, and compe-
tency; history of invalid information.

F Cannot be judged No basis exists for evaluating the reliability of the
source.

Table 6: Evaluation of Source Reliability. [3]

Credibility of information is designated by a numeral between 1 and 6 signifying various
degrees of confidence as indicated in Table 7.

Code Valuation Explanation

1 Confirmed Confirmed by other independent sources; logical in
itself; consistent with other information on the subject.

2 Probably true Not confirmed; logical in itself; consistent with other
information on the subject.

3 Possibly true Not confirmed; reasonably logical in itself; agrees
with some other information on the subject.

4 Doubtfully true Not confirmed; possible but not logical; no other in-
formation on the subject.

5 Improbable Not confirmed; not logical in itself; contradicted by
other information on the subject.

6 Cannot be judged No basis exists for evaluating the validity of the infor-
mation.

Table 7: Evaluation of Information Content. [3]

The resultant rating will be expressed in whatever combination or letter and number is
appropriate. For example, information received from a “usually reliable” source which
is adjusted as “probably true” will be rate as “B2”.

52

B. Copula Families Appendix

B Copula Families

Copula Cθ(u, v) ϕθ(t) θ ∈

Clayton (max{u−θ + v−θ − 1; 0})
−1
θ

1
θ (t−θ−1) [−1,∞)

Frank −1
θ

[
ln
(

1 + (e−θu−1)(e−θv−1)
e−θ−1

)]
−ln

(
e−θt−1
e−θ−1

)
(−∞,∞)

Gumble exp{−((−ln(u))θ + (−ln(v))θ)
1
θ } (−ln(t))θ) [1,∞)

Table 8: Three copula functions in the Archimedean family including their generator
function ϕθ(t) and the parameter range. [19]

53

C. Simulation Data Appendix

C Simulation Data

C.1 Statistics Simulation Test Set 1

Table 9 shows the distribution of the number of sightings per collection in test set 1.

Nr. of sightings Frequency

6 2
7 8
8 38
9 52

Table 9: Distribution number of sightings per collection in test set 1.

Table 10 shows the distribution of the number of sightings per collection in test set 1.

Nr. of false positives Frequency

0 17
1 39
2 31
3 8
4 4
5 1

Table 10: Distribution number of false positive sightings per collection in test set 1.

C.2 Statistics Simulation Test Set 2

Table 11 shows the distribution of the number of sightings per collection in test set 2.

Nr. of sightings Frequency

6 2
7 10
8 40
9 48

Table 11: Distribution number of sightings per collection in test set 2.

54

C. Simulation Data Appendix

Table 12 shows the distribution of the number of sightings per collection in test set 2.

Nr. of false positives Frequency

0 8
1 35
2 29
3 19
4 8
5 1

Table 12: Distribution number of false positive sightings per collection in test set 2.

55

D. Real-world Data Appendix

D Real-world Data

D.1 Exploratory Data Analysis

Figure 30: Histograms of speed, distance and duration for move activities in the revised
data set.

56

D. Real-world Data Appendix

D.2 Correlation Matrix

G
a
s

st
a
ti

o
n

C
a
m

p
si

te
H

o
te

l
H

ig
h
w

a
y

P
a
rk

in
g

p
la

c
e

R
e
st

a
u

ra
n
t

C
it

y
S

ta
ti

o
n

G
a
s

st
a
ti

o
n

1
C

a
m

p
si

te
0.

04
37

1
H

o
te

l
0.

39
56

0.
04

80
1

H
ig

h
w

a
y

0.
57

61
-0

.0
36

7
0.

21
25

1
P

a
rk

in
g

p
la

c
e

0.
47

71
0.

05
46

0.
30

46
0.

32
19

1
R

e
st

a
u

ra
n
t

0.
55

19
0.

19
99

0.
32

30
0.

25
41

0.
58

1
7

1
C

it
y

0.
36

44
-0

.0
96

9
0.

20
93

0.
32

37
0.

35
78

0
.2

8
2
4

1
S

ta
ti

o
n

0.
33

08
0.

08
61

0.
33

32
0.

16
10

0.
46

1
6

0
.5

4
4
0

0
.1

7
4
1

1

T
ab

le
13

:
C

o
rr

el
a
ti

o
n

m
a
tr

ix
o
f

h
is

to
ri

c
po

i
va

ri
a
bl

es
.

57

D. Real-world Data Appendix

Variable Distribution type

Gas station Exponential
Camp site Gamma
Hotel Weibull
Highway Log Normal
Parking place Gamma
Restaurant Gamma
City Weibull
Station Log Normal

Table 14: Estimated marginal distributions for the poi variables.

58

Bibliography

Bibliography

[1] Santos Jr, E., Zhao, Q., Johnson, G., Nguyen, H., & Thompson, P. (2005). A cogni-
tive framework for information gathering with deception detection for intelligence
analysis. In Proceedings of 2005 International Conference on Intelligence Analysis.

[2] Joint Doctrine Publicatie 2 Inlichtingen; Ministerie van Defensie

[3] United States Army, Human Intelligence Collector Operations. Field Manual 2–
22.3; FM 34–52. (Washington, DC: Headquarters, Department of the Army, 2006).

[4] Pherson, R. H. (2008). Handbook of Analytic Tools & Techniques. (pp. 13-14) Pher-
son Associates

[5] Heuer, R. J. (1999). Psychology of intelligence analysis. Center for Study of Intel-
ligence, CIA, Washington, D.C.

[6] Hulnick, A. S. (2006). What’s wrong with the Intelligence Cycle? In Intelligence
and national Security, 21(6), (pp. 959-979).

[7] Johnston, J. M. & Johnston, R. (2005). Testing the intelligence cycle through sys-
tems modeling and simulation, In Analytic culture in the U.S. intelligence commu-
nity. (pp. 45-57), Washington, DC: Central Intelligence Agency.

[8] Wheaton, K.J. (2012) Let’s Kill the Intelligence Cycle. Competitive Intelligence,
Vol 15, No 2, (pp. 9-24).

[9] Aydin, B., & Ozleblebici, Z. (2015). Is Intelligence Cycle Still Viable? In Interna-
tional Conference on Military and Security Studies, (pp. 95-100).

[10] Knopp, B. M., Beaghley, S., Frank, A., Orrie, R., & Watson, M. (2016). Defining
the Roles, Responsibilities, and Functions for Data Science Within the Defense In-
telligence Agency. RAND National Defense Research Institute Santa Monica United
States.

[11] Zlotnick, J. (1972). Bayes’ theorem for intelligence analysis. Studies in Intelligence,
16(2), 43-52.

[12] Barros, A. I., van den Broek, A. C., van Dalen, J. A., Vecht, B., & Wevers, J.
(2014). Producing near-real-time intelligence: predicting the world of tomorrow.
NL ARMS - Netherlands Annual Review of Military Studies, Optimal Deployment
of Militairy Systems (pp. 49-72), Asser Press, The Hague.

[13] Smit, S., van der Vecht, B., van Wermeskerken, F., & Streefkerk, J. W. (2016).
QUIN: Providing Integrated Analysis Support to Crime Investigators. In Intelli-
gence and Security Informatics Conference (EISIC) (pp. 120-123), IEEE.

[14] Ceolin, D., Van Hage, W. R., Schreiber, G., & Fokkink, W. (2013). Assessing trust
for determining the reliability of information. In Situation Awareness with Systems
of Systems (pp. 209-228). New York, N.Y.: Springer

[15] Josang, A. (2016). Subjective logic. New York, N.Y.: Springer.
doi: 10.1007/978-3-319-42337-1

59

Bibliography

[16] Pope, S., & Josang, A. (2005). Analysis of competing hypotheses using subjective
logic. QUEENSLAND UNIV BRISBANE (AUSTRALIA).

[17] Weinbaum, C. & Shanahan, J.N.T (2018). Intelligence in a Data-Driven Age. In
Joint Force Quarterly (pp. 4-9)

[18] Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Ky-
bernetika, 9(6), (pp. 449-460).

[19] Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business
Media.

[20] Joe, H. (1996). Families of m-variate distributions with given margins and m (m-
1)/2 bivariate dependence parameters. Lecture Notes-Monograph Series, (pp. 120-
141).

[21] Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of
multiple dependence. Insurance: Mathematics and Economics, 44(2), (pp. 182-198).

[22] Bedford, T., & Cooke, R. M. (2002). Vines: A new graphical model for dependent
random variables. Annals of Statistics, (pp. 1031-1068).

[23] Haff, I. H., Aas, K., & Frigessi, A. (2010). On the simplified pair-copula construction
– Simply useful or too simplistic? Journal of Multivariate Analysis, 101(5), (pp.
1296-1310).

[24] Marius Hofert, Ivan Kojadinovic, Martin Maechler and Jun Yan (2017). cop-
ula: Multivariate Dependence with Copulas. R package version 0.999-18 URL:
https://CRAN.R-project.org/package=copula

[25] Ulf Schepsmeier, Jakob Stoeber, Eike Christian Brechmann, Benedikt Graeler,
Thomas Nagler and Tobias Erhardt (2018). VineCopula: Statistical Infer-
ence of Vine Copulas. R package version 2.1.4. URL: https://CRAN.R-
project.org/package=VineCopula

[26] Tarn Duong (2017). ks: Kernel Smoothing. R package version 1.10.7. URL:
https://CRAN.R-project.org/package=ks

60

	Preface
	Executive Summary
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Objective
	Research Goal
	Structure

	Intelligence Background
	Intelligence Cycle
	Analysis of Competing Hypotheses
	Critiques Intelligence Cycle

	Relevant Work
	Connecting the Dots
	Algorithm Design
	Hypothesis Evaluator
	Bayesian Inference
	Modelling Dependence
	Copula Functions
	Multivariate Kernel Density Estimation
	Practical Comparison

	Demonstrative Example

	Hypothesis Generator

	Validation
	Simulator
	Hypothesis Evaluator
	Evaluation
	Experimental Results
	Test Set 1
	Test Set 2

	Benchmark
	Discussion and Conclusion

	Real-World Example
	Hunted
	Hypothesis Evaluator
	Results
	Situation 1
	Situation 2

	Discussion and Conclusion

	Overall Conclusion and Recommendations
	Conclusion
	Recommendations
	Future Research

	APPENDIX
	Intelligence Cycle
	Information Collection Methods
	Source and Information Reliability Matrix

	Copula Families
	Simulation Data
	Statistics Simulation Test Set 1
	Statistics Simulation Test Set 2

	Real-world Data
	Exploratory Data Analysis
	Correlation Matrix

	Bibliography

