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Abstract

Recent developments in machine learning have created methods to pro-
vide human interpretable explanations for any predictive model. This
study compares model-agnostic explainers Lime and Shap in two ex-
periments with real-world and synthetically generated data. Shap is
advocated to provide explanations with highest quality according to
theory on additive feature attribution methods. However, the experi-
ments in this study suggest that Lime still competes with Shap, specif-
ically on decision tree models. Secondly, a novel explainer evaluation
metric is tested and deemed inadequate in its current implementation.
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1 Introduction

Machine learning models that produce unexplainable prediction have re-
cently caught considerable attention [13]. Not even the most practised data
scientists can expose exactly why their deep learning model decided the way
it did [7] [11]. Still, the number of predictive models implemented grows
each day. Most of which are so difficult to interpret, we tend to refer to
them as black boxes.
In light of this problem, advances have been made to methods that pro-
vide an explanation for any model. Two of these so-called post hoc model-
agnostic explainers are Lime and Shap. However complicated the predictive
algorithm, these explainers intend to provide insight into all individual de-
cisions. The model explainers simplify the model’s decision into a human
understandable explanation.
Still, the literature on model explainers is divided: arguments are put for-
ward that the use of such methods is flawed or not desirable, while others
encourage their use or are improving the explainers. I suggest that this
division has occurred because the (non-)quality of explainers is difficult to
measure; little consensus exists in the evaluation of model explainers [12]
[13] [15]. As a consequence, the quest for advancing model explanation
methods has been impeded. Making things worse, the more simplified the
explanation, the more inclined it is to omit crucial information. If these
challenges can be surmounted, the improved accuracy of black box models
can be utilized without sacrificing explainability.
Capabilities in model explanation methods are especially valuable for com-
panies that market their machine learning expertise. Accenture advises
other companies in opportunities with predictive algorithms and/or im-
plements models to, e.g., improve efficiency. They can show how models
provide value for other company, but will not be able to completely explain
how predictions are formed when using black box models. Model explana-
tion methods occupy this niche, as they allow Accenture to maximise value
creation while maintaining the ability to explain any implemented model to
the client.

This research aims to evaluate and compare recently proposed Lime and
Shap. A baseline for these explainers is an older method named ’Parzen
windows’. Since there is little consensus in the evaluation of model ex-
plainers [12] [13] [15], the comparison is realised using two simulated user
experiments previously proposed by Ribeiro et al. [1]. These experiments
are constructed so that the working of the predictive algorithms is known.
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Hence, the explanations formed for each prediction can be evaluated. In ad-
dition, I propose several modifications to the implementation of both exper-
iments to improve evaluation of explainers. The experiments are performed
on three real-world datasets and four sets of synthetically generated data.
A second aim in this research is to analyse and assess a novel explainer
evaluation metric called ’faithfulness’ proposed by Arya et al. [5]. If it can
be shown that this evaluation metric is reliable, it could provide the desired
basis for comparing model explainers.

This study firstly introduces recent literature on the subject of post hoc
model-agnostic explanation methods. Then, all implemented methods and
their usage in the experiments are expanded upon. Figures and tables form
an overview of the experiments’ results and will thereafter be discussed.
Lastly, the comparison of Lime and Shap is concluded and a discussion is
established on findings in this research.

2



2 Literature review

Recent developments and research on post hoc model-agnostic explainers
are firstly discussed. Thereafter, a novel method to assess the quality of
such explainers is covered. Lastly, tendencies against the use of explanation
methods are considered.
It has been suggested that the terms explainability and interpretability
should not be used as synonyms, as they may be different in nuance1. How-
ever, in this study these terms are treated as equivalent.

Post hoc model-agnostic explainers

In recent years, many advances in linear post hoc model-agnostic explain-
ers have been made. The quest for such methods seems to come from the
trade-off between model performance and explainability [2]. Most recently
best performing machine learning algorithms, while having better accuracy
over previous methods, are hard or impossible to interpret. For example:
neural networks and ensemble methods. As a result, a new field in model
explainability has arisen. Most versatile are those methods that can be ap-
plied to any model - model-agnostic - and after the model has been trained
- post hoc -.
To this end, Ribeiro et al. [1] have introduced Lime in 2016. Lime being a
Local Interpretable Model-agnostic Explainer. In short, the method creates
a sparse linear explanation of an instance from the data that is locally faith-
ful. The explanation consists of a maximum of K features, a user specified
number, which are assigned an attribution to the prediction. The expla-
nation is additive: all feature attributions (and a base value) sum up to
approximately the model’s prediction for that instance. The explanations
are locally faithful in the sense that the explanation should resemble the
model in the vicinity of the instance, but is not guaranteed to be globally
faithful. In addition, the paper argues that Lime fulfills above mentioned
properties using some simulated experiments.
An interesting addition to the explanation model is the notion of cover-
age. Their SP-Lime algorithm will find a set of the most representative
explanations. That set of explanations should optimally describe the global
behaviour of the algorithm.
In a work by Lundberg and Lee [2] all additive feature attribution methods,

1Interpretability would suggest a degree to which the model’s output can be predicted.
While explainability covers the degree of being able to explain to a human the inner
mechanics of an algorithm.
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like Lime, are joined under a single definition. They unite Lime, DeepLIFT,
layer-wise relevance propagation and Shapley value approximators (like in
[11]). Then, it is shown that only Shapley values [10] [14] can satisfy three
desirable properties that enforce a unique solution for an additive feature at-
tribution explanation. According to Shapley’s theorem, that unique solution
is optimal. Shortly, these properties cover accuracy and consistency of the
explanations. Lastly, Lundberg and Lee propose a new method named Shap
Kernel to approximate Shapley values with improved sample efficiency over
previous methods. It should be noted that Shap has brought the theoreti-
cal basis of Shapley values from game theory to additive feature attribution
methods. However, it is assumed that features are independent and the ex-
planation model is linear.
To counter these assumptions, an improved method was proposed by Aas et
al. [3] in 2019. They suggest that the assumption of independency of features
can produce faulty explanations. Thus, they propose an improvement of the
Shap Kernel method to handle dependent features. Since the assumption of
independency is only necessary in one step of calculating Shap values, they
suggest relaxing that assumption. They found that for non-linear models
the improved method outperforms Shap. A drawback of allowing dependen-
cies is that explanations become harder to interpret. Multiple dependent
features can only be properly interpreted as a group, rather than individu-
ally. Additionally, this extension to Shap increases computation time.
In addition to extending Shap for dependent features, an extensive overview
of the Shap Kernel approximation method is given since the original paper
[2] does not fully describe the implementation. An accurate description is
given of how the sample efficiency is improved over previous Shapley value
approximations.

Aside from the creation of and improvements to model explainers, new met-
rics have been proposed to evaluate them. Previously, the quality of model
explainers has been evaluated mainly based on the inclusion of features:
recall [4] [15] [16]. How many of the features used by the model can the
explainer find? While it can offer insight, recall alone crucially omits the at-
tributions provided by explainers. To this end, a novel ’faithfulness’ metric
has been suggested by Arya et al. [5]. The metric aims to evaluate the qual-
ity of an explanation and its attributions with the use of correlation. They
have suggested a second evaluation metric named ’monotonicity’, although
that relies on similar evaluation of correlation. As of this date, no research
has been done to evaluate their explainer faithfulness metric.
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Disadvantages to post hoc explainers

The advances in explanation methods are compelling and show potential for
decreasing the trade-off between model interpretability and performance.
However, some works have put forward that using post hoc explainers may
not be beneficial.
In a recent paper from November 2019 by Slack et al. [7] a framework was
created to fool Lime and Shap into producing faulty explanations. In short,
the framework creates a clearly biased model and hides that bias by abusing
the perturbations on which explainers rely. The explanations produced by
the Lime and Shap seem unable to reproduce that bias. It should be noted
that explainers are susceptible to ”adversarial attacks” as Slack et al. sug-
gest. Thus, if one has wrong intentions, Lime and Shap can be fooled into
faulty explanations.
In some domains, for specific models, post hoc explainers have been shown
to miss the most relevant feature of an instance. One such example is from
Camburu et al. [4] for explaining a neural network on a natural language
processing task. Their goal is to create (a framework for) an evaluation test
for post hoc explanatory methods from the perspective of feature-selection.
Their evaluation only considers the inclusion of features, unlike the faithful-
ness measure from Arya et al. While Camburu et al. conclude that post hoc
explainers can miss the most relevant feature of a prediction, their frame-
work was only tested on a single model for a single task. As they note in
their conclusion, their framework could be applied to other tasks and areas.
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3 Methods

This section will describe techniques used in this study for the simulated user
experiments. Firstly, an intuition of ’linear’ model explanation methods is
given. Model explainers Lime and Shap are discussed in detail, as they
will be evaluated in the experiments. The Parzen windows explainer from
[9] is used as baseline for Lime and Shap and will be shortly reviewed. In
order to improve evaluation of explainers, two evaluation metrics are defined:
faithfulness and NDCG. Lastly, the approach to synthetic data generation
is considered. All experiments also are applied to synthetic data for which
the level of noise and redundancy can be controlled.

3.1 Additive feature attribution methods

The explanation methods used in this paper fall into the category of ’linear
explainers’ or ’additive feature attribution explanation methods’. Linear
comes from the fact that these explainers rely on sparse linear models for
their explanations. The following sections will expand on the exact methods
for Lime and Shap. In short, all explanations start at the average probabil-
ity that the prediction belongs to that class, namely: ’base rate’ (φ0). The
explainer assigns an attribution (φi) to all features it includes, up to a pro-
vided maximum K features. Adding the attributions/impact of all features
to the base rate results in (approximately) the algorithm’s prediction. A
formal definition of an additive feature attribution explanation is given by:

g(z′) = φ0 +
M∑
i=1

φiz
′
i,

where g is the explanation model that includes only features selected in z’.
With z′ ∈ {0, 1}M is the selection of features (maximum of K) for that
explanation. The features are indicated by i ∈ {1, ...,M}, where φi defines
their individual attribution and base rate is denoted as φ0.
An example of additive feature attributions might be useful before going into
detail. Consider Figure 1 from Lundberg’s repository2. Firstly, the figure
shows what the explainers are allowed to see. A model-agnostic explainer
only has access to the data and the model’s output, but not to the black
box model itself. In the example, the base rate starts at 0.1. The positive
attributions displayed in green for the features Age, BP and BMI increase
the probability by a total of 0.6. Whereas the negative attribution displayed

2https://github.com/slundberg/shap. Figure has been modified.
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in blue of feature Sex decreases the probability by 0.3. The sum of the base
rate and all attributions produce the output of 0.4, which is (approximately)
the algorithm’s prediction.

Figure 1: An example of additive feature attribution for a single prediction.
The base rate (mean probability of that class) of 0.1 summed with the total
of all feature attributions, an additional 0.3, results in the output value of
0.4.

3.2 Perturbation

Post hoc model-agnostic explainers in this study rely on feature perturbation
in order to provide explanations while treating the classifier as a black box.
To measure the influence of a single feature on the prediction, its ’initial’
value is taken out of the instance. But, most machine learning methods do
not allow absence of value for a feature. Thus, the value is replaced in order
to mask its impact. The value can be replaced by the most common/average
value from the background dataset or a value of 0. A sensible choice for that
replacement depends on the data. The process of masking a feature from
an instance is called perturbation. An advantage is that perturbation works
with any classification model.
Perturbation or the masking of features can also be done for multiple fea-
tures of an instance. For Lime and Shap a perturbed sample of an instance
x is denoted as z or z’.
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3.3 Lime

The Local interpretable model-agnostic explanations method, or Lime for
short, has been proposed by Ribeiro et al [1]. In summary, Lime aims to
provide a human interpretable explanation that is locally accurate to, and
can be applied to any, machine learning model.
Firstly, interpretability, model-agnostic explainers and (local) accuracy are
characterized:

• An explanation is interpretable if it can be easily understood by hu-
mans. For Lime specifically, they assumes that a sparse linear model
is interpretable. Sparsity meaning that the linear explanation incorpo-
rates a small number of features that would allow for an easily readable
explanation. E.g., a linear explanation with only 5 features should be
quickly understandable for a human.

• The method is model-agnostic. The explanation method does not
make any assumptions about the underlying predictive model. There-
fore, it can be applied to any machine learning model.

• The explanations are locally accurate to the predictive model. Accord-
ing to Ribeiro et al. [1] the explanation ”must correspond to how the
model behaves in the vicinity of the instance being predicted”. There-
fore, the explanation should resemble the model in a local manner, but
that does not imply global accuracy.

Formally, Lime has that g is an explanation with a limited number of features
included. The complexity of g for linear explanations is measured by the
number of included features and is denoted as Ω(g). G is the family of
interpretable models (for example, a small decision tree would also apply).
Let f(x) be the probability that x belongs to a certain class according to
model f. The proximity (vicinity) between instance x and z is πx(z), where
z is a perturbed sample of instance x. Then, a Lime explanation is defined
by:

ξ(x) = argmin
g ∈ G

L(f, g, πx) + Ω(g).

Lime finds the explanation ξ(x) that is the most locally accurate, while still
being interpretable. A formal definition of L is included in Appendix Sec-
tion 8.1. The user can specify the complexity budget or maximum allowed
number of features K. When the explanation becomes larger than K, the
complexity constraint Ω(g) will be infinite. This enforces the explanation to
be smaller than K. The explanation will look as described in Section 3.1.
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How the method works intuitively is shown in Figure 2. The explanation
(displayed in dashed lines) is constructed with weighted perturbed samples
around the instance. The perturbed samples are depicted as red crosses and
blue circles. The background colour indicates the decision boundary of the
model. This figure aims to show that an explanation can be locally, but not
globally, accurate to the decision boundary of the model.

Figure 2: Source [1]. Intuition of Lime method: the linear explanation in
dashed lines is constructed with weighted perturbed samples around the
instance.

3.4 Shap

A unified approach to model explanation methods named Shap, has been
proposed by Lundberg and Lee [2]. In their work they aim to show that if a
linear explanation is created for a model, Shap values are the most consis-
tent and computationally viable. The name Shap originates from Shapley
additive explanations.
Shapley values are a theorem from game theory, but they are used in the
Shap explainer. Firstly, Shapley values are described. Thereafter, the use
of Shapley values in the Shap explainer is considered.

Shapley values

Shapley values are a method for distributing the total payout of several
games over n persons, depending on their contribution to the payout for
each game [10]. According to the theorem, Shapley values are the optimal
assignment of payout since they adhere to a set of desirable properties. The
following section will cover these properties, as they are explicitly described
for additive feature attribution methods. A formal definition of the proper-
ties is included in Appendix Section 8.2. Young has shown that a solution
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that adheres to those desirable properties is unique [14]. Thus, according to
these theorems, Shapley values are the unique set of additive attributions
for an optimal linear explanation.
Molnar concisely describes Shapley values: ”A prediction can be explained
by assuming that each feature value of the instance is a ’player’ in a game
where the prediction is the payout. Shapley values – a method from coali-
tional game theory – tells us how to fairly distribute the ’payout’ among the
features”.3

Unified definition - additive feature attribution methods

Shap Kernel is based on the Lime method, but with different choices for the
weighting kernel π (distance metric) and regularization term Ω. For Lime,
these parameters are chosen heuristically, whereas the Shap Kernel method
defines these parameters according to the Shapley theorem. Formally, in
Lundberg and Lee’s Theorem 2, the Shapley kernel is defined as:

Ω(g) = 0,

πx′(z′) =
M − 1

(M choose |z′|)|z′|(M − |z′|)
,

where M is the number of features, the number of non-zero features in z’ is
|z′| and x’ is the set of all perturbations of the data. With this definition of
the weight kernel and regularization, the estimated values should adhere to
three desirable properties. Whereas the heuristic choice for Lime may result
in a violation of local accuracy and consistency.

A formal definition of the desirable properties is given in Appendix Sec-
tion 8.2. Intuitively, the three properties can be explained as:

• Local Accuracy: The explanation exactly matches the predicted prob-
ability by the model for an individual. The base rate summed with all
feature attributions is exactly the output of the model.

• Missingness: Features not included in the explanation do not have any
attribution to the explanation.

• Consistency: Feature attribution should not decrease if the features’
input is kept the same or increased, while the other inputs are un-
changed.

3https://christophm.github.io/interpretable-ml-book/, chapter 5.9
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A unique additive feature explanation model follows from these properties:

φi(f, x) =
∑

z′ ⊆ x′

|z′|! (M − |z′|−1)!

M !
[fx(z′)− fx(z′ \ i)].

With i indicating a specific feature.

Shap Kernel

The complexity of calculating Shapley values depends on the number of
features. The exact calculation of Shapley values becomes computationally
intractable for a large number of features. Since the exact calculation is
computationally expensive, Lundberg and Lee have proposed Kernel Shap
to approximate them. Under the assumption that features are independent
and the model is linear, Shap values can be calculated with higher sample
efficiency than previous Shapley equations [11]. The improved sample ef-
ficiency is described in detail in a different paper in Section 2.3 by Aas et
al. [3]. They elaborate that the calculation of Shap values is made more
efficient by performing part of the matrix calculations once for several ex-
planations at a time, instead of once for each explanation. In addition to
the model-agnostic Shap Kernel method, Lundberg and Lee have introduced
several model specific methods for calculating Shap values even more effi-
ciently. These include Deep Shap for deep learning models and Tree Shap
for tree based models. However, for this research only true model-agnostic
methods are considered.

In summary, Shap introduces a faster method to approximate Shapley val-
ues. According to the theory, only Shapley values adhere to a triplet of
desirable properties for an explainer. Shap will produce an explanation
with feature attributions for up to K features, as described in Section 3.1.
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3.5 Parzen windows

The Parzen windows technique is an approach to estimate the probability
density function of a specific point without knowing the underlying distribu-
tion. A region around the point is used to estimate the value of probability
density, which is where the name Parzen windows originates. The method
will also be referred to as ’Parzen’ in this study. Baehrens et al. [9] describe
how Parzen windows can be used to explain individual classification deci-
sions.
They define the Bayes classifier:

g∗(x) = arg min
c∈{1,...,C}

P (Y 6= c|X = x)

where C is the number of classes in the classification problem and P (X,Y )
is some unknown joint distribution. Then, the explanation vector of a data
point x0 is the derivative to x at x = x0. Formally noted as:

ζ(x0) :=
∂

∂x
P (Y 6= g∗(x)|X = x)

∣∣∣
x=x0

.

With ζ(x0) a M-dimensional vector, with the same length as x0. The expla-
nation is formed by the largest (absolute) feature attributions in the vector
ζ(x0) up to K features. Then, the explanation takes the form as described
in Section 3.1. Note that this is similar to the explanation vector ξ(x) defi-
nition from Lime.

3.6 Faithfulness metric

The quality of an explainer depends on the interpretability offered to the
user as well as its accuracy to the model. These notions may have an op-
posing effect. A simpler explanation may not fully resemble the model, as
it cannot capture its full extent. Current post hoc explanation methods use
a sparse linear explanation. They offer the same level of interpretability as
long as they have the same number of features. Thus, they could easily be
compared based on some notion of local accuracy to the model.

Currently, there is no standard metric to measure that local accuracy. How-
ever, Arya et al. [5] have introduced an inconveniently4 named fidelity

4Literature on this subject tend to use local accuracy, fidelity and faithfulness as syn-
onyms. This study carefully uses those terms to prevent confusion with the faithfulness
metric.

12



metric called: ’faithfulness’. This metric measures the quality of explainers,
rather than human evaluation being the golden standard. This study aims
to determine if the metric is viable for assessing the quality of explainers.

The faithfulness metric expresses the quality of an explanation as correla-
tion between model predictions and feature attributions: in order of feature
importance the feature of an instance is perturbed (replaced by the back-
ground value), then both the model’s predicted probability and the feature’s
attribution are recorded. That process is repeated for all features for which
a feature attribution exists. The faithfulness metric φ is then defined as the
negative Pearson correlation ρ between the vector of feature attributions Θ
and the vector with the model’s prediction probabilities p:

φ = −ρ(Θ,p).

The higher φ the better the quality of an explainer (beware not to confuse
this ’φ’ with feature attributions from previous definitions). Intuitively, the
model’s prediction probability should decrease when a feature with positive
attribution is removed. Thus, the faithfulness metric aims to show to what
degree that intuition is followed. In other words, the method scores ex-
plainers for attribution values that have similar impact as the model when
perturbing a feature.
The method has a drawback, as this metric uses correlation, it is not defined
for small explanations. It is not possible to calculate correlation when the
length of vectors Θ and p is 1, since correlation is not defined for a point.
When the length of vectors Θ and p is 2 the correlation is always either
1 or -1. The metric would always assign either the best or worst possible
score to the explanation. This is not desired behaviour for such a metric.
Nonetheless, explanations would often consist of more than two features.
For these explanations the faithfulness metric may still provide insight by
scoring the intuition as described above.

3.7 NDCG

Normalized Discounted Cumulative Gain or NDCG is a measurement of
the quality of ranking in comparison to the true ranking. The metric is
mostly applied in information retrieval. Search algorithms are scored by
their ability to retrieve the most relevant documents in order. I propose to
use this metric in the evaluation of model explainers. This popular technique
assesses the explainers by the features it retrieves along with the ranking of
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features. Formally, the NDCG at rank p is defined as:

NDCGp =
DCGp

IDCGp
,

with

DCGp =

p∑
i=1

reli
log2(i+ 1)

,

and

IDCGp =

|REL|∑
i=1

2reli − 1

log2(i+ 1)
,

where reli indicates presence of individual feature i and |REL| is the list
of features ordered by importance. For this study the average NDCG of all
ranks p is reported. Intuitively, the metric will assign a score between 0 and
1, comparing the explanation’s ranking of features to the model’s true rank
of features. A value of 1 indicates a perfect ordering.

3.8 Synthetic data generation

For the experiments in this study synthetic data is generated. With syn-
thetic data the number of features, dependencies, noise and other factors
can be controlled. Then, the robustness of model explainers can be evalu-
ated given the alterations to the data.
Data is generated using the make classification function from sklearn5. The
package provides a method to generate a dataset with user specified modifi-
cations. Firstly, the user defines the number of informative features. Then,
a number of redundant features can be specified. These redundant fea-
tures are a random linear combinations of the informative features from the
dataset. In addition, noise is created by replacing the target variable with
a randomly selected target output. The following section will elaborate on
other parameters used in the data generation process.

5https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make classification.html
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4 Experimental setup

There is hardly consensus for the evaluation of model explainers [12] [13]
[15]. Hence, the comparison is done via simulated user experiments. These
experiments are constructed so that the working of the predictive algorithm
is known and thus, can be used to quantitatively assess the explainers. The
experiments are based on those presented in a paper by Ribeiro et al. [1].
Their code is provided in an online repository6. This is the basis for the
experiments in the current paper. Accordingly they will be named Lime
experiment 5.2 and 5.3 for the original and Experiment 5.2 and 5.3 for the
modified versions in this study. Minor adjustments have been made to run
this experiment in Python 3.7 rather than 2.7.

In order to improve the measurement of explainer quality, several adjust-
ments for the implementation of both experiments are proposed. Those
improvements include the two explainer quality metrics: faithfulness and
NDCG. Additionally, both revised experiments are applied to synthetically
generated data. Since that data can be manipulated to test the explainers
in their handling of redundancy and noise. The following subsections will
describe all experiments in detail. Code for the current study is available
at: https://github.com/marnixm/lime experiments.
While Aas et al. [3] suggest that using Shap with an extension for depen-
dent features may be beneficial, its explanations are not as simple as Lime
and Shap provide. Its explanations can only be properly interpreted as clus-
ters of dependent features. For the current study only true additive feature
attribution methods are considered. Thus, Shap with the extension for de-
pendent features is not included in the experiments.
The original Lime experiments include a random and greedy explainer. How-
ever, they only provide inclusion of features, but not feature attribution.
Since feature attribution is crucial to explainers, the greedy and random
explainer are insufficient as baseline. Hence, they too have been excluded
from the experiments.
As mentioned in the faithfulness Section 3.6, the metric is not defined for
explanations of two or fewer features. Instances to which this applies have
been omitted from the experiment’s results.
All explainers are provided a maximum budget of K = 10 features for their
explanations. The Parzen explainer may find explanations of larger size,
unlike Lime and Shap. Therefore, the Parzen explanations will consist of

6https://github.com/marcotcr/lime-experiments
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only the K most important features, as was the choice in the original Lime
experiments.

4.1 Real-world data

The data consists of product reviews from Amazon.com. The data has
been used for several studies, initially by Blitzer et al. [6]. A review is
labelled with a binary positive or negative outcome. The features in this
dataset are the words used in the reviews for each domain. Accordingly, the
predictive models are performing sentiment analysis. For the current study,
the datasets on books, DVDs and kitchen products have been used.
All three datasets contain approximately 20,000 features and 2000 rows of
data. The data is split into a train and test set of respectively 1600 and 400
rows.

4.2 Lime experiment 5.2
”Are explanations faithful to the model?”

In this experiment, machine learning methods are used that are interpretable
by themselves. Namely sparse logistic regression and decision trees. How-
ever, these models are only allowed to use a maximum of K = 10 features
for each row in the test set. Thus, for all instances, a golden set of features
is known. In this experiment, the writers aimed to show that their explainer
can find the features used by the model.
A comparison is made of the golden set of features for each instance to the
explanations. Thus, scores for recall of golden features from the model can
be calculated. Precision would also be an interesting metric to consider.
However, the models are asked to provide an explanation of 10 features. If
the model would use fewer than 10 features itself, the explainer could never
reach a precision of 1. Therefore, only recall was considered.
The sparse logistic regression model uses L1 penalty, where the penalty pa-
rameter is increased until a maximum of 10 features for each row is used.
Similarly, the decision tree model is only allowed to use a maximum of 10
features for an instance’s path along the nodes of the tree.
It should be noted that while Section 5.1 from Lime [1] describes the use of
L2 regularization for the linear regression in their experiments, it is actually
L1 regularization that was implemented in their repository. Both Shap and
Lime are provided with a budget of 15,000 samples.
Lastly, beware that the title of this experiment is not to be confused with the
faithfulness metric. In [1] the terms local accuracy, faithfulness and fidelity
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are used as synonyms. The title of this experiment actually advertises that
the explainer should use the same features as the models themselves: recall.

4.3 Experiment 5.2 | Improvements

Number of golden features per instance
The sparse linear regression model from Experiment 5.2 is provided with
an increasingly high penalty until a maximum of 10 features are used for
all instances. More precisely, the features used by model (Θ) and the fea-
tures provided by the explainer (ξ) are for all instances: |Θ ∩ ξ| < 10. It is
this intersection that is referred to as golden set of features. In practise, the
sparse linear regression model is provided with such a high penalty, that this
intersection has an average of 2-3 features. Thus, the explainer is allowed to
provide 10 features, whereas on average 2-3 features are used per instance.
As a result, high recall numbers of over 90% are reported.
Instead, it is suggested to find models with an average (rather than max-
imum) of 10 used features for each instance. For the calculation of recall
and faithfulness, only the 10 most important features are considered. In the
original experiment, the explainers were allowed a larger budget to retrieve
all features (|ξ| > |Θ|). Now, the explainers will have to retrieve a number
of features that is closer to their budget (|ξ| ≈ |Θ| ≈ K). By increasing the
number of golden features per instance, the test should be more challenging
for the explainers.
However, for the decision tree model it is not reasonably possible to increase
the number of golden features. Initially, the model uses 200+ distinct fea-
tures in the complete tree. However, an instance walks a specific path along
the nodes of the tree in order to reach a prediction. This path will in all
likelihood not reach every feature, thus the golden set of features is smaller
than the 200+ from the complete tree. For the real-world datasets used, the
average number of golden features is actually only 1.4 to 1.5. It is possible to
increase the size of the tree. However, the tree would be specifically trained
so that it uses an increased number of features. In contrast to a normal ma-
chine learning setting where the tree would be optimized on, for example,
each split. In other words, the larger decision tree would not represent a
model build in any real world situation. Therefore, it was decided not to
modify the decision tree model. Only for the logistic regression model will
the number of golden features be increased.
Table 1 shows an overview of the average number of golden features for the
improved experiment.
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Books DVDs Kitchen

Logistic regression 9.5 9.8 7.1
Decision tree 1.5 1.4 1.4

Table 1: Experiment 5.2 improved | Average number of golden features per
instance of the real-world data

Ranking of explained features
So far only the inclusion of features has been considered. Even though all
explanation methods in this study also provide feature attribution: a degree
of impact on the prediction. Whereas the faithfulness metric attempts to
evaluate each attribution, I would argue that the ordering of variables should
already provide a better measurement than recall alone. An explainer is
preferable if it can find the golden set of features and rank them in order of
importance. Hence, I propose to take ranking of variables into account. To
this end, the NDCG is used to calculate the quality of explanations.
For the logistic regression model features are ordered by their (absolute)
coefficient. The order of features for the decision tree model is determined by
their global variable importance.7 In addition, to calculate the NDCG both
the explainer and instance must be of equal length. The NDCG is calculated
only for the n most important golden features per instances, where n is the
minimum number of features in the explainer or instance. More precisely:
n = min(|Θ|, |ξ|) for each instance. However, if the explanation provides
fewer features than the model it would not be penalized. To counter this
shortcoming the NDCG score is multiplied with the recall for that instance.
If the explanation is too short, it will be penalized by the recall score. If the
model uses fewer features than the explanation, only the number of features
in the model is considered, due to the cut-off at length n. After all, the
explainer should not have returned additional features for its explanation.
To summarise, it is proposed to consider the NDCG score for evaluation of
explanations, since the ranking of features is taken into account. To adjust
for explanations of unequal length, we penalize using recall.

7The global importance is still combined with the golden features for that instance.
The Discussion section will expand on this decision.

18



4.4 Lime experiment 5.3
”Should I trust this prediction?”

Trustworthiness of the explainers is assessed by considering the impact of
features on the model and the explanation. In this experiment it is assumed
that the user can identify a number of features that are not trustworthy and
that the user would not want to include in the model. For each instance
in the dataset 25% of features are sampled to be untrustworthy. It is then
compared how the predictions of the model and explainer change by remov-
ing the attribution of the untrustworthy features. In other words, the user
’discounts’ the attribution of untrustworthy features.
Discounting for the model is done by replacing untrustworthy feature values
with the background value. The modified instance is passed through the
classifier for a new predicted probability. In case of the explainer the initial
prediction is formed by the base rate summed with all explained feature at-
tributions. Discounting for the explainer is the initial prediction subtracted
with attributions of each feature that is untrustworthy in that instance.
For both the model and explainer, the experiment will compare the initial
prediction with the prediction after discounting untrustworthy features. If
the untrustworthy features change the prediction of the model, the explainer
too should switch its prediction. It is pointed out that the classification
problem is binary. Thus, a change of prediction is defined by going from a
negative to a positive classification, or vice versa.
Considering the change of prediction results in a vector of trusted and mis-
trusted instances; precision and recall can be calculated from these vectors.
In the original paper, the F1 score was reported for two datasets.
Trustworthiness can be tested for any classification model. Five models
are considered in this experiment: sparse logistic regression (LR), nearest
neighbours (NN), random forest (RF), support vector machine (SVM) and
decision trees (Tree). Model parameters are equal to [1]. Only the solver for
the logistic regression was changed to ’lbfgs’ since the previous solver is no
longer supported.
For this experiment the faithfulness metric is not implemented. This exper-
iment chooses an arbitrary number of untrustworthy features and discounts
them from the explanation. By design, the explanation before and after dis-
counting should not differ in quality. Hence, the performance of explainers
in this experiment cannot be measured with the faithfulness metric.
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4.5 Experiment 5.3 | Improvements

Penalization of local inaccuracy
In the original paper it was decided to compare whether both the model and
explainer changed predictions due to the removal of untrustworthy features.
However, the model and explainer should in the first place have the same
prediction. While this is always the case for Shap values due to local ac-
curacy guarantees, Lime and Parzen explanations may initially be wrong.8

That had not been taken into account in the original experiments. To adjust
for this flaw, a new ’local accuracy’ score is introduced. For convenience,
the score will be referred to as accuracy. The accuracy of the explainer is
decreased if the prediction, before removal of untrustworthy features, is not
equal to the model. The improved experiment proposes a penalization of
the F1 score if the local accuracy property is violated. Formally, adjusted
F1 score is the F1 score multiplied with the accuracy score. Experiment 5.3
will present this adjusted F1 score.

4.6 Experiments with synthetic data

Synthetic data is generated so that modifications to the data can be speci-
fied. The controlled modifications may expose weaknesses of the explainers.
The improved experiments 5.2 and 5.3 are repeated using the synthetic data.
Several adjustments were made to allow the use of synthetic data.
Firstly, to provide Lime explanations the Lime tabular package is imple-
mented. The original experiments actually do not use the package, but an
implementation specific to text classification. Thus, the package is imple-
mented for use with the synthetic data. The standard Lime kernel has been
used. In addition, both Lime and Shap now require a background dataset
for perturbations. Lime is provided with the complete background dataset,
while the background dataset for Shap is summarised using K-means cluster-
ing to keep computations feasible (as Lundberg suggests in his repository9).
For this experiment the data is summarised in 10 clusters. The Parzen win-
dows explainer uses two parameters, these are set equal those of the Books
dataset.

All datasets are constructed to include 10 informative features, the same
number of features the explainers are allowed to provide (budget K = 10).

8Note that the model has a binary outcome, predictions side with positive or negative
at the threshold of 0.5.

9https://slundberg.github.io/shap/notebooks/Iris%20classification%20with%20scikit-
learn.html
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From these 10 features, either 0 or 15 redundant features are created. Extra
random (useless) features are added so that the total number of features is
50. Datasets of 50 features keep these experiments computationally viable,
though for future work a larger number of features may prove a more chal-
lenging test. The noise parameter fluctuates between 0.05 or 0.3.
To conclude, four datasets are generated with low to high amount of noise
and redundancy. All datasets will have 2000 rows and are similarly split
into a train and test set of respectively 1600 and 400 features. As with
the improved Experiment 5.2 the average number of golden features for the
generated data is reported in Table 2.

Redun: 0 Redun: 15 Redun: 0 Redun: 15
Noise: 0.05 Noise: 0.05 Noise: 0.30 Noise: 0.30

Logistic regression 10.0 10.0 10.0 9.0
Decision tree 11.9 12.9 14.2 11.7

Table 2: Experiment 5.2 improved | Average number of golden features for
each instance of the synthetic data. Redundancy is notated as ’Redun’.
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5 Results

This section will present the results of all simulated user experiments de-
scribed in the previous section. These experiments aim to measure the
performance of explanation methods.
Firstly, the original Lime experiment 5.2 is presented. Secondly, the results
from the improved experiment are shown. Thirdly, we repeat the improved
experiment with synthetic data. Then, the faithfulness metric is tested in
adherence with previous results. The outcome of (Lime) Experiments 5.3
will thereafter be presented.

Lime experiment 5.2

In this experiment, small interpretable models are trained so that a golden
standard of features is known. It should be noted that the average number of
true features is only between 2-3, whereas the explainers are given a budget
of 10 features for their explanations. Explanations are generated for each
instance in the test dataset. The average recall of features is shown in Figure
3. The y-axis indicates the machine learning model used. The x-axis displays
the dataset. Even though the explanation methods are model-agnostic, the
figure shows varying results.

Figure 3: Experiment 5.2 | Real-world data evaluated on recall
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Considering the logistic regression model of Figure 3, it can be seen that
Shap is able to retrieve all features for these datasets. Lime produces the
second highest recall for two of the three datasets: Books and DVDs. Only
on the Kitchen dataset is Lime outperformed by Parzen.10 In contrast, Lime
has dominant recall over the other explainers for the decision tree model.
Shap retrieves the second highest number of features, still more than the
baseline for all datasets.

Experiment 5.2 | Improved

For this experiment, the number of golden features used for each instance
has been increased, so that the average (rather than maximum) number of
golden features is nearer to 10. An overview is shown in Table 1. For some
instances the logistic regression uses over 50 features in the golden standard.
For these instances only the 10 most important features are considered. As
a result of increasing the number of golden features, the presented recall
scores are lower in comparison to the original experiment. Note that the
number of golden features for the decision tree have not changed.
The recall scores for this improved experiment are shown in Figure 4.

Figure 4: Experiment 5.2 improved | Real-world data evaluated on recall

10Interestingly, that particular dataset was excluded from the results section of [1].
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The figure shows that for the logistic regression model all recall scores are
lower compared to the original experiment. This would be expected since the
explainers now have to retrieve a number of features (approximately) equal
to their budget. The relative performance of the explainers has not changed.
Though, it should be noted that Shap no longer has a perfect recall. Still,
Shap dominates the results for the logistic regression model and Lime for
the decision tree model. In addition, Parzen’s score on the logistic regression
model for the Books dataset decreased by more than 20%.
The NDCG scores for the explainers are presented in Figure 5. Not only is
feature inclusion measured, now the ranking of features is taken into account
as well.

Figure 5: Experiment 5.2 improved | Real-world data evaluated on NDCG

Firstly, consider the logistic regression model. All scores displayed are nat-
urally lower since the ranking of features is measured. Lime and Parzen’s
scores have now decreased below 80%, where Shap still manages NDCG
scores of 90% and above. Explanations for the decision tree model show
greater decrease quality. The highest NDCG score reported is 73%. The
figure shows that Lime still outperforms Shap on decision trees, whereas
they both perform better than the baseline.
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Experiment 5.2 | Synthetic data

Synthetic data is generated so that the underlying dependencies and noise
can be controlled. This data allows for a better assessment of the explainers
as the impurities of a real-world dataset are not present.
Recall of golden features is shown in Figure 6. It shows comparable results
for Lime and Shap on the logistic regression model, all scores are above 85%.
Though, Shap maintains the highest results. Considering the decision tree
model it is interesting to mention that Shap produces a slightly higher score
than Lime on the synthetic dataset with high noise and redundancy. Lime
still reaches highest recall for the other synthetic datasets. Where Parzen’s
score has previously shown lowest results, for this experiment the recall even
decreases below 15%. This happens for the data with redundant features.

Figure 6: Experiment 5.2 improved | Synthetic data evaluated on recall

Figure 7 presents the NDCG scores for generated data. For the logistic
regression model and data with low redundancy, Lime actually performs best
where previously Shap had dominated. Though, Shap performs marginally
better than Lime once redundant features are introduced. For the decision
tree, Lime still produces the best explanations, followed by Shap. Parzen
produces the lowest results. Again, its lowest scores are presented when
redundant features are included.
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Figure 7: Experiment 5.2 improved | Synthetic data evaluated on NDCG

I suggest that the NDCG scores present a better image of explainer quality,
since it allows the measurement of ranking of features. Furthermore, when
NDCG is corrected with recall, the measurement is also able to deal with
explanations that involve fewer features than the provided budget K. Lastly,
the experiments measured on recall alone show high performance on both
models. NDCG identifies that the correct features are indeed obtained, but
their attributions are not properly assigned. Hence, all reported NDCG
scores present a lower but more accurate score.
In summary, for the experiments in this study Shap presents the best results
for the logistic regression model. Lime performs best with the decision tree
model. According to those results, an argument is put forward that Shap’s
assumption of independent features is punished (as has been suggested in
[3]) by models that allow that dependency: decision trees in this case. This
is supported by a reduced recall score for Shap with the decision tree model.

Experiment 5.2 | Faithfulness metric

The average faithfulness scores for this experiment (original, improved, syn-
thetic data) are respectively shown in Figures 8, 9 and 10. Note that in
theory, the higher the faithfulness score, the better the explainer is.
The figures demonstrate that Shap has dominantly higher faithfulness scores
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Figure 8: Experiment 5.2 | Real-world data evaluated on faithfulness

than the other explainers on all datasets: all above 75%. In second place
comes Lime with scores fluctuating from approximately -14% to 12%. Lastly,
the baseline Parzen often produces lowest scores. Most often achieving the
lowest faithfulness score by a large margin.
However, upon further investigation into the specific scores of the faithful-
ness metric for each explainer, the metric was found to produce extreme
outcomes. For a large number of instances the faithfulness scores are nearly
1 or -1. These extreme outcomes seem to originate from the budget provided
to the explainers. Since the explainers are asked to find an explanation of
size K = 10, they will assign features, not present in the instance, a tiny
attribution. Especially when that instance includes fewer than 10 golden
features. The model’s prediction does not change, because those features
are not included. The explainer however, has assigned a tiny attribution.
The Pearson correlation, on which faithfulness relies, does not distinguish
that these points as negligible. As a consequence, these explanations are as-
signed scores of approximately 1 and -1. Especially for Lime the faithfulness
scores fluctuate between these extremes. As a result, the faithfulness scores
average out in the middle: arguably close to 0. While having in mind that
the explainers are requested to provide a K-sized explanation, it is argued
that this behaviour of the faithfulness metric is not desirable.
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Figure 9: Experiment 5.2 improved | Real-world data evaluated on faithful-
ness

Figure 10: Experiment 5.2 improved | Synthetic data evaluated on faithful-
ness
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Experiment 5.3 | Improved

For each instance of the data an arbitrarily selected 25% of features is
deemed untrustworthy. The prediction of the model and explainer are com-
pared before and after untrustworthy features are discounted. The adjusted
F1 score is reported in Table 3.
Shap is able to produce the highest adjusted F1 score for all three datasets on
logistic regression, nearest neighbours, support vector machine and random
forest models. However, Lime performs better on the decision tree model.
Both Lime and Shap clearly outperform the baseline Parzen. The baseline
scores are in the range of 35% - 66%. Interestingly, similar results have
shown in (Lime) Experiment 5.2 where Lime performs better than Shap on
decision tree models.
Individual scores for recall, precision and accuracy metric are included in
Appendix Section 8.3. Shap produces a perfect score on accuracy. That
is due to the local accuracy property, which Shapley values are guaranteed
to satisfy. The accuracy scores do give a penalty to the Lime and Parzen
method, as their initial classification is different from that of the predictive
model. Parzen is most heavily punished by its accuracy scores. The results
show that Parzen often wrongly classifies the initial prediction. As a result,
for this experiment Parzen does not compete with either Lime or Shap.

Adjusted F1 score (in %)

Books DVDs
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 96.8 92.3 98.5 96.7 93.9 96.5 87.0 98.5 95.9 94.8
Lime 95.8 84.0 93.9 94.9 97.3 95.5 80.3 97.4 95.1 97.7
Parzen 53.7 61.1 59.6 65.6 54.3 53.5 47.5 47.8 55.5 48.7

Kitchen
LR NN RF SVM Tree

Shap 97.8 91.4 99.2 97.6 95.0
Lime 97.4 82.8 98.3 97.5 97.6
Parzen 34.8 68.3 64.5 48.0 58.5

Table 3: Experiment 5.3 | Real-world data evaluated on adjusted F1 score
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Experiment 5.3 | Synthetic data

Experiment 5.3 is repeated with synthetically generated data. A random se-
lection of untrustworthy features is discounted from the explanations. The
resulting adjusted F1 scores are presented in Table 4. It is reminded that the
generated datasets are constructed with low to high amount of redundancy
and noise.
Table 4 shows that Shap delivers the highest adjust F1 score for all datasets
and models. In particular, the scores for the decision tree model are rela-
tively higher than the Lime and Parzen explanations. Lime often produces
second highest results, although exceptions exist where Parzen reaches sec-
ond highest scores.
Appendix Table 8.3 displays the individual precision, recall and accuracy
scores. Lime and Parzen are able to compete with Shap in terms of pre-
cision. However, Lime and Parzen are not able to reach similar scores for
recall and accuracy. Hence, Shap has dominant performance when consid-
ering the combined adjusted F1 scores.

Adjusted F1 score (in %)

Redundancy: 0 Redundancy:15
Noise: 0.05 Noise: 0.05
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 98.2 94.8 98.6 97.4 93.6 98.3 96.3 98.3 98.2 93.1
Lime 94.5 84.8 87.8 92.4 72.9 95.6 85.9 91.4 90.5 76.8
Parzen 81.5 79.8 80.4 75.4 71.3 85.2 86.9 89.2 88.7 72.4

Redundancy: 0 Redundancy:15
Noise: 0.30 Noise: 0.30
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 97.9 88.3 98.0 97.6 90.5 98.1 92.9 98.3 96.6 90.2
Lime 91.5 70.1 87.0 90.5 62.8 89.0 78.5 90.7 84.3 60.6
Parzen 73.3 64.5 75.9 71.9 58.6 76.7 79.9 86.7 86.1 54.6

Table 4: Experiment 5.3 | Synthetic data evaluated on adjusted F1 score

30



6 Conclusion

The explainability of machine learning algorithms is receiving abundant at-
tention in current literature. As of yet, the literature struggles to create
unity in assessing and evaluating model explainers. This study proposes
the comparison of additive feature attribution explainers via simulated user
experiments with real-world and synthetic data.

Consider Figure 3. Lime experiment 5.2 (using real-world data) boasted
a perfect score for Shap on the logistic regression model while Lime’s per-
formance is highest on the decision tree model. Improvements to that ex-
periment have been proposed, so that the budget for the explainers is better
aligned with the number of golden features from the models. Additionally,
the ranking of features is taken into consideration using the NDCG metric.
Results from the improved experiment are displayed in Figure 4 and 5. All
recall scores are lower when compared to the original experiment. The rel-
ative performance of the explainers is unchanged. Still, the NDCG scores
suggest that Lime and Parzen are penalized harder than Shap once the order
of features is included. Still, Lime marginally outperforms Shap on the de-
cision tree model. Lastly, the experiment is carried out with synthetic data.
See Figure 6 and 7. Recall scores of Lime and Shap are comparable for both
models. Shap performs better on the logistic regression model, but high-
est scores vary between Lime and Shap for the decision tree. However, the
NDCG scores firstly introduce Lime as the better explainer on the logistic
regression model on data with low redundancy. When redundant features
are introduced, Shap marginally outperforms Lime. For the decision tree
Lime slightly outperforms Shap.
Simulated user Experiment 5.3 has been modified using a (local) accuracy
score. The resulting adjusted F1 scores on the real-world data are reported
in Table 3. Shap delivers the best results on all models other than the
decision tree. Again, for the decision tree Lime has better performance.
Individual accuracy scores in Appendix Section 8.3 reveal that Lime and
Parzen are penalized for wrong initial classifications even before features
are discounted. Experiment 5.3 is repeated with synthetic data. Adjusted
F1 scores are displayed in Table 4. Shap performs better than the other
explainers on all datasets and models.

In summary, improvements to previously proposed user experiments aim
to better evaluate the quality of model explainers. In contrast to the theory,
Lime frequently produces better explanations for decision tree models in
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these experiments. Nevertheless, Shap still provides better explanations for
the logistic regression model in Experiment 5.2 and all models other than
the decision tree in Experiment 5.3 with real-world data. Experiment 5.3
with synthetic data was dominated by Shap’s results. To conclude, accord-
ing to the theory Shap is expected to produce explanations of best quality
among the class of additive feature attribution methods. These experiments
suggest that Lime, with its heuristically chosen kernel, may still prove a
competitor to Shap in terms of explanation quality.
The faithfulness metric is tested as evaluation metric for linear model ex-
plainers. Its scores are presented in Figures 8, 9 and 10. The metric is unfit
for evaluation of explanations with fewer than two features. Additionally, it
shows undesirable behaviour even when the metric is defined for an instance.
Thus, the faithfulness metric is deemed inadmissible for the evaluation of
model explainers.
In conclusion, current explanation methods prove a powerful tool for provid-
ing interpretable insights into black box models. Those covered in this study
can already be implemented by Accenture for machine learning projects.
Though, it is noted that (relative) quality of explainers is yet inconclusive
and it is advised to implement explanation methods with discretion.

7 Discussion & Future work

This section covers several assumptions and choices made in this study. In
addition, suggestions for future improvements to these experiments and fu-
ture work on model explainers are put forward.
The main goal in this work is to make advances to the evaluation of model
explainers as the literature has not yet reached consensus of how to mea-
sure the quality of explanations [12] [13] [15]. To that end, this research
considers feature inclusion in the form of precision and recall. The proposed
NDCG measure is able to include the ranking of features by their impor-
tance. However, NDCG can only be calculated if the true order of features
is known. That is the case for logistic regression: the prediction for an in-
stance is formed by the global coefficients. However, for the decision tree
model only global feature importance is known. For Experiment 5.2 the
true ordering of features was considered using the global variable importance
of that decision tree. To calculate the NDCG, that ordering is compared to
the ordering of features in the explanation. While using the global feature
importance is not perfectly representative of local importance around the
instance, Experiment 5.2 aims to show that including feature ranking is an
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improvement over just recall scores.
The faithfulness metric was tested on three versions of Experiment 5.2. This
study has found that in its current implementation, the metric is not admis-
sible for the evaluation of model explainers. Since the metric uses correla-
tion, it does not show desirable behaviour for vectors with a length of two or
fewer features. Additionally, the metric shows deviating behaviour when ex-
planations (or changes in model predictions) are minuscule. Nonetheless, it
is the only measure that actually considers each attribution value of model
explanations. If these flaws can be overcome, the metric may become a
robust model explainer evaluation metric. Furthermore, should any evalua-
tion metric for model explainers be formulated (especially if it can integrate
attribution), it would prove a substantial basis for the field of post hoc ex-
plainers.
Both Experiment 5.2 and 5.3 have been applied to synthetic data, so that
the degree of dependency and noise can be controlled. Data generation was
implemented using sklearn’s make classification function. However, the gen-
erated data could have been controlled even further by using an option such
as ’SymPy’. Data generation using symbolic expressions is described in this
post by T. Sarkar11. With SymPy the explainers could be tested on their
handling of noise and dependencies with increased control of the data.
An important factor that has been omitted in this research is the speed
and computational effort required for the explanation methods. While it is
argued that speed is not the most important element of model explainers,
it could prove valuable considering that Lime’s performance is comparable
to Shap’s in the experiments in this work. Note, that this is the case for
Shap Kernel. Lime tabular was up to several times faster than Shap Kernel
in the current implementation for an equal number of samples (with Shap’s
background data summarized in 10 clusters).

Considerations about the current study may have already exposed remaining
challenges for model explainers. In addition to those challenges, I propose
several improvements to and future work for model explainers.
Lime and Shap require the user to specify the number of features that should
be included in the explanation. Given this length, the user should be able
to interpret the explanation. Now imagine an instance where one additional
feature could significantly decrease the inaccuracy of the explanation. Then,
certainly, the user would want to include that additional feature, even if the

11https://towardsdatascience.com/random-regression-and-classification-problem-
generation-with-symbolic-expression-a4e190e37b8d
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maximum number of features is exceeded. Creating a test to determine the
optimal number of included features or improvement of the explanation with
each additional feature, would be a promising addition to model explainers.

Lastly, while this research is aimed at the use of model explainers, others
suggest that explanations can be harmful due to their unexpressed inaccu-
racy. As mentioned in the literature review, linear explanations for highly
non-linear models may not be sufficient. For some instances, it may simply
not be (logically) possible to form an additive feature explanation. A proper
explanation method should indicate that the inaccuracy to the instance is
excessive or even establish that an additive explanation is not possible. I
propose that such an extension, while being challenging to design, would
greatly increase trust in model explainers. A different approach is suggested
future work in [1]: the local accuracy ”can also be used for selecting an ap-
propriate family of explanations from a set of multiple interpretable classes”.
In other words, the interpretable model that forms the explanation could
be specifically chosen for the instance to increase accuracy. Two alternative
explanation models include:

1. Shap extension from [3] that handles dependent features, though the
concept may be applied to other additive feature explainers. A draw-
back is that explanations become harder to interpret, as they can only
be considered as a cluster of dependent features.

2. In situations where explanations ought to be simpler, it is suggested
that different interpretable models may be a more suitable alternative
to the Shap extension. For example, a (small) decision tree instead of
a sparse linear model for the explanations may provide a solution to
non-linearity and simplicity.

Instead, as an alternative to utilizing a different explanation model, Robeiro
et al. had suggested in [1] that the information of local (in)accuracy to an
instance could be shown to the user. Then, the user might decide whether
to endorse the explanation.
In the end, one desires from an explanation that it is locally accurate to the
model and easy to interpret. However, increasing the length or complexity
for better accuracy compromises in interpretability. Likewise, oversimplify-
ing an explanation is prone to result in a less accurate explanation. Hence,
in the field of model explainers a tension between interpretability and ac-
curacy has formed. Promising future work would progress in both these
concepts.
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8 Appendix

8.1 Lime

This section is supplementary to Methods Section 3.3. Recall that Lime
finds the explanation that is the most locally accurate while still being in-
terpretable. The local accuracy to the explained instance is maximised for
an explanation with a maximum complexity K = 10. For a linear explana-
tion the local accuracy L(f, g, πx) is formally defined by:

L(f, g, πx) =
∑

z,z′ ⊆ Z

πx(z) (f(z)− g(z′))2

where z and z’ are perturbed samples.
The (heuristically chosen) kernel is defined as:

πx(z) = exp

(
−D(x, z)2

σ2

)
with D is some distance function with width σ. The distance function for
text classification is cosine distance. Accordingly, the current study also
implements cosine distance.
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Perturbations
Additionally, the perturbations from the Lime tabular implementation in
this study is expanded upon. Numerical data is perturbed by reverse scaling:
a sample is taken from a normal N(0,1) distribution and scaled to the mean
and deviation from the training data. Categorical features are sampled from
their distribution in the training data.

8.2 Shap

This section is supplementary to Methods Section 3.4. In Lundberg’s and
Lee’s paper [2] they show that only Shapley values adhere to a set of de-
sirable properties for explanation methods. While an intuitive definition of
these desirable properties is provided in Methods, the definitions are for-
mally given by:
Property 1: Local accuracy

f(x) = g(x′) = φ0 +
M∑
i=1

φix
′
i

Property 2: Missingness

x′i = 0 =⇒ φi = 0

Property 3: Consistency
If f ′x(z′)− f ′x(z′\i) ≥ fx(z′)− fx(z′\i) for all inputs z′ ∈ {0, 1}M , then

φi(f
′, x) ≥ φi(f, x)

Note that φi is the attribution of feature i. A unique additive feature expla-
nation model follows from these properties:

φi(f, x) =
∑

z′⊆ x′

|z′|! (M − |z′|−1)!

M !
[fx(z′)− fx(z′ \ i)]
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8.3 Supplementary results

Experiment 5.3: Real-world data

The individual scores for precision, recall and accuracy for Experiment 5.3
on the real-world data are presented in the tables below.

Precision (in %)

Books DVDs
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 95.2 88.0 98.6 95.5 92.3 94.5 81.7 98.4 94.5 93.6
Lime 95.2 86.3 96.2 95.3 96.4 94.3 82.3 97.5 94.4 96.5
Parzen 90.5 83.8 91.2 90.1 85.9 88.3 75.3 88.2 87.3 84.6

Kitchen
LR NN RF SVM Tree

Shap 96.6 89.2 99.4 96.5 94.2
Lime 96.5 88.0 98.3 96.2 96.4
Parzen 91.5 82.6 90.6 89.7 86.6

Table 5: Experiment 5.3 | Real-world data evaluated on precision
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Recall (in %)

Books DVDs
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 98.5 97.2 98.4 97.9 95.6 98.5 93.1 98.7 98.0 96.2
Lime 97.9 97.5 98.1 97.5 98.3 98.2 92.4 98.7 97.8 98.9
Parzen 79.4 93.0 99.2 90.2 99.6 75.6 81.3 76.7 76.1 100.0

Kitchen
LR NN RF SVM Tree

Shap 99.0 93.7 99.0 98.7 96.0
Lime 98.8 93.8 99.2 98.8 98.9
Parzen 62.8 89.1 98.2 100.0 81.5

Table 6: Experiment 5.3 | Real-world data evaluated on recall

Accuracy (in %)

Books DVDs
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8* 100.0
Lime 99.2 91.8 96.8 98.5 100.0 99.2 92.2 99.2 99.0 100.0
Parzen 63.5 69.2 62.7 72.8 59.0 65.8 60.8 58.2 68.2 53.2

Kitchen
LR NN RF SVM Tree

Shap 100.0 100.0 100.0 100.0 100.0
Lime 99.8 91.2 99.5 100.0 100.0
Parzen 46.8 79.8 68.5 50.7 69.8

* Shap’s accuracy is slightly below 100% despite local accuracy guarantees due to a
rounding error on the 16th decimal for a single instance.

Table 7: Experiment 5.3 | Real-world data evaluated on accuracy
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Experiment 5.3: Synthetic data

The individual scores for precision, recall and accuracy for Experiment 5.3
on the synthetic data are presented in the tables below.

Precision (in %)

Redundancy: 0 Redundancy:15
Noise: 0.05 Noise: 0.05
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 96.6 91.2 98.2 95.6 88.5 97.0 93.7 97.4 96.8 87.9
Lime 97.2 91.3 95.2 97.5 89.3 97.1 93.8 96.7 96.3 88.2
Parzen 89.8 89.0 92.1 88.0 87.4 93.5 92.4 95.0 95.0 87.2

Redundancy: 0 Redundancy:15
Noise: 0.30 Noise: 0.30
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 96.6 81.5 98.3 96.7 83.3 97.4 88.3 97.5 94.8 82.6
Lime 95.4 80.6 95.1 95.8 81.9 94.7 87.6 96.3 93.5 81.5
Parzen 87.4 77.9 90.9 88.4 81.4 90.7 86.6 93.8 91.8 80.8

Table 8: Experiment 5.3 | Synthetic data evaluated on precision
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Recall (in %)

Redundancy: 0 Redundancy:15
Noise: 0.05 Noise: 0.05
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 99.9 98.8 99.0 99.3 100.0 99.7 99.1 99.3 99.6 99.8
Lime 97.1 93.7 95.2 95.1 93.7 97.4 95.5 96.3 95.2 94.9
Parzen 95.9 97.6 96.5 97.0 94.5 98.6 98.3 98.7 97.8 97.3

Redundancy: 0 Redundancy:15
Noise: 0.30 Noise: 0.30
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 99.3 96.5 97.6 98.5 99.4 98.7 98.0 99.2 98.6 99.7
Lime 95.3 92.4 93.1 95.1 89.4 95.6 94.7 96.7 94.9 91.9
Parzen 93.5 96.0 93.8 96.4 92.7 97.8 97.9 98.9 97.0 96.3

Table 9: Experiment 5.3 | Synthetic data evaluated on recall

Accuracy (in %)

Redundancy: 0 Redundancy:15
Noise: 0.05 Noise: 0.05
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Lime 97.2 91.8 92.2 96.0 79.8 98.2 90.8 94.8 94.5 84.2
Parzen 88.0 85.8 85.5 81.8 78.8 88.8 91.2 92.2 92.0 79.0

Redundancy: 0 Redundancy:15
Noise: 0.30 Noise: 0.30
LR NN RF SVM Tree LR NN RF SVM Tree

Shap 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Lime 96.0 81.5 92.5 94.8 73.5 93.5 86.2 94.0 89.5 70.2
Parzen 81.2 75.0 82.2 78.0 67.8 81.5 87.0 90.0 91.2 62.3

Table 10: Experiment 5.3 | Synthetic data evaluated on accuracy
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