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Abstract

In recent years, Dutch banks have faced significant scrutiny and substantial fines from De
Nederlandsche Bank (DNB) for failing to comply with the Dutch Money Laundering and Terror-
ist Financing Prevention Act (Wwft). Wwft requires financial institutions to conduct customer
research and report unusual transactions to the Financial Intelligence Unit (FIU) of the Nether-
lands. However, current anti-money laundering (AML) systems, which rely on outdated rule-based
models, struggle to keep pace with evolving money laundering tactics. These systems generate
numerous false positives, leading to costly and time-consuming manual investigations. Although
machine learning models show promise for improved transaction monitoring, their implementation
is hindered by large fines and limited data access due to privacy regulations.

This paper presents a comparative research on anti-money laundering (AML) models in trans-
action monitoring with incomplete graph networks. The goal of this research is to answer the
question ”What can we do when we cannot see the full picture?” and to develop an effective
approach for handling missing nodes in partial networks for AML transaction monitoring.

Various Graph Neural Networks are trained with different adaptions on both the full dataset
with complete money laundering networks and subsets of the dataset with only the transactions
accesible to a single bank. Experimental results demonstrate that the proposed model improves
the performance on AML tasks in the case of incomplete data. The findings emphasise that so-
phisticated machine learning algorithms, while promising, require comprehensive transaction data
to function optimally. The research suggests the exploration of anonymised data-sharing methods
and advanced temporal modelling techniques to improve the robustness and effectiveness of AML
transaction monitoring systems in the real world.

Keywords: anti-money laundering (AML) & transaction monitoring & graph convolutional net-
works (GCNs) & temporal graph networks & incomplete graph networks & privacy regulations &
false positives & machine learning models & laundering patterns & data sharing
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1. INTRODUCTION 1

1 Introduction

In recent years, Dutch banks have been under investigation by De Nederlandsche Bank (DNB)
and have received heavy fines due to not living up to the Dutch Money Laundering and Terror-
ist Financing Prevention Act (Wet ter voorkoming van witwassen en financieren van terrorisme
(Wwft[50])) (e.g., ING[7], ABN[3], RaboBank[5], Volksbank[6]).

According to Wwft, institutions and professional groups involved in money flows or in the
purchase and sale of goods[30] must perform customer research and report unusual transactions
to the Financial Intelligence Unit (FIU) of the Netherlands[36]. Customer research entails identi-
fying the customer, checking whether the customer represents, and if so, is allowed to represent
someone, identifying the customer’s ultimate beneficial owner, identifying the customer’s purpose,
and checking whether the customer is making unusual transactions (transaction monitoring).

This last task is a growing bottleneck in this industry due to the lack of a proper anti-money
laundering (AML) model for transaction monitoring. They point out that the current systems at
the large Dutch banks are 30-years-old rule-based models which have become outdated, since
until recently there was no control/consequences on the money laundering screening.

The outdated transaction monitoring models currently flag fraudulent behaviour based on
rules defined by a team of domain specialists. Changing an existing rule or creating a new one
takes months; however, money launderers change tactics daily. Since De Nederlandse Bank (DNB)
started monitoring money laundering screening more closely, many large fines have been issued.
Current models lead to too many incorrect labels, especially many false positives, due to the
need to cover all true positives. This is very costly since the banks get reprimanded for incorrect
labelling, but besides that each positive, false or not, is manually investigated in a time-consuming
process. Machine learning models show promise for faster adaption to new money laundering tactics
and offer a potential reduction of false positives. However, due to the large fines, banks have
become hesitant to implement any big changes, such as the relatively unexplored implementation
of machine learning models.

In addition to this, the limited access to the complete set of transaction data is a problem. The
quality of a machine learning model relies heavily on the input data, and with the current privacy
regulations in the Netherlands, it is not possible for one entity, such as Transaction Monitoring
Nederland (TMNL), to access all transactions. TMNL is a collaboration between five major Dutch
banks to fight financial crime by monitoring bank transactions of banks together for money laun-
dering. For this initiative to succeed, updates to Dutch legislation are necessary. Under the current
legal framework, TMNL limits its use of data and uses pseudonymization to protect privacy, in
accordance with GDPR guidelines, focussing exclusively on monitoring business transactions. For
multiple reasons, such as the fall of the Dutch cabinets and the opposition of the Authoriteit
Persoonsgegevens (AP) and Brussels[4], it will not be feasible to wait for a party (like TMNL) to
have access to the full picture of the data in which money launderers operate1.

Money laundering is an elusive activity. A money launderer will adapt and innovate their
tactics. As explained by Schneider and Windischbauer[40], there are different phases of money
laundering, namely, the placement, layering, and integration phases. During placement, illicit funds
are deposited into the financial system, often in small increments to avoid detection. In the layering
phase, these funds are moved through various transactions, creating a web of financial activity
that masks the original source. Finally, the integration phase sees the laundered money re-enter
the economy as legitimate through investments in businesses or properties, completing the money
laundering cycle. Money launderers specifically choose to use this layering phase due to the lack
of / easily bypassed know your customer (KYC[35]) and customer due diligence procedures, and
because transfers between jurisdictions are not reportable[38].

1 Towards the end of this research (July 1st, 2024) new EU regulations went into action. These regulations
completely limit the attempts of TMNL [46], forcing them to redesign their business plan.
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The problem is thus rooted in two circumstances:

1. We can only consider transaction data gathered within one bank. (Simplified reason: banks do
not have access to transactions of other banks, and no third party has all data).

2. A money launderer does not do its entire business within one bank. For example, fraudulent
transactions will be funnelled through accounts at different banks.

Contribution. The overall goal of this research is to answer the question ”What if we cannot
see the full picture?”. The technical goal is to explore approaches to handle missing information
in graph networks for AML transaction monitoring. In this research, adaptions to existing Graph
Neural Network (GNN) approaches are proposed, explicitly modelling the temporal and incomplete
information components in the networks.

Organization. Section 1 introduces the topic and describes the key objectives and scope of the
research. This is followed by Section 2, which provides a comprehensive review of the existing
literature relevant to the study and the previous work at the host company of this research,
Avanade. In Section 3, the methods are presented; where Section 3.1 describes the Multi-GNN
model from the referenced paper by Egressy et al,[19], which serve as the baseline models, while
Section 3.2 details the proposed components addressing the temporal adaptions and Section 3.3
that addresses the adaption for incomplete information. Then, Section 4 dives into the dataset used
in this research and how the single-bank view influences the access to the laundering networks
in the data. Section 5 outlines the setup and procedure of the experiments. Continuing with
Section 6 that describes and evaluates the results. Then, the discussion in Section 7. Finally, the
report concludes in Section 8 with the conclusion and proposals for future research.

2 Related work

Money laundering is a criminal process that is used to convert criminal income into assets, dis-
guising the source of illegally obtained money and making it appear legitimate among all other
transactions [26]. Money laundering poses a significant threat to the integrity of financial systems
because it enables criminals to enjoy the proceeds of their illegal activities while evading detec-
tion and prosecution. A paradigm used throughout the literature to explain the money laundering
process is the three common phases: placement, layering, and integration [32].

– Placement, the first phase, represents the entry of illicit funds into the financial system, for
example, with cash deposits, currency exchanges, or high-value asset acquisitions. During
this phase, money launderers exploit vulnerabilities in the financial system to disguise or
misrepresent the source of the funds.

– Layering, the second phase, involves transaction structuring, implementing tactics such as
complex transactions across jurisdictions or between accounts, and currency conversions to
further obscure the audit trail. The goal of Layering is to create a convoluted network of
transactions, increasing the difficulty for law enforcement agencies to track illicit funds.

– Integration, the third phase, completes the money laundering cycle by reintegrating laundered
funds into the economy as legitimate assets. For example, through investments in legitimate
businesses or acquisitions of real estate or luxury goods. [37,40]

The problem of money laundering presents a tough challenge that has been addressed by several
approaches. The following sections will introduce the key topics for this research. First, previous
related literature will be reviewed. Next, relevant work within the host company, Avanade, will
be examined. Finally, the research problem will be defined.
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2.1 Traditional methods

Anti Money Laundering (AML) methods for transaction monitoring in banks traditionally are
rule-based systems that have been extensively researched and implemented. To this day, banks
are relying on rule-based systems to locate illicit transactions based on predefined static rules [10].
These predefined rules and thresholds are set by domain experts and regulatory requirements.
For example, rules may flag transactions that exceed a certain size, involve high-risk jurisdictions,
or exhibit unusual patterns compared to a customer’s typical behaviour. However, despite their
widespread use, these systems often suffer from significant drawbacks. One major issue is the
high rate of false positives generated by rule-based systems, estimated in 2019 to be over 98%
[12]. Due to the rigid nature of the rules and thresholds, legitimate transactions can easily be
labelled as fraudulent, leading to unnecessary and costly manual investigations. For example, a
large one-time transaction, such as a bonus, may be incorrectly flagged as suspicious. Moreover,
rule-based systems struggle to adapt to the ever-evolving tactics used by money launderers. Since
criminals continually come up with new methods to launder illicit funds, static rules can quickly
become outdated and ineffective in detecting money laundering. This lack of adaptability makes it
difficult for financial institutions to stay ahead of sophisticated financial crimes. Amplifying these
challenges is the volume of transactions processed by financial institutions, which can overwhelm
manual review processes of (false) positives and makes it easier to hide genuine suspicious activities.
The need to balance the need to cover all potential fraud cases and minimise false positives presents
a significant challenge [26]. In general, while traditional rule-based systems have been a cornerstone
of AML efforts in banks, their limitations in terms of high false positives and lack of adaptability
highlight the need for more advanced and dynamic transaction monitoring approaches.

2.2 Supervised learning algorithms

To address the limitations of traditional rule-based systems in transaction monitoring for AML,
researchers have increasingly turned to machine learning and data mining techniques. Supervised
learning algorithms can be powerful tools for identifying anomalies based on labelled historical
data. These models are adaptable, as they can continuously learn from new data to improve
their performance over time. By analysing historical transaction data labelled as fraudulent or
legitimate, these algorithms can identify patterns and features indicative of suspicious activity
[10]. For example, neural networks can capture non-linear relationships within the transaction
data, and Support Vector Machines (SVMs) are great at classifying transactions into distinct
categories based on their features.

The effectiveness of these models depends heavily on the quality and representativeness of
the training data [32]. Biased or incomplete datasets may lead to inaccurate or biased predic-
tions, highlighting the importance of data pre-processing and feature engineering. More impor-
tantly, a significant challenge in applying supervised learning methods to transaction monitoring
is the scarcity of labelled data [9,14]. Unfortunately, obtaining labelled data, indicating whether
a transaction is fraudulent or legitimate, can be challenging due to the relatively low frequency
of fraudulent transactions amongst all transactions, let alone those found [24]. Additionally, the
existing labelled data quickly becomes outdated as money launderers continuously evolve their
techniques to evade detection [52]. As a result, models trained on outdated data may overfit and
fail to accurately capture emerging money laundering patterns.

2.2.1 Classification is a supervised learning problem where the response is categorical (”qual-
itative”). The objective of a classification model is to assign an observation to one of several
predefined categories based on the observed features of the data. The model is built by learn-
ing from a dataset of examples that have known category labels. Classification models estimate
the conditional probability of each category, given the input features, and make predictions by
selecting the category with the highest probability for new observations. [21].
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2.3 Unsupervised learning algorithms

Unsupervised learning methods have emerged as a promising approach to monitoring AML trans-
actions, as an alternative that does not rely on labelled training data. These methods try to
identify patterns in the data without information on which data correspond to money laundering
and not [24]. Existing research is done, for example, in clustering algorithms and anomaly/outlier
detection. Clustering is the most frequently used methodology within unsupervised learning [14].
By grouping transactions based on similarity to uncover clusters of potentially suspicious activity
and by analysing transactions within each cluster to identify irregularities or patterns indicative
of money laundering. More sophisticated methods do peer-to-peer and peer-to-group comparisons
through the clustering process. In this way false positives are reduced when one transaction is
unusual given the history of a customer but normal given the common movements of the group
with similar characteristics[15]. On the other hand, anomaly detection techniques focus on flagging
transactions as suspicious when they do not correlate with most transactional data that are con-
sidered normal[32]. These anomalies may signal potential instances of money laundering or other
illicit activities. Anomaly detection algorithms are popular in AML; however, not all anomalies
are suspicious, which contributes to a high false positive rate. Although struggles with the ability
of accurately detecting complex money laundering patterns still depend on the exact model, the
problems that arise specifically relevant to AML in transaction monitoring are the reliance on the
quality and representativeness of the privacy-regulated transaction data and the explainability of
the models.

2.4 Partial networks

As discussed in Section 1, the Dutch data privacy regulations generally limit the sharing and
exchange of financial information among institutions. These regulations limit the collaboration
between financial institutions, law enforcement agencies, and regulatory bodies in money laun-
dering detection. At the same time, money launderers strategically move their illicit transactions
across multiple financial institutions to avoid detection by transaction monitoring systems, as de-
scribed in the layering phase[40]. By fragmenting their activities, money launderers exploit the
oversight gaps created by privacy regulations. The strategic dispersion of illicit transactions in this
layering phase amplifies the challenges posed by data privacy regulations, creating an incomplete
transaction data network. This increases the risk of missing connections and further complicates
efforts to identify suspicious activities. An example of the partial transaction network to which
a large Dutch bank would have access is depicted in Figure 3. Existing research into models
specifically for AML in transaction monitoring that incorporate components for missing nodes or
incomplete networks is limited, where incomplete network information is an assumption but not
actively modelled [45]. Models for general learning with partial graph networks offer promising
results by either finding the missing nodes first [28,29] or combining the process of finding missing
values and forecasting the target value [53,43,27].

2.5 Graphical Transactional Data.

So far all described methods work with tabular data. However, in this research the dataset will be
used in graphical form. Graphs offer a natural representation for financial transaction data, reveal-
ing the connectivity of underlying data objects and enabling the extraction of complex patterns.
In a financial transaction graph, the nodes represent accounts and the directed edges represent
financial transactions between these accounts. Multiple transactions between the same two ac-
counts can occur at different times, resulting in directed multigraphs. As depicted in Figure 1, the
financial transactions organised in a table format on the left can be reorganised in a graph format,
as shown on the right. This graph structure improves the ability to detect suspicious activities by
exposing the relationships and patterns within transaction data [1]. Using graphs, it is possible to
visualise complex financial networks and identify anomalous behaviour that can indicate fraud-
ulent activity. Furthermore, graph-based representations facilitate the use of advanced machine
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learning models, such as Graph Neural Networks (GNNs), to analyse and interpret transaction
data ([9], [19]).

Fig. 1. Financial transactions in (a) tabular and in (b) graph format. (Altman et al. [1])

2.5.1 Node Embeddings are representations of nodes in a graph in a low-dimensional vector
space. The goal of these embeddings is to encode the graph’s structural information such that the
geometric relationships in the embedding space reflect the graph’s topology. This means that nodes
that are closer or more similar within the graph structure are also closer in the embedding space.
These embeddings facilitate the application of machine learning techniques that require vector
inputs by transforming the complex, irregular structures of graphs into a systematic, numerical
form that these techniques can process efficiently. [20].

2.5.2 Temporality The temporal aspect of transactions is crucial, especially in tracing laun-
dered money through multiple accounts. Money cannot leave an account before it has arrived,
which makes it essential to incorporate temporal dynamics to accurately detect suspicious pat-
terns. An effective method to integrate the temporal variable involves creating subgraphs for each
specific time interval, as illustrated in Figure 2 [53,49]. This allows the model to incorporate tem-
poral dynamics into its training, enhancing its ability to track and analyse transaction sequences
over time.

Fig. 2. Temporal structure of the transaction data, where the data at each time slice t form a graph.
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2.6 Graph Neural Networks

Graph Neural Networks (GNNs) are machine learning models designed for graph-structured data,
capturing the relational and structural information that traditional, tabular models cannot. They
are particularly effective for detecting financial crimes, where relationships between entities, ac-
counts and transactions, are crucial. GNNs iteratively aggregate and transform information from
a node’s neighbours, with the ability to learn both local and global patterns. In financial net-
works, this means identifying complex transaction patterns indicative of fraud. Various variations
of GNNs are considered in this research, the next sections will discuss Graph Convolutional Net-
works (GCNs), Graph Attention Networks (GATs), Graph Isomorphism Networks (GINs), and
Message Passing Neural Networks (MPNNs) shortly.

2.6.1 Graph Convolutional Networks (GCN) Graph Convolutional Networks (GCNs) ex-
cel at capturing relational structures within transaction data. They have the ability to model the
complex network of relationships between entities such as account holders, merchants, and banks.
By representing interactions as graphs, GCNs can identify suspicious patterns using the relational
structure of transaction data, also improving explainability, trust, and regulatory compliance in
transaction monitoring [39]. GCNs aggregate information from neighbouring nodes, allowing the
model to learn representations that reflect the local structure of the graph. This capability is essen-
tial for detecting fraud, where the local network context can provide critical clues about suspicious
activity.

2.6.2 Graph Attention Networks (GAT) Graph Attention Networks (GATs) build on the
foundation laid by GCNs by introducing an attention mechanism that weighs the importance of
different nodes within the graph. This allows GATs to prioritise the most relevant parts of the
graph for predictions, improving the accuracy and robustness of the model [47]. In anti-money
laundering (AML) contexts, GATs can highlight critical relationships and nodes indicative of
illicit activities, enhancing the detection of suspicious patterns in complex and noisy transaction
data. By focussing attention on specific nodes, GATs can better work with unbalanced datasets in
financial transaction monitoring, where only very small sections of the transactions are fraudulent.

2.6.3 Graph Isomophism Networks (GIN) Graph Isomorphism Networks (GINs) are an-
other type of GNN designed to capture the structural identity of nodes in a graph. This ability
is crucial for distinguishing between different transaction patterns, as GINs can recognise when
two graphs are structurally identical (isomorphic) [51]. This allows the model to detect similarities
between different instances of financial crime. By comparing the structural features of different
transaction graphs, GINs can uncover different patterns that may indicate fraudulent activity.

2.6.4 Message Passing Neural Networks (MPNN) Message Passing Neural Networks
(MPNNs) operate by passing messages between nodes to aggregate information from their neigh-
bours, making them highly effective in modelling the flow of transactions [19]. MPNNs can capture
the movement of funds through a network, helping to identify money laundering schemes that in-
volve multiple intermediaries. By modelling the sequential flow of transactions, MPNNs can detect
patterns that are characteristic of complex financial crimes, providing a robust tool for analysts
to track and investigate suspicious activities.
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2.7 Explainability

The need for explainability in AML efforts is crucial, particularly given the significant conse-
quences of being wrongly labelled as fraudulent, which can be both time consuming and costly.
Previous research emphasises the importance of transparency and interpretability in AML models
to improve trust, accountability, and regulatory compliance [31]. This need for explainability is
especially relevant in unsupervised learning approaches, where models autonomously identify pat-
terns and anomalies in transaction data without labelled training data. Ensuring explainability in
unsupervised models is essential for stakeholders to understand and trust the decisions made by
these models.

Although various methods have been proposed to enhance the explainability of GCNs, their
application to AML is relatively unexplored. Techniques such as Sensitivity Analysis, Guided
Backpropagation, Layerwise Relevance Propagation, and Autograd-based implementations have
shown promise in providing insight into model decisions in general contexts [2].

Existing explainability methods offer varying degrees of success in real-world applications.
Techniques such as Sensitivity Analysis and Layerwise Relevance Propagation can provide insight
into the decision-making process of, e.g., GCNs, allowing analysts to trace back how specific in-
puts influence outputs [33]. However, these methods may still fail to fully capture the complexity
of financial transaction networks, especially when dealing with incomplete and noisy data. More
effective techniques are likely those that incorporate domain-specific knowledge and focus on the
temporal and relational aspects of the data, such as explainability methods tailored for these tem-
poral models. For example, visualising attention scores in GATs can highlight critical connections
and transactions. This should provide a clearer understanding of why certain transactions are
flagged as suspicious [47].

Moreover, using models that work with graph networks inherently improves the interpretability
of the output. Graphs offer a visual representation of patterns, allowing analysts to show how
specific inputs lead to particular outputs. Although this approach does not fully explain the
underlying reasons for labelling a transaction as suspicious, it does provide a transparent view
of the situations that led to such conclusions.

2.8 Related work at Avanade

This research is written at the company Avanade. Avanade is an IT consultancy that operates
in roughly all industries, among which banks and capital markets. Helping their clients transform
their businesses through digital innovation through “the power of people” and Microsoft. Avanade
has built experience in the field of Anti-Money Laundering for transaction monitoring. Therefore,
this section will highlight what is known and provide background information on the problem based
on previous research and experience within Avanade. Previous research has focused on stakeholder
involvement and what type of ML model suits detecting money laundering, and the experience of
Avanadi contributes to knowledge on the current state of data management within banks.

2.8.1 Stakeholder involvement. Internal research concluded that involving stakeholders through-
out the ML development process is essential to ensure that the ML model is aligned with business
goals, regulatory requirements, and ethical standards. Stakeholders include representatives from
financial institutions, regulatory bodies and collaborative initiatives, such as data scientists, legal
and ethical teams, Know Your Customer (KYC)/ Customer Due Diligence (CDD) analysts, and
product owners. By getting those stakeholders involved, Avanade learnt a variety of problems and
requirements when dealing with AML.
Stakeholders are essential throughout the entire process. Data scientists help assess the feasibility
of business requirements and manage expectations. Legal and ethical advisors ensure the model
complies with regulations and handles data privacy, security, and fairness. KYC/CDD analysts
and regulatory bodies provide insight into the practical needs and regulatory landscape, ensuring
the model’s decisions are understandable and actionable.
The internal research concluded that the CRISP-ML(Q) [41] framework should be followed when
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approaching an ML project. The CRISP-ML(Q) framework guides the structured and continu-
ous interaction with stakeholders, ensuring regular check-ins and approvals at each phase. This
approach helped address challenges like reducing false alerts and adapting to changing criminal
behaviour. The stakeholders emphasised the need for interpretable models and detailed explana-
tions of the model’s decisions, which are crucial for analysts and regulators.
In summary, the key recommendations for stakeholder inclusion involve:

– Agile Development Process: Following the CRISP-ML(Q) cycle, establishing clear gates for
stakeholder sign-off and ensuring continuous engagement.

– Data Scientist Involvement : From the initial stages, to assess feasibility and manage expecta-
tions.

– Legal and Ethical Consultation: To ensure compliance with regulatory requirements and fair-
ness in model decisions.

2.8.2 Types of ML models. Similar to the related literature referenced above, the internal
research at Avanade looked into the various ML techniques to detect money laundering. Starting
with simpler, interpretable models and progressing to more complex ones. Four sets of techniques
were evaluated: supervised learning, unsupervised anomaly detection (AD), self-supervised learn-
ing (SSL), and semi-supervised approaches using graph data.

Supervised learning models, such as Extreme Gradient Boosting (XGBoost), were used to
classify transactions as normal or suspicious based on labelled data. These models can achieve
high accuracy when there is a sufficient amount of labelled data available. XGBoost, for exam-
ple, uses a combination of decision trees to enhance predictive performance. However, the AML
datasets are inherently imbalanced, with only a small fraction of transactions being illicit. This
imbalance poses a significant challenge as the model can become biased towards the majority class
(normal transactions), potentially overlooking the minority class (illicit transactions). To address
this, various resampling techniques like Näıve Random Oversampling (RO) and Synthetic Minor-
ity Oversampling Technique (SMOTE) were tested, but they only marginally improved model
performance.

Unsupervised AD models, including Isolation Forest and k-Nearest Neighbors (kNN), were
tried to detect outliers in the data without the need for labelled data. These models try to iden-
tify anomalous transactions that deviate from the norm. Isolation Forest, for instance, isolates
observations by randomly selecting a feature and then randomly selecting a split value between
the maximum and minimum values of the selected feature. Transactions that are quickly isolated
are considered anomalies. kNN, on the other hand, detects anomalies based on the distance of a
transaction to its nearest neighbours. These properties make these models very useful for finding
previously unknown money laundering patterns, however their performance is highly dependent on
the feature engineering of the dataset. Thus, without domain-specific risk indicators, the internal
Avanade research concluded that these models will struggle to distinguish between normal and
anomalous transactions effectively.

Semi-supervised learning (SSL) approaches, such as the Value Imputation and Mask Estima-
tor (VIME), were explored to leverage both labelled and unlabelled data. SSL aims to generate
representations of the unlabelled data through well-designed pretext tasks. In VIME, for example,
the pretext generator creates a corrupted version of the data by masking certain values, and then
VIME trains the model to predict these masked values, thus capturing the underlying structure
of the data. These learned representations can then be used for tasks such as classifying transac-
tions. By using both labelled and unlabelled data, SSL methods such as VIME can improve the
detection of illicit transactions even when labelled data is scarce. However, the internal Avanade
research found that the effectiveness of this approach in AML still depends on the quality of the
pretext tasks and the ability to generate meaningful feature representations. They conclude that
even though the nature of the models is unsupervised, they only extend the detection realm to
‘known unknown’ cases rather than fully ‘unknown’ cases.

Then, graph-based methods, particularly Graph Neural Networks (GNNs). Avanade has started
exploring their ability to analyse transactional relationships and networks in AML data. GNNs
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leverage the structure of transaction networks to detect complex money laundering patterns. So, es-
pecially money laundering in the layering phase can be tackled here. These models utilise message-
passing techniques, where information is propagated through the network to generate node em-
beddings that capture the local and global structure of the transaction graph. Adaptations like
Reverse Message Passing and Port Numbering enhance GNNs’ ability to handle the directional
nature of financial transactions and distinguish multiple edges between nodes, see Section 3.1.
GNNs can thus uncover intricate patterns that traditional methods might miss. However, their
application in AML requires substantial computational resources and expertise in graph theory.
This is where the current state of research within Avanade ends, the use of leveraging transaction
networks to detect money laundering shows promise.

2.8.3 Current access to transaction data within a bank. The previous sections explain
why privacy regulations lead to limited access to the full set of transactions. This paragraph will
present the transaction data to which a large Dutch bank in the Netherlands has access. The
purpose of this section is to give a specific example of what these privacy regulations imply and
what data any model within a bank would have access to. This use case and the information used
to create it are collected through conversations with (data & AI) consultants at Avanade who
work or have worked on transaction monitoring projects at large Dutch banks.

In the context of a large Dutch bank, consider Bank A, which has complete access to its internal
transactional data. This includes details such as transaction amounts, timestamps, account num-
bers, and other relevant metadata. Using various data imputation methods, internal transactions
can be completed and enriched without too many limitations imposed by the privacy regulations
considered in this research. Data imputation techniques ensure that missing or incomplete data
within the bank’s internal transactions are filled in using available data.

However, privacy regulations significantly impact the bank’s ability to access and utilise data
from external transactions, i.e., transactions involving other banks. As shown in Figure 3, trans-
actions from an account at Bank A to accounts at other banks (Bank B or Bank C) and vice
versa are common. For these outgoing and incoming transactions, the available data is limited
to the amount transferred and the external account name. Detailed information about the exter-
nal accounts, such as account holder details or the transaction’s context, is not available initially
due to the privacy constraints. To enrich the information about these external accounts, public
databases like the Chamber of Commerce (Kamer van Koophandel (KVK) in Dutch) can be used.
These databases can help identify accounts belonging to companies by recognising account names
that include designations like Ltd. This enrichment process allows the bank to gather additional
context about the external transactions, such as the nature of the business involved, which can be
crucial for effective transaction monitoring, as the model can now see one step further than the
banks own data.

Fig. 3. Visual representation of the available data for a graph network model at a Large Dutch Bank.
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2.9 Problem statement

Dutch banks are currently facing significant challenges in adhering to the Dutch Money Launder-
ing and Terrorist Financing Prevention Act (Wwft). This is largely due to outdated rule-based
transaction monitoring systems, which are inadequate in the face of evolving money laundering
tactics. The primary issues can be summarised as follows:

1. Outdated Transaction Monitoring Systems: The current transaction monitoring systems
in large Dutch banks are outdated and rely on static, rule-based models. These models are slow
to update and unable to adapt quickly to the changing methods of money launderers. Adjusting
or creating new rules within these systems can take several months, which is insufficient given
that money launderers change their tactics frequently.

2. High Rate of False Positives: The existing rule-based models produce a large number of
false positives due to their need to cover all potential true positive cases. This leads to substan-
tial costs as each flagged transaction, whether false or not, requires manual investigation. The
manual investigation process is time-consuming and resource-intensive, placing a significant
burden on banks.

3. Hesitancy to Implement Machine Learning Models: Despite the potential benefits of
machine learning models, such as quicker adaptation to new money laundering tactics and
reduced false positives, banks are hesitant to implement these solutions. This comes from the
fear of large fines and the current lack of thorough exploration and validation of these models
in real-world scenarios.

4. Limited Access to Comprehensive Transaction Data: Privacy regulations in the Nether-
lands prevent any single entity, such as Transaction Monitoring Nederland (TMNL), from
accessing the complete set of transaction data across all banks. The efforts of TMNL are
hindered by these data access limitations. Under current legal frameworks, TMNL must use
pseudonymization and cannot access the full scope of transactions, especially those involving
private individuals.

5. Money Launderers Exploiting Multiple Banks: Money launderers often spread their
activities across multiple banks to evade detection. This dispersal of illicit transactions across
different financial institutions creates a fragmented view of the money laundering network,
making it difficult for any single bank to detect the full scope of illegal activities.

This research aims to explore approaches to work with temporal graph networks and to manage
missing information in graph networks for AML transaction monitoring, considering the current
limitations and challenges in data access and system adaptability.
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3 Algorithms/Methods

To evaluate the added value of incorporating a component specifically focusing on the incomplete
networks, this research uses an existing AML classification model. The reason for this is to have
an existing and evaluated baseline to be able to focus on the changes in results, not on the overall
ability to classify illicit behaviour, and the implications of limited data access. In addition to the
incomplete network component, the importance and effect of the temporal component is consid-
ered. The following sections dive into the algorithms of the baseline, the temporal components,
and the incomplete network component.

3.1 Baseline models: Multi Graph Neural Networks (Multi-GNN)

The Multi-GNN for Anti-Money Laundering project is a repository on GitHub [22], it consists of
four Graph Neural Network model classes (GIN, GAT, PNA, RGCN) and three model adaptations
for financial crime detection as described by Egressy et al.[19]. The base models are described in
their respective papers:

1. Graph Isomorphism Network (GIN) by Xu et al. [51]: Is a Message Passing Graph Neural
Network based on the Weisfeiler-Lehman graph isomorphism test. This enables differentiation
between graphs that are not ”isomorphic” to each other (do not have similar structures).

2. Graph Attention Network (GAT) by Veličković et al. [47]: Is a Graph Attention Network
that uses attention mechanisms to learn the importance of neighbouring nodes’ features in a
graph. By assigning different weights to different nodes, GATs can focus on the most relevant
parts of the graph.

3. Principal Neighbourhood Aggregation (PNA) by Corso et al. [13]: Is an architecture
which combines multiple aggregators with degree-scalers to capture the diverse aspects of node
neighbourhoods. These scalars are functions of the number of messages being aggregated, thus
allowing the network to amplify signals based on the degree of each node.

4. Relational Graph Convolutional Network (RGCN) by Schlichtkrull et al. [39]: Is a
Graph Convolutional Network extended to handle multi-relational data, where edges can have
different types or labels. It incorporates relation-specific transformation matrices to model the
interactions between different types of relationships in the graph.

Then the paper ”Provably Powerful Graph Neural Networks for Directed Multigraphs” by
Egressy et al. [19] expands these base models with three adaptations to improve the detection of
fraud patterns:

1. Reverse Message Passing enhances Message Passing Neural Networks (MPNN) by let-
ting nodes receive messages from outgoing neighbours. This allows counting the outgoing
edges and distinguishing node types based on the direction of the edges. Thus, differently
from the Message Passing mechanism, the idea is to consider the edges bidirectional however
since the directionality is essential in the context of AML to distinguish who sends the trans-
action to whom, the current state (h(v)) and neighbour embedding (a(v)) include separate
message-passing layers for the in-going and outgoing edges. This is implemented as depicted
in Algorithm 1.
Added value. Reverse MSP allows the model to distinguishing nodes based on the directionality
of transactions. In AML, this means the model is able to differentiate between entities that
predominantly send money and those that predominantly receive money. This distinction
is essential because fraud patterns often involve specific transaction flows, such as money
quickly moving through multiple accounts (layering) or being collected into a single account
(integration).
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Algorithm 1 REVERSE MSP.

(a) Initialize adjacency lists for incoming and outgoing neighbors with timestamps:
adj list in, adj list out = to adj nodes with times(data)

(b) Aggregate incoming and outgoing messages separately:

a
(t)
in (v) = AGGin

(
{h(t−1)(u)|u ∈ Nin(v)}

)
a
(t)
out(v) = AGGout

(
{h(t−1)(u)|u ∈ Nout(v)}

)
(c) Update node features: h(t)(v) = UPDATE

(
h(t−1)(v), a

(t)
in (v), a

(t)
out(v)

)

2. Directed Multigraph Port Numbering assigns local IDs, or port numbers, to each neigh-
bour in a directed multigraph, allowing nodes to distinguish between messages from the same
or different neighbours. Egressy states that, since using unique account numbers leads to over-
fitting, adding port numbers and ordering the neighbours based transaction timestamps should
enable nodes to identify repeated messages. This is implemented by looking at the adjacent
nodes again, and for each node assigning unique port numbers to its neighbours, sorted by
timestamps, see Algorithm 2.

Added value. Port numbering is crucial for recognizing repeated transactions between the
same accounts. It allows the model to track these repeated interactions accurately, identifying
sophisticated fraud patterns such as structuring (smurfing), where large amounts of money are
broken down into smaller, less suspicious transactions.

Algorithm 2 PORT NUMBERING.

(a) Initialize adjacency lists for incoming and outgoing neighbors with timestamps:
adj list in, adj list out = to adj nodes with times(data)

(b) Assign port numbers based on sorted timestamps:
For each node v with neighbours nbs:
– Sort nbs by timestamps.
– Assign unique port numbers to each neighbour.

(c) Update edge features with port numbers:
– ports = ports(edge index, adj list in)
– Append ports to the edge features.

3. EGO IDs assign a unique feature to a central node. This enables the model to detect cycles
by recognizing when messages return to the start node. While ego IDs alone struggle with
detecting longer cycles, their combination with reverse message passing and port numbering
significantly enhances the model’s ability to identify cycles, scatter-gather patterns, and bipar-
tite subgraphs (Section 4). This is implemented by assigning unique IDs to each node, allowing
the network to distinguish any directed subgraph pattern effectively, see Algorithm 3.

Added value. Ego IDs are particularly valuable for spotting circular transactions and complex
structures within the transaction graph. They help the model identify cycles and patterns
where money moves through various accounts and eventually returns to the origin (layering
or integration stages).
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Algorithm 3 EGO IDs.

(a) Initialize unique IDs for central nodes:
Assign a distinct binary feature to the ego node.

(b) Combine with reverse MP and port numbering:

– Use reverse MP to handle edge directions.
– Apply port numbering to distinguish repeated messages.

(c) Update node features with ego IDs:

– h(t)(v) = UPDATE
(
h(t−1)(v), a

(t)
in (v), a

(t)
out(v)

)
– Incorporate ego IDs into the feature update process.

Furthermore, the paper by Egressy et al. [19] uses edge updates (EA) as described in Battaglia
et al. [8] since AML is a classification problem.

3.1.1 Use and parameters of the baseline. The described base models and adaptations
are extensively experimented in the paper by Egressy et al.[19]. As summarised in Table 1, their
experimental setup uses GIN as the main GNN baseline model, with the adaptations reverse
message passing, port numbering, and ego IDs added on top (Multi-). PNA and R-GCN are also
used as base models, with adaptations added to PNA as Multi-PNA and Multi-PNA+EA.

This research also includes GAT, Multi-GAT, and Multi-GAT+EU as baseline models to com-
plete the comparison.

Baseline results. The paper by Egressy et al. [19] concludes that the adaptations significantly
improve the minority class F1 score. For the AML Small HI dataset4.1, the score improves from
28.7% to 57.2% with adaptations, mainly due to reverse message passing and port numbering.
Multi-PNA+EU outperforms all baselines on AML datasets, demonstrating the effectiveness and
versatility of the approach. Most illicit transactions belonging to money laundering patterns (see
Section 4) are identified (layering), although lone illicit transactions (placement) remain challeng-
ing to detect.

Table 1. The models from Multi-GNN with extensions and results from Egressy et al.[19] considered in
this research. (NR means that for this model there are no results in the paper, however they are considered
in this research.)

Model Paper results

GIN 28.70±1.13
PNA 56.77±2.41
GAT NR
R-GCN 41.78±0.48

Multi-GIN 57.15±4.99
Multi-GIN+EU 64.79±1.22
Multi-PNA 64.59±3.60
Multi-PNA+EU 68.16±2.65
Multi-GAT NR
Multi-GAT+EU NR
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3.2 Temporal Components: Time Delta’s and Dynamic GAT (DynGAT)

Adding a temporal component can be done in various ways. This research considers two meth-
ods; adding time delta’s and adding temporal embeddings from a Time Encoder function. Both
adaptions are described in the following sections.

3.2.1 Time Delta’s The time delta adaption in the Graph Neural Network models is designed
to capture the temporal dynamics of the transactions by incorporating the time intervals between
consecutive transactions as edge features. By adding these features, the models can detect patterns
related to the frequency and timing of transactions. See Algorithm 4, where the steps to calculate
the time delta’s are explained. Here, the index k is the total number of edges connected to a
specific node v, and i is the index of an individual edge within the list of k edges.

Algorithm 4 COMPUTE TIME DELTAS.

Step Description Formula

1 Initialize Time Deltas: Initialize a vector of zeros, ∆ti = 0 for all i ∈ E
∆t, with the same length as the number of edges.

2 Iterate Over Each Node: For each node v, retrieve E(v)
the list of k edges E(v) connected to v.

3 Sort Edges by Timestamps: For each node v, sort E(v) = {(e1, t1), (e2, t2), . . . , (ek, tk)}
the k edges E(v) by their timestamps t. such that t1 ≤ t2 ≤ . . . ≤ tk

4 Calculate Time Deltas: Compute the time delta ∆tei =

{
0 if i = 1

ti − ti−1 for i > 1

for each consecutive pair of k edges.

5 Assign Time Deltas: Assign the calculated ∆t(ei) = ∆tei
time deltas back to the corresponding edges. for each edge ei ∈ E(v)

3.2.2 DynGAT The Dynamic Graph Attention Network (DynGAT) was developed by T. Wei,
B. Zeng, W. Guo, Z. Guo, S. Tu, and L. Xu in their 2023 paper, ”A Dynamic Graph Convolutional
Network for Anti-Money Laundering.” This model converts transaction data into a dynamic graph
sequence to capture temporal patterns explicitly. Figure 4 shows the original model from the paper
[49]. DynGAT uses a Graph Attention Network (GAT) for node embeddings and a Time Encoder
(TE) function to incorporate time features, combining these in multi-head self-attention blocks.
This Time Encoder is the adaption that is added to the Multi-GNN models. This section first
dives into the model as described in the paper and the implementation made available on GitHub
[11], then into the integration of the TE adaption into the Multi-GNN models.

Fig. 4. An overview of the DynGAT model as proposed by Wei et al. [49]
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Construction of Graph Sequence from Raw Transaction Records. The DynGAT model works with
the Deep Graph Library [44] (DGL) package to implement their graph model. Transaction data
is organized into subgraphs over different time intervals, with each subgraph representing trans-
actions within a specific period. Initially, transactions are modeled as static graphs G = (V,E),
where vertices vi ∈ V represent accounts, and directed edges ek = (vi, vj) ∈ E represent fund
flows, each with a timestamp tk. Then, the dynamic graph sequence G = {G0, G1, . . . , Gn} is
formed, with each subgraph defined as:

Gi = (V,Ei)

Ei = {ek | t(i)start ≤ tk ≤ t
(i)
end}

(1)

The start and end times for each dynamic graph are calculated as:

t
(i)
start =

i · (Tmax − Tmin + 1)

n

t
(i)
end = t

(i)
start − 1

(2)

Node and Time Embeddings each have their own encoding process before they are concatenated
for the model.

– Node Embeddings via GAT. For each subgraph, node embeddings are calculated incorporating
all the features of the transaction edge. The similarity (sij) between an account node (vi)
and its transaction counterparties (vj) is normalised to obtain the attention coefficients (αij),
integrating the edge features (fij):

sij = softmax(LeakyReLU(aT [Whi||Wfij ||Whj ])) (3)

The node embeddings (hi) are updated as a weighted sum of neighbours’ representations (hj):

hi =
∑
j∈Ni

αijhj (4)

– Time Embeddings via Time Encoder. The Time Encoder is designed to encode temporal in-
formation into a continuous representation. It used sinusoidal functions to represent peri-
odic time data, so by converting timestamps into a high-dimensional space. Thus, this en-
coding tries to capture the underlying periodicities and relationships instead of using raw
timestamps, to highlight the temporal patterns and anomalies. This could highlight peri-
odic transactions or unusual timing patterns. The Time Encoder class is an attribute of
the GAT model class. In the forward function, the time features are encoded using the
self.time_encoder(self.time_cuts) attribute. The Time Encoder class is depicted in Al-
gorithm 5.
A time encoder module converts the time sequence into embeddings, which are concatenated
with node embeddings:

hi
(k)

= [hi||Φd(n)] (5)

Multi-Head Self-Attention Block To capture temporal patterns, the concatenated embeddings are

arranged into a set
{
hi

(k) | k ∈ (0, 1, . . . , n)
}
. Self-attention, which models positional information,

is applied:

Fi = Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V (6)

Classifier and Training The model uses a Multi-Layer Perceptron (MLP) Classifier for multi-class
classification. It consists of three linear layers: two with Leaky ReLU activations to reduce input
dimensions, and a final layer with Softmax activation for output probabilities indicating whether
a node is suspicious.
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Algorithm 5 TIME ENCODER.

1 c l a s s TimeEncoder (nn . Module ) :
2 de f i n i t ( s e l f , expand dim , f a c t o r =5) :
3 super (TimeEncoder , s e l f ) . i n i t ( )
4 s e l f . expand dim = expand dim
5 s e l f . f a c t o r = f a c t o r
6 s e l f . b a s i s f r e q = nn . Parameter ( ( torch . from numpy (1 / 10 ∗∗
7 np . l i n s p a c e (0 , 9 , expand dim ) ) ) . f l o a t ( ) )
8 s e l f . phase = nn . Parameter ( torch . z e r o s ( expand dim ) . f l o a t ( ) )
9

10 de f forward ( s e l f , t s ) :
11 ba t ch s i z e = t s . s i z e (0 )
12 s e q l e n = t s . s i z e (1 )
13 t s = t s . view ( ba t ch s i z e , s eq l en , 1)
14 map ts = t s ∗ s e l f . b a s i s f r e q . view (1 , 1 , −1)
15 harmonic = torch . cos ( map ts )
16 re turn harmonic

3.2.3 Comparison Time Delta’s and Time Encoding in GNNs. The time encoding and
time delta methods are two different approaches to incorporating temporal dynamics into GNNs.
The time encoding method involves using a time encoder module to convert the time sequence
into continuous embeddings, which are then concatenated with node embeddings. This method
should add a rich temporal representation, capturing complex patterns. It enhances the model’s
ability to detect subtle, long-term temporal patterns in transaction data.

On the other hand, the time delta method computes the time intervals between consecutive
transactions and adds these as edge features. This simpler approach directly captures the frequency
and timing of transactions, making it effective in identifying patterns related to rapid transaction
sequences or irregular intervals. So, time encoding offers a more nuanced representation and is
better suited for detecting complex, long-term trends, while time deltas are particularly useful for
highlighting immediate temporal relationships and transaction flow irregularities.

In terms of complexity, time encoding has a more challenging implementation compared to
the straightforward calculation and addition of time deltas. The expected performance of these
methods is that time encoding is better in scenarios with long-term temporal dynamics, while time
deltas would be advantageous for detecting immediate patterns based on transaction timing.

3.3 Incomplete Graph Networks adaption.

Taking missing information into account can be approached in multiple ways. Either by directly
finding the missing links and completing the data before applying a classification model, or by
letting the model leverage the inherent structure of the graph [28,53].

3.3.1 Deep Network Representation Learning (DNRL) model A paper describing a
method that considers having incomplete information is ”Research on Node classification Algo-
rithm based on Deep Network representation learning under incomplete information” by Jiachiu
Jing [23]. This paper describes a semi-supervised deep network representation learning model
(DNRL), designed to handle attribute networks with incomplete structural information. It pro-
poses a dynamic strategy that integrates incomplete structural and attribute information. For
this, it uses a semi-supervised variational autoencoder to capture high nonlinear features in the
network data and learn low-dimensional node representations.

To utilise the strengths of the DNRL model, the incomplete information features of the DNRL
model will be included in the embeddings of the Multi-GNN models [19]. This section will dive
deeper into the workings of the DNRL model and how this is integrated into the Multi-GNN
model.



3. ALGORITHMS/METHODS 17

Data coding

1. Positive Pointwise Mutual Information (PPMI) X. The primary task of the DNRL
model is to map high-dimensional network nodes to low-dimensional latent spaces. This model
uses the Positive Pointwise Mutual Information (PPMI) matrix as input, a dense matrix that
captures higher-order proximity between nodes. The PPMI matrix is constructed as follows:

PPMI(w, c) = max(log
P (w, c)

P (w)P (c)
, 0) (7)

where P denotes the co-occurrence probability matrix, where each row (w) and column (c)
represent a node in the graph. Thus the PPMI matrix captures the co-occurance probabilities
of nodes, reflecting how often nodes appear together within a certain context. This context
(P ) is generated with the RandomSurfing model, counting the frequency a certain node is the
starting point of random walks that end up at another node. Through k-step iterations using
a transition matrix T , allowing restarts with a probability of 1− β:

Pk = β · Pk−1T + (1− β) · P0 (8)

2. Joint structure-attribute transition matrix T combines structural and attribute infor-
mation linearly to provide a comproehensive representation of the network. It is defined as
follows:

- Structure Transition Matrix : For a given adjacency matrix W ∈ Rn×n, where n is the num-
ber of nodes, each element TW

i,j represents the normalized probability of transitioning from
node i to node j based on their direct link. This normalization ensures that the transition
probabilities sum to one across each row, reflecting the likelihood of moving from one node
to another within the network’s structure.

TW
i,j =

Wij∑
j∈n Wij

(9)

- Attribute Similarity Matrix S: Constructed using cosine similarity between the attribute
vectors A of the nodes. Given A ∈ Rn×m, where m represents the number of attributes,
the similarity SA

i,j between nodes i and j is calculated for the top l = 10 values to reduce
complexity (otherwise 0):

SA
i,j =

{
CosSim(A) =

AiA
T
j

|Ai||Aj | if SA
i,j ∈ {top l of SA

j }
0 else

(10)

- Attribute Transition Matrix TA: Similar to the structure transition matrix, the attribute
similarity matrix S is normalised to represent the transition probabilities based on attribute
similarities:

TA
i,j =

sAi,j∑
j∈n s

A
i,j

(11)

- Joint Transition Matrix T : Balances the structural and attribute information. For each
node, if the structural information TW

i is completely zero (indicating an isolated node),
the attribute information TA

i is used exclusively. Otherwise, a weighted combination of
both matrices is applied using a parameter α, which controls the influence of each type of
information:

Ti =

{
TA
i if TW

i is all zeros

αTW
i + (1− α)TA

i else
(12)

This approach ensures that isolated nodes that lack structural links are represented on the
basis of their attribute similarities, while nodes with structural connections benefit from a
combined representation that leverages both structural and attribute data. The parameter α
is tuned to balance these contributions, with higher values increasing the weight of structural
information.
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Feature extraction The DNRL model uses a semi-supervised variational autoencoder (VAE) to
extract features from the PPMI matrix X, resulting in low-dimensional feature vectors Z ∈ Rn×d.
Unlike traditional autoencoders, VAEs learn the distribution of the data rather than focussing on
individual samples. The VAE model consists of two main components: an encoder and a decoder.
The encoder, also known as inference network, generates a variational probability distribution for
the hidden variables. Essentially, it estimates how the hidden variables are likely to be distributed.
The decoder, also known as the generation network, then use these hidden variables to reconstruct
the original data by generating its probability distribution. The main goal of the VAE model
is to minimise the reconstruction loss, which measures how accurately the model can recreate
the original data, and the Kullback-Leibler (KL) divergence (Equation 13), which measures the
difference between the learnt distribution of the hidden variables and a predefined distribution.
This combination should ensure that the model both reconstructs the data well and learns a
meaningful and smooth representation of the underlying data distribution.

KL(p(x)∥q(x)) =
∫

p(x) log
p(x)

q(x)
dx (13)

Expected Results Based on Theory According to the DNRL paper by Jiachiu Jing [23], the model
is expected to perform better in node classification tasks compared to traditional network repre-
sentation models, particularly in scenarios with incomplete structural information. By integrating
attribute and structural data, the DNRL model should demonstrate improved robustness against
sparse network structures while maintaining a higher classification accuracy. The inclusion of at-
tribute information compensates for missing structural links, ensuring that the model effectively
captures the underlying network topology and node attributes.

Implementation The DNRL paper only offers the theory; there is no implementation of the method
available. Thus, this research has implemented the above-described sections in Python with Py-
Torch. Taking into account the use of sparse matrices to account for the large size of the datasets.



4. DATA EXPLORATION FROM THE SINGLE-BANK VIEW. 19

4 Data exploration from the single-bank view.

Examining the data is crucial to understand the impact of data privacy regulations and the sharing
of transaction data among banks and financial institutions. Due to legal and privacy constraints,
the use of real transaction data in this research is not feasible. Instead, this research uses a syn-
thetic dataset, specifically the publicly available IT-AML dataset created by Altman et al. (2024)
[1]. Although synthetic data is not identical to real data, it offers several research advantages.
For example, it avoids the ethical and legal issues associated with accessing real financial data,
provides scalability to generate sufficient data to train robust models, and supports benchmarking
to establish performance standards for AML models in a controlled environment. The dataset is
labelled and the laundering patterns during the layering phase are explicitly modelled, as detailed
in Section 4.3. Additionally, the multi-bank nature of the dataset allows for the study of the
consequences of a single-bank view on AML efforts.

4.1 Data Deep Dive: IBM Transactions for Anti Money Laundering.

The ”HI-Small Trans.csv” dataset is used to evaluate the impact of considering single-bank data on
AML models. HI denotes a higher illicit ratio, indicating a greater presence of laundering activities,
and the smallest dataset is selected due to limited computing resources. Table 2 presents the
statistics for all datasets in the IT-AML project. Notably, the smaller datasets are independently
simulated and are not subsets of the largest dataset. However, they are chronologically simulated to
facilitate train, validate, and test splits, adhering to a 60% / 20% / 20% division as recommended
by Altman et al. (2024) [1].

Table 2. Statistics IT-AML datasets (Altman et al. [1])

Small Medium Large
HI LI HI LI HI LI

Date Range HI + LI (2022) Sep 1-10 Sep 1-16 Aug 1 - Nov
Timespan 10 days 16 days 97 days
# of Bank Accounts 515K 705K 2077K 2028K 2116K 2064K
# of Transactions 5M 7M 32M 31M 180M 176M
# of Laundering Transactions 5.1K 4.0K 35K 16K 223K 100K
Laundering Rate (1 per N Trans) 981 1942 905 1948 807 1750

The dataset is offered in tabular form, with features representative of real-world financial
transactions. The features included in the dataset are detailed in Table 3.

Table 3. Features in HI-Small transactions dataset.

Feature Description

Timestamp Moment at which the transaction took place.
From Bank ID of the bank from which the transaction was send.
Account ID of the account from which the transaction was send.
To Bank ID of the bank to which the transaction was send.
Account ID of the account to which the transaction was send.
Amount Received The amount of money received.
Receiving Currency The currency in which the money was received.
Amount Paid The amount of money send.
Payment Currency The currency in which the money was received.
Payment Format The type of transfer (e.g., cheque, reinvestment, etc.).
Is Laundering Binary value indicating money laundering (=1) or not (=0).
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Fig. 5. Scatter-Gather pattern.

In addition to the transaction data, there is a
supplementary text file that contains the patterns
processed into the transaction data. As depicted in
Table 6, this file is organised by money laundering
attempts, labelling each transaction within an at-
tempt according to the type of laundering pattern.
For example, the scatter-gather pattern depicted
in Figure 5 illustrates how an account 80C93DF00
from bank 0213 distributes money to multiple ac-
counts, which then consolidate the funds into a sin-
gle account 8053B01E0 at bank 0013078. These ac-
counts are highlighted in Figure 6, demonstrating
the detailed modelling of laundering behaviours.

The following sections will provide an in-depth
analysis of data exploration and preparation. They
will also discuss the implications of limited access
to the full dataset due to legal and privacy regu-
lations on the recognition of patterns in financial
transactions.

Fig. 6. Scatter-Gather pattern from HI-Small Patterns.txt file.
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4.2 Data Understanding

The HI-Small transactions dataset includes 515, 088 nodes (holdings/ accounts engaging in trans-
actions) and a total of 5, 078, 345 transactions. The illicit ratio is calculated as 0.10%, derived
from 5, 177 illicit transactions out of a total of 5, 078, 345 transactions. The exact division of the
dataset into training, validation, and test sets can be found in Table 4.

Table 4. Training, validation, and testing split of the dataset, with respective illicit ratios.

% of full dataset % illicit in subset

Training set 63.98% 0.08%
Validation set 19.01% 0.11%
Testing set 17.01% 0.19%

Table 5 shows statistics on the transaction amounts in USD divided by transactions labelled
as money laundering and not money laundering. Key observations from this table include:

– The mean amount received for money laundering transactions is 36, 135, 310.41, significantly
higher than the mean for non-money laundering transactions at 5, 957, 962.48.

– Median amounts also show a substantial difference, with money laundering transactions hav-
ing a median of 8, 667.21 compared to 1, 407.51 for non money laundering transactions.

– Standard deviations are notably high, indicating significant variability in transaction amounts,
especially for non-money laundering transactions.

– Maximum amounts received and paid in both categories highlight extreme outliers, with
maximum values reaching over 84 million for money laundering and over 1, 046 billion for
non-money laundering transactions.

These statistics suggest that money laundering transactions tend to involve much larger sums of
money compared to regular transactions.

The distribution of currencies shows a predominance of transactions in US Dollars (37%),
followed by Euros (23%), with a variety of other currencies including Swiss Francs, Yuan, Shekels,
Rupees, UK Pounds, Yen, Rubles, Bitcoin, Canadian Dollars, Australian Dollars, Mexican Pesos,
Saudi Riyals, and Brazilian Reals each having smaller shares. The payment formats also vary, with
cheques (37%) being the most common, followed by credit cards (26%), ACH2 (12%), cash (10%),
reinvestment (9%), wire transfers (3%), and Bitcoin (3%).

Table 5. Statistics on the transaction amounts.

Statistic Amount Received Amount Paid
Money

Laundering
No Money
Laundering

Money
Laundering

No Money
Laundering

Count 5,177 5,073,168 5,177 5,073,168
Mean 36,135,310.41 5,957,962.48 36,135,310.41 4,477,000.04
Median 8,667.21 1,407.51 8,667.21 1,410.99
Std.Dev. 1,527,918,669.80 1,036,563,448.52 1,527,918,669.80 868,846,296.80
Min 0.003227 0.000001 0.003227 0.000001
25% 2,634.97 183.07 2,634.97 184.16
50% 8,667.21 1,407.51 8,667.21 1,410.99
75% 18,832.27 12,322.51 18,832.27 12,279.34
Max 84,853,144,179.58 1,046,302,363,293.48 84,853,144,179.58 1,046,302,363,293.48

2 An ACH (Automated Clearing House) transfer is a low-cost, electronic transaction system used in the
United States for direct deposits, bill payments, and transfers, typically taking 1-3 days to process.
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4.2.1 Banks The dataset includes a total of 30, 528 sending banks and 15, 850 receiving banks.
Notably, all the receiving banks are also sending banks, which implies that there are 14, 678 banks
that only send transactions but do not receive any. Among all these banks, 99 receiving banks
have transactions that are part of a laundering pattern, and 100 sending banks have transactions
associated with laundering. Intercepting at 27 banks which are involved in both sending and
receiving transactions that are part of laundering patterns.

The top 3 banks in terms of total transaction amounts sent and received show significant
financial activity, see Table 6. The amount sent by the top bank is 6.6% of the incomprehensible
22.9 trillion that is sent in total in this dataset. Similarly, the amount received by the top bank is
6.3% of the total amount received.

Table 6. Top 10 banks in terms of total transaction amounts sent and received.

Bank ID Amount sent Bank ID Amount received

022164 1, 509.86 billion 0116425 1, 915.59 billion
0112064 1, 165.08 billion 022164 1, 489.89 billion
019925 1, 123.37 billion 0210185 1, 437.73 billion

Additionally, the transaction frequency is shown in Table 7. This shows that Bank ID 070 is
the most active sender with 449, 859 transactions, while Bank ID 012 is the most active receiver
with 34, 732 transactions. These are big players in the transaction network, however, when looking
at the illicit behaviour in Bank 070 there are no transactions sent from this bank that are part of
transaction patterns, solely transactions labelled as fraud due to placement and integration. Also
interesting to note, that 3, 449 banks only send money once, and 3, 854 banks only received money
once, meaning they occur only once in the entire dataset.

The bar graphs in Figure 7 show the average transaction amounts paid and received by banks,
distinguishing between money laundering and non-money laundering transactions.

– The top left graph shows the mean amounts paid by banks in non-money laundering
transactions, with Bank ID 0136334 having the highest mean payment, significantly higher
than other banks at 434.16 million.

– The top right graph illustrates the mean amounts paid in money laundering transactions,
where Bank ID 0014384 stands out with an exceptionally high mean amount of 20 billion.

– The bottom left graph presents the mean amounts received by banks in non-money
laundering transactions, with Bank ID 0116425 receiving the highest average amount of
330.45 million.

– The bottom right graph indicates themean amounts received inmoney laundering trans-
actions, again highlighting Bank ID 0116781 with the highest average of 20 billion, followed
by Bank ID 0042596 with 15 billion.
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Table 7. Transactions Sent and Received by Banks and Accounts

Transactions Sent from Bank # Transactions Received from Bank #

ID # of Transactions % from Total ID # of Transactions % from Total

070 449,859 8.8584% 012 34,732 0.6839%
012 71,177 1.4016% 001 30,115 0.5930%
010 64,791 1.2758% 010 29,926 0.5893%
001 62,211 1.2250% 003 25,627 0.5046%
020 41,008 0.8075% 007 23,029 0.4535%
003 38,413 0.7564% 015 22,730 0.4476%
007 31,086 0.6121% 020 22,048 0.4342%
0211 30,451 0.5996% 028 21,160 0.4167%
0116 30,232 0.5953% 0211 20,576 0.4052%
015 30,027 0.5913% 0116 20,240 0.3986%

Transactions Sent from Account # Transactions Received from Account #

ID # of Transactions % from Total ID # of Transactions % from Total

100428660 168,672 3.3214% 100428660 1,084 0.0213%
1004286A8 103,018 2.0286% 1004286A8 653 0.0129%
100428978 20,497 0.4036% 80F47A310 159 0.0031%
1004286F0 18,663 0.3675% 100428978 150 0.0030%
100428780 17,264 0.3400% 8018859B0 144 0.0028%
1004289C0 16,794 0.3307% 1004289C0 132 0.0026%
100428810 16,426 0.3235% 100428780 117 0.0023%
1004287C8 14,174 0.2791% 100428810 114 0.0022%
100428738 13,756 0.2709% 80F0EF460 109 0.0021%
100428A51 13,073 0.2574% 1004286F0 108 0.0021%

Fig. 7. Bar graphs with the top 15 average transaction amounts paid and received by banks.
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4.2.2 Accounts Together in all the banks, there are 496, 995 accounts that send money and
420, 636 accounts that receive money. Among these, 402, 551 accounts both send and receive money.
114 accounts that send money are part of a laundering pattern, while 110 accounts that receive
money are involved in laundering patterns. There are 11 accounts that both send and receive
money that is part of laundering patterns.

In terms of total transaction amounts, the highest total amount paid by an account is from
Account ID 800E8B7F0, amounting to 1, 505, 695, 821, 886.76, representing 6.58% of the total
amount sent across all accounts. The highest total amount received by a single account is also
from Account ID 800E8B7F0, amounting to 1, 486, 635, 895, 502.05, which is 4.89% of the total
amount received across all accounts. This account is notably active, both in terms of sending and
receiving large sums of money.

Figure 8, illustrates the average transaction amounts paid and received by accounts, differen-
tiating between money laundering (ML) and non-money laundering (No ML) transactions.

– The top left graph shows the mean amount paid by accounts in non-money laundering
transactions. Account ID 803D95360 has the highest mean payment of 5.31e+11, followed by
Account ID 804C1CD70 with 3.22e+ 11.

– The top right graph illustrates the mean amount paid in money laundering transactions,
where the top two to three accounts stand out; Account ID 806B9AF90 with a mean payment
of 8.49e+ 10, followed by Account ID 805C2AFB0 with 6.64e+ 10.

– The bottom left graph presents the mean amount received by accounts in non-money
laundering transactions. In contrast to the other plots, these accounts have an even spread
of transaction amounts. Account ID 8060CEE00 leads slightly with 5.50e + 10, followed by
Account ID 8061A4230 with 4.47e+ 10.

– The bottom right graph indicates the mean amount received in money laundering trans-
actions. Similar to the top right, there are two to three accounts that receive by far the
most illicit transactions; Account ID 806B9B6A0 with 8.49e + 10, followed by Account ID
805C2B8A0 with 6.64e+ 10.

The frequency of transactions is ranked in the lower half of Table 7. Account ID 100428660
both sent the most transactions, totalling 168, 672, and received the most transactions, totaling
1, 084.

Transaction variability is measured by the standard deviation of the transaction amounts.
Account ID 803D95360 exhibits the highest variability in transaction amounts sent, with a stan-
dard deviation of 729, 226, 853, 719. For received transactions, Account ID 8060CEE00 shows the
highest variability, with a standard deviation of 166, 409, 535, 930. High variability can indicate
inconsistent transaction sizes, which can be a red flag for financial monitoring [10].
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Fig. 8. Bar graphs with the top 15 average transaction amounts paid and received by accounts.
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4.2.3 Transactions Diving deeper into the transaction amounts received and paid, the distri-
butions are split by money laundering status, currencies, and payment formats.

Figure 9, illustrates the distribution of transaction sizes received and paid, distinguishing be-
tween money laundering and non-money laundering activities. The plots show significant outliers
for non-money laundering transactions, where the amounts can reach up to $1 trillion. For both
received and paid amounts, Table 5 showed that all statistics, except the maximum, are higher
for money laundering transactions. This suggests that transactions flagged for money laundering
typically involve larger sums of money. The exclusion to this are the extreme outliers; these are
only present in the transactions labelled as not money laundering.

Fig. 9. Boxplots of the destribution of transaction sizes for the Amount Received and Paid, split by Money
Laundering status.

Amount Received and Paid split by Currency. The top two boxplots in Figure 10 categorise the
amounts received and paid by the different currencies. The Rupee, Yen and Ruble are prominent
currencies in these transactions, with substantial variances in the amounts transferred. They in-
clude several outliers with large amounts, highlighting the potential for high-value transactions
in these currencies. This variability and the presence of outliers in certain currencies indicate the
need for vigilant monitoring, as they could be indicative of illicit financial flows.

Amount Received and Paid split by Payment Format. The bottom set of boxplots in Figure 10
break down the transaction amounts by payment format. Cheques and ACH transactions show a
considerable range of amounts with notable outliers, suggesting that these formats are commonly
used for both small and large transactions. On the other end, Bitcoin transactions have very low
values with up to six decimals small. For this reason this entire category of outliers could be
excluded, however removing them would reduce the money laundering instances in the dataset
too much.
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Fig. 10. Boxplots of the destribution of transaction sizes for the Amount Received and Paid, split by the
Currencies and by the Payment Formats.

4.3 Laundering patterns of the layering phase.

During the layering phase, illicit funds are moved and disguised through multiple transactions and
accounts, to making detection and tracking challenging. Suzumura and Kanezashi[42], identified
and illustrated eight common money laundering patterns used in this phase. These patterns should
demonstrate the methods launderers use to conceal financial trails and are the patterns simulated
into the IT-AML dataset, see Figure 11.

Fig. 11. Laundering Patterns Simulated into IT-AML (Suzumura & Kanezashi, 2021 [42]).

Fan-Out Pattern is a single account distributiong funds to multiple accounts. This is characterized
by a vertex v having outgoing edges that connect it to at least k ≥ 2 different vertices. The goal
is to obscure the origin of funds by splitting them into smaller amounts and distributing them
across various accounts.
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Fan-In Pattern is the reverse of the fan-out pattern. Here, multiple accounts funnel money into a
single account. This is illustrated by a vertex v having incoming edges from at least k ≥ 2 different
vertices. The goal is to combine illicit funds into a single account.

Gather-Scatter Pattern combines fan-in and fan-out patterns. It involves a single vertex that first
gathers funds from multiple sources and then scatters these funds to multiple destinations. The
goal is to enhances the difficulty of tracking the flow of money.

Scatter-Gather Pattern is the opposite of the gather-scatter pattern. Funds are dispersed from one
account to several intermediate accounts and then funneled into a single account. This pattern
involves a fan-out from one vertex and a fan-in to another vertex, with the same set of intermediate
vertices being used.

Simple Cycle Pattern involves a sequence of transactions that form a closed loop, starting and
ending at the same account. This pattern can be used to circularly move funds through a series of
accounts back to the original owner. The goal is to create a complex trail that is hard to follow.

Random Pattern transfers funds randomly among various accounts, without returning to the
original account. This can be viewed as a random walk through accounts owned or controlled by
the laundering entity, making the tracking of funds more unpredictable. Also making the pattern
itself only defined by randomness and difficult to recognize.

Bipartite Pattern moves funds from a set of input accounts to a set of output accounts. This
pattern is used to transfer funds between two distinct groups of accounts, further complicating
the detection of money laundering activities.

Stack Pattern builds on the bipartite pattern by adding another layer of transactions, essentially
creating multiple bipartite layers. This additional complexity makes it even harder to trace the
origin and final destination of the laundered funds.
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4.3.1 Patterns in the dataset Each type of pattern is simulated into the transaction data.
When solely looking at the transactions that are part of a pattern, the data can be graphed as
shown in Figure 12. This visualization was made with the PyVis [18], a library for visualizing
interactive graph networks. The full set of transactions labelled as money laundering also include
5, 055 transactions that are not part of a pattern. These are transactions that are labelled as fraud
due to placement or integration, not the layering phase.

Fig. 12. Pyvis graph of all transactions in a money laundering pattern in the IT-AML dataset.

To ensure that the patterns are properly simulated in the data, a separate graph is plotted for
each laundering pattern. See Figures 13, 14, and 15. It is visible that most patterns are generated
correctly, and it also includes various sizes of the patterns. The visible exceptions are the Stack,
Bipartite, and Random patterns, in accordance with a discussion page on the Kaggle project of
the dataset[25], it can be concluded that they are not generated exactly as described by Altman
et al. [1]. The stack pattern seems to be only partially generated. Where single transactions and
two consecutive transactions are generated, but not the described pattern where multiple accounts
each transfer to multiple other accounts and these each send transfers through to another multiple
set of accounts. Another thing to note are the smallest groups of nodes in the patterns. Regardles
of the pattern, some only have two nodes connected by an edge. These patterns are assumed to
be ”in progress” laundering. As in real life, where it is not possible to have all patterns complete
at one time.
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Fig. 13. Simple cycle, Fan-in, and Fan-out patterns.

Fig. 14. Scatter-Gather and Gather-Scatter patterns.

Fig. 15. Stack, Bipartite, and Random patterns.
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4.4 Data Preparation

Based on the insights of the previous section, the data preparation was executed. The required
changes are limited due to the synthetic nature of the dataset. So does the dataset contain no
missing values and limited extreme outliers. Only values greater than 8e11, as visible in Figure 9,
were removed. Besides this, the transactions labelled as a Stack or Bipartite patterns were removed
as explained in Section 4.3.1.

To fit the Multi GNN models by Egressy et al.[19], this research preprocesses the IT-AML
dataset the same way. Initially, the categorical fields in the loaded csv input file, see Figure 16,
are converted to integers, such as currencies and payment formats. The transaction timestamp is
normalised relative to the first transaction, set to zero. Unique account identifiers are generated
by combining bank and account IDs. The data is written in an output file with a clear struc-
ture, as depicted in Figure 17. Finally, the output data are sorted by timestamp to organise it
chronologically.

This results in a dataset with 5, 077, 614 transactions, 8 predictive features, and a target feature
that classifies the transaction as fraudulent or not. The labels now indicate that there are 4, 448
transactions related to money laundering which is 0.09% of the full dataset. With fraudulent
transactions comprising such a small part of the dataset the problem of a highly unbalanced
dataset, as explained in Section 1, is confirmed. A highly unbalanced dataset is problematic because
most algorithms will learn the majority class and thus not the fraudulent minority class.

Fig. 16. Sample of the datset before preprocessing.

Fig. 17. Sample of the datset after preprocessing.

The data splitting method used by Egressy et al.[19] was followed in this research. The trans-
actions are first ordered by their timestamps, which are normalised to start from zero for ease of
analysis. The data set is then split into training, validation and test sets based on a temporal 60-
20-20 split, following the method used by Egressy et al.[19]. Importantly, the splitting is dynamic,
meaning the validation set has access to the previous training data, and the test set has access to
the previous validation data, allowing for accurate construction of transaction graphs over time.

Once the dataset is split, it is converted into PyTorch Geometric (PyG[16]) Data objects. This
includes initialising node features with placeholder values and selecting relevant edge features such
as timestamp, amount received, and payment format. Special attention is paid to calculating the
illicit transaction ratios and ensure an even distribution across the splits. Further processing steps
are performed, such as the ability to add ports, time deltas, and time encodings to the embeddings,
and the features are normalised to prepare the data for model training and evaluation.
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4.5 Implications of single-bank view.

This section explores the implications of analysing financial transactions from the perspective of
a single bank, providing a detailed examination of how data visibility impacts the detection of
money laundering patterns. By filtering the dataset to isolate transactions only visible to individual
banks, this section aims to visualise the partial patterns that emerge when only one bank’s data
is available. By dissecting the dataset, the actual limitations of monitoring transactions without
access to the full picture are brought to light. Furthermore, the Multi-GNN models will be trained
and evaluated on these single-bank datasets to assess their performance in identifying suspicious
activities. These last results can be found in Section 6.2.

4.5.1 Bank selection for single-bank view. To ensure a meaningful and representative
comparison, the selection of banks for the single-bank view was based on specific criteria that reflect
the overall dataset’s characteristics. This means banks with the most occurrences the patterns and
a percentage of laundering patterns close to the overall average of 0.1%.

Table 8 presents the top ten banks ranked by occurrences in the patterns. Among these, bank
012 and bank 001 emerged as the most suitable candidates based on the percentage of laundering
patterns in the subset of transaction data to which the banks would have access. Bank 012 had
the highest occurrences (131) in laundering patterns with a slightly higher percentage than the
target at 0.12%, while bank 001 had a lower number of occurrences (89) but exactly matched the
target percentage at 0.1%. Interestingly, while bank 012 has the most occurrences in patterns, the
set of transactions related to bank 012 only comprises 1.9584% of the full dataset. Similarly, bank
001 only comprises 1.6889% of the full dataset.

Table 8. Single-bank view selection criteria.

Bank ID Occurences in patterns % patterns in sub-dataset

012 131 0.12%
0119 125 0.41%
011 109 0.25%
020 105 0.17%
001 89 0.1%
0222 76 0.58%
023 66 0.17%
0048309 61 0.86%
010 59 0.07%

4.5.2 Visualization of the problem. To visualise the consequences of the single-bank view,
the nodes of banks 012 and 001 were isolated. Continuing to focus on the patterns, each pattern
is plotted with the nodes of bank 012 in red, their direct neighbours in blue, and all other nodes
in grey. This shows what data would be available to a single bank, as explained in Section 2.8.

For the gather-scatter, fan-in, and cycle patterns, the effect is shown in Figures 18, 19, and 20.
The scatter-gather, fan-out, and random graphs can be found in Appendix 8.

The Gather-Scatter pattern graph (Figure 18) shows that when highlighting the nodes accessible to
bank 012, only two patterns remain complete. Besides these, most patterns are completely lost and
six partial gather-scatter patterns remain where the gather-scatter structure is no longer evident.
This can significantly hinder the detection of laundering as the partial patterns most likely do not
fit the expected criteria.

The Fan-In Pattern graph (Figure 19) similarly shows that only one pattern is complete, most
others are fully greyed out, and five partial patterns remain. While some sub-patterns could still
suggest a fan-in pattern, those reduced to two or three nodes will be difficult to distinguish by a
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model. The unrecognizable sub-patterns take up half the pattern clusters thus cannot be ignored
as unfinished patterns.

The Cycle Pattern graph (Figure 20) should show transactions forming a closed loop. However,
when restricting the view to bank 012 many cycles are broken. This can lead to significant chal-
lenges in identifying laundering as the continuity required to recognise cycles is lost.

4.6 Conclusion

Fragmentation and disappearance of transaction patterns due to the single-bank view would sig-
nificantly impair detection rates. Complex laundering patterns such as gather-scatter, fan-in, and
cycles become partial and incomplete, making them harder to recognise. This limited visibility
could lead to increased false negatives, where suspicious activities go undetected, and false posi-
tives, where innocent transactions are wrongly flagged as suspicious.

The lack of graph connectivity and the presence of only partial subgraphs would make it difficult
to identify central nodes or high-flow transaction paths indicative of laundering. Consequently,
banks may misclassify transactions.
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Fig. 18. Gather-Scatter pattern for only bank 012.

Fig. 19. Fan-in pattern for only bank 012.

Fig. 20. Cycle pattern for only bank 012.
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5 Experiment

This section describes the experiments conducted to evaluate the models on different datasets.
Initially describing the experiment setup with the choice of performance metrics, and then the
experimental procedure where the training and validation process are described.

5.1 Experiment Setup

5.1.1 Performance Metrics

Performance Metrics. In this research, model performance was evaluated using the F1 score,
specifically focussing on the minority class. As shown in Equation 14, the F1 score is the harmonic
mean of precision and recall. Given the imbalanced nature of the dataset, accuracy is not suitable
as it can be misleading. In this case, with a minority clas of 0.1%, a model that classifies everything
as not fraud will get a 99.9% accuracy while being completely useless. Precision (Equation 15),
which measures the proportion of true positive (TP) predictions among all positive predictions
(True Positives + False Positives), and recall (Equation 16), which measures the proportion of
true positive (TP) predictions among all actual positives(True Positives + False Negatives), were
added to provide a comprehensive evaluation of the model’s performance.

F1 = 2 ∗ precision ∗ recall
precision+ recall

=
TP

TP + 1
2 (FP + FN)

(14)

Precision =
TP

TP + FP
(15)

F1 =
TP

TP + FN
(16)

WandB (Weights and Biases) [48] was used to manage and track the experiments. WandB provides
a platform for logging various metrics, visualising results, and facilitating hyperparameter tuning.
In this research, both online and offline modes of WandB were explored for different cases. The
online mode allows real-time logging and monitoring of experiments, which is useful for immediate
feedback and adjustments. However, due to issues with unstable internet connections during long-
running experiments, the offline mode was also used. In this mode, metrics were logged locally
and then synced with the WandB server once the internet connection was stable. The use of
WandB significantly improved the efficiency of the experiments, providing detailed insight into
model performance and facilitating reproducibility.

5.1.2 Dealing with the unbalanced dataset. Handling the unbalanced dataset was a critical
aspect of this study, given the low rate of illicit transactions compared to legitimate ones. The
dataset was first loaded and preprocessed to ensure that all necessary features were included. To
address the class imbalance, the CrossEntropyLoss function [34] with weighted classes was used.
This approach assigns a higher penalty to misclassifications of the minority class, thus encouraging
the model to pay more attention to illicit transactions, see Equation 17. The weights for the loss
function were calculated based on the ratio of illicit to legitimate transactions in the dataset, see
Equation 18. The goal of this method is to avoid bias towards the majority class and improving
the model’s ability to detect illicit transactions. Additionally, the above-mentioned use of the F1-
score as the primary evaluation metric should ensure that the model’s performance was accurately
assessed by focussing on the (True) Positives.
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The weighted cross-entropy loss function is defined by the PyTorch documentation for
torch.nn.CrossEntropyLoss as:

Loss(x, class, w) = − 1

N

N∑
i=1

wclassi log

(
exp(xi[classi])∑

j exp(xi[j])

)
(17)

where:

– N is the number of samples,
– xi is the input for the i-th sample,
– classi is the true class for the i-th sample,
– wclassi is the weight for the class of the i-th sample.

In this research, the weights wclassi were determined as:

wclassi =

{
1

fpositive
if classi = 1

1
fnegative

if classi = 0
(18)

where fpositive (money laundering) and fnegative (no money laundering) are the frequencies of
the positive and negative classes, respectively.

5.1.3 Computer resources The computational resources for this research included a PC with
a 13th Gen Intel(R) Core(TM) i9-13900F CPU and an NVIDIA GeForce RTX 4060 GPU. The
i9-13900F CPU handled large datasets and complex computations, and the RTX 4060 GPU sig-
nificantly accelerated deep learning tasks, reducing training times for the graph neural networks.
This setup ensured efficient data processing and model training.

5.2 Experimental Procedure

5.2.1 Model Training The training of the models involved running the selected baseline mod-
els, followed by testing and running various adaptations in combination with these baselines. The
primary models used included GIN and GAT and MLP for classification, each configured with
specific hyperparameters. The relevant hyperparameters can be found in Table 9. Most are very
similar to ensure consistency between models for comparative analysis. The wCE2 is notably higher
for the MLP model; this could be needed to handle the class imbalance, ensuring focus on the
minority class.

Table 9. Important Hyperparameters of the models.

Parameter GIN GAT MLP

Learning Rate 0.006213 0.006 0.006213
Hidden Size 66 64 66
MLP Layers 1 1 1
GNN Layers 2 2 2
Attention Heads - 4 -
Weight CE1 1.000018 1 1.000018
Weight CE2 6.275014 6 9.23
Dropout 0.009834 0.009 0.009834
Final Dropout 0.105277 0.1 0.105277

To facilitate experimentation with different model adaptations, an argument parser was used.
This parser allowed the inclusion or exclusion of specific adaptations such as those described by
Egressy et al. [19], and the added time deltas, temporal encoding, and incomplete embeddings.
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This configuration allowed for flexible unit testing and evaluation of each adaptation’s impact on
the models.

The models were trained in batches of 8192 over 100 epochs, with neighbours sampled in
descending order across multiple hops. For the single-bank datasets this was increased to 1000
epochs. For neighbour sampling, LinkNeighborLoader [17] from the Pytorch Geometric library
was used. This allowed for mini-batch training and constructs subgraphs based on a sampled set
of input edges and the neighbouring nodes based on a parameter value of number of neighbours.

A fixed random seed was used to maintain reproducibility and tqdm logging was enabled for
interactive terminal sessions.

5.2.2 Validation The validation process is critical to ensure the robustness and reliability of
the models. Temporal Train-Validation-Test Split. As explained above, the dataset was divided into
training, validation and test sets based on temporal sequences in a 60-20-20 split. This approach
ensures that the model is evaluated on future data points, which simulates real-world scenarios
where historical data is used to predict future events. Formally, let D be the entire dataset, t the
timestamp, then:

Dtrain = {x ∈ D | t(x) < t1} (19)

Dval = {x ∈ D | t1 ≤ t(x) < t2} (20)

Dtest = {x ∈ D | t(x) ≥ t2} (21)

where t1 and t2 are the temporal split points.

6 Results

This section presents the results of the experiments conducted as explained in the previous sec-
tion. The evaluation is done for both the full dataset and single-bank view datasets to provide
comprehensive insights into the models’ performance.

6.1 Full dataset

Table 10, summarises the models that were run on the full dataset and thus will be included in
this research. The run times are depicted in minutes. The models include the baseline models as
well as those enhanced with additional features such as Edge Updates (EU), Time Deltas (TD),
Time Encoding (TE), and Incomplete Information (II).

The values in Table 10 indicate that adding the adaptations to the models greatly influences
the runtime. Especially the difference between the GAT/ GIN only models and the Multi-GAT/
Multi-GIN, and the addition of edge updates (EU). Some models were excluded due to the long
runtime.

Table 10. Runtime in minutes for models run on the full dataset.

Base + EU + Time Deltas + Time Encoding + Incomplete Info + EU + TD

GAT 299 - 152 304 142 -
Multi-GAT 1616 7689 1542 - - -
GIN 252 - 188 147 130 -
Multi-GIN 1122 7216 1116 - - 8229

The results of the Graph Attention Network show that during training, see Figure 21, the
GAT+II9 (incomplete information, 9 dimensions) showed the highest performance, consistently
improving throughout the epochs, while other adaptations, such as GAT+TD and GAT+TE,
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lagged behind. In the validation phase, see Figure 22, the baseline GAT consistently outperformed
the other models, although overall F1-Scores remained low, indicating potential overfitting in
training that did not generalise well to validation. In testing, see Figure 23, the results slightly
improve over the epochs, but the variability is high, probably due to the overfitting. This shows
the need for further tuning and perhaps more methods to improve generalisation.

The F1-Score results of the Graph Isomorpism Network show that during training, see
Figure 24, GIN+TD quickly achieves high F1-Scores, reaching a level above 0.5, which signifies
effective learning. The baseline GIN, GIN+II9, and GIN+TE models follow closely with stable
scores around 0.4. In the validation phase, see Figure 25 the GIN+TD model again exhibits the
highest F1-Score, reaching approximately 0.45. The standard GIN model also shows relatively
stable performance, peaking around 0.4. In contrast, the GIN+II9 and GIN+TE models have
lower F1-Scores, rarely exceeding 0.1. These fluctuations suggest overfitting problems with these
adaptations. For testing, see Figure 26, GIN+TD continues to lead with F1-Scores consistently
around 0.4-0.5. The standard GIN model performs moderately, achieving scores around 0.2-0.3.
The GIN+II9 and GIN+TE models again perform poorly, with F1-Scores staying below 0.15,
indicating that these adaptations might not generalize well to unseen data.

6.1.1 Best F1-Score per model. The best F1-Scores for each model on the testing section of
the full dataset reveal considerable differences in performance based on the adaptions used. The
Multi-GIN model combined with EU and Time Deltas achieved the highest F1-Score of 0.6871,
indicating it is the most effective in this setup. Multi-GIN models generally performed well, with
the base Multi-GIN achieving an F1-Score of 0.6423, and with EU alone, scoring 0.6238. For the
GAT models, the highest F1-Score was 0.1959 for the baseline model. Adding any adaptations, es-
pecially time encoding, reduced its effectiveness significantly, as seen with the F1-Score of 0.04642.
The Multi-GAT model also showed strong performance, particularly with time deltas, achieving
an F1 score of 0.5309. The base Multi-GAT model had a solid performance with an F1-Score of
0.4614. The GIN model with time deltas performed notably well among the single models, with an
F1-Score of 0.5293, suggesting that this adaptation is particularly beneficial for this model. The
base GIN model achieved an F1-Score of 0.3456, while adding Incomplete Info resulted in a score
of 0.1565. Overall, these results highlight the importance of model configuration, with Multi-GIN
and Multi-GAT models generally outperforming their simpler counterparts, and the time encoding
and incomplete information adaptations leading to overfitting.

Table 11. Best Testing F1-Score of the models run on the full dataset.

Base +EU +Time Deltas +Time Encoding +Incomplete Info +EU +TD

GAT 0.1959 - 0.1814 0.04642 0.1416 -
Multi-GAT 0.4614 0.4154 0.5309 - - -
GIN 0.3456 - 0.5293 0.1089 0.1565 -
Multi-GIN 0.6423 0.6238 0.611 - - 0.6871
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Fig. 21. Line plot of the F1-Score of the GAT models training.

Fig. 22. Line plot of the F1-Score of the GAT models validation.

Fig. 23. Line plot of the F1-Score of the GAT models testing.
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Fig. 24. Line plot of the F1-Score of the GIN models training.

Fig. 25. Line plot of the F1-Score of the GIN models validation.

Fig. 26. Line plot of the F1-Score of the GIN models testing.
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6.2 Single bank results

The single-bank view was evaluated to understand the impact of limited data visibility on model
performance. Table 12 summarizes the runtime in seconds for the models run on datasets from
individual banks (012 and 001). Here, the run times are much more similar, suggesting that the
computation load difference is less influenced when the dataset is smaller. This could be due to
the extra communication load from more batches for the full dataset.

Table 12. Runtime in seconds for models on the single-bank datasets.

Baseline Time Deltas Time Encoding Incomplete Info TD+II TE+II

GAT Bank 012 338 339 337 342 338 343
GIN Bank 012 307 317 321 371 315 369
GAT Bank 001 326 338 340 338 330 345
GIN Bank 001 311 308 318 316 307 311

The Graph Isomorphism Network models show varied performance in the training, vali-
dation, and testing phases. During training (Figure 27), the GIN+TE+II9 model achieves high
F1-Scores quickly, stabilising around 0.95. Other adaptations, such as GIN+TD+II9 and GIN+II9
also show improvements, reaching similar F1-Scores. The baseline GIN model starts slower but
eventually catches up to around 0.9. In validation (Figure 28), models with II reach double the
F1 scores than those without, but overall performance is poor. During testing, see Figure 29, the
GIN+TD+II9 model maintains a slight lead with F1-Scores up to 0.2, although all models perform
poorly, indicating overfitting.

The Graph Attention Network models also show varied results. During training (Figure
30), models with the incomplete information adaption perform the best, reaching F1-Scores over
0.9. GAT+TD and GAT+TE models improve more slowly, peaking around 0.5, while the baseline
GAT model struggles, only achieving around 0.3. In validation (Figure 31), the GAT+TE+II9
model slightly outperforms others with F1-Scores up to 0.35, while other models score between
0.1 and 0.2, also indicating overfitting on the limited dataset. Lastly in testing (Figure 32), the
GAT+TD+II9 model leads with F1-Scores around 0.2, followed by GAT+TD and GAT+II9 mod-
els. The GAT+TE and GAT+TE+II9 models perform the worst, with scores around 0.05.

6.2.1 Best F1-Score per model. The best F1-Scores for each model on the testing section of
the single-bank datasets show considerable performance variations based on the added adaptations.
For GAT models on Bank 012, the highest F1-Score of 0.3226 was achieved with the combination
of time deltas and incomplete information (TD + II), outperforming the baseline score of 0.1.
In contrast, GIN models for the same bank reached their highest F1-Score of 0.2143 with time
encoding and incomplete information (TE + II). For Bank 001, the GAT model with incomplete
information alone achieved a high F1-Score of 0.5316, compared to the baseline of only 0.1633.
GIN models for Bank 001 saw their maximum F1-Score improve from 0.3492 (baseline) to 0.4719
with the addition of incomplete information. These results highlight the varying impact of different
adaptations, with configurations like TD+II proving particularly beneficial across different banks.

Table 13. Best Testing F1-Score of the models run with single-bank datasets.

Baseline Time Deltas Time Encoding Incomplete Info TD+II TE+II

GAT Bank 012 0.1 0.2752 0.08163 0.25 0.3226 0.2456
GIN Bank 012 0.09756 0.14 0.2029 0.1282 0.2121 0.2143
GAT Bank 001 0.1633 0.1404 0.04651 0.5316 0.5 0.386
GIN Bank 001 0.3492 0.1695 0.1918 0.4719 0.2933 0.4138
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Fig. 27. Line plot of the F1-Score of the GIN models training on the single-bank view dataset.

Fig. 28. Line plot of the F1-Score of the GIN models validation on the single-bank view dataset.

Fig. 29. Line plot of the F1-Score of the GIN models testing on the single-bank view dataset.
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Fig. 30. Line plot of the F1-Score of the GAT models training on the single-bank view dataset.

Fig. 31. Line plot of the F1-Score of the GAT models validation on the single-bank view dataset.

Fig. 32. Line plot of the F1-Score of the GAT models testing on the single-bank view dataset.
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7 Discussion

Based on the analysis on the dataset that represents the single-bank view and the experiments
with the graph neural networks and added adaption, this section will discuss the results in the
broader context of the problem.

7.1 Comparison of Full Dataset and Single Bank Results

The single-bank view analysis underscored the significant challenges posed by limited data visibil-
ity. Visualising and training the data from the perspective of individual banks (in this case Bank
012 and Bank 001) revealed substantial fragmentation of the laundering patterns. Here, two main
conclusions can be drawn:

Pattern Disruption: Complex laundering patterns such as gather-scatter and fan-in often ap-
pear incomplete or entirely lost when viewed from a single bank’s perspective. This fragmen-
tation complicates the detection of suspicious activities and increases the risk of both false
positives and false negatives.
Model Performance: The models trained on single-bank datasets exhibited overfitting issues,
with high training F1 scores but significantly lower validation and testing scores.

The comparison with the full dataset was made to support the conclusions made from the
single-bank view. The overfitting could, and partially does, indicate that the time encoder adap-
tion overfits the model and does not improve performance. However, the incomplete information
adaption shows poor performance on the full dataset but improves the F1-score when working
with the partial networks.

This is mainly for comparative purposes, since the incomplete data overfits and performs
poorly overall. The conclusion can be drawn that, in addition to overfitting, the models are mainly
trained incorrectly. The labelled patterns no longer represent the patterns that they are labelled
as. Therefore, the model might learn the correct representation that is fed, but not the correct
representation of the fraudulent patterns.

7.2 Implications for AML Detection

The findings highlight the significant challenges for AML detection when not able to share transac-
tion data amongst banks. Machine learning models require the majority of the data to accurately
identify suspicious patterns. Incomplete transaction data, as seen in the single-bank view, leads
to partial and reduced laundering patterns that models struggle to interpret. This leads to the
conclusion that some form of sophisticated data-sharing mechanisms or legislative changes are
required to allow broader data access in order to enhance the effectiveness of AML efforts.
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8 Conclusion and Further Research

This research highlights the critical importance of having access to comprehensive transaction
data for effective anti-money laundering (AML) detection using machine learning models. Models
trained on the complete dataset, in this case Multi-GNN models such as Multi-GIN with edge
updates and time deltas, significantly outperformed those with limited single-bank data. The find-
ings emphasise the need for improved data sharing frameworks and legislative support to enhance
AML detection capabilities. Addressing the limitations and opportunities related to data visibil-
ity, temporal modelling, and incomplete information adaptions is essential to improve transaction
monitoring systems and reduce labour costs.

The challenges and limitations during this research revolved around access to a represen-
tative dataset, finding transparant previous research and implementations, and the high compu-
tational demands of training complex GNN models on large datasets.

– Quite early on it was clear that real transaction data could not be shared and used for this
research. The search for a suitable synthetic dataset was complicated by the requirements
for this research. The dataset needed to contain recognisable patterns, multiple banks, and a
large volume of labelled transactions. With the synthetic nature of the dataset comes that,
while useful for research, it may not fully capture the complexities of real-world financial
transactions. The experiment’s reliance on predefined laundering patterns also limits its ability
to generalise findings to more diverse or evolving money laundering tactics.

– To be able to focus on the addition of components to the models and perform comparative
research, an existing baseline was required. These models needed to be properly supported
by papers and have an implementation available online (e.g., on GitHub). The challenge was
the limited number of published implementations and the quality of those available. Many
implementations contained errors, and the results described in the papers were difficult to
reproduce accurately.

– Training on a dataset of over 5 million records with heavy-to-train graph neural network
models could take up to a week. Some models (PNA) took more than four hours per epoch,
resulting in an estimated computational time of almost three weeks.

The findings of this research highlight several critical areas for further research and poten-
tial improvements:

– Integration of data across financial institutions: Waiting for legislative changes to allow more
comprehensive data sharing between banks could enhance the ability to detect money laun-
dering tactics that are dispersed. However, a more active approach would be to study the
possibilities of sharing data more privately. An opportunity could lie in the incomplete infor-
mation adaption, where the broader structural information is added as embeddings. If financial
institutions could share just the graphical data of anonimized nodes and edges, another in-
stitution (e.g., TMNL) would combine there graphs with the other banks (they would have
no data even remotely referring to account holders). Then they would make the structural
representation (incomplete information adaption) embeddings of the full picture and share
this with the individual financial institutions.

– Enhanced Temporal Modelling: Further research into temporal adaptations that can better
capture the timing and sequence of transactions is necessary. This includes exploring more
sophisticated time encoding techniques that can better generalise.

– Explainability and Transparency: Ensuring that ML models used in AML efforts are explain-
able is critical for regulatory compliance and stakeholder trust. Future work could focus on
integrating advanced explainability techniques to make model decisions more interpretable.

The significant drop in performance with single-bank data highlights the limitations imposed
by data privacy regulations. Sophisticated ML algorithms alone are not sufficient to mitigate these
limitations; some form of data sharing is necessary.
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If a real-world dataset were available, the next steps would involve validating the current find-
ings against real-world data to assess the generalizability and practical applicability of the models.
This would include focusing on the incomplete information adaptation, which has shown promise
in the context of the single-bank view. By validating these models with actual transaction data,
researchers could fine-tune the models to address any emerging challenges and further enhance
their effectiveness.

The focus would then shift to exploring anonymised data-sharing methods, such as embedding-
based approaches, which could provide a way to enhance AML detection while adhering to legal
and privacy regulations. Such methods would allow financial institutions to share structural trans-
action data without compromising individual privacy, potentially leading to more robust and
comprehensive AML systems.

In conclusion, while synthetic datasets provide a useful starting point, the availability of real-
world data is crucial for advancing AML detection capabilities. By addressing the limitations
highlighted in this research and focusing on practical implementation, the AML community can
move towards more effective and efficient transaction monitoring systems.
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Appendix A Graphs patterns for only bank 012.

Fig. 33. Scatter-Gather pattern for only bank 012.

Fig. 34. Fan-out pattern for only bank 012.

Fig. 35. Random pattern for only bank 012.
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