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Management Summary 

Credit risk on portfolio level is estimated using a statistical model with the ‘probability of 

default’ or PD as the main parameter. In this context parameter uncertainty concerns the 

inability to make an accurate estimation of the required capital due to insufficient data. It is 

shown that the calculated required capital for an assumed risk level is in fact underestimated. 

However parameter uncertainty is only (seriously) present in small portfolios (<200 obligors). 

If taken into account parameter uncertainty for these small portfolios, the additional capital to 

be held may be higher if one can make a reliable estimation of the economic state in previous 

years. Not making the assumption of correct estimation of the economic state, additional capital 

could be great as well. The correct estimation of the economic state poses a challenge, as this is 

not straightforward and the economic state variable contains parameter uncertainty as well.  

The numbers in this report are only an indication of a possible impact, as the results are 

dependent on a number of strong assumptions. The capital not incorporating parameter 

uncertainty only uses default rate data and an economic state variable, but in practice more 

information is available and used to calculate the capital requirement. That is we ignore the fact 

that in practice PDs are estimated via a mathematical model in combination with expert 

judgments. While in this report we assume that the mean of historical default rates are directly 

used as an estimate. Finally in practice conservatism is included in determining the capital to be 

held. The conservatism takes into account the uncertainty in the estimate of the required capital 

and includes parameter uncertainty. Further research to take into account this conservatism 

and the different PD models in banks, can be conducted to actually determine whether more 

capital is required or not. 
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1 INTRODUCTION† 
 

In the past two decades the awareness towards risk management increased from the 

institutional as well as from the regulatory perspective. The Basel Committee on Banking 

Supervision (BCBS), based at the Bank for International Settlements (BIS), was established by 

the central banks of the Group of Ten countries (G10) and formulates recommendations on 

supervisory standards and guidelines on banking laws and regulations. Although the Basel 

Committee doesn’t hold any official authority, due to its broad composition of national 

governments and central banks, recommendations are followed and enforced by law by 

practically all individual regulating authorities over the world.  

In 1988 it introduced a capital risk measurement system known as the Basel Capital Accord or 

Basel I, which focuses primarily on credit risk and required banks to hold a minimum of 8% 

capital of its risk weighted assets (enforced by the end of 1992) to cover unexpected losses. The 

second Capital Accord called Basel II made further advancement in risk measurement, it was 

introduced in 2004 and put into force by 2008. The more comprehensive accord ensured capital 

allocation to be more risk sensitive, separating measurement in credit, market and operational 

risk and enhanced disclosure requirements allowing market participants to asses capital 

adequacy of banks. 

With the introduction of Basel II, financial institutions are given the choice to follow either the 

standardized approach or the Internal Ratings-Based (IRB) Approach to credit risk 

measurement. The IRB approach encourages to think actively about risk management by 

demanding banks to develop their own statistical models for the calculation of the risk weighted 

assets. These models are built and based on knowledge within banks, however approval is 

needed from the relevant regulator. As a consequence methodologies need to be substantiated 

by banks. The choice for IRB is beneficial as the minimum capital requirement may be less.  

From the bank’s perspective adequate credit risk assessment is essential as the goal of credit 

risk management is to correctly measure credit risk such that one is able to maximize the risk-

adjusted return on capital (RAROC) while maintaining credit and other risk exposures within 

acceptable parameters [1] . The risk-adjusted return on capital is influenced by the amount that 

the bank sets asides to cover credit risk at portfolio level that is the total losses due to the 

fraction of the obligors that defaults. The total allocation is determined by the risk appetite of 

the bank and its risk assessment of their portfolio. 

Another motivation for banks lies in the ratings they receive from external agencies like 

Standard & Poor’s (S&P), Moody’s, Fitch and the Dominion Bond Rating Service (DBRS). The 

higher the rating, the safer a bank is perceived by investors, consumers and regulators which 

results in lower funding costs. On top credit ratings affect the faith of one bank in the other. 

Lower rated banks are perceived as having a higher default risk and therefore financial 

transactions with the relevant bank might be limited and/or at a higher cost.  

                                                             
† This chapter is based on the BIS website [1] and The Dutch Central Bank [2]. 
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These developments have stimulated the risk awareness and measurement within the banking 

industry. A closer specification of risk is possible and a desired risk appetite can be further 

quantified. Depending on their risk appetite banks can hold the minimum capital requirement 

or more. The more capital is set aside to cover losses, the less capital is available for profitable 

investments. However the less capital is available for losses, the higher the probability of 

insolvency and ultimately bankruptcy.  

In the light of accurate risk measurement, this paper will focus on credit risk. The total capital 

requirements for banks was €77 billion in the first quarter of 2010 for the whole Dutch banking 

industry, while 88% of this sum amounted to credit risk [2].  

In this thesis on portfolio credit risk, the Asymptotic Single Risk Factor (ASRF) model plays a 

central role. It is prescribed by regulators for banks that adopt their own internal risk models to 

quantify capital requirements for credit risk. In practice the parameters of the ASRF model are 

estimated from historic data, point estimates are used for inference. Implicitly one assumes that 

these estimated parameters are true, that is the estimated parameters equal the true 

parameters. Making this assumption and thus neglecting parameter uncertainty causes 

erroneous estimates of the true value that is at risk [14]. 

A distinction must be made in the type of parameter uncertainty, one uncertainty concerns 

sampling error or noise due to limited data. For any consistent estimator in combination with 

infinite data, the consistent estimator equals the true parameter that one seeks. However when 

data becomes finite, a consistent estimate is in general not equal to the true parameter. The gap 

between the consistent estimate and the true parameter is a consequence of sampling error or 

noise. The other type of parameter uncertainty relates to the evolution of parameters over time, 

i.e. the population characteristics today has changed compared to the population characteristics 

yesterday.  

The goal is investigate parameter uncertainty due to sampling error. This is done by assessing 

the gap between the estimated value at risk and the true value that is at risk for a bank. 

Additionally the goal is to estimate the value at risk that incorporates parameter uncertainty. 

 

1.1 RESEARCH QUESTION 
We formulate the problem around parameter uncertainty into formal research questions.  

Main research question 

 How can parameter uncertainty in credit risk be dealt with? 
 

Sub questions 

I. What is known in the literature about parameter uncertainty? 

II. What is the impact of parameter uncertainty on the ASRF model? 

III. How can parameter uncertainty be incorporated? 

 

1.2 OUTLINE THESIS 
In the next chapter We shed some light on the upcoming of risk management within banks and 

the resulting accords that have been introduced with the main focus on credit risk. The credit 
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risk model used in the advanced approach is based on the ASRF model, which will be derived in 

chapter 3. Capitalizing on the ASRF model we show results relevant for usage in quantifying 

parameter uncertainty. Chapter 4 gives an overview of relevant research conducted in this 

thesis, answering research question I. Chapter 5 highlights the theory on Bayesian statistics and 

its differences with the more familiar frequentist statistics. In chapter 6 the methodologies to 

investigate parameter uncertainty are explained, one conditioning the information on the 

economic state of the available data and one not capitalizing on this information. After which in 

chapter 7 the results are displayed for artificial generated data according to the ASRF model, 

answering research question I and II. The last paragraph of chapter 7 is devoted to the 

application in real portfolio data. Finally the conclusions in chapter 8 summarizes the findings 

in this thesis. 
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2 THE BASEL ACCORDS† 
 

When the Organization of Arab Petroleum Exporting Countries (OAPEC) announced an oil 

embargo by the end of 1973, crude oil importing prices increased dramatically for West-

European countries. The already unfavorable trade balance produced unprecedented deficits. 

The financing of the deficits was primarily managed by Euro currency markets with a key role 

for commercial banks. The embargo increased the speculation on the foreign exchange rate 

resulting in sharp fluctuations including the exchange rate between the Deutsche Mark and US 

dollar. 

Some banks benefited from the resulting speculations on the foreign exchange rates whereas 

others incurred heavy losses. In the early Wednesday morning on the 26st of June in 1974, 

German regulators closed the Herstatt Bank, one of Germany’s largest private banks primarily 

active in the foreign exchange market. Reportedly annual turnover in foreign transactions by 

the Herstatt Bank was over 60 billion Deutsche Mark a year. It is known now that this relatively 

large turnover was mainly a churning of losses accompanied by bookkeeping misconduct.    

Many banks sold before and also on that 26th of June European currencies such as the Deutsche 

Mark to the Herstatt bank in exchange for delivery of US dollars on the 26th of June (spot 

contracts) or later. However having paid their leg of the transaction, they never received the 

other leg in dollars. This particular risk on failure in settlements of contracts was from then 

known as Herstatt or settlement risk.  

The failure led to concerns of financial institutions’ assessments of the inherent risks of their 

businesses along with German policy makers losing some of their confidence on the reliance of 

the market-orientated discipline. Even though Herstatt bank was (internationally) not a major 

player, foreign exchange markets were disrupted. International currencies went to certain big 

banks mostly located in New York while the same banks delayed and avoided foreign exchange 

deals with any suspicious European or Asian banks. 

These developments and the desire to level the playing field internationally has led to the 

establishment of the Basel Committee in the same year Herstatt failed, with the main 

responsibility to improve the banking supervision worldwide. In 1988 the first capital accords 

were accepted by all member states with implementation in the industry by the end of 1992. 

 

2.1 BASEL I 
The first accord specified the required capital to cover the unexpected losses to be 8% of its risk 

weighted assets (RWA) and exposures, where capital is distinguished into two tiers. The Tier 1 

or core capital consists of equity capital and disclosed reserves while other capital, the 

supplementary capital or Tier 2 capital is considered capital of lower quality. It included 

undisclosed reserves, revaluation reserves, general provisions, hybrid capital instruments and 

subordinated debt. Tier 2 capital was restricted to 100% of the tier 1 capital, so that the higher 

                                                             
† The opening is based on Goodhart [3], Kaufman [4] and Becker [5]. For more information on Basel I see 
BCBS [6], for Basel II see BCBS [7,8] and for Basel III see BCBS [9,10].  
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quality tier 1 capital would be at least 50% of the core capital or at least 4% of the risk weighted 

assets.  

Furthermore deductions of the core capital were applied consisting of goodwill and investments 

in subsidiaries engaged in banking and financial activities which are not consolidated in 

national systems. 

The assets and off balance sheet exposures are weighted according to broad categories of 

relative riskiness , with 5 different weights of 0%, 10%, 20%, 50% or 100%.  

For example: 

- 0% weight applies to cash, claims on national governments in national currencies. 

- 0%, 10%, 20% or 50% weights (determined by the national regulator) for claims on 

banks incorporated in the OECD and loans guaranteed by OECD incorporated banks. 

- 50% weight to loans fully secured by mortgage on residential property that is or will be 

occupied by the borrower or that is rented. 

- 100% weight to claims on the private sector and claims on commercial companies 

owned by the public sector.   

 

2.2 BASEL II 
The revised framework, Basel II, made significant changes and consisted of three pillars. Pillar 1 

consisted of the minimum capital requirement to cover unexpected losses distinguishing credit, 

market and operational risk, calculating the capital requirements each separately. Pillar 2 

covers the supervisory review process including residual risks not covered in the first pillar. 

The last pillar treats market discipline and disclosure requirements allowing market 

participants to gauge the bank’s capital adequacy. 

Our focus lies with credit risk and consists of two different approaches the first a simple and the 

second a more sophisticated approach: 

1. The Standardized approach (SA) 

2. The Internal Ratings-based approach (Foundation-IRB or Advanced-IRB) 

The simplest method, the standardized approach is based on risk weights dependent on 

external credit risk ratings issued by rating agencies. This allowed a more risk weighted 

approach as weights were determined not only by type but also by their credibility. For example 

the risk weights for claims on sovereigns and corporate companies are stated in the tables 

below. 

Credit assesment AAA to AA- A+ to A- BBB+ to BBB- BB+ to B- Below B- Unrated 
Risk Weight 0% 20% 50% 100% 150% 100% 

Table 1 Risk Weights for sovereigns and central banks 

Credit assesment AAA to AA- A+ to A- BBB+ to BB- Below BB- Unrated 
Risk Weight 20% 50% 100% 150% 100% 

Table 2 Risk Weights for corporate companies 
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Another difference is the weight of 150% in the standardized approach, where the maximum 

weight in Basel I is 100%. The weights are further increased for assets with higher risk such as 

securitization tranches rated between BB+ and BB- at 350% risk weight. The ratings follow 

Standard & Poor’s notations, but ratings of other agencies satisfying certain criteria are allowed 

as well. A minimum capital ratio of 8% of the risk weighted assets (RWA) is required by the 

Basel Committee for banks to keep aside. The capital requirement   for credit can thus be 

determined by:  

 
                                           

 

                                                           

              

 

 

Table 3 Standardized approach  

In the Internal Ratings Based approach, the capital requirement is calculated using the ASRF 

model for five broad classes or portfolios of assets: a) corporate, b) sovereign, c) bank, d) retail 

and e) equity and are each further subdivided in sub-classes. The parameters PD, LGD and EAD 

(and also M the effective maturity) in the ASRF model are allowed to be estimated by internal 

developed models subject to some minimum standards while in the Foundation Internal Ratings 

Based approach only PD is estimated internally using regulator’s estimates for the other 

parameters. The derivation and explanation of the parameter will be treated in chapter 3. 

Furthermore in the IRB approach for credit risk a scaling factor of 1.06 is used to broadly 

maintain the aggregate level of minimum capital requirements. while it also provides incentives 

to adopt the more advanced IRB approach. For the classes corporate, sovereign and bank 

exposures the following formulas hold:   

 
                                                                       

                                          
 

                                            
 

Table 4 IRB approach 

The expected losses are subtracted from the ‘Value at Risk’ as  the capital requirement is meant 

to cover the unexpected losses. The calculation of the Value at Risk, the expected and 

unexpected losses will also be treated in chapter 3. For the classes corporate, sovereign, bank 

and retail exposures not in default or hedged is calculated by PD times LGD times EAD. As one 

can observe the total capital requirement is proportional to EAD and LGD while these are 

calculated separately. Finally the RWA can be calculated to compare the scaled capital 

requirement with the capital requirement in the standardized approach. 

The Value at Risk (VaR)  is one well known measure to asses risk and is specified with a 

confidence parameter         parameter (typically low) and for a specific time horizon.  
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Where         denotes the quantile function which returns the         quantile. 

The quantile function is defined as                       , where X is the random 

variable having cumulative distribution     .  

Now we get                                                    

                                           

Definition Value at Risk(VaR) 

                                                                          * 

 

Thus the VaR is defined as the         quantile of the total portfolio loss distribution. 

 

For the VaR the Dutch regulator has set the time horizon at one year with       . In practice 

the term Regulatory Capital (RC) is used and is defined to be the capital requirement set out in 

table 3 or 4 depending on the choice of approach.  

 

Next to RC banks calculate the Economic Capital (EC), this is the amount the bank is willing to 

set aside determined by the bank’s individual risk appetite when there is no regulation. In 

practice EC is always equal or larger than RC, this provides an additional loss buffer on top of 

the amount for RC and will also determine for a large part the credit ratings assigned by 

external rating agencies.  

 

2.3 PARAMETER UNCERTAINTY IN BASEL II 
The estimates of VaR is highly sensitive to deviations from estimates of the probability of 

default (PD) . In the graph below we plotted the VaR measure against different PD, it is clear 

that an erroneous estimate of the PD has huge impact on the VaR, especially for portfolios with 

smaller PDs. 

 

 
Figure 1 VaR with asset correlation at 0.20 

 

                                                             
* This is identical to the definition of Value at Risk in [11]. 
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We zoom further in on a portfolio with true PD=0.03 but is estimated ranging from 0.01 to 0.05. 

Observe that the VaR as a function of PD is concave so that the derivative is decreasing, i.e. 

deviations from the true VaR that is larger for underestimation than for overestimation of PD. 

 

The deviations are large for the PD estimated incorrectly on the down side banks can be 

undercapitalized by 50%, which would serious endanger banks in down turn economies. While 

estimates on the up side would mean that banks would be holding more capital than needed up 

to 33%.    

 
Probability of 

default 

0.01 0.02 0.03 0.04 0.05 

Value at Risk -50% -22% base 18% 33% 

Table 5 Impact of wrong estimates of the PD (0.2 correlation) 

The impact of lower asset correlations is relatively small, for example with the same true 

PD=0.03 but changing the asset correlation to 0.1 adds only 2-8% extra to the range of 0.01-0.05 

for the PD. Thus impact of underestimation and overestimation of the VaR is mainly driven by 

the uncertainty in estimating the PD. .  

Probability of 

default 

0.01 0.02 0.03 0.04 0.05 

Value at Risk -55% -25% base 22% 41% 

Table 6 Impact of wrong estimates of the PD (0.1 correlation) 

 

2.4 TOWARDS BASEL III 
As the full commitment of all member states of the G20 to fully adopt the Basel II agreements 

was set in 2011, the development of its successor named Basel III continued. In July 2009 the 

measurement of risks related to securitization and trading book exposures were agreed and in 

December 2010 the committee released Basel III. In the new capital accord higher levels of 

capital requirements are set and a new global liquidity framework is introduced. The members 

agreed to start implementation of Basel III in 1 January 2013 in phases, with the final phase 

implemented by 2019. 

The phasing refers for example to the minimum common equity requirement in Basel II being 

only 2% but gradually increasing to 3.5% by January 2013, 4.0% in January 2014 and finally 

4.5% in January 2015. The common equity is part of the Tier 1 capital requirement, where the 

Tier 1 must increase from 4% to 6% in the same period. New is the capital conservation buffer 

set at a minimum of 2.5% to be kept aside, which is to absorb losses during periods of stress.  

During these periods of stress banks are allowed to draw from this buffer, but when capital gets 

closer to the minimum regulatory capital constraints, the tighter the regulation will be on the 

respective bank. New is also a countercyclical buffer which is implemented to protect the banks 

from periods of excess credit growth, a requirement set by national regulators in the range of 0-

2.5% of common equity or other fully loss absorbing capital. 

For the new global liquidity framework the liquidity coverage ratio (LCR) will be introduced in  

January 2015 and the net stable funding ratio will move to a minimum standard by January 

2018.   
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Banks that pose a potential threat to the stability of the financial sector, so called system banks 

will be required to hold additional capital. The exact details are not known yet, but this and the 

above mentioned increasing capital requirements have a positive effect for banks to absorb 

unexpected losses while the capital requirement based on the ASRF model to absorb 

unexpected losses in Basel II will remain in the Basel III framework. 
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3 CREDIT PORTFOLIO MANAGEMENT* 
 

One important characteristic on the choice of credit risk models for regulatory supervisors was 

that credit risk models should be portfolio invariant. That is the capital required for any given 

load should only depend on the risk of that loan and must not depend on the portfolio it is 

added to [3]. The desired characteristic turns out to have a strong influence on the structure of 

the portfolio mode, it is essentially shown [19] that the ASRF models are portfolio invariant.  

 

Consequently for researching the impact of parameter uncertainty of credit risk at the portfolio 

level, the ASRF model will be used.  

 

In the ASRF model credit risk is determined by a set of parameters or risk components, which 

are assumed independent of each other. Each parameter is estimated using an internal model 

specific for the portfolio. 

 

        ,the  probability of default. 

       , the correlation between obligors have equal pair wise correlation. 

         , the loss given default denoted in a fraction of the loss (sometimes the recovery rate 

is used, which is one minus the LGD).   

      , the exposure given default denoted in money units. 

 

The correlation parameter has been chosen by the Basel Committee to be a deterministic 

constant or a deterministic function of the   . For example in residential mortgage exposures 

(retail) the correlation parameter is set at 0.15. For the classes corporate, sovereign and bank, 

correlation is determined by a function mapping it between 12% and 24% [7]. 

 

                    

        
        

      
 

 

Some adjustments are permitted such as for small and medium sized companies (the corporate 

class) where the correlation is adjusted downwards depending on the annual sales.  

 

We will research the impact of the parameter uncertainty by    only, making the assumption 

that  ,     and     are known and deterministic. 

 

3.1 THE ASRF MODEL 
The total loss distribution of the credit portfolio is modeled using the Vasicek model. A portfolio 

is considered which consists of n identical obligors (from a credit risk perspective), each with an 

exposure of 1/n (the total exposure equals one). The asymptotic case is considered in which  

   , so that the portfolio is perfectly fine-grained or perfectly granular. 

  

                                                             
* The ASRF model is based on a paper of Vasicek [11]. This chapter gives careful derivation and extends 
the results. 
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At time 0 all obligors’ assets are equal in value after which each individual obligor’s asset 

evolves in its own way. At a later time point the value of each obligor is evaluated. An obligor is 

in default at this later time point whenever the value of its assets is below a certain threshold at 

the time of the evaluation. Thus the value of its assets       is a direct measure of the credit 

condition of each obligor i at time t.      changes continuously over time t and satisfies the 

following stochastic differential equation (SDE) for i=1,…,n and t≥0: 

 

                           

                                         

 

The SDE has an explicit solution given by: 

 

            
   

  

 
                 

 

 

Which is known as the Geometric Brownian Motion with        the starting value of the process 

and constants    (called the drift),   which scales the volatility of the Brownian motion and 

     over which the value of the assets of each obligor is reevaluated. The constants       ,  , 

  and   are considered to be fixed and identical for all n obligors.  

 

Each obligor’s asset value is determined by each obligor’s individual Brownian motion. From 

the properties of Brownian motion it follows that each      is             distributed. The 

Brownian motions between the obligors are assumed to be jointly normal and correlated with 

linear correlation coefficient  .  

 

The dependence between the obligors can be modeled as follows: 

 

                

                              

                       

 

Furthermore we have set    , that is we take an evaluation period of 1 year time following the 

Basel II framework. As a consequence the Brownian motion processes      turn into a      

variable which follow a standard normal distribution for each individual obligor i. 

  can be interpreted as the common factor and models the systematic risk, while    is the 

idiosyncratic factor modeling the unsystematic risk of each individual obligor.  

 

We fill this in the original explicit solution of the SDE of the asset process: 

 

               
  

 
                

 

The log is often taken to get the log asset value: 
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From this we infer that the log asset value is normally distributed or that the asset value is log 

normally distributed. 

Now there is a default in one year time if the asset value of obligor i goes below the barrier 

               (all obligors are identical, so are their default points): 

 

                       
  

 
                      

           
                    

  

 
 

 

 

3.1.1 PROBABILITY OF DEFAULT 
Now we want to find the probability of default, PD from one year time. 

 

                                         
                    

  

 
 

 

   
                    

  

 
 

  

 

Since                        and where      denotes the standard normal cumulative 

distribution function. From this we infer that: 

 

        
                    

  

 
 

 

  

        is the (standardized) default point and    is the unconditional one year probability of 

default. 

 

3.1.2 CONDITIONAL PROBABILITY OF DEFAULT 
Often the PD is conditioned on the common factor   , as we will show the conditional PD is a 

function of the unconditional PD and the correlation coefficient  . In that case the constants   

and   are not needed.  It can be rewritten as follows: 
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It follows that the PD conditioned on the common factor is given by: 

 

                              
           

    
       

 

Conditioned on the common factor, the loss on obligor i denote    , is Bernoulli distributed with 

parameter     . One can interpret the common factor as the state of the economy, given a high 

common factor or given a high state of economy, the conditional probability of default is lower 

than in a lower state of economy.  

Notice we have just given the conditional probability of default as a function of the common 

factor and the unconditional probability of default which can be interpreted as the long term 

default rate throughout the whole economic cycle. The probability of default conditioned on the 

common factor is also known as the point in time PD (PIT PD) while the unconditional 

probability of default is also known as the through-the-cycle PD (TTC PD). The plot below shows 

the conditional PD varying the common factor using a correlation 0.2. 

 

 
Figure 2. The conditional PD as a function of the PD=0.03 and the common factor 

 

The formula can be seen the mapping of the economic state and the through the cycle PD 

towards a point in time PD. This gives the observed default rate depending on the prevailing 

economic state at a particular point in time. This formula will be used to switch between the 

conditional probability of default and the unconditional probability of default. 

 

3.1.3 THE EXPECTED LOSS 
The expected loss (EL) of obligor i assuming a deterministic LGD and EAD and independence 

between them is given by: 

 

                                

 

For non independence see Kupiec (2008). 
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3.1.4 THE TOTAL LOSS DISTRIBUTION 
The total loss, denote   , is the sum of all the individual obligor’s losses. 

 

   
 

 
   

 

   

 

 

Conditioning on the common factor, the      are independent and identically distributed. 

 

           
                                                       
                                                   

  

 

So that the sum of the individual obligor’s loss,             
 
    is a sum of n independent 

                variables which is                  distributed. As    ,       is 

normally distributed by the Demoivre-Laplace limit theorem with the same mean and variance , 

see chapter 5.4.1 of [13].  

 

Thus the conditional distribution of the total loss is                  
            

 
  and 

the variance tends to 0 as     . For large n, the distribution is given by           

              and                        . And as    , the conditional total 

loss equals its expectation,               . 

 

This result is compatible with proposition 1 from [19], in which the distribution of the total loss 

   given the common factor     converges (almost surely) to the conditional expectation of 

the loss           
           

    
  as    . The proposition holds under two general 

conditions which are met in the ASRF model. According to Gordy, this result implies that in the 

limit one only needs        to answer questions about the unconditional distribution of the 

total loss in the asymptotic case.  

 

The unconditional distribution of the total loss                      

                                                  .  

 

The inverse function is given by:         
                     

  
, so that 

                      
                  

  
    

 

3.2 VALUE AT RISK 
Now the portfolio        is calculated, it is defined as                               . Since the 

total loss distribution is continuous,                                            can be 

replaced with                                        . Thus we can find         

from the following equation:                                       .  
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We derive       , it follows from the equation:  

 

                  

                     

                  

                  

 

 

 

 

So that the one year VaR at      -level          
                

    
  

This can be interpreted as the long term VaR, long term meaning the required VaR throughout 

the economic cycle. This homogeneous result holds also for a heterogeneous portfolio under the 

granularity assumption which follows from results in [19]. 

 

Up till now we have assumed that    is deterministic. One way to quantify parameter 

uncertainty around    is by replacing the deterministic    by a random distributed    in the 

final expression of the VaR. Consequently the one year VaR becomes a distribution too. Of this 

distribution we could look at the expected one year VaR at      -level:              

    
                

    
     , where    is a random variable.  

 

However simply replacing the deterministic    with a distributional    in the last step is not 

valid, as the the Var is a non-linear function of PD and the steps to derive the VaR would be 

different with a distributional   . In the next section the bias in the estimation of the VaR is 

exposed when in the estimation of the VaR the PD is simply replaced by an unbiased estimator 

for the PD.  

 

3.2.1 THE UNBIASED ESTIMATED VAR IS BIASED DOWNWARDS 
In practice the VaR is estimated by estimating the parameter PD. Let the ‘true VaR’       

     be 

the VaR that a bank is interested in and let the ‘true PD’ be the unobservable parameter PD that 

calculates the true VaR. The true PD is estimated by an unbiased estimator, resulting in an 

‘estimated VaR’       
         . 

 

For example let the true PD=0.03 and the data at hand are five observed default rates 

                                         generated by the true PD. One unbiased estimator of 

the true PD is the average of the observed default rates 
          

 
 so that the unbiased estimate 

is 0.032. The       
          is then calculated using the derived formula 

         
                

    
  and filling in the unbiased estimate for   . 

 

Let   be the sampling distribution of an unbiased estimator of the true parameter PD, then the 

expected estimated VaR based on unbiased estimates  , i.e.              
         ,  will be 

strictly smaller than the true VaR.   
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We can see the VaR as a function of  , we write          
               

    
 ,  we will show 

that                     or         
                 

    . Where      is the expectation of 

the unbiased estimator and is by definition the true parameter PD, hence           is the true 

VaR. And       
          is the VaR based on the unbiased estimator of PD. The term           is 

the expected VaRs based on the unbiased estimates. 

 

A Taylor expansion is utilized to expose the tendency for       
          to underestimate. 

 

We approximate              around        . 

                          
        

  
           

        

  
              

 

Where       is the remainder term given by       
         

      
          with   in between   

and   .         so that    .  

 

Let’s look at k=1: 

 

                          
       

  
        

 

Now we take the expectation on both sides and  

 

                                      
         

  
           

 

And we see that the expected: 

 

        
                 

     
         

  
           

or 

       
             

           
         

  
          . 

 

Since        is a concave function (see figure 1 and formal proof below), the second derivative 

          is negative, we have shown that       
          tends to be smaller than the       

     and 

in expectation there is a bias of size  
         

  
           proportional to the variance of the 

estimator. The more data we have at hand the less variance an estimator for the true PD carries, 

as data increases the bias goes to zero and in expectation       
          converges to       

    .    

 

We will proof this formally by calculating the second derivative showing that it is negative. 

 
Proof:          
Write for convenience      for       . 
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In practice the term        is larger than         , since   is very small (for regulatory capital        ). The probability that   

is smaller than       is negligible. Further more         and derivative of the inverse cumulative normal distribution is positive 

and given by 
 

  
         

 

         
 can be found by combining 

 

  
                     

 

  
         and 

 

  
            

 

  
     . So that         , the function        is concave.  

 

 

3.2.2 INCORPORATING PARAMETER UNCERTAINTY IN PD 
[14] shows, using results from [19], that the VaR or the quantile of the total loss distribution 

assuming a random distributed    and   can be found under some regularity conditions by 

looking at the quantile of             defined by:                
           

    
 , where 

     and   are random distributed variables. 

 

Formally we can write: 

 

                                  

 

Where          is the quantile of the total loss distribution, which is the objective of the VaR 

measure. Unlike Tarashev we will assume that the correlation   is known and deterministic. The 

above result still holds and   can be viewed as a degenerate distribution.  

 

Observe that Tarashev’s result is compatible with the earlier derivation of the VaR, assuming 

that the parameters    and   are constants: 

 

                          
           

    
      

                 

    
  

   
                

    
 .  

 

Thus we can see Tarashev’s results as a more generalized formula for the calculation of the VaR. 

In chapter 7 it will be clear that the underestimation problem, as shown in the previous section, 

vanishes with the use of this alternative formula. 

 

We would like to compare this estimator with other estimators for the true VaR. 
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3.2.3 DIFFERENT ESTIMATORS 
In general there is no way to find the true VaR since the true    is unknown and can only be 

estimated based on the data at hand.  

 

The data is summarized in a matrix  , n rows representing the number of obligors in the 

portfolio and T columns representing the number of years of data. An element of the matrix is 

denoted by     , which is the element in row i and column t for i = 1,..n and t = 1,…T. It is an 

indicator variable attaining the value one if there is an observed default at year t of obligor i.  

   

         

   
         

  

Next to the defaults, a corresponding vector of the common factor is possibly known. An entry 

   denotes the common factor in year t for t = 1,..,T. 

   

  

 
  

 

 

 

So next to the defaults             a corresponding common factor    is known for each year t. 

The observed defaults are converted into observed default frequencies (ODF), a vector of T 

years. 

   
  

 
  

 

 

 

Where    
 

 
     

 
    is the observed default frequency or rate in year t. If the common factor is 

known, one can use the relationship between the conditional probability of default      , 

common factor    and unconditional probability of default    to convert conditional ODFs into 

unconditional ODFs. 

                                     
            

    
  

 

This formula gives the conditional probability of default and can be rewritten to give the 

unconditional PD as a function of the conditional probability of default and the common factor. 

 

                           

 

The observed default frequency    which is generated under the latent common factor    is 

converted into an unconditional observed default frequency   
  using the above relationship 

when the common factor is known. 
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Where   
                       for each year t. 

Since additional information in the form of the common factor is used, the estimation of the 

unconditional PD or the TTC PD is more accurate based on the unconditional observed default 

frequencies. The unconditional default frequencies are of interest since in the ASRF model the 

TTC PD is of interest. In practice in the banking industry the probability of default is estimated 

using a logit regression model with defaults data and obligor specific characteristics. These 

models varies over banks and the type of portfolio. We will purely look at the uncertainty due to 

PD uncertainty and for this purpose compare different measures for VaR. 

 

The VaR that is of interest and which is attempted to be estimated but is unknown is called the 

true VaR. It is based on the true value of PD. 

 

      
       

                    

    
 , where        is the true but unknown population 

parameter.   

 

The true VaR is estimated with       
          based on an unbiased estimator of the PD. In this 

thesis the unbiased estimator is chosen to be the sample average of the observed default rates 

(=ODFs) and is called             

 

             

 

 
   

 
                               

 

 
   

  
                                  

    

and 

       
            

                         

    
  

 

The parameter uncertainty incorporating measure will be denoted as       
                     

 or 

      
  

. In this thesis,    is found in a different way from Tarashev. It will be clear in chapter 6 

how the distribution of    using the data, is derived. .   

 

      
  

         
           

    
  , where    and   are random variables. 

 

And the distribution of    is a function of         and  . 

 

3.2.4 FORMULA IN TERMS OF MONEY UNITS AND HETEROGENEOUS PORTFOLIOS 
The results can easily be translated from the fractions of losses to actually losses in money units. 

Since we have assumed that LGD and EAD are deterministic, the VaR in terms of money units is 

simply the VaR measure multiplied with LGD and EAD. Until now all results were derived for a 

homogenous portfolio, by [19] the same result holds for heterogonous portfolios in the 
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asymptotic case. In the literature review a number of papers have investigated the non-

asymptotic case and it is shown that for small portfolios the works approximately as well.  
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4 LITERATURE OVERVIEW* 
 

Tarashev (2009) uses a Bayesian inference approach, measuring the credit VaR and allowing 

uncertainty on the PD and  . It is pointed out that in the ASRF model the assumption of a single 

risk factor is violated since next to the common factor we have estimation risk factors in the 

form of PD and rho. Thus the usual formula for VaR, is incorrect and an alternative formula 

called the ‘correct VaR’ is derived and proven to converge to the true VaR. The formula of the 

correct VaR equals to the earlier defined       
  

, but the posterior parameter    in the formula 

is derived differently in this thesis (see chapter 6) from Tarashev. 

 

Investors who are interested in the credit VaR are assumed to have monthly asset values 

available which they use to estimate the correlation coefficient while using the same asset 

values to determine the default rate at the end of the year. The estimators for both parameters 

are assumed to be delivered by minimum variance unbiased estimators, the noise in the point 

estimates are considered to attain the Cramer-Rao lower bounds. In combination with an 

uniform prior on the (0.1) interval for the PDand a beta distribution for the correlation 

estimator given the observed correlation between assets, the posterior distribution is 

calculated. The PD posterior is constructed less transparent. Tarashev states three criteria the 

posterior must satisfy and finishes with the statement that the implied posterior distribution of 

the ‘default point’        is normal. This in turn would imply that the posterior of PD is 

uniformly distributed.     

 

The results are presented in the form of add-ons which are the differences in percentages 

between the correct and an estimated VaR (called naïve VaR in the paper) varying the numbers 

of obligors, n=50, 200, 1000 and the number of years of data T=5,10 years. For a fair 

comparison along cross-sections and time, one single dataset is used. Results indicate that the 

impact of PD uncertainty is much larger than correlation uncertainty. The difference between 

the naïve and correct VaR cannot neglected: in the base case of regulatory capital, with alfa at 

0.1% ,true PD=0.01, n=200 and T=10 the difference is 27%. While neglecting the correlation 

uncertainty results in 24.9% difference in the base case. 

 

Making use of the special choice of the distribution of the estimators, bounded by the Cramer 

Rao lower bounds, Tarashev derives approximate expressions for the correct VaR incorporating 

either the PD or correlation uncertainty only. This can be rewarding if time is limited and a first 

approximation is only needed. 

 

Tarashev points out that the ASRF model assuming e.g. homogeneity of exposures and time 

invariant risk parameters can effect the observed correct VaR. While also pointing out that the 

parameterization of the distributions of the posterior are convenient but unrealistic in practice. 

He states that it is likely that these assumptions depress the correct VaR and proposes to treat 

these VaRs as lower bounds by investors.   

 

In Tarashev & Zhu (2008) possible specification and calibration errors in a couple measures 

including the regulatory VaR are analysed for the ASRF model. For the specification, the 

                                                             
* This section is based on the papers [12], [13], [14], [15], [16], [17], [18] and [19]. 
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granularity assumption and multi risk factors as opposed to a single risk factor are assessed by 

comparing the differences in VaR between homogeneous versus heterogeneous portfolios and 

two risk factors versus single risk factor in the measures. For the calibration the asset 

correlations are investigated for estimation error and different degrees of dispersion in the 

average correlation coefficient in the assets. Furthermore the impact of estimation errors in PD, 

LGD and asset correlation is tested on a homogeneous portfolio. A small portfolio consisting of 

100 assets and a large portfolio consisting of 1000 assets are used. It turns out that the impact 

of the assumptions is small or even negligible compared to large errors in the calibration or 

estimation of the parameters. The granularity effect using 1000 assets is already smaller than 

1% while the PD can deviate 30% using 1000 assets and 5 years of data in its 95% confidence 

interval. The authors conclude that violations of the specification are virtually inconsequential 

especially for large portfolios. Their concern goes towards calibration in the parameters 

especially small sample estimation errors or rule-of-thumb values of asset correlations, these 

can lead to significant inaccuracies measuring for example the VaR.  

 

A different approach is chosen in Löffler (2001) investigating both specification error and 

parameter uncertainty along PD, recovery rates (1-LGD) and correlations following the model of 

CreditMetrics which is similar to the ASRF model. But trading in the single common risk factor 

for two common risk factors. For this adopted model the general analytic result for the VaR is 

derived.  

 

Acknowledging autocorrelations between the default rates and pointing out that ignoring 

(positive) autocorrelation underestimates standard errors [26] Löffler captures this effect in an 

autoregressive model of 2 lags. A non parametric bootstrap procedure to derive a distribution of 

the true mean default rates is constructed, drawing from the 18 year history two consecutive 

annual default rates after which the remaining default rates are inferred from the 

autoregressive model. Furthermore sampling randomness is added by assuming by using the 

bootstrapped default rate as the mean of a Beta distribution (with a chosen standard deviation). 

From this distribution is drawn to obtain of the 18 bootstrapped default rate.  Averaging the 18 

default rates of the bootstrap sample yields a mean default rate, which is an estimate of the true 

default rate. Repeating this large number of times gives the default rate estimator distribution. 

 

For the recovery rates, it is assumed that these are uniformly distributed with mean 49.6% 

within a 40% interval around, based on a study by Standard & Poor’s [15] and Altman and 

Kishore ]16]. The asset correlations are estimated using a sample of 60 monthly asset returns 

using the original model where the correlation are dependent on the variances of the common 

factor and each individual normal distribution. These variances are assumed to be uncertainty 

by modeling both as    distributions and the final correlation distribution is found by running a 

Monte Carlo simulation a large number of times.  

 

Using the distributions of all three, the VaR is calculated for many times by drawing from the 

respective distribution and using the analytical formula for the VaR measure. This result is a 

frequency distribution for this risk measure.  

 

 Löffler concludes the same as in Tarashev & Zhu (2008) that the additional risk of dispersion 

in the parameters adds little extra noise e.g. heterogeneous portfolios versus homogenous 

portfolios even for a small portfolio of 50 obligors. The major force in final VaR calculation lies 
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with the PD sampling randomness. It needs to be assessed on a case by case setting, as the 

eventual influence depends on the availability of data. This is also found in Heitfield (2009), 

using a 90% confidence interval for the parameter PD, the pricing of credit default obligations 

(CDOs) is highly sensitive to the found estimator. Finally it is pointed out that the noise can 

influence the interpretation of the results of backtests.   

 

In a general framework Gordy (2003) shows some useful important theorems. He shows that 

the loss distribution in the single risk factor model is asymptotically the same as the expected 

loss conditioned on the stochastic common factor. Continuing on this result he shows that the 

quantile of the conditioned expected loss equals the quantile of the total loss distribution, so 

that the VaR measure can be found using only the expectation of the loss. The general 

framework in which he proves the results are general enough to cover all well known risk 

models including the ASRF model and is also general enough to cover inhomogeneous 

portfolios.  

 

Looking further in the analysis of parameter uncertainty in relating fields, Korteweg and 

Polson (2010) applies bond pricing in the framework of Merton structural model. In the 

Bayesian framework the posterior joint distribution of the model parameters is found by using, 

the prices of bonds is under parameter calculated as the expectation of the bond pricing formula 

with the use of the parameters. This is contrasted with calculated bond prices using point 

estimates. It is concluded that credit spreads are much higher influenced by parameter 

uncertainty and the impact of different factors such liquidity, taxes and jump risk is smaller. 

Another application is in Heitfield (2009) for the pricing of Credit Default Obligations (CDOs) 

and inferring the rating of such instruments. It is shown that in a 90% confidence interval 

multiple ratings are possible for CDOs, concluding that pricing of CDOs is not robust implying 

that prices are uncertain. 
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5 BAYESIAN STATISTICS* 
 

In statistics two main philosophical approaches are present. The frequentist approach is the 

most well known, probabilities are viewed as long run relative frequencies. The parameters of 

statistical models are assumed fixed (non-random) unknown constants, probability statements 

are only allowed for random quantities. Procedures are developed by looking at how they 

perform over all possible random samples. The probabilities don’t relate to the particular 

random sample that was obtained. 

The other is called the Bayesian approach. Since the true value of parameters of statistical 

models are uncertain, the parameters are modeled as random variables. Probabilities are not 

only interpreted as long run relative frequencies but also represents the plausibility or degree 

of belief of statements. This degree of belief is updated using observed data according to Bayes’ 

theorem, named after Thomas Bayes’ work in the 18th century. The theorem can be stated in 

terms of probabilities or probability densities, where the last one is of particular interest. 

 

5.1 BAYES’ THEOREM 
For two continuous random variables X and Y the definition of the conditional probability 

density function X given Y is:            
      

    
, where      ) is the joint probability distribution 

of X and Y and      is the marginal probability distribution of Y. Using this definition and law of 

total probability given by                 
 

                     
 

    
 one can see the 

following result: 

Bayes’ theorem for probability densities 

          
             

                
 

    

 

 In the context of Bayesian statistics, X represents the unknown parameter (possible 

multivariate) and Y represents the data. The marginal probability density      embodies the a 

priori belief of the parameter’s possible values while           is the likelihood of the parameter 

of interest given the data. Together the posterior belief/distribution of the unknown parameter 

          can be calculated. To emphasize   being the parameter, let     with all   in the 

sample space of  . The likelihood function is often written with the conditioning variable in the 

subscript such that            . Finally the prior density of the parameter      is often written 

as      , taken all together the theorem is rewritten as: 

 

       
         

            
 

  

 

 

                                                             
* This chapter is based on [13], [22] and [23]. 
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5.2 THE A PRIORI CHOICE 
The biggest critic on the Bayesian approach is the possibly subjective choice of prior 

distribution/belief      on the parameter. Depending on the application and the correct 

specification of the prior statistical inference on frequentists or Bayesian is preferred. However 

from the Bernstein-von-Mises theorem it follows that the posterior is independent of the prior 

choice once there is a large amount of samples, while the same can be said in the context of 

frequentist statistics. 

In this context of parameter uncertainty the unknown parameter is the PD, which is limited to 

the interval between 0 and 1. Due to its flexible shape the Beta distribution is a popular choice 

on this interval. The probability density of the           distribution is given by: 

     
            

      
          

Where        is the Beta function which is the integral                
 

 
 with 

parameters            . The expected value and variance can be calculated to be 

     
 

   
 and        

  

             
.  

If one chooses the           distribution for the prior and the likelihood function       is the 

binomial distribution, i.e.             , then the posterior distribution falls in the same 

probability distribution family (Beta) as the prior.  

       
         

            
 

  

 
  

 
                       

      
         

            
 

  

 
                  

 
          

Where C is a constant. One can see that the posterior is                . A prior resulting 

in the same probability distribution family for the posterior, is called a conjugate prior.  

Another useful distribution on the same domain of the PD is the (continuous) uniform 

distribution on [0,1]. It is a specific parameterization of the Beta distribution with      , 

this follows from the density:       
            

      
          

 

      
          

 

     
 

 

       

         . The first moments are given by          and        
 

  
. When there is no 

particular reasons to give the prior of the PD more belief on certain values, then this uniform 

prior is a natural choice.  

5.3 POINT ESTIMATION 
Statistical inference such as point estimation and hypothesis testing differ among the two 

approaches. In the frequentist approach a particular estimator for a parameter depends on the 

random sample, and consequently has a probability distribution. The probability distribution of 

the estimator is called the sampling distribution, since it embodies the distribution of all 

possible random samples that could but didn’t occur. After which the distribution of the 
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estimator is analyzed around the parameter value. The following statistical concepts are 

necessary for an example of point estimation comparing frequentist with Bayesian statistics.  

An estimator    is a function of the data and the goal is to estimate the parameter   as closely as 

possible. The mean squared error (MSE) measures the performance of a particular estimator, 

the convention in frequentist statistics is to choose the estimator with the lowest MSE which is 

written as                   
 
                      . The estimator is called unbiased 

if        , from which follows that             is zero. An unbiased estimator seems desirable 

but when the variance of the estimator (first component of the MSE) is sufficiently small, the 

biased estimator is in the light of the MSE criterum preferable.  

The Bayes risk of a estimator     is defined as                       
 
       , it weights 

the squared error to the distribution of the parameter  . The Bayes estimator     is the 

estimator that minimalises the Bayes Risk. It can be seen that the mean of the posterior 

distribution of   is the Bayes estimator. One can compare the MSE of the frequentist estimator 

with the Bayes estimator. 

Finally the Cramér Rao lower bound expresses a lower bound on the variance of any unbiased 

estimator. An estimator achieving this minimum variance for unbiased estimators is called an 

efficient estimator, which means this efficient estimator is preferred over all unbiased 

estimators.  It is not said that an estimator exists that achieves this bound, so that the 

interpretation is the minimum lower bound for any unbiased estimator. H. Cramér and C.R. Rao 

proved that the lower bound is given by the inverse of the Fisher information     : 

         
 

    
 

 

    
          

  
 
 

Where y represents the data and       repressents the likelihood function. 

In the next, an example is shown comparing the two different statistics in point estimation. 

Assume the data              and that our interest goes to the parameter  . In the 

frequentist approach the estimator is chosen to be     
 

 
,   a realization of  . The MSE of this 

estimator is                                 
 

              
       

    
      

 
. 

Computing the Cramér Rao lower bound (CRLB) proves this estimator to be efficient and this 

estimator is the minimum variance unbiased estimator (MVUE). 

      
 

    
          

  
 
     

      
            

  
 

  

     
 

 
 

   

   
 

  
     

 

      
 

  

      
 

  
     

 

      
 

  
  

 

      
 

  
         . 

In the Bayesian approach a non-informative uniform prior is chosen                . While 

the likelihood function       is specified by the binomial distribution. Thus the posterior 

distribution of the parameter                   and the Bayes estimator is the mean of 

this posterior distribution     
   

         
 

   

   
, which is biased since   

   

   
  

    

   
  . The 

MSE of this estimator is calculated.  

http://en.wikipedia.org/wiki/Harald_Cram%C3%A9r
http://en.wikipedia.org/wiki/Calyampudi_Radhakrishna_Rao
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 . 

In the below graph          versus          is plotted for n=50 and 100. Depending on the 

true value of theta, the MSE of the one is lower than the other one. In most cases the Bayes 

estimator has a lower MSE, whenever theta is around 0.15 up to 0.85 so that this estimator is 

preferred over the frequentist’s  minimum variance unbiased estimator. Note that the difference 

gets smaller as n gets larger.  

 

  
Figure 3 Comparing the MSE of an frequentist versus Bayes estimator(left:n=50 and right: n=100) 

 

5.4 OTHER STATISTICAL INFERENCES 
As in point estimation for the Bayesian approach other statistical inferences such as interval 

estimation and hypothesis testing is straightforward. In interval estimation the frequentist 

approach utilizes the sampling distribution of the parameter. The interval boundaries are 

random as they are dependent on the particular observed sample. The interpretation of all the 

       random intervals is that        of the intervals contain the true parameter. 

Utilizing the data one confidence interval is calculated, there is a         confidence that this 

is one of the intervals that contains the true parameter. A misinterpretation would be that the 

interval contains the true parameter with        confidence. In this approach the fixed true 

parameter is in the confidence interval or not. The sampling distribution of the parameter may 

to be approximated with the normal distribution in some occasions, as this distribution might 

not be known. This could interfere the correctness of the results.  

In contrast the Bayesian approach results in the posterior distribution of the parameter which is 

conditioned on the actual sample that occurred. It embodies the belief of the true parameter. An 

        interval, called a Bayesian credible interval, can easily be constructed from the 

posterior and is interpreted as holding the true parameter with        confidence or 

credibility. Additionally a normal approximation is not necessary. 

The same applies to hypothesis testing, again in the frequentist approach this inference is based 

on the sampling distribution of the parameter. For example in one sided tests, under the null 
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hypothesis the p-value is calculated. If this probability is low, i.e. lower than the   confidence, 

the null hypothesis is rejected as the observed sample has a too low probability to occur. It is 

not said that it couldn’t occur, but the alternative hypothesis is accepted. The null hypothesis is 

either true or not. However the sampling distribution might not be known so that often tests 

with less power needs to be chosen. 

The Bayesian approach for hypothesis testing relies heavily on the prior which directly 

influences the probabilities of the hypotheses. One these are specified the posterior probability 

of the null hypothesis can be calculated. In the same way as in the frequentist way for the p-

value, one could use this posterior probability of the null hypothesis.  

There is no ultimate choice of either the frequentist or Bayesian approach. The choice will 

depend the specific problem as well on the willingness to formulate a prior belief and the 

considerations on the applicability of both approaches. To find the posterior might be a 

challenge as this is in general analytically not possible. With the increasing computational 

power of computers, the analytical calculations can be replaced by numerical computations. In 

Bayesian statistics Markov Chain Monte Carlo (MCMC) techniques are specifically suitable for 

this purpose. One such MCMC technique is the Gibbs sampler which is utilized in the next 

chapter.  

 

5.5 THE GIBBS SAMPLER* 
The Gibbs sampler is utilized in chapter 6.2, the idea is set out in the general case. It may be 

difficult to sample directly from the joint posterior distribution             . However it may 

be easier to sample from the fully conditional distributions               . The Gibbs sampler 

begins with an initial guess of the realization out of              and let this guess be 

   
   

   
   

     
   

 . Then one cycle of the Gibbs sampler uses the initial guess and the knowledge 

on the conditional distribution:  
   

             
   

       

  
   

             
   

       

  

  
 

  
   

             
   

       

After the first iteration all conditional distributions have been sampled from, the sample of all 

the conditionals is utilized by going through the next cycle of the Gibbs sampler. Performing this 

cycle t times and as t approaches infinity, the joint distribution of    
      

        
     approaches 

the joint distribution of             . For a large enough t, the samples starting at t and the 

next samples can be considered to be samples for from the joint distribution of             . In 

general it difficult to make comments on the convergence behavior, this convergence depends 

on the particular application. 

                                                             
* This section is based on [24], for a more extensive overview and examples see [25].  
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6 METHODOLOGY 
 

Two methodologies are presented to estimate the true VaR. The first is conditioned on the 

knowledge of the common factor and in the second this knowledge is not used. The 

methodology conditioned on the common factor is utilized in chapter 7.1, 7.2, and 7.3, while the 

methodology not conditioned on the common factor is utilized in chapter 7.3 only. Since chapter 

7.1 and 7.2 investigates the impact of uncertainty in general, many realizations or scenarios 

(500 in this thesis) must be generated. The methodology not conditioned on the common factor 

requires computationally significant more time due to large matrix operations, so that this 

methodology is utilized on two datasets.  

The columns of   are assumed to be independent for simplicity, i.e. there is no dependency of 

the defaults over the years. This assumption is irrelevant in case the common factor is known. 

6.1 METHODOLOGY CONDITIONED ON THE COMMON FACTOR  
Recognize that under the Vasicek model and given the common factor for each year of the 

defaults data  , each element      is independent Bernoulli distributed with       

  
            

    
 . 

The number of defaults in year t,       
 
   , is binomially distributed with parameters n (the 

number of obligors) and      . 

 Thus the data is each year distributed with a different conditional PD. Eventhough we put a 

Beta distribution on the prior unconditional PD and have a binomial likelihood function, the 

posterior is not Beta distributed due to the fact the binomial defaults are parameterized by the 

conditional PD. 

Before moving on to the implementation we state the following result theorem 7.1 from [13], 

with which we can calculate the probability density function of a random variable which is a 

function of another random variable with known probability density function.  

Let X be a continuous random variable having a known probability density function    and 

       where      is a strictly increasing monotonic function that is also differentiable. Then 

the probability density function of  ,   , is given by: 

 

                
 

  
         

 

Initiation: 

A distributional choice for the unconditional PD, here Beta(alfaPrior,betaPrior) distributed. 

To simplify notation we write        and     . 
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Set the prior      and hold it numerically by obtaining the density on many different points on 

the interval(0,1), set     and continue to step 1. 

 

Step 1.  

Convert the unconditional prior density      into an conditional prior density   .  

 

We hold the density of PD, which is our prior and we are looking for the density of       

which is a function of PD,         
            

    
 . This is a strictly monotone 

increasing function in PD and differentiable so that we can apply theorem. The inverse is 

given by:                                   . 

 

                 
 

  
                  

 

  
                        

      
 

  
                      

 

Where 
 

  
                                           

 

  
        . 

and 
 

  
         

 

         
 can be found as before by combining 

 

  
            

         
 

  
         and 

 

  
            

 

  
     . 

 

So that we work with: 

 

                                                 
 

  
        . 

 

The common factor data is available so that    is a constant. 

 

Step 2.  

The conditional prior density is updated into the conditional posterior density using the 

the number of defaults    in year t,            
   . 

 

     
    

             

               
 

  

. Where           
  

              and       is from step 1 

 

Step 3.  

Convert the conditional posterior      
 back to an unconditional posterior      

. 

 

We hold the density of the conditional PD. We are looking for the density of the 

unconditional PD which is a function of the conditional       and the common factor 

  ,                                 . This is a strictly monotonic 

increasing function in      , differentiable and    is a given constant. Again we can 

apply the theorem and use           
            

    
 . 
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        . Where      

 is from step 2. 

 

Step 4.  

While t<T, let the unconditional prior density be posterior density,      
     , t=t+1 

and repeat steps 1-4. 

 

Step 5.  

Obtain a sample out of the posterior density.  

 

Since the cumulative distribution can be approximated very accurate, we will use the 

Inverse Transformation Method.  

 

The inverse cumulative distribution is approximated from the obtained (numerical) 

density. We draw an uniform. A realization of the distribution of interest is obtained by 

filling in the uniform in the inverse cumulative distribution. 

 

Step 6.  

Using the sample of the unconditional PDs, we can calculate the different VaRs. 

 

Implementation considerations 

The steps 1-3 are implemented in opposite sequence, since the third and second step are 

dependent on the previous steps.  

We define the following variables in Matlab: 

 

Step 3:      
   

           

    
    

           

    
 

 

    

 

  
         . 

 

 

Step 2:      
    

             

               
 

  

.  

 

 

Step 1:                                                  
 

  
        . 

 

a_step3 

b_step3 

c_step3 

int_step2 

a_step2 b_step2 

a_step1 

b_step1 

c_step1 
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        is the binomial distribution with parameters n and success rate  . 

The densities will be represented in numerical vectors. At the moment a value of the density 

must be calculated which is not in the vector, a cubic spline interpolation technique will be used 

to approximate the density at that particular point. 

 

For step 5 we use the Inverse Transformation Method and get a (sufficient large) sample of the 

unconditional posterior PD. With this sample we can calculate the measures of the posterior 

distribution, such as the standard deviation, the expectation and the         quantile along 

with a plot of the distribution. 

 

Using this sample we can calculate in step 6 the two VaR measures and compare them as will be 

shown in chapter 7. 

 

6.2 METHODOLOGY NOT CONDITIONED ON THE COMMON FACTOR  
The methodology ‘not conditioned on the common factor’ directly finds a sample of the 

posterior distribution of PD after observing the defaults of all obligors over all the years. The PD 

is directly the TTC PD of interest. Unlike the previous chapter there is no explicit updating with 

Bayes’ theorem to the posterior density based on the likelihood function and prior of the PD. 

Another difference lies in the fact the prior cannot be chosen and as the name explains the 

possibly known common factor is not utilized. 

We have at our hands the matrix  , the observation of the defaults of n obligors over T time 

periods. The common factor vector  . The assumption is that      over i are dependent through 

the common factor    and are independent of the time t. 

Let the prior                 and           so that the default points         . 

         , independent across t and elements of the vector T by 1 vector  . 

Furthermore for each t,    is assumed independent of    and consequently    is independent 

of  . 

 

The data             given   and    are for each t independent Bernoulli variables, 

                  
      

    
            , where   

 

    
 and   

   

    
. We introduce a 

latent variable      such that given       ,                  again independent across (i,t). 

We get                                        , thus             .  

 

From the distribution      conditioned on       ,we get that                       . Using 

this and the property that a distribution that is conditionally normal is also normally distributed 

unconditionally, we find the unconditional      to be normally distributed with mean 0 and 

variance        . 
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 This can be seen by calculating:  

 

                         

                     
                            

     

                 
 

     
 

  
 

   
   

   
   

 
  

  
    

  

     

          
 

     
 

  
 

   
 
 

 

   
   

 
  

  
    

 

 

     

    
 

     
 

  
 

   
   

   
   

 
  

  
    

  

     

     

 

     
 

  
 

   
   

   
   

 
  

  
    

  

     

       
 

   
   

 
  

  
    

 

 

        

 

   
   

 
  

  
    

  

       

 

And  

                          
           

             
                               

                  
               

                       
          . 

 

In this setup we generate         given  . We are interested in calculating VaRs like the 

      
         .  The       given   can be obtained by simply throwing away the   in each sample. 

    

The Gibbs sampler is used to generate from the joint distribution of         given  : 

I. Draw from   given         

II. Draw from   given         

III. Draw from   given         

 

In step one we start with an initial choice of the realization of      ,   is known. After which 

we obtain a  . Now the second step uses the drawn   and the previous  . The third step uses 

the drawn   ,    in the first and second step to draw an  . After which the first step starts 

again, repeating these steps sufficiently many times this algorithm will approximate equilibrium 

and the next draws can be considered to be drawn from the joint distribution of         given 

 . 

 

Because   is a deterministic function of  ,   becomes superfluous in the first two steps. The two 

steps become: 

I. Draw from   given       

II. Draw from   given       
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The joint distribution         is multivariate normal: 

 

         

 

 
 
 
 
 

 

 

 
 
 
 

  

   

  
   

     

  
      

 
 
 
 

    

          

      
          

 

 

 
 
 
 
 

  

 

 
 
 
 
 

 

 

 
 
 
 

 
 
  
 
 
  
  

 
 
 
 

   

 

 
 
 
 

               

      
 

             

      
                

 
 
 
 

 

 
 
 
 
 

 

 

Where   is the k by k covariance matrix (k:=T+nT+1) with on its first T+1 diagonal points,1 and 

on the remainder diagonal points,        . The rest of the covariance matrix is given by: 

 

                                     

                                           

                                                                    
        
        

  

 

                                                                
              

                    
  

 

                                                                  

 

Where            ,              and                are found by seeing      as an independent 

standard normal variable      relocated at       : 

 

                                                                  

                                                                    

  
         
         

  

                                                                    

  
              

                    
  

 

The conditional distributions         and         are normal as well and fully defined given 

the joint distribution.  

 

The following theorem page 1014 [26] helps us to derive the distribution of the conditional 

distribution. 
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Let    
  

  
  be multivariate normally distributed,    a subset of and    the remaining variables 

out of  . Partition   and   likewise so that    
  

  
  and    

      

      
 . Then the conditional 

distribution of       is normal as well:               
       

  with       
          

      

    and       
           

     .       
 is also known as the Schur complement of the block  

    of the matrix  . 

 

 

Using this result one can find the mean vector and covariance matrix of        .  

 

The mean of                         

 

          

      
          

 

  

 

 
 
 
 

 

 
 
 

  

  
  

    

  
     

 
 
 

 

 

 
 
 

   

  
   

     

  
      

 
 
 

 

 
 
 
 

                 

 

 

          

      
          

 

    

          

      
          

 

 

 
 
 

      

  
      

          

  
           

 
 
 

 

 

Which is cumbersome and not possible to simplify analytically further, the mean and covariance 

of the conditional distribution will be calculated in Matlab. 

 

Equivalently for step 2         is calculated in the same fashion. 

 

For step III we need to draw from   given        . We can represent   as             

    , where each             independent of      . Since   is available we hold certain 

information about  . At the moment       , by definition       . So that               

or                . Idem for       . 

 

We get: 

 
                              

                              
  

 

There is no further information on          given        . Thus      is sampled from the 

standard normal distribution restricted to (           if        and restricted to 

             if       , for      independently across      . 
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Such a distribution is called a truncated distribution and the probability density function of   

restricted to (a,b) is given by: 

 

           
    

         
 

 

Where g(.) is the unrestricted probability density function and G(.) is the unrestricted 

cumulative distribution. 

 

The cumulative distribution of the truncated distribution can be easily found: 

 

            
    

         
  

 

   

 
         

         
 

 

 The distribution function of the truncated normal distribution restricted to       is 
         

      
 

for    . Thus its quantile function is                      . A sample from the left-

truncated normal can now be generated by drawing from an uniform(0,1),  , and filling it in the 

quantile function.  

 

Similarly one obtains a right truncated distribution function at       , which is 
    

    
.  We can 

find a sample form the right truncated normal by drawing from an uniform  , and filling it in the 

quantile function              for    . 

 

6.2.1 BURN IN SIZE GIBBS SAMPLER* 
The size of the burn in for the implementation of the Gibbs sampler needs to be determined. 

First we vary the number of obligors and years of data to look at the form of the posterior 

distribution. 

 

 
n=100,T=5 

 
n=200,T=5 

                                                             
* This section is based on [27].  
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n=100,T=7 

 
n=200,T=7 

 
n=100,T=10 

 
n=200,T=10 

 

As we can see there is clearly one peak in the resulting distribution of the posterior PD. Markov 

chains are said to be poor mixing when a chain stays in small parameter regions for a long time, 

which can arise due to multiple peaks of the convergent distribution. This is clearly not the case 

here. 

Determining the convergence of the Markov Chain 

In the above Gibbs sampler runs, we have done ten thousands Markov Chain updates and kept 

the last 2500 values as the sample of the posterior PD distribution. 

In this section we determine the size of the burn-in for the Gibbs sampler in a more appropriate 

way, first looking at possible autocorrelations to avoid dependency. We perform a QQ-plot 

(quantiles against quantiles plot) along with the two sample Kolmogorov Smirnov test and 

obtain two independent samples by using ‘batch sampling’. This means that we take a subset, 

            out of the chain of values              by only retaining those values that satisfy 

           for some fixed  . The higher the lag  , the lower the dependency and the 

(auto)correlation is. However a small   is preferred so that waste is minimized. To determine an 

appropriate   we look at the autocorrelation with lags 2,5, 10 and 25 of one sample path of the 

Gibbs sampler (T=10 and n=100), going through the Gibbs sampler 13,000 times. After 

throwing away the first 1000 values, welook at the 1000th to 13000th value of the chain with 

different lags. 

 

1 lag 2 lags 5 lags 10 lags 25 lags 
0.0590 0.0556 0.0554 0.0438 -0.0065 

Table 7 Autocorrelations 
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We choose     , since the correlation is minimal. This will be used for all simulations in the 

next section and will get us independent samples for the Kolmogorov Smirnov testing 

procedure. 

We continue with the simulation run and extend the iteration through the Gibbs sampler to 

above 20,000 times. The k-s test is runned on the Markov Chain along with a QQplot on the two 

samples (again after throwing away the first 1000 values) on three different sets. 

- 1th, 26th ,…,501th values against the sample of 501th , 1026th,…,1001th values (A) 

- 5001th , 5026th ,…,5501th values against the 5501th , 5526th,…, 6001th values (B) 

- 20001th , 20026th ,…,20501th values against the 20501th , 20526th,…, 21001th values (C) 

 

                                                  

                                                      

 

   
(A) 

K-S test:                          
(B) 

K-S test:                          
(C) 

K-S test:                          

 

This will enable us get some insight in the required burn-in sample size before convergence.  As 

a result we see that the k-s test is never rejected and there is no clear evidence from this test the 

samples are not from the same distribution. However the QQplot of (A) seems to show some 

abnormality. So to be on the safe side, we will let our burn-in size be followed by (B), a sample 

size of 5000. 
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7 RESULTS 
 

 In this chapter two questions will be answered. The first question concerns the impact of 

parameter uncertainty in terms of the VaR and the second question zooms in the performance 

of the alternative estimator incorporating parameter uncertainty. Prior to the results the 

choices made in this simulation study are fully specified. 

Here parameter uncertainty concerns solely the uncertainty around the PD and its impact on 

the VaR measure. More specifically in the regulatory capital framework such that        and 

VaR is calculated in terms of a fraction of the portfolio. That is for eventual exposures 

incorporating recovery in money units, the numbers need to be multiplied with LGD and EAD. It 

is assumed that the true PD of the portfolios is 0.03 and data is generated following the model of 

Vasicek specified in the chapter about the ASRF model. 

 As parameter uncertainty depends on the size of available datasets and is especially present in 

small portfolio sizes, several portfolios with varying sizes are considered. We vary the portfolios 

along the cross sections or number of obligors  (              ) in combination of different 

time series lengths or number of years of data (            ). So that for each combination of 

  and  , nine different sizes are considered. The choice to set T for a minimum of 5 years is 

based on the Basel guidelines requiring estimates of the risk components on at least 5 years of 

data for sovereign, corporate and bank exposures.  

Five hundred different datasets (five hundred realizations of the model) are generated 

consistently for each portfolio size. That is 500 datasets are generated in total for all nine 

portfolio sizes by using the same common random numbers (same seed) for each portfolio size. 

I.e. for the default realizations of the portfolio with 100 obligors, the same defaults applies to the 

first 100 obligors in the 200 obligors portfolio. So that the total number of individual defaults 

equals 500 times 200 (=maximum n) times 20 (=maximum of T).  

The same common random numbers reduces sampling noise of the simulation for comparison, 

this can be seen by the variance of the difference between the estimates    and    is:  

                                               

The variance of the difference is minimized by maximizing the correlation. Using the same 

common random numbers maximizes the correlation and performing the calculations such also 

ensures that the results are reproducible. 

To answer the two questions, the theory given the common factor is used for the simulation. It 

is assumed that the common factor is estimated perfectly from data and further more is 

generated independently from year to year. This assumption of independency is not of influence 

in this setting where the common factor is known. But might be in the setting where the 

common factor is unknown and when in a sequence of high (generated) valued common factors, 

i.e. consecutive booming economy states, in combination of small cross sections and low PD 

causes no observed defaults. To compare datasets with different time series We have noticed 

the influence of particular realizations of the common factor. In a sample of 20 standard normal 

draws, there will always be some realizations far positive. In case this high values are obtained 
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for years after year 5, the comparison of a 5 year dataset with a 20 year dataset is distorted. This 

poses an additional difficulty of estimating the VaR of a portfolio with zero defaults. I choose to 

generate 5 standard normal variables, none extreme, and let the longer time series consist of 

these 5 standard normal variables. That is the common factor    for year t is unique for the first 

five years:            . While the following common factors              are equal to the 

sequence                          . This ensures the same conditions for the comparison of 

portfolios. Thus for T=20, it consists of four times the block of common  factors for T=5. 

The advantage of the framework given the common factor is the freedom in the choice of the a 

priori distribution for the PD as opposed to the framework without knowing the common factor 

where this factor is assumed to be             . Strictly speaking the only correct choice for 

the a priori distribution with no data other than the defaults and common factors at hand is this 

uniform prior. However next to the data on the defaults and the common factors there is 

additional information available such as expert opinions and certain information on the 

characteristics of the obligors in the portfolios. Because of this data an uniform prior is on the 

pessimistic sideand causes priors to put too much mass on the higher PDs. However connecting 

this data to the prior or in the Bayesian updating mechanism in an universal compatible method 

is not straightforward. We assume that incorporating this additional information translates in a 

dispersed belief around the true PD. This is shaped in the Beta distribution with parameters 3 

and 97 while the mean of this distribution is chosen to be 0.03. 

 

 

Figure 4 The a priori belief dispersed around the true PD 

 

The dispersion is great around the mean, the probability that the true PD is lower than 0.02 is 

32% while probability that the true PD is larger than 0.04 is 24% so the belief is 56% that the 

PD is within 0.01 deviance of the true PD. 
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Next to the advantage of freedom in choice of prior distribution, the framework without the 

common factor requires significantly more time to compute. Running the simulation under one 

particular prior requires given the common factor more than 24 hours on an Intel Core 2 Duo 

processor E8500 @ 3.16 GHZ in combination of 3.49 GB of memory to run. While running the 

same framework without the common factor scheme requires more than thirty times as much 

time. The framework not given the common factor will be used for the real portfolio data as only 

one realization in combination with a fixed number of obligors and years of data needs to be 

calculated. Furthermore the knowledge of the common factor or on the economic state is 

valuable as capitalizing this information causes more accurate estimation of the PD. The 

assumption knowing the common factor will be assessed as well as the particular choice of the 

prior in the next sections.   

 

7.1 ASSESSING THE IMPACT OF PROBABILITY OF DEFAULT UNCERTAINTY 
We give some insight in the reduction in uncertainty around the PD using the above framework 

and looking at the first dataset (first common random number) that is used. We show a graph 

with a fixed T and increasing n and vice versa. 

The belief of the PD after updating is as follows for increasing T starting at the smallest portfolio 

n=50 and T=5. 

 

 

Figure 5 Probability of Default belief updated with increasing years 
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In the below table we summarized the distribution by looking at the probability within 0.01 

interval of the true PD of 0.03 and outside these border (results are rounded to one decimal). 

Probability of default <0.02 0.02-0.04 >0.04 

Posterior under T=5, n=50 20.7% 71.1% 8.2% 
Posterior under T=10, n=50 23.8% 74.5% 1.6% 
Posterior under T=20, n=50 8.3% 91.1% 0.6% 

Table 8 Probability of Default belief updated with increasing years 

Similar we look at the PD uncertainty from the smallest portfolio n=50 and T=5 and increasing 

the number of obligors.  

 

 

Figure 6 Probability of Default belief updated with increasing obligors 

 

Probability of default <0.02 0.02-0.04 >0.04 

Posterior under T=5, n=50 20.7% 71.1% 8.2% 
Posterior under T=5, n=100 7.9% 85.7% 6.4% 
Posterior under T=5, n=200 2.9% 95.2% 2.0% 

Table 9 Probability of Default belief updated with increasing obligors 

 

Looking at the mass figures in the interval 0.02-0.04, for increasing the number of obligors more 

mass is concentrated around this area which can be interpreted as less uncertainty around the 

true PD.  

A question is whether this particular seed caused more reduction in uncertainty in increasing 

the cross sections. This is particular interesting as Tarashev found the opposite result, that 

uncertainty decreases more with increasing years of data. Although it must be kept in mind that 

Tarashevs framework is specified differently. 
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7.1.1 THE EFFECT OF THE DIMENSIONS OF THE DATASET 
To tackle the previous concern we perform an experiment using 500 different realizations of the 

data. The posterior distribution for all 500 realizations is obtained and the smallest portfolio is 

increased in size two times and 4 times in either the cross sections or in the time series. The 

comparison concerns the portfolios with n=100 and T=5 versus n=50 and T=10 and the 

portfolios with n=200 and T=5 versus n=50 and T=20. Each of the 500 realizations for each 

portfolio consists of the posterior distribution of the PD. To compare the difference in the 

portfolio the mean and the standard deviation of the posterior is obtained. We get two paired 

samples (due to the same seed) for each comparison containing ‘sample means’ and ‘sample 

standard deviations’. 

 

Below the plots of the two means and standard deviations are shown, where the boxplots of the 

first two and the last two must be compared.  

 

 
Boxplot of the means of the PD 

 
Boxplot of the standard deviations of the PD 

 

From the boxplots one can observe that the dispersion of the posterior PD in terms of mean and 

standard deviation look similar, we strengthen this observation with the Wilcoxon signed-rank 

test which is a non parametric paired two sample test.  

 

The hypothesis for the means is: 

 

                                              

                                                    

 

And for the standard deviations is: 

 

                                                             

                                                                  

 

With a p-values of 0.9790 for the means and 0.9914 for the standard deviations for n=100 and 

T=5 versus n=50 and T=10, the null hypothesis is not rejected at confidence level of 5%. 
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High p-values for n=200 and T=5 versus n=50 and T=20 of 0.7476 for the means and 0.7954 for 

the standard deviations means that the null hypothesis is not rejected as well in the second case 

at 5% confidence level.  

 

We conclude that the influence of increasing the cross sections or time series has the same 

influence in the framework where the common factor is known.  

 

7.1.2 THE GAP BETWEEN THE TRUE VAR AND ESTIMATED VAR 
In the below graphs uncertainty due to sampling noise is exposed. The red line displays the 

relative error in percentage of the computed estimated VaR for 500 realizations, i.e. -100% on 

the y-axis means that of the estimated VaR an additional 100% of this estimated VaR must be 

added to get to the true VaR level. The graph is sorted from the lowest estimated VaR till the 

highest. As one can see the estimated method tends to underestimate the true VaR, more than 

half of the calculated estimated VaR is lower than the true VaR and on top the lower calculated 

estimated VaRs go relatively ‘deeper’ down. This follows from section 3.2.1. The two 

discrepancies from the true VaR is shown graphically for the smallest portfolio, where one 

expects the largest uncertainty impact and the largest portfolio where one expects the smallest 

uncertainty impact. This reduction is large as the smallest portfolio has a range around -300% 

to 40% while a 4 times bigger portfolio and a 4 times longer time series gets us a range around -

20% to +20%. 

 

 
n=50, T=5 

 
n=200, T=20 

 

Figure 7 Discrepancy between true and estimated VaR 

 

The smallest portfolio had 5 out of the 500 datasets no observations (these are runs 139, 184, 

235, 382 and 484), so that the estimated estimated PD was 0 in those times. This caused the red 

line in the graph to start the drawing from the sixth observation while this did not occur in the 

rest of the portfolios. Observe that the largest portfolio’s red line does start from the y-axis. 
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Additionally we have plotted the standard deviation of the observed unconditional default rates 

(green line), which shows no clear tendency of the standard deviation to move with the 

discrepancy between the true and estimated VaR.  

The average underestimation of the estimated VaR relative to the true VaR is around the 22% to 

2% of its computed estimated VaR for T=5,10 and 20 as can be seen in the table. Due to large 

number of realizations, these numbers can be considered pretty accurate for our purpose. The 

percentages represent how much additional capital in the regulatory framework on average is 

needed due to parameter uncertainty.  

 n=50 n=100 n=200 
T=5 -21.7% -10.0% -4.4% 
T=10 -13.2% -5.9% -2.4% 
T=20 -9.4% -4.3% -1.8% 

Table 10 Average error of       
          

 

The underestimation issue gets smaller as data increases.  

The absolute error disregards the sign of the error and is thus absolutely larger. The absolute 

error of the estimated VaR ranges from 30%-5%. 

 

 n=50 n=100 n=200 
T=5 30.3% 16.8% 10.1% 
T=10 18.9% 10.7% 6.4% 
T=20 13.2% 8.0% 4.8% 

Table 11 Absolute error of       
          

 

Before we stated that the influence of the dimensions of the dataset is not of influence in the 

posterior distribution of the PD. A first look shows a difference in both average and absolute 

error to the true VaR when one increases the number of years of the smallest portfolio (vertical 

direction) has a smaller error than increasing the number of obligors (horizontal direction). The 

reason is due to the influence of specification of the conversion from conditional to 

unconditional defaults using the common factor. This conversion is more precise when the 

number of obligors gets larger. To see this observe how the observed default rate is determined: 

 

   
 

 
     

 

   

                          
                      

 
 

 

As   gets larger the discrete observed default rate gets more and more continuous with smaller 

intervals in consecutive rates. The mapping from this observed conditional default rate to the 

unconditional default rate thus gets more and more accurate and hence the additional error in 
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this mapping gets small so that the observed average and absolute error towards the true VaR 

gets smaller. The same argumentation applies to   
 . Increasing the time series doesn’t help this 

mapping to be more refined.   

Tarashev found that increasing the number of years decreased the uncertainty more than 

increasing the number of obligors. The essential difference is that the common factor is 

assumed known in our setting while this not in the Tarashev’s paper. The reason why 

uncertainty reduction was larger in the number of years is because the influence of a couple 

high valued common factors, resulting in a higher probability of no defaults, is smaller with 

more years of data.  

Furthermore the information on the common factor is useful to convert from conditional 

defaults to unconditional defaults leading to more certain estimates of the unconditional PD. 

 

7.2 ASSESSING THE PERFORMANCE OF THE DIFFERENT VAR ESTIMATORS  
In this section the performance of       

          is set against       
  

. Below is the plot for the 

smallest portfolio. As can be seen the noise in the parameter uncertainty incorporating measure 

is lower and closer to the true VaR, the estimated VaR is far worse. 

 

  
Figure 8 Impact uncertainty on the smallest portfolio 

 

For       
  

, the obvious underestimation bias present in the estimated VaR is gone. Observe 

that the plot is sorted from the lowest       
          and that       

  
 is relatively higher than 

      
          when       

         is relatively more lower to the true VaR. On the other hand the 

correction upwards by       
  

 is not present in the less frequent case that 

      
         overestimates the true VaR. This is a characteristic that is desirable and also makes 

clear one cannot just increase the       
          with a fixed percentage. Furthermore the 

absolute errors are smaller, so that this measure is more accurate in estimating the true VaR. 

Between apprentices in the absolute table is the percentage error reduction.  
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 n=50 n=100 n=200 
T=5 1.0% 0.2% -0.1% 
T=10 0.3% -0.1% -0.0% 
T=20 -0.2% -0.2% -0.0% 

Table 12 Average Error of PU VaR 

 

 n=50 n=100 n=200 
T=5 11.9%  9.6% 7.6% 
T=10 9.7% 7.2% 5.2% 
T=20 7.8% 6.0% 4.4% 

Table 13 Absolute error of PU VaR 

 

7.2.1 ADDITIONAL CAPITAL REQUIREMENT FOR PARAMETER UNCERTAINTY 
 

Here the additional capital requirement in the regulatory framework above the estimated VaR is 

calculated to get to the level of       
  

. In the smallest portfolio, 5 times no defaults are 

observed so that the five times the estimated VaR is zero. These 5 values are taken out in the 

calculations below.  

 

 n=50 n=100 n=200 
T=5 21.5%  11.1% 8.0% 
T=10 23.3% 7.7% 5.5% 
T=20 16.0% 6.9% 4.5% 

Table 14 Average additional capital on top of       
          

 

Overall the additional capital requirement ranges for the small portfolio around 24% to less 

than 5% for the largest portfolio. 

 

7.2.2 THE INFLUENCE OF THE PRIOR 
We will look at the influence of the prior on       

  
. It is known that the prior effect is smaller as 

more data is available, the influence is assessed comparing the uniform prior against the beta 

prior for all 9 portfolio sizes. 

In the following figures We plot the       
  

 resulting from the uniform prior and the Beta prior 

for two portfolios. The prior choice will have the largest influence on the smallest portfolio with 

50 obligors and 5 years of data and the smallest influence for the largest portfolio with 200 

obligors and 20 years of data. 
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Figure 9 Influence of Uniform over the Beta prior for portfolio n=50, T=5(left) and n=200, T=20 (right) 

 

As expected the green line representing the uniform prior with mean 0.5 is overall higher than 

the Beta prior with the lower mean. In terms of       
  

the difference is by average 6.5% in the 

smallest dataset but quickly decreases to small levels. 

 

 n=50 n=100 n=200 
T=5 6.5% 3.4% 1.8% 
T=10 3.4% 1.8% 0.9% 
T=20 1.7% 0.9% 0.5% 

Table 15 Influence Uniform over Beta prior in % of the Beta prior 

 

In case of the largest portfolio the difference is negligible with n=200 and T=20 only 0.5% extra 

VaR. 

We conclude that the influence decreases quickly with the size of the dataset. In relation to the 

size of the uncertainty, the effect is substantial especially for the smaller portfolios. From the 

plot the overestimation of the uniform over the beta prior looks stable so that optionally one 

could subtract a percentage additional VaR from the uniform calculated VaR.  

 

7.3 APPLICATION IN PRACTICE: REAL BANK PORTFOLIOS <CLASSIFIED>* 

  

                                                             
* This section is classified and is concealed in the published version.  
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8 CONCLUSION 
 

As credit risk is important for banks to hold capital to protect themselves against unexpected 

losses, the real capital requirement can differ substantially without incorporating the parameter 

uncertainty that is present in small datasets. In this thesis the impact in the regulatory 

framework using the ASRF model is investigated, which is the model for the internal ratings 

based approach of Basel II. The Value at Risk (VaR) is calculated according to the ASRF model in 

a simulation study. In the model the PD determines the fraction of the portfolio to be set aside, 

where the correlation parameter has a relatively smaller impact and is in the Basel accords a 

function of the PD.  

In this thesis two methodologies are shown. The first conditions on the knowledge of a common 

factor that represents a factor that influences all obligors in a specific portfolio in a homogeneou 

way, such a common factor can be regarded as a systematic economic indicator. The second 

assumes this latent variable to be unknown.  

Both methodologies adopt a Bayesian approach in which the parameter PD embodies the 

uncertainty by modeling it as a probability distribution. A prior must be chosen after which it is 

updated to a posterior distribution by conditioning on the data. The more data is present the 

less the uncertainty there is, so that we choose to investigate for different amounts of data. Since 

the methodology not capitalizing on the common factor takes significant more time and some 

information is present about the common factor, we investigate the impact capitalizing on this 

information. To investigate the impact of the uncertainty, an 'estimated VaR’       
         is 

compared to an alternative VaR formula incorporating parameter uncertainty      
  

. It is 

shown that the first VaR tends to underestimate the VaR by -21.7% to -1.8% on average, which 

uses the mean of the historical default rates as an estimate of the PD. The effect of this 

assumption on the common factor must be investigated properly as it is important in both 

methodologies.  

Assuming the validity of the framework,       
  

is shown to be superior to       
         . When 

the estimated VaR underestimates the true VaR,       
  

 is higher and thus closer to the true 

VaR. In the cases the estimated VaR is higher than the true VaR,       
  

 is not much different 

than       
         . This observed property is desirable and it will depend on the data how much 

the additional capital requirement is. On average the additional capital requirement over 

      
          to the parameter uncertainty incorporating measure       

  
 ranges from +24% for 

the smaller portfolios to + 4.5% for the largest portfolio.  

In the above results the true VaR is known as a simulation was performed to generate data. For 

two portfolios using real default data, the methodology conditioned on the common factor and 

without the common factor are performed to calculate the difference between       
          and 

      
  

.  

The results have to be taken as a possible warning of a lack of capital in small portfolios. The 

assumption of a homogeneous portfolio might not be the case for small portfolios in practice 

and further research on the impact of estimating the common factor is needed.  
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Finally the VaR is in practice not estimated with data only on the mean of the historical default 

rates (and the common factor). Instead mathematical models are used in combination with 

expert judgments. Additionally conservatism is included to account for uncertainties and 

includes parameter uncertainty, so that the calculated additional capital must be set off against 

the conservatism. Further research can be conducted by looking at these mitigating effects and 

possibly in combination with the mathematical models used to estimate the PD in practice. 
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