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Abstract. Historical bookings in Revenue Management (RM) are seen
as constrained demand due to the restriction of capacity or due to var-
ious rates for the same product. Research shows that relatively simple
unconstraining methods can result in a considerable revenue increase due
to a more accurate forecast performance. The goal is to obtain uncon-
strained daily historical demand, which can be used as input for a
forecasting algorithm. This graduation project, part of the Master’s pro-
gram of Business Analytics at the VU Amsterdam, describes the steps
from raw data until implementation applied in the hospitality indus-
try. Expectation Maximization algorithm is implemented with simulated
data and real data. The outcome of EM algorithm is a non-decreasing
demand function per choice set per historical day.

Keywords: revenue management (RM), demand unconstraining, Ex-
pectation Maximization (EM), hospitality
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1 Introduction

This internship report is part of the graduation project for the Master’s pro-
gram of Business Analytics at the VU Amsterdam. This content of this Masters
program is the application of mathematics, computer science and business ad-
ministration. During this internship prof. dr. G. M. Koole is the main supervisor
and dr. E. N. Belitser is the second supervisor. The goal is to validate and im-
plement mathematical methods in order to solve practical problems. Often the
issue occurs that theoretical methods described in literature do not solve the
reality due the occurrences of random events. Whereas the theoretical methods
are mostly tested with simulated data. A problem in the hospitality industry
will be solved with simulated and real data.

One of the main challenges in the hospitality industry is selling the right
room to the right guest at the right moment for the right price. By applying
Revenue Management (RM) strategies, hotels attempt to optimize their revenue
with, for example, dynamic pricing and allocation according to Talluri and van
Ryzin [25]. The common way of RM is selling a fixed number of rooms (the
capacity), which are perishable, at a fixed deadline, also known as the check-in
date. Based on, among others, historical reservations, market information and
guest behavior, hotels choose optimal controls in the form of dynamic pricing and
capacity allocation in order to maximize revenue. RM is mainly associated with
the airline industry and hospitality industry stated by Talluri and van Ryzin
[25].

This internship contributes to the forecasting module of the RM system cre-
ated by Irevenu. Irevenu, originally a software company, was founded in January
2017 by Jan Jaap van Roon, CEO of Ireckonu, prof. dr. Ger Koole, Jeroen de
Korte (MSc Business Analytics student) and Rik van Leeuwen (MSc Business
Analytics student). Ireckonu is a software vendor from Amsterdam that connects
several software and hardware systems from hotels into one platform. JJvR is
the investor behind Irevenu, and GK helps with the statistics and validation of
the models. The goal of this start-up is to build an easy-to-use and affordable
RM solution for the hospitality industry.

Irevenu has access to millions of records of reservation and guest data of sev-
eral hospitality companies through the software of IreckonU. Due to the amount
of data, extensive analysis is executed and mathematical models are validated.
IreckonU and one of their customers agreed to cooperate with this internship.
This customer owns 12 properties globally and have a single type of hotel room.
An external dataset of competitor rates is available besides the data of IreckonU.

The remaining part of the report is structured as follows: in Section 2, the
problem statement is explained. An overview of existing literature about the
problem is discussed in Section 3. In Section 4, the available data, explanatory
data analysis and statistical data analysis are presented. The methodology is de-
scribed in Section 5. In Section 6, the results are presented. Section 7 is dedicated
to the implementation of the model. Finally, Section 8 contains the conclusion
and discussion.
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2 Problem Statement

2.1 Background and Context

Revenue Management (RM) systems have proven to have a positive impact on
revenue of hospitality companies by allowing revenue managers to carry out
strategies more efficiently and effectively, according to Lee [11] and Rajopadhye
et al. [20]. However, less than 10% of the industry has implemented a RM system.
The other part of the industry do RM based on human gut and reports about
historical data using spreadsheets. Gökşen [5] stated that the lack of technical
structure or the cost of such a system are two of the main reasons why companies
do not have a RM system in use.

From a mathematical point of view, a RM system consists of two main com-
ponents: a demand forecasting algorithm and an optimization algorithm which
determines the room rate given the demand. The interaction between these two
components is key to a successful system. However, before any of these algo-
rithms are chosen, validated and implemented, extensive data analysis needs to
be executed in order to verify the assumptions of a model.

Zooming in on forecasting algorithms, there are roughly three techniques
categories: time series models, the econometric approach, and other emerging
methods such as AI techniques according to Song & Li [23]. For all these fore-
cast techniques, the input is one of the crucial factors in order to obtain an
accurate demand forecast. And Weatherford & Kimes [29] state that one of the
key components for a successful RM system is an accurate forecast. Industry
wide, companies have a database of historical bookings which is often used as
input for a forecasting algorithm.

A clear distinction must be made between the input possibilities of a fore-
casting algorithm: bookings and demand. Bookings are defined as the records
that are stored in a database and demand is the number of guests who are in-
terested in a room. In literature, regularly these two terms are confused with
each other. The number of records that are stored is an inaccurate indicator of
demand because this number is influenced by rate and capacity of a property.
The rate, generally set by revenue managers, is based on a combination of his-
torical reporting spreadsheets, the number of bookings made so far (also known
as on-the-books) and human experience. However, the optimal rate can only be
set when there is information available of true demand and the on-the-books.

Historical bookings are seen as constrained demand due to the restriction
of capacity of a property or due to various rates for the same room night, and
therefore, not the appropriate input for a forecasting algorithm. Reconstructing
the true demand from reservation data is called ”unconstraining” in RM and is
the only appropriate input form for a forecasting algorithm. Figure 1 illustrates
an example of pace for a single day of a single property with a single rate for
a booking horizon of 100 days. The solid line represents the true demand until
the booking limit is reached. Unconstraining methods estimate the total demand
that would have been observed in the absence of any booking limits (dashed part
of the line).
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Fig. 1: Sample of pace

Weatherford & Pölt [28] show that relatively simple unconstraining methods
can result in a considerable revenue increase due to a more accurate forecast,
which is used as input for the optimization module of a RM system. Changing
the input has advantages for the rest of a RM system. Despite these benefits,
Guo, Xiao and Li [6] stated that demand unconstraining has not received as
much attention as other components of a RM system.

2.2 Problem Statement

Reservation data is constrained and therefore not the appropriate input for a
demand forecasting algorithm. At this moment there is no statistical uncon-
straining method implemented into the RM solution of Irevenu. Therefore, the
goal is to obtain unconstrained daily historical demand, which can be
used for forecasting purposes. And so, increase the accuracy of the forecasting
module of this RM system. This report describes the steps from raw data until
implementation applied in the hospitality industry.

2.3 Approach and Validation

The next section discusses literature about the different types of models and
gives an overview of the spectrum regarding unconstraining techniques. The
outcome of this review provides direction for the exploratory analysis, where
data is visualized and analyzed. Several variables of both datasets are scrutinized
in order to explore the dynamics of specific segments. After the exploratory
analysis, statistical data analysis is executed to prove assumptions. The next
step is the implementation of the chosen model and the validation of this model.
After validation with simulated data, the algorithm is applied to real data.
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Validation is crucial when revenue managers depend increasingly on predic-
tions by mathematical models to justify their decisions or even let a system
makes decisions. According to James et al. [9], separating data into a training
set and a testing set is an important step of evaluating an implemented algo-
rithm. Generally, the training set is around 80% of the entire set and the other
20% is used as testing set.

To reduce variability in the outcome of the model, cross validation [10] is
implemented. The goal of cross validation is to test the ability to adapt to new
data in order to flag overfitting or underfitting and see the performance on new
datasets (test set). The data is split into 5 groups, because of the 80-20 split in
training/test set, and therefore 5-fold cross validation is applied.

The RM department at the hospitality company, who agreed to cooperate
with this internship, steer the revenue in such a way that it is ultimately as
close to budget as possible. Industry wide, part of a budget is the revenue over a
given period of time. However, the issue with such a measurement is that negative
errors and positive errors cancel each other out. Which is in the advantage of
revenue managers because they need to be as close as possible to the budget.
From a validation perspective it is too simple and can indicate an accurate
average but insufficient fit when zoomed in into single scenarios.

The performance of the model is validated by an accuracy measurement
between the outcome of EM and the observations and between the outcome
of EM and simulation. A detailed explanation of measurements is described in
Section 5 Methodology.

2.4 Scope and Relevance

The scope of this internship is to implement and validate a demand unconstrain-
ing algorithm for hotel reservation data as stand alone. Components of the RM
solution of Irevenu will not be included or used for validation. By the usage of
components of Irevenu, the report could include certain preferences instead of
an unbiased research. The results are relevant to researchers in the industry of
RM who want to increase their forecasting accuracy, which in turn, the revenue
will increase since the optimization module deals with true demand. The main
focus is about room revenue, and associated costs are not included in any way.
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3 Literature Review

As mentioned in the previous chapter, a Revenue Management (RM) system
consists of two main pillars: a demand forecasting algorithm and an optimiza-
tion algorithm. The forecasting pillar can be seen as the heart of the system.
Without an accurate demand forecast, the system provides rate recommenda-
tions which can be highly inaccurate. Weatherford and Belobaba [27] states that
an underestimation of 12.5% - 25% in demand can hurt the revenue by 1% -
3% on high demand days. In 1990, Lee [11] concludes that an increase of 10%
in forecast accuracy can result in a revenue increase of 0.5% - 3% on high de-
mand days. The majority of research about forecasting in RM is based on the
airline industry (e.g., L’Heureux [8]; Lee [11]; Wickham [30]), however the same
techniques are applied in other industries such as hospitality and retail.

The majority of these techniques use historical (observed) booking data as
input. However, observed data is considered to be censored data, as mentioned
in Chapter 2: Problem Statement. Weatherford and Pölt [28] report that the
unconstraining process results in 2% - 12% increase in revenue. According to Guo
et al. [6], unconstrained demand can contribute to the determination of allocation
and booking limits. Moreover, Cooper et al. [2] prove that the underestimation
of demand has a spiral down effect on the revenue. This implies that the revenue
will decrease monotonically when the data remains constrained.

Guo et al. [6] categorize different strategies to unconstrain demand. Each
of these strategies has advantages in specific situations. In general, a hospital-
ity company has five possible strategies to tackle the problem of constrained
demand: (1) directly observe all incoming demand, (2) leave data constrained,
ignoring the fact that censorship occurs, (3) use unconstrained data only and
discard censored data, (4) replace censored data using imputation methods, or
(5) statistically unconstrain the data.

Strategy (1) is impossible since a hospitality company deals with multiple
distribution channels through which a room night can be sold, for example
Booking.com and Expedia. Monitoring all demand is not possible with these dis-
tribution channels. Zeni [31] argues that the importance of unconstraining and
simply leave the data censored, results in revenue loss, which makes strategy (2)
not an option. Strategy (3) discards many observations, and high demand days
are important for hospitality companies because extra revenue can be achieved.
Replacing censored data, strategy (4), has not been extensively researched and
simple techniques are applied such as replacing by mean or median. Statistical
methods, strategy (5), have proven their effectiveness in terms of revenue accord-
ing to Zeni [31]: ”These models avoid the ad hoc nature of imputation methods
and are built on a foundation of statistics theory. This is done at the cost of
additional complexity and model assumptions that must be validated”. With the
application of statistical methods, a variety of optimization and heuristic tech-
niques are covered that rely only on observed bookings and rate availability,
addressed by Queenan et al. [17]. From the five possible strategies, the statis-
tical strategy (5) seems to be the most promising, even though it is the most
complex one of all strategies. Possible statistical options are discussed next.
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Guo et al. [6] listed, in an extensive literature review, an overview of the
statistical unconstraining methods, which can be divided into three categories:
single-class methods, multi-class methods and multi-flight methods. The cate-
gories are based on the airline industry, however these can easily be translated to
the hospitality industry. Single-class methods assume independent rate classes,
which is a potentially problematic assumption, because in reality, different rate
classes are dependent on each other, as explained by Talluri and Ryzin [25].
Multi-class methods and multi-flight methods do take interaction between rate
classes into account. In this review, only multi-class will be discussed further
because of its relevancy of the research. The multi-flight category takes into
account different options to reach the same destination. The equivalent in the
hospitality industry is taking another room type for the same night.

Expectation Maximization (EM) is a method, which optimize a maximum
likelihood estimator, that is used in multi-class problems as well as multi-flight
problems. According to Zeni [31], Weatherford [26] and Pölt [16], EM is one of
the most robust statistical methods to unconstrain demand, and hence, to deal
with missing data. EM was first published by Dempster et al. [3] and McLachlan
and Krishnan [13] were the first with a detailed description. It has been proven
that EM was successfully applied in various incomplete data problems. However,
these models require knowledge of the demand distribution which can be seen as
a disadvantage. This maximum likelihood estimator consists of two main steps:
expectation and maximization. It is an iterative process where the parameters
of the demand distribution are estimated.

Another statistical unconstraining method for multi-class problems is the
Spill Model by Belobaba and Farkas [1]. This model estimates the number of
persons that could not make a reservation per rate class, which is zero when
the capacity is not reached (which is a limitation of the model). When the
capacity is reached, the model estimates the spill by a probability distribution.
No (published) implementation is found applied to the hospitality industry.

Queenan et al. [17] consider using the Double Exponential Smoothing (DES).
DES uses two smoothing constants: one for smoothing the base component of
the demand pattern and a second for smoothing the trend component, in order
to unconstrain total demand for a point on the booking horizon. In their paper,
EM, DES and not unconstraining at all are compared with each other. In two
of the three datasets, DES outperformed EM and no unconstraining method.
However, the assumption of independent demand is taken into account, but a
method is suggested to take dependent demand into account in their paper.

Another possibility is Censored Demand Expectation-Maximization (CDEM)
model introduced by McGill [12]. Demand is unconstrained by estimating un-
truncated distribution parameters, which is based on the EM algorithm. However
a drawback of CDEM is the computational intensity. When there is a high degree
of censorship, CDEM takes still around 65 iterations to to converge according
to McGill. However, numerical experiments result in good estimates, even when
75% or more of the demand is censored.
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Expected arrivals are underestimated or overestimated by external factors,
one them is competition. Revenue managers of hospitality companies where no
RM system is implemented, have difficulties with price setting due to influence
of competition. Two reasons are that it is an extra variable to take into account
and competition is uncertain. Every property has a competitor set, these are
hotels who want to attract the same customers, also known as the segment pool.
Enz and Canina [4] concluded effective pricing on low-demand days became more
challenging and effective revenue management more important.

Enz and Canina [4] researched that rates of hotel rooms are more dependent
on the competition than before the rise of comparison websites. There are strong
positive correlations between the average daily rate and occupancy when the rate
of a hotel room is just below the rates of the segment pool. Another conclusion is
the weaker relationship between rate and occupancy when hotels priced substan-
tially lower than their competitors. Aberate (2016) also concluded that rates of
competition are of strong influence on the revenue management strategies of air-
lines. In these types of industries, where dynamic pricing is crucial, the influence
of competition should be taken into account.
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4 Data

Reservation data and competitor data of an international hospitality company
is used. The first section of this chapter describes the available data and basic
statistics in order to obtain a general overview. The second section is devoted
to exploratory data analysis to obtain extra insights. The third section is about
statistical data analysis and statistical tests. In that section assumptions that
are made during exploratory data analysis, are verified statistically.

4.1 Available Data

Data of a single property, located in Amsterdam, The Netherlands, is selected as
use case. The dataset contains 92,925 reservations, arriving from 2016-07-01 until
2018-07-01 for this property, which has a capacity of 215 rooms, and only one
room type. The sum of the room nights of the reservations is equal to 200,988,
which results in an average length of stay (LOS) of 2.16 nights. A reservation
record contains the following information: reservation date, check-in date, check-
out date, status, cancellation date, source, market code, total price, group code.
The distribution of the attribute status is as follows: 70.86% completed stays,
26.44% cancellations and 2.70% no-shows. The average room rate per night is
€146.40. The range of the attribute rate for a single night is bounded between
€89 and €239. One downside of this dataset is the fact that if there was no sale
on a certain day, the price that was set is unknown. On average, guests cancel
their reservation 43.5 days before check-in, with an average length of stay 2.40
nights and the average rate per canceled night is €149.59. Finally, 7.46% of the
reservations is part of a group and has a value for group code.

The second data source originates from OTA Insight, which contains rates
that have been set by the hospitality company and their competitor set. The
competitor set, containing six hotels, is established by revenue managers after
market research. A competitor will be included based on several criteria, e.g.
location, brand power, reviews, price/quality relationship and facilities. Due to
confidentiality, competitors are numbered 1 to 6. The dataset contains over ten
million records about rates per rooms type, of each competitor, from 2015-01-01
to 2017-01-01. In comparison with the reservation dataset, there are records of
the rate that was set, even though there is no sales record. An analysis is executed
about the behavior of the rate of the used hospitality company, and all these rates
have been set manually by the revenue managers. Extra insights are gained about
the behavior of the competitors. However, no information is available about the
way competitors price their rooms, manually or automatically by a RM system.

Next to the reservation dataset and the dataset of OTA Insight, a dataset of
demand is created based on parameters and assumptions, derived on the findings
of explanatory and statistical data analysis. By applying simulated data, the
statistical unconstraining of methods will be understood into more detail and it
will help with the implementation, evaluation and verification of these methods.
The setup of the simulated demand is explained in more detail in Chapter 5:
Methodology.
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4.2 Exploratory Data Analysis

By describing the datasets and presenting initial statistics, useful insights are
gained. However, extra insights are necessary to create assumptions. These find-
ings are presented below by summarizing the main characteristics per subject
and help to understand the data better.

4.2.1 KPI The hospitality industry uses several Key Performance Indicators
(KPI) that monitor the performance of a property and allows to compare prop-
erties with each other. KPIs that indicate the revenue performance are mainly
based on the room revenue, the number of occupied beds and the capacity of a
property. Next to revenue indicators, there are also indicators about costs such
as energy, water consumption and cleaning, however costs is not in the scope of
this internship and therefore not included.

Figure 2 shows the rate distribution in bins of €10. The average rate of a
reservation is used, since individual rates per room nights are not available. For
example, the average rate per room night is €100 when the total price is €300,
and the reservation has a LOS of 3. The rate is rounded to the nearest €5 or
€10. The rate around €140 is the most frequent one. The rates are bounded by
the minimum and maximum rate, which are set up by the hospitality company
itself, as mentioned in the previous section Available Data. Around ∼ 1% of the
reservations have a rate lower than the minimum rate, these reservations are
transferred to the €90 bin. The ∼ 1% increase of bin €240 with respect to bin
€230 can be explained by the limitation of the maximum rate, all reservations
which has a higher rate than €240 are put into the bin of €240.

Fig. 2: Rate distribution

Important KPIs concerning price are average daily rate (ADR) and revenue
per available room (RevPAR). The formula of ADR is room revenue divided by
the number of occupied rooms. RevPAR is calculated by room revenue divided
by the capacity. Note that the ADR is always lower or equal to RevPAR. With
the available reservations data, at least every month can be compared once with
the same month in the previous year. Figure 3(a) represents ADR by month and
Figure 3(b) presents RevPAR by month.
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(a) ADR (b) RevPar

Fig. 3: KPI by month

These metrics increase over time. The 2017 line is above 2016 line and the
2018 line is above 2017. It is desirable that these KPIs are consistent or increase
over the years, otherwise this may imply that tourism is decreasing in the area
or competition is taking over, since they are fishing in the same guest pool.
However, this increase in ADR and RevPAR has affected the occupancy, which
is the third important KPI in hospitality. The occupancy did increase in 2017,
but decreases in 2018, see Figure 4.

Fig. 4: Occupancy by month

A change in KPIs can have a significant impact on the total room revenue,
both positive and negative. Revenue managers quickly notice if the performance
of a property is off track compared to budget or forecast. Figure 5 shows the
total room revenue in the same way as the previous metrics. It shows that this
metric increased over the past two years which has the same seasonal pattern as
ADR and RevPAR. The composition of these three metrics changed over time,
higher ADR/RevPAR and lower occupancy, which have a positive impact on
room revenue. However, this metric does not indicate if the net revenue increases
since it does not include any costs or additional revenue. For example cleaning
costs: when a new guest is assigned to a room, a more thorough cleaning job is
required than when a guest is staying for second night. Room revenue also does
not take extra revenue into account, for example at the bar. Since this internship
is focused on unconstraining of demand, costs and additional revenue are beyond
scope of the project, and the focus is entirely on room revenue.
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Fig. 5: Total room revenue by month

Seasonality influences KPIs significantly, see Figure 3 and Figure 4. Other
seasonality components can be derived from the arrival date, such as year, quar-
ter and weekday. In Table 1, ADR, RevPAR and occupancy are presented by
weekday. As mentioned in section Available Data, ADR is equal to €146.40 and
RevPAR is equal to €126.43. The differences in ADR are smaller in comparison
with the differences in RevPAR, which is influenced by occupancy: when the
difference between ADR and RevPAR is higher, the occupancy is lower. For ex-
ample, the difference between Friday and Sunday is equal to €10.93 in terms of
ADR and for RevPAR this difference is equal to €20.30. Seasonality components
month and weekday have impact on KPIs and so on demand. Seasonality should
therefore be considered as an influence that should be taken into account.

Metric Mon Tue Wed Thu Fri Sat Sun

ADR 145.01 148.10 146.98 146.02 149.13 149.21 138.20
RevPAR 122.12 134.50 134.67 128.64 130.01 136.74 98.47
Occupancy 84.21% 90.81% 91.63% 88.10% 87.18% 91.58% 71.25%

Table 1: KPIs by weekday

4.2.2 Source The source of a reservation is a interesting variable to explore.
Table 2 presents an overview of the four sources with several statistics. The four
sources are Online Travel Agencies (OTA), e.g. Expedia.com or Booking.com,
website (WEB), direct (DIR) and Global Distribution System (GDS), which
are cooperate bookings. Channel WEB contains reservations made via the hotel
website. The reservations from direct channel are guest who called or emailed
the hospitality company. One of the reasons to contact via phone or email is
to make a group booking, because guests are, for example, not able to make a
reservations for 10 rooms at once online. The desire is to keep the share of OTA
reservations as low as possible since a commission is paid to the OTA. These
commissions can be as high as 40% of the total price a guest paid, which depends
on and/or influences the rank of the hospitality company on the OTA website.
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The OTA channel is highly represented with 57.72%. Another disadvantage,
besides the high commissions, is the relatively high cancellation rate of 37.51%.
The is no information available regarding the commission the hospitality com-
pany paid. Even though the ADR of OTA is higher than WEB, the net profit
is higher of a reservation made via WEB since the commission needs to be sub-
tracted from the ADR of OTA. Guests who book via direct seem to be the most
profitable since the cancellation rate is the lowest, ADR the highest and LOS
the longest.

Source % grand total Cancellations ADR LOS

OTA 57.72% 37.51% 146.69 2.33
WEB 23.92% 20.77% 143.78 1.88
DIR 9.18% 8.05% 161.08 2.45
GDS 9.18% 21.51% 147.33 1.85

Table 2: Sources and statistics

4.2.3 Lead Time Several guest types can be identified by a combination of
variables. For example, business guests usually book via GDS channels. One of
these key metrics is the number of days a guest books the reservation in advance,
which is the difference in days between the reservation date and check-in date.
This metric is also known as lead time or booking pace, the average over all
observations of this metric is equal to 49.8 days.

The number of reservations made per lead time is displayed in Figure 6. This
figure is in line with the thoughts of revenue managers, who argue that more
guests make a reservation when check-in date becomes closer. In this graph,
canceled reservations and no-shows are included. Guests can make a reservation
a year in advance. Around 15% of the reservations are made with a lead time
between 100 and 365.

Fig. 6: Count of reservations by lead time
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Figure 6 is split into the four channels, see Figure 7. The maximum lead time
of 100 is chosen to emphasize the difference between the channels. The average
lead time for OTA, WEB, DIR and GDS is respectively 59.4, 48.3, 16.6, and
26.1 days. The shape of Figure 7(c) (DIR) is completely different compared to
the other channels. This can be explained because DIR reservations are mostly
made via phone, and include group bookings since it is not possible to make a
group reservation via the website.

(a) OTA (b) WEB

(c) DIR (d) GDS

Fig. 7: Count of reservations by lead time per channel

The other three channels, Figure 7(a), Figure 7(b) and Figure 7(d), have a
similar shape, few observations for high lead time and more observations for lower
lead time. However, there is a more pronounced weekly pattern in Figure 7(d)
GDS compared to the other two sources. This can be explained because business
travelers book during weekdays instead of weekend days. There is also a increase
in Figure 7(b) WEB the last two days before check-in date. An explanation can
be that guests want to make sure that there is availability at the hotel and
therefore make a reservation via the hotel’s own website instead of an OTA,
such as Booking.com or Expedia.

Figure 8 presents the average room rate per lead time, where lead time is
grouped by week. The rate is derived from the reservations dataset. Interesting to
see is when the lowest rate is paid. For this specific property, the lowest average
rate is paid the week before check-in date. The pattern of this graph is seen as
disloyal to guests who book way in advance. The guests who are willing to make
their reservations way in advance should pay less than a guest who book a few
days in advance. Note that the y-axis starts at 120 to emphasize the differences
between the weeks.
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The rate for a room night differs over time for a specific check-in date, and
that can be seen when the average price per lead time is calculated. Guests are
able to make a reservation one year in advance. However, since there are little to
no bookings for large lead times, only the last three months before check-in are
taken into account. The lead time is grouped per week, see Figure 8. Note that
the y-axis starts at 120 to emphasize the differences between the weeks. Around
two months in advance, there is a price increase which decreases when the lead
time also decreases. There is a spike two weeks before check-in which may be
influenced by the type of guest who make their reservation typically two weeks
in advance. When looking at Figure 7(c) and 2, these seem to be the guests that
book through DIR.

Fig. 8: Average price per lead time grouped by week

In Table 3, the average lead time by weekday and source is presented. There is
a difference of roughly 10 days lead time between weekdays, Monday to Thurs-
day, and weekend days, Friday to Sunday. As mentioned before, channel has
an impact on rate and length of stay, and this also holds for lead time. The
reason why the lead time is higher during weekdays can be explained by the
type of guest. During the weekends more leisure guests stay in the hotel, and
leisure guests tend to plan their trip more in advance than guests who travel for
business. Guest who come in through OTAs make their reservation further in
advance than guests that come in through the website. This can be explained
by the type of guests who book via this channel.

Source/
Weekday Mon Tue Wed Thu Fri Sat Sun Total

OTA 58.6 57.4 53.5 54.4 61.1 62.7 64.33 59.4
WEB 45.0 45.8 43.3 44.9 52.5 57.3 51.7 48.3
DIR 13.6 13.6 16.6 17.8 22.4 19.6 15.2 16.6
GDS 25.3 25.8 25.0 24.2 31.2 32.0 29.5 26.1

Total 45.6 44.1 42.0 44.8 55.5 59.0 56.3 49.8
Table 3: Lead time by weekday and source
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4.2.4 Competitors After looking into the reservations data, the next sub-
section is devoted to the other data source that is available: OTA Insight. Song
and Wong [24] mentioned that possessing competitive advantages could be key
to success. Data analysis can be used to gain competitive advantages. Song and
Wong [24] also mentioned that competition is still not precisely defined. Nev-
ertheless, competitiveness is obviously seen as an external factor to investigate.
As mentioned in a previous section, the dataset contains over 10 million records
that only contain rates that have been set on OTA channels. This may cause
deviation in rates compared to early mentioned averages which are derived from
the reservation dataset.

Each competitor has multiple room types, some of which are not comparable,
and rates for different LOS. Therefore, a selection is made per competitor to
determine which rate is suitable for comparison. LOS has to be equal to 1 because
competitors may have an automated discount if a guest stays multiple nights.
The maximum lead time is set on 90 days, because from that point in time
rates are actively stored. The best available rate is selected. This basic selection
resulted into a dataset containing over ∼2.6 million rows. In Table 4, an overview
per competitor is given, whereas Brand is the hotel used for this research.

Competitor % grand total Average rate Room types

Brand 1.99% 123.87 1
1 25.25% 160.52 5
2 6.87% 145.71 3
3 24.68% 171.54 5
4 17.11% 151.25 2
5 11.98% 189.59 2
6 12.10% 129.25 3

Table 4: Competitors and statistics

Hospitality companies switch rates more often when the check-in date comes
closer, because competition becomes heavier and every competitor is fighting
for the same last minute guest. It is interesting to know who is a leader and
who is a follower. This is explored in the next subsection. A single historical
day is highlighted in Figure 9, using a lead time of 90 days. This figure shows
constantly changing rates of each competitor, increasing as well as decreasing.
This is a typical pattern that occurs here, first increase significantly and a couple
days later, decrease until even lower than the initial rate.

In Figure 10, the average prices over the last 30 days are shown per com-
petitor. This figure gives insight in what competitors do when the check-in date
becomes closer. The rank between the competitors may depend on the number
of sales, this assumption is tested in the next subsection. In general, hospitality
companies decrease their price on average when the check-in date comes closer,
and increase it just a few days before the check-in.
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Fig. 9: Single day of rates in competitor set

Fig. 10: Average rate by lead time for each competitor

The reservation dataset only contains rate records when there was an arrival.
But with the OTA Insight dataset, the behavior of the Brand can be analyzed.
Only the days are analyzed which have complete rate information over the final
30 days until check-in. It is not likely that the rate for a room night remains
constant in the last 30 days until check-in due to the heavy competition these
days. Therefore, days are considered where the rate did change at least once.

The rate changes on average 4.7 times in the last 30 days until check-in, with
a variance of 10.2. This indicates that the spread of the number of rate changes is
high. Of these 4.7 times of rate change, 2.4 were positive and 2.3 were negative.
This indicates that there is no real pricing strategy active since the rate changes
is as much up as going down.

In Figure 11, the percentage of rate change is given by lead time. It shows
that on lead time 29, 8.10% of the time the rate has been changed. Lead time 1
shows that 24.31% of the time the rate is changed. RM activity increases when
the check-in date is coming. When no RM strategy is implemented, it is getting
in the last potential guests who search for a room night.

Fig. 11: Percentage of rate change over lead time
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4.3 Statistical Data Analysis

From the subsection Explanatory Data Analysis, valuable insights are gained and
multiple assumptions where made. In this section, assumptions are validated
with statistical evidence. Certain selections of the datasets are made. These
selections are explicitly mentioned before validation of assumptions. The term
lead time is often used in the previous sections, however from this point on
the term booking horizon will only be used, defined as t from 1, ..., T where T
represents the check-in date.

4.3.1 Rank Dependency By combining the reservations dataset and the
OTA Insight dataset, a general assumption is validated among the hospitality
industry: when a property is ranked higher on an OTA website, it leads to more
sales. This might be true since a guest is searching using specific criteria such as
neighborhood and public transport accessibility, and the next logical criteria is
room rate. Rank among a competitor set is based on the daily rate that was set
on a point on the booking horizon for a certain date. The assumption regarding
more sales with higher is tested in this subsection. This is valuable since high
commissions, up to 40% of the room rate, are paid for a high rank.

The first step in this validation process is data selection, because not all rates
of each point on the booking horizon are stored in the OTA Insight dataset. As
mentioned in the previous section Exploratory Data Analysis, rates are actively
stored 30 days before check-in. Therefore, rates are considered 30 days before
check-in. Looking at this specific selection of the OTA Insight dataset, it still
occurs that no rate is stored for a room type. Then this room type is not taken
into account. It may occur that two competitors have an equal rate, than the
rank is set equally.

A small ranking example is given in Table 5 among three hospitality brands.
It is possible that other brands occur based on the search criteria, however these
are not observed and therefore the assumption is made that the OTA Insight data
is the complete dataset. Regarding the number of sales, only the reservations
are considered which came through an OTA distribution channel. Since there
is no complete overlap between the two datasets, the rank and reservations are
taken into account between 2016-01-01 and 2016-07-01. In the end, this selection
led to ∼11 thousand room nights. Only the rows of the hospitality brand are
taken into account because the reservation database only contains sales from
the hospitality brand itself. The booking horizon and rate are considered as
variables which influence the number of sales. Booking horizon is taken into
account as categorical value because booking horizon of 1 is not better or worse
than booking horizon 2.

A two-way ANOVA test is used to validate the assumption that there is
significant difference in sales. This statistical test is chosen because it com-
pares levels of two or more factors for mean differences on a single continu-
ous response variable. The mathematical model is defined as Sales ∼ Rank +
BookingHorizon, where Sales is an numerical explanatory variable and Rank
and BookingHorizon is considered as categorical response variables.
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Hotel Date Booking Horizon Rate Rank

1 2018-01-01 1 100 1
2 2018-01-01 1 150 2
3 2018-01-01 1 200 3
1 2018-01-01 2 200 2
2 2018-01-01 2 150 1
3 2018-01-01 2 200 2
1 2018-01-01 3 250 3
2 2018-01-01 3 100 1
3 2018-01-01 3 200 2

Table 5: Ranking example between three hotels

However, booking patterns per weekday are different because more bookings
are made on Monday through Friday (∼ 16% of total reservations per day)
compared to Saturday and Sunday (∼ 8% of total reservations per day). For
example, booking horizon 29 (1 day before check-in) on a Sunday has less sales
because Saturday on a booking horizon of 29. Therefore, a two-way ANOVA test
is performed per weekday since booking horizon is a response variable.

The outcome of the test does reject the null hypothesis for each of the week-
days because all p-values regarding Rank and BookingHorizon are below the
significance level of 0.05, see Table 6. The F-statistic is the ratio of mean squares,
which implies the population variance that takes into account the degrees of
freedom. If this number is close to 1 it is likely that the null hypothesis is not
rejected. The F-statistic is greater than 1 in all cases, which confirms (again)
the rejection of the null hypotheses.

Weekday Booking Horizon Rank
F-statistic Rank F-statistic Rank

Monday 2.339 1.15e−04 3.751 3.31e−07

Tuesday 6.355 2e−16 4.278 2.74e−07

Wednesday 1.404 9.18e−03 2.832 3.48e−04

Thursday 1.985 1.71e−03 2.631 9.74e−04

Friday 5.196 2.62e−16 6.769 1.72e−14

Saturday 6.366 2e−16 6.346 2.35e−11

Sunday 6.199 2e−16 4.781 5.53e−08

Table 6: One-way ANOVA test about dependency of Rank and BookingHorizon
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4.3.2 Dynamic Time Warping The results of the Exploratory Data Analy-
sis pointed out that competitors change their rates continuously, which influences
RM strategies as mentioned in Section 3 Literature Review. Schwartz et al. [21]
researched the challenges of including competition into a forecasting module and
concluded that an implementation using competition is difficult but not impos-
sible. Their results were promising and could potentially increase the forecast
accuracy. A first step of understanding the competition is to identify if there
are leaders and followers in the market. The rate changes can be seen as move-
ments or actions, and such a set of movements can be analyzed. Silva et al. [22]
pointed out movements are analyzed in all sorts of industries, from medicine to
astronomy to sensors, all in order to gain extra insights.

By adapting Dynamic Time Warping (DTW), these leaders can be detected
in a set of competitors. DTW is a time series analysis technique which identifies
similarities between two sequences of values by calculating DTW distance be-
tween values over time. In this context, the sequence has a daily time dimension
and the values are the rates. The lowest available rate per day is chosen as value.
The sequences of competitors are extracted from the dataset of OTA Insight.
No papers are found of the application of DTW in the hospitality industry, how-
ever, research exists about implementation in the financial market, which has a
similar setup and goal as this subsection.

The definition of a time series is a sequence that is equally spaced in time (t)
with ordered values (n) such that x = (x1, x2, ..., xn) and x ∈ R for any t ∈ [1, n].
DTW algorithm computes a non-linear alignment between two time series values,
defined as x and y. A dynamic programming algorithm is applied in order to
calculate the DTW distances. Equation (1) calculates dtw(x, y) where dtw(n, n)
represents the total DTW distance. And c(xi, yi) represents the cost, defined
as the squared Euclidean distance between them, of matching two observations.
The lower the dtw(n, n) value is, the more similar two time series are.

dtw(i, j) = c(xi, yi) +min


dtw(i− 1, j)
dtw(i, j − 1)
dtw(i− 1, j − 1)

(1)

The time complexity is O(n2) because the two time series have length n and
all DTW distances between time points are calculated in the matrix. The length
is set on 30 days until check-in date. In order to reduce the complexity, the
warping constraint is added. This constraint limits the time difference that the
algorithm is allowed to use match the observations. Now the algorithm calculates
DTW distances closer to its main diagonal instead of all values. Ratanamahatana
et al. [19] argues that a warping parameter of 10% is sufficient choice for nearest
neighbor classification. In this setup, this results in a range of six days: three
days in advance and three days in history.

The DTW distance between time series is calculated between the competi-
tors set, including the used hospitality company. Because there is also interest
to discover if competitors follow other competitors. Competitors have different
room types, and to reduce the number of calculations a single room type per
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competitor is chosen based on the closest average rate. Because the DTW dis-
tance between competitor 1 and competitor 2 is equal to the distance between
competitor 2 and competitor 1, only the right triangular matrix is calculated
without the diagonal, since it does not add any value if DTW distance is cal-
culated between the same time series. Competitor data between 2015-01-01 and
2016-01-01 is selected. One criterion in order to calculate the DTW distance,
is that there should at least be two price changes during the booking horizon
per time series. Otherwise, if two competitors did not change their price, these
time series have DTW distance of zero. Only the 90% best DTW distances are
selected because in some of the days it is not realistic to watch the competitor
set.

The median DTW distance over the selected date period is given in Table
7, as mentioned only the right triangular matrix is filled. The variance of DTW
distance over the selected date period is given in Table 8, rounded as integer
since the numbers are distinctive enough. Based on the median and variance,
three combinations are close to each other: brand - 1, brand - 6 and 5 - 6. Based
on the median, these combinations are respectively ranked as 3, 2, 1. However
based on the variance, these combinations are respectively ranked as 1, 2, 3.

Competitor Brand 1 2 3 4 5 6

Brand - 92.2 141.3 99.0 113.6 221.3 91.8
1 - - 144.2 87.5 135.9 179.9 90.9
2 - - - 148.6 161.4 233.7 123.7
3 - - - - 116.4 216.7 91.9
4 - - - - - 270.2 98.2
5 - - - - - - 218.3
6 - - - - - - -

Table 7: Median DTW distance between competitors

Competitor Brand 1 2 3 4 5 6

Brand - 1303 6012 2316 3175 13913 1345
1 - - 4219 1698 4981 8023 2285
2 - - - 7803 8644 16774 5850
3 - - - - 4227 10102 2034
4 - - - - - 14023 2865
5 - - - - - - 9358
6 - - - - - - -

Table 8: Variance DTW distance between competitors
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The DTW algorithm does not define who is a leader and who is a follower,
the outcome is the DTW distance. Therefore, the paths of between brand - 1
and brand - 6 are analyzed visually. A single example between brand - 1 can be
found in Figure 18 in the Appendix. This particular figure visualizes the result of
the algorithm with a distance of 12.2. There is no specific leader between brand
- 1 taking into account all of the figures. Whereas between brand - 6, brand can
be seen as the leader among the two. The DTW distance, as well as the variance
of competitor 5, is way higher than other competitors. This may imply that this
competitor is not suitable in the competitor set regarding price. However, due
to its location it should be included into the competitor set.
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5 Methodology

In the Literature Review, several unconstraining methods are described and
considered. Based on robustness and the number of papers found, Expectation
Maximization is the most suitable unconstraining method. The algorithm can
be expanded into a multi-flight category, implying multiple room types in hos-
pitality, which is one of the major advantages. This might be in the interest for
potential future clients of Irevenu. Several papers describe the algorithm applied
in the airline industry, but also in the hospitality industry. Other methods were
also considered, such as Gaussian process regression by Price et al. [14], however
these methods are novel methods and no prove is presented that these methods
work for real data.

The rest of this chapter is divided into six sections: the first section intro-
duces the concept of choice sets. The second section discusses the unconstraining
algorithm and the third is about the parameters that are estimated. The fourth
section is devoted to validation and the fifth is about the booking horizon. The
last section describes the setup of simulated data and the results of it. Recreat-
ing algorithms and methods used in researches can be challenging to implement,
therefore source code of EM can be found in the Appendix.

5.1 Choice sets

As shown in the Exploratory Data Analysis, rates are influenced by several
components such as weekday and source. By setting a different rate, guests are
willing or not willing to accept that rate. However, everyone is willing to pay less
for the same product. For example, when a guest paid 139, it was also willing to
pay 129 and so on until the minimum rate. This implies an order in preference,
meaning a guest prefers 129 above 139.

A general demand rate is not accurate enough since guests act differently
when a different rate plan is set, seen in Exploratory Data Analysis. Therefore,
it is assumed that arrival rates per rate class are required. Haensel and Koole [7]
discussed the concept of choice sets, which is defined as the sets of substitutable
products or choice alternatives with a strict preference order. This is the case
with rates for hotel rooms since every guest prefers the best available rate or has
a personal maximum rate for a single room night.

A small example to illustrate the concept of choice sets. Imagine a property
with a room that has a view to the ocean. There are two possible rates for this
room, say A and say B. Possible choice sets are: {A}, {B}, {A,B} and {B,A}; C
will denote the set of all choice sets. Choice sets are written with a decreasing
preference order from left to right. Therefore, the choice set {A,B} states that
customers being represented by this choice set are strictly preferring A over B.

This concept is transformed to rates for a room night for this specific hos-
pitality company, see Table 11 in the Appendix. The rate of a room night is
rounded to the nearest 9. If the rate is not adjusted, there are not enough data
points per rate bucket and too many choice sets. There are 16 steps of 10 be-
tween 89 and 239 and therefore 16 choice sets, defined A to P. The number of
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guests decrease when the rate increase since guests have a maximum amount
they are willing to spend. This implies that choice sets influence the equation
for the arrival rate. Equation (2) represents a non-decreasing demand rate which
includes choice sets, as described in Haensel and Koole [7].

λc(t) = βc · eαc·t (2)

5.2 Expectation Maximization

In order to overcome the problem of constrained demand, Expectation Maxi-
mization (EM) with interaction between choice sets will be applied. This algo-
rithm is an iterative method that finds, with the use of maximum likelihood,
estimations of parameters. Haensel and Koole (2011b) described the setup and
pros and cons.

The previous subsection, Choice sets, introduced a function for the demand
rate. The demand rate per choice set follows an exponential curve, see Equation
(3), for the booking horizon t, from 1, ..., T . Parameters α and β will be esti-
mated and both should be positive. Reservations data is used as input, which
are the observable sales. Unfortunately, not all information is available of which
choice sets were open during the booking horizon. Therefore, this information is
extracted from the observed sales data.

λc(t) = βc · eαc·t (3)
As mentioned in the Literature Review, there are two main steps that need

to be executed each iteration i, i = 1, ...,, until the stopping criteria is reached to
obtain the optimum. In each iteration, new α and β parameters will be estimated
separately for all choice sets c, denoted as αic and βic. The new estimated param-
eters are updated and the E-step can be executed again. Equation (4) represents
the M-step for each choice set c for iteration i. In words, this equation represents
the maximum likelihood function that estimates, for each choice set c, param-
eters α and β, which are obtained by minimizing the negative log-likelihood
function, see Equation (4).

(αic, βic) = arg minα,β>0 − Lc(i) (4)
The log-likelihood function at iteration i for choice set c is described by

Equation (5), known as the E-step. Note that these functions need to be created
and optimized separately for each choice set c. The variable S(t, f) denotes the
observed sales in class f at time t.

Lc(i) =
T∑
t=1

logP ic(S(t, f)) (5)

The probability of a sale is defined by Equation (6), which takes into account
interaction between choice sets where X ∼ Poisson(λic(t) = βic · ea

i
c·t). The dxe

operator returns the closest integer greater than or equal to x. The parameter

26



λi−1
overlap(c, t) sums the estimated rates from the previous iteration for which the

preferred available classes are included in choice set c. The indicator function
returns whether the preferred available class f in choice set c at time t was open.

P ic(S(t, f) =

P
[
X = d λi−1

c (t)
λi−1

overlap
(c,t) · S(t, f)e

]
· 1{U(c,t)=f} , if f > 0

1 , otherwise
(6)

Furthermore, there are two possible stopping criteria. Either reaching the
maximum number of iterations, which has been set to 100. Or numerical conver-
gence, which is when the difference in both parameters between two iterations
for all choice sets is smaller than 10−6. Numerical tests indicate if the maximum
number of iterations is sufficient, since numerical convergence is preferred.

The initialization step is introduced in order to obtain initial estimates, λ0
c(t).

This step does not take interaction between choice sets into account. The dif-
ference between Equation (6) and the initial probability is the faction with the
λ’s. Therefore, the iteration loop starts at i = 1. Pseudo code of EM algorithm
for unconstraining demand per choice set:

Initialization step:
For all c ∈ C

(αic, βic) = arg minα,β>0−
∑T
t=1 log

{
P (Xt = S(t, U(c, t)) , if U(c, t) > 0
1 , otherwise

where Xt ∼ Poisson(λc(t) = βc · eac·t)
end

Iteration loop: i = 1, ...
E − step :

For all c ∈ C
For all t = 1, ..., T

P ic(S(t, f) =

P
[
X = d λi−1

c (t)
λi−1

overlap
(c,t) · S(t, f)e

]
· 1{U(c,t)=f} , if f > 0

1 , otherwise
where X =Poisson(λic(t) = βic · eα

i
c·t)

end
Lc(i) =

∑T
t=1 logP ic(S(t, f)

end
M − step :
For all c ∈ C

(αic, βic) = arg minα,β>0 − Lc(i)
end

Until stopping criteria reached.
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5.3 Parameters

This section is devoted to the parameters of the non-decreasing demand func-
tion. The parameters of this function are estimated using the EM algorithm
as described in the previous section. The goal is to obtain unconstrained daily
historical demand, so the parameters for each choice set are estimated for each
single day of the historical demand. One of the disadvantages of estimating pa-
rameters per day for each choice set is the lack of data points for higher choice
sets. This becomes a problem when there is only a single sale for a high choice
set registered. The algorithm fits an α and β parameter for a choice set where
there is only a single sale involved.

Each parameter of this non-decreasing function has their own influence on
the exponential line. The α parameters determines the steepness of the line and
can be interpreted as the behavior, the β determines the height. Therefore, an
α and β parameter per weekday per source per choice set is estimated so the
weekday and source influence is captured, now referred as αsource,weekdayc and
βsource,weekdayc . This seasonality factor is chosen because the guests arriving on a
weekday have a different booking pattern over the booking horizon. Guests with
business traveling purposes stay mostly on Monday through Thursday, whereas
leisure guests mostly stay in the weekends when there is not a specific holiday.
The section Exploratory Data Analysis shows sufficient proof of the source and
weekday influence in the performance of the hotel.

These parameters are estimated over multiple demand scenarios. For exam-
ple, there could be 100 historical demand scenarios for a Tuesday, and so all
sales with source equal to WEB on Tuesdays are used to estimate the parame-
ters for all of the choice sets regarding weekday Tuesday and source WEB. These
demand scenarios are limited by a maximum booking horizon. The method to
choose the optimal booking limit is described in the subsection Booking Horizon
of this chapter.

5.4 Validation and Accuracy

Once Expectation Maximization (EM) is implemented, validation is required in
order to confirm the correctness of the implementation. Demand is simulated ac-
cording to known αc and βc parameters with a straightforward revenue manage-
ment strategy. The correctness is tested by estimation of the known parameters.
This setup is described in the subsection Simulation.

The variable a represents the observation (actual) and the variable f repre-
sents the outcome of EM (fit). The observations are 20% of the total dataset
because the outcome of the algorithm is based on 80% of the dataset. This is
repeated 5 times, because 5-fold cross validation is applied in order to reduce
the variability of the results.

The difference between the observation and fit does not imply error, it rep-
resents the unpredictable part of observations. An accuracy measurement is ap-
plied which is able to deal with zero values as actuals, because the number of
observed sales can be equal to zero. Accuracy measurements such as Average
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Percentage Error (APE) and Mean Average Percentage Error (MAPE) cannot
deal with zero values as actuals due to the fact that the actuals are in the de-
nominator. Because the numbers are low-volume, a single value may influence
the measurement significantly. Therefore, the Weighted Average Percentage Er-
ror (WAPE), see Equation (7), is chosen as an appropriate measurement. The
difference between actual and fit at t of the booking horizon is labeled as the
deviation. The WAPE is less sensitive to large distortions in comparison with
MAPE for example.

WAPE =
∑n
t=1 |at − ft|∑n

t=1 at
· 100 (7)

The WAPE indicates the performance for a given day between the actuals and
the fit. There is also interest to see the performance or deviation over the entire
booking horizon. Therefore, the Mean Absolute Deviation (MAD), see Equation
(8), is also calculated over the booking horizon. For example, the MAD for t = 63
is the average of absolute deviation over all days. This accuracy measurement is
able to handle zero values.

MAD =
∑n
t=1 |at − ft|

n
(8)

5.5 Booking Horizon

Selecting an alternate booking horizon could have a significant influence on the
performance of the unconstraining algorithm due to the number of data points,
which decreases when T of the booking horizon increases. One year in advance,
T = 365, a guest has the possibility to book a room. However, the number of
reservations that ware made between 300 and 365 days in advance is less than
1% of the total number of reservations. No papers are found on selecting the
optimal booking horizon.

In order to select the optimal booking horizon, a successful implementation of
the unconstraining method is required. The next step is to test several ranges of
booking horizons and measure the performance of the unconstraining algorithm.
By selecting one day less in a loop, every booking horizon is tested. The per-
formance of the unconstraining method is described in the previous subsection
Validation.

5.6 Simulation

In this section, the setup of the simulated data is described and unconstrained
with the EM algorithm. Introducing the following situation where a single room
night is sold for four possible rates: 50, 100, 150 and 200. The correspond-
ing overlapping choice sets are as follows: Set1 = {50}, Set2 = {50, 100},
Set3 = {50, 100, 150} and Set4 = {50, 100, 150, 200}. The capacity of this setup
is 100 rooms. With the assumption of arrivals according to an Inhomogeneous
Poisson process. 100 different demand scenarios are simulated over a booking
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horizon from 1, ..., 56, which represents a booking window of 8 weeks. The initial
parameters of the simulated demand scenarios are presented in Table 12 in the
Appendix. The total dataset will be divided into 5 parts of 20 demand scenarios
each, due to the implementation of 5 fold-cross validation.

With simulation, a certain strategy is required to open and close choice sets
in order to observe demand for a specific choice set. A strategy is booking limits,
when a certain number of sales is reached, the choice set will be closed. The
booking limits are defined as 50 for Set1, 85 for Set2, 95 for Set3 and 100
for Set4. This implies that there are overlapping booking limits. When Set4 is
closed, the capacity of this setup is reached and no more room nights can be
sold. Results obtained differ when different booking limits are chosen. There are
several other strategies that could also be applied, for example is on a specific
point of the booking horizon a choice set will be closed. This simulation should
be close as the strategy of the revenue managers of the hospitality company.

The first measure that is described in subsection Validation is the Weighted
Average Percentage Error (WAPE). The mean WAPE for the simulated sales
are presented in the first column of Table 9 per fold, the shows column shows
the variance. This means that the WAPE per fold is an average over 20 demand
scenarios. Across the five folds, the numbers do not differ much, except fold 4 is
higher, caused by an outlier since the variance is also the highest.

Fold WAPE Variance

1 65.89 15.92
2 65.52 24.25
3 65.21 21.86
4 67.60 23.03
5 65.71 20.78

Table 9: WAPE and variance based on simulated sales

The other measure that is described in subsection Validation is the Mean
Absolute Deviation (MAD). Figure 12 presents a boxplot per t on the booking
horizon. Because there are in total 15-20 outliers, these are not plotted in the
figure. All of these outliers are placed above the boxplots. Overall, the average
MAD, which is the green line inside of the boxplot, stays between .5 and 1.5.
The fluctuations in the boxplots are a consequence of the revenue management
strategy implementation described earlier. For example, the average MAD in-
creases in from t = 0 until t = 20. After that moment, the average MAD jumps
up, and decreases until t = 30. The rest of the booking horizon varies more in
comparison with the beginning of the booking horizon in terms of average MAD.
The length of the box represents the middle half of the values. The length of
the boxes does not vary much over time. The whiskers of the boxplot indicate
the variability. The upper whiskers of the boxplot are overall longer than the
bottom whiskers, which indicates more variability towards a higher MAD.
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Fig. 12: Boxplot of MAD per t of booking horizon

The parameters of fold 1 are selected and plotted against the initial param-
eters in order to examine one of the results, see Figure 13. One of the first
observations is the fit of Set2, the estimate underestimates the beginning of the
booking horizon and overestimates the end of the booking horizon. Taking a
closer look at when Set2 is open/closed, it is not such a bad fit starting from
t ∼ 30. Around t ∼ 55, Set2 is closed again. The estimated curve of Set1 is
overestimated from the start of the booking horizon. The estimate of Set3 is
accurate, however a small underestimation occurs near the end of the booking
horizon. Regarding Set4, the sales that belong to the highest choice set are not
significant. The curve does increase at the end, however in the beginning of the
booking horizon (0-30) no sales are observed. Therefore, it is hard to estimate
whether guests are willing to accept that rate.

Fig. 13: Example of fit with parameters generated by fold 1
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6 Results

This chapter presents the results which are generated by applying the estimation
model described in the previous chapter. All of the results are obtained using the
reservations dataset. The same approach is used as with the simulated data. The
reservation dataset is split by weekday and source, as described in subsection
Parameters in the chapter Methodology.

6.1 Single Demand Scenario

In order to obtain a complete overview and understanding of how the results
are computed, a single demand scenario is highlighted. In total 100 demand
scenarios are used to obtain this result, 99 scenarios as training and 1 scenario
as test. Monday is chosen as weekday and OTA is chosen as channel. The code
of Expectation Maximization module can be found in Source Code 1 of the
Appendix.

The dots in Figure 14 represent the number of sales on time t on the book-
ing horizon. The color represent a specific choice set. This particular scenario
contains sales in choice sets B till H, so a rate range of €99 till €159. There are
zero sales when there is no dot present on time t of the booking horizon. The
rate changes quite often during the entire booking horizon. Compared to other
demand scenarios, Figure 14 is not an exceptional case and is in line with the
findings in Exploratory Data Analysis regarding rate fluctuations.

Fig. 14: Single demand scenario of a Monday and OTA

Figure 15 shows the same demand scenario as Figure 14, however the blue
line is added which represents the unconstrained demand rate. The demand rate
is according to the choice sets which are open on time t. The parameters for
the demand rate per choice set is a result of the fit over 99 different demand
scenarios. For each scenario, only the parameters are used for the choice sets
that were open.
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Fig. 15: Single demand scenario of a Monday and OTA with result EM

The WAPE between the observed sales and demand rate is equal to 81.81.
As mentioned in the methodology, simulated sales are required to compare the
WAPE of the observed sales. The WAPE between the simulated sales and de-
mand rate is 80.05, which is the median of 1000 simulations. This situation can
be labelled as almost perfect since the difference between WAPE values is low.

6.2 Cross Validation

The same steps, as described in Single Demand Scenario, are applied with cross
validation. There are 100 different demand scenarios selected for each weekday,
even though there are ∼ 103 scenarios available. For each fold of cross-validation,
80 scenarios are used for training and 20 scenarios are used for testing. As men-
tioned in the previous section Single Demand Scenario, the maximum booking
horizon is equal to 84 days. The reason for setting the booking horizon equal to
84 is because the hospitality company actively starts with revenue management
from this moment in time.

The difference between WAPE of sale and demand scenario and WAPE of
simulation and demand scenario per weekday per source is displayed in Table 10.
The WAPE of the simulation is subtracted from the WAPE of the sale since the
interest is in how close the WAPE of the sale is to the WAPE of the simulation.

Weekday
Mon Tue Wed Thu Fri Sat Sun

Source

OTA 19.42 15.34 23.66 20.71 17.16 20.11 25.65
WEB 18.09 10.03 8.95 16.77 31.42 36.06 43.59
DIR 1326.29 680.42 559.99 658.92 732.29 812.00 910.52
GDS 21.31 8.79 8.31 17.28 31.23 37.29 42.75

Table 10: Difference between WAPE of sale and WAPE of simulation
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Source DIR has, by far, the largest difference between WAPE of the four
sources. The results of the Exploratory Data Analysis already indicated that
source DIR differs significantly from the other three sources. Therefore, uncon-
straining demand could be challenging since this channel contains phone calls
and walk-ins, which is not a non decreasing function over the booking horizon,
see Figure 7(c).

The other thee sources, OTA, WEB and GDS, the results differ from roughly
8 until 43. Source OTA has the smallest deviation among all weekdays and source
WEB has the largest deviation, when DIR is not taken into account. Overall
the lowest difference is on Tuesday and Wednesday and Sunday has the largest
difference. The WAPE of sale and demand scenario can be found in Table 13 in
the Appendix. The WAPE of simulation and demand scenario can be found in
Table 14 in the Appendix.

The variance of WAPE between sale and demand rate and simulation and
demand rate for each combination of weekday and source can be found in Table
15 and Table 16 in the Appendix. If DIR is not taken into account, in ∼85% of
the time the variance in WAPE of the sale is lower than the variance in WAPE
of the simulation Which implies that the results of the unconstraining method
is more stable than the results generated by the simulation.

All folds of the cross validation for the each combination of weekday and
source terminated due to numerical convergence. In total, Expectation Maxi-
mization module successfully converged 140 times. The average number of itera-
tions before numerical convergence for OTA, WEB, DIR and GDS is respectively
7.8, 15.4, 11.8 and 9.8. The average among weekdays is taken because the differ-
ence between weekdays was between 1 and 7 iterations. The maximum number
of iterations is set on 100.

Figure 16 contains four graphs which represent each of the channels. Each
individual graph presents a boxplot of the Median Absolute Deviation (MAD)
for each t on the booking horizon. Figure 16 (a), (b) and (d) have similar pattern,
which is increasing over the booking horizon. The graph of DIR, 16(c), has a
partially similar pattern, however the boxplots are decreasing near the end of the
booking horizon, just like the reservations through that channel. All four graphs
have a similar pattern as the number of reservations made over the booking
horizon, see Figure 7. The outliers are not taken into account in Figure 16.
However, the outliers of DIR were in line with the high WAPE which is presented
in Table 13 in the Appendix. The whiskers of the boxplot indicate the variability.
The upper whiskers of the boxplot are overall longer than the bottom whiskers,
which indicates that the there is more variability towards a higher MAD.

For each channel, some of the extreme differences (> 250) in WAPE values
are analyzed in order to find an explanation. The specific dates were extracted
for these demand scenarios. For some of these dates, little to no guests came in
for example. Because of this low demand, the difference increases extremely com-
pared to the simulation generates demand. This low demand can be explained
by events which took place, for example public holidays. These events lead to
demand which is not visible in the current selected booking horizon.
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(a) OTA (b) WEB

(c) DIR (d) GDs

Fig. 16: MAD per channel aggregated over weekdays

6.3 Booking Horizon

Determining the optimal booking horizon is executed as described in section
Methodology. For each combination of weekday and source, a range of maximum
booking horizon is tested. The range of the booking horizon is between 14 days (2
weeks) and 84 days (12 weeks). The completion for a single weekday and source
took almost 24 hours with a single laptop. To illustrate the possible outcome, a
single combination is chosen which is weekday Monday and source OTA.

Figure 19 in the appendix illustrates the outcome the range of booking hori-
zon from 70 until 84, which represents a booking horizon of 10 weeks until 12
weeks. The red line is the WAPE between sale and demand rate and the blue
line represents the WAPE between simulation and demand rate. Both lines in-
crease in terms of WAPE when a longer booking horizon is chosen. This is due
to the increase in deviation, which is higher than the number of sales for a higher
maximum of booking horizon. For example Figure 15, the deviation between the
sales and demand rate is larger than the number of sales made in range 0 until
20.

The gap between the two lines increases because the WAPE between sales and
demand rate increases more than the WAPE between simulation and demand
rate. The simulation is more accurate for longer booking ranges due to the
fact that the simulation makes less mistakes in the early stages of the booking
horizon.
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7 System Development Life Cycle

Mathematical problems are, mostly, described in discrete structures and tested
with simulated data where access to source code is limited. When there is no
access to source code and with the assumption that the reader knows how to
translate these structures into code, implementation can be challenging. Due
to the lack of explanation regarding this translation, outsiders are frustrated
and therefore there is a possibility that there is no willingness to implement a
mathematical model, even though it could be a solution to their problem.

A system development life cycle (SDLC) of a Revenue Management system
(RM) creates guidelines to a successful implementation. According to Radack
[18], a SDLC consists of several steps: analysis, design, development and testing,
implementation, documentation, and maintenance. In order to add an extra ex-
tension/module to an existing system, the same steps can be applied. Regarding
the unconstraining module, the steps analysis until testing are already covered
in this report in previous chapters. Therefore the focus of this chapter is on
implementation, documentation, and maintenance.

7.1 Overview
As introduced in the Problem Statement chapter, a RM system contains of two
main pillars; forecasting and optimization. Figure 17 shows an overview of a
RM system in a schematic way. Several other modules could be added in order
to complete the overview of a RM system. However, the focus of this figure
is on the placement of the unconstraining module. For now, the input is the
reservations database, and the outcome of the entire RM system is ideally a rate
recommendation. Other sources could be added to increase the performance
of the system, event or competitor data for example. Event data may contain
information such as the date and the scale of the event.

Fig. 17: Schematic overview of placement unconstraining module in RM system
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7.2 Implementation

The main goal of implementation ensures that the system is operational. This
implies two things: the RM system is still operational and that the module is
up and running as a stand alone. The unconstraining module should easily be
turned on or off the see the effects and impact of the implementation. Therefore,
the the module is structured as stand alone and a single command executes the
entire module. Unconstraining reservations data on a daily basis is an ongoing
process which needs to be executed every day. Because it is desirable that the
foresting algorithm contains the latest data available.

Because the unconstraining module needs to be triggered every day to uncon-
strain the latest demand, the module can be implemented into an app service.
Regarding the implementation of Irevenu, Microsoft Azure is used as app service.
This app service has an API which will be triggered according to the desired
updating scheme of the end user. This app has two main API’s, one which will
unconstrain reservations data and the other which will update the parameters
of the choice sets.

When the algorithm estimates the new parameters for the choice sets based
on the newest demand scenarios, these results need to be saved into a database.
When a new demand scenario occurred, these parameters can easily be accessed
to unconstrain that specific scenario. Therefore, a database is also part of the
implementation and needs to be integrated. Access of the API to the database
is therefore crucial. By giving access to a database, security becomes a point of
interest, which is discussed further in the subsection Maintenance.

7.3 Documentation

Documentation contributes to the continuity of the module. One can image that
the module is maintained by a team which consists of different roles. Another
benefit is that documentation provides the ability to onboard new members to
the team faster.

Documentation provides the information which is needed to run the system,
for example explanation about the required data fields in order to run the module
successfully. There are four data fields required in order to unconstrain data:
date, booking horizon, type and rate. The type is referred as the product that
the guests bought, for example a standard room or suite, since this hotel has
one room type, it is left out. The combination of rate and type defines the choice
sets.

A part of documentation is data selection from the reservation database.
The selected dataset could contain statuses such as stayed, canceled r no-show.
Please note that these reservations statuses are based on the available dataset. If
there is more selected than stayed reservations, a module should compensate for
the initial selection on a later point of the system. For example, a cancellation
predictor could be implemented if canceled reservations are taken into account in
the unconstraining process. During this internship, only stayed reservations are
selected as input. The last two years of data is sufficient to obtain parameters.
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7.4 Maintenance

The last step of the SDLC is maintaining and evaluating the module, which
should not be underestimated. The completion of the life cycle is essential to
quickly solve and adapt to changes that may occur in the future. This step also
includes a review of the module from time to time.

A suitable approach to maintain the source code of this module is version
control. Version control tracks and provides control over changes to source code.
A team of people can concurrently make changes to the same files. For each
update, a release note is attached with a description of the most important
changes which contributes to documentation. Regarding the implementation of
Irevenu, Git is used as version control system. There is a backup of the source
code available with version control. When the performance of the new released
module is decreased, relative to the previous version of the module, a rollback
can be executed and little to no harm is done. For example, when errors occur
with saving the new estimated parameters to the database.

Security is also a part of maintenance, and therefore an ongoing process,
which can be seen as important as the actual development itself. Security is a
point of interest in almost each step of the SDLC. Only people and systems from
the organization are provided with access to make changes or make improvements
to the system, also known as role based access control. Since there is no interest
in third parties making use of the module. Each person has restricted access to
parts where they are responsible for. Restricted access by IP address contributes
to the security level and therefore necessary to make sure that no third parties
are able to access the module.

The evaluation step of the life cycle identifies whether the system meets the
initial requirements and objectives. Therefore, every step of the SDLC should
have their own objective(s). If one of the requirements is not met, one could take
a step back and make sure it is implemented eventually.
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8 Conclusion

This chapter is devoted to the findings of this research, and describes the process
of from data analysis until implementation with the goal of obtaining uncon-
strained daily historical demand.

The outcome of the Literature review combined with Exploratory Data Anal-
ysis resulted in an implementation of Expectation Maximization (EM) with a
non-decreasing demand function (exponential form) depending on three vari-
ables: rate, weekday and source. These three variables are chosen based on a
general assumption is that guests have a maximum rate they accept. The differ-
ence in behaviour is shown among weekdays and the possible booking sources
found in the data.

Both for the hotel occupancy and the average paid room rate, the numbers
differ significantly among weekdays. The occupancy ranges from almost 92%
on average on Saturdays to around 71% on Sundays. Furthermore, the average
room rate differs over €10, from €138 on to €149 on Fridays and Saturday. The
differences in average room rate between the booking sources are significant as
well. Channel DIR has the highest rate of €161, while the other three channels
are €15 to €18 lower.

The implementation of EM is validated in a controlled environment where
data is simulated based on an Inhomogeneous Poisson process where parameters
are known with four choice set. The hospitality company has rate range, which
is divided in buckets of 10 which results in 16 choice set since each bucket
represents a choice set. Due to the chosen depending variables, this results in
estimating 2240 parameters (16 choice sets, 5 fold cross validation, 7 weekdays
and 4 channels). The WAPE of the EM implementation is, after five fold cross
validation, ∼ 65, which is the lowest result possible given the exponential form,
with a variance of ∼ 21.

The results of the unconstraining methods is a comparison between sales
and simulated sales which are generated by the demand rate found by EM. The
purpose of simulating sales from the demand rate shows the minimal deviation.
The difference in WAPE between the sales and the WAPE of simulation is 20.3
for OTA, 23.6 for WEB and 23.8 for GDS, which are similar, which is positive.
Only for the channel DIR, which was an outlier in the data analysis already,
which has a difference of over 800. This can be explained by the fact that group
bookings are a part of this channel and these do not fit an exponential curve.

The overall conclusion from the internship is that the implementation and
usage of EM in the setting of hospitality revenue management are valid methods.
Although the results are not perfect, they are promising enough to support
the further exploration and research of this method. Further discussion of the
methods used and a review of potential improvements can be found in the next
section, Discussion.
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9 Discussion

In this chapter a number of extensions of this research are discussed.
One of the main improvements could be scaling the values of the β parameters

by a seasonal factor. The outcome of Exploratory Data Analysis showed that KPI
differs over months, which indicates that the demand is dependent on seasonality.
Including such a seasonal factor may increase the accuracy of the current model
which can potentially be used for forecasting purposes, since the parameters for
each choice set are estimated per weekday and source.

No external influences are taken into account such as nearby events. This will
definitely have influence on the demand for these specific days. These dates are
announced in advance, and this can even by outside of the predefined booking
horizon. Therefore, an deep dive into events could provide clarification on how a
hospitality company should handle their events: to handle these days manually,
to handle automatically or a combination of these two.

No optimal booking horizon is found due to the lack of computational power.
For each combination of weekday and source, it took over 24 hours to estimate
parameters for 16 choice sets. An extensive analysis can be done regarding this
subject since no papers could be found about this topic. One should take into
account the current revenue strategy of the hospitality company due to the
success rate of implementation.

The accuracy or error measurement in RM is not uniform across literature.
During this research, the Weighted Average Percentage Error (WAPE) and Me-
dian Absolute Deviation (MAD) are used as measurements due to the occurrence
of zero values. However, Haensel and Koole [7] used different measurements for
example, even though the same model is implemented. This leads to results
which can not be interpreted in the same way. Other results could be achieved
if different measurement were applied. Eventually, since this topic is in the in-
dustry of revenue management, all methods should be measured in revenue, at
least that is a suggestion.

During this research, an exponential curve is chosen as demand rate. How-
ever, this is an assumption which could be investigated. Different functions can
be applicable, for example logarithmic functions or a square root function. Even
different shape over the entire booking horizon. For example, for early stages of
the booking horizon, a linear curve could be sufficient and for later stages an
exponential curve. Simulation of arrivals must be adapted if another shapes are
tested, since Inhomogeneous Poisson process could be used due to the exponen-
tial curve.

The influence of competition on demand unconstraining is an influence which
is shortly discussed in Exploratory Data Analysis and Statistical Data Analysis
by adapting Dynamic Time Warping. One of the major issues regarding com-
petition is data availability. The majority of hospitality companies do not store
their rate for each day, and even less hospitality companies regularly save rates
of their competitors.
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10 Appendix

10.1 Tables

choice set Rates included

A 89
B 89, 99
C 89, 99, 109
D 89, 99, 109, 119
E 89, 99, 109, 119, 129
F 89, 99, 109, 119, 129, 139
G 89, 99, 109, 119, 129, 139, 149
H 89, 99, 109, 119, 129, 139, 149, 159
I 89, 99, 109, 119, 129, 139, 149, 159, 169
J 89, 99, 109, 119, 129, 139, 149, 159, 169, 179
K 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189
L 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199
M 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 209
N 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 209, 219
O 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 209, 219, 229
P 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 209, 219, 229, 239

Table 11: choice sets
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Choice set
Parameters Set1 Set2 Set3 Set4

Initial αc .020 .021 .025 .040
βc 1.00 .80 .30 .10

Fold 1 αc .022 .040 .017 .041
βc 1.08 .38 .41 .04

Fold 2 αc .022 .041 .018 .041
βc 1.10 .37 .40 .04

Fold 3 αc .023 .040 .018 .041
βc 1.05 .37 .40 .04

Fold 4 αc .023 .040 .018 .042
βc 1.05 .37 .40 .04

Fold 5 αc .021 .040 .018 .042
βc 1.09 .37 .40 .04

Table 12: Simulation parameters - inital and estimated

Weekday
Mon Tue Wed Thu Fri Sat Sun

Source

OTA 108.72 105.69 109.01 103.81 96.21 92.92 111.97
WEB 117.63 113.47 111.47 117.06 136.76 142.19 145.47
DIR 1405.71 763.71 650.28 755.76 852.36 920.60 1026.33
GDS 97.07 113.47 111.47 117.06 136.76 142.19 145.47

Table 13: WAPE between sale and demand rate

Weekday
Mon Tue Wed Thu Fri Sat Sun

Source

OTA 89.3 90.35 85.35 83.10 79.05 72.81 86.32
WEB 99.54 103.44 102.52 100.29 105.34 106.13 101.88
DIR 79.42 83.29 90.29 96.84 120.07 108.60 115.81
GDS 75.76 104.68 103.16 99.78 105.53 104.90 102.72

Table 14: WAPE between simulation and demand rate

Weekday
Mon Tue Wed Thu Fri Sat Sun

Source

OTA 5.08 3.15 5.32 5.57 3.62 3.45 8.25
WEB 3.81 2.86 2.61 4.71 14.33 8.50 10.42
DIR 59235.64 10730.16 5031.45 7405.07 13970.11 21713.81 22018.09
GDS 3.24 2.42 2.81 5.01 13.79 7.31 11.22
Table 15: Variance of WAPE between sale and demand rate
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Weekday
Mon Tue Wed Thu Fri Sat Sun

Source

OTA 7.53 11.15 13.51 11.19 6.80 4.35 4.75
WEB 8.30 12.45 13.51 11.52 9.20 9.83 7.48
DIR 8.01 6.90 8.00 7.34 9.10 12.95 10.18
GDS 7.19 12.29 12.50 11.96 8.82 9.60 7.71

Table 16: Variance of WAPE between simulation and demand rate
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10.2 Figures

Fig. 18: An example of DTW algorithm

Fig. 19: WAPE over multiple maximum booking horizons
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10.3 Source Code

1 import numpy as np
2 import scipy.optimize as optimize
3 import scipy
4 import sys
5

6

7 class ExpectationMaximisation:
8

9 def __init__(self, choice_set, booking_horizon, db_sales):
10 # Assign input to variables
11 self.c_s = choice_set
12 self.b_h = booking_horizon
13 self.db = db_sales
14 self.dates = np.empty(len(np.unique(self.db[:, 0])),
15 dtype=object)
16

17 # Create frames for algorithm
18 self.u_cs = np.empty(len(np.unique(self.db[:, 0])),
19 dtype=object)
20 self.s_o_cs = np.empty(len(np.unique(self.db[:, 0])),
21 dtype=object)
22 self.alpha = np.zeros(len(self.c_s))
23 self.beta = np.zeros(len(self.c_s))
24

25 # Define stopping criteria
26 self.iter_max: int = 50
27 self.diff_tol: float = 1e-06
28 self.stopping_criteria_reached = None
29

30 def initialization(self):
31 # Set minimum and maximum rate
32 self.db[:, 2] = np.clip(self.db[:, 2], np.min(self.c_s),
33 np.max(self.c_s))
34

35 # Create u_cs and s_o_cs frames for each day in given dataset
36 for idx, date in enumerate(np.unique(self.db[:, 0])):
37 self.dates[idx] = date
38 date_sales = self.db[np.where(self.db[:, 0] == date), 1::][0]
39 u_cs_temp = np.zeros((len(self.c_s), len(self.b_h)))
40 s_o_cs_temp = np.zeros((len(self.c_s), len(self.b_h)))
41

42 for sale in date_sales:
43 u_cs_temp[np.where(self.c_s == sale[1])[0][0]::,
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44 sale[0]] = 1
45 if np.where(self.c_s == sale[1])[0] == 0:
46 s_o_cs_temp[np.where(self.c_s == sale[1])[0][0],
47 sale[0]] += 1
48 else:
49 s_o_cs_temp[0:(np.where(self.c_s == sale[1])[0][0]
50 + 1), sale[0]] += 1
51 self.u_cs[idx] = u_cs_temp
52 self.s_o_cs[idx] = s_o_cs_temp
53

54 def algorithm_init(self):
55 for c in np.arange(0, len(self.c_s)):
56 # Define log-likelihood function
57 def log_likelihood_init(params):
58 return_value = 0
59 lambda_t = params[1] * np.exp(params[0] * self.b_h)
60 for day in np.arange(0, len(self.u_cs)):
61 p_array = np.ones(len(self.b_h))
62 for t in self.b_h:
63 if self.u_cs[day][c, t] > 0:
64 p_array[t] = max(sys.float_info.min,
65 (np.exp(-lambda_t[t]) *
66 min(sys.float_info.max,
67 np.power(lambda_t[t],
68 self.s_o_cs[day][c, t]))) /
69 scipy.special.factorial(
70 self.s_o_cs[day][c, t]))
71 return_value += -np.sum(np.log(p_array))
72 return return_value
73

74 # Execute optimization
75 result = optimize.minimize(log_likelihood_init,
76 np.array([.01, .01]),
77 bounds=[(.01, .01), (.01, .01)])
78

79 # Save initialization parameters
80 self.alpha[c] = result.x[0]
81 self.beta[c] = result.x[1]
82

83 def algorithm(self):
84 self.algorithm_init()
85

86 # Iteration loop
87 for i in np.arange(0, self.iter_max):
88 log_likelihood_array = []
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89

90 # E-step:
91 for c in np.arange(0, len(self.c_s)):
92 lambda_c = self.beta[c] * np.exp(self.alpha[c] * self.b_h)
93 lambda_overlap = np.zeros(len(self.b_h))
94 for c_j in np.arange(c, len(self.c_s)):
95 lambda_overlap += self.beta[c_j] * np.exp(self.alpha[c_j] *
96 self.b_h)
97

98 # Define log-likelihood function
99 def create_log_likelihood_i(c):

100 def log_likelihood_i(params_i):
101 return_value = 0
102 lambda_t = params_i[1] * np.exp(params_i[0] *
103 self.b_h)
104 for day in np.arange(0, len(self.u_cs)):
105 x = np.ceil(lambda_c / lambda_overlap *
106 self.s_o_cs[day][c, :])
107 u_c = self.u_cs[day][c, :]
108 p_array = np.ones(len(self.b_h))
109 for t in self.b_h:
110 if u_c[t] > 0:
111 p_array[t] = max(sys.float_info.min,
112 (np.exp(-lambda_t[t]) *
113 np.power(lambda_t[t], x[t])) /
114 scipy.special.factorial(x[t]))
115 return_value += -np.sum(np.log(p_array))
116 return return_value
117

118 return log_likelihood_i
119

120 log_likelihood_array.append(create_log_likelihood_i(c))
121

122 alpha_iteration = np.zeros(len(self.c_s))
123 beta_iteration = np.zeros(len(self.c_s))
124

125 # M-step:
126 for c in np.arange(0, len(self.c_s)):
127 # Execute optimization
128 result = optimize.minimize(log_likelihood_array[c],
129 np.array([self.alpha[c], self.beta[c]]),
130 bounds=[(0.001, np.inf), (0.001, np.inf)])
131

132 # Save results
133 alpha_iteration[c] = result.x[0]
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134 beta_iteration[c] = result.x[1]
135

136 # Check stopping criteria
137 if all(abs(np.divide(alpha_iteration - self.alpha, self.alpha)) <
138 self.diff_tol):
139 self.stopping_criteria_reached = i
140 break
141 else:
142 self.alpha = alpha_iteration
143 self.beta = beta_iteration

Source Code 1: Expectation Maximization in Python
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