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Abstract

This thesis explores the application of machine learning techniques to auto-
mate the detection of shots on goal in football matches using local positioning
measurement (LPM) systems. By leveraging object-tracking data and extract-
ing relevant features, machine learning algorithms such as random forest, XG-
Boost, neural network, and recurrent neural network were utilized. Different
sampling techniques, including SMOTE, borderline SMOTE, undersampling,
and no sampling, were combined with these methods to optimize shot detection
accuracy while minimizing false positives. Evaluation metrics such as precision,
recall, F1 score, and AUC-ROC were employed to compare the performance of
various method combinations. A tolerance interval of 2 seconds was allowed to
detect shots. The results showed that tree ensembles (random forest and XG-
Boost) achieved the best performance with borderline SMOTE sampling, while
neural network models performed well without any sampling. Undersampling
yielded mixed results, except for the neural network, where it surprisingly out-
performed other approaches. Challenges in noise detection led to higher false
positives, with misclassification of passes near or towards the goal as shots be-
ing a common issue. The direction and distance of the ball from the goal were
identified as crucial features for shot detection. Overall, machine learning can
effectively detect football shots, and the combination of neural network and
undersampling demonstrated the highest F1 score.



Executive summary

Context. Football is a popular sport worldwide, and analyzing game events has
always been important. Traditionally, events like shots on goal were manually
annotated based on visual observation. However, the emergence of analysis
software and machine learning has led to the development of automated sys-
tems that provide precise player and ball coordinates during matches. These
systems, known as Local Positioning Measurement (LPM) systems, allow for
the collection of tracking data multiple times per second. This data enables
machine learning algorithms to automatically detect game events, eliminating
the need for manual coding.

Goal. This thesis addresses the challenges in manually collecting event data
for football by investigating the application of machine learning techniques.
Its primary focus is on automatically detecting shots on goal using object-
tracking data. The research question, To what extent can machine learning be
employed for the detection of football shots? aims to determine the feasibility of
using machine learning for precise shot detection, aiming to optimize accurate
detections while minimizing false positives.

Method. Using the raw positional data, features were extracted to capture
the ball trajectory for shot detection. Various machine learning and sampling
techniques, including random forest, XGBoost, neural network, and recurrent
neural network, were employed. These methods were combined with differ-
ent sampling techniques such as SMOTE, borderline SMOTE, undersampling,
and no sampling. A thorough evaluation compared the performance of differ-
ent method combinations using precision, recall, F1 score, and AUC-ROC as
evaluation metrics. To improve model performance, a tolerance interval of 2
seconds was allowed when detecting shots.

Results & conclusions. After evaluation, it was seen that the tree ensembles
(random forest and XGBoost) achieved the best performance with the bor-
derline SMOTE sampling technique, while the neural network and recurrent
neural network performed well without any sampling. Undersampling yielded
mixed results, performing poorly on all models, except for the neural network,
where it surprisingly outperformed other approaches. All models faced chal-
lenges in noise detection, resulting in more false positives than true positives.
The models frequently misclassified passes near or towards the goal as shots.
The direction of the ball towards the goal and its distance from the goal were
identified as the most important features for shot detection. Overall, machine
learning can be effectively utilized for football shot detection, with the combi-
nation of the neural network and undersampling yielding the highest F1 score.
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Chapter 1

Introduction

1.1 Context

Football is a globally popular sport with millions of fans and players worldwide. The anal-
ysis of football matches has always intrigued teams, media, experts, and fans, aiming to
gain deeper insights into on-pitch activities. Key game events such as passing, intercep-
tions, and, most importantly, shots on goal have been of primary interest. Traditionally,
such events were manually annotated based on qualitative analysis of broadcast footage,
heavily reliant on visual observation.

However, the advent of analysis software and machine learning has opened up possibil-
ities for automating this process. Consequently, there has been a significant increase in
demand for tracking data in football. Specifically, there is interest in technologies that can
provide precise coordinates of players and the ball multiple times per second. In response,
Local Positioning Measurement (LPM) systems have emerged in the market, enabling the
collection of player and ball coordinates during matches. These systems have evolved over
time, offering opportunities to quantify previously qualitative observations and facilitate
event detection.

The rise of LPM systems has paved the way for event identification using tracking data,
eliminating the need for manual coding. As a result, there is a growing interest in devel-
oping machine learning algorithms capable of automatically detecting game events using
tracking data. This advancement holds immense potential to enhance the accuracy and
efficiency of event detection.

1.2 Problem statement

The manual collection of event data for different football leagues by commercial providers
presents several challenges. Firstly, there is a lack of consistency in event definition, termi-
nology, granularity, and accuracy of time annotation across different providers due to the
subjective nature of event detection. Additionally, the manual annotation process itself is
time-intensive and prone to errors.

To address these challenges, this thesis explores the potential of utilizing machine learning
techniques to automatically detect shots on goal in football games using object-tracking
data as input. The central research question of this thesis is:
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1. INTRODUCTION

To what extent can machine learning be employed for the detection of football shots?

The main goal of the research is to successfully detect as many shots as possible while
minimizing the number of incorrectly detected shots.

1.3 Host organization

This research project was conducted through a collaborative effort between the Vrije Uni-
versiteit van Amsterdam and Forward Football. Forward Football is a start-up that lever-
ages technology, data analysis, and academic insights to enhance football practices for
clubs and coaches. One of their core services is pass-performance analysis, which assesses
a player’s success rate in passing. Currently, the events analyzed by Forward Football are
detected and provided by an undisclosed third party, which may not consistently guarantee
the desired reliability.

By developing an accurate and efficient machine learning-based system for detecting shots
on goal in football games, this research aims to significantly enhance Forward Football’s
ability to deliver reliable and effective analysis to their clients. The successful implemen-
tation of such a system will enable Forward Football to continue providing high-quality
services, contributing to the ongoing improvement of football practices.

1.4 Thesis outline

The rest of this paper will be structured as follows: Chapter 2 reviews the existing litera-
ture on detection events in football using machine learning techniques. Chapter 3 explores
the data used for the research, including feature engineering and pre-processing. Chap-
ter 4 explains the machine learning methodologies employed for shot detection, along with
methods to combat class imbalance and evaluation metrics. Chapter 5 presents the re-
sults obtained from the application of the developed techniques. Chapter 6 discusses the
limitations of the project and proposes potential directions for future research. Chapter 7
provides a conclusion summarizing the main findings of the research.
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Chapter 2

Literature review

This chapter provides an in-depth analysis of existing research on shot detection in foot-
ball, specifically focusing on the utilization of machine learning techniques. The review
examines various approaches employed in shot detection, encompassing both rule-based
methods and machine learning-based methods. Additionally, the review identifies gaps in
the current research landscape.

Sports provide a wealth of information in various forms, including statistics and live video
feeds. However, the data from each source may not be compatible, which can make it
challenging to obtain a comprehensive understanding of what is happening.

Manual football event annotation has been conducted since as early as 1968 (1), and in
1986, Franks and Miller (2) demonstrated the unreliability of human observation. Their
experiments revealed that the expert observer’s recollection of major game events could be
as low as 42%. Therefore, there is a growing need for automatic event detection in order
to address these limitations.

Automatic video detection Automatic video detection has gained significant attention
in recent years for capturing and analyzing sports gameplay. However, a survey conducted
by Gudmundsson and Horton (3) in early 2016 revealed that only a limited number of
attempts had been made to automatically process ball-related events. Most of the existing
research in this field has focused on detecting events directly from video recordings of
matches, leveraging advancements in deep learning techniques.

For instance, Khan et al. (4) proposed a framework in 2018 that directly detects events
from video streams. Their approach involves detecting objects such as the ball and play-
ers in each video frame, generating a set of candidate objects. Event detection is then
performed based on temporal and logical combinations of these detected objects using pre-
defined rules. The system achieved accuracy ranging from 84% to 92% for different events.
However, it was unable to detect shots on target due to the complexity of the event, which
required identifying the goalpost in addition to the ball and players.

In another study, Jiang et al. (5) employed deep learning techniques to develop an auto-
mated event detection system specifically for detecting corners, goals, and goal attempts.
Their system utilized convolutional neural networks to extract relevant features from video
frames and classify them accordingly. Although the model achieved high precision and re-
call scores, it is important to note that the detection of shots is highly subjective, leading
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to variations in performance depending on individual definitions and judgments. This
subjective nature might limit the model’s robustness for users with different criteria or
interpretations.

Predicting future events Prior to 2016, a number of studies were dedicated to the
prediction of future events in sports. One such study by Wei et al. (6) aimed to forecast
complex sports events, such as the future position of the ball during a football match.
To achieve this, the researchers utilized advanced models such as the Hidden Conditional
Random Field (HCRF).

Automatic event labelling One notable attempt at automatic event labelling based
on positional data, with the aid of machine learning, was conducted by Richly et al. (7,
8). In their research, they employed various machine learning methods to recognize four
types of events (pass, reception, clearance, and shot on goal) in a spatiotemporal dataset.
The tested methods included Support Vector Machine, K-Nearest Neighbors, Random
Forest, and Artificial Neural Networks. The algorithmic results were compared to a ’golden
standard’ manual markup, consisting of 194 events within 8 minutes and 47 seconds of
active game time. Among the tested models, Neural Networks demonstrated the best
performance, achieving a precision of 89% and a recall of 90%. Notably, a smoothing
filter was applied, reducing the original 25 Hz sampling rate of game recordings to 10 Hz,
resulting in significant quality improvement. However, the event markup obtained did not
provide extended event information, such as the identities of the passer and receiver in
passing events. Additionally, the training set was relatively small, including only seven
shots on target, indicating the need for a more comprehensive evaluation to assess the
proposed approach’s effectiveness in practical scenarios.

Another similar research study was conducted by Schuldhaus et al.(9) in 2021. Recog-
nizing that video-based detection was predominantly available for elite teams with higher
budgets, they aimed to develop a low-cost sensor-based approach for shot/pass classifica-
tion in football. By utilizing accelerometer data from players’ left and right shoes, they
identified intensity peaks and classified them as shots, passes, or other events using seg-
mented windows. The final system achieved an overall mean classification rate of 84.2%.
Similarly, Tovinkere et al.(10) and Vidal et al. (11) presented a set of heuristic rules for
detecting football events based on player and ball positions as input.
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Chapter 3

Data

This chapter aims to provide a comprehensive analysis of the data used in this study,
which was obtained from a third party and provided to Forward Football. The data
will be described in detail, and the necessary steps taken before shot detection can be
performed will be outlined. Additionally, a data exploration will be conducted to gain a
deeper understanding of the dataset’s characteristics and properties.

3.1 Data description

The data used in this study was collected using a Local Positioning Measurement (LPM)
system and a smart ball. The LPM system comprises small trackers placed on armbands
worn by all players, along with four poles strategically positioned at the corners of the
field to outline the pitch. This system tracks the positions of the players and the ball,
representing them as dots on a coordinate system. One of the poles serves as the origin for
the coordinate system (see Figure 3.1). Following the matches, a third party performs post-
processing on the data, resulting in two separate datasets containing the match information.
Forward Football has access to data from a total of 35 matches.

Figure 3.1: Football pitch according to LPM system.
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3. DATA

Positional data Throughout the match, the LPM system tracks the movement of the
ball and players on the pitch, generating a substantial volume of data. This data is captured
at a frequency of 5Hz, resulting in five measurements per second. The resulting dataset
contains meter-accurate positional data for each player and the ball throughout the entire
match. It is important to note that player positions are recorded only when they are within
the boundaries of the pitch area defined by the LPM system.

An illustration of the data representation with n players and k timesteps is shown in 3.1:

Pos p,t =


xb,t=1 yb,t=1 xp1,t=1 yp1,t=1 . . . ypn,t=1

xb,t=2 yb,t=2 xp1,t=2 yp1,t=2 . . . ypn,t=2

. . . . . . . . . . . .
. . . . . .

xb,t=k yb,t=k xp1,t=k yp1,t=k . . . ypn,t=k

 (3.1)

In 3.1, xb,t=1 represents the x-coordinate of the ball at the first timestamp, xb,t=2 represents
the x-coordinate of the ball at the second timestamp, and so on. Similarly, xpi,t=1 represents
the x-coordinate of the i-th player in the dataset at timestamp 1.

Since the data is primarily collected during matches of young professional clubs, the
typical match duration is around 60 minutes. The number of data points collected during
a match highly depends on the duration and when the LPM system is activated. As the
LPM system is operated by humans and is therefore susceptible to human error, it may
not be activated until a few minutes after the match has begun. Consequently, the number
of data points per match varies but is typically around 25,000. The number of columns in
the dataset also varies, depending on the number of players, including substitutes, present
in the game.

Event data In addition to the positional data, the third party also provides information
on four specific match events: passes, interceptions, shots on target, and clearances. How-
ever, the exact methodology for detecting these events has not been disclosed. Shots on
target are labelled with a timestamp indicating when they were presumed to have occurred
during the match. They also come with additional information, such as whether the shot
resulted in a goal. On average, there are typically 850 to 900 events per match, with only
20 to 40 of them being shots on target. Therefore, only a very small proportion of the data
(0.2%) is labelled with the target label. It is worth noting that a shot is labelled for only
one-fifth of a second (or one frame) in the match, even though a complete shot from start
to finish takes longer than one-fifth of a second.

3.2 Feature engineering

It can be reasonably assumed that the raw coordinate data alone is not informative for a
machine learning model. Therefore, it was necessary to manually extract more informative
features from the data. The key criterion for selecting these features was to capture
the context surrounding the shot event. As previously mentioned, only a single frame
is labelled as a shot, even though a shot likely spans a longer duration than one-fifth of a
second. Hence, including the contextual information surrounding the shot is crucial. By
analyzing the positional data and considering relevant literature (7, 8) as well as personal
assumptions, a set of features was derived.
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3. DATA

Distance to goal & ball direction Given that the objective of players is to score a
goal, it is reasonable to expect that a shot is likely to occur in the proximity of the target.
To estimate the distance between the ball and the goal, the Euclidean distance is utilized
by calculating the distance between the ball coordinates and the center point of the goal.
The Euclidean distance can be computed using Equation 3.2. Since a football pitch consists
of two goals, the calculation considers the nearest goal to the ball.

db,t =
√

(xb,t − xgoal)2 + (yb,t − ygoal)2 (3.2)

In addition to incorporating the current distance to the goal, supplementary attributes have
been introduced to describe the spatial relationship between the ball and the goal half a
second prior to and after every frame. This modification aims to enhance the algorithm’s
ability to perceive the ball’s trajectory. These additional features enable the algorithm
to differentiate between the ball’s motion towards or away from the goal within a short
duration of time and estimate the distance of this motion from the goal. Moreover, these
features help determine the direction of the ball before and after each frame.

Ball speed The ball speed is utilized as an additional feature, as it can provide insight
into the force exerted by the player during a shot. The ball speed is measured in meters
per second and given by equation 3.3.

speed =

√
∆x2 +∆y2

|∆t|
(3.3)

Similar to the distance and direction features, the ball speed half a second before and after
each frame is taken into account to capture any potential acceleration during a shot. This
allows the algorithm to consider the changes in ball speed leading up to and following the
shot event.

Figure 3.2: Visual outline of extracted features
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3. DATA

A visual representation of the extracted features can be found in Figure 3.2. It is worth
noting that all the extracted features are solely associated with the ball and do not encom-
pass the players’ positions, although they may contain valuable information. For example,
the player’s proximity to the opponent’s goal could be informative. Unfortunately, this
information was unavailable in the data used for this research. An effort was made to
extract the ball possession information, but it was subsequently deemed unsuitable for the
final dataset. The reason is that the accuracy of the ball possession output could not be
verified, potentially creating confusion for any algorithms attempting to detect a shot.

3.3 Pre-processing

Before any modelling or analysis, data preprocessing is an essential step. The initial raw
data used in this project was found to be clean, without any significant issues. The
positional data exhibited no outliers, and the timestamps were consecutive without any
gaps, except for the expected break that occurs during a football match.

Missing values Although the raw positional data did not contain any missing times-
tamps, missing values were still present due to the nature of sensor data. Occasional
failures in data collection by player or ball sensors resulted in brief periods of missing co-
ordinates. These missing values accounted for approximately 30.7% of all available data,
with variations in the number of missing values per match. To address this issue, linear
interpolation (12) was employed. However, it was selectively applied to address specific
cases. For example, interpolation was deemed illogical for missing values occurring when
a player had been substituted. Therefore, careful consideration was given to determine
which missing values should undergo interpolation. Specifically, a missing value was filled
only if the 30 seconds (150 frames) before and after that timestamp were also filled, indi-
cating player or ball activity. Otherwise, the player or ball was considered inactive, and
the coordinates were denoted with a dash. Following the interpolation process, the data
no longer contained any missing values. It is worth noting that 26.5% of the data repre-
sented periods of player or ball inactivity, implying that the actual amount of missing data
accounted for only 4.2% of the data.

One-hot encoding After conducting feature engineering, the resulting dataframe incor-
porated two categorical variables representing the direction of the ball before and after
each frame. These variables categorized the ball direction into three options: ’towards’,
’away’, and ’stationary’. Since certain machine learning models cannot directly handle cat-
egorical variables, a transformation was performed using the technique of one-hot encoding,
as described by Harris et al. (13). This process resulted in the creation of six additional
columns, where each column represents one of the three categories and contains binary
values indicating the presence or absence of that particular category for a given frame.

Standardization The data was normalized using the standardization technique, as out-
lined in the work by Shanker et al. (14). The primary goal of standardization in this
particular context is to eliminate scale differences among features, ensuring their equal
importance within the dataset. Through this process, the data is transformed to possess
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3. DATA

a mean of 0 and a standard deviation of 1, facilitating simpler comparison and analysis of
different variables. Moreover, standardization aids in the convergence of machine learning
algorithms, ultimately resulting in improved performance and faster training.

Removing rows To assist the algorithm in detecting shots, certain rows were removed
from the dataset for two specific reasons. Firstly, these rows contained information deemed
unimportant or uninformative for shot detection. Secondly, the removal of these rows
addressed the issue of significant class imbalance in the data.

The middle third of the pitch was entirely removed from the dataset. Traditionally, this
area is not commonly used for shooting at the goal, making it appropriate to eliminate
these rows. Additionally, the ball often spends considerable time in this region, justifying
the removal of a substantial portion of the data. Rows containing data where the ball was
out of the pitch were also eliminated.

In addition to removing rows where the ball is out of the pitch, which may contain
misclassified shot labels, it was observed that prolonged periods during a match occurred
with no events. It is unlikely for a shot to happen without preceding events such as passes,
interceptions, tackles, or dribbles. Therefore, if there is a lack of such events for more than
15 seconds, it is unlikely that a shot will occur, and this section is removed from the data.
This ensures that only relevant and informative data is included in the analysis, leading
to improved model performance.

To avoid confusion for the algorithm, rows following a shot were eliminated. The data
being recurrent, maintaining information after a shot might lead to ambiguity as the data
contains the same ball pattern as when the shot started. Therefore, rows were removed
after a shot where the ball was still in motion towards the goal.

After feature engineering, a few outliers appeared in the dataset. These outliers resulted
from sudden jumps in the positional data caused by the halftime break during a match.
The sudden position jumps led to erroneous calculations for ball distance and speed. Given
that it is highly unlikely for a shot event to occur within the first few seconds after the
team returns to the field following the break, these rows were removed. Additionally, when
the ball was shot out of the field and beyond the detection zone of the LPM system, the
ball coordinates glitched, resulting in extreme speed and distance values. These outliers
were also removed.

Overall, this process removed approximately 83% of the total data.

3.4 Exploration

To gain deeper insights into the data, exploratory data analysis (EDA) was conducted.
EDA played a crucial role in uncovering patterns, relationships, distributions, and other
valuable insights within the dataset.

The final dataset consists of approximately 142,000 frames of data collected from 35 foot-
ball matches. The distribution of the target ’event’ is illustrated in Figure 3.3. Due to the
mature of football matches, the data exhibits a severe imbalance, with a mere 0.38% (540
frames) representing the ’shot’ label.
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3. DATA

Figure 3.3: Distribution of the target label

(a) Distance to goal (b) Distance to goal of shots

Figure 3.4: Distribution of the distance to the goal

The distance between the ball and the goal is a crucial factor in determining the appearance
of a shot. Figure 3.4a displays a histogram depicting the distribution of distances, revealing
that the typical range between the ball and the goal is 21 to 33 meters, with an average
distance of 26.9 meters across the entire dataset. The distribution appears to be slightly
left-skewed.

Examining Figure 3.4b, we observe a significant difference in the distribution of distances
when a shot is detected. When a shot is detected, the distance to the goal visibly decreases,
ranging from 9 to 17 meters, with an average distance of 13.8 meters. While a few outliers
can be observed during shots, the distance to the goal never exceeds 31 meters. It is im-
portant to note that the distance to the closest goal is considered, as a football pitch has
two goals. Therefore, when the ball crosses the middle line, it is considered closer to the
opposite goal, which explains why the distance to the goal never exceeds 50 meters.

To further investigate the relationship between the ball’s distance to the goal and the
occurrence of a shot, Figure 3.5 presents a violin plot showcasing the distribution of the
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Figure 3.5: Distribution of the distance to the goal before and after each frame

ball’s distance to the goal before and after each frame. The plot features two violins: one
representing the distance to the goal before and after a shot, and the other representing
the same for regular frames without a shot. The violins display the distance distribution
in blue for before a frame and in orange for after a frame.

The plot is particularly interesting because it allows for a clear visual comparison of the
distributions. Examining the violin corresponding to the shot labels, it is evident that be-
fore a shot is taken, the distance predominantly falls between 12 and 21 meters. However,
after a shot is taken, the distance significantly reduces, primarily ranging between 5 and
11 meters. This indicates that the ball moves considerably closer to the goal after a shot
is taken. Conversely, the plot corresponding to the other frames, representing non-shot
events, demonstrates that the distribution remains largely unchanged.

Figure 3.6: Distribution of the ball speed

To examine the relationship between ball speed and the occurrence of a shot, a similar
analysis can be conducted. Figure 3.6 presents a violin plot showcasing the distribution of
ball speed before and after each frame.

The plot reveals that in the absence of a shot, the distribution of ball speed before and
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after each frame is comparable, with most values falling between 2 and 5 meters per second.
However, when a shot is detected, a noticeable difference is observed in the distribution of
ball speed before and after the frame. This discrepancy can be attributed to the players
exerting increased force while attempting a shot in order to bypass the goalkeeper. This
observation is supported by the data, which indicates that ball speed before a shot typi-
cally ranges from 3 to 10 meters per second, while the speed after a shot ranges from 6 to
14 meters per second.

(a) Ball direction (b) Ball direction of shots

Figure 3.7: Distribution of the direction to the goal

Finally, Figure 3.7a depicts the direction of the ball relative to the center of the goal before
and after each frame. The figure demonstrates that there is no discernible pattern in the
ball’s direction across the entire dataset. The ball appears to move both away from and
towards the center of the nearest goal in roughly equal proportions, with only a small
percentage of time spent stationary.

However, upon closer examination of the direction before and after each frame during
a shot, a clear distinction emerges. It becomes evident that during a shot, the direction
of the ball is predominantly towards the goal. Nevertheless, it is important to note that
this is not always the case, as there are instances where the ball moves away from the goal
half a second before or after the shot is detected. This can occur due to various reasons,
including the possibility of faulty labels.
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Chapter 4

Methodology

This chapter serves as a roadmap for the techniques used to detect shots, including Random
Forest, Extreme Gradient Boosting, neural networks, and recurrent neural networks. It also
describes several sampling techniques used to combat class imbalance. Lastly, it outlines
the evaluation process for the models.

4.1 Machine learning techniques

4.1.1 Random Forest

Random Forest, first proposed by Ho et al. in 1995 (15) and introduced by Breiman et al.
in 2001 (16), is an ensemble learning method widely used for classification, regression, and
various other tasks. It leverages the combination of multiple decision trees to make pre-
dictions. In this section, we provide an overview of the theoretical foundations underlying
the Random Forest algorithm.

At the core of Random Forests are Decision Trees, which serve as the fundamental building
blocks for the ensemble. Decision trees are hierarchical models that partition the feature
space to make predictions. They consist of nodes and branches, with the root node rep-
resenting the initial feature space and subsequent nodes representing feature splits based
on specific conditions. To determine the best feature splits in decision trees, various mea-
sures of impurity are used. One commonly used measure, known as Gini impurity (17),
quantifies the probability of misclassifying a randomly chosen element in a given node. It
is defined by Equation 4.1.

Gini(D) = 1−
k∑

i=1

p2i (4.1)

In equation 4.1, D represents a dataset containing samples from k classes, and pi represents
the probability of a sample belonging to class i at a given node. The formula calculates
the impurity or ’disorder’ of a node by summing the squared probabilities for each class
label. Lower values of Gini impurity indicate a more homogeneous distribution of class
labels within a node, which leads to better splits for decision tree construction. The final
predictions are made by the terminal nodes or leaf nodes. However, individual decision
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trees often have limited accuracy, especially when they become deep with numerous splits,
which can result in overfitting (18).

To address the limitation of individual decision trees, Random forests introduce the
concept of ’bagging’ to construct an ensemble of decision trees. Bagging involves generating
multiple bootstrap samples from the original training dataset. Each bootstrap sample
is created by randomly drawing observations from the training data with replacement,
resulting in a sample of the same size, with potentially some duplicate instances. By
training decision trees on different bootstrap samples, random forests induce diversity
within the ensemble and thereby reduce variance and the tendency to overfit.

In addition to bagging, random forests introduce randomness at the feature level. At
each node of a decision tree, instead of considering all available features, only a random
subset of features is considered for determining the best split. This randomness helps to
decorrelate the decision trees within the random forest, making them more diverse and
less prone to overfitting. By randomly selecting a subset of features at each split, random
forests can effectively handle high-dimensional data and capture complex interactions be-
tween features. Furthermore, this feature randomness enables the estimation of feature
importance, as the collective performance of the random forest reveals the relative impor-
tance of different features in the prediction process.

After constructing all the decision trees within the random forest, predictions are made
by aggregating the outputs of the individual trees. In the case of classification problems,
a common approach is to employ majority voting. This involves counting each tree’s
prediction, and the class with the highest count is selected as the final prediction. On the
other hand, for regression problems, the individual tree predictions are typically averaged
to obtain the final prediction. This ensemble voting technique allows the random forest to
benefit from the collective knowledge of the trees, mitigating the impact of individual tree
errors or biases and resulting in more accurate and reliable predictions.

To provide a visual representation of the Random Forest algorithm, Figure 4.1 illustrates
the structure of a random forest.

Figure 4.1: General structure of a Random Forest.
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A valuable aspect of random forests is feature importance. Feature importance in random
forests is a technique that assesses the significance of different features in making pre-
dictions. It measures the contribution of each feature in reducing impurity or improving
predictive accuracy. Common methods include Mean Decrease Impurity (MDI) and Mean
Decrease Accuracy (MDA) (19).

4.1.2 Extreme Gradient Boosting

Extreme Gradient Boosting, better known as XGBoost, was introduced in 2016 by Chen
et al. (20). The XGBoost algorithm is an advanced implementation of the gradient boost-
ing algorithm. This section provides a theoretical understanding of the Gradient boosting
algorithm.

At its core, XGBoost utilizes decision trees (previously discussed in section 4.1.1) and the
gradient boosting technique. In XGBoost, decision trees serve as the base models for the
ensemble. However, individual decision trees are typically weak models with limited pre-
dictive power. To overcome the limitations of weak models, XGBoost employs gradient
boosting. This technique involves training decision trees sequentially, where each subse-
quent tree aims to correct the errors made by the previous trees. Each tree learns from its
predecessors and focuses on updating the residual errors, which are the differences between
the predicted and actual values. By iteratively improving the model’s predictions through
the ensemble of decision trees, XGBoost achieves higher predictive accuracy.

In XGBoost, a specific objective function needs to be optimized during training. The ob-
jective function consists of two components: a loss function that measures the discrepancy
between predicted and actual values, and a regularization term that discourages complex
models in order to prevent overfitting. The loss function quantifies the error and guides the
model towards minimizing it. Different loss functions can be used depending on the type
of problem. The regularization term helps control the complexity of the model, preventing
it from becoming overly complex and improving generalization to unseen data.

XGBoost employs gradient descent optimization to iteratively minimize the objective
function. It calculates the gradient and the Hessian (the second derivative) of the loss
function with respect to the predicted values. These derivatives provide information about
the direction and rate of improvement in each iteration. The model parameters are updated
based on these derivatives, leading to a gradual improvement in prediction accuracy. Dur-
ing each iteration, XGBoost constructs decision trees based on the gradients and Hessians.
The trees are built to approximate the negative gradients, which represent the direction of
steepest descent in the objective function. The tree construction process involves selecting
optimal splits and determining the leaf node values that minimize the objective function.

Once all the trees are constructed, XGBoost aggregates their predictions to make the
final prediction. The ensemble prediction is typically a combination of the predictions from
all the trees, weighted by their individual contributions. Additionally, XGBoost provides
a measure of feature importance, indicating the relative importance of different features in
making predictions. It calculates the total gain or total cover of each feature across all the
trees, reflecting their contribution to the model’s performance. This feature importance
analysis helps in understanding the relevance and impact of different features in the pre-
diction process.
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4.1.3 Neural Network

Neural networks (21), also known as artificial neural networks, are a class of machine learn-
ing models inspired by the structure and functioning of the human brain. They consist of
interconnected layers of nodes called neurons, organized into an input layer, one or more
hidden layers, and an output layer. Each neuron in a hidden layer receives inputs from
the previous layer, applies a set of weights to those inputs, and passes the weighted sum
through an activation function to produce an output. This process is repeated layer by
layer until the output layer is reached, which produces the final predictions. The general
structure of a neural network can be seen in Figure 4.2

Figure 4.2: General structure of a neural network.

The training of a neural network involves optimizing the weights of the connections to
minimize a defined objective function, often referred to as the loss or cost function. The
objective function quantifies the discrepancy between the outputs of the network and the
true outputs. The choice of loss function depends on the type of problem being solved,
such as mean squared error for regression or cross-entropy loss for classification.

To optimize the weights, neural networks employ a technique called backpropagation( (22),
(23)). Backpropagation involves computing the gradients of the loss function with respect
to the weights of the network’s connections. These gradients indicate the direction and
rate of improvement for each weight to minimize the loss. By iteratively updating the
weights in the direction of the negative gradient, neural networks gradually improve their
predictions.

The backpropagation process involves two main steps: forward propagation and gradient
descent. During forward propagation, the input data is fed into the neural network, and
the values are propagated through the layers. At each neuron, the weights associated
with the incoming connections, along with an activation function, are applied to generate
an output. The output of the last layer represents the predicted values or probabilities
associated with the task at hand.
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During gradient descent, the gradients of the loss function with respect to the weights
are calculated using the chain rule. These gradients provide information about how the
weights should be adjusted to minimize the loss. The weights are updated by taking small
steps in the opposite direction of the gradients, with the step size controlled by a learning
rate parameter. This iterative process continues until the network’s performance reaches
a satisfactory level or a specified number of training iterations is completed.

Once the neural network is trained, it can make predictions by feeding new input data
through the network using the learned weights. The output of the network represents the
predictions for the given input.

4.1.4 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a type of neural network designed to process se-
quential and temporal data. They are especially useful when the order of the input data
matters, and the different elements in the sequence depend on each other. The key feature
of RNNs is the ability to maintain internal memory storage, which allows them to capture
information from previous inputs and use it to influence the processing of subsequent in-
puts. Memory storage is the reason why RNNs are great at predicting sequential patterns
in data.

At the core of an RNN is the recurrent layer, which consists of recurrently connected
nodes, also known as recurrent units. Figure 4.3 illustrates the distinction between a
regular neural network, as shown in Figure 4.2, and a recurrent neural network. The most
commonly used type of RNN cell is the Long Short-Term Memory (LSTM) (24) unit. The
key innovation of LSTM networks is their ability to selectively retain or forget information
from the past, allowing them to maintain long-term memory over extended sequences.

Figure 4.3: Structural difference between neural networks and recurrent neural networks.

The three main components of an LSTM cell are the input gate, the output gate, and the
forget gate. These gates are designed to control the flow of information and determine what
to remember, what to forget, and what to output at each time step. The entire structure
of an LSTM unit can be seen in Figure 4.4, but it will also be explained in further detail.

• Input Gate: The input (25) determines which parts of the current input and
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previous hidden state are relevant and should be stored in the memory cell. It takes
the current input and the previous hidden state as inputs and passes them through
a sigmoid activation function that determines how much of the new information gets
stored in the memory cell.

• Forget Gate: The forget gate (26) decides which information from the previous
memory cell state should be discarded. Like with the input gate, the information
given by the current input and the previous hidden state get passed through a sigmoid
activation function that controls the amount of information that should be forgotten.

• Memory Cell: The memory cell updates and stores information over time by com-
bining the input and previous hidden state, adjusted by activation functions.

• Output Gate: The output gate determines what information from the current
memory cell state should be output as the hidden state at the current time step. It
takes the current input and the previous hidden state as inputs and applies a sigmoid
activation function. The output gate activation is then combined with the current
memory cell state, modified by a tanh activation function, to produce the current
hidden state output.

Figure 4.4: General structure of an LSTM unit.

During training, LSTM networks use variants of backpropagation, such as backpropagation
through time (BPTT) (27), to optimize their parameters. The gradients are calculated
through time and used to update the weights and biases of the LSTM cells, enabling the
network to learn to model complex sequential patterns.

4.2 Data sampling techniques

As mentioned in section 3.4, the data exhibits a severe class imbalance. Class imbalance
can challenge machine learning algorithms, as they tend to favour the majority class and
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struggle to capture patterns in the minority class. To mitigate the effects of class imbalance
and improve the model’s performance, multiple sampling techniques were employed in this
study. Specifically, SMOTE (Synthetic Minority Over-sampling Technique), Borderline
SMOTE, and undersampling techniques were applied to the data.

SMOTE SMOTE, introduced by Chawla et al. (28), is a widely used technique for
handling imbalanced datasets. It generates synthetic instances for the minority class by
interpolating between neighbouring instances. The synthetic instances are created by ran-
domly selecting a minority class instance and then randomly selecting one or more of its
k-nearest neighbours. A new instance is synthesized by taking a linear combination of the
feature vectors of the selected instance and its neighbours.

By applying SMOTE, the dataset is augmented with synthetic instances, effectively
balancing the class distribution. This technique allows the model to learn from a more
balanced representation of the data, improving its ability to capture the patterns and
characteristics of the minority class.

Borderline SMOTE Borderline SMOTE is an extension of the SMOTE technique that
focuses on the borderline instances of the minority class. Borderline instances are those that
are located near the decision boundary, making them more difficult to classify accurately.
Borderline SMOTE specifically targets these instances to create synthetic samples (29).

By giving special attention to the borderline instances, Borderline SMOTE aims to en-
hance the discriminative ability of the model. It generates synthetic instances in a similar
manner to SMOTE, but with a greater emphasis on the borderline instances. This tech-
nique helps in capturing the complex decision boundaries between classes and can poten-
tially improve the model’s performance, especially in scenarios with severe class imbalance.

Undersampling Undersampling is another technique employed to handle class imbal-
ance. It involves randomly selecting a subset of instances from the majority class to balance
the class distribution (30). By reducing the number of instances from the majority class,
undersampling aims to create a more balanced representation of the data.

Undersampling can help prevent the model from being overwhelmed by the majority
class, allowing it to focus more on the minority class and improve its ability to capture
its characteristics. However, undersampling also comes with the risk of losing valuable
information present in the majority class instances. Hence, a careful balance must be struck
to avoid excessive loss of information while effectively addressing the class imbalance.

4.3 Evaluation techniques

Evaluating a model with a severe class imbalance requires specific care. Due to the na-
ture of certain metrics, they may not be suitable for direct utilization in such scenarios.
However, in this research, a set of evaluation metrics has been carefully selected to address
the challenges posed by imbalanced datasets. These metrics provide a comprehensive as-
sessment of the model’s performance in shot detection tasks while accounting for class
imbalance. The evaluation metrics used in this research are described below.
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Precision Precision represents the proportion of correctly predicted positive instances
(TP: shots) out of all instances predicted as positive. It indicates the accuracy of positive
predictions. In the context of shot detection, precision measures how well the model
identifies shots without generating too many false alarms (false positives, FP). A higher
precision indicates a lower number of false positives and thus a more reliable shot detection
system. The formula for precision is: Precision = TP

TP+FP

Recall Recall, also known as sensitivity or true positive rate, represents the proportion
of correctly predicted positive instances (TP: shots) out of all actual positive instances. It
focuses on capturing all positive instances without missing any (false negatives, FN). In
shot detection, recall measures the ability of the model to detect all shots present in the
data. A higher recall indicates a lower number of missed shots. The formula for recall is:
Recall = TP

TP+FN

F1 score The F1 score combines precision and recall into a single metric, providing a
balanced measure of the model’s performance. It is the harmonic mean of precision and
recall. A higher F1 score indicates a better trade-off between precision and recall. The
formula for the F1 score is: F1 score = 2 · Precision·Recall

Precision + Recall
The F1 score is particularly useful when dealing with class imbalance because it considers

both false positives and false negatives, ensuring a balanced evaluation of the model’s
performance.

AUC-ROC AUC-ROC (Area Under the Receiver Operating Characteristic Curve) sum-
marizes a binary classification model’s overall performance. It plots the true positive rate
(TPR) against the false positive rate (FPR) at various threshold settings. A higher AUC-
ROC value indicates a better-performing model with a higher true positive rate and a
lower false positive rate. It provides a comprehensive evaluation of the model’s ability to
distinguish between positive and negative instances.

Tolerance interval As described in section 3.2, a shot only gets one label in the data,
while a shot in reality takes up way more than one frame. For this reason, a so-called
’tolerance interval’ was used when evaluating the performance of the models. A tolerance
interval allows for a range or tolerance around the predicted shot boundaries, considering
the inherent variability in shot annotations. It provides a measure of flexibility by accept-
ing predictions that are close to the true shot boundaries, even if they are not an exact
match. In other words, shots will also be considered correctly detected if they are within a
certain marge from the actual label. This approach acknowledges the practical challenges
in precisely labelling shots and enables a more realistic evaluation of model performance.
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Chapter 5

Results

This chapter will describe the results achieved by the methods previously described in
chapter 4.

5.1 Experimental setup

Several experiments were conducted using the methods mentioned in Chapter 4. For these
experiments, the data was divided into train, validation, and test sets using a 70/20/10
split. Each of the four methods was tested multiple times, employing various sampling
techniques described in Section 4.2. The evaluation was performed using the metrics out-
lined in Section 4.3, resulting in four distinct results for each model.

Tree ensemble parameters The hyperparameters of the tree ensembles, Random For-
est and XGBoost, were tuned using grid search. The tuned hyperparameters for the tree
ensembles can be seen in Table 5.1.

Random Forest
No sampling SMOTE Borderline SMOTE Undersampling

Estimators 200 300 200 150
Max depth None None None None
Max features sqrt sqrt sqrt sqrt
Min sample split 5 5 5 5
Class weight 10 5 5 5

XGBoost
No sampling SMOTE Borderline SMOTE Undersampling

Estimators 100 300 300 100
Max depth 5 10 10 10
Learning rate 0.01 0.1 0.1 0.001
Class weight 1 1 1 1

Table 5.1: Hyperparameters for tree ensembles in experiments.
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During the tuning process, a decision had to be made regarding the model’s objective:
whether to maximize the detection of shots or minimize the inclusion of noise (false posi-
tives). After consulting with Forward Football, it was determined that minimizing noise de-
tection should get priority, rather than attempting to detect all shots. Therefore, the eval-
uation scoring used for the grid search results was precision, with a 3-fold cross-validation
scheme (31). For the application of SMOTE, a sampling strategy of 0.5 was employed,
resulting in the minority class being approximately half the size of the majority class after
resampling. This strategy was chosen based on empirical research.

Neural network structure Through empirical research, the neural network structure
was carefully determined by conducting numerous small experiments. These experiments
aimed to optimize various components such as the number of nodes, layers, activation
functions, class weights, learning rates, and batch sizes. It was crucial to strike a balance
between complexity and generalization when devising the network architecture.

Ultimately, the chosen neural network comprises three dense layers with respective neu-
ron counts of 256, 128, and 64. This design, along with a significant number of neurons, is
well-suited for capturing intricate relationships within the data. However, it’s important
to exercise caution as larger layers carry an increased risk of overfitting, where the model
becomes too specialized to the training data and performs poorly on new inputs.

To introduce non-linearity and facilitate the model’s ability to learn complex patterns,
the activation functions relu, tanh, and sigmoid were selected. Relu activations are a
widely used choice for introducing non-linear transformations, aiding the model in captur-
ing intricate patterns. Tanh activation further enhances the model’s capability to learn
non-linear relationships involving both positive and negative values. Finally, the sigmoid
activation function maps the output to a range between 0 and 1, making it suitable for
binary classification tasks.

Overall, the network architecture was intentionally kept relatively simple to mitigate the
risk of overfitting. This decision helps strike a balance between complexity, which enables
capturing complex relationships, and generalization, which ensures the model’s ability to
perform well on new and unseen data.

Recurrent neural network structure The RNN architecture is designed with two
LSTM layers to effectively capture long-term dependencies in sequential data. The first
LSTM layer has 64 neurons, followed by the second layer with 32 neurons. The output
layer is a dense layer with a single neuron and a sigmoid activation function, which is used
to transform the output for binary classification. This simple architecture aims to prevent
overfitting while maintaining a good balance between generalization and complexity. The
model takes sequences that are 25 frames long (equivalent to 5 seconds) as input.

Evaluation For the evaluation of the models, a tolerance interval of 2 seconds (10 frames)
was chosen. This interval was chosen based on the domain knowledge of individuals within
the host organization, who said that if the shot was detected about two seconds before
or after the actual shot, the information would still be valuable for Forward Football.
Besides, the party that delivered the data sometimes detects the shot with a few seconds
delay, meaning the actual shot might be happening 1 or 2 seconds before or after the label.
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For one match, the shots were manually labelled, also referred to as the ’ground truth,’
in order to assess the models’ ability to accurately detect all the true shots in the data.
This evaluation helps determine how closely the models align with the actual shots, rather
than relying on potentially erroneous shots initially detected by a third party.

5.2 Baseline results

To evaluate the quality of the model’s results, it is essential to establish a baseline for
comparison. In the absence of comparable prior research, a randomness baseline was em-
ployed. This baseline randomly determines whether a shot occurs or not in the validation
and test sets. By adopting this approach, we can assess whether other models perform
better, worse, or at the same level as random guessing.

Table 5.2 presents the outcomes of the random baseline. The recall of 0.495 indicates that
approximately half of the shots were correctly identified at their reported timestamps.
However, the precision of 0.004 suggests a large number of false positive cases in the
results. In other words, a lot of shots that did not occur were detected, also known as
noise.

Furthermore, the AUC-ROC score of 0.499 confirms that the model’s performance is
comparable to random guessing. As expected, a random baseline lacks any meaningful
predictive capability.

Precision Recall f1-score AUC-ROC
0.004 0.551 0.008 0.525

Table 5.2: Baseline results.

5.3 Random Forest results

The test set results of the Random Forest model can be found in Table 5.3. The results of
the validation set can be found in Appendix A.1.

Precision Recall F1-score AUC-ROC
No sampling 0.3 0.188 0.231 0.593
SMOTE 0.207 1.0 0.343 0.795
Borderline SMOTE 0.237 0.646 0.346 0.746
Undersampling 0.043 1.0 0.083 0.933

Table 5.3: Random Forest results on the test set.

Table 5.3 shows the performance of different models. All models achieve a precision ranging
from 0.2 to 0.3, indicating that approximately 70-80% of the shots they detect are actually
noise, while only 20-30% are correctly identified shots. The undersampling model performs
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poorly in comparison, suggesting that it detects a significant number of false positives. This
could be because important patterns were removed when undersampling the majority class.

In terms of recall values, the no-sampling model only captures 18.8% of the shots in the
dataset. While it identifies less noise, it also fails to detect most of the shots in the test
set. Considering the low F1-score and AUC-ROC score, it seems that the model learned
very little. This is not surprising since it learned from an extremely imbalanced dataset
without any sampling techniques, relying solely on class weights.

Both the SMOTE and undersampling models achieve a recall of 1.0, indicating that they
detect all shots in the test set. However, when considering recall in conjunction with preci-
sion, it becomes evident that the undersampling model detects all shots not because it has
learned the pattern, but because it detects a large number of shots, accidentally including
the real shots as well. In contrast, the SMOTE and borderline SMOTE models strike a
better balance between detecting shots and avoiding noise.

Overall, the SMOTE and borderline SMOTE models perform the best among the models,
with the borderline SMOTE model slightly outperforming the regular SMOTE model. All
models outperform the randomness baseline, although the improvement with the under-
sampling model is negligible. It is also worth noting that all models exhibit slightly worse
performance on the test set compared to the validation set.

Analyzing the feature importance of the borderline SMOTE model reveals that the most
influential feature is the future distance to the goal, followed by the future speed and
whether the direction of the ball is toward the goal or not. Clearly, the movement of the
ball after the shot has occurred proves to be the most critical factor in detecting shots,
aligning with the real-world understanding of when a shot will happen.

To delve deeper into the performance of the borderline SMOTE model, its performance
on the ground truth was examined. When applied to the ground truth, the model achieves
a precision of 0.221, indicating that approximately 78% of the detected shots are false
positives. However, the recall value is 1.0, meaning that all shots are detected, resulting
in an overall F1-score of 0.362. Surprisingly, the performance of the model on the ground
truth actually surpasses its performance on the test set by a small margin.

To further analyze the model’s performance based on the ground truth, the detected
shots were examined using video footage of the match. This allowed for a more detailed
understanding of where the model struggled in accurately detecting shots. Upon reviewing
the footage, it was observed that approximately half of the false positives were passes to
the goalkeeper or other types of passes near the goal. These passes could potentially be
eliminated if ball possession data were available. Additionally, around 20% of the false
positives were shots that fell just outside the defined tolerance interval and were conse-
quently not filtered out. Lastly, approximately 30% of the detected shots were determined
to be nonsensical, such as the ball rolling out of bounds along the sidelines or backlines.

5.4 XGBoost results

The test set results, presented in Table 5.4, provide insights into the performance of the
random forest model using different sampling techniques. The results of the validation set
can be found in Appendix A.2.
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Precision Recall F1-score AUC-ROC
No sampling 0.0 0.0 0.0 0.5
SMOTE 0.068 1.0 0.128 0.851
Borderline SMOTE 0.162 1.0 0.278 0.793
Undersampling 0.033 1.0 0.064 0.908

Table 5.4: XGBoost results on the test set.

In reference to the results presented in Table 5.4, an immediate observation is that the
model without any sampling techniques exhibits a precision, recall, and F1-score of 0.0,
indicating an inability to detect any shots. This model failed to learn any discernible shot
patterns, resulting in a performance that is arguably worse than random guessing. On
the other hand, all sampling techniques achieved a recall of 1, indicating the successful
detection of all shots. However, when examining the precision values, it becomes evident
that these models not only detected true positives (shots) but also produced numerous false
positives or noise, which affected their recall performance. The models went to extreme
measures to detect the minority class, suggesting a misalignment between the sampling
techniques and the model’s implementation.

Looking specifically at the undersampling model, the precision of 0.033 suggests a high
detection of noise. Although it also managed to identify all shots, the F1-score of 0.064
indicates only slight improvement over the randomness baseline. It is likely that the un-
dersampling process caused the loss of underlying shot patterns.

Overall, similar to the random forest model, the borderline SMOTE models exhibited
the best performance. All models outperformed the randomness baseline, except for the
model without any sampling techniques. However, all models displayed significantly poorer
performance on the test set compared to the validation set.

Additionally, examining the feature importance of the borderline SMOTE model revealed
that, according to XGBoost, the most influential features by a significant margin were the
future distance to the goal and the future direction towards the goal. Most other features
were comparatively not significant.

Furthermore, an analysis of the borderline SMOTE model was conducted by evaluating
its performance on the ground truth. It achieved a precision of 0.114, which is lower
than the precision obtained on the test set (0.162). Additionally, the recall value of 1.0
indicates successful detection of all shots, but at the expense of a substantial amount of
noise, as indicated by the precision. Overall, the F1-score of 0.204 shows that the model’s
performance on the ground truth was weaker than on the test set.

Upon reviewing the video footage of the match and examining the false positive detec-
tions, it became evident that a significant majority, more than half, of the false positive
shots were actually passes made to the goalkeeper or other passes near the goal. A smaller
portion of the false positives included instances where the ball was rapidly approaching
the goal but a shot had not yet been taken, falling outside the defined tolerance interval.
Additionally, a remaining portion of the false positives appeared to be attributed to the
ball rolling out of bounds.
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5.5 Neural Network results

The test set results of the neural network can be found in Table 5.5. The results of the
validation set can be found in Appendix A.3.

Loss Precision Recall F1-score AUC-ROC
No sampling 0.038 0.215 0.896 0.347 0.744
SMOTE 0.058 0.166 1.0 0.284 0.845
Borderline SMOTE 0.065 0.177 1.0 0.301 0.814
Undersampling 0.04 0.268 0.938 0.416 0.787

Table 5.5: Neural Network results on the test set.

Table 5.5 provides insights into the models’ performance. Firstly, it is evident that all
models achieve a relatively low cross-entropy loss, indicating successful minimization of
the discrepancy between predicted probabilities and actual binary labels. Examining pre-
cision, all models demonstrate precision values ranging from 0.15 to 0.3, implying that 15%
to 30% of the detected shots are actual shots, while the remaining detections are noise.
Interestingly, all models detect almost all of the shots in the test set, with the SMOTE and
borderline SMOTE models achieving a recall of 1.0. However, it is worth noting that these
models also exhibit the lowest precision among the models, suggesting that they might
have also detected more noise compared to other models.

An intriguing observation is the performance of the network without any sampling tech-
nique. It performs comparably, if not better, than some models that addressed class im-
balance. This suggests that the neural network effectively captures the underlying pattern
that defines a shot, even without the assistance of sampling techniques.

Overall, the neural networks demonstrate good proficiency in identifying the underlying
patterns that define a shot, with the undersampling model performing the best. Despite
the potential information loss associated with undersampling, mitigating the bias towards
the majority class appears to have benefited the model in this case. Importantly, all models
outperform the randomness baseline, although their collective performance is slightly lower
on the test set compared to the validation set.

To further explore the performance of the undersampling model, its effectiveness on
the ground truth was assessed. When applied to the ground truth, the model achieves
a recall of 1, successfully detecting all true shots. Additionally, it attains a precision of
0.333, implying that although some noise is still detected, the model demonstrates greater
resilience to it compared to the previously discussed models. Overall, the model achieves
an F1-score of 0.5, indicating that the undersampling model performs well on the ground
truth.

Upon conducting further investigation into the false positive instances, it was discovered
that the majority of them primarily involved passes occurring near the goal, either directed
towards the goalkeeper by their own teammates or between other players. Additionally,
a few cases were identified where shots were detected that fell just outside the defined
tolerance interval, indicating that the ball was rapidly advancing towards the goal. Lastly,
a small number of false positive instances were found to be attributed to nonsensical
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occurrences.

5.6 Recurrent Neural Network results

The test set results of the neural network can be found in Table 5.6. The results of the
validation set can be found in Appendix A.4.

Loss Precision Recall F1-score AUC-ROC
No sampling 0.055 0.128 0.354 0.188 0.558
SMOTE 0.064 0.043 0.083 0.057 0.507
Borderline SMOTE 0.056 0.044 0.083 0.058 0.497
Undersampling 2.436 0.004 1.0 0.007 0.539

Table 5.6: Recurrent Neural Network results on the test set.

Table 5.6 provides an analysis of the models’ performance. The cross-entropy loss indicates
that most models achieved similar results, except for the undersampling model, which
performed significantly worse with a loss of 2.436. This high loss value indicates that
the undersampling model struggled to distinguish shots from other observations in the
test set. Moreover, the precision of the undersampling model further confirms its poor
performance, as it detected less than 1% of true positives, suggesting an excessive number
of false positives. This outcome might be attributed to the removal of recurrent patterns
through random undersampling, leaving insufficient information for the model to learn
from.

However, the other models did not perform significantly better. Both the SMOTE and
borderline SMOTE models exhibited similar performance on the test set, with a recall of
0.083 and precisions of 0.043 and 0.044, respectively. The low recall values indicate that
these models failed to identify the majority of actual shots, suggesting an inability to cap-
ture shot patterns effectively. Furthermore, the precision values indicate that although the
models struggled to detect shots, they identified a considerable amount of noise. In con-
trast, the model without any sampling techniques outperformed the models with sampling
techniques, most likely because the recurrent nature of the data remained undisturbed.
However, even this model’s performance was unsatisfactory, with a precision of 0.123 and
a recall of 0.188. It detected less than half of the actual shots, and of the shots it did
detect, over 80% were false positives.

Overall, the model without sampling techniques demonstrated the best performance, likely
due to the preserved nature of the recurrent data. However, all models exhibited poor
performance, with the no sampling and undersampling models performing slightly better
than the randomness baseline. Surprisingly, the SMOTE and borderline SMOTE models
even performed worse than the randomness baseline. It’s worth noting that all models
showed slightly lower performance on the test set compared to the validation set.

Upon evaluating the no sampling model’s performance against the ground truth, its
inadequacies are once again apparent. Despite its precision of 0.167, which indicates some
ability to identify shots, the model still detected a significant amount of noise, although less
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than the previously discussed models. The recall value of 0.28 reveals that the model only
captured less than a third of the true shots present in the dataset. Overall, the model’s
performance is reflected in its F1 score of 0.209, which, although surpassing the random
baseline, still demonstrates its suboptimal performance.

Investigating the false positive detections for the best models posed a challenge due to the
high number of instances flagged by the model. Upon conducting a general investigation,
it appeared that the model tended to classify any movement of the ball towards the goal
as a shot.
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Chapter 6

Discussion

Limitations This research, like any other, has certain limitations that should be ac-
knowledged. One of the major limitations is the absence of player ball possession in-
formation in the data. This absence significantly impacts the models’ performance and
contributes to the noise detected. Including features indicating whether the player in pos-
session of the ball is on their own half or the opponent’s half could greatly reduce false
detections. Intuitively, a shot only occurs when the player with the ball is on the opponent’s
side. As discussed in Section 5, many incorrectly detected shots are actually passes to the
goalkeeper. If the model had knowledge of the player’s ball possession and their location
on the field, these instances would not be falsely identified as shots. While attempts were
made to extract ball possession information (as described in Section 3.2), it is impossible
to confirm the accuracy of the algorithm’s labelling. The third-party provider of the data
has access to ball possession information but chooses not to disclose it to Forward Football,
as sharing such information could potentially lead to the replication of their algorithms.

Another limitation of this research is the precision of the coordinates. As mentioned in
Section 3.1, the data provides meter-accurate coordinates, resulting in a grid of 1 meter
by 1 meter on the pitch. Consequently, even a slight movement of the ball from one grid
to another is recorded as a full-meter displacement, whereas in reality, it might have only
moved 30 cm. The lack of precise coordinates hampers the accuracy and reliability of the
extracted features. If more precise coordinate data were available, it is possible that the
extracted features would also be more accurate.

Similarly, the current data frequency of 5 Hz may not be optimal. The influence of data
frequency on the results remains uncertain, as the frequencies used in existing literature
vary, but they are typically higher than 5 Hz. It is unclear to what extent the lower fre-
quency used in this research may impact the findings. Further exploration and comparison
with different data frequencies could provide valuable insights into the optimal frequency
for detecting shots accurately.

Future research In the realm of future research, there are numerous intriguing possibil-
ities to explore. One avenue of interest involves delving deeper into the effects of different
neural network structures, such as variations in the number of layers, nodes, and activa-
tion functions. Additionally, investigating the impact of varying the number of timesteps
used in recurrent neural networks could yield valuable insights. Furthermore, it would be
worthwhile to explore the potential of entirely new algorithms like logistic regression or
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support vector machines. Alongside these algorithmic investigations, it would be benefi-
cial to explore alternative sampling techniques, such as random oversampling, ADASYN,
SMOTE-ENN, or SMOTE-Tomek, among others.

Exploring a rule-based detection approach instead of relying solely on machine learning
models can be valuable. By employing a rule-based method, extensive control over the
detection process is achieved, allowing the definition of specific criteria for distinguish-
ing shots from other actions. This departure from machine learning approaches presents
distinct advantages and opportunities for customization.

If none of the aforementioned ideas yield significant improvements in detection, an alter-
native approach could involve conducting an "after analysis" using logic rules to filter out
false positive instances. By applying logical rules post-detection, it becomes possible to
refine the results and reduce the number of erroneous classifications. This approach serves
as a complementary step to the detection process, allowing for more precise and accurate
identification of true positives while mitigating the impact of false positives. Implementing
logical rules in the post-analysis stage can enhance the overall effectiveness and reliability
of the detection system.
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Chapter 7

Conclusion

Throughout this study, our research aimed to address the following question:

To what extent can machine learning be employed for the detection of football shots?

j

The dataset was evaluated using four different models, each employing different sampling
techniques. These models displayed varied responses to the data. Notably, the tree ensem-
bles (random forest and XGBoost) achieved the highest performance when utilizing the
borderline SMOTE sampling technique, benefiting from their inherent ability to handle
imbalanced data and noise robustness. However, without any sampling technique, the tree
ensembles struggled to identify anything beyond non-shots.

Conversely, the neural network and recurrent neural network performed equally well or
even better when no sampling techniques were applied. This suggests that neural networks
possess superior adaptability to the data, potentially explaining their relatively stronger
performance. The recurrent neural network, in particular, achieved the best results when
no sampling technique was used, indicating the importance of preserving the data’s inherent
recurrent nature.

On the other hand, overall undersampling emerged as the least effective technique across
all algorithms, except for the neural network, where it surprisingly outperformed other ap-
proaches. The negative impact of undersampling on the tree ensembles can be attributed
to the loss of diverse data samples, which hindered their predictive accuracy. Undersam-
pling primarily aimed to address bias towards the majority class but did not significantly
contribute to detecting patterns in the minority class. Additionally, the undersampling
technique likely disrupted the recurrent nature of the data, leading to subpar performance
in the recurrent neural network.

Overall, all models faced challenges in noise detection, with each model producing at least
twice as many false positives as true positives. However, with the exception of two models,
all models demonstrated improvement over random guessing, albeit some to a minor extent.

Upon analyzing the false positives generated by the models, several distinct patterns in
their mistakes became evident. Firstly, the models frequently misidentified passes that
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occurred in close proximity to or towards the goal, including passes directed towards the
goalkeeper. Additionally, the models often detected the ball’s motion towards the goal, oc-
casionally identifying goals just outside the 2-second tolerance window. Finally, the models
occasionally erroneously identified other miscellaneous ball actions, such as the ball acci-
dentally rolling out of bounds.

In analyzing the feature importance, as indicated by the tree ensembles, it becomes evident
that the future trajectory of the ball plays a pivotal role in detecting shots. Specifically, the
models assign high importance to the future distance between the ball and the goal, as well
as the future direction of the ball towards the goal. On the other hand, features such as
the stationary direction of the ball (when the ball is essentially inactive for a brief period)
or the past trajectory of the ball are deemed less significant and have lower importance in
the models’ decision-making process.

To address the research question, To what extent can machine learning be employed for the
detection of football shots? It can be concluded that machine learning can be effectively
utilized for shot detection. However, it is crucial to consider the data structure, model
selection, and sampling techniques as they have a significant impact on the results.

Among the models examined in this research, the neural network with undersampling
emerged as the most successful, achieving the highest F1 score of 0.416. This outcome sug-
gests that employing undersampling as a technique in conjunction with a neural network
can yield favourable results for football shot detection.

From a company perspective, the results are satisfactory, surpassing initial expectations
for what could be achieved through a machine learning approach. However, the current
model still generates numerous false positive observations, making it unsuitable for direct
use by Forward Football. Efforts are underway to enhance the results by leveraging future
research, as outlined in Chapter 6. Unfortunately, due to limited information, such as ball
possession data, significant improvements to the results are currently unattainable.
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Appendix A

Validation results

A.1 Random Forest

Table A.1 presents the validation results of the XGBoost model with different sampling
techniques.

Precision Recall F1-score AUC-ROC
No sampling 0.38 0.181 0.245 0.566
SMOTE 0.2 1.0 0.333 0.768
Borderline SMOTE 0.321 0.914 0.475 0.719
Undersampling 0.04 1.0 0.076 0.907

Table A.1: Random Forest results on the validation set.

A.2 XGBoost

Table A.2 presents the validation results of the XGBoost model with different sampling
techniques.

Precision Recall F1-score AUC-ROC
No sampling 0.5 0.029 0.054 0.509
SMOTE 0.061 1.0 0.115 0.852
Borderline SMOTE 0.153 1.0 0.265 0.818
Undersampling 0.031 1.0 0.061 0.9

Table A.2: XGBoost results on the validation set.

A.3 Neural network

Table A.3 presents the validation results of the neural network with different sampling
techniques.
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Loss Precision Recall F1-score AUC-ROC
No sampling 0.045 0.222 1.0 0.365 0.755
SMOTE 0.068 0.157 1.0 0.272 0.823
Borderline SMOTE 0.077 0.178 1.0 0.302 0.815
Undersampling 0.05 0.257 1.0 0.409 0.77

Table A.3: Neural Network results on the validation set.

A.4 Recurrent neural network

Table A.4 presents the validation results of the recurrent neural network model with dif-
ferent sampling techniques.

Loss Precision Recall F1-score AUC-ROC
No sampling 0.053 0.153 0.323 0.208 0.539
SMOTE 0.065 0.025 0.047 0.033 0.506
Borderline SMOTE 0.059 0.072 0.131 0.093 0.525
Undersampling 2.195 0.004 1.0 0.008 0.571

Table A.4: Recurrent Neural Network results on the validation set.
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